-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathesp32-i2s-slm.ino
457 lines (394 loc) · 17.5 KB
/
esp32-i2s-slm.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
/*
* Display A-weighted sound level measured by I2S Microphone
*
* (c)2019 Ivan Kostoski
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* Sketch samples audio data from I2S microphone, processes the data
* with digital IIR filters and calculates A or C weighted Equivalent
* Continuous Sound Level (Leq)
*
* I2S is setup to sample data at Fs=48000KHz (fixed value due to
* design of digital IIR filters). Data is read from I2S queue
* in 'sample blocks' (default 125ms block, equal to 6000 samples)
* by 'i2s_reader_task', filtered trough two IIR filters (equalizer
* and weighting), summed up and pushed into 'samples_queue' as
* sum of squares of filtered samples. The main task then pulls data
* from the queue and calculates decibel value relative to microphone
* reference amplitude, derived from datasheet sensitivity dBFS
* value, number of bits in I2S data, and the reference value for
* which the sensitivity is specified (typically 94dB, pure sine
* wave at 1KHz).
*
* Displays line on the small OLED screen with 'short' LAeq(125ms)
* response and numeric LAeq(1sec) dB value from the signal RMS.
*/
#include <driver/i2s.h>
#include "sos-iir-filter.h"
//
// Configuration
//
#define LEQ_PERIOD 1 // second(s)
#define WEIGHTING C_weighting // Also avaliable: 'C_weighting' or 'None' (Z_weighting)
#define LEQ_UNITS "LAeq" // customize based on above weighting used
#define DB_UNITS "dBA" // customize based on above weighting used
#define USE_DISPLAY 1
// NOTE: Some microphones require at least DC-Blocker filter
#define MIC_EQUALIZER ICS43434 // See below for defined IIR filters or set to 'None' to disable
#define MIC_OFFSET_DB 3.0103 // Default offset (sine-wave RMS vs. dBFS). Modify this value for linear calibration
// Customize these values from microphone datasheet
#define MIC_SENSITIVITY -26 // dBFS value expected at MIC_REF_DB (Sensitivity value from datasheet)
#define MIC_REF_DB 94.0 // Value at which point sensitivity is specified in datasheet (dB)
#define MIC_OVERLOAD_DB 116.0 // dB - Acoustic overload point
#define MIC_NOISE_DB 29 // dB - Noise floor
#define MIC_BITS 24 // valid number of bits in I2S data
#define MIC_CONVERT(s) (s >> (SAMPLE_BITS - MIC_BITS))
#define MIC_TIMING_SHIFT 0 // Set to one to fix MSB timing for some microphones, i.e. SPH0645LM4H-x
// Calculate reference amplitude value at compile time
constexpr double MIC_REF_AMPL = pow(10, double(MIC_SENSITIVITY)/20) * ((1<<(MIC_BITS-1))-1);
//
// I2S pins - Can be routed to almost any (unused) ESP32 pin.
// SD can be any pin, inlcuding input only pins (36-39).
// SCK (i.e. BCLK) and WS (i.e. L/R CLK) must be output capable pins
//
// Below ones are just example for my board layout, put here the pins you will use
//
#define I2S_WS 18
#define I2S_SCK 23
#define I2S_SD 19
// I2S peripheral to use (0 or 1)
#define I2S_PORT I2S_NUM_0
//
// Setup your display library (and geometry) here
//
#if (USE_DISPLAY > 0)
// ThingPulse/esp8266-oled-ssd1306, you may need the latest source and PR#198 for 64x48
#include <SSD1306Wire.h>
#define OLED_GEOMETRY GEOMETRY_64_48
//#define OLED_GEOMETRY GEOMETRY_128_32
//#define OLED_GEOMETRY GEOMETRY_128_64
#define OLED_FLIP_V 1
SSD1306Wire display(0x3c, SDA, SCL, OLED_GEOMETRY);
#endif
//
// IIR Filters
//
// DC-Blocker filter - removes DC component from I2S data
// See: https://www.dsprelated.com/freebooks/filters/DC_Blocker.html
// a1 = -0.9992 should heavily attenuate frequencies below 10Hz
SOS_IIR_Filter DC_BLOCKER = {
gain: 1.0,
sos: {{-1.0, 0.0, +0.9992, 0}}
};
//
// Equalizer IIR filters to flatten microphone frequency response
// See respective .m file for filter design. Fs = 48Khz.
