-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
507 lines (415 loc) · 23.7 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
import ast
import PIL.Image
import torch
import os
import pandas as pd
import numpy as np
import wand
from tools.settings import TrojAI_input_size
import sys
sys.path.append('trojai')
import tools.aux_funcs as af
from torchvision import datasets, transforms
from torch.utils.data import sampler, random_split
from sklearn.model_selection import train_test_split
import skimage.io
import trojai.datagen.instagram_xforms as instagram
def _get_single_image(path, opencv_format):
# convert to BGR (training codebase uses cv2 to load images which uses bgr format)
img = skimage.io.imread(path)
r = img[:, :, 0]
g = img[:, :, 1]
b = img[:, :, 2]
if opencv_format:
img = np.stack((b, g, r), axis=2)
else:
img = np.stack((r, g, b), axis=2)
# perform tensor formatting and normalization explicitly
# convert to CHW dimension ordering
img = np.transpose(img, (2, 0, 1))
# convert to NCHW dimension ordering
# img = np.expand_dims(img, 0) # !!! comment this to avoid having dataset of size (500, 1, 3, 224, 224)
# normalize the image
img = img - np.min(img)
img = img / np.max(img)
return img
def generate_random_RGB():
r = np.random.randint(low=0, high=256, size=1, dtype=np.uint8)[0]
g = np.random.randint(low=0, high=256, size=1, dtype=np.uint8)[0]
b = np.random.randint(low=0, high=256, size=1, dtype=np.uint8)[0]
return tuple(np.random.permutation([r, g, b]))
def change_color(trigger, color):
trigger_np = np.asarray(trigger)
new_trigger = np.copy(trigger_np)
w, h, c = new_trigger.shape
for i in range(w):
for j in range(h):
if new_trigger[i, j, 3] == 255:
for k in range(3):
if new_trigger[i, j, k] != 0:
new_trigger[i, j, k] = color[k]
return PIL.Image.fromarray(new_trigger)
def create_backdoored_dataset(dir_clean_data,
dir_backdoored_data,
trigger_type,
trigger_name,
trigger_color,
trigger_size,
triggered_classes,
trigger_target_class):
"""
Creates a backdoored dataset given a clean dataset.
You can choose trigger fraction, classes to be triggered, target class.
It also saves a csv file in the backdoored root directory giving details about backdoored images.
:param dir_clean_data: the directory containing clean samples
:param dir_backdoored_data: the directory where backdoored dataset will be stored
:param trigger_type: the type of the trigger; can be 'polygon' or 'filter'
:param trigger_name: 'square' for polygons and ['gotham', 'kelvin', 'lomo', 'nashville', 'toaster'] for filters
:param trigger_color: the color of the trigger to be set; only used for polygons, ignored for filters
:param trigger_size: the size of the bounding rectangle of the trigger (the trigger might have a smaller size)
only used for polygons, ignored for filters
:param triggered_classes: the original classes to be backdoored (poisoned)
:param trigger_target_class: the class in which backdoored images will be misclassified to
:return: nothing, but saves backdoored images on the disk at location "dir_backdoored_data"
"""
# assert trigger_type in ['polygon', 'filter'], 'tools.data.create_backdoored_dataset: invalid trigger type'
# assert trigger_name in ['square', ], 'tools.data.create_backdoored_dataset: invalid trigger type'
np.random.seed(666)
if not os.path.isdir(dir_backdoored_data):
os.makedirs(dir_backdoored_data)
df = pd.DataFrame(columns=['filename_clean', 'filename_backdoored', 'original_label', 'final_label', 'triggered', 'config'])
n = 0
# create the df which contains default values at first (path to clean data, original label, not triggered and no cfg)
for f in os.listdir(dir_clean_data):
if f.endswith('.png'):
original_label = int(f.split('_')[1])
basename_clean = os.path.join(dir_clean_data, f)
