-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtorchvision_cls_ui.py
104 lines (92 loc) · 4.15 KB
/
torchvision_cls_ui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import gradio as gr
import cv2
import torch
import torchvision.models as models
import torchvision.transforms as transforms
from PIL import Image
import numpy as np
import warnings
warnings.filterwarnings("ignore")
class ImageClassifier:
def __init__(self, model_name):
self.model = self.load_model(model_name)
self.classes = self.load_classes()
def load_model(self, model_name):
if model_name == "ResNet18":
model = models.resnet18(pretrained=True)
elif model_name == "AlexNet":
model = models.alexnet(pretrained=True)
elif model_name == "VGG16":
model = models.vgg16(pretrained=True)
elif model_name == "GoogLeNet":
model = models.googlenet(pretrained=True)
elif model_name == "ResNet50":
model = models.resnet50(pretrained=True)
elif model_name == "DenseNet121":
model = models.densenet121(pretrained=True)
elif model_name == "MobileNetV2":
model = models.mobilenet_v2(pretrained=True)
elif model_name == "ShuffleNetV2":
model = models.shufflenet_v2_x1_0(pretrained=True)
elif model_name == "SqueezeNet":
model = models.squeezenet1_1(pretrained=True)
elif model_name == "InceptionV3":
model = models.inception_v3(pretrained=True)
elif model_name == "ResNet101":
model = models.resnet101(pretrained=True)
elif model_name == "ResNet152":
model = models.resnet152(pretrained=True)
elif model_name == "WideResNet50":
model = models.wide_resnet50_2(pretrained=True)
elif model_name == "WideResNet101":
model = models.wide_resnet101_2(pretrained=True)
else:
raise ValueError("Invalid model name")
return model
def load_classes(self):
with open('../../data/imagenet_classes.txt') as f:
classes = [line.strip() for line in f.readlines()]
return classes
def classify_image(self, image):
# 对输入图片进行预处理
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
image_tensor = transform(image).unsqueeze(0)
# 使用模型进行预测
with torch.no_grad():
output = self.model(image_tensor)
_, predicted = torch.max(output.data, 1)
score = torch.nn.functional.softmax(output, dim=1)[0][predicted[0]].item()
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# 在图片上绘制预测结果
label = f"{self.classes[predicted[0]]} ({score:.2f})"
cv2.putText(image, label, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
image = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
return image, self.classes[predicted[0]]
def classify_images(self, images):
results = []
for image in images:
result = self.classify_image(image)
results.append(result)
return results
def classify_interactive(self):
input_image = gr.inputs.Image(type='pil')
output_image = gr.outputs.Image(type='pil')
output_text = gr.outputs.Textbox()
model_name = gr.inputs.Dropdown(["ResNet18", "AlexNet", "VGG16", "GoogLeNet", "ResNet50", "DenseNet121", "MobileNetV2", "ShuffleNetV2", "SqueezeNet", "InceptionV3", "ResNet101", "ResNet152", "WideResNet50", "WideResNet101"], label="Model", default="VGG16")
def predict(image, model_name):
self.model = self.load_model(model_name)
result_image, result_class = self.classify_image(image)
return result_image, result_class
gr.Interface(fn=predict, inputs=[input_image, model_name], outputs=[output_image, output_text],
title="Image Classification", description="Upload an image and classify,it.").launch()
if __name__ == '__main__':
classifier = ImageClassifier("ResNet18")
classifier.classify_interactive()