
This work was supported by national funds through FCT - Fundação para a
Ciência e a Tecnologia, both under project PEst-OE/EEI/LA0021/2011 and
under project PTDC/EIA-EIA/108240/2008 (the RuLAM project).

Acknowledgements

Runtime Elision of Transactional Barriers for Captured Memory
Fernando Miguel Carvalho mcarvalho@cc.isel.ipl.pt

João Cachopo joao.cachopo@ist.utl.pt

INESC-ID Lisboa / Instituto Superior Técnico / Technical University of Lisbon

STM frameworks may provide a Transparent API (e.g. Deuce):

Motivation and problem statement

@Atomic
public void transactionalOperation(){
 ...
}

Which data is shared from
within an atomic operation?

Overzealous STM compilers may protect every memory
access with an STM barrier, even for unshared data!!!

Loss of performance

Remembering past proposals

Heterogeneous API examples:

void m(){
 ...
 opAccessUnsharedData();
}

@tm_waiver
void opAccessUnsharedData(){
 ...
}

void m(){
 ...
 ImmutableClass.op();
}

@Exclude
Class ImmutableClass{
 ...
}

vs

Performance Burdens programmers

• Static Analysis
• Runtime Capture Analysis:

Automatic Performance

Idea

+ Labeling objects with the allocating transaction ID.

Transaction

Trx Id
:Object

owner: Trx Id

+ Rely on the GC to recycle IDs, avoiding additional synchronization.

Lightweight runtime capture analysis

Overview

Experimental results

Automatic STM barriers elision on:
• Iterators => STMBench7 operations traverse a large graph of objects,

leading to an intensive use of collection iterators.
• Auxiliary arrays => several parameterized arrays provide the required

arguments for the execution of the Vacation operations.

Memory Heap
Transaction

life cycle
1000

1200
1400

1600
1800

2200

1400 1600 1800 2200

start end start end start end

Captured
Memory

transaction-local allocation log

Thread A

1
init()

:Object

new

new

next()

:CtxFilterCapSt

trxFingerprint: 1

onReadAccess()

onWritedAccess()

CtxDelegatorCapSt

init()

Unsafe.putInt()

commit()
commit()

init()

:Objectnew

init()
3

3

next()

onReadAccess()

onReadAccess()

CtxDelegatorCapSt:CtxFilterCapSt

:trxFingerprint
Thread B

2
init()

:Object new

next()

2
init()

:Counter

:owner

n: ...

onReadAccess()

onReadAccess()

onWriteAccess()

onWriteAccess()

@Atomic
void transactionalOperation(){
 ...
}

Memory Heap

Captured Memory

Memory Heap

Captured Memory

Captured Memory

Deuce
void transactionalOperation(){

}

void transactionalOperation(){
 ...
}

trx life cycle

Instrument
Memory Accesses

STM Barriers
+

Capture Analysis

Copyright is held by the author/owner(s).
PPoPP’13, February 23–27, 2013, Shenzhen, China.
ACM 978-1-4503-1922/13/02.

