|
| 1 | +// REQUIRES: aspect-ext_oneapi_external_memory_import || (windows && level_zero && aspect-ext_oneapi_bindless_images) |
| 2 | +// REQUIRES: vulkan |
| 3 | + |
| 4 | +// RUN: %{build} %link-vulkan -o %t.out %if target-spir %{ -Wno-ignored-attributes %} |
| 5 | +// RUN: %{run} env NEOReadDebugKeys=1 UseBindlessMode=1 UseExternalAllocatorForSshAndDsh=1 %t.out |
| 6 | + |
| 7 | +// Uncomment to print additional test information |
| 8 | +// #define VERBOSE_PRINT |
| 9 | + |
| 10 | +#include "../helpers/common.hpp" |
| 11 | +#include "vulkan_common.hpp" |
| 12 | + |
| 13 | +#include <sycl/ext/oneapi/bindless_images.hpp> |
| 14 | + |
| 15 | +namespace syclexp = sycl::ext::oneapi::experimental; |
| 16 | + |
| 17 | +template <typename InteropMemHandleT> |
| 18 | +void runSycl(const sycl::device &syclDevice, sycl::range<2> globalSize, |
| 19 | + sycl::range<2> localSize, InteropMemHandleT extMemInHandle, |
| 20 | + InteropMemHandleT extMemOutHandle) { |
| 21 | + |
| 22 | + sycl::queue syclQueue{syclDevice}; |
| 23 | + |
| 24 | + const size_t imgSizeBytes = globalSize.size() * sizeof(float); |
| 25 | + |
| 26 | +#ifdef _WIN32 |
| 27 | + syclexp::external_mem_descriptor<syclexp::resource_win32_handle> extMemInDesc{ |
| 28 | + extMemInHandle, syclexp::external_mem_handle_type::win32_nt_handle, |
| 29 | + imgSizeBytes}; |
| 30 | + syclexp::external_mem_descriptor<syclexp::resource_win32_handle> |
| 31 | + extMemOutDesc{extMemOutHandle, |
| 32 | + syclexp::external_mem_handle_type::win32_nt_handle, |
| 33 | + imgSizeBytes}; |
| 34 | +#else |
| 35 | + syclexp::external_mem_descriptor<syclexp::resource_fd> extMemInDesc{ |
| 36 | + extMemInHandle, syclexp::external_mem_handle_type::opaque_fd, |
| 37 | + imgSizeBytes}; |
| 38 | + syclexp::external_mem_descriptor<syclexp::resource_fd> extMemOutDesc{ |
| 39 | + extMemOutHandle, syclexp::external_mem_handle_type::opaque_fd, |
| 40 | + imgSizeBytes}; |
| 41 | +#endif |
| 42 | + |
| 43 | + // Extension: create interop memory handles. |
| 44 | + syclexp::external_mem externalMemIn = |
| 45 | + syclexp::import_external_memory(extMemInDesc, syclQueue); |
| 46 | + syclexp::external_mem externalMemOut = |
| 47 | + syclexp::import_external_memory(extMemOutDesc, syclQueue); |
| 48 | + |
| 49 | + // Image descriptor - Vulkan depth texture mapped to single channel fp32 |
| 50 | + // image. |
| 51 | + syclexp::image_descriptor imgDesc(globalSize, 1, |
| 52 | + sycl::image_channel_type::fp32); |
| 53 | + |
| 54 | + // Extension: map image memory handles. |
| 55 | + syclexp::image_mem_handle imgMemIn = |
| 56 | + syclexp::map_external_image_memory(externalMemIn, imgDesc, syclQueue); |
| 57 | + syclexp::image_mem_handle imgMemOut = |
| 58 | + syclexp::map_external_image_memory(externalMemOut, imgDesc, syclQueue); |
| 59 | + |
| 60 | + // Extension: create the image and return the handle. |
| 61 | + syclexp::unsampled_image_handle imgIn = |
| 62 | + syclexp::create_image(imgMemIn, imgDesc, syclQueue); |
| 63 | + syclexp::unsampled_image_handle imgOut = |
