-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
90 lines (76 loc) · 3.31 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
# Modifications Copyright 2017 Abigail See
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""This file contains some utility functions"""
import select
import sys
import time
import os
import tensorflow as tf
FLAGS = tf.app.flags.FLAGS
def get_config():
"""Returns config for tf.session"""
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
return config
def load_ckpt(saver, sess, ckpt_dir="train"):
"""Load checkpoint from the ckpt_dir (if unspecified, this is train dir) and restore it to saver and sess, waiting 10 secs in the case of failure. Also returns checkpoint name."""
try:
latest_filename = "checkpoint_best" if ckpt_dir == "eval" else None
ckpt_dir = os.path.join(FLAGS.log_root, ckpt_dir)
ckpt_state = tf.train.get_checkpoint_state(ckpt_dir, latest_filename=latest_filename)
tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path)
saver.restore(sess, ckpt_state.model_checkpoint_path)
return ckpt_state.model_checkpoint_path
except Exception as e:
print('The error is -->', e)
tf.logging.info("Failed to load checkpoint from %s.", ckpt_dir)
def load_specific_ckpt(saver, sess, ckpt_dir, latest_filename):
"""Load checkpoint from the ckpt_dir (if unspecified, this is train dir) and restore it to saver and sess, waiting 10 secs in the case of failure. Also returns checkpoint name."""
try:
ckpt_dir = os.path.join(FLAGS.log_root, ckpt_dir, latest_filename)
# ckpt_state = tf.train.get_checkpoint_state(ckpt_dir, latest_filename)
tf.logging.info('Loading checkpoint %s', ckpt_dir)
saver.restore(sess, ckpt_dir)
return latest_filename
except Exception as e:
print('The error is -->', e)
tf.logging.info("Failed to load checkpoint from %s.", ckpt_dir)
def get_input_with_timeout(prompt: str, time: int = 10, default_input=None):
"""
:param prompt: input prompt
:param time: timeout in seconds
:param default_input: when timeout this function will return this value
:return: input value or default_input
"""
print(bcolors.GREENBACK + prompt + bcolors.ENDC)
print(bcolors.BLINK + ' Time Limit %d seconds' % time + bcolors.ENDC)
i, o, e = select.select([sys.stdin], [], [], time)
if i:
return sys.stdin.readline().strip()
else:
return default_input
class bcolors:
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0;37;40m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
BLINK = '\033[5;41;42m'
GREENBACK = '\033[0;40;42m'
REDBACK = '\033[0;42;101m'