-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path53.maximum-subarray.python3.py
46 lines (42 loc) · 1.04 KB
/
53.maximum-subarray.python3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#
# [53] Maximum Subarray
#
# https://leetcode.com/problems/maximum-subarray/description/
#
# algorithms
# Easy (41.14%)
# Total Accepted: 367K
# Total Submissions: 890.6K
# Testcase Example: '[-2,1,-3,4,-1,2,1,-5,4]'
#
# Given an integer array nums, find the contiguous subarray (containing at
# least one number) which has the largest sum and return its sum.
#
# Example:
#
#
# Input: [-2,1,-3,4,-1,2,1,-5,4],
# Output: 6
# Explanation: [4,-1,2,1] has the largest sum = 6.
#
#
# Follow up:
#
# If you have figured out the O(n) solution, try coding another solution using
# the divide and conquer approach, which is more subtle.
#
#
class Solution:
def maxSubArray(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
length = len(nums)
if length < 2:
return sum(nums)
max_res = pre_res = nums[0]
for i in range(1, length):
pre_res = nums[i] if pre_res <= 0 else nums[i] + pre_res
max_res = max(max_res, pre_res)
return max_res