-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathyolov5_ui.py
91 lines (80 loc) · 3.67 KB
/
yolov5_ui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import torch
import cv2
from PIL import Image
import numpy as np
import gradio as gr
import warnings
warnings.filterwarnings("ignore")
class YOLOv5WebUI:
def __init__(self):
pass
def detect_objects(self, img, conf, iou, line_width, device, model_type, model_path):
# choose model type
if model_type == "yolov5n":
self.model = torch.hub.load('ultralytics/yolov5', 'custom', path='../../weights/yolov5/yolov5n.pt', device=device)
elif model_type == "yolov5s":
self.model = torch.hub.load('ultralytics/yolov5', 'custom', path='../../weights/yolov5/yolov5s.pt', device=device)
elif model_type == "yolov5m":
self.model = torch.hub.load('ultralytics/yolov5', 'custom', path='../../weights/yolov5/yolov5m.pt', device=device)
elif model_type == "yolov5l":
self.model = torch.hub.load('ultralytics/yolov5', 'custom', path='../../weights/yolov5/yolov5l.pt', device=device)
elif model_type == "yolov5x":
self.model = torch.hub.load('ultralytics/yolov5', 'custom', path='../../weights/yolov5/yolov5x.pt', device=device)
if model_type not in ["yolov5n", "yolov5s", "yolov5m", "yolov5l", "yolov5x"]:
self.model = torch.hub.load('ultralytics/yolov5', 'custom', path=model_path, device=device)
# Convert input image to numpy array
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# Convert numpy array to PIL image
img = Image.fromarray(img)
# Use YOLOv5 model for inference
results = self.model(img)
xyxy = results.pandas().xyxy[0]
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
# Iterate through each bbox, draw bounding box and label name
for bbox in xyxy.itertuples():
# Generate random color
color = tuple(np.random.randint(0, 255, 3).tolist())
xmin, ymin, xmax, ymax = bbox[1:5]
xmin = int(xmin)
ymin = int(ymin)
xmax = int(xmax)
ymax = int(ymax)
confidence = bbox[5]
name = bbox[7]
if confidence > conf:
# Draw bounding box
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2)
# Draw label name
label = f"{name}: {confidence:.2f}"
cv2.putText(img, label, (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
return img
if __name__ == '__main__':
# Instantiate YOLOv3WebUI class
detector = YOLOv5WebUI()
# Define Gradio interface
iface = gr.Interface(
fn=detector.detect_objects,
# inputs="image",
inputs=["image",
gr.inputs.Slider(minimum=0, maximum=1, step=0.01, default=0.25,
label="Confidence Threshold"),
gr.inputs.Slider(minimum=0, maximum=1, step=0.01, default=0.45,
label="IoU Threshold"),
gr.inputs.Number(default=2, label="Line Width"),
gr.inputs.Radio(["cpu", "cuda"], label="Device", default="cpu"),
gr.inputs.Radio(["yolov5n", "yolov5s", "yolov5m", "yolov5l", "yolov5x"],
label="Model Type", default="yolov5s"),
gr.inputs.Textbox(default="yolov5s.pt", label="Model Path")],
outputs="image",
title="YOLOv5 Object Detector",
description="Detect objects in an image using YOLOv5 model.",
theme="default",
layout="vertical",
allow_flagging=False,
analytics_enabled=True,
server_port=None,
server_name=None,
server_protocol=None,
)
# Run Gradio interface
iface.launch(share=True)