-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathT_LSTM_AE.py
387 lines (291 loc) · 19 KB
/
T_LSTM_AE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# Two layer T-LSTM Autoencoder
# Inci M. Baytas
# Computer Science-Michigan State University
# February, 2017
import tensorflow as tf
import math
class T_LSTM_AE(object):
def init_weights(self, input_dim, output_dim, name=None, std=1.0):
return tf.Variable(tf.truncated_normal([input_dim, output_dim], stddev=std / math.sqrt(input_dim)), name=name)
def init_bias(self, output_dim, name=None):
return tf.Variable(tf.zeros([output_dim]), name=name)
def __init__(self, input_dim, output_dim, output_dim2, output_dim3, hidden_dim, hidden_dim2, hidden_dim3):
self.input_dim = input_dim
self.output_dim = output_dim
self.output_dim2 = output_dim2
self.output_dim3 = output_dim3
self.hidden_dim = hidden_dim
self.hidden_dim2 = hidden_dim2
self.hidden_dim3 = hidden_dim3
self.Wq_enc = self.init_weights(3, hidden_dim, name='Input_Time_weight_enc')
self.Wi_enc = self.init_weights(input_dim, hidden_dim, name='Input_Hidden_weight_enc')
self.Ui_enc = self.init_weights(hidden_dim, hidden_dim, name='Input_State_weight_enc')
self.bi_enc = self.init_bias(hidden_dim, name='Input_Hidden_bias_enc')
self.Wq_enc2 = self.init_weights(3, hidden_dim2, name='Input_Time_weight_enc2')
self.Wi_enc2 = self.init_weights(output_dim, hidden_dim2, name='Input_Hidden_weight_enc2')
self.Ui_enc2 = self.init_weights(hidden_dim2, hidden_dim2, name='Input_State_weight_enc2')
self.bi_enc2 = self.init_bias(hidden_dim2, name='Input_Hidden_bias_enc2')
self.Wf_enc = self.init_weights(input_dim, hidden_dim, name='Forget_Hidden_weight_enc')
self.Uf_enc = self.init_weights(hidden_dim, hidden_dim, name='Forget_State_weight_enc')
self.bf_enc = self.init_bias(hidden_dim, name='Forget_Hidden_bias_enc')
self.Wf_enc2 = self.init_weights(output_dim, hidden_dim2, name='Forget_Hidden_weight_enc2')
self.Uf_enc2 = self.init_weights(hidden_dim2, hidden_dim2, name='Forget_State_weight_enc2')
self.bf_enc2 = self.init_bias(hidden_dim2, name='Forget_Hidden_bias_enc2')
self.Wog_enc = self.init_weights(input_dim, hidden_dim, name='Output_Hidden_weight_enc')
self.Uog_enc = self.init_weights(hidden_dim, hidden_dim, name='Output_State_weight_enc')
self.bog_enc = self.init_bias(hidden_dim, name='Output_Hidden_bias_enc')
self.Wog_enc2 = self.init_weights(output_dim, hidden_dim2, name='Output_Hidden_weight_enc2')
self.Uog_enc2 = self.init_weights(hidden_dim2, hidden_dim2, name='Output_State_weight_enc2')
self.bog_enc2 = self.init_bias(hidden_dim2, name='Output_Hidden_bias_enc2')
self.Wc_enc = self.init_weights(input_dim, hidden_dim, name='Cell_Hidden_weight_enc')
self.Uc_enc = self.init_weights(hidden_dim, hidden_dim, name='Cell_State_weight_enc')
self.bc_enc = self.init_bias(hidden_dim, name='Cell_Hidden_bias_enc')
self.Wc_enc2 = self.init_weights(output_dim, hidden_dim2, name='Cell_Hidden_weight_enc2')
self.Uc_enc2 = self.init_weights(hidden_dim2, hidden_dim2, name='Cell_State_weight_enc2')
self.bc_enc2 = self.init_bias(hidden_dim2, name='Cell_Hidden_bias_enc2')
self.W_decomp_enc = self.init_weights(hidden_dim, hidden_dim, name='Input_Hidden_weight_enc')
self.b_decomp_enc = self.init_bias(hidden_dim, name='Input_Hidden_bias_enc')
self.W_decomp_enc2 = self.init_weights(hidden_dim2, hidden_dim2, name='Input_Hidden_weight_enc2')
self.b_decomp_enc2 = self.init_bias(hidden_dim2, name='Input_Hidden_bias_enc2')
