-
Notifications
You must be signed in to change notification settings - Fork 0
/
q2_rnn.py
600 lines (508 loc) · 26.1 KB
/
q2_rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Q2: Recurrent neural nets for NER
"""
from __future__ import absolute_import
from __future__ import division
import argparse
import logging
import sys
import time
from datetime import datetime
import tensorflow as tf
import numpy as np
from util import print_sentence, write_conll, read_conll
from data_util import load_and_preprocess_data, load_embeddings, ModelHelper
from ner_model import NERModel
from defs import LBLS
from q2_rnn_cell import RNNCell
from q3_gru_cell import GRUCell
logger = logging.getLogger("hw3.q2")
logger.setLevel(logging.DEBUG)
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.DEBUG)
class Config:
"""Holds model hyperparams and data information.
The config class is used to store various hyperparameters and dataset
information parameters. Model objects are passed a Config() object at
instantiation.
"""
n_word_features = 2 # Number of features for every word in the input.
window_size = 1
n_features = (2 * window_size + 1) * n_word_features # Number of features for every word in the input.
max_length = 120 # longest sequence to parse
n_classes = 5
dropout = 0.5
embed_size = 50
hidden_size = 300
batch_size = 32
n_epochs = 10
max_grad_norm = 10.
lr = 0.001
def __init__(self, args):
self.cell = args.cell
if "model_path" in args:
# Where to save things.
self.output_path = args.model_path
else:
self.output_path = "results/{}/{:%Y%m%d_%H%M%S}/".format(self.cell, datetime.now())
self.model_output = self.output_path + "model.weights"
self.eval_output = self.output_path + "results.txt"
self.conll_output = self.output_path + "{}_predictions.conll".format(self.cell)
self.log_output = self.output_path + "log"
def pad_sequences(data, max_length):
"""Ensures each input-output seqeunce pair in @data is of length
@max_length by padding it with zeros and truncating the rest of the
sequence.
TODO: In the code below, for every sentence, labels pair in @data,
(a) create a new sentence which appends zero feature vectors until
the sentence is of length @max_length. If the sentence is longer
than @max_length, simply truncate the sentence to be @max_length
long.
(b) create a new label sequence similarly.
(c) create a _masking_ sequence that has a True wherever there was a
token in the original sequence, and a False for every padded input.
Example: for the (sentence, labels) pair: [[4,1], [6,0], [7,0]], [1,
0, 0], and max_length = 5, we would construct
- a new sentence: [[4,1], [6,0], [7,0], [0,0], [0,0]]
- a new label seqeunce: [1, 0, 0, 4, 4], and
- a masking seqeunce: [True, True, True, False, False].
Args:
data: is a list of (sentence, labels) tuples. @sentence is a list
containing the words in the sentence and @label is a list of
output labels. Each word is itself a list of
@n_features features. For example, the sentence "Chris
Manning is amazing" and labels "PER PER O O" would become
([[1,9], [2,9], [3,8], [4,8]], [1, 1, 4, 4]). Here "Chris"
the word has been featurized as "[1, 9]", and "[1, 1, 4, 4]"
is the list of labels.
max_length: the desired length for all input/output sequences.
Returns:
a new list of data points of the structure (sentence', labels', mask).
Each of sentence', labels' and mask are of length @max_length.
See the example above for more details.
"""
ret = []
# Use this zero vector when padding sequences.
zero_vector = [0] * Config.n_features
zero_label = 4 # corresponds to the 'O' tag
for sentence, labels in data:
### YOUR CODE HERE (~4-6 lines)
len_sentence = len(sentence)
add_length = max_length - len_sentence
if add_length > 0:
filled_sentence = sentence + ( [zero_vector] * add_length )
filled_labels = labels + ( [zero_label] * add_length)
mark = [True] * len_sentence
mark.extend([False] * add_length)
else:
mark = [True] * max_length
filled_sentence = sentence[:max_length]
filled_labels = labels[:max_length]
ret.append((filled_sentence, filled_labels, mark))
### END YOUR CODE ###
return ret
class RNNModel(NERModel):
"""
Implements a recursive neural network with an embedding layer and
single hidden layer.
