-
Notifications
You must be signed in to change notification settings - Fork 522
/
PrimesAndDivisors.java
127 lines (111 loc) · 3.97 KB
/
PrimesAndDivisors.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
package numbertheory;
import java.util.Arrays;
import java.util.stream.IntStream;
public class PrimesAndDivisors {
// Generates prime numbers up to n in O(n*log(log(n))) time
public static int[] generatePrimes(int n) {
boolean[] prime = new boolean[n + 1];
Arrays.fill(prime, 2, n + 1, true);
for (int i = 2; i * i <= n; i++)
if (prime[i])
for (int j = i * i; j <= n; j += i) prime[j] = false;
int[] primes = new int[n + 1];
int cnt = 0;
for (int i = 0; i < prime.length; i++)
if (prime[i])
primes[cnt++] = i;
return Arrays.copyOf(primes, cnt);
}
// Generates prime numbers up to n in O(n) time
public static int[] generatePrimesLinearTime(int n) {
int[] lp = new int[n + 1];
int[] primes = new int[n + 1];
int cnt = 0;
for (int i = 2; i <= n; ++i) {
if (lp[i] == 0) {
lp[i] = i;
primes[cnt++] = i;
}
for (int j = 0; j < cnt && primes[j] <= lp[i] && i * primes[j] <= n; ++j) lp[i * primes[j]] = primes[j];
}
return Arrays.copyOf(primes, cnt);
}
public static boolean isPrime(long n) {
if (n <= 1)
return false;
for (long i = 2; i * i <= n; i++)
if (n % i == 0)
return false;
return true;
}
public static int[] numberOfPrimeDivisors(int n) {
int[] divisors = new int[n + 1];
Arrays.fill(divisors, 2, n + 1, 1);
for (int i = 2; i * i <= n; ++i)
if (divisors[i] == 1)
for (int j = i; j * i <= n; j++) divisors[i * j] = divisors[j] + 1;
return divisors;
}
// Generates minimum prime divisor of all numbers up to n in O(n) time
public static int[] generateMinDivisors(int n) {
int[] lp = new int[n + 1];
lp[1] = 1;
int[] primes = new int[n + 1];
int cnt = 0;
for (int i = 2; i <= n; ++i) {
if (lp[i] == 0) {
lp[i] = i;
primes[cnt++] = i;
}
for (int j = 0; j < cnt && primes[j] <= lp[i] && i * primes[j] <= n; ++j) lp[i * primes[j]] = primes[j];
}
return lp;
}
// Generates prime divisor of all numbers up to n
public static int[] generateDivisors(int n) {
int[] divisors = IntStream.range(0, n + 1).toArray();
for (int i = 2; i * i <= n; i++)
if (divisors[i] == i)
for (int j = i * i; j <= n; j += i) divisors[j] = i;
return divisors;
}
// Euler's totient function
public static int phi(int n) {
int res = n;
for (int i = 2; i * i <= n; i++)
if (n % i == 0) {
while (n % i == 0) n /= i;
res -= res / i;
}
if (n > 1)
res -= res / n;
return res;
}
// Euler's totient function
public static int[] generatePhi(int n) {
int[] res = IntStream.range(0, n + 1).toArray();
for (int i = 1; i <= n; i++)
for (int j = i + i; j <= n; j += i) res[j] -= res[i];
return res;
}
// Usage example
public static void main(String[] args) {
int n = 31;
int[] primes1 = generatePrimes(n);
int[] primes2 = generatePrimesLinearTime(n);
System.out.println(Arrays.toString(primes1));
System.out.println(Arrays.toString(primes2));
System.out.println(Arrays.equals(primes1, primes2));
System.out.println(Arrays.toString(numberOfPrimeDivisors(n)));
System.out.println(Arrays.toString(generateMinDivisors(n)));
System.out.println(Arrays.toString(generateDivisors(n)));
n = 1000;
int[] phi = generatePhi(n);
long[] PHI = MultiplicativeFunction.PHI.generateValues(n);
for (int i = 0; i <= n; i++) {
if (phi[i] != phi(i) || phi[i] != PHI[i]) {
System.err.println(i);
}
}
}
}