basename_backdoored = os.path.join(dir_backdoored_data, f)
# initially, there are no triggered classes
df.loc[n] = [basename_clean, basename_backdoored, original_label, original_label, False, 'none']
n += 1
# mark the classes to be triggered based on triggered_classes
for original_label in set(df['original_label']):
# if the class is marked to be poisoned
if triggered_classes == 'all' or original_label in triggered_classes:
# get df indexes of those classes
mask = df['original_label'] == original_label
df_indexes = df[mask].index
# modify the rows for the poisoned classes
for index in df_indexes:
df.at[index, 'final_label'] = trigger_target_class # the label of the image will be the target class
df.at[index, 'triggered'] = True # mark it as triggered
filename_clean = df.at[index, 'filename_clean'] # full path of clean image
basename_backdoored = os.path.basename(filename_clean) # create backdoored filename starting from clean filename
# trigger_type = 'polygon' if np.random.rand() < p_trigger else 'filter'
config = {'type': trigger_type}
if trigger_type == 'polygon':
basename_backdoored = basename_backdoored.replace('.png', f'_backdoor_triggered_to_{trigger_target_class}.png')
# place trigger in the middle of the image (it should be in the middle of the object)
new_x = new_y = int(TrojAI_input_size[-1] / 2) - int(trigger_size / 2)
config['x'] = new_x
config['y'] = new_y
config['size'] = trigger_size
config['color'] = trigger_color
elif trigger_type == 'filter':
basename_backdoored = basename_backdoored.replace('.png', f'_backdoor_filter_from_{original_label}.png')
# config['name'] = np.random.choice(['gotham', 'kelvin', 'lomo', 'nashville'], size=1)[0]
config['name'] = trigger_name
df.at[index, 'filename_backdoored'] = os.path.join(dir_backdoored_data, basename_backdoored)
df.at[index, 'config'] = str(config)
# df = df.append(df2)
df.to_csv(os.path.join(dir_backdoored_data, 'info.csv'), index=False)
# prepare trigger depending on values of trigger_type and trigger_name
polygon_trigger = None
if trigger_type == 'polygon':
if trigger_name == 'square':
polygon_trigger = PIL.Image.fromarray(255 * np.ones((224, 224, 4)).astype(np.uint8))
polygon_trigger = polygon_trigger.resize((trigger_size, trigger_size))
else:
polygon_trigger = PIL.Image.open(trigger_name)
if type(trigger_color) is tuple:
polygon_trigger = change_color(polygon_trigger, trigger_color)
elif trigger_type == 'filter':
pass
else:
raise RuntimeError('tools.data.create_backdoored_dataset: invalid trigger_type')
count = 0
# this last pass uses the dataframe created above to write down the backdoored images on disk effectively
for _, row in df.iterrows():
is_triggered = row['triggered']
if is_triggered: # if the class is not triggered, do not transform any images
filename_clean = row['filename_clean']
filename_backdoored = row['filename_backdoored']
config = row['config']
image_clean = PIL.Image.open(filename_clean)
if config == 'none': # save original image with the backdoored name
image_clean.save(filename_backdoored)
count += 1
else:
config = ast.literal_eval(config)
if config['type'] == 'polygon':
if trigger_color == 'random': # needs improvement to speedup changing color
polygon_trigger = change_color(polygon_trigger, generate_random_RGB())
# image_trigger = polygon_trigger.copy().resize((config['size'], config['size']))
image_clean.paste(polygon_trigger, (config['x'], config['y']), polygon_trigger)
image_clean.save(filename_backdoored)
count += 1
elif config['type'] == 'filter':
filter = None
if config['name'] == 'gotham':
filter = instagram.GothamFilterXForm()
elif config['name'] == 'kelvin':
filter = instagram.KelvinFilterXForm()
elif config['name'] == 'lomo':
filter = instagram.LomoFilterXForm()
elif config['name'] == 'nashville':
filter = instagram.NashvilleFilterXForm()
