diff --git a/test/xpu/extended/run_test_with_skip_lnl.py b/test/xpu/extended/run_test_with_skip_lnl.py new file mode 100644 index 000000000..a795ca07a --- /dev/null +++ b/test/xpu/extended/run_test_with_skip_lnl.py @@ -0,0 +1,22 @@ +import os +import pytest +import sys +from skip_list_common import skip_dict +from skip_list_win import skip_dict as skip_dict_win +from skip_list_win_lnl import skip_dict as skip_dict_win_lnl + +IS_WINDOWS = sys.platform == "win32" + +skip_list = skip_dict["test_ops_xpu.py"] +if IS_WINDOWS: + skip_list += skip_dict_win["test_ops_xpu.py"] + skip_dict_win_lnl["test_ops_xpu.py"] + +skip_options = "not " + skip_list[0] +for skip_case in skip_list[1:]: + skip_option = " and not " + skip_case + skip_options += skip_option + +os.environ["PYTORCH_TEST_WITH_SLOW"]="1" +test_command = ["-k", skip_options, "test_ops_xpu.py", "-v"] +res = pytest.main(test_command) +sys.exit(res) diff --git a/test/xpu/extended/skip_list_common.py b/test/xpu/extended/skip_list_common.py index db53d6b4f..5cc1c6442 100644 --- a/test/xpu/extended/skip_list_common.py +++ b/test/xpu/extended/skip_list_common.py @@ -198,5 +198,9 @@ # Greatest absolute difference: 0.0625 at index (1,) (up to 0.001 allowed) # Greatest relative difference: 0.00640869140625 at index (1,) (up to 0.001 allowed) "test_compare_cpu_xlogy_xpu_bfloat16", + "test_compare_cpu_div_trunc_rounding_xpu_float64", + "test_compare_cpu_div_trunc_rounding_xpu_float16", + "test_compare_cpu_div_floor_rounding_xpu_float16", + "test_compare_cpu_div_floor_rounding_xpu_bfloat16", ), } diff --git a/test/xpu/extended/skip_list_win_lnl.py b/test/xpu/extended/skip_list_win_lnl.py new file mode 100644 index 000000000..a2249c0a4 --- /dev/null +++ b/test/xpu/extended/skip_list_win_lnl.py @@ -0,0 +1,7 @@ +skip_dict = { + "test_ops_xpu.py": ( + # https://github.com/intel/torch-xpu-ops/issues/1173 + # Fatal Python error: Illegal instruction + "test_compare_cpu_grid_sampler_2d_xpu_float64", + ), +} diff --git a/test/xpu/run_test_with_skip_bmg.py b/test/xpu/run_test_with_skip_bmg.py new file mode 100644 index 000000000..9bd360296 --- /dev/null +++ b/test/xpu/run_test_with_skip_bmg.py @@ -0,0 +1,24 @@ +import os +import sys +from skip_list_common import skip_dict +from skip_list_win import skip_dict as skip_dict_win +from skip_list_win_bmg import skip_dict as skip_dict_win_bmg +from xpu_test_utils import launch_test + + +res = 0 +IS_WINDOWS = sys.platform == "win32" + +for key in skip_dict: + skip_list = skip_dict[key] + if IS_WINDOWS and key in skip_dict_win: + skip_list += skip_dict_win[key] + if IS_WINDOWS and key in skip_dict_win_bmg: + skip_list += skip_dict_win_bmg[key] + res += launch_test(key, skip_list) + +if os.name == "nt": + sys.exit(res) +else: + exit_code = os.WEXITSTATUS(res) + sys.exit(exit_code) \ No newline at end of file diff --git a/test/xpu/run_test_with_skip_lnl.py b/test/xpu/run_test_with_skip_lnl.py new file mode 100644 index 000000000..4413626ea --- /dev/null +++ b/test/xpu/run_test_with_skip_lnl.py @@ -0,0 +1,24 @@ +import os +import sys +from skip_list_common import skip_dict +from skip_list_win import skip_dict as skip_dict_win +from skip_list_win_lnl import skip_dict as skip_dict_win_lnl +from xpu_test_utils import launch_test + + +res = 0 +IS_WINDOWS = sys.platform == "win32" + +for key in skip_dict: + skip_list = skip_dict[key] + if IS_WINDOWS and key in skip_dict_win: + skip_list += skip_dict_win[key] + if