self.Wq_dec = self.init_weights(3, hidden_dim2, name='Input_Time_weight_dec')
self.Wi_dec = self.init_weights(input_dim, hidden_dim2, name='Input_Hidden_weight_dec')
self.Ui_dec = self.init_weights(hidden_dim2, hidden_dim2, name='Input_State_weight_dec')
self.bi_dec = self.init_bias(hidden_dim2, name='Input_Hidden_bias_dec')
self.Wq_dec2 = self.init_weights(3, hidden_dim3, name='Input_Time_weight_dec2')
self.Wi_dec2 = self.init_weights(output_dim2, hidden_dim3, name='Input_Hidden_weight_dec2')
self.Ui_dec2 = self.init_weights(hidden_dim3, hidden_dim3, name='Input_State_weight_dec2')
self.bi_dec2 = self.init_bias(hidden_dim3, name='Input_Hidden_bias_dec2')
self.Wf_dec = self.init_weights(input_dim, hidden_dim2, name='Forget_Hidden_weight_dec')
self.Uf_dec = self.init_weights(hidden_dim2, hidden_dim2, name='Forget_State_weight_dec')
self.bf_dec = self.init_bias(hidden_dim2, name='Forget_Hidden_bias_dec')
self.Wf_dec2 = self.init_weights(output_dim2, hidden_dim3, name='Forget_Hidden_weight_dec2')
self.Uf_dec2 = self.init_weights(hidden_dim3, hidden_dim3, name='Forget_State_weight_dec2')
self.bf_dec2 = self.init_bias(hidden_dim3, name='Forget_Hidden_bias_dec2')
self.Wog_dec = self.init_weights(input_dim, hidden_dim2, name='Output_Hidden_weight_dec')
self.Uog_dec = self.init_weights(hidden_dim2, hidden_dim2, name='Output_State_weight_dec')
self.bog_dec = self.init_bias(hidden_dim2, name='Output_Hidden_bias_dec')
self.Wog_dec2 = self.init_weights(output_dim2, hidden_dim3, name='Output_Hidden_weight_dec')
self.Uog_dec2 = self.init_weights(hidden_dim3, hidden_dim3, name='Output_State_weight_dec2')
self.bog_dec2 = self.init_bias(hidden_dim3, name='Output_Hidden_bias_dec2')
self.Wc_dec = self.init_weights(input_dim, hidden_dim2, name='Cell_Hidden_weight_dec')
self.Uc_dec = self.init_weights(hidden_dim2, hidden_dim2, name='Cell_State_weight_dec')
self.bc_dec = self.init_bias(hidden_dim2, name='Cell_Hidden_bias_dec')
self.Wc_dec2 = self.init_weights(output_dim2, hidden_dim3, name='Cell_Hidden_weight_dec2')
self.Uc_dec2 = self.init_weights(hidden_dim3, hidden_dim3, name='Cell_State_weight_dec2')
self.bc_dec2 = self.init_bias(hidden_dim3, name='Cell_Hidden_bias_dec2')
self.Wo = self.init_weights(hidden_dim, output_dim, name='Output_Layer_weight_dec')
self.bo = self.init_bias(output_dim, name='Output_Layer_bias_dec')
self.Wo2 = self.init_weights(hidden_dim2, output_dim2, name='Output_Layer_weight_dec2')
self.bo2 = self.init_bias(output_dim2, name='Output_Layer_bias_dec2')
self.Wo3 = self.init_weights(hidden_dim3, output_dim3, name='Output_Layer_weight_dec2')
self.bo3 = self.init_bias(output_dim3, name='Output_Layer_bias_dec2')
self.W_decomp_dec = self.init_weights(hidden_dim2, hidden_dim2, name='Input_Hidden_weight_dec')
self.b_decomp_dec = self.init_bias(hidden_dim2, name='Input_Hidden_bias_dec')
self.W_decomp_dec2 = self.init_weights(hidden_dim3, hidden_dim3, name='Input_Hidden_weight_dec2')
self.b_decomp_dec2 = self.init_bias(hidden_dim3, name='Input_Hidden_bias_dec2')
# [batch size x seq length x input dim]
self.input = tf.placeholder('float', shape=[None, None, self.input_dim])
self.time = tf.placeholder('float', [None, None])
self.keep_prob = tf.placeholder(tf.float32)
def T_LSTM_Encoder_Unit(self, prev_hidden_memory, concat_input):
prev_hidden_state, prev_cell = tf.unstack(prev_hidden_memory)
batch_size = tf.shape(concat_input)[0]
x = tf.slice(concat_input, [0,1], [batch_size, self.input_dim])
t = tf.slice(concat_input, [0,0], [batch_size,1])
