diff --git a/src/imputors.jl b/src/imputors.jl index 838cd97..4dc88f3 100644 --- a/src/imputors.jl +++ b/src/imputors.jl @@ -38,24 +38,40 @@ function Base.:(==)(a::T, b::T) where T <: Imputor return result end -""" - impute(data::T, imp; kwargs...) -> T +impute_docstring = """ + impute(data::T, imp; dims=:, kwargs...) -> T + impute!(data::A, imp; dims=:, kwargs...) -> A -Returns a new copy of the `data` with the missing data imputed by the imputor `imp`. -For matrices and tables, data is imputed one variable/column at a time. -If this is not the desired behaviour then you should overload this method or specify a different `dims` value. +Returns a new copy of the `data` with the missing data imputed by the imputor `imp`. If the mutating version +`impute!` is used, it will also update the missing values in-place. + +By default, `data` is assumed to be laid out like a `DataFrame`, with each column representing a variable and +each row representing one observation. Other layouts can be handled via the `dims` keyword argument. # Arguments * `data`: the data to be impute * `imp::Imputor`: the Imputor method to use +# Keyword arguments +* `dims = :`: The dimensions to impute along, either `:cols` or `:rows`. If data are in `DataFrame` format, +with variables in columns and observations in rows, use `dims = :cols`. If it is transposed, with variables +in rows and observations in columns, use `dims=:rows`. + # Returns -* the input `data` with values imputed +* `AbstractArray{Union{T, Missing}}`: the input `data` with values imputed. (Mutation isn't guaranteed for +all array types, so we always return the result). -# Example +# NOTES +1. Matrices have a deprecated `dims=2` special case as `dims=:` is a breaking change +2. `eachslice` is used internally which requires Julia 1.1 + +# Examples ```jldoctest -julia> using Impute: Interpolate, impute +julia> using Impute: Interpolate, Substitute, impute, impute! + +julia> using Statistics: mean +# Linear interpolation in a vector julia> v = [1.0, 2.0, missing, missing, 5.0] 5-element Vector{Union{Missing, Float64}}: 1.0 @@ -71,46 +87,49 @@ julia> impute(v, Interpolate()) 3.0 4.0 5.0 -``` -""" -function impute(data, imp::Imputor; kwargs...) - # NOTE: We don't use a return type declaration here because `trycopy` isn't guaranteed - # to return the same type passed in. For example, subarrays and subdataframes will - # return a regular array or dataframe. - return impute!(trycopy(data), imp; kwargs...) -end - -""" - impute!(data::A, imp; dims=:, kwargs...) -> A - -Impute the `missing` values in the array `data` using the imputor `imp`. -Optionally, you can specify the dimension to impute along. - -# Arguments -* `data::AbstractArray{Union{T, Missing}}`: the data to be impute along dimensions `dims` -* `imp::Imputor`: the Imputor method to use - -# Keyword Arguments -* `dims=:`: The dimension to impute along. `:rows` and `:cols` are also supported for matrices. - -# Returns -* `AbstractArray{Union{T, Missing}}`: the input `data` with values imputed - -# NOTES -1. Matrices have a deprecated `dims=2` special case as `dims=:` is a breaking change -2. Mutation isn't guaranteed for all array types, hence we return the result -3. `eachslice` is used internally which requires Julia 1.1 - -# Example -```jldoctest -julia> using Impute: Interpolate, impute! +` +# Usage of the `dims` keyword argument + +julia> x = [1.0 missing; missing 2.0] +2×2 Matrix{Union{Missing, Float64}}: + 1.0 missing + missing 2.0 + +julia> imp = Substitute(statistic = mean) +Substitute{typeof(mean)}(Statistics.mean) + +# Variables in columns, each row is an observation (like a DataFrame) +julia> impute(x, imp, dims=:cols) +2×2 Matrix{Union{Missing, Float64}}: + 1.0 2.0 + 1.0 2.0 + +# Variables in rows, each column is an observation +julia> impute(x, imp, dims=:rows) +2×2 Matrix{Union{Missing, Float64}}: + 1.0 1.0 + 2.0 2.0 + +# Impute over all dimensions +julia> impute(x, imp, dims=:) +2×2 Matrix{Union{Missing, Float64}}: + 1.0 1.5 + 1.5 2.0 + +# Default is `dims = :cols` +julia> impute(x, imp) +2×2 Matrix{Union{Missing, Float64}}: + 1.0 2.0 + 1.0 2.0 + +# In-place imputation julia> M = [1.0 2.0 missing missing 5.0; 1.1 2.2 3.3 missing 5.5] 2×5 Matrix{Union{Missing, Float64}}: 1.0 2.0 missing missing 5.0 1.1 2.2 3.3 missing 5.5 -julia> impute!(M, Interpolate(); dims=1) +julia> impute!(M, Interpolate(), dims=:rows) 2×5 Matrix{Union{Missing, Float64}}: 1.0 2.0 3.0 4.0 5.0 1.1 2.2 3.3 4.4 5.5 @@ -119,7 +138,21 @@ julia> M 2×5 Matrix{Union{Missing, Float64}}: 1.0 2.0 3.0 4.0 5.0 1.1 2.2 3.3 4.4 5.5 -``` +""" + + +""" +$impute_docstring +""" +function impute(data, imp::Imputor; kwargs...) + # NOTE: We don't use a return type declaration here because `trycopy` isn't guaranteed + # to return the same type passed in. For example, subarrays and subdataframes will + # return a regular array or dataframe. + return impute!(trycopy(data), imp; kwargs...) +end + +""" +$impute_docstring """ function impute!( data::A, imp::Imputor; dims=:, kwargs...