IS_WINDOWS and key in skip_dict_win_lnl: + skip_list += skip_dict_win_lnl[key] + res += launch_test(key, skip_list) + +if os.name == "nt": + sys.exit(res) +else: + exit_code = os.WEXITSTATUS(res) + sys.exit(exit_code) \ No newline at end of file diff --git a/test/xpu/skip_list_common.py b/test/xpu/skip_list_common.py index 5bd989848..5d49baae6 100644 --- a/test/xpu/skip_list_common.py +++ b/test/xpu/skip_list_common.py @@ -2,22 +2,40 @@ "test_ops_xpu.py": ( # Skip list of base line - # Need to revisit when the ops are enabled - # AssertionError: The supported dtypes for xxx on device type xpu are incorrect! + # XPU implementation doesn't claimn FP8 now + # https://github.com/intel/torch-xpu-ops/issues/461 + "float8", + + # To be removed from this file. + # CUDA and XPU both XFAIL now. + "test_out_narrow_copy_xpu_float32", + # This case is marked as skip but XPU failed. However, CUDA and XPU throw the same runtime error. + "test_out_histc_xpu_float32", + + # AssertionError: The supported dtypes for __rmod__ on device type xpu are incorrect! + # The following dtypes worked in forward but are not listed by the OpInfo: {torch.int8, torch.int16, torch.int32, torch.int64, torch.uint8}. "test_dtypes___rmod___xpu", + + # Data type is not supported in oneDNN! "test_dtypes_nn_functional_conv1d_xpu", "test_dtypes_nn_functional_conv2d_xpu", "test_dtypes_nn_functional_conv3d_xpu", "test_dtypes_nn_functional_conv_transpose1d_xpu", "test_dtypes_nn_functional_conv_transpose2d_xpu", "test_dtypes_nn_functional_conv_transpose3d_xpu", + + # AssertionError: The supported dtypes for nn.functional.softsign on device type xpu are incorrect! "test_dtypes_nn_functional_softsign_xpu", + + # AssertionError: The supported dtypes for sparse.sampled_addmm on device type xpu are incorrect! - OPs not supported "test_dtypes_sparse_sampled_addmm_xpu", - # AssertionError: RuntimeError not raised + + # OPs not supported "test_errors_dot_xpu", "test_errors_kthvalue_xpu", "test_errors_vdot_xpu", - # Fallback cases with skipCPUIfNoLapack, AssertionError: Tensor-likes are not close! + + # Linalg OPs not supported "test_noncontiguous_samples_linalg_det_xpu_float32", "test_noncontiguous_samples_linalg_slogdet_xpu_float32", "test_noncontiguous_samples_linalg_solve_ex_xpu_float32", @@ -26,6 +44,7 @@ "test_noncontiguous_samples_logdet_xpu_float32", "test_noncontiguous_samples_nn_functional_conv3d_xpu_complex64", + # Sparse CSR OPs not supported # RuntimeError: device type of values (xpu) must be CPU or CUDA or Meta # https://github.com/intel/torch-xpu-ops/issues/357 "test_compare_cpu_sparse_sampled_addmm_xpu_float32", @@ -51,6 +70,7 @@ "test_noncontiguous_samples_nn_functional_conv1d_xpu_int64", "test_noncontiguous_samples_nn_functional_conv2d_xpu_int64", + # Linalg OPs not supported # RuntimeError: mode only supports CPU AND CUDA device type, got: xpu # Issue https://github.com/intel/torch-xpu-ops/issues/327 "test_numpy_ref_linalg_tensorinv_xpu_float64", @@ -71,15 +91,18 @@ "test_variant_consistency_eager_nn_functional_conv_transpose3d_xpu_complex64", "test_variant_consistency_eager_nn_functional_conv_transpose3d_xpu_float32", - # Need revisit when the op is enabled - # Unexpected success, xpu passed because it compares to cpu + # Linalg OPs not supported "test_compare_cpu_linalg_lu_factor_ex_xpu_float32", "test_compare_cpu_linalg_lu_factor_xpu_float32", "test_compare_cpu_linalg_lu_xpu_float32", + + # XPU