forked from DigiByte-Core/digibytewallet-core
-
Notifications
You must be signed in to change notification settings - Fork 0
/
BRBIP38Key.c
392 lines (333 loc) · 18 KB
/
BRBIP38Key.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
//
// BRBIP38Key.c
//
// Created by Aaron Voisine on 9/7/15.
// Copyright (c) 2015 breadwallet LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#include "BRBIP38Key.h"
#include "BRAddress.h"
#include "BRCrypto.h"
#include "BRBase58.h"
#include "BRInt.h"
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#define BIP38_NOEC_PREFIX 0x0142
#define BIP38_EC_PREFIX 0x0143
#define BIP38_NOEC_FLAG (0x80 | 0x40)
#define BIP38_COMPRESSED_FLAG 0x20
#define BIP38_LOTSEQUENCE_FLAG 0x04
#define BIP38_INVALID_FLAG (0x10 | 0x08 | 0x02 | 0x01)
#define BIP38_SCRYPT_N 16384
#define BIP38_SCRYPT_R 8
#define BIP38_SCRYPT_P 8
#define BIP38_SCRYPT_EC_N 1024
#define BIP38_SCRYPT_EC_R 1
#define BIP38_SCRYPT_EC_P 1
// BIP38 is a method for encrypting private keys with a passphrase
// https://github.com/bitcoin/bips/blob/master/bip-0038.mediawiki
static const uint8_t sbox[256] = {
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
};
static const uint8_t sboxi[256] = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
};
#define xt(x) (((x) << 1) ^ ((((x) >> 7) & 1)*0x1b))
static void _BRAES256ECBEncrypt(const void *key32, void *buf16)
{
size_t i, j;
uint32_t key[32/4], buf[16/4];
uint8_t *x = (uint8_t *)buf, *k = (uint8_t *)key, r = 1, a, b, c, d, e;
memcpy(key, key32, sizeof(key));
memcpy(buf, buf16, sizeof(buf));
for (i = 0; i < 14; i++) {
for (j = 0; j < 4; j++) buf[j] ^= key[j+(i & 1)*4]; // add round key
for (j = 0; j < 16; j++) x[j] = sbox[x[j]]; // sub bytes
// shift rows
a = x[1], x[1] = x[5], x[5] = x[9], x[9] = x[13], x[13] = a, a = x[10], x[10] = x[2], x[2] = a;
a = x[3], x[3] = x[15], x[15] = x[11], x[11] = x[7], x[7] = a, a = x[14], x[14] = x[6], x[6] = a;
for (j = 0; i < 13 && j < 16; j += 4) { // mix columns
a = x[j], b = x[j+1], c = x[j+2], d = x[j+3], e = a ^ b ^ c ^ d;
x[j] ^= e ^ xt(a ^ b), x[j+1] ^= e ^ xt(b ^ c), x[j+2] ^= e ^ xt(c ^ d), x[j+3] ^= e ^ xt(d ^ a);
}
if ((i % 2) != 0) { // expand key
k[0] ^= sbox[k[29]] ^ r, k[1] ^= sbox[k[30]], k[2] ^= sbox[k[31]], k[3] ^= sbox[k[28]], r = xt(r);
for (j = 4; j < 16; j += 4) k[j] ^= k[j-4], k[j+1] ^= k[j-3], k[j+2] ^= k[j-2], k[j+3] ^= k[j-1];
k[16] ^= sbox[k[12]], k[17] ^= sbox[k[13]], k[18] ^= sbox[k[14]], k[19] ^= sbox[k[15]];
for (j = 20; j < 32; j += 4) k[j] ^= k[j-4], k[j+1] ^= k[j-3], k[j+2] ^= k[j-2], k[j+3] ^= k[j-1];
}
}
var_clean(&r, &a, &b, &c, &d, &e);
for (i = 0; i < 4; i++) buf[i] ^= key[i]; // final add round key
mem_clean(key, sizeof(key));
memcpy(buf16, buf, sizeof(buf));
mem_clean(buf, sizeof(buf));
}
static void _BRAES256ECBDecrypt(const void *key32, void *buf16)
{
size_t i, j;
uint32_t key[32/4], buf[16/4];
uint8_t *x = (uint8_t *)buf, *k = (uint8_t *)key, r = 1, a, b, c, d, e, f, g, h;
memcpy(key, key32, sizeof(key));
memcpy(buf, buf16, sizeof(buf));
for (i = 0; i < 7; i++) { // expand key
k[0] ^= sbox[k[29]] ^ r, k[1] ^= sbox[k[30]], k[2] ^= sbox[k[31]], k[3] ^= sbox[k[28]], r = xt(r);
for (j = 4; j < 16; j += 4) k[j] ^= k[j-4], k[j+1] ^= k[j-3], k[j+2] ^= k[j-2], k[j+3] ^= k[j-1];