This network will predict a sequence of labels (e.g. PER) for a
given token (e.g. Henry) using a featurized window around the token.
"""
def add_placeholders(self):
"""Generates placeholder variables to represent the input tensors
These placeholders are used as inputs by the rest of the model building and will be fed
data during training. Note that when "None" is in a placeholder's shape, it's flexible
(so we can use different batch sizes without rebuilding the model).
Adds following nodes to the computational graph
input_placeholder: Input placeholder tensor of shape (None, self.max_length, n_features), type tf.int32
labels_placeholder: Labels placeholder tensor of shape (None, self.max_length), type tf.int32
mask_placeholder: Mask placeholder tensor of shape (None, self.max_length), type tf.bool
dropout_placeholder: Dropout value placeholder (scalar), type tf.float32
TODO: Add these placeholders to self as the instance variables
self.input_placeholder
self.labels_placeholder
self.mask_placeholder
self.dropout_placeholder
HINTS:
- Remember to use self.max_length NOT Config.max_length
(Don't change the variable names)
"""
self.input_placeholder = tf.placeholder(tf.int32, shape = (None, self.max_length, self.config.n_features))
self.labels_placeholder = tf.placeholder(tf.int32, shape = (None, self.max_length))
self.mask_placeholder = tf.placeholder(tf.bool, shape = (None, self.max_length))
self.dropout_placeholder = tf.placeholder(tf.float32)
### YOUR CODE HERE (~4-6 lines)
### END YOUR CODE
def create_feed_dict(self, inputs_batch, mask_batch, labels_batch=None, dropout=1):
"""Creates the feed_dict for the dependency parser.
A feed_dict takes the form of:
feed_dict = {
<placeholder>: <tensor of values to be passed for placeholder>,
....
}
Hint: The keys for the feed_dict should be a subset of the placeholder
tensors created in add_placeholders.
Hint: When an argument is None, don't add it to the feed_dict.
Args:
inputs_batch: A batch of input data.
mask_batch: A batch of mask data.
labels_batch: A batch of label data.
dropout: The dropout rate.
Returns:
feed_dict: The feed dictionary mapping from placeholders to values.
"""
feed_dict = {
self.input_placeholder: inputs_batch,
self.mask_placeholder : mask_batch,
self.dropout_placeholder: dropout}
if labels_batch is not None:
feed_dict[self.labels_placeholder] = labels_batch
### YOUR CODE (~6-10 lines)
### END YOUR CODE
return feed_dict
def add_embedding(self):
"""Adds an embedding layer that maps from input tokens (integers) to vectors and then
concatenates those vectors:
TODO:
- Create an embedding tensor and initialize it with self.pretrained_embeddings.
- Use the input_placeholder to index into the embeddings tensor, resulting in a
tensor of shape (None, max_length, n_features, embed_size).
- Concatenates the embeddings by reshaping the embeddings tensor to shape
(None, max_length, n_features * embed_size).
HINTS:
- You might find tf.nn.embedding_lookup useful.
- You can use tf.reshape to concatenate the vectors. See
following link to understand what -1 in a shape means.
https://www.tensorflow.org/api_docs/python/array_ops/shapes_and_shaping#reshape.
Returns:
embeddings: tf.Tensor of shape (None, max_length, n_features*embed_size)
"""
embedded = tf.Variable(self.pretrained_embeddings)
embeddings = tf.nn.embedding_lookup(embedded, self.input_placeholder)
embeddings = tf.reshape(embeddings, [-1, self.max_length, self.config.n_features*self.config.embed_size])
### YOUR CODE HERE (~4-6 lines)
### END YOUR CODE
return embeddings
def add_prediction_op(self):
"""Adds the unrolled RNN:
h_0 = 0
for t in 1 to T:
o_t, h_t = cell(x_t, h_{t-1})
o_drop_t = Dropout(o_t, dropout_rate)
y_t = o_drop_t U + b_2
TODO: There a quite a few things you'll need to do in this function:
- Define the variables U, b_2.