# Map elapse time in days or months
T = self.map_elapse_time(t, self.hidden_dim)
C_ST = tf.nn.sigmoid(tf.matmul(prev_cell, self.W_decomp_enc) + self.b_decomp_enc)
C_ST_dis = tf.multiply(T, C_ST)
# if T is 0, then the weight is one
prev_cell = prev_cell - C_ST + C_ST_dis
# Input gate
i = tf.sigmoid(tf.matmul(x, self.Wi_enc) + tf.matmul(prev_hidden_state, self.Ui_enc) + self.bi_enc)
# Forget Gate
f = tf.sigmoid(tf.matmul(x, self.Wf_enc) + tf.matmul(prev_hidden_state, self.Uf_enc) + self.bf_enc)
# Output Gate
o = tf.sigmoid(tf.matmul(x, self.Wog_enc) + tf.matmul(prev_hidden_state, self.Uog_enc) + self.bog_enc)
# Candidate Memory Cell
C = tf.nn.tanh(tf.matmul(x, self.Wc_enc) + tf.matmul(prev_hidden_state, self.Uc_enc) + self.bc_enc)
# Current Memory cell
Ct = f * prev_cell + i * C
# Current Hidden state
current_hidden_state = o * tf.nn.tanh(Ct)
return tf.stack([current_hidden_state, Ct])
def T_LSTM_Encoder_Unit2(self, prev_hidden_memory, concat_input):
prev_hidden_state, prev_cell = tf.unstack(prev_hidden_memory)
batch_size = tf.shape(concat_input)[0]
x = tf.slice(concat_input, [0,1], [batch_size, self.hidden_dim])
t = tf.slice(concat_input, [0,0], [batch_size,1])
# Map elapse time in days or months
T = self.map_elapse_time(t, self.hidden_dim2)
C_ST = tf.nn.sigmoid(tf.matmul(prev_cell, self.W_decomp_enc2) + self.b_decomp_enc2)
C_ST_dis = tf.multiply(T, C_ST)
# if T is 0, then the weight is one
prev_cell = prev_cell - C_ST + C_ST_dis
# Input gate
i = tf.sigmoid(tf.matmul(x, self.Wi_enc2) + tf.matmul(prev_hidden_state, self.Ui_enc2) + self.bi_enc2)
# Forget Gate
f = tf.sigmoid(tf.matmul(x, self.Wf_enc2) + tf.matmul(prev_hidden_state, self.Uf_enc2) + self.bf_enc2)
# Output Gate
o = tf.sigmoid(tf.matmul(x, self.Wog_enc2) + tf.matmul(prev_hidden_state, self.Uog_enc2) + self.bog_enc2)
# Candidate Memory Cell
C = tf.nn.tanh(tf.matmul(x, self.Wc_enc2) + tf.matmul(prev_hidden_state, self.Uc_enc2) + self.bc_enc2)
# Current Memory cell
Ct = f * prev_cell + i * C
# Current Hidden state
current_hidden_state = o * tf.nn.tanh(Ct)
return tf.stack([current_hidden_state, Ct])
def T_LSTM_Decoder_Unit(self, prev_hidden_memory, concat_input):
prev_hidden_state, prev_cell = tf.unstack(prev_hidden_memory)
batch_size = tf.shape(concat_input)[0]
x = tf.slice(concat_input, [0, 1], [batch_size, self.input_dim])
t = tf.slice(concat_input, [0, 0], [batch_size, 1])
# Map elapse time in days or months
T = self.map_elapse_time(t, self.hidden_dim2)
C_ST = tf.nn.sigmoid(tf.matmul(prev_cell, self.W_decomp_dec) + self.b_decomp_dec)
C_ST_dis = tf.multiply(T, C_ST)
# if T is 0, then the weight is one
prev_cell = prev_cell - C_ST + C_ST_dis
# Input gate
i = tf.sigmoid(tf.matmul(x, self.Wi_dec) + tf.matmul(prev_hidden_state, self.Ui_dec) + self.bi_dec)
# Forget Gate
f = tf.sigmoid(tf.matmul(x, self.Wf_dec) + tf.matmul(prev_hidden_state, self.Uf_dec) + self.bf_dec)
# Output Gate
o = tf.sigmoid(tf.matmul(x, self.Wog_dec) + tf.matmul(prev_hidden_state, self.Uog_dec) + self.bog_dec)
# Candidate Memory Cell
C = tf.nn.tanh(tf.matmul(x, self.Wc_dec) + tf.matmul(prev_hidden_state, self.Uc_dec) + self.bc_dec)
# Current Memory cell
Ct = f * prev_cell + i * C
# Current Hidden state
current_hidden_state = o * tf.nn.tanh(Ct)
return tf.stack([current_hidden_state, Ct])
def T_LSTM_Decoder_Unit2(self, prev_hidden_memory, concat_input):
prev_hidden_state, prev_cell = tf.unstack(prev_hidden_memory)
batch_size = tf.shape(concat_input)[0]