//
// Filters are represented as Second-Order Sections cascade with assumption
// that b0 and a0 are equal to 1.0 and 'gain' is applied at the last step
// B and A coefficients were transformed with GNU Octave:
// [sos, gain] = tf2sos(B, A)
// See: https://www.dsprelated.com/freebooks/filters/Series_Second_Order_Sections.html
// NOTE: SOS matrix 'a1' and 'a2' coefficients are negatives of tf2sos output
//
// TDK/InvenSense ICS-43434
// Datasheet: https://www.invensense.com/wp-content/uploads/2016/02/DS-000069-ICS-43434-v1.1.pdf
// B = [0.477326418836803, -0.486486982406126, -0.336455844522277, 0.234624646917202, 0.111023257388606];
// A = [1.0, -1.93073383849136326, 0.86519456089576796, 0.06442838283825100, 0.00111249298800616];
SOS_IIR_Filter ICS43434 = {
gain: 0.477326418836803,
sos: { // Second-Order Sections {b1, b2, -a1, -a2}
{+0.96986791463971267, 0.23515976355743193, -0.06681948004769928, -0.00111521990688128},
{-1.98905931743624453, 0.98908924206960169, +1.99755331853906037, -0.99755481510122113}
}
};
// TDK/InvenSense ICS-43432
// Datasheet: https://www.invensense.com/wp-content/uploads/2015/02/ICS-43432-data-sheet-v1.3.pdf
// B = [-0.45733702338341309 1.12228667105574775 -0.77818278904413563, 0.00968926337978037, 0.10345668405223755]
// A = [1.0, -3.3420781082912949, 4.4033694320978771, -3.0167072679918010, 1.2265536567647031, -0.2962229189311990, 0.0251085747458112]
SOS_IIR_Filter ICS43432 = {
gain: -0.457337023383413,
sos: { // Second-Order Sections {b1, b2, -a1, -a2}
{-0.544047931916859, -0.248361759321800, +0.403298891662298, -0.207346186351843},
{-1.909911869441421, +0.910830292683527, +1.790285722826743, -0.804085812369134},
{+0.000000000000000, +0.000000000000000, +1.148493493802252, -0.150599527756651}
}
};
// TDK/InvenSense INMP441
// Datasheet: https://www.invensense.com/wp-content/uploads/2015/02/INMP441.pdf
// B ~= [1.00198, -1.99085, 0.98892]
// A ~= [1.0, -1.99518, 0.99518]
SOS_IIR_Filter INMP441 = {
gain: 1.00197834654696,
sos: { // Second-Order Sections {b1, b2, -a1, -a2}
{-1.986920458344451, +0.986963226946616, +1.995178510504166, -0.995184322194091}
}
};
// Infineon IM69D130 Shield2Go
// Datasheet: https://www.infineon.com/dgdl/Infineon-IM69D130-DS-v01_00-EN.pdf?fileId=5546d462602a9dc801607a0e46511a2e
// B ~= [1.001240684967527, -1.996936108836337, 0.995703101823006]
// A ~= [1.0, -1.997675693595542, 0.997677044195563]
// With additional DC blocking component
SOS_IIR_Filter IM69D130 = {
gain: 1.00124068496753,
sos: {
{-1.0, 0.0, +0.9992, 0}, // DC blocker, a1 = -0.9992
{-1.994461610298131, 0.994469278738208, +1.997675693595542, -0.997677044195563}
}
};
// Knowles SPH0645LM4H-B, rev. B
// https://cdn-shop.adafruit.com/product-files/3421/i2S+Datasheet.PDF
// B ~= [1.001234, -1.991352, 0.990149]
// A ~= [1.0, -1.993853, 0.993863]
// With additional DC blocking component
SOS_IIR_Filter SPH0645LM4H_B_RB = {
gain: 1.00123377961525,
sos: { // Second-Order Sections {b1, b2, -a1, -a2}
{-1.0, 0.0, +0.9992, 0}, // DC blocker, a1 = -0.9992
{-1.988897663539382, +0.988928479008099, +1.993853376183491, -0.993862821429572}
}
};
//
// Weighting filters
//
//
// A-weighting IIR Filter, Fs = 48KHz
// (By Dr. Matt L., Source: https://dsp.stackexchange.com/a/36122)
// B = [0.169994948147430, 0.280415310498794, -1.120574766348363, 0.131562559965936, 0.974153561246036, -0.282740857326553, -0.152810756202003]
// A = [1.0, -2.12979364760736134, 0.42996125885751674, 1.62132698199721426, -0.96669962900852902, 0.00121015844426781, 0.04400300696788968]
SOS_IIR_Filter A_weighting = {
gain: 0.169994948147430,
sos: { // Second-Order Sections {b1, b2, -a1, -a2}
{-2.00026996133106, +1.00027056142719, -1.060868438509278, -0.163987445885926},
