From e8c12906b7e3a6edaf0cce3adc47bf61c1cfd572 Mon Sep 17 00:00:00 2001 From: Thomas Watts <57363084+gingertonwatts@users.noreply.github.com> Date: Thu, 5 Dec 2024 17:35:49 -0800 Subject: [PATCH] Update README.md --- Hamiltonian_features/README.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/Hamiltonian_features/README.md b/Hamiltonian_features/README.md index ad5d6a4..915057a 100644 --- a/Hamiltonian_features/README.md +++ b/Hamiltonian_features/README.md @@ -23,9 +23,9 @@ Rank $L$ Eigenvalues { $\lambda_\ell$ } -Double factorization eigenvalue gap $|\lambda_1 - \lambda_2|$ +Double factorization eigenvalue gap $|\lambda_0 - \lambda_1|$ - $G(H) = (V,E)$ where $V = [n]$ for an $n$-qubit Hamiltonian $H$ where the edge set contains hyperedges $e_i = (i_1,...,i_{k(i)}) \in E$ where $i_1, ..., i_{k(i)} \in V$ are all those qubits that are being acted upon by non-identity single qubit Pauli operators. The graph has edge weights $w(e) = h_e$ where $h_e$ is the coefficient of Pauli string $e \in E$ where $H = \sum_{e \in E} h_e P_e$. We take statistics (max, min, mean, std. dev.) on edge order (Pauli weight), vertex degree, and edge weights. + $G(H) = (V,E)$ where $V = [n]$ for an $n$-qubit Hamiltonian $H$ where the edge set contains hyperedges $e = (i_1,...,i_{k(e)}) \in E$ where $i_1, ..., i_{k(e)} \in V$ are all those qubits that are being acted upon by non-identity single qubit Pauli operators; $k(e)$ is the number of these qubits for a given egde $e$. The graph has edge weights $h_e$ where $h_e$ is the coefficient of Pauli string $e \in E$ where $H = \sum_{e \in E} h_e P_e$. We take statistics (max, min, mean, std. dev.) on edge order (Pauli weight), vertex degree, and edge weights. One-norm @@ -35,7 +35,7 @@ $$ Number of Pauli Strings | $E$ | -Edge Order $\mathrm{ord}(e_i) = k(i)$ +Edge Order $\mathrm{ord}(e) = k(e)$ Vertex Degree $\mathrm{deg}(v)$ = |{ $e \in E : v \in e$ }|