- Define the vector h as a constant and inititalize it with
zeros. See tf.zeros and tf.shape for information on how
to initialize this variable to be of the right shape.
https://www.tensorflow.org/api_docs/python/constant_op/constant_value_tensors#zeros
https://www.tensorflow.org/api_docs/python/array_ops/shapes_and_shaping#shape
- In a for loop, begin to unroll the RNN sequence. Collect
the predictions in a list.
- When unrolling the loop, from the second iteration
onwards, you will HAVE to call
tf.get_variable_scope().reuse_variables() so that you do
not create new variables in the RNN cell.
See https://www.tensorflow.org/versions/master/how_tos/variable_scope/
- Concatenate and reshape the predictions into a predictions
tensor.
Hint: You will find the function tf.pack (similar to np.asarray)
useful to assemble a list of tensors into a larger tensor.
https://www.tensorflow.org/api_docs/python/array_ops/slicing_and_joining#pack
Hint: You will find the function tf.transpose and the perms
argument useful to shuffle the indices of the tensor.
https://www.tensorflow.org/api_docs/python/array_ops/slicing_and_joining#transpose
Remember:
* Use the xavier initilization for matrices.
* Note that tf.nn.dropout takes the keep probability (1 - p_drop) as an argument.
The keep probability should be set to the value of self.dropout_placeholder
Returns:
pred: tf.Tensor of shape (batch_size, max_length, n_classes)
"""
x = self.add_embedding()
dropout_rate = self.dropout_placeholder
preds = [] # Predicted output at each timestep should go here!
# Use the cell defined below. For Q2, we will just be using the
# RNNCell you defined, but for Q3, we will run this code again
# with a GRU cell!
if self.config.cell == "rnn":
cell = RNNCell(Config.n_features * Config.embed_size, Config.hidden_size)
elif self.config.cell == "gru":
cell = GRUCell(Config.n_features * Config.embed_size, Config.hidden_size)
else:
raise ValueError("Unsuppported cell type: " + self.config.cell)
# Define U and b2 as variables.
# Initialize state as vector of zeros.
with tf.variable_scope('Layer1'):
U = tf.get_variable('U', [self.config.hidden_size, self.config.n_classes],\
tf.float32, tf.contrib.layers.xavier_initializer())
b2 = tf.get_variable('b2', [self.config.n_classes],\
tf.float32, tf.contrib.layers.xavier_initializer())
### YOUR CODE HERE (~4-6 lines)
### END YOUR CODE
input_shape = tf.shape(x)
state = tf.zeros((input_shape[0], self.config.hidden_size))
with tf.variable_scope("RNN"):
for time_step in range(self.max_length):
### YOUR CODE HERE (~6-10 lines)
if time_step>0:
tf.get_variable_scope().reuse_variables()
o_t, state = cell( x[:,time_step, :], state)
o_drop_t = tf.nn.dropout(o_t, dropout_rate)
y_t = tf.matmul(o_drop_t, U) + b2
preds.append(y_t)
### END YOUR CODE
preds = tf.stack(preds, axis=1)
# Make sure to reshape @preds here.
### YOUR CODE HERE (~2-4 lines)
### END YOUR CODE
assert preds.get_shape().as_list() == [None, self.max_length, self.config.n_classes], "predictions are not of the right shape. Expected {}, got {}".format([None, self.max_length, self.config.n_classes], preds.get_shape().as_list())
return preds
def add_loss_op(self, preds):
"""Adds Ops for the loss function to the computational graph.
TODO: Compute averaged cross entropy loss for the predictions.
Importantly, you must ignore the loss for any masked tokens.