x = tf.slice(concat_input, [0, 1], [batch_size, self.hidden_dim2])
t = tf.slice(concat_input, [0, 0], [batch_size, 1])
# Dealing with time irregularity
# Map elapse time in days or months
T = self.map_elapse_time(t, self.hidden_dim3)
C_ST = tf.nn.sigmoid(tf.matmul(prev_cell, self.W_decomp_dec2) + self.b_decomp_dec2)
C_ST_dis = tf.multiply(T, C_ST)
# if T is 0, then the weight is one
prev_cell = prev_cell - C_ST + C_ST_dis
# Input gate
i = tf.sigmoid(tf.matmul(x, self.Wi_dec2) + tf.matmul(prev_hidden_state, self.Ui_dec2) + self.bi_dec2)
# Forget Gate
f = tf.sigmoid(tf.matmul(x, self.Wf_dec2) + tf.matmul(prev_hidden_state, self.Uf_dec2) + self.bf_dec2)
# Output Gate
o = tf.sigmoid(tf.matmul(x, self.Wog_dec2) + tf.matmul(prev_hidden_state, self.Uog_dec2) + self.bog_dec2)
# Candidate Memory Cell
C = tf.nn.tanh(tf.matmul(x, self.Wc_dec2) + tf.matmul(prev_hidden_state, self.Uc_dec2) + self.bc_dec2)
# Current Memory cell
Ct = f * prev_cell + i * C
# Current Hidden state
current_hidden_state = o * tf.nn.tanh(Ct)
return tf.stack([current_hidden_state, Ct])
def get_encoder_states(self): # Returns all hidden states for the samples in a batch
batch_size = tf.shape(self.input)[0]
scan_input_ = tf.transpose(self.input, perm=[2, 0, 1])
scan_input = tf.transpose(scan_input_) #scan input is [seq_length x batch_size x input_dim]
scan_time = tf.transpose(self.time) # scan_time [seq_length x batch_size]
initial_hidden = tf.zeros([batch_size, self.hidden_dim], tf.float32) #np.zeros((batch_size, self.hidden_dim), dtype=np.float32)
ini_state_cell = tf.stack([initial_hidden, initial_hidden])
# make scan_time [seq_length x batch_size x 1]
scan_time = tf.reshape(scan_time, [tf.shape(scan_time)[0],tf.shape(scan_time)[1],1])
concat_input = tf.concat([scan_time, scan_input],2) # [seq_length x batch_size x input_dim+1]
packed_hidden_states = tf.scan(self.T_LSTM_Encoder_Unit, concat_input, initializer=ini_state_cell, name='encoder_states')
all_encoder_states = packed_hidden_states[:, 0, :, :]
all_encoder_cells = packed_hidden_states[:, 1, :, :]
return all_encoder_states
def get_encoder2_states(self):
encoder1_states = self.get_encoder_states()
encoder1_outputs = tf.map_fn(self.get_output, encoder1_states)
batch_size = tf.shape(encoder1_states)[1]
scan_time = tf.transpose(self.time)
initial_hidden = tf.zeros([batch_size, self.hidden_dim2],tf.float32) # np.zeros((batch_size, self.hidden_dim), dtype=np.float32)
ini_state_cell = tf.stack([initial_hidden, initial_hidden])
# make scan_time [seq_length x batch_size x 1]
scan_time = tf.reshape(scan_time, [tf.shape(scan_time)[0], tf.shape(scan_time)[1], 1])
concat_input = tf.concat([scan_time, encoder1_outputs],2) # [seq_length x batch_size x input_dim+1]
packed_hidden_states = tf.scan(self.T_LSTM_Encoder_Unit2, concat_input, initializer=ini_state_cell,name='encoder_states')
all_encoder_states2 = packed_hidden_states[:, 0, :, :]
all_encoder_cells2 = packed_hidden_states[:, 1, :, :]
return all_encoder_states2, all_encoder_cells2
def get_representation(self):
all_encoder2_states, all_encoder2_cells = self.get_encoder2_states()
# We need the last hidden state of the encoder
representation = tf.reverse(all_encoder2_states, [0])[0, :,:]
decoder_ini_cell = tf.reverse(all_encoder2_cells, [0])[0, :, :]
return representation, decoder_ini_cell
def get_output(self, state):
output = tf.matmul(state, self.Wo) + self.bo
# output = tf.nn.softmax(tf.nn.relu(tf.matmul(state, self.Wo) + self.bo))
return output
