-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
215 lines (162 loc) · 8.14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
"""
Standard Training + Adversarial Training.
"""
import json
import time
import argparse
import shutil
import os
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from core.data import get_data_info
from core.data import load_data
from core.utils import format_time
from core.utils import Logger
from core.utils import parser_train
from core.utils import Trainer
from core.utils import seed
from core import setup
# Setup
parse = parser_train()
args = parse.parse_args()
DATA_DIR = os.path.join(args.data_dir, args.data)
LOG_DIR = os.path.join(args.log_dir, args.desc)
WEIGHTS = os.path.join(LOG_DIR, 'weights-best.pt')
TMP = os.path.join(args.tmp_dir, args.desc)
if os.path.exists(LOG_DIR):
shutil.rmtree(LOG_DIR)
os.makedirs(LOG_DIR)
if args.exp and not os.path.exists(TMP):
os.makedirs(TMP, exist_ok=True)
print ('Tmp Dir: ', TMP)
logger = Logger(os.path.join(LOG_DIR, 'log-train.log'))
with open(os.path.join(LOG_DIR, 'args.txt'), 'w') as f:
json.dump(args.__dict__, f, indent=4)
if 'imagenet' in args.data:
setup.setup_train(DATA_DIR)
setup.setup_val(DATA_DIR)
args.data_dir = os.environ['TMPDIR']
DATA_DIR = os.path.join(args.data_dir, args.data)
info = get_data_info(DATA_DIR)
BATCH_SIZE = args.batch_size
BATCH_SIZE_VALIDATION = args.batch_size_validation
NUM_STD_EPOCHS = args.num_std_epochs
NUM_ADV_EPOCHS = args.num_adv_epochs
NUM_SAMPLES_EVAL = args.num_samples_eval
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logger.log('Using device: {}'.format(device))
if args.debug:
NUM_STD_EPOCHS = 1
NUM_ADV_EPOCHS = 1
# To speed up training
if args.model in ['wrn-34-10', 'wrn-34-20'] or 'swish' in args.model or 'imagenet' in args.data:
torch.backends.cudnn.benchmark = True
# Load data
seed(args.seed)
train_dataset, test_dataset, train_dataloader, test_dataloader = load_data(
DATA_DIR, BATCH_SIZE, BATCH_SIZE_VALIDATION, use_augmentation=args.augment, shuffle_train=True,
aux_data_filename=args.aux_data_filename, unsup_fraction=args.unsup_fraction
)
num_train_samples = len(train_dataset)
num_test_samples = len(test_dataset)
train_indices = np.random.choice(num_train_samples, NUM_SAMPLES_EVAL, replace=False)
test_indices = np.random.choice(num_test_samples, NUM_SAMPLES_EVAL, replace=False)
pin_memory = torch.cuda.is_available()
if args.exp:
train_eval_dataset = torch.utils.data.Subset(train_dataset, train_indices[:NUM_SAMPLES_EVAL])
train_eval_dataloader = torch.utils.data.DataLoader(train_eval_dataset, batch_size=BATCH_SIZE_VALIDATION, shuffle=False,
num_workers=4, pin_memory=pin_memory)
test_eval_dataset = torch.utils.data.Subset(test_dataset, test_indices[:NUM_SAMPLES_EVAL])
test_eval_dataloader = torch.utils.data.DataLoader(test_eval_dataset, batch_size=BATCH_SIZE_VALIDATION, shuffle=False,
num_workers=4, pin_memory=pin_memory)
del train_eval_dataset, test_eval_dataset
del train_dataset, test_dataset
# Standard Training
seed(args.seed)
metrics = pd.DataFrame()
trainer = Trainer(info, args)
last_lr = args.lr
logger.log('\n\n')
logger.log('Standard training for {} epochs'.format(NUM_STD_EPOCHS))
old_score = [0.0]
for epoch in range(1, NUM_STD_EPOCHS+1):
start = time.time()
logger.log('======= Epoch {} ======='.format(epoch))
if args.scheduler:
last_lr = trainer.scheduler.get_last_lr()[0]
res = trainer.train(train_dataloader, epoch=epoch)
test_acc = trainer.eval(test_dataloader)
if test_acc >= old_score[0]:
old_score[0] = test_acc
trainer.save_model(WEIGHTS)
logger.log('Loss: {:.4f}.\tLR: {:.4f}'.format(res['loss'], last_lr))
logger.log('Standard Accuracy-\tTrain: {:.2f}%.\tTest: {:.2f}%.'.format(res['clean_acc']*100, test_acc*100))
logger.log('Time taken: {}'.format(format_time(time.time()-start)))
epoch_metrics = {'train_'+k: v for k, v in res.items()}