Hint: You might find tf.boolean_mask useful to mask the losses on masked tokens.
Hint: You can use tf.nn.sparse_softmax_cross_entropy_with_logits to simplify your
implementation. You might find tf.reduce_mean useful.
Args:
pred: A tensor of shape (batch_size, max_length, n_classes) containing the output of the neural
network before the softmax layer.
Returns:
loss: A 0-d tensor (scalar)
"""
### YOUR CODE HERE (~2-4 lines)
### END YOUR CODE
masked_labels = tf.boolean_mask(self.labels_placeholder, self.mask_placeholder)
masked_logits = tf.boolean_mask(preds, self.mask_placeholder)
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=masked_labels,logits= masked_logits))
return loss
def add_training_op(self, loss):
"""Sets up the training Ops.
Creates an optimizer and applies the gradients to all trainable variables.
The Op returned by this function is what must be passed to the
`sess.run()` call to cause the model to train. See
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#Optimizer
for more information.
Use tf.train.AdamOptimizer for this model.
Calling optimizer.minimize() will return a train_op object.
Args:
loss: Loss tensor, from cross_entropy_loss.
Returns:
train_op: The Op for training.
"""
### YOUR CODE HERE (~1-2 lines)
### END YOUR CODE
optimizer = tf.train.AdamOptimizer(self.config.lr)
train_op = optimizer.minimize(loss)
return train_op
def preprocess_sequence_data(self, examples):
def featurize_windows(data, start, end, window_size = 1):
"""Uses the input sequences in @data to construct new windowed data points.
"""
ret = []
for sentence, labels in data:
from util import window_iterator
sentence_ = []
for window in window_iterator(sentence, window_size, beg=start, end=end):
sentence_.append(sum(window, []))
ret.append((sentence_, labels))
return ret
examples = featurize_windows(examples, self.helper.START, self.helper.END)
return pad_sequences(examples, self.max_length)
def consolidate_predictions(self, examples_raw, examples, preds):
"""Batch the predictions into groups of sentence length.
"""
assert len(examples_raw) == len(examples)
assert len(examples_raw) == len(preds)
ret = []
for i, (sentence, labels) in enumerate(examples_raw):
_, _, mask = examples[i]
labels_ = [l for l, m in zip(preds[i], mask) if m] # only select elements of mask.
assert len(labels_) == len(labels)
ret.append([sentence, labels, labels_])
return ret
def predict_on_batch(self, sess, inputs_batch, mask_batch):
feed = self.create_feed_dict(inputs_batch=inputs_batch, mask_batch=mask_batch)
predictions = sess.run(tf.argmax(self.pred, axis=2), feed_dict=feed)
return predictions
def train_on_batch(self, sess, inputs_batch, labels_batch, mask_batch):
feed = self.create_feed_dict(inputs_batch, labels_batch=labels_batch, mask_batch=mask_batch,
dropout=Config.dropout)
_, loss = sess.run([self.train_op, self.loss], feed_dict=feed)
return loss
def __init__(self, helper, config, pretrained_embeddings, report=None):
super(RNNModel, self).__init__(helper, config, report)
self.max_length = min(Config.max_length, helper.max_length)
Config.max_length = self.max_length # Just in case people make a mistake.
