-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
52 lines (39 loc) · 1.35 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from pipeline import InferencePipeline
test_review = "this is a pretty awesome book"
pipeline = InferencePipeline()
prediction = pipeline.predict(test_review)
print("{} -> {}".format(test_review, prediction))
# importing the required libraries
from flask import Flask, render_template, request, redirect, url_for
from joblib import load
# load the pipeline object
pipeline = InferencePipeline()
# function to get results for a particular text query
def requestResults(name):
# get the prediction
prediction = pipeline.predict(name)
return str(prediction)
# start flask
# app = Flask(__name__)
app = Flask(__name__, static_url_path='/static')
# render default webpage
@app.route('/')
def home():
return render_template('home.html')
# when the post method detect, then redirect to success function
@app.route('/', methods=['POST', 'GET'])
def get_data():
if request.method == 'POST':
user = request.form['search']
return redirect(url_for('success', name=user))
# get the data for the requested query
@app.route('/success/<name>')
def success(name):
returned_prediction = requestResults(name)
if (returned_prediction == 'positive'):
return render_template('home.html')
else:
return render_template('sadhome.html')
# return "<xmp>" + str(requestResults(name)) + " </xmp> "
# app.run(host='192.168.0.177', debug=True)
app.run(debug=True)