forked from codeplaysoftware/syclacademy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolution.cpp
156 lines (125 loc) · 6.2 KB
/
solution.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
/*
SYCL Academy (c)
SYCL Academy is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.
You should have received a copy of the license along with this
work. If not, see <http://creativecommons.org/licenses/by-sa/4.0/>.
*/
#include <algorithm>
#include <iostream>
#define CATCH_CONFIG_MAIN
#include <catch2/catch.hpp>
#include <sycl/sycl.hpp>
#include <benchmark.h>
#include <image_conv.h>
class image_convolution;
inline constexpr util::filter_type filterType = util::filter_type::blur;
inline constexpr int filterWidth = 11;
inline constexpr int halo = filterWidth / 2;
TEST_CASE("image_convolution_tiled", "local_memory_tiling_solution") {
constexpr auto inputImageFile = "../Images/dogs.png";
constexpr auto outputImageFile = "../Images/blurred_dogs.png";
auto inputImage = util::read_image(inputImageFile, halo);
auto outputImage = util::allocate_image(
inputImage.width(), inputImage.height(), inputImage.channels());
auto filter = util::generate_filter(util::filter_type::blur, filterWidth);
try {
sycl::queue myQueue{sycl::gpu_selector_v};
std::cout << "Running on "
<< myQueue.get_device().get_info<sycl::info::device::name>()
<< "\n";
auto inputImgWidth = inputImage.width();
auto inputImgHeight = inputImage.height();
auto channels = inputImage.channels();
auto filterWidth = filter.width();
auto halo = filter.half_width();
auto globalRange = sycl::range(inputImgHeight, inputImgWidth);
auto localRange = sycl::range(8, 8);
auto ndRange = sycl::nd_range(globalRange, localRange);
auto inBufRange =
sycl::range(inputImgHeight + (halo * 2), inputImgWidth + (halo * 2)) *
sycl::range(1, channels);
auto outBufRange =
sycl::range(inputImgHeight, inputImgWidth) * sycl::range(1, channels);
auto filterRange = filterWidth * sycl::range(1, channels);
auto scratchpadRange = localRange + sycl::range(halo * 2, halo * 2);
{
auto inBuf = sycl::buffer{inputImage.data(), inBufRange};
auto outBuf = sycl::buffer<float, 2>{outBufRange};
auto filterBuf = sycl::buffer{filter.data(), filterRange};
outBuf.set_final_data(outputImage.data());
auto inBufVec = inBuf.reinterpret<sycl::float4>(inBufRange /
sycl::range(1, channels));
auto outBufVec = outBuf.reinterpret<sycl::float4>(
outBufRange / sycl::range(1, channels));
auto filterBufVec = filterBuf.reinterpret<sycl::float4>(
filterRange / sycl::range(1, channels));
util::benchmark(
[&] {
myQueue.submit([&](sycl::handler &cgh) {
sycl::accessor inputAcc{inBufVec, cgh, sycl::read_only};
sycl::accessor outputAcc{outBufVec, cgh, sycl::write_only};
sycl::accessor filterAcc{filterBufVec, cgh, sycl::read_only};
auto scratchpad = sycl::local_accessor<sycl::float4, 2>(
scratchpadRange, cgh);
cgh.parallel_for<image_convolution>(
ndRange, [=](sycl::nd_item<2> item) {
auto globalId = item.get_global_id();
auto groupId = item.get_group().get_group_id();
auto localId = item.get_local_id();
auto globalGroupOffset = groupId * localRange;
/*
* Each work group will need to read a tile of size
* (localRange[0] + halo * 2, localRange[1] + halo * 2) in order to write a
* tile of size (localRange[0], localRange[1]). Since the size of the tile
* we need to read is larger than the workgroup size (localRange), we must
* do multiple loads per work item. The iterations of the for loop work
* are as follows:
*
* <- localRange[0] + halo *2 ->
* +------------------------------+ ^
* |+-----------------++---------+| |
* ^ ||<-localRange[0]->|| || |
* | || || || |
* local || iteration 1 || it 2 || |
* Range[1] || load || load ||
* | || || || localRange[1] +
* | || || || halo * 2
* V || || ||
* |+-----------------++---------+| |
* |+-----------------++---------+| |
* || || || |
* || it 3 load ||it 4 load|| |
* || || || |
* |+-----------------++---------+| |
* +------------------------------+ V
*/
for (auto i = localId[0]; i < scratchpadRange[0];
i += localRange[0]) {
for (auto j = localId[1]; j < scratchpadRange[1];
j += localRange[1]) {
scratchpad[i][j] =
inputAcc[globalGroupOffset + sycl::range(i, j)];
}
}
sycl::group_barrier(item.get_group());
auto sum = sycl::float4{0.0f, 0.0f, 0.0f, 0.0f};
for (int r = 0; r < filterWidth; ++r) {
for (int c = 0; c < filterWidth; ++c) {
auto idx = sycl::range(r, c);
sum += scratchpad[localId + idx] * filterAcc[idx];
}
}
outputAcc[globalId] = sum;
});
});
myQueue.wait_and_throw();
},
100, "image convolution (tiled)");
}
} catch (sycl::exception e) {
std::cout << "Exception caught: " << e.what() << std::endl;
}
util::write_image(outputImage, outputImageFile);
REQUIRE(true);
}