| 64 | + syclexp::create_image(imgMemOut, imgDesc, syclQueue); |
| 65 | + |
| 66 | + try { |
| 67 | + syclQueue.submit([&](sycl::handler &cgh) { |
| 68 | + cgh.parallel_for<class TestDepthTextureFetch>( |
| 69 | + sycl::nd_range<2>{globalSize, localSize}, [=](sycl::nd_item<2> it) { |
| 70 | + size_t dim0 = it.get_global_id(0); |
| 71 | + size_t dim1 = it.get_global_id(1); |
| 72 | + |
| 73 | + float depth = |
| 74 | + syclexp::fetch_image<float>(imgIn, sycl::int2(dim0, dim1)); |
| 75 | + |
| 76 | + syclexp::write_image<float>(imgOut, sycl::int2(dim0, dim1), depth); |
| 77 | + }); |
| 78 | + }); |
| 79 | + |
| 80 | + // Wait for kernel completion before destroying external objects. |
| 81 | + syclQueue.wait_and_throw(); |
| 82 | + |
| 83 | + // Cleanup. |
| 84 | + syclexp::destroy_image_handle(imgIn, syclQueue); |
| 85 | + syclexp::destroy_image_handle(imgOut, syclQueue); |
| 86 | + syclexp::free_image_mem(imgMemIn, syclexp::image_type::standard, syclQueue); |
| 87 | + syclexp::free_image_mem(imgMemOut, syclexp::image_type::standard, |
| 88 | + syclQueue); |
| 89 | + syclexp::release_external_memory(externalMemIn, syclQueue); |
| 90 | + syclexp::release_external_memory(externalMemOut, syclQueue); |
| 91 | + } catch (sycl::exception e) { |
| 92 | + std::cerr << "\tKernel submission failed! " << e.what() << std::endl; |
| 93 | + exit(-1); |
| 94 | + } catch (...) { |
| 95 | + std::cerr << "\tKernel submission failed!" << std::endl; |
| 96 | + exit(-1); |
| 97 | + } |
| 98 | +} |
| 99 | + |
| 100 | +bool runTest(const sycl::device &syclDevice, sycl::range<2> dims, |
| 101 | + sycl::range<2> localSize) { |
| 102 | + const uint32_t imgWidth = static_cast<uint32_t>(dims[0]); |
| 103 | + const uint32_t imgHeight = static_cast<uint32_t>(dims[1]); |
| 104 | + |
| 105 | + const VkImageType imgType = VK_IMAGE_TYPE_2D; |
| 106 | + const VkFormat imgInFormat = VK_FORMAT_D32_SFLOAT; |
| 107 | + const VkFormat imgOutFormat = VK_FORMAT_D32_SFLOAT; |
| 108 | + |
| 109 | + const size_t imgSizeElems = imgWidth * imgHeight; |
| 110 | + const size_t imgSizeBytes = imgSizeElems * sizeof(float); |
| 111 | + |
| 112 | + const VkExtent3D imgExtent = {imgWidth, imgHeight, 1}; |
| 113 | + |
| 114 | + VkImage vkInputImage; |
| 115 | + VkDeviceMemory vkInputImageMemory; |
| 116 | + VkImage vkOutputImage; |
| 117 | + VkDeviceMemory vkOutputImageMemory; |
| 118 | + |
| 119 | + // Initialize image input data. |
| 120 | + std::vector<float> inputVec(imgSizeElems, 0.f); |
| 121 | + for (int i = 0; i < imgSizeElems; ++i) { |
| 122 | + // Default Vulkan depth textures clmap values to between 0 and 1. |
| 123 | + inputVec[i] = float(i) / float(imgSizeElems); |
| 124 | + } |
| 125 | + |
| 126 | + // Create/allocate device images. |
| 127 | + { |
| 128 | + vkInputImage = vkutil::createImage(imgType, imgInFormat, imgExtent, |
| 129 | + VK_IMAGE_USAGE_TRANSFER_SRC_BIT | |
| 130 | + VK_IMAGE_USAGE_TRANSFER_DST_BIT | |
| 131 | + VK_IMAGE_USAGE_STORAGE_BIT, |
| 132 | + 1); |
| 133 | + VkMemoryRequirements memRequirements; |
| 134 | + auto inputImageMemoryTypeIndex = vkutil::getImageMemoryTypeIndex( |