elif config['name'] == 'toaster':
filter = instagram.ToasterXForm()
image_filtered = filter.filter(wand.image.Image.from_array(image_clean))
image_filtered.save(filename=filename_backdoored)
count += 1
class TrojAI:
def __init__(self, folder, batch_size=128, num_classes=5, test_ratio=0.2, opencv_format=True, img_format='png', device='cuda'):
"""opencv_format will be True for rounds 0 and 1 and False for all others"""
self.batch_size = batch_size
self.test_ratio = test_ratio
X, y = self._get_images(folder, opencv_format, img_format)
self.num_classes = 1 + max(y)
if test_ratio == 0:
X_train, X_test, y_train, y_test = X, X, y, y
else:
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size=self.test_ratio)
# print(f'TrojAI:init - train_ratio={1-test_ratio}, test_ratio={test_ratio}')
# print(f'X_train: {X_train.shape}')
# print(f'y_train has {y_train.shape}')
# print(f'X_test: {X_test.shape}')
# print(f'y_test has {y_test.shape}')
self.train_dataset = ManualData(X_train, y_train, device)
self.test_dataset = ManualData(X_test, y_test, device)
self.num_workers = 2 if device == 'cpu' else 0
self.train_loader = torch.utils.data.DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers)
self.test_loader = torch.utils.data.DataLoader(self.test_dataset, batch_size=self.batch_size, shuffle=False, num_workers=self.num_workers)
# print('TrojAI:init - test_loader IS THE SAME AS train_loader (it is used like this just for debugging purposes)')
def _get_images(self, folder, opencv_format, img_format):
array_images, array_labels = [], []
for f in os.listdir(folder):
if f.endswith(img_format):
image = _get_single_image(os.path.join(folder, f), opencv_format)
label = int(f.split('_')[1])
array_images.append(image)
array_labels.append(label)
array_images = np.asarray(array_images)
array_labels = np.asarray(array_labels)
return array_images, array_labels
class CIFAR10:
def __init__(self, batch_size=128, num_holdout=0):
self.batch_size = batch_size
self.img_size = 32
self.num_classes = 10
self.num_test = 10000
self.num_train = 50000
if num_holdout > 0 and num_holdout < 1:
self.num_holdout = int(self.num_train * num_holdout)
else:
self.num_holdout = num_holdout
self.augmented = transforms.Compose([transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, padding=4), transforms.ToTensor()])
self.no_aug = transforms.Compose([transforms.ToTensor()])
self.trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=self.augmented)
if self.num_holdout > 0:
print('Creating holdout set ({})...'.format(self.num_holdout))
af.set_random_seeds() # Deterministic split
self.trainset, _ = random_split(self.trainset, (self.num_train-self.num_holdout, self.num_holdout))
af.set_random_seeds()
self.no_aug_trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=self.no_aug)
_, self.holdout_set = random_split(self.no_aug_trainset, (self.num_train-self.num_holdout, self.num_holdout))
self.holdout_loader = torch.utils.data.DataLoader(self.holdout_set, batch_size=batch_size, shuffle=False, num_workers=4)
self.holdout_loader_shuffle = torch.utils.data.DataLoader(self.holdout_set, batch_size=batch_size, shuffle=True, num_workers=4)
self.train_loader = torch.utils.data.DataLoader(self.trainset, batch_size=batch_size, shuffle=True, num_workers=4)
self.testset = datasets.CIFAR10(root='./data', train=False, download=True, transform=self.no_aug)
self.test_loader = torch.utils.data.DataLoader(self.testset, batch_size=batch_size, shuffle=False, num_workers=4)
self.test_loader_shuffle = torch.utils.data.DataLoader(self.testset, batch_size=batch_size, shuffle=True, num_workers=4)
class CIFAR100:
def __init__(self, batch_size=128, num_holdout=0):
self.batch_size = batch_size
self.img_size = 32
self.num_classes = 100
self.num_test = 10000
