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STM frameworks may provide a Transparent API (e.g. Deuce): 

Motivation and problem statement 

@Atomic 
public void transactionalOperation(){ 
   ... 
} 
 

Which data is shared from 
within an atomic operation? 

Overzealous STM compilers may protect every memory 
access with an STM barrier, even for unshared data!!!  

Loss of performance 

Remembering past proposals 

Heterogeneous API examples: 

void m(){ 
   ... 
   opAccessUnsharedData(); 
} 
 

@tm_waiver 
void opAccessUnsharedData(){ 
   ... 
} 
 

void m(){ 
   ... 
   ImmutableClass.op(); 
} 
 

@Exclude 
Class ImmutableClass{ 
  ... 
} 
 

vs 

Performance Burdens programmers 

• Static Analysis 
• Runtime Capture Analysis: 

Automatic  Performance 

Idea 

+ Labeling objects with the allocating transaction ID. 

Transaction 

Trx Id 
:Object 

 
owner:  Trx Id 

+ Rely on the GC to recycle IDs, avoiding additional synchronization. 

Lightweight runtime capture analysis 

Overview 

Experimental results 

Automatic STM barriers elision on: 
• Iterators => STMBench7 operations traverse a large graph of objects, 

leading to an intensive use of collection iterators. 
• Auxiliary arrays =>  several parameterized arrays provide the required 

arguments for the execution of the Vacation operations. 
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@Atomic 
void transactionalOperation(){ 
   ... 
} 
 

Memory Heap 

Captured Memory 

Memory Heap 

Captured Memory 

Captured Memory 

Deuce 
void transactionalOperation(){ 
 
} 
 

void transactionalOperation(){ 
   ... 
} 
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