-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
140 lines (121 loc) · 6.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
import argparse
from solver import Solver
from data_loader import get_loader
from torch.backends import cudnn
def str2bool(v):
return v.lower() in ('true')
def main(config):
# For fast training
cudnn.benchmark = True
# Create directories if not exist
if not os.path.exists(config.log_path):
os.makedirs(config.log_path)
if not os.path.exists(config.model_save_path):
os.makedirs(config.model_save_path)
if not os.path.exists(config.sample_path):
os.makedirs(config.sample_path)
if not os.path.exists(config.result_path):
os.makedirs(config.result_path)
# Data loader
data_loader = None
if config.dataset == 'CelebA':
image_path = os.path.join(config.celebA_path, 'images')
seg_path = os.path.join(config.celebA_path, 'segmentation')
metadata_path = os.path.join(config.celebA_path, 'list_attr_celeba_s.txt')
data_loader = get_loader(image_path, seg_path, metadata_path, config.celebA_crop_size,
config.image_size, config.batch_size, 'CelebA', config.mode)
elif config.dataset == 'Fashion':
image_path = os.path.join(config.fashion_path, 'Img')
seg_path = os.path.join(config.fashion_path, 'Img')
metadata_path = os.path.join(config.fashion_path, 'Anno')
data_loader = get_loader(image_path, seg_path, metadata_path, config.fashion_crop_size,
config.image_size, config.batch_size, 'Fashion', config.mode)
config.c_dim = 17
# Solver
solver = Solver(data_loader, config)
if config.mode == 'train':
solver.train()
elif config.mode == 'test':
if config.dataset == 'CelebA':
solver.test_seg()
if config.dataset == 'Fashion':
solver.test_fashion_single()
elif config.mode == 'test_seg':
solver.test_seg()
elif config.mode == 'test_single':
solver.test_celeba_single()
elif config.mode == 'test_interp':
solver.test_interp()
elif config.mode == 'test_interp_all':
solver.test_interp_all()
elif config.mode == 'test_epoch':
solver.test_celeba_epoch()
elif config.mode == 'seg':
solver.test_doseg()
print('do segmentation!')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Model hyper-parameters
parser.add_argument('--cuda', type=str2bool, default=True)
parser.add_argument('--z_dim', type=int, default=512)
parser.add_argument('--c_dim', type=int, default=5)
parser.add_argument('--s_dim', type=int, default=7)
parser.add_argument('--celebA_crop_size', type=int, default=178)
parser.add_argument('--fashion_crop_size', type=int, default=128)
parser.add_argument('--image_size', type=int, default=128)
parser.add_argument('--g_conv_dim', type=int, default=64)
parser.add_argument('--d_conv_dim', type=int, default=64)
parser.add_argument('--g_repeat_num', type=int, default=6)
parser.add_argument('--d_repeat_num', type=int, default=6)
parser.add_argument('--g_lr', type=float, default=0.00005)
parser.add_argument('--d_lr', type=float, default=0.00005)
parser.add_argument('--a_lr', type=float, default=0.0001)
parser.add_argument('--lambda_cls', type=float, default=1)
parser.add_argument('--lambda_s', type=float, default=1)
parser.add_argument('--lambda_rec', type=float, default=10)
parser.add_argument('--lambda_gp', type=float, default=10)
parser.add_argument('--d_train_repeat', type=int, default=5)
# Training settings
parser.add_argument('--dataset', type=str, default='CelebA', choices=['CelebA', 'Fashion'])
parser.add_argument('--num_epochs', type=int, default=50)
parser.add_argument('--num_epochs_decay', type=int, default=30)
parser.add_argument('--num_iters', type=int, default=200000)
parser.add_argument('--num_iters_decay', type=int, default=100000)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--num_workers', type=int, default=1)
parser.add_argument('--beta1', type=float, default=0.5)
parser.add_argument('--beta2', type=float, default=0.999)
parser.add_argument('--pretrained_model', type=str, default=None)
# Test settings
parser.add_argument('--test_model', type=str, default='20_1000')
parser.add_argument('--test_seg_path', type=str, default='data/CelebA_nocrop/seg_test')
parser.add_argument('--test_img_path', type=str, default='data/CelebA_nocrop/img_test')
# Misc
parser.add_argument('--mode', type=str, default='train', choices=['train', 'test', 'test_seg', 'test_interp', 'test_interp_all','test_epoch','test_single','seg'])
parser.add_argument('--use_tensorboard', type=str2bool, default=False)
# Path
# parser.add_argument('--celebA_image_path', type=str, default='./data/CelebA_nocrop/images')
# parser.add_argument('--celebA_seg_path', type=str, default='./data/CelebA_nocrop/Segmentation')
# parser.add_argument('--metadata_path', type=str, default='./data/list_attr_celeba_s.txt')
parser.add_argument('--celebA_path', type=str, default='/home/songyao/workspace/data/CelebA_nocrop')
parser.add_argument('--fashion_path', type=str, default='/home/songyao/workspace/data/DeepFashion')
# parser.add_argument('--log_path', type=str, default='./experiment/logs')
# parser.add_argument('--model_save_path', type=str, default='./experiment/models')
# parser.add_argument('--sample_path', type=str, default='./experiment/samples')
# parser.add_argument('--result_path', type=str, default='./experiment/results')
parser.add_argument('--experiment_path', type=str, default='./experiment')
# Step size
parser.add_argument('--log_step', type=int, default=10)
parser.add_argument('--sample_step', type=int, default=500)
parser.add_argument('--model_save_step', type=int, default=2000)
# Visdom setting
parser.add_argument('--port', type=int, default=8097)
parser.add_argument('--web_dir', type=str, default='web')
config = parser.parse_args()
config.log_path = os.path.join(config.experiment_path, 'logs')
config.model_save_path = os.path.join(config.experiment_path, 'models')
config.sample_path = os.path.join(config.experiment_path, 'samples')
config.result_path = os.path.join(config.experiment_path, 'results')
print(config)
main(config)