| 135 | + vkInputImage, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, memRequirements); |
| 136 | + vkInputImageMemory = vkutil::allocateDeviceMemory( |
| 137 | + imgSizeBytes, inputImageMemoryTypeIndex, vkInputImage); |
| 138 | + VK_CHECK_CALL(vkBindImageMemory(vk_device, vkInputImage, vkInputImageMemory, |
| 139 | + 0 /*memoryOffset*/)); |
| 140 | + |
| 141 | + vkOutputImage = vkutil::createImage(imgType, imgOutFormat, imgExtent, |
| 142 | + VK_IMAGE_USAGE_TRANSFER_SRC_BIT | |
| 143 | + VK_IMAGE_USAGE_TRANSFER_DST_BIT | |
| 144 | + VK_IMAGE_USAGE_STORAGE_BIT, |
| 145 | + 1); |
| 146 | + VkMemoryRequirements outputMemRequirements; |
| 147 | + auto outputImageMemoryTypeIndex = vkutil::getImageMemoryTypeIndex( |
| 148 | + vkOutputImage, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, |
| 149 | + outputMemRequirements); |
| 150 | + vkOutputImageMemory = vkutil::allocateDeviceMemory( |
| 151 | + imgSizeBytes, outputImageMemoryTypeIndex, vkOutputImage); |
| 152 | + VK_CHECK_CALL(vkBindImageMemory(vk_device, vkOutputImage, |
| 153 | + vkOutputImageMemory, 0 /*memoryOffset*/)); |
| 154 | + } |
| 155 | + |
| 156 | + // Transition image layouts. |
| 157 | + printString("Submitting image layout transition\n"); |
| 158 | + { |
| 159 | + VkImageMemoryBarrier imgInBarrier = |
| 160 | + vkutil::createImageMemoryBarrier(vkInputImage, 1 /*mipLevels*/); |
| 161 | + VkImageMemoryBarrier imgOutBarrier = |
| 162 | + vkutil::createImageMemoryBarrier(vkOutputImage, 1 /*mipLevels*/); |
| 163 | + |
| 164 | + // Update aspect mask for the images to VK_IMAGE_ASPECT_DEPTH_BIT. |
| 165 | + imgInBarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; |
| 166 | + imgOutBarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; |
| 167 | + |
| 168 | + VkCommandBufferBeginInfo cbbi = {}; |
| 169 | + cbbi.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; |
| 170 | + cbbi.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; |
| 171 | + |
| 172 | + VK_CHECK_CALL(vkBeginCommandBuffer(vk_computeCmdBuffer, &cbbi)); |
| 173 | + vkCmdPipelineBarrier(vk_computeCmdBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, |
| 174 | + VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, |
| 175 | + nullptr, 1, &imgInBarrier); |
| 176 | + |
| 177 | + vkCmdPipelineBarrier(vk_computeCmdBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, |
| 178 | + VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, |
| 179 | + nullptr, 1, &imgOutBarrier); |
| 180 | + VK_CHECK_CALL(vkEndCommandBuffer(vk_computeCmdBuffer)); |
| 181 | + |
| 182 | + VkSubmitInfo submission = {}; |
| 183 | + submission.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; |
| 184 | + submission.commandBufferCount = 1; |
| 185 | + submission.pCommandBuffers = &vk_computeCmdBuffer; |
| 186 | + |
| 187 | + VK_CHECK_CALL(vkQueueSubmit(vk_compute_queue, 1 /*submitCount*/, |
| 188 | + &submission, VK_NULL_HANDLE /*fence*/)); |
| 189 | + VK_CHECK_CALL(vkQueueWaitIdle(vk_compute_queue)); |
| 190 | + } |
| 191 | + |