self.pretrained_embeddings = pretrained_embeddings
# Defining placeholders.
self.input_placeholder = None
self.labels_placeholder = None
self.mask_placeholder = None
self.dropout_placeholder = None
self.build()
def test_pad_sequences():
Config.n_features = 2
data = [
([[4,1], [6,0], [7,0]], [1, 0, 0]),
([[3,0], [3,4], [4,5], [5,3], [3,4]], [0, 1, 0, 2, 3]),
]
ret = [
([[4,1], [6,0], [7,0], [0,0]], [1, 0, 0, 4], [True, True, True, False]),
([[3,0], [3,4], [4,5], [5,3]], [0, 1, 0, 2], [True, True, True, True])
]
ret_ = pad_sequences(data, 4)
assert len(ret_) == 2, "Did not process all examples: expected {} results, but got {}.".format(2, len(ret_))
for i in range(2):
assert len(ret_[i]) == 3, "Did not populate return values corrected: expected {} items, but got {}.".format(3, len(ret_[i]))
for j in range(3):
assert ret_[i][j] == ret[i][j], "Expected {}, but got {} for {}-th entry of {}-th example".format(ret[i][j], ret_[i][j], j, i)
def do_test1(_):
logger.info("Testing pad_sequences")
test_pad_sequences()
logger.info("Passed!")
def do_test2(args):
logger.info("Testing implementation of RNNModel")
config = Config(args)
helper, train, dev, train_raw, dev_raw = load_and_preprocess_data(args)
embeddings = load_embeddings(args, helper)
config.embed_size = embeddings.shape[1]
with tf.Graph().as_default():
logger.info("Building model...",)
start = time.time()
model = RNNModel(helper, config, embeddings)
logger.info("took %.2f seconds", time.time() - start)
init = tf.global_variables_initializer()
saver = None
with tf.Session() as session:
session.run(init)
model.fit(session, saver, train, dev)
logger.info("Model did not crash!")
logger.info("Passed!")
def do_train(args):
# Set up some parameters.
config = Config(args)
helper, train, dev, train_raw, dev_raw = load_and_preprocess_data(args)
embeddings = load_embeddings(args, helper)
config.embed_size = embeddings.shape[1]
helper.save(config.output_path)
handler = logging.FileHandler(config.log_output)
handler.setLevel(logging.DEBUG)
handler.setFormatter(logging.Formatter('%(asctime)s:%(levelname)s: %(message)s'))
logging.getLogger().addHandler(handler)
report = None #Report(Config.eval_output)
with tf.Graph().as_default():
logger.info("Building model...",)
start = time.time()
model = RNNModel(helper, config, embeddings)
logger.info("took %.2f seconds", time.time() - start)
init = tf.global_variables_initializer()
saver = tf.train.Saver()
with tf.Session() as session:
session.run(init)
model.fit(session, saver, train, dev)
if report:
report.log_output(model.output(session, dev_raw))
report.save()
else:
# Save predictions in a text file.
output = model.output(session, dev_raw)
sentences, labels, predictions = zip(*output)
predictions = [[LBLS[l] for l in preds] for preds in predictions]
output = zip(sentences, labels, predictions)
with open(model.config.conll_output, 'w') as f:
write_conll(f, output)
with open(model.config.eval_output, 'w') as f:
for sentence, labels, predictions in output:
print_sentence(f, sentence, labels, predictions)
def do_evaluate(args):
config = Config(args)
helper = ModelHelper.load(args.model_path)
input_data = read_conll(args.data)
embeddings = load_embeddings(args, helper)
config.embed_size = embeddings.shape[1]
with tf.Graph().as_default():
logger.info("Building model...",)
start = time.time()
model = RNNModel(helper, config, embeddings)
logger.info("took %.2f seconds", time.time() - start)
init = tf.global_variables_initializer()
saver = tf.train.Saver()
with tf.Session() as session:
session.run(init)
saver.restore(session, model.config.model_output)
for sentence, labels, predictions in model.output(session, input_data):
predictions = [LBLS[l] for l in predictions]
print_sentence(args.output, sentence, labels, predictions)
def do_shell(args):
config = Config(args)
helper = ModelHelper.load(args.model_path)
embeddings = load_embeddings(args, helper)
config.embed_size = embeddings.shape[1]
with tf.Graph().as_default():
logger.info("Building model...",)
start = time.time()
model = RNNModel(helper, config, embeddings)
logger.info("took %.2f seconds", time.time() - start)
init = tf.global_variables_initializer()
saver = tf.train.Saver()
with tf.Session() as session:
session.run(init)
saver.restore(session, model.config.model_output)
print("""Welcome!
