-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtransflow_eval.py
259 lines (229 loc) · 10.9 KB
/
transflow_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
from copy import deepcopy
import glob
import os
import sys
import copy
from os.path import join
from model import InterpolNet
import tensorflow as tf
import tensorflow.contrib.slim as slim
import skimage.io as io
from skimage.transform import resize
import numpy as np
import matplotlib.pyplot as plt
import pickle as pkl
from utils import *
import time
from utils_misc import *
from scipy.spatial.distance import euclidean
import png
import itertools
from scipy.ndimage.filters import gaussian_filter
from scipy.misc import imresize
from flowToColor import flowToColor
from read_sintel_flow import SintelReader
from data_io import data_io
from yuv import *
from CtypesPermutohedralLattice import CtypesPermutohedralLattice
from bilateral_utils import *
class TransflowExperiment(data_io):
def __init__(self, runtime):
data_io.__init__(self, runtime.config)
self.runtime = runtime
self.config = runtime.config
self.stride = 1
self.dist_thr = 30
def imgplot(self, img, num, mode=0):
ax = plt.subplot(num)
if mode==0 :
plt.imshow(img)
elif mode==1:
img = np_yuv2rgb(255 * (1+img)/2).astype(np.uint8)
plt.imshow(img)
elif mode==2:
plt.imshow((1+img)/2.0)
def plot(self, img, num):
ax = plt.subplot(num)
plt.plot(img)
def reshift_flows(self, u, v):
def _avgnz(xx,iii,jjj,mm=1):
aa=0 ; nn=0
for ii in range(iii-mm,iii+mm+1):
for jj in range(jjj-mm,jjj+mm+1):
if ii>0 and ii<h and jj>0 and jj<w:
if xx[ii,jj] != 0:
aa += xx[ii,jj]
nn += 1.0
if nn>0:
mean=aa/nn
return mean
else:
return 0
def _rmzeros(un, vn):
for ii in range(h):
for jj in range(w):
if un[ii,jj] == 0:
un[ii,jj] = _avgnz(un,ii,jj)
if vn[ii,jj] == 0:
vn[ii,jj] = _avgnz(vn,ii,jj)
return un, vn
h,w = u.shape
un=np.zeros_like(u)
vn=np.zeros_like(v)
for ii in range(h):
for jj in range(w):
ni=np.clip(ii-v[ii,jj],0,h-1).astype(int)
nj=np.clip(jj-u[ii,jj],0,w-1).astype(int)
un[ni,nj]=u[ii,jj]
vn[ni,nj]=v[ii,jj]
un, vn = _rmzeros(un, vn)
un, vn = _rmzeros(un, vn)
return un, vn
def eval_flow(self, flows, gts, inps, outs, idx, val, orig_shape, doPrint=True, doDisplay=False, save16=True):
acc = [] ; ape = []
h,w,c = flows[0].shape
for sample in range(flows.shape[0]):
u, v = (flows[sample, ..., 0], flows[sample, ..., 1])
u, v = self.reshift_flows(u,v)
if self.db_name == 'KITTI_FLOW_TEST':
gts = np.expand_dims(np.zeros(orig_shape), axis=0)
u_gts, v_gts, val = (gts[sample, ..., 0], gts[sample, ..., 1], gts[sample, ..., 2])
# Downsample the ground truth (manually 'cause library downsamplings do weird things to "improve" quality)
r_h = u_gts.shape[0] / float(h) #ratios between gts and resized images
r_w = u_gts.shape[1] / float(w)
EPE_THR = 5.