| 192 | + // Allocate temporary staging buffer and copy input data to device. |
| 193 | + printString("Allocating staging memory and copying to device image\n"); |
| 194 | + { |
| 195 | + VkBuffer stagingBuffer; |
| 196 | + VkDeviceMemory stagingMemory; |
| 197 | + |
| 198 | + stagingBuffer = vkutil::createBuffer(imgSizeBytes, |
| 199 | + VK_BUFFER_USAGE_TRANSFER_SRC_BIT | |
| 200 | + VK_BUFFER_USAGE_TRANSFER_DST_BIT); |
| 201 | + auto inputStagingMemoryTypeIndex = vkutil::getBufferMemoryTypeIndex( |
| 202 | + stagingBuffer, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | |
| 203 | + VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); |
| 204 | + stagingMemory = |
| 205 | + vkutil::allocateDeviceMemory(imgSizeBytes, inputStagingMemoryTypeIndex, |
| 206 | + nullptr /*image*/, false /*exportable*/); |
| 207 | + VK_CHECK_CALL(vkBindBufferMemory(vk_device, stagingBuffer, stagingMemory, |
| 208 | + 0 /*memoryOffset*/)); |
| 209 | + |
| 210 | + // Copy host data to temporary staging buffer. |
| 211 | + float *inputStagingData = nullptr; |
| 212 | + VK_CHECK_CALL(vkMapMemory(vk_device, stagingMemory, 0 /*offset*/, |
| 213 | + imgSizeBytes, 0 /*flags*/, |
| 214 | + (void **)&inputStagingData)); |
| 215 | + for (int i = 0; i < (imgSizeElems); ++i) { |
| 216 | + inputStagingData[i] = inputVec[i]; |
| 217 | + } |
| 218 | + vkUnmapMemory(vk_device, stagingMemory); |
| 219 | + |
| 220 | + // Copy temporary staging buffer to device image memory. |
| 221 | + VkCommandBufferBeginInfo cbbi = {}; |
| 222 | + cbbi.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; |
| 223 | + cbbi.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; |
| 224 | + |
| 225 | + VkBufferImageCopy copyRegion = {}; |
| 226 | + copyRegion.imageExtent = {imgWidth, imgHeight, 1}; |
| 227 | + copyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; |
| 228 | + copyRegion.imageSubresource.layerCount = 1; |
| 229 | + |
| 230 | + VK_CHECK_CALL(vkBeginCommandBuffer(vk_transferCmdBuffers[0], &cbbi)); |
| 231 | + vkCmdCopyBufferToImage(vk_transferCmdBuffers[0], stagingBuffer, |
| 232 | + vkInputImage, VK_IMAGE_LAYOUT_GENERAL, |
| 233 | + 1 /*regionCount*/, ©Region); |
| 234 | + VK_CHECK_CALL(vkEndCommandBuffer(vk_transferCmdBuffers[0])); |
| 235 | + |
| 236 | + std::vector<VkPipelineStageFlags> stages{VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT}; |
| 237 | + |
| 238 | + VkSubmitInfo submission = {}; |
| 239 | + submission.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; |
| 240 | + submission.commandBufferCount = 1; |
| 241 | + submission.pCommandBuffers = &vk_transferCmdBuffers[0]; |
| 242 | + submission.pWaitDstStageMask = stages.data(); |
| 243 | + |
| 244 | + VK_CHECK_CALL(vkQueueSubmit(vk_transfer_queue, 1 /*submitCount*/, |
| 245 | + &submission, VK_NULL_HANDLE /*fence*/)); |
| 246 | + VK_CHECK_CALL(vkQueueWaitIdle(vk_transfer_queue)); |
| 247 | + |
| 248 | + // Destroy temporary staging buffer and free memory. |
| 249 | + vkDestroyBuffer(vk_device, stagingBuffer, nullptr); |
| 250 | + vkFreeMemory(vk_device, stagingMemory, nullptr); |
| 251 | + } |
