-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathtest-keyvalue.cpp
426 lines (366 loc) · 15.3 KB
/
test-keyvalue.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
/*******************************************
* * Copyright (C) 2022-2023 Intel Corporation
* * SPDX-License-Identifier: BSD-3-Clause
* *******************************************/
#include "rand_array.h"
#include "x86simdsort.h"
#include "x86simdsort-scalar.h"
#include "test-qsort-common.h"
#include <gtest/gtest.h>
template <typename T>
class simdkvsort : public ::testing::Test {
public:
simdkvsort()
{
std::iota(arrsize.begin(), arrsize.end(), 0);
arrsize.push_back(10'000);
arrsize.push_back(100'000);
arrsize.push_back(1'000'000);
arrtype = {"random",
"constant",
"sorted",
"reverse",
"smallrange",
"max_at_the_end",
"random_5d",
"rand_max",
"rand_with_nan",
"rand_with_max_and_nan"};
}
std::vector<std::string> arrtype;
std::vector<size_t> arrsize = std::vector<size_t>(1024);
};
TYPED_TEST_SUITE_P(simdkvsort);
template <typename T>
bool same_values(T *v1, T *v2, size_t size)
{
// Checks that the values are the same except ordering
auto cmp_eq = compare<T, std::equal_to<T>>();
x86simdsort::qsort(v1, size, true);
x86simdsort::qsort(v2, size, true);
for (size_t i = 0; i < size; i++) {
if (!cmp_eq(v1[i], v2[i])) { return false; }
}
return true;
}
template <typename T1, typename T2>
bool is_kv_sorted(
T1 *keys_comp, T2 *vals_comp, T1 *keys_ref, T2 *vals_ref, size_t size)
{
auto cmp_eq = compare<T1, std::equal_to<T1>>();
// Always true for arrays of zero length
if (size == 0) return true;
// First check keys are exactly identical
for (size_t i = 0; i < size; i++) {
if (!cmp_eq(keys_comp[i], keys_ref[i])) { return false; }
}
size_t i_start = 0;
T1 key_start = keys_comp[0];
// Loop through all identical keys in a block, then compare the sets of values to make sure they are identical
// We need the index after the loop
size_t i = 0;
for (; i < size; i++) {
if (!cmp_eq(keys_comp[i], key_start)) {
// Check that every value in this block of constant keys
if (!same_values(
vals_ref + i_start, vals_comp + i_start, i - i_start)) {
return false;
}
// Now setup the start variables to begin gathering keys for the next group
i_start = i;
key_start = keys_comp[i];
}
}
// Handle the last group
if (!same_values(vals_ref + i_start, vals_comp + i_start, i - i_start)) {
return false;
}
return true;
}
template <typename T1, typename T2>
bool is_kv_partialsorted(T1 *keys_comp,
T2 *vals_comp,
T1 *keys_ref,
T2 *vals_ref,
size_t size,
size_t k)
{
auto cmp_eq = compare<T1, std::equal_to<T1>>();
// First check keys are exactly identical (up to k)
for (size_t i = 0; i < k; i++) {
if (!cmp_eq(keys_comp[i], keys_ref[i])) { return false; }
}
size_t i_start = 0;
T1 key_start = keys_comp[0];
// Loop through all identical keys in a block, then compare the sets of values to make sure they are identical
for (size_t i = 0; i < k; i++) {
if (!cmp_eq(keys_comp[i], key_start)) {
// Check that every value in this block of constant keys
if (!same_values(
vals_ref + i_start, vals_comp + i_start, i - i_start)) {
return false;
}
// Now setup the start variables to begin gathering keys for the next group
i_start = i;
key_start = keys_comp[i];
}
}
// Now, we need to do some more work to handle keys exactly equal to the true kth
// There may be more values after the kth element with the same key,
// and thus we can find that the values of the kth elements do not match,
// even though the sort is correct.