def get_output2(self, state):
output = tf.matmul(state, self.Wo2) + self.bo2
# output = tf.nn.softmax(tf.nn.relu(tf.matmul(state, self.Wo) + self.bo))
return output
def get_output3(self, state):
output = tf.matmul(state, self.Wo3) + self.bo3
# output = tf.nn.softmax(tf.nn.relu(tf.matmul(state, self.Wo) + self.bo))
return output
def get_decoder_states(self):
batch_size = tf.shape(self.input)[0]
seq_length = tf.shape(self.input)[1]
scan_input_ = tf.transpose(self.input, perm=[2, 0, 1])
scan_input_ = tf.transpose(scan_input_) # scan input is [seq_length x batch_size x input_dim]
z = tf.zeros([1, batch_size, self.input_dim], dtype=tf.float32)
scan_input = tf.concat([scan_input_,z],0)
scan_input = tf.slice(scan_input, [1,0,0],[seq_length ,batch_size, self.input_dim])
scan_input = tf.reverse(scan_input, [0])
scan_time_ = tf.transpose(self.time) # scan_time [seq_length x batch_size]
z2 = tf.zeros([1, batch_size], dtype=tf.float32)
scan_time = tf.concat([scan_time_, z2],0)
scan_time = tf.slice(scan_time, [1,0],[seq_length ,batch_size])
scan_time = tf.reverse(scan_time, [0])
initial_hidden, initial_cell = self.get_representation()
ini_state_cell = tf.stack([initial_hidden, initial_cell])
# make scan_time [seq_length x batch_size x 1]
scan_time = tf.reshape(scan_time, [tf.shape(scan_time)[0], tf.shape(scan_time)[1], 1])
concat_input = tf.concat([scan_time, scan_input],2) # [seq_length x batch_size x input_dim+1]
packed_hidden_states = tf.scan(self.T_LSTM_Decoder_Unit, concat_input, initializer=ini_state_cell, name='decoder_states')
all_decoder_states = packed_hidden_states[:, 0, :, :]
return all_decoder_states
def get_decoder2_states(self):
decoder1_states = self.get_decoder_states()
decoder1_outputs = tf.map_fn(self.get_output2, decoder1_states)
batch_size = tf.shape(decoder1_states)[1]
seq_length = tf.shape(self.input)[1]
scan_time_ = tf.transpose(self.time) # scan_time [seq_length x batch_size]
z2 = tf.zeros([1, batch_size], dtype=tf.float32)
scan_time = tf.concat([scan_time_, z2],0)
scan_time = tf.slice(scan_time, [1,0],[seq_length ,batch_size])
scan_time = tf.reverse(scan_time, [0])
initial_hidden = tf.zeros([batch_size, self.hidden_dim3], tf.float32)
ini_state_cell = tf.stack([initial_hidden, initial_hidden])
# make scan_time [seq_length x batch_size x 1]
scan_time = tf.reshape(scan_time, [tf.shape(scan_time)[0], tf.shape(scan_time)[1], 1])
concat_input = tf.concat([scan_time, decoder1_outputs],2) # [seq_length x batch_size x input_dim+1]
packed_hidden_states = tf.scan(self.T_LSTM_Decoder_Unit2, concat_input, initializer=ini_state_cell, name='decoder_states')
all_decoder_states = packed_hidden_states[:, 0, :, :]
return all_decoder_states
def get_decoder_outputs(self): # Returns the output of only the last time step
all_decoder_states = self.get_decoder2_states()
all_outputs = tf.map_fn(self.get_output3, all_decoder_states)
reversed_outputs = tf.reverse(all_outputs, [0])
outputs_ = tf.transpose(reversed_outputs, perm=[2, 0, 1])
outputs = tf.transpose(outputs_)
return outputs
def get_reconstruction_loss(self):
outputs = self.get_decoder_outputs()
loss = tf.reduce_mean(tf.square(self.input - outputs))
return loss
def map_elapse_time(self, t, dim):
c1 = tf.constant(1, dtype=tf.float32)
c2 = tf.constant(2.7183, dtype=tf.float32)
T = tf.div(c1, tf.log(t + c2), name='Log_elapse_time')
# T = tf.div(c1, tf.add(t , c1), name='Log_elapse_time')
Ones = tf.ones([1, dim], dtype=tf.float32)
T = tf.matmul(T, Ones)
return T