| 252 | + |
| 253 | + printString("Getting memory interop handles\n"); |
| 254 | + // Get memory interop handles. |
| 255 | +#ifdef _WIN32 |
| 256 | + auto imgMemIn = vkutil::getMemoryWin32Handle(vkInputImageMemory); |
| 257 | + auto imgMemOut = vkutil::getMemoryWin32Handle(vkOutputImageMemory); |
| 258 | +#else |
| 259 | + auto imgMemIn = vkutil::getMemoryOpaqueFD(vkInputImageMemory); |
| 260 | + auto imgMemOut = vkutil::getMemoryOpaqueFD(vkOutputImageMemory); |
| 261 | +#endif |
| 262 | + |
| 263 | + // Call into SYCL to fetch from input image, and populate the output image. |
| 264 | + printString("Calling into SYCL with interop memory handles\n"); |
| 265 | + runSycl(syclDevice, dims, localSize, imgMemIn, imgMemOut); |
| 266 | + |
| 267 | + // Copy image memory to temporary staging buffer, and back to host. |
| 268 | + printString("Copying image memory to host\n"); |
| 269 | + std::vector<float> outputVec(imgSizeElems, 0.f); |
| 270 | + { |
| 271 | + VkBuffer stagingBuffer; |
| 272 | + VkDeviceMemory stagingMemory; |
| 273 | + |
| 274 | + stagingBuffer = vkutil::createBuffer(imgSizeBytes, |
| 275 | + VK_BUFFER_USAGE_TRANSFER_SRC_BIT | |
| 276 | + VK_BUFFER_USAGE_TRANSFER_DST_BIT); |
| 277 | + auto outputStagingMemoryTypeIndex = vkutil::getBufferMemoryTypeIndex( |
| 278 | + stagingBuffer, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | |
| 279 | + VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); |
| 280 | + stagingMemory = |
| 281 | + vkutil::allocateDeviceMemory(imgSizeBytes, outputStagingMemoryTypeIndex, |
| 282 | + nullptr /*image*/, false /*exportable*/); |
| 283 | + VK_CHECK_CALL(vkBindBufferMemory(vk_device, stagingBuffer, stagingMemory, |
| 284 | + 0 /*memoryOffset*/)); |
| 285 | + |
| 286 | + VkCommandBufferBeginInfo cbbi = {}; |
| 287 | + cbbi.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; |
| 288 | + cbbi.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; |
| 289 | + |
| 290 | + VkBufferImageCopy copyRegion = {}; |
| 291 | + copyRegion.imageExtent = {imgWidth, imgHeight, 1}; |
| 292 | + copyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; |
| 293 | + copyRegion.imageSubresource.layerCount = 1; |
| 294 | + |
| 295 | + VK_CHECK_CALL(vkBeginCommandBuffer(vk_transferCmdBuffers[1], &cbbi)); |
| 296 | + vkCmdCopyImageToBuffer(vk_transferCmdBuffers[1], vkOutputImage, |
| 297 | + VK_IMAGE_LAYOUT_GENERAL, stagingBuffer, |
| 298 | + 1 /*regionCount*/, ©Region); |
| 299 | + VK_CHECK_CALL(vkEndCommandBuffer(vk_transferCmdBuffers[1])); |
| 300 | + |
| 301 | + std::vector<VkPipelineStageFlags> stages{VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT}; |
| 302 | + |
| 303 | + VkSubmitInfo submission = {}; |
| 304 | + submission.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; |
| 305 | + submission.commandBufferCount = 1; |
| 306 | + submission.pCommandBuffers = &vk_transferCmdBuffers[1]; |
| 307 | + submission.pWaitDstStageMask = stages.data(); |
| 308 | + |
| 309 | + VK_CHECK_CALL(vkQueueSubmit(vk_transfer_queue, 1 /*submitCount*/, |
| 310 | + &submission, VK_NULL_HANDLE /*fence*/)); |