hang. CUDA hang as well. + # https://github.com/pytorch/pytorch/issues/79528 "test_compare_cpu_special_hermite_polynomial_h_xpu_float32", "test_compare_cpu_special_zeta_xpu_float32", - # XFAIL of CUDA and XPU, unexpected success in fallback + # XFAIL of CUDA and XPU, unexpected success in fallback + # Linalg OPs not supported "test_out_cholesky_inverse_xpu_float32", "test_out_geqrf_xpu_float32", "test_out_narrow_copy_xpu_float32", @@ -97,6 +120,7 @@ "test_python_ref_torch_fallback__refs_pow_xpu_complex32", # unexpected success because of cpu fallback + # Linalg OPs not supported "test_out_triangular_solve_xpu_float32", # Newly added: @@ -122,9 +146,14 @@ # Segfault: "test_dtypes_nn_functional_linear_xpu", # https://github.com/intel/torch-xpu-ops/issues/157 "test_dtypes_nn_functional_multi_head_attention_forward_xpu", # https://github.com/intel/torch-xpu-ops/issues/157 + + # Linalg OPs not supported "test_dtypes_pca_lowrank_xpu", # https://github.com/intel/torch-xpu-ops/issues/157 "test_dtypes_svd_lowrank_xpu", # https://github.com/intel/torch-xpu-ops/issues/157 + + # RuntimeError: Long is not supported in oneDNN! "test_noncontiguous_samples_nn_functional_linear_xpu_int64", # https://github.com/intel/torch-xpu-ops/issues/157 + # https://github.com/intel/torch-xpu-ops/issues/157 # Failures: "test_compare_cpu_addmm_xpu_float32", @@ -408,11 +437,13 @@ "test_variant_consistency_eager_svd_xpu_complex64", "test_variant_consistency_eager_tensordot_xpu_complex64", "test_variant_consistency_eager_triangular_solve_xpu_complex64", + # oneDNN issues # RuntimeError: value cannot be converted to type float without overflow # https://github.com/intel/torch-xpu-ops/issues/683 "test_conj_view_addbmm_xpu_complex64", "test_neg_conj_view_addbmm_xpu_complex128", + ### Error #0 in TestMathBitsXPU , RuntimeError: Double and complex datatype matmul is not supported in oneDNN # https://github.com/intel/torch-xpu-ops/issues/254 "test_conj_view___rmatmul___xpu_complex64", @@ -622,6 +653,8 @@ "test_conj_view_svd_lowrank_xpu_complex64", "test_neg_conj_view_pca_lowrank_xpu_complex128", "test_neg_conj_view_svd_lowrank_xpu_complex128", + + # oneDNN issues ### Error #1 in TestMathBitsXPU , RuntimeError: could not create a primitive descriptor for a deconvolution forward propagation primitive # https://github.com/intel/torch-xpu-ops/issues/253 "test_conj_view_nn_functional_conv_transpose2d_xpu_complex64", @@ -660,6 +693,19 @@ # Unexpected success, CUDA got XFAIL because CUDA does not have historgramadd supported" "test_errors_histogramdd_xpu", + # 2025 bundle std::pow complex result is different on host and device + "test_python_ref__refs_square_xpu_complex64", + "test_python_ref_torch_fallback__refs_square_xpu_complex64", + "test_python_ref_torch_fallback__refs_exp_xpu_complex128", + + # Failed on rolling driver, passed on preci + "test_python_ref__refs_div_trunc_rounding_xpu_float64", + "test_python_ref_executor__refs_div_trunc_rounding_executor_aten_xpu_float64", + "test_python_ref_torch_fallback__refs_div_trunc_rounding_xpu_float64", + + # TODO: passed from source code building version, investigate + "test_python_ref__refs_log2_xpu_complex128", + # https://github.com/intel/torch-xpu-ops/issues/922 "test_dtypes_isin_xpu", @@ -712,7 +758,7 @@ "test_autograd_fallback_xpu.py": None, - "test_sort_and_select_xpu.py": ("test_sort_large_slice_xpu",), # Hard code CUDA + "test_sort_and_select_xpu.py": ("test_sort_large_slice_xpu",), # Hard code CUDA, UT has already been rewritten to test/regressions/test_sort.py. "nn/test_embedding_xpu.py": ( # NotImplementedError: Could not run 'aten::_indices' with arguments from the 'SparseXPU' backend. @@ -764,8 +810,12 @@ "test_disable_fastpath_xpu", # We have no mechanism to handle SDPBackend::ERROR so far. Will give a fully support when we support all SDPBackends. "test_dispatch_fails_no_backend_xpu", + + # NestedTensorXPU not supported # Could not run 'aten::_to_copy' with arguments from the 'NestedTensorXPU' backend "test_with_nested_tensor_input_xpu", + + # oneDNN issues # Double and complex datatype matmul is not supported in oneDNN # https://github.com/intel/torch-xpu-ops/issues/253 "test_sdp_math_gradcheck_contiguous_inputs_False_xpu", @@ -1047,6 +1097,7 @@ "test_type", # rnn fallback to cpu "test_cudnn_weight_format", + # oneDNN issues # AssertionError: MultiheadAttention does not support NestedTensor outside of its fast path. The fast path was not hit because some Tensor argument's device is neither one of cpu, cuda or privateuseone "test_TransformerEncoderLayer_empty_xpu", "test_transformerencoderlayer_xpu_float16", @@ -1242,12 +1293,26 @@ # CUDA XFAIL "test_reference_numerics_large__refs_rsqrt_xpu_complex32", + # 2025 bundle std::pow complex result is different on host and device + "test_exp_xpu_complex64", + "test_reference_numerics_extremal__refs_exp2_xpu_complex64", + "test_reference_numerics_extremal__refs_exp_xpu_complex64", + "test_reference_numerics_extremal_exp2_xpu_complex64", + "test_reference_numerics_extremal_exp_xpu_complex64", + "test_reference_numerics_large__refs_exp_xpu_complex32", + "test_reference_numerics_large_exp_xpu_complex32", + # Compiler issue in handling tanh with real or imag inf. # https://github.com/intel/torch-xpu-ops/issues/184, https://jira.devtools.intel.com/browse/CMPLRLIBS-34974 "test_reference_numerics_large__refs_tanh_xpu_complex32", + + # AssertionError: Torch not compiled with CUDA enabled, case need an update + "test_nonzero_static_large_xpu", ), "test_masked_xpu.py": ( + # Summary: Sparse CSR for XPU is not supported + # NotImplementedError: Could not run 'aten::_to_sparse_csr' with arguments from the 'SparseXPU' backend. # https://github.com/intel/torch-xpu-ops/issues/357 "test_mask_layout_sparse_coo_masked_amax_xpu_bfloat16", @@ -1384,6 +1449,9 @@ "nn/test_lazy_modules_xpu.py": None, "test_linalg_xpu.py": ( + # Summary: + # All linear algebra related ops are not supported for XPU. + # _convert_weight_to_int4pack not support "_int4_mm_m_", # RuntimeError: Double and complex datatype matmul is not supported in oneDNN @@ -1590,6 +1658,8 @@ # XPU does not support tunable. "test_bmm_tunableop_rocm_xpu_float32", "test_numeric_check_leak_tunableop_rocm_xpu_float32", + "test_dump_results_on_exit_tunableop_xpu_float32", + "test_rotating_buffer_tunableop_xpu_float32", # CUDA bias cases added in latest PyTorch # AttributeError: module 'torch._C' has no attribute '_cuda_tunableop_enable' "test_matmul_check_entries_tunableop_xpu_float16", @@ -1635,6 +1705,8 @@ ), "test_ops_fwd_gradients_xpu.py": ( + # All of the followings are oneDNN issues + # RuntimeError: Double and complex datatype matmul is not supported in oneDNN "test_fn_fwgrad_bwgrad___rmatmul___xpu_complex128", "test_fn_fwgrad_bwgrad___rmatmul___xpu_float64", @@ -1934,9 +2006,13 @@ "test_scaled_mm_vs_emulated_float16_xpu", "test_scaled_mm_vs_emulated_float32_xpu", "test_scaled_mm_vs_emulated_row_wise_bfloat16_xpu", + # AssertionError: Torch not compiled with CUDA enabled + "test_zero_dim_tensorwise_which_dim_zero", ), "test_maskedtensor_xpu.py": ( + # Summary: SparseCsrXPU OPs are not supported + # NotImplementedError: Could not run 'aten::_to_sparse_csr' with arguments from the 'SparseXPU' backend. # https://github.com/intel/torch-xpu-ops/issues/357 "test_to_dense_xpu", @@ -2039,6 +2115,7 @@ "quantization/core/test_workflow_module_xpu.py": None, "quantization/core/test_quantized_tensor_xpu.py": ( + # Summary: Quantized OPs are not supported for XPU # NotImplementedError: Could not run 'aten::dequantize.self' with arguments from the 'QuantizedXPU' backend "test_compare_per_channel_device_numerics_xpu", # NotImplementedError: Could not run 'aten::dequantize.self' with arguments from the 'QuantizedXPU' backend. @@ -2067,6 +2144,8 @@ ), "test_ops_gradients_xpu.py": ( + # All are oneDNN issues + ### Error #0 in TestBwdGradientsXPU , totally 271 , RuntimeError: Double and complex datatype matmul is not supported in oneDNN "test_fn_grad___rmatmul___xpu_complex128", "test_fn_grad___rmatmul___xpu_float64", @@ -2342,11 +2421,13 @@ "test_fn_gradgrad_pca_lowrank_xpu_complex128", "test_fn_gradgrad_svd_lowrank_xpu_complex128", "test_fn_grad_linalg_norm_xpu_complex128", + ### Error #1 in TestBwdGradientsXPU , totally 4 , RuntimeError: value cannot be converted to type float without overflow "test_fn_grad_addbmm_xpu_complex128", "test_fn_gradgrad_addbmm_xpu_complex128", "test_inplace_grad_addbmm_xpu_complex128", "test_inplace_gradgrad_addbmm_xpu_complex128", + ### Error #4 in TestBwdGradientsXPU , totally 8 , RuntimeError: could not create a primitive descriptor for a deconvolution forward propagation primitive "test_fn_grad_nn_functional_conv_transpose2d_xpu_complex128", "test_fn_grad_nn_functional_conv_transpose2d_xpu_float64", @@ -2367,6 +2448,7 @@ ), "test_torch_xpu.py": ( + # 'torch.xpu' has no attribute ... ### Error #1 in TestTorchDeviceTypeXPU , totally 2 , AttributeError: module 'torch.xpu' has no attribute 'FloatTensor' "test_grad_scaling_state_dict_xpu", ### Error #2 in TestTorchDeviceTypeXPU , totally 1 , AttributeError: 'torch.storage.TypedStorage' object has no attribute 'is_xpu' @@ -2376,6 +2458,7 @@ ### Error #4 in TestTorchDeviceTypeXPU , totally 4 , AttributeError: module 'torch.xpu' has no attribute 'FloatStorage' "test_storage_setitem_xpu_float32", "test_tensor_storage_type_xpu_float32", + ### Error #7 in TestTorchDeviceTypeXPU , totally 1 , TypeError: map2_ is only implemented on CPU tensors "test_broadcast_fn_map2_xpu", ### Error #8 in TestTorchDeviceTypeXPU , totally 1 , TypeError: map_ is only implemented on CPU tensors @@ -2467,6 +2550,7 @@ ), "test_native_mha_xpu.py": ( + # NestedTensorXPU related OPs # NotImplementedError: Could not run 'aten::_native_multi_head_attention' with arguments from the 'NestedTensorXPU' backend. "test_native_multihead_self_attention_use_nt_False_use_padding_True_pad_all_False_need_weights_False_average_attn_weights_False_fused_False_xpu_float16", "test_native_multihead_self_attention_use_nt_False_use_padding_True_pad_all_False_need_weights_False_average_attn_weights_False_fused_False_xpu_float32", @@ -2523,6 +2607,7 @@ ), "nn/test_convolution_xpu.py": ( + # Summary: all of them are oneDNN related issues # XPU unsupport