k[16] ^= sbox[k[12]], k[17] ^= sbox[k[13]], k[18] ^= sbox[k[14]], k[19] ^= sbox[k[15]];
for (j = 20; j < 32; j += 4) k[j] ^= k[j-4], k[j+1] ^= k[j-3], k[j+2] ^= k[j-2], k[j+3] ^= k[j-1];
}
for (i = 0; i < 14; i++) {
for (j = 0; j < 4; j++) buf[j] ^= key[j+(i & 1)*4]; // add round key
for (j = 0; i > 0 && j < 16; j += 4) { // unmix columns
a = x[j], b = x[j+1], c = x[j+2], d = x[j+3], e = a ^ b ^ c ^ d;
h = xt(e), f = e ^ xt(xt(h ^ a ^ c)), g = e ^ xt(xt(h ^ b ^ d));
x[j] ^= f ^ xt(a ^ b), x[j+1] ^= g ^ xt(b ^ c), x[j+2] ^= f ^ xt(c ^ d), x[j+3] ^= g ^ xt(d ^ a);
}
// unshift rows
a = x[1], x[1] = x[13], x[13] = x[9], x[9] = x[5], x[5] = a, a = x[2], x[2] = x[10], x[10] = a;
a = x[3], x[3] = x[7], x[7] = x[11], x[11] = x[15], x[15] = a, a = x[6], x[6] = x[14], x[14] = a;
for (j = 0; j < 16; j++) x[j] = sboxi[x[j]]; // unsub bytes
if ((i % 2) == 0) { // unexpand key
for (j = 28; j > 16; j -= 4) k[j] ^= k[j-4], k[j+1] ^= k[j-3], k[j+2] ^= k[j-2], k[j+3] ^= k[j-1];
k[16] ^= sbox[k[12]], k[17] ^= sbox[k[13]], k[18] ^= sbox[k[14]], k[19] ^= sbox[k[15]];
for (j = 12; j > 0; j -= 4) k[j] ^= k[j-4], k[j+1] ^= k[j-3], k[j+2] ^= k[j-2], k[j+3] ^= k[j-1];
r = (r >> 1) ^ ((r & 1)*0x8d);
k[0] ^= sbox[k[29]] ^ r, k[1] ^= sbox[k[30]], k[2] ^= sbox[k[31]], k[3] ^= sbox[k[28]];
}
}
var_clean(&r, &a, &b, &c, &d, &e, &f, &g, &h);
for (i = 0; i < 4; i++) buf[i] ^= key[i]; // final add round key
mem_clean(key, sizeof(key));
memcpy(buf16, buf, sizeof(buf));
mem_clean(buf, sizeof(buf));
}
static UInt256 _BRBIP38DerivePassfactor(uint8_t flag, const uint8_t *entropy, const char *passphrase)
{
size_t len = strlen(passphrase);
UInt256 prefactor, passfactor;
BRScrypt(&prefactor, sizeof(prefactor), passphrase, len, entropy, (flag & BIP38_LOTSEQUENCE_FLAG) ? 4 : 8,
BIP38_SCRYPT_N, BIP38_SCRYPT_R, BIP38_SCRYPT_P);
if (flag & BIP38_LOTSEQUENCE_FLAG) { // passfactor = SHA256(SHA256(prefactor + entropy))
uint8_t d[sizeof(prefactor) + sizeof(uint64_t)];
memcpy(d, &prefactor, sizeof(prefactor));
memcpy(&d[sizeof(prefactor)], entropy, sizeof(uint64_t));
BRSHA256_2(&passfactor, d, sizeof(d));
mem_clean(d, sizeof(d));
}
else passfactor = prefactor;
var_clean(&len);
var_clean(&prefactor);
return passfactor;
}
static UInt512 _BRBIP38DeriveKey(BRECPoint passpoint, const uint8_t *addresshash, const uint8_t *entropy)
{
UInt512 dk;
uint8_t salt[sizeof(uint32_t) + sizeof(uint64_t)];
memcpy(salt, addresshash, sizeof(uint32_t));
memcpy(&salt[sizeof(uint32_t)], entropy, sizeof(uint64_t)); // salt = addresshash + entropy
BRScrypt(&dk, sizeof(dk), &passpoint, sizeof(passpoint), salt, sizeof(salt), BIP38_SCRYPT_EC_N, BIP38_SCRYPT_EC_R,
BIP38_SCRYPT_EC_P);
mem_clean(salt, sizeof(salt));
return dk;
}
int BRBIP38KeyIsValid(const char *bip38Key)
{
uint8_t data[39];
assert(bip38Key != NULL);
if (BRBase58CheckDecode(data, sizeof(data), bip38Key) != 39) return 0; // invalid length
uint16_t prefix = UInt16GetBE(data);
uint8_t flag = data[2];
if (prefix == BIP38_NOEC_PREFIX) { // non EC multiplied key
return ((flag & BIP38_NOEC_FLAG) == BIP38_NOEC_FLAG && (flag & BIP38_LOTSEQUENCE_FLAG) == 0 &&
(flag & BIP38_INVALID_FLAG) == 0);
}
else if (prefix == BIP38_EC_PREFIX) { // EC multiplied key