| 311 | + VK_CHECK_CALL(vkQueueWaitIdle(vk_transfer_queue)); |
| 312 | + |
| 313 | + // Copy temporary staging buffer output data to host output vector. |
| 314 | + float *outputStagingData = (float *)outputVec.data(); |
| 315 | + VK_CHECK_CALL(vkMapMemory(vk_device, stagingMemory, 0 /*offset*/, |
| 316 | + imgSizeBytes, 0 /*flags*/, |
| 317 | + (void **)&outputStagingData)); |
| 318 | + for (int i = 0; i < (imgSizeElems); ++i) { |
| 319 | + outputVec[i] = outputStagingData[i]; |
| 320 | + } |
| 321 | + vkUnmapMemory(vk_device, stagingMemory); |
| 322 | + |
| 323 | + // Destroy temporary staging buffer and free memory. |
| 324 | + vkDestroyBuffer(vk_device, stagingBuffer, nullptr); |
| 325 | + vkFreeMemory(vk_device, stagingMemory, nullptr); |
| 326 | + } |
| 327 | + |
| 328 | + // Destroy images and free their memory. |
| 329 | + vkDestroyImage(vk_device, vkInputImage, nullptr); |
| 330 | + vkDestroyImage(vk_device, vkOutputImage, nullptr); |
| 331 | + vkFreeMemory(vk_device, vkInputImageMemory, nullptr); |
| 332 | + vkFreeMemory(vk_device, vkOutputImageMemory, nullptr); |
| 333 | + |
| 334 | + // Validate that SYCL made changes to the memory. |
| 335 | + bool validated = true; |
| 336 | + for (int i = 0; i < (imgSizeElems); ++i) { |
| 337 | + float expected = inputVec[i]; |
| 338 | + // Use helper function to determine if data is accepted. |
| 339 | + // For floats, use default accepted error variance. |
| 340 | + if (!util::is_equal(outputVec[i], expected)) { |
| 341 | + std::cerr << "Result mismatch! actual[" << i << "] == " << outputVec[i] |
| 342 | + << " : expected == " << expected << "\n"; |
| 343 | + validated = false; |
| 344 | + } |
| 345 | + if (!validated) |
| 346 | + break; |
| 347 | + } |
| 348 | + |
| 349 | + if (validated) { |
| 350 | + printString("Results are correct!\n"); |
| 351 | + } |
| 352 | + |
| 353 | + return validated; |
| 354 | +} |
| 355 | + |
| 356 | +int main() { |
| 357 | + |
| 358 | + if (vkutil::setupInstance() != VK_SUCCESS) { |
| 359 | + std::cerr << "Instance setup failed!\n"; |
| 360 | + return EXIT_FAILURE; |
| 361 | + } |
| 362 | + |
| 363 | + sycl::device syclDevice; |
| 364 | + |
| 365 | + if (vkutil::setupDevice(syclDevice.get_info<sycl::info::device::name>()) != |
| 366 | + VK_SUCCESS) { |
| 367 | + std::cerr << "Device setup failed!\n"; |
| 368 | + return EXIT_FAILURE; |
| 369 | + } |
| 370 | + |
| 371 | + if (vkutil::setupCommandBuffers() != VK_SUCCESS) { |
| 372 | + std::cerr << "Command buffers setup failed!\n"; |
| 373 | + return EXIT_FAILURE; |
| 374 | + } |
| 375 | + |
| 376 | + auto testPassed = runTest(syclDevice, {16, 16}, {16, 16}); |
| 377 | + |
| 378 | + if (vkutil::cleanup() != VK_SUCCESS) { |
| 379 | + std::cerr << "Cleanup failed!\n"; |
| 380 | + return EXIT_FAILURE; |
| 381 | + } |
| 382 | + |
| 383 | + if (testPassed) { |
| 384 | + std::cout << "Test passed!\n"; |
| 385 | + return EXIT_SUCCESS; |
| 386 | + } |
| 387 | + |
| 388 | + std::cerr << "Test failed\n"; |
| 389 | + return EXIT_FAILURE; |
| 390 | +} |
0 commit comments