self.num_train = 50000
if num_holdout > 0 and num_holdout < 1:
self.num_holdout = int(self.num_train * num_holdout)
else:
self.num_holdout = num_holdout
self.augmented = transforms.Compose([transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, padding=4), transforms.ToTensor()])
self.no_aug = transforms.Compose([transforms.ToTensor()])
self.trainset = datasets.CIFAR100(root='./data', train=True, download=True, transform=self.augmented)
if self.num_holdout > 0:
print('Creating holdout set ({})...'.format(self.num_holdout))
af.set_random_seeds()
self.trainset, _ = random_split(self.trainset, (self.num_train-self.num_holdout, self.num_holdout))
af.set_random_seeds()
self.no_aug_trainset = datasets.CIFAR100(root='./data', train=True, download=True, transform=self.no_aug)
_, self.holdout_set = random_split(self.no_aug_trainset, (self.num_train-self.num_holdout, self.num_holdout))
self.holdout_loader = torch.utils.data.DataLoader(self.holdout_set, batch_size=batch_size, shuffle=False, num_workers=4)
self.holdout_loader_shuffle = torch.utils.data.DataLoader(self.holdout_set, batch_size=batch_size, shuffle=True, num_workers=4)
self.train_loader = torch.utils.data.DataLoader(self.trainset, batch_size=batch_size, shuffle=True)
self.testset = datasets.CIFAR100(root='./data', train=False, download=True, transform=self.no_aug)
self.test_loader = torch.utils.data.DataLoader(self.testset, batch_size=batch_size, shuffle=False, num_workers=4)
self.test_loader_shuffle = torch.utils.data.DataLoader(self.testset, batch_size=batch_size, shuffle=True, num_workers=4)
class ImageFolderWithPaths(datasets.ImageFolder):
def __getitem__(self, index):
original_tuple = super(ImageFolderWithPaths, self).__getitem__(index)
path = self.imgs[index][0]
tuple_with_path = (original_tuple + (path,))
return tuple_with_path
class TinyImagenet():
def __init__(self, batch_size=128, num_holdout=0):
print('Loading TinyImageNet...')
self.batch_size = batch_size
self.img_size = 64
self.num_classes = 200
self.num_test = 10000
self.num_train = 100000
if num_holdout > 0 and num_holdout < 1:
self.num_holdout = int(self.num_train * num_holdout)
else:
self.num_holdout = num_holdout
train_dir = 'data/tiny-imagenet-200/train'
valid_dir = 'data/tiny-imagenet-200/val/images'
self.augmented = transforms.Compose([transforms.RandomHorizontalFlip(), transforms.RandomCrop(64, padding=8), transforms.ToTensor()])
self.no_aug = transforms.Compose([transforms.ToTensor()])
self.trainset = datasets.ImageFolder(train_dir, transform=self.augmented)
if self.num_holdout > 0:
print('Creating holdout set ({})...'.format(self.num_holdout))
af.set_random_seeds()
self.trainset, _ = random_split(self.trainset, (self.num_train-self.num_holdout, self.num_holdout))
af.set_random_seeds()
self.no_aug_trainset = datasets.ImageFolder(train_dir, transform=self.no_aug)
_, self.holdout_set = random_split(self.no_aug_trainset, (self.num_train-self.num_holdout, self.num_holdout))
self.holdout_loader = torch.utils.data.DataLoader(self.holdout_set, batch_size=batch_size, shuffle=False, num_workers=8)
self.holdout_loader_shuffle = torch.utils.data.DataLoader(self.holdout_set, batch_size=batch_size, shuffle=True, num_workers=8)
self.train_loader = torch.utils.data.DataLoader(self.trainset, batch_size=batch_size, shuffle=True, num_workers=8)
self.testset = datasets.ImageFolder(valid_dir, transform=self.no_aug)
self.testset_paths = ImageFolderWithPaths(valid_dir, transform=self.no_aug)
self.test_loader = torch.utils.data.DataLoader(self.testset, batch_size=batch_size, shuffle=False, num_workers=8)
self.test_loader_shuffle = torch.utils.data.DataLoader(self.testset, batch_size=batch_size, shuffle=True, num_workers=8)
def get_mean_and_std(dataset):
'''Compute the mean and std value of dataset.'''