return ((flag & BIP38_NOEC_FLAG) == 0 && (flag & BIP38_INVALID_FLAG) == 0);
}
else return 0; // invalid prefix
}
// decrypts a BIP38 key using the given passphrase and returns false if passphrase is incorrect
// passphrase must be unicode NFC normalized: http://www.unicode.org/reports/tr15/#Norm_Forms
int BRKeySetBIP38Key(BRKey *key, const char *bip38Key, const char *passphrase)
{
int r = 1;
uint8_t data[39];
assert(key != NULL);
assert(bip38Key != NULL);
assert(passphrase != NULL);
if (BRBase58CheckDecode(data, sizeof(data), bip38Key) != 39) return 0; // invalid length
uint16_t prefix = UInt16GetBE(data);
uint8_t flag = data[2];
const uint8_t *addresshash = &data[3];
size_t pwLen = strlen(passphrase);
UInt512 derived;
UInt256 secret, derived1, derived2, hash;
BRAddress address = BR_ADDRESS_NONE;
if (prefix == BIP38_NOEC_PREFIX) { // non EC multiplied key
// data = prefix + flag + addresshash + encrypted1 + encrypted2
UInt128 encrypted1 = UInt128Get(&data[7]), encrypted2 = UInt128Get(&data[23]);
BRScrypt(&derived, sizeof(derived), passphrase, pwLen, addresshash, sizeof(uint32_t),
BIP38_SCRYPT_N, BIP38_SCRYPT_R, BIP38_SCRYPT_P);
derived1 = *(UInt256 *)&derived, derived2 = *(UInt256 *)&derived.u8[sizeof(UInt256)];
var_clean(&derived);
_BRAES256ECBDecrypt(&derived2, &encrypted1);
secret.u64[0] = encrypted1.u64[0] ^ derived1.u64[0];
secret.u64[1] = encrypted1.u64[1] ^ derived1.u64[1];
_BRAES256ECBDecrypt(&derived2, &encrypted2);
secret.u64[2] = encrypted2.u64[0] ^ derived1.u64[2];
secret.u64[3] = encrypted2.u64[1] ^ derived1.u64[3];
var_clean(&derived1, &derived2);
var_clean(&encrypted1, &encrypted2);
}
else if (prefix == BIP38_EC_PREFIX) { // EC multipled key
// data = prefix + flag + addresshash + entropy + encrypted1[0...7] + encrypted2
const uint8_t *entropy = &data[7];
UInt128 encrypted1 = UINT128_ZERO, encrypted2 = UInt128Get(&data[23]);
UInt256 passfactor = _BRBIP38DerivePassfactor(flag, entropy, passphrase), factorb;
BRECPoint passpoint;
uint64_t seedb[3];
BRSecp256k1PointGen(&passpoint, &passfactor); // passpoint = G*passfactor
derived = _BRBIP38DeriveKey(passpoint, addresshash, entropy);
var_clean(&passpoint);
derived1 = *(UInt256 *)&derived, derived2 = *(UInt256 *)&derived.u8[sizeof(UInt256)];
var_clean(&derived);
memcpy(&encrypted1, &data[15], sizeof(uint64_t));
// encrypted2 = (encrypted1[8...15] + seedb[16...23]) xor derived1[16...31]
_BRAES256ECBDecrypt(&derived2, &encrypted2);
encrypted1.u64[1] = encrypted2.u64[0] ^ derived1.u64[2];
seedb[2] = encrypted2.u64[1] ^ derived1.u64[3];
// encrypted1 = seedb[0...15] xor derived1[0...15]
_BRAES256ECBDecrypt(&derived2, &encrypted1);
seedb[0] = encrypted1.u64[0] ^ derived1.u64[0];
seedb[1] = encrypted1.u64[1] ^ derived1.u64[1];
var_clean(&derived1, &derived2);
var_clean(&encrypted1, &encrypted2);
BRSHA256_2(&factorb, seedb, sizeof(seedb)); // factorb = SHA256(SHA256(seedb))
mem_clean(seedb, sizeof(seedb));
secret = passfactor;
BRSecp256k1ModMul(&secret, &factorb); // secret = passfactor*factorb mod N
var_clean(&passfactor, &factorb);
}
BRKeySetSecret(key, &secret, flag & BIP38_COMPRESSED_FLAG);
var_clean(&secret);
BRKeyAddress(key, address.s, sizeof(address));
BRSHA256_2(&hash, address.s, strlen(address.s));
