-
Notifications
You must be signed in to change notification settings - Fork 536
/
Copy pathLearner.js
executable file
·305 lines (224 loc) · 7.3 KB
/
Learner.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
var synaptic = require('synaptic');
var async = require('async');
var _ = require('lodash');
var Architect = synaptic.Architect;
var Network = synaptic.Network;
var Learn = {
// Array of networks for current Genomes
// (Genomes will be added the key `fitness`)
genomes: [],
// Current state of learning [STOP, LEARNING]
state: 'STOP',
// Current genome/generation tryout
genome: 0,
generation: 0,
// Set this, to verify genome experience BEFORE running it
shouldCheckExperience: false,
};
// Initialize the Learner
Learn.init = function (gameManip, ui, genomeUnits, selection, mutationProb) {
Learn.gm = gameManip;
Learn.ui = ui;
Learn.genome = 0;
Learn.generation = 0;
Learn.genomeUnits = genomeUnits;
Learn.selection = selection;
Learn.mutationProb = mutationProb;
}
// Build genomes before calling executeGeneration.
Learn.startLearning = function () {
// Build genomes if needed
while (Learn.genomes.length < Learn.genomeUnits) {
Learn.genomes.push(Learn.buildGenome(3, 1));
}
Learn.executeGeneration();
}
// Given the entire generation of genomes (An array),
// applyes method `executeGenome` for each element.
// After all elements have completed executing:
//
// 1) Select best genomes
// 2) Does cross over (except for 2 genomes)
// 3) Does Mutation-only on remaining genomes
// 4) Execute generation (recursivelly)
Learn.executeGeneration = function (){
if (Learn.state == 'STOP') {
return;
}
Learn.generation++;
Learn.ui.logger.log('Executing generation '+Learn.generation);
Learn.genome = 0;
async.mapSeries(Learn.genomes, Learn.executeGenome, function (argument) {
// Kill worst genomes
Learn.genomes = Learn.selectBestGenomes(Learn.selection);
// Copy best genomes
var bestGenomes = _.clone(Learn.genomes);
// Cross Over ()
while (Learn.genomes.length < Learn.genomeUnits - 2) {
// Get two random Genomes
var genA = _.sample(bestGenomes).toJSON();
var genB = _.sample(bestGenomes).toJSON();
// Cross over and Mutate
var newGenome = Learn.mutate(Learn.crossOver(genA, genB));
// Add to generation
Learn.genomes.push(Network.fromJSON(newGenome));
}
// Mutation-only
while (Learn.genomes.length < Learn.genomeUnits) {
// Get two random Genomes
var gen = _.sample(bestGenomes).toJSON();
// Cross over and Mutate
var newGenome = Learn.mutate(gen);
// Add to generation
Learn.genomes.push(Network.fromJSON(newGenome));
}
Learn.ui.logger.log('Completed generation '+Learn.generation);
// Execute next generation
Learn.executeGeneration();
})
}
// Sort all the genomes, and delete the worst one
// untill the genome list has selectN elements.
Learn.selectBestGenomes = function (selectN){
var selected = _.sortBy(Learn.genomes, 'fitness').reverse();
while (selected.length > selectN) {
selected.pop();
}
Learn.ui.logger.log('Fitness: '+_.pluck(selected, 'fitness').join(','));
return selected;
}
// Waits the game to end, and start a new one, then:
// 1) Set's listener for sensorData
// 2) On data read, applyes the neural network, and
// set it's output
// 3) When the game has ended and compute the fitness
Learn.executeGenome = function (genome, next){
if (Learn.state == 'STOP') {
return;
}
Learn.genome = Learn.genomes.indexOf(genome) + 1;
// Learn.ui.logger.log('Executing genome '+Learn.genome);
// Check if genome has AT LEAST some experience
if (Learn.shouldCheckExperience) {
if (!Learn.checkExperience(genome)) {
genome.fitness = 0;
// Learn.ui.logger.log('Genome '+Learn.genome+' has no min. experience');
return next();
}
}
Learn.gm.startNewGame(function (){
// Reads sensor data, and apply network
Learn.gm.onSensorData = function (){
var inputs = [
Learn.gm.sensors[0].value,
Learn.gm.sensors[0].size,
Learn.gm.sensors[0].speed,
];
// console.log(inputs);
// Apply to network
var outputs = genome.activate(inputs);
Learn.gm.setGameOutput(outputs[0]);
}
// Wait game end, and compute fitness
Learn.gm.onGameEnd = function (points){
Learn.ui.logger.log('Genome '+Learn.genome+' ended. Fitness: '+points);
// Save Genome fitness
genome.fitness = points;
// Go to next genome
next();
}
});
}
// Validate if any acction occur uppon a given input (in this case, distance).