epoch_metrics.update({'epoch': epoch, 'lr': last_lr, 'test_clean_acc': test_acc, 'test_adversarial_acc': ''})
if epoch == NUM_STD_EPOCHS:
test_adv_acc = trainer.eval(test_dataloader, adversarial=True)
logger.log('Adversarial Accuracy-\tTest: {:.2f}%.'.format(test_adv_acc*100))
epoch_metrics.update({'test_adversarial_acc': test_adv_acc})
metrics = metrics.append(pd.DataFrame(epoch_metrics, index=[0]), ignore_index=True)
if NUM_STD_EPOCHS > 0:
trainer.load_model(WEIGHTS)
metrics.to_csv(os.path.join(LOG_DIR, 'stats_std.csv'), index=False)
# Adversarial Training (AT, TRADES, MART and HAT)
if NUM_ADV_EPOCHS > 0:
logger.log('\n\n')
metrics = pd.DataFrame()
logger.log('Standard Accuracy-\tTest: {:2f}%.'.format(trainer.eval(test_dataloader)*100))
if args.exp:
test_adv_acc = trainer.eval(test_dataloader, adversarial=True)
logger.log('Adversarial Accuracy-\tTest: {:2f}%.'.format(test_adv_acc*100))
trainer.save_model(os.path.join(TMP, 'model_0.pt'))
_ = trainer.save_and_eval_adversarial(train_eval_dataloader, save=os.path.join(TMP, 'eval_train_adv_0'))
_ = trainer.save_and_eval_adversarial(test_eval_dataloader, save=os.path.join(TMP, 'eval_test_adv_0'))
old_score = [0.0, 0.0]
logger.log('Adversarial training for {} epochs'.format(NUM_ADV_EPOCHS))
trainer.init_optimizer(args.num_adv_epochs)
test_adv_acc = 0.0
for epoch in range(1, NUM_ADV_EPOCHS+1):
start = time.time()
logger.log('======= Epoch {} ======='.format(epoch))
if args.scheduler:
last_lr = trainer.scheduler.get_last_lr()[0]
res = trainer.train(train_dataloader, epoch=epoch, adversarial=True)
test_acc = trainer.eval(test_dataloader)
if args.exp and (epoch % 5 == 0 or epoch == 1):
trainer.save_model(os.path.join(TMP, 'model_{}.pt'.format(epoch)))
save_eval_train_file = os.path.join(TMP, 'eval_train_adv_{}'.format(epoch))
save_eval_test_file = os.path.join(TMP, 'eval_test_adv_{}'.format(epoch))
_ = trainer.save_and_eval_adversarial(train_eval_dataloader, save=save_eval_train_file, save_all=False)
_ = trainer.save_and_eval_adversarial(test_eval_dataloader, save=save_eval_test_file, save_all=False)
logger.log('Loss: {:.4f}.\tLR: {:.4f}'.format(res['loss'], last_lr))
if 'clean_acc' in res:
logger.log('Standard Accuracy-\tTrain: {:.2f}%.\tTest: {:.2f}%.'.format(res['clean_acc']*100, test_acc*100))
else:
logger.log('Standard Accuracy-\tTest: {:.2f}%.'.format(test_acc*100))
epoch_metrics = {'train_'+k: v for k, v in res.items()}
epoch_metrics.update({'epoch': NUM_STD_EPOCHS+epoch, 'lr': last_lr, 'test_clean_acc': test_acc, 'test_adversarial_acc': ''})
if epoch % args.adv_eval_freq == 0 or epoch > (NUM_ADV_EPOCHS-5) or (epoch >= (NUM_ADV_EPOCHS-10) and NUM_ADV_EPOCHS > 90):
test_adv_acc = trainer.eval(test_dataloader, adversarial=True)
logger.log('Adversarial Accuracy-\tTrain: {:.2f}%.\tTest: {:.2f}%.'.format(res['adversarial_acc']*100,
test_adv_acc*100))
epoch_metrics.update({'test_adversarial_acc': test_adv_acc})
else:
logger.log('Adversarial Accuracy-\tTrain: {:.2f}%.'.format(res['adversarial_acc']*100))
if test_adv_acc >= old_score[1]:
old_score[0], old_score[1] = test_acc, test_adv_acc
trainer.save_model(WEIGHTS)
trainer.save_model(os.path.join(LOG_DIR, 'weights-last.pt'))
logger.log('Time taken: {}'.format(format_time(time.time()-start)))
metrics = metrics.append(pd.DataFrame(epoch_metrics, index=[0]), ignore_index=True)
metrics.to_csv(os.path.join(LOG_DIR, 'stats_adv.csv'), index=False)
# Record metrics
train_acc = res['clean_acc'] if 'clean_acc' in res else trainer.eval(train_dataloader)
logger.log('\nTraining completed.')
logger.log('Standard Accuracy-\tTrain: {:.2f}%.\tTest: {:.2f}%.'.format(train_acc*100, old_score[0]*100))
if NUM_ADV_EPOCHS > 0:
logger.log('Adversarial Accuracy-\tTrain: {:.2f}%.\tTest: {:.2f}%.'.format(res['adversarial_acc']*100, old_score[1]*100))
logger.log('Script Completed.')