This repository has been archived by the owner on Oct 25, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 210
/
run_tuning.sh
207 lines (199 loc) · 6.46 KB
/
run_tuning.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#!/bin/bash
set -x
function main {
init_params "$@"
run_tuning
}
# init params
function init_params {
topology="gpt"
tuned_checkpoint="saved_results"
DATASET_NAME="wikitext"
model_name_or_path="EleutherAI/gpt-neo-125m"
extra_cmd=""
batch_size=8
model_type="bert"
approach="static"
alpha=0.5
for var in "$@"
do
case $var in
--topology=*)
topology=$(echo $var |cut -f2 -d=)
;;
--dataset_location=*)
dataset_location=$(echo $var |cut -f2 -d=)
;;
--input_model=*)
input_model=$(echo $var |cut -f2 -d=)
;;
--output_model=*)
tuned_checkpoint=$(echo $var |cut -f2 -d=)
;;
--task=*)
task=$(echo $var |cut -f2 -d=)
;;
--approach=*)
approach=$(echo $var |cut -f2 -d=)
;;
--backend=*)
backend=$(echo $var |cut -f2 -d=)
;;
*)
echo "Error: No such parameter: ${var}"
exit 1
;;
esac
done
}
# run_tuning
function run_tuning {
if [ "${topology}" = "" ]; then
script="run_clm.py"
DATASET_NAME="wikitext"
DATASET_CONFIG_NAME="wikitext-2-raw-v1"
model_name_or_path="EleutherAI/gpt-neo-125m"
task="clm"
approach="static"
backend=""
elif [ "${topology}" = "gpt_neo" ]; then
if [ "${task}" = "clm" ]; then
script="run_clm.py"
fi
DATASET_NAME="wikitext"
DATASET_CONFIG_NAME="wikitext-2-raw-v1"
model_name_or_path="EleutherAI/gpt-neo-125M"
if [ "${approach}" = "dynamic" ]; then
approach="dynamic"
elif [ "${approach}" = "static" ]; then
approach="static"
elif [ "${approach}" = "qat" ]; then
approach="qat"
extra_cmd=$extra_cmd" --learning_rate 1e-5 \
--num_train_epochs 6 \
--eval_steps 100 \
--save_steps 100 \
--greater_is_better True \
--load_best_model_at_end True \
--evaluation_strategy steps \
--save_strategy steps \
--save_total_limit 1 \
--save_safetensors False"
fi
elif [ "${topology}" = "gpt_j" ]; then
if [ "${task}" = "clm" ]; then
script="run_clm.py"
fi
DATASET_NAME="wikitext"
DATASET_CONFIG_NAME="wikitext-2-raw-v1"
model_name_or_path="/tf_dataset2/models/pytorch/gpt-j-6B"
if [ "${approach}" = "dynamic" ]; then
approach="dynamic"
elif [ "${approach}" = "static" ]; then
approach="static"
fi
elif [ "${topology}" = "bert" ]; then
if [ "${task}" = "mlm" ]; then
script="run_mlm.py"
fi
DATASET_NAME="wikitext"
DATASET_CONFIG_NAME="wikitext-2-raw-v1"
model_name_or_path="bert-base-uncased"
if [ "${approach}" = "dynamic" ]; then
approach="dynamic"
elif [ "${approach}" = "static" ]; then
approach="static"
elif [ "${approach}" = "qat" ]; then
approach="qat"
extra_cmd=$extra_cmd" --learning_rate 1e-5 \
--num_train_epochs 6 \
--eval_steps 100 \
--save_steps 100 \
--greater_is_better True \
--load_best_model_at_end True \
--evaluation_strategy steps \
--save_strategy steps \
--metric_for_best_model accuracy \
--save_total_limit 1 \
--save_safetensors False"
fi
elif [ "${topology}" = "xlnet" ]; then
if [ "${task}" = "plm" ]; then
script="run_plm.py"
fi
DATASET_NAME="wikitext"
DATASET_CONFIG_NAME="wikitext-2-raw-v1"
model_name_or_path="xlnet-base-cased"
if [ "${approach}" = "dynamic" ]; then
approach="dynamic"
elif [ "${approach}" = "static" ]; then
approach="static"
elif [ "${approach}" = "qat" ]; then
approach="qat"
extra_cmd=$extra_cmd" --learning_rate 1e-5 \
--num_train_epochs 6 \
--eval_steps 100 \
--save_steps 100 \
--greater_is_better True \
--load_best_model_at_end True \
--evaluation_strategy steps \
--save_strategy steps \
--metric_for_best_model accuracy \
--save_total_limit 1 \
--save_safetensors False"
fi
elif [ "${topology}" = "gpt_neox" ]; then
if [ "${task}" = "clm" ]; then
script="run_clm.py"
fi
DATASET_NAME="oscar"
DATASET_CONFIG_NAME="unshuffled_original_ast"
model_name_or_path="abeja/gpt-neox-japanese-2.7b"
if [ "${approach}" = "dynamic" ]; then
approach="dynamic"
elif [ "${approach}" = "static" ]; then
approach="static"
fi
elif [ "${topology}" = "bloom" ]; then
if [ "${task}" = "clm" ]; then
script="run_clm.py"
fi
DATASET_NAME="lambada"
model_name_or_path="bigscience/bloom-560m"
if [ "${approach}" = "static" ]; then
approach="static"
fi
extra_cmd=$extra_cmd" --smooth_quant --sampling_size 400 --torchscript"
fi
if [ -z ${DATASET_CONFIG_NAME} ];then
python -u ./${script} \
--model_name_or_path ${model_name_or_path} \
--dataset_name ${DATASET_NAME} \
--do_eval \
--do_train \
--per_device_eval_batch_size ${batch_size} \
--output_dir ${tuned_checkpoint} \
--no_cuda \
--tune \
--overwrite_output_dir \
--overwrite_cache \
--quantization_approach ${approach} \
${extra_cmd}
else
python -u ./${script} \
--model_name_or_path ${model_name_or_path} \
--dataset_name ${DATASET_NAME} \
--dataset_config_name ${DATASET_CONFIG_NAME} \
--do_eval \
--do_train \
--per_device_eval_batch_size ${batch_size} \
--output_dir ${tuned_checkpoint} \
--no_cuda \
--tune \
--overwrite_output_dir \
--overwrite_cache \
--quantization_approach ${approach} \
${extra_cmd}
fi
}
main "$@"