// First, fully kvsort both arrays
xss::scalar::keyvalue_qsort<T1, T2>(keys_ref, vals_ref, size, true, false);
xss::scalar::keyvalue_qsort<T1, T2>(
keys_comp, vals_comp, size, true, false);
auto trueKthKey = keys_ref[k];
bool foundFirstKthKey = false;
size_t i = 0;
// Search forwards until we find the block of keys that match the kth key,
// then find where it ends
for (; i < size; i++) {
if (!foundFirstKthKey && cmp_eq(keys_ref[i], trueKthKey)) {
foundFirstKthKey = true;
i_start = i;
}
else if (foundFirstKthKey && !cmp_eq(keys_ref[i], trueKthKey)) {
break;
}
}
// kth key is somehow missing? Since we got that value from keys_ref, should be impossible
if (!foundFirstKthKey) { return false; }
// Check that the values in the kth key block match, so they are equivalent
// up to permutation, which is allowed since the sort is not stable
if (!same_values(vals_ref + i_start, vals_comp + i_start, i - i_start)) {
return false;
}
return true;
}
TYPED_TEST_P(simdkvsort, test_kvsort_ascending)
{
using T1 = typename std::tuple_element<0, decltype(TypeParam())>::type;
using T2 = typename std::tuple_element<1, decltype(TypeParam())>::type;
for (auto type : this->arrtype) {
bool hasnan = is_nan_test(type);
for (auto size : this->arrsize) {
std::vector<T1> key = get_array<T1>(type, size);
std::vector<T2> val = get_array<T2>(type, size);
std::vector<T1> key_bckp = key;
std::vector<T2> val_bckp = val;
x86simdsort::keyvalue_qsort(
key.data(), val.data(), size, hasnan, false);
#ifndef XSS_ASAN_CI_NOCHECK
xss::scalar::keyvalue_qsort(
key_bckp.data(), val_bckp.data(), size, hasnan, false);
bool is_kv_sorted_ = is_kv_sorted<T1, T2>(key.data(),
val.data(),
key_bckp.data(),
val_bckp.data(),
size);
ASSERT_EQ(is_kv_sorted_, true);
#endif
key.clear();
val.clear();
key_bckp.clear();
val_bckp.clear();
}
}
}
TYPED_TEST_P(simdkvsort, test_kvsort_descending)
{
using T1 = typename std::tuple_element<0, decltype(TypeParam())>::type;
using T2 = typename std::tuple_element<1, decltype(TypeParam())>::type;
for (auto type : this->arrtype) {
bool hasnan = is_nan_test(type);
for (auto size : this->arrsize) {
std::vector<T1> key = get_array<T1>(type, size);
std::vector<T2> val = get_array<T2>(type, size);
std::vector<T1> key_bckp = key;
std::vector<T2> val_bckp = val;
x86simdsort::keyvalue_qsort(
key.data(), val.data(), size, hasnan, true);
#ifndef XSS_ASAN_CI_NOCHECK
xss::scalar::keyvalue_qsort(
key_bckp.data(), val_bckp.data(), size, hasnan, true);
bool is_kv_sorted_ = is_kv_sorted<T1, T2>(key.data(),
val.data(),
key_bckp.data(),
val_bckp.data(),
size);
ASSERT_EQ(is_kv_sorted_, true);
#endif
key.clear();
val.clear();
key_bckp.clear();
val_bckp.clear();
}
}
}
TYPED_TEST_P(simdkvsort, test_kvselect_ascending)
{
using T1 = typename std::tuple_element<0, decltype(TypeParam())>::type;
using T2 = typename std::tuple_element<1, decltype(TypeParam())>::type;
auto cmp_eq = compare<T1, std::equal_to<T1>>();
for (auto type : this->arrtype) {
bool hasnan = is_nan_test(type);
for (auto size : this->arrsize) {
size_t k = size != 0 ? rand() % size : 0;
std::vector<T1> key = get_array<T1>(type, size);
std::vector<T2> val = get_array<T2>(type, size);
std::vector<T1> key_bckp = key;
std::vector<T2> val_bckp = val;
x86simdsort::keyvalue_select(
key.data(), val.data(), k, size, hasnan, false);
#ifndef XSS_ASAN_CI_NOCHECK
xss::scalar::keyvalue_qsort(
key_bckp.data(), val_bckp.data(), size, hasnan, false);
// Test select by using it as part of partial_sort
if (size == 0) continue;
IS_ARR_PARTITIONED<T1>(key, k, key_bckp[k], type);
xss::scalar::keyvalue_qsort(
key.data(), val.data(), k, hasnan, false);
ASSERT_EQ(cmp_eq(key[k], key_bckp[k]), true);
bool is_kv_partialsorted_
= is_kv_partialsorted<T1, T2>(key.data(),
val.data(),
key_bckp.data(),
val_bckp.data(),
size,
k);
ASSERT_EQ(is_kv_partialsorted_, true);
#endif
key.clear();
val.clear();
key_bckp.clear();
val_bckp.clear();
}
}
}