ops, skip. # https://github.com/intel/torch-xpu-ops/issues/348 "test_cudnn_convolution_relu_xpu_float16", @@ -2553,14 +2638,26 @@ "test_meta_xpu.py": ( # https://github.com/intel/torch-xpu-ops/issues/774 "_jiterator_", - # segment fault + + # RuntimeError: Short is not supported in oneDNN! Need oneDNN's support, suggest to keep skip. "test_dispatch_meta_outplace_nn_functional_linear_xpu_int16", "test_dispatch_meta_outplace_nn_functional_linear_xpu_int64", "test_dispatch_symbolic_meta_outplace_nn_functional_linear_xpu_int16", "test_dispatch_symbolic_meta_outplace_nn_functional_linear_xpu_int64", "test_meta_outplace_nn_functional_linear_xpu_int16", + + # RuntimeError: Long is not supported in oneDNN! Need oneDNN's support, suggest to keep skip. + "test_dispatch_meta_outplace_nn_functional_linear_xpu_int64", + "test_dispatch_symbolic_meta_outplace_nn_functional_linear_xpu_int64", "test_meta_outplace_nn_functional_linear_xpu_int64", + # RuntimeError: Double and complex datatype matmul is not supported in oneDNN + "test_dispatch_meta_inplace_addbmm_xpu_complex", + "test_dispatch_meta_outplace_addbmm_xpu_complex", + "test_dispatch_symbolic_meta_inplace_addbmm_xpu_complex", + "test_dispatch_symbolic_meta_outplace_addbmm_xpu_complex", + "test_meta_inplace_addbmm_xpu_complex", + "test_meta_outplace_addbmm_xpu_complex", "test_dispatch_meta_inplace_addbmm_xpu_float64", "test_dispatch_meta_inplace_addmm_decomposed_xpu_complex", "test_dispatch_meta_inplace_addmm_decomposed_xpu_float64", @@ -3349,7 +3446,10 @@ "test_type_promotion_xpu.py": None, - "test_distributions_xpu.py": None, + "test_distributions_xpu.py": ( + # TODO: Passed on lts driver version, but failed on rolling driver version + "test_gamma_gpu_sample_xpu", + ), "test_optim_xpu.py": ( # oneDNN issues @@ -3385,6 +3485,7 @@ "test_set_default_dtype_works_with_foreach_Rprop_xpu_float64", "test_set_default_dtype_works_with_foreach_SGD_xpu_float64", ), + "test_sparse_xpu.py": ( "test_bmm_deterministic_xpu_float64", # - AssertionError: Torch not compiled with CUDA enabled "test_bmm_oob_xpu", # - NotImplementedError: Could not run 'aten::bmm' with arguments from the 'SparseXPU' backend. This could be because the operator doesn't exist for this backend, or was ... diff --git a/test/xpu/skip_list_win_bmg.py b/test/xpu/skip_list_win_bmg.py new file mode 100644 index 000000000..a91d4f4a5 --- /dev/null +++ b/test/xpu/skip_list_win_bmg.py @@ -0,0 +1,39 @@ +skip_dict = { + # tensor(0.-0.j, device='xpu:0', dtype=torch.complex32) tensor(nan+nanj, device='xpu:0', dtype=torch.complex32) (1.5707964+0j) + "test_unary_ufuncs_xpu.pyy": ( + "test_reference_numerics_small_acos_xpu_complex32", + "test_reference_numerics_small_asin_xpu_complex32", + "test_reference_numerics_small_asinh_xpu_complex32", + "test_reference_numerics_small_atan_xpu_complex32", + "test_reference_numerics_small_atanh_xpu_complex32", + # Need to check compiler std::sin() on inf+infj + "test_reference_numerics_extremal__refs_sin_xpu_complex128", + "test_reference_numerics_extremal__refs_sin_xpu_complex64", + "test_reference_numerics_extremal_nn_functional_tanhshrink_xpu_complex128", + "test_reference_numerics_extremal_nn_functional_tanhshrink_xpu_complex64", + "test_reference_numerics_extremal_sin_xpu_complex128", + "test_reference_numerics_extremal_sin_xpu_complex64", + "test_reference_numerics_extremal_sinh_xpu_complex128", + "test_reference_numerics_extremal_sinh_xpu_complex64", + "test_reference_numerics_large__refs_sin_xpu_complex32", + "test_reference_numerics_large_sin_xpu_complex32", + # Known