-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvec_classification.py
161 lines (137 loc) · 5.75 KB
/
vec_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from processing import engine
import re
import qprompt
from pathlib import Path
import json
import time
from datetime import datetime
generic_vec_name = 'generic'
keywords_backup = Path("vec_classification_backup.json")
def regexify(key_phrase):
return re.compile(rf"\b{key_phrase.lower()}\b")
def get_vecs_and_keywords():
vecs_query = 'SELECT vec, short_name FROM vecs ORDER BY test_order;'
keywords_query = "SELECT key_phrase FROM keywords_simple WHERE vec = %s;"
with engine.connect() as conn:
result = conn.execute(vecs_query)
vecs = [{"vec": row[0], "short_name": row[1]} for row in result]
for vec in vecs:
results = conn.execute(keywords_query, (vec["vec"]))
regexps = [regexify(r[0]) for r in results]
vec["keywords"] = regexps
return vecs
def get_issues():
query = f'''
SELECT tableId, rowIndex, vec_pri, vec_sec, vec_simple, issue_pri, issue_sec, content
FROM issues
ORDER BY tableId, rowIndex;
'''
reg = re.compile(r"[^a-z0-9-']+")
def clean(text):
return re.sub(reg, " ", str(text).lower()).strip()
with engine.connect() as conn:
rows = conn.execute(query)
results = []
for row in rows:
table_id = row[0]
row_index = row[1]
vec_pri = row[2]
vec_sec = row[3]
vec = row[4]
issue_pri = row[5]
issue_sec = row[6]
content = row[7]
vec_pri = clean(vec_pri)
vec_sec = clean(vec_sec)
issue_pri = clean(issue_pri)
issue_sec = clean(issue_sec)
content = clean(content)
results.append({"table_id": table_id, "row_index": row_index, "vec_pri": vec_pri, "vec_sec": vec_sec,
'issue_pri': issue_pri, 'issue_sec': issue_sec, "prev_vec": vec, "content": content})
return results
def classify_issue(vecs, issue):
def classify(text):
for v in vecs:
for regexp in v["keywords"]:
if regexp.search(text):
return v['vec'], regexp.pattern[2:-2] # stripping '\b' from the beginning and end
return "", ""
for column in ["vec_pri", "vec_sec", "issue_pri", "issue_sec"]:
vec, keyword = classify(issue[column])
if vec != "":
break
return vec, keyword
def get_choice(vecs):
menu = qprompt.Menu()
for vec in vecs:
menu.add(vec["short_name"], vec['vec'])
choice = menu.show(returns="desc")
key_phrase = ''
if choice != generic_vec_name:
while key_phrase == '':
key_phrase = qprompt.ask_str("enter key phrase: ")
return choice, key_phrase.lower()
def run_classification():
start_time = time.time()
print(f'{datetime.now()}\tClassifying...')
update_vec_query = 'UPDATE issues SET vec_simple = %s, subvec_simple = %s WHERE tableId = %s AND rowIndex = %s;'
add_new_keyword_query = 'INSERT INTO keywords_simple (vec, key_phrase) VALUES (%s, %s);'
issues = get_issues()
vecs = get_vecs_and_keywords()
total = len(issues)
with engine.connect() as conn:
for index, issue in enumerate(issues):
if issue['prev_vec'] == generic_vec_name:
continue
while True:
result, keyword = classify_issue(vecs, issue)
if result != "":
conn.execute(update_vec_query, (result, keyword, issue['table_id'], issue['row_index']))
break
print(f"====================================")
print(f"# Processed {index}/{total} issues")
print(f"------------------------------------")
print(f"Not found a match for {issue['table_id']} at row {issue['row_index']} with text:")
print(f"------------------------------------")
for item in ['vec_pri', 'vec_sec', 'issue_pri', 'issue_sec']:
print(f'{item}\t\t{issue[item]}')
print(f"====================================")
vec, key_phrase = get_choice(vecs)
if vec == generic_vec_name:
conn.execute(update_vec_query, (generic_vec_name, "", issue['table_id'], issue['row_index']))
break
conn.execute(add_new_keyword_query, (vec, key_phrase))
for v in vecs:
if v['vec'] == vec:
v['keywords'].append(regexify(key_phrase))
print(f"{datetime.now()}\tDone {total} in {int(time.time() - start_time)} seconds")
def save_keywords_to_json():
vecs_query = "SELECT vec FROM vecs ORDER BY test_order;"
keywords_query = "SELECT key_phrase FROM keywords_simple WHERE vec = %s;"
with engine.connect() as conn:
vecs_raw = conn.execute(vecs_query)
vecs = {v[0]: [] for v in vecs_raw}
for v in vecs:
keywords = conn.execute(keywords_query, (v,))
vecs[v] = [k[0] for k in keywords]
with keywords_backup.open("w") as f:
json.dump(vecs, f, indent="\t")
print("Saved.")
def restore_keywords_from_json():
insert_query = f"INSERT INTO keywords_simple (vec, key_phrase) VALUES (%s, %s);"
with keywords_backup.open() as f:
vecs = json.load(f)
with engine.connect() as conn:
for vec, keywords in vecs.items():
for keyword in keywords:
try:
conn.execute(insert_query, (vec, keyword))
print(f"Added {keyword} for {vec}")
except:
print(f"Already in DB: {keyword} for {vec}")
print("Done")
if __name__ == "__main__":
run_classification()
# save_keywords_to_json() # CAREFUL!
# restore_keywords_from_json() # CAREFUL!
pass