You can use this shell to explore the behavior of your model.
Please enter sentences with spaces between tokens, e.g.,
input> Germany 's representative to the European Union 's veterinary committee .
""")
while True:
# Create simple REPL
try:
sentence = raw_input("input> ")
tokens = sentence.strip().split(" ")
for sentence, _, predictions in model.output(session, [(tokens, ["O"] * len(tokens))]):
predictions = [LBLS[l] for l in predictions]
print_sentence(sys.stdout, sentence, [""] * len(tokens), predictions)
except EOFError:
print("Closing session.")
break
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Trains and tests an NER model')
subparsers = parser.add_subparsers()
command_parser = subparsers.add_parser('test1', help='')
command_parser.set_defaults(func=do_test1)
command_parser = subparsers.add_parser('test2', help='')
command_parser.add_argument('-dt', '--data-train', type=argparse.FileType('r'), default="data/tiny.conll", help="Training data")
command_parser.add_argument('-dd', '--data-dev', type=argparse.FileType('r'), default="data/tiny.conll", help="Dev data")
command_parser.add_argument('-v', '--vocab', type=argparse.FileType('r'), default="data/vocab.txt", help="Path to vocabulary file")
command_parser.add_argument('-vv', '--vectors', type=argparse.FileType('r'), default="data/wordVectors.txt", help="Path to word vectors file")
command_parser.add_argument('-c', '--cell', choices=["rnn", "gru"], default="rnn", help="Type of RNN cell to use.")
command_parser.set_defaults(func=do_test2)
command_parser = subparsers.add_parser('train', help='')
command_parser.add_argument('-dt', '--data-train', type=argparse.FileType('r'), default="data/train.conll", help="Training data")
command_parser.add_argument('-dd', '--data-dev', type=argparse.FileType('r'), default="data/dev.conll", help="Dev data")
command_parser.add_argument('-v', '--vocab', type=argparse.FileType('r'), default="data/vocab.txt", help="Path to vocabulary file")
command_parser.add_argument('-vv', '--vectors', type=argparse.FileType('r'), default="data/wordVectors.txt", help="Path to word vectors file")
command_parser.add_argument('-c', '--cell', choices=["rnn", "gru"], default="rnn", help="Type of RNN cell to use.")
command_parser.set_defaults(func=do_train)
command_parser = subparsers.add_parser('evaluate', help='')
command_parser.add_argument('-d', '--data', type=argparse.FileType('r'), default="data/dev.conll", help="Training data")
command_parser.add_argument('-m', '--model-path', help="Training data")
command_parser.add_argument('-v', '--vocab', type=argparse.FileType('r'), default="data/vocab.txt", help="Path to vocabulary file")
command_parser.add_argument('-vv', '--vectors', type=argparse.FileType('r'), default="data/wordVectors.txt", help="Path to word vectors file")
command_parser.add_argument('-c', '--cell', choices=["rnn", "gru"], default="rnn", help="Type of RNN cell to use.")
command_parser.add_argument('-o', '--output', type=argparse.FileType('w'), default=sys.stdout, help="Training data")
command_parser.set_defaults(func=do_evaluate)
command_parser = subparsers.add_parser('shell', help='')
command_parser.add_argument('-m', '--model-path', help="Training data")
command_parser.add_argument('-v', '--vocab', type=argparse.FileType('r'), default="data/vocab.txt", help="Path to vocabulary file")
command_parser.add_argument('-vv', '--vectors', type=argparse.FileType('r'), default="data/wordVectors.txt", help="Path to word vectors file")
command_parser.add_argument('-c', '--cell', choices=["rnn", "gru"], default="rnn", help="Type of RNN cell to use.")
command_parser.set_defaults(func=do_shell)
ARGS = parser.parse_args()
if ARGS.func is None:
parser.print_help()
sys.exit(1)
else:
ARGS.func(ARGS)