if True: # eval
u_up = resize(u, (self.orig_h, self.orig_w), preserve_range=True, mode='edge')*r_w
v_up = resize(v, (self.orig_h, self.orig_w), preserve_range=True, mode='edge')*r_h
self.write_of_16bits(u_up, v_up, None, idx)
dists = np.sqrt((u_up - u_gts)**2 + (v_up - v_gts)**2)
valid = dists[np.nonzero(val)]
ape_cur = np.mean(valid)
acc_cur = np.sum(valid < EPE_THR) / float(len(valid))
acc.append(acc_cur)
ape.append(ape_cur)
im = flowToColor(np.stack((u_up, v_up), axis=2))
io.imsave('tmp/ccflow_{0:05d}'.format(idx)+'.png', im)
print('ACC@'+str(EPE_THR)+'(no filtro):', acc_cur)
print('APE (no filtro)', ape_cur)
return acc, ape
def write_of_16bits(self, u, v, val, i):
if not os.path.isdir('flows_16bits'):
os.system('mkdir flows_16bits')
of16 = np.ones((u.shape[0], u.shape[1], 3), dtype=np.uint16)
print 'SAVE16BITS: shapes', of16.shape
of16[...,0] = u * 64 + np.power(2.,15)
of16[...,1] = v * 64 + np.power(2.,15)
if val != None: #val is not strictly needed by the matlab evaluation
of16[...,2] = val
with open('submission/{0:06d}_10'.format(i)+'.png', 'wb') as f:
writer = png.Writer(width=u.shape[1], height=u.shape[0], bitdepth=16)
of_list = of16.reshape(-1, of16.shape[1]*of16.shape[2]).tolist()
writer.write(f, of_list)
def dump_outs(self, idx, inps, outs, flows, gts=None):
if not os.path.isdir('outputs'):
os.system('mkdir outputs')
inps = (inps+1)/2.
outs = (outs+1)/2.
for j in range(inps.shape[0]): #save interpolated results to file
io.imsave('outputs/{0:05d}-i1'.format(idx+j)+'.png', inps[j][...,0:3])
io.imsave('outputs/{0:05d}-i2'.format(idx+j)+'.png', inps[j][...,3:6])
io.imsave('outputs/{0:05d}-gen'.format(idx+j)+'.png', outs[j])
io.imsave('outputs/{0:05d}-gen-rgb'.format(idx+j)+'.png', np_yuv2rgb(outs[j]*255).astype(np.uint8))
io.imsave('outputs/{0:05d}-i1-rgb'.format(idx+j)+'.png', np_yuv2rgb(inps[j][...,0:3]*255).astype(np.uint8))
io.imsave('outputs/{0:05d}-i2-rgb'.format(idx+j)+'.png', np_yuv2rgb(inps[j][...,3:6]*255).astype(np.uint8))
io.imsave('outputs/{0:05d}-fl-rgb'.format(idx+j)+'.png', flowToColor(flows[j]))
if(gts is not None):
io.imsave('outputs/{0:05d}-gt-rgb'.format(idx+j)+'.png', flowToColor(gts[j,...,0:2]))
def run_experiment(self, mode='eval'):
self.runtime.load()
all_acc = [] ; all_ape = []
r_err = []
for i in range(0, self.n_imgs, 1):
print('\nrunning experiment idx',i)
if mode == 'eval':
flows, gts, inps, outs, val, orig_shape = self.runtime.inference([i, i+1])
print(flows.shape)
elif mode == 'train_eval':
flows, gts, inps, outs = self.runtime.train_inference(i) #LUCA!
