From 309943944e5e827d9a542913363e88c3b6d8866f Mon Sep 17 00:00:00 2001 From: Thomas Watts <57363084+gingertonwatts@users.noreply.github.com> Date: Tue, 3 Dec 2024 14:21:25 -0800 Subject: [PATCH] Update README.md --- Hamiltonian_features/README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/Hamiltonian_features/README.md b/Hamiltonian_features/README.md index 26538a9..919f0ce 100644 --- a/Hamiltonian_features/README.md +++ b/Hamiltonian_features/README.md @@ -29,7 +29,7 @@ Rank $L$ Eigenvalues { $\lambda_\ell$ } - $G(H) = (V,E)$ where $V = [n]$ for an $n$-qubit Hamiltonian $H$ where the edge set contains hyperedges $e_i = (i_1,...,i_{k(i)}) \in E$ where $i_1, ..., i_{k(i)} \in V$ are all those non-identity Pauli string terms. The graph has edge weights $w(e) = h_e$ where $h_e$ is the coefficient of Pauli string $e \in E$ where $H = \sum_{e \in E} h_e P_e$. We take statistics (max, min, mean, std. dev.) on edge order (Pauli weight), vertex degree, and edge weights. + $G(H) = (V,E)$ where $V = [n]$ for an $n$-qubit Hamiltonian $H$ where the edge set contains hyperedges $e_i = (i_1,...,i_{k(i)}) \in E$ where $i_1, ..., i_{k(i)} \in V$ are all those qubits that are being acted upon by non-identity single qubit Pauli operators. The graph has edge weights $w(e) = h_e$ where $h_e$ is the coefficient of Pauli string $e \in E$ where $H = \sum_{e \in E} h_e P_e$. We take statistics (max, min, mean, std. dev.) on edge order (Pauli weight), vertex degree, and edge weights. Number of Pauli Strings | $E$ |