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, num_workers=4)
mean = torch.zeros(3)
std = torch.zeros(3)
print('==> Computing mean and std..')
for inputs, targets in dataloader:
for i in range(3):
mean[i] += inputs[:,i,:,:].mean()
std[i] += inputs[:,i,:,:].std()
mean.div_(len(dataset))
std.div_(len(dataset))
return mean, std
def create_val_folder():
"""
This method is responsible for separating validation images into separate sub folders
"""
path = os.path.join('data/tiny-imagenet-200', 'val/images') # path where validation data is present now
filename = os.path.join('data/tiny-imagenet-200', 'val/val_annotations.txt') # file where image2class mapping is present
fp = open(filename, "r") # open file in read mode
data = fp.readlines() # read line by line
# Create a dictionary with image names as key and corresponding classes as values
val_img_dict = {}
for line in data:
words = line.split("\t")
val_img_dict[words[0]] = words[1]
fp.close()
# Create folder if not present, and move image into proper folder
for img, folder in val_img_dict.items():
newpath = (os.path.join(path, folder))
if not os.path.exists(newpath): # check if folder exists
os.makedirs(newpath)
if os.path.exists(os.path.join(path, img)): # Check if image exists in default directory
os.rename(os.path.join(path, img), os.path.join(newpath, img))
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class ManualDataAE(torch.utils.data.Dataset):
def __init__(self, data, get_indices=False, device='cpu'):
super(ManualDataAE, self).__init__()
self.data = torch.from_numpy(data).to(device, dtype=torch.float)
self.device=device
self.get_indices = get_indices
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
if self.get_indices:
return (self.data[idx], self.data[idx], idx)
else:
return (self.data[idx], self.data[idx])
class ManualDatasetAE:
def __init__(self, train_data, batch_size=64, get_indices=False, device='cpu'):
self.batch_size = batch_size
if device == 'cpu':
num_workers = 4
else:
num_workers = 0
self.train_data = ManualDataAE(train_data, get_indices, device)
self.train_loader = torch.utils.data.DataLoader(self.train_data, batch_size=self.batch_size, shuffle=True, num_workers=num_workers)
self.loader = torch.utils.data.DataLoader(self.train_data, batch_size=self.batch_size, shuffle=False, num_workers=num_workers)
class ManualData(torch.utils.data.Dataset):
def __init__(self, data, labels, device='cpu'):
self.data = torch.from_numpy(data).to(device, dtype=torch.float)
self.device = device
self.labels = torch.from_numpy(labels).to(device, dtype=torch.long)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return (self.data[idx], self.labels[idx])
class ManualDataset:
def __init__(self, train_data, train_labels, test_data=None, test_labels=None, batch_size=64, device='cpu'):
self.batch_size = batch_size
if device == 'cpu':
num_workers = 2
else:
num_workers = 0
if test_data is not None:
self.train_data = ManualData(train_data, train_labels, device)
self.train_loader = torch.utils.data.DataLoader(self.train_data, batch_size=self.batch_size, shuffle=True, num_workers=num_workers)
self.test_data = ManualData(test_data, test_labels, device)
self.test_loader = torch.utils.data.DataLoader(self.test_data, batch_size=self.batch_size, shuffle=False, num_workers=num_workers)
else:
self.data = ManualData(train_data, train_labels, device)
self.loader = torch.utils.data.DataLoader(self.data, batch_size=self.batch_size, shuffle=False, num_workers=num_workers)
self.train_loader = torch.utils.data.DataLoader(self.data, batch_size=self.batch_size, shuffle=True, num_workers=num_workers)
def split(data, targets, test_ratio=0.1, random_seed=121, normalize=False):
x_train, x_test, y_train, y_test = train_test_split(data, targets, test_size=test_ratio, random_state=random_seed)
if normalize:
std = np.std(x_train, axis=0)
mean = np.mean(x_train, axis=0)
x_train = (x_train - mean ) / std
x_test = (x_test - mean ) / std
return (x_train, x_test, y_train, y_test)
def split_only_X(data, test_ratio=0.1, random_seed=121):
x_train, x_test = train_test_split(data, test_size=test_ratio, random_state=random_seed)
return (x_train, x_test)