acc, ape = self.eval_flow(flows, gts, inps, outs, i, val, orig_shape)
ii = np_yuv2rgb((1+inps[0][...,3:6])/2*255).astype(np.uint8)
oo = np_yuv2rgb((1+outs[0])/2*255).astype(np.uint8)
err = self.eval_reconstruction(ii,oo)
r_err.append(err)
print 'RECONSTRUCTION ERROR:', err
all_acc.extend(acc) ; all_ape.extend(ape)
all_acc_bil.extend(acc_bil) ; all_ape_bil.extend(ape_bil)
print('\nExperiment completed')
print('\tACC@5 ', np.mean(all_acc[0:self.n_imgs]))
print('\tAPE ', np.mean(all_ape[0:self.n_imgs]))
print('\tRECONSTRUCTION ERR ', np.mean(r_err))
def eval_reconstruction(self, inp, gt):
print np.min(inp), np.max(inp)
print np.min(gt), np.max(gt)
return np.mean(np.abs(inp.astype(np.float32)-gt.astype(np.float32)))
def load_reconstruction_data(self, i, data, imgs):
fl = data[i]
print fl
flow = np.load(fl)['arr_0']
im_id = int(fl.split('/')[-1][:-4])
seq = fl.split('/')[5]
print self.config.mode
if self.config.mode == 'eval-vkitti':
i1 = join('VirtualKitti/vkitti_1.3.1_rgb', seq, 'morning', '{0:05d}'.format(im_id)+'.png')
i2 = join('VirtualKitti/vkitti_1.3.1_rgb', seq, 'morning', '{0:05d}'.format(im_id+1)+'.png')
else:
i1 = join('/WindowsShares/MAJINBU/DREYEVE/DATA/', seq, 'frames', '{0:06d}'.format(im_id)+'.jpg')
i2 = join('/WindowsShares/MAJINBU/DREYEVE/DATA/', seq, 'frames', '{0:06d}'.format(im_id+1)+'.jpg')
im1 = io.imread(i1)
im2 = io.imread(i2)
h,w,_ = flow.shape
im1 = resize(im1, (h,w),preserve_range=True, mode='edge')
im2 = resize(im2, (h,w),preserve_range=True, mode='edge')
return im1, im2, flow
def run_experiment_reconstruction(self, competitor='deepflow'):
self.runtime.load()
self.root = '/media/nascalde/transflow_competitors'
self.data_list = join(self.root, competitor, 'data.lst')
self.imgs_list = '/WindowsShares/MAJINBU/DREYEVE/DATA/imgs.lst'
data = [line.rstrip() for line in open(self.data_list)]
imgs = [line.rstrip() for line in open(self.imgs_list)]
n_imgs = len(data)
error = []
for i in range(0, n_imgs,1):
print('\nrunning experiment idx',i)
im1, im2, flow = self.load_reconstruction_data(i, data, imgs)
flow = flow.astype(np.float32)
interp = self.runtime.stn_only(np.expand_dims(im1, axis=0), np.expand_dims(flow,axis=0))
print im2.shape, interp[0].shape
rgbflow = flowToColor(flow)
io.imsave('reconstruction_flownetv2/{0:05d}-ccflow'.format(i)+'.png', rgbflow)
io.imsave('reconstruction_flownetv2/{0:05d}-i2'.format(i)+'.png', im2.astype(np.uint8))
io.imsave('reconstruction_flownetv2/{0:05d}-interp'.format(i)+'.png', interp[0][0].astype(np.uint8))
err = self.eval_reconstruction(im2, interp[0])
print 'Reconstruction error', err
error.append(err)
print('\nExperiment completed')
print('\tReconstruction error: ', np.mean(error))
def run_eval_vkitti(self, competitor, mode='eval'):
self.mode = mode
all_acc = [] ; all_ape = []
self.root = '/media/nascalde/transflow_vkitti_comp'
self.data_list = join(self.root, self.runtime.config.competitor, 'data.lst')
self.imgs_list = 'VirtualKitti/imgs.lst'
data = [line.rstrip() for line in open(self.data_list)]
imgs = [line.rstrip() for line in open(self.imgs_list)]
n_imgs = len(data)
error = []
for i in range(0, n_imgs):
print('\nrunning experiment idx',i)
im1, im2, flow = self.load_reconstruction_data(i, data, imgs)
print imgs[i]
u, v, val = self.load_flow_gt_virtualkitti(imgs[i])
gt = np.expand_dims(np.stack((u,v,val), axis=2),axis=0)
flow = np.expand_dims(flow, axis=0)
acc, ape = self.eval_flow(flow, gt, None, None, i, val)
all_acc.extend(acc) ; all_ape.extend(ape)
print('\nExperiment completed')
print('\tACC@5 ', np.mean(all_acc[0:self.n_imgs]))
print('\tAPE ', np.mean(all_ape[0:self.n_imgs]))