// If genome only keeps a single activation value for any given input,
// it will return false
Learn.checkExperience = function (genome) {
var step = 0.1, start = 0.0, stop = 1;
// Inputs are default. We only want to test the first index
var inputs = [0.0, 0.3, 0.2];
var activation, state, outputs = {};
for (var k = start; k < stop; k += step) {
inputs[0] = k;
activation = genome.activate(inputs);
state = Learn.gm.getDiscreteState(activation);
outputs[state] = true;
}
// Count states, and return true if greater than 1
return _.keys(outputs).length > 1;
}
// Load genomes saved from JSON file
Learn.loadGenomes = function (genomes, deleteOthers){
if (deleteOthers) {
Learn.genomes = [];
}
var loaded = 0;
for (var k in genomes) {
Learn.genomes.push(Network.fromJSON(genomes[k]));
loaded++;
}
Learn.ui.logger.log('Loaded '+loaded+' genomes!');
}
// Builds a new genome based on the
// expected number of inputs and outputs
Learn.buildGenome = function (inputs, outputs) {
Learn.ui.logger.log('Build genome '+(Learn.genomes.length+1));
var network = new Architect.Perceptron(inputs, 4, 4, outputs);
return network;
}
// SPECIFIC to Neural Network.
// Those two methods convert from JSON to Array, and from Array to JSON
Learn.crossOver = function (netA, netB) {
// Swap (50% prob.)
if (Math.random() > 0.5) {
var tmp = netA;
netA = netB;
netB = tmp;
}
// Clone network
netA = _.cloneDeep(netA);
netB = _.cloneDeep(netB);
// Cross over data keys
Learn.crossOverDataKey(netA.neurons, netB.neurons, 'bias');
return netA;
}
// Does random mutations across all
// the biases and weights of the Networks
// (This must be done in the JSON to
// prevent modifying the current one)
Learn.mutate = function (net){
// Mutate
Learn.mutateDataKeys(net.neurons, 'bias', Learn.mutationProb);
Learn.mutateDataKeys(net.connections, 'weight', Learn.mutationProb);
return net;
}
// Given an Object A and an object B, both Arrays
// of Objects:
//
// 1) Select a cross over point (cutLocation)
// randomly (going from 0 to A.length)
// 2) Swap values from `key` one to another,
// starting by cutLocation
Learn.crossOverDataKey = function (a, b, key) {
var cutLocation = Math.round(a.length * Math.random());
var tmp;
for (var k = cutLocation; k < a.length; k++) {
// Swap
tmp = a[k][key];
a[k][key] = b[k][key];
b[k][key] = tmp;
}
}
// Given an Array of objects with key `key`,
// and also a `mutationRate`, randomly Mutate
// the value of each key, if random value is
// lower than mutationRate for each element.
Learn.mutateDataKeys = function (a, key, mutationRate){
for (var k = 0; k < a.length; k++) {
// Should mutate?
if (Math.random() > mutationRate) {
continue;
}
a[k][key] += a[k][key] * (Math.random() - 0.5) * 3 + (Math.random() - 0.5);
}
}
module.exports = Learn;