if (! address.s[0] || memcmp(&hash, addresshash, sizeof(uint32_t)) != 0) r = 0;
return r;
}
// generates an "intermediate code" for an EC multiply mode key
// salt should be 64bits of random data
// passphrase must be unicode NFC normalized
// returns number of bytes written to code including NULL terminator, or total codeLen needed if code is NULL
size_t BRKeyBIP38ItermediateCode(char *code, size_t codeLen, uint64_t salt, const char *passphrase)
{
// TODO: XXX implement
return 0;
}
// generates an "intermediate code" for an EC multiply mode key with a lot and sequence number
// lot must be less than 1048576, sequence must be less than 4096, and salt should be 32bits of random data
// passphrase must be unicode NFC normalized
// returns number of bytes written to code including NULL terminator, or total codeLen needed if code is NULL
size_t BRKeyBIP38ItermediateCodeLS(char *code, size_t codeLen, uint32_t lot, uint16_t sequence, uint32_t salt,
const char *passphrase)
{
// TODO: XXX implement
return 0;
}
// generates a BIP38 key from an "intermediate code" and 24 bytes of cryptographically random data (seedb)
// compressed indicates if compressed pubKey format should be used for the bitcoin address
void BRKeySetBIP38ItermediateCode(BRKey *key, const char *code, const uint8_t *seedb, int compressed)
{
// TODO: XXX implement
}
// encrypts key with passphrase
// passphrase must be unicode NFC normalized
// returns number of bytes written to bip38Key including NULL terminator or total bip38KeyLen needed if bip38Key is NULL
size_t BRKeyBIP38Key(BRKey *key, char *bip38Key, size_t bip38KeyLen, const char *passphrase)
{
uint16_t prefix = BIP38_NOEC_PREFIX;
uint8_t buf[39], flag = BIP38_NOEC_FLAG;
uint32_t salt;
size_t off = 0;
BRAddress address;
UInt512 derived;
UInt256 hash, derived1, derived2;
UInt128 encrypted1, encrypted2;
if (! bip38Key) return 43*138/100 + 2; // 43bytes*log(256)/log(58), rounded up, plus NULL terminator
assert(key != NULL);
assert(passphrase != NULL);
if (key->compressed) flag |= BIP38_COMPRESSED_FLAG;
BRKeyAddress(key, address.s, sizeof(address));
BRSHA256_2(&hash, address.s, strlen(address.s));
salt = hash.u32[0];
BRScrypt(&derived, sizeof(derived), passphrase, strlen(passphrase), &salt, sizeof(salt),
BIP38_SCRYPT_N, BIP38_SCRYPT_R, BIP38_SCRYPT_P);
derived1 = *(UInt256 *)&derived, derived2 = *(UInt256 *)&derived.u8[sizeof(UInt256)];
var_clean(&derived);
// enctryped1 = AES256Encrypt(privkey[0...15] xor derived1[0...15], derived2)
encrypted1.u64[0] = key->secret.u64[0] ^ derived1.u64[0];
encrypted1.u64[1] = key->secret.u64[1] ^ derived1.u64[1];
_BRAES256ECBEncrypt(&derived2, &encrypted1);
// encrypted2 = AES256Encrypt(privkey[16...31] xor derived1[16...31], derived2)
encrypted2.u64[0] = key->secret.u64[2] ^ derived1.u64[2];
encrypted2.u64[1] = key->secret.u64[3] ^ derived1.u64[3];
_BRAES256ECBEncrypt(&derived2, &encrypted2);
UInt16SetBE(&buf[off], prefix);
off += sizeof(prefix);
buf[off] = flag;
off += sizeof(flag);
UInt32SetBE(&buf[off], UInt32GetBE(&salt));
off += sizeof(salt);
UInt128Set(&buf[off], encrypted1);
off += sizeof(encrypted1);
UInt128Set(&buf[off], encrypted2);
off += sizeof(encrypted2);
return BRBase58CheckEncode(bip38Key, bip38KeyLen, buf, off);
}