issue of exp accuracy + # tensor(13437.7000-501.j, device='xpu:0', dtype=torch.complex128) tensor(inf+infj, device='xpu:0', dtype=torch.complex128) (-inf+infj) + "test_reference_numerics_large__refs_exp_xpu_complex128", + "test_reference_numerics_large_exp_xpu_complex128", + "test_reference_numerics_small_exp_xpu_complex32", + ":test_reference_numerics_normal_special_i1_xpu_float32", + "test_reference_numerics_normal_sigmoid_xpu_complex32", + "test_reference_numerics_small_sigmoid_xpu_complex32", + ), + # https://github.com/intel/torch-xpu-ops/issues/1171 + # AssertionError: 'Assertion maxind >= 0 && maxind < outputImageSize failed' not found in '\nAssertHandler::printMessage\n' : The expected error was not found + "nn\test_pooling_xpu.py": ( + "test_MaxUnpool_index_errors_case1_xpu", + "test_MaxUnpool_index_errors_case2_xpu", + "test_MaxUnpool_index_errors_case4_xpu", + "test_MaxUnpool_index_errors_case6_xpu", + "test_MaxUnpool_index_errors_case7_xpu", + "test_MaxUnpool_index_errors_case9_xpu", + ), +} diff --git a/test/xpu/skip_list_win_lnl.py b/test/xpu/skip_list_win_lnl.py new file mode 100644 index 000000000..a9e8bfc3f --- /dev/null +++ b/test/xpu/skip_list_win_lnl.py @@ -0,0 +1,38 @@ +skip_dict = { + # tensor(0.-0.j, device='xpu:0', dtype=torch.complex32) tensor(nan+nanj, device='xpu:0', dtype=torch.complex32) (1.5707964+0j) + "test_unary_ufuncs_xpu.pyy": ( + "test_reference_numerics_small_acos_xpu_complex32", + "test_reference_numerics_small_asin_xpu_complex32", + "test_reference_numerics_small_asinh_xpu_complex32", + "test_reference_numerics_small_atan_xpu_complex32", + "test_reference_numerics_small_atanh_xpu_complex32", + # Need to check compiler std::sin() on inf+infj + "test_reference_numerics_extremal__refs_sin_xpu_complex128", + "test_reference_numerics_extremal__refs_sin_xpu_complex64", + "test_reference_numerics_extremal_nn_functional_tanhshrink_xpu_complex128", + "test_reference_numerics_extremal_nn_functional_tanhshrink_xpu_complex64", + "test_reference_numerics_extremal_sin_xpu_complex128", + "test_reference_numerics_extremal_sin_xpu_complex64", + "test_reference_numerics_extremal_sinh_xpu_complex128", + "test_reference_numerics_extremal_sinh_xpu_complex64", + "test_reference_numerics_large__refs_sin_xpu_complex32", + "test_reference_numerics_large_sin_xpu_complex32", + # Known issue of exp accuracy + # tensor(13437.7000-501.j, device='xpu:0', dtype=torch.complex128) tensor(inf+infj, device='xpu:0', dtype=torch.complex128) (-inf+infj) + "test_reference_numerics_large__refs_exp_xpu_complex128", + "test_reference_numerics_large_exp_xpu_complex128", + "test_reference_numerics_small_exp_xpu_complex32", + ":test_reference_numerics_normal_special_i1_xpu_float32", + "test_reference_numerics_normal_sigmoid_xpu_complex32", + ), + # https://github.com/intel/torch-xpu-ops/issues/1171 + # AssertionError: 'Assertion maxind >= 0 && maxind < outputImageSize failed' not found in '\nAssertHandler::printMessage\n' : The expected error was not found + "nn\test_pooling_xpu.py": ( + "test_MaxUnpool_index_errors_case1_xpu", + "test_MaxUnpool_index_errors_case2_xpu", + "test_MaxUnpool_index_errors_case4_xpu", + "test_MaxUnpool_index_errors_case6_xpu", + "test_MaxUnpool_index_errors_case7_xpu", + "test_MaxUnpool_index_errors_case9_xpu", + ), +}