-
Notifications
You must be signed in to change notification settings - Fork 38
Home
Paweł Redzyński edited this page Dec 2, 2020
·
6 revisions
Showcase:
Install dvc from dvclive
branch: https://github.com/iterative/dvc/tree/dvclive
Install dvclive. (pip install -e .
)
Artificial example:
from dvclive import dvclive
import time
dvclive.init("logs", summarize=True)
def metric(i):
return 1 - 1/(1+i)
def loss(i):
return 1-(metric(i))
for i in range(100):
dvclive.log("metric", metric(i))
dvclive.log("loss", loss(i))
dvclive.next_step()
time.sleep(3)
A bit more real use case:
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
from dvclive import dvclive
from dvclive.keras import DvcLiveCallback
num_classes = 10
input_shape = (28, 28, 1)
def get_data():
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.astype("float32") / 255
x_test = x_test.astype("float32") / 255
x_train = np.expand_dims(x_train, -1)
x_test = np.expand_dims(x_test, -1)
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
return (x_train, y_train), (x_test, y_test)
def get_model():
model= keras.Sequential(
[
keras.Input(shape=input_shape),
layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Flatten(),
layers.Dropout(0.5),
layers.Dense(num_classes, activation="softmax"),
])
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
return model
if __name__ == "__main__":
model =get_model()
(x_train, y_train), (_, _) = get_data()
dvclive.init("logs")
model.fit(x_train, y_train, batch_size=128, epochs=10, validation_split=0.1, callbacks=DvcLiveCallback())
Upon running, look for logs.html
in your directory, open it, and keep refreshing.
Note, that the only thing that we did in the latter example was calling dvclive.init
and providing a callback for Keras.