TYPED_TEST_P(simdkvsort, test_kvselect_descending)
{
using T1 = typename std::tuple_element<0, decltype(TypeParam())>::type;
using T2 = typename std::tuple_element<1, decltype(TypeParam())>::type;
auto cmp_eq = compare<T1, std::equal_to<T1>>();
for (auto type : this->arrtype) {
bool hasnan = is_nan_test(type);
for (auto size : this->arrsize) {
size_t k = size != 0 ? rand() % size : 0;
std::vector<T1> key = get_array<T1>(type, size);
std::vector<T2> val = get_array<T2>(type, size);
std::vector<T1> key_bckp = key;
std::vector<T2> val_bckp = val;
x86simdsort::keyvalue_select(
key.data(), val.data(), k, size, hasnan, true);
#ifndef XSS_ASAN_CI_NOCHECK
xss::scalar::keyvalue_qsort(
key_bckp.data(), val_bckp.data(), size, hasnan, true);
// Test select by using it as part of partial_sort
if (size == 0) continue;
IS_ARR_PARTITIONED<T1>(key, k, key_bckp[k], type, true);
xss::scalar::keyvalue_qsort(
key.data(), val.data(), k, hasnan, true);
ASSERT_EQ(cmp_eq(key[k], key_bckp[k]), true);
bool is_kv_partialsorted_
= is_kv_partialsorted<T1, T2>(key.data(),
val.data(),
key_bckp.data(),
val_bckp.data(),
size,
k);
ASSERT_EQ(is_kv_partialsorted_, true);
#endif
key.clear();
val.clear();
key_bckp.clear();
val_bckp.clear();
}
}
}
TYPED_TEST_P(simdkvsort, test_kvpartial_sort_ascending)
{
using T1 = typename std::tuple_element<0, decltype(TypeParam())>::type;
using T2 = typename std::tuple_element<1, decltype(TypeParam())>::type;
for (auto type : this->arrtype) {
bool hasnan = is_nan_test(type);
for (auto size : this->arrsize) {
size_t k = size != 0 ? rand() % size : 0;
std::vector<T1> key = get_array<T1>(type, size);
std::vector<T2> val = get_array<T2>(type, size);
std::vector<T1> key_bckp = key;
std::vector<T2> val_bckp = val;
x86simdsort::keyvalue_partial_sort(
key.data(), val.data(), k, size, hasnan, false);
#ifndef XSS_ASAN_CI_NOCHECK
if (size == 0) continue;
xss::scalar::keyvalue_qsort(
key_bckp.data(), val_bckp.data(), size, hasnan, false);
IS_ARR_PARTIALSORTED<T1>(key, k, key_bckp, type);
bool is_kv_partialsorted_
= is_kv_partialsorted<T1, T2>(key.data(),
val.data(),
key_bckp.data(),
val_bckp.data(),
size,
k);
ASSERT_EQ(is_kv_partialsorted_, true);
#endif
key.clear();
val.clear();
key_bckp.clear();
val_bckp.clear();
}
}
}
TYPED_TEST_P(simdkvsort, test_kvpartial_sort_descending)
{
using T1 = typename std::tuple_element<0, decltype(TypeParam())>::type;
using T2 = typename std::tuple_element<1, decltype(TypeParam())>::type;
for (auto type : this->arrtype) {
bool hasnan = is_nan_test(type);
for (auto size : this->arrsize) {
size_t k = size != 0 ? rand() % size : 0;
std::vector<T1> key = get_array<T1>(type, size);
std::vector<T2> val = get_array<T2>(type, size);
std::vector<T1> key_bckp = key;
std::vector<T2> val_bckp = val;
x86simdsort::keyvalue_partial_sort(
key.data(), val.data(), k, size, hasnan, true);
#ifndef XSS_ASAN_CI_NOCHECK
if (size == 0) continue;
xss::scalar::keyvalue_qsort(
key_bckp.data(), val_bckp.data(), size, hasnan, true);
IS_ARR_PARTIALSORTED<T1>(key, k, key_bckp, type);
bool is_kv_partialsorted_
= is_kv_partialsorted<T1, T2>(key.data(),
val.data(),
key_bckp.data(),
val_bckp.data(),
size,
k);
ASSERT_EQ(is_kv_partialsorted_, true);
#endif
key.clear();
val.clear();
key_bckp.clear();
val_bckp.clear();
}
}
}
REGISTER_TYPED_TEST_SUITE_P(simdkvsort,
test_kvsort_ascending,
test_kvsort_descending,
test_kvselect_ascending,
test_kvselect_descending,
test_kvpartial_sort_ascending,
test_kvpartial_sort_descending);
#define CREATE_TUPLES(type) \
std::tuple<double, type>, std::tuple<uint64_t, type>, \
std::tuple<int64_t, type>, std::tuple<float, type>, \
std::tuple<uint32_t, type>, std::tuple<int32_t, type>
using QKVSortTestTypes = testing::Types<CREATE_TUPLES(double),
CREATE_TUPLES(uint64_t),
CREATE_TUPLES(int64_t),
CREATE_TUPLES(uint32_t),
CREATE_TUPLES(int32_t),
CREATE_TUPLES(float)>;
INSTANTIATE_TYPED_TEST_SUITE_P(xss, simdkvsort, QKVSortTestTypes);