-
Notifications
You must be signed in to change notification settings - Fork 0
/
labelme2voc.py
95 lines (81 loc) · 3.51 KB
/
labelme2voc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
#!/usr/bin/env python
from __future__ import print_function
import argparse
import glob
import json
import os
import os.path as osp
import numpy as np
import PIL.Image
import sys
#sys.path.remove('/opt/ros/kinetic/lib/python2.7/dist-packages') # in order to import cv2 under python3
import cv2
#sys.path.append('/opt/ros/kinetic/lib/python2.7/dist-packages') # append back in order to import rospy
import labelme
def main():
labels_file = "/home/imad/Downloads/Datasets/Training_2/new_out/label.txt"
in_dir = "/home/imad/Downloads/Datasets/Training_2/new_out/RGBs"
out_dir = "/home/imad/Downloads/Datasets/Training_2/new_out/output"
if osp.exists(out_dir):
print('Output directory already exists:',out_dir)
quit(1)
os.makedirs(out_dir)
os.makedirs(osp.join(out_dir, 'JPEGImages'))
os.makedirs(osp.join(out_dir, 'SegmentationClass'))
os.makedirs(osp.join(out_dir, 'SegmentationClassPNG'))
os.makedirs(osp.join(out_dir, 'SegmentationClassVisualization'))
print('Creating dataset:',out_dir)
class_names = []
class_name_to_id = {}
for i, line in enumerate(open(labels_file).readlines()):
class_id = i - 1 # starts with -1
class_name = line.strip()
class_name_to_id[class_name] = class_id
if class_id == -1:
assert class_name == '__ignore__'
continue
elif class_id == 0:
assert class_name == '_background_'
class_names.append(class_name)
class_names = tuple(class_names)
print('class_names:', class_names)
out_class_names_file = osp.join(out_dir, 'class_names.txt')
with open(out_class_names_file, 'w') as f:
f.writelines('\n'.join(class_names))
print('Saved class_names:', out_class_names_file)
colormap = labelme.utils.label_colormap(255)
for label_file in glob.glob(osp.join(in_dir, '*.json')):
print('Generating dataset from:', label_file)
with open(label_file) as f:
base = osp.splitext(osp.basename(label_file))[0]
out_img_file = osp.join(
out_dir, 'JPEGImages', base + '.jpg')
out_lbl_file = osp.join(
out_dir, 'SegmentationClass', base + '.npy')
out_png_file = osp.join(
out_dir, 'SegmentationClassPNG', base + '.png')
out_viz_file = osp.join(
out_dir, 'SegmentationClassVisualization', base + '.jpg')
data = json.load(f)
img_file = osp.join(osp.dirname(label_file), data['imagePath'])
img = np.asarray(PIL.Image.open(img_file))
#print(img.shape)
#img = cv2.resize(img, (512,512), interpolation=cv2.INTER_NEAREST)
#print(img.shape)
PIL.Image.fromarray(img).save(out_img_file)
lbl = labelme.utils.shapes_to_label(
img_shape=img.shape,
shapes=data['shapes'],
label_name_to_value=class_name_to_id,
)
labelme.utils.lblsave(out_png_file, lbl)
lbl_oualid = lbl.reshape(lbl.shape[0],lbl.shape[1],1)
lbl_oualid= lbl_oualid.astype(np.float32)
#lbl_oualid= cv2.resize(lbl_oualid, (512,512), interpolation=cv2.INTER_NEAREST)
#lbl_oualid = lbl_oualid.reshape(img_mask.shape[0],img_mask.shape[1],1)
np.save(out_lbl_file, lbl_oualid)
viz = labelme.utils.draw_label(
lbl, img, class_names, colormap=colormap)
PIL.Image.fromarray(viz).save(out_viz_file)
if __name__ == '__main__':
main()