{+4.35912384203144, +3.09120265783884, +1.208419926363593, -0.273166998428332},
{-0.70930303489759, -0.29071868393580, +1.982242159753048, -0.982298594928989}
}
};
//
// C-weighting IIR Filter, Fs = 48KHz
// Designed by invfreqz curve-fitting, see respective .m file
// B = [-0.49164716933714026, 0.14844753846498662, 0.74117815661529129, -0.03281878334039314, -0.29709276192593875, -0.06442545322197900, -0.00364152725482682]
// A = [1.0, -1.0325358998928318, -0.9524000181023488, 0.8936404694728326 0.2256286147169398 -0.1499917107550188, 0.0156718181681081]
SOS_IIR_Filter C_weighting = {
gain: -0.491647169337140,
sos: {
{+1.4604385758204708, +0.5275070373815286, +1.9946144559930252, -0.9946217070140883},
{+0.2376222404939509, +0.0140411206016894, -1.3396585608422749, -0.4421457807694559},
{-2.0000000000000000, +1.0000000000000000, +0.3775800047420818, -0.0356365756680430}
}
};
//
// Sampling
//
#define SAMPLE_RATE 48000 // Hz, fixed to design of IIR filters
#define SAMPLE_BITS 32 // bits
#define SAMPLE_T int32_t
#define SAMPLES_SHORT (SAMPLE_RATE / 8) // ~125ms
#define SAMPLES_LEQ (SAMPLE_RATE * LEQ_PERIOD)
#define DMA_BANK_SIZE (SAMPLES_SHORT / 16)
#define DMA_BANKS 32
// Data we push to 'samples_queue'
struct sum_queue_t {
// Sum of squares of mic samples, after Equalizer filter
float sum_sqr_SPL;
// Sum of squares of weighted mic samples
float sum_sqr_weighted;
// Debug only, FreeRTOS ticks we spent processing the I2S data
uint32_t proc_ticks;
};
QueueHandle_t samples_queue;
// Static buffer for block of samples
float samples[SAMPLES_SHORT] __attribute__((aligned(4)));
//
// I2S Microphone sampling setup
//
void mic_i2s_init() {
// Setup I2S to sample mono channel for SAMPLE_RATE * SAMPLE_BITS
// NOTE: Recent update to Arduino_esp32 (1.0.2 -> 1.0.3)
// seems to have swapped ONLY_LEFT and ONLY_RIGHT channels
const i2s_config_t i2s_config = {
mode: i2s_mode_t(I2S_MODE_MASTER | I2S_MODE_RX),
sample_rate: SAMPLE_RATE,
bits_per_sample: i2s_bits_per_sample_t(SAMPLE_BITS),
channel_format: I2S_CHANNEL_FMT_ONLY_LEFT,
communication_format: i2s_comm_format_t(I2S_COMM_FORMAT_I2S | I2S_COMM_FORMAT_I2S_MSB),
intr_alloc_flags: ESP_INTR_FLAG_LEVEL1,
dma_buf_count: DMA_BANKS,
dma_buf_len: DMA_BANK_SIZE,
use_apll: true,
tx_desc_auto_clear: false,
fixed_mclk: 0
};
// I2S pin mapping
const i2s_pin_config_t pin_config = {
bck_io_num: I2S_SCK,
ws_io_num: I2S_WS,
data_out_num: -1, // not used
data_in_num: I2S_SD
};
i2s_driver_install(I2S_PORT, &i2s_config, 0, NULL);
#if (MIC_TIMING_SHIFT > 0)
// Undocumented (?!) manipulation of I2S peripheral registers
// to fix MSB timing issues with some I2S microphones
REG_SET_BIT(I2S_TIMING_REG(I2S_PORT), BIT(9));
REG_SET_BIT(I2S_CONF_REG(I2S_PORT), I2S_RX_MSB_SHIFT);
#endif
i2s_set_pin(I2S_PORT, &pin_config);
//FIXME: There is a known issue with esp-idf and sampling rates, see:
// https://github.com/espressif/esp-idf/issues/2634
// In the meantime, the below line seems to set sampling rate at ~47999.992Hz
// fifs_req=24576000, sdm0=149, sdm1=212, sdm2=5, odir=2 -> fifs_reached=24575996
//NOTE: This seems to be fixed in ESP32 Arduino 1.0.4, esp-idf 3.2
// Should be safe to remove...
//#include <soc/rtc.h>
//rtc_clk_apll_enable(1, 149, 212, 5, 2);
}
//
// I2S Reader Task
//
// Rationale for separate task reading I2S is that IIR filter
// processing cam be scheduled to different core on the ESP32
// while main task can do something else, like update the
// display in the example
//
// As this is intended to run as separate hihg-priority task,
// we only do the minimum required work with the I2S data
// until it is 'compressed' into sum of squares
//
// FreeRTOS priority and stack size (in 32-bit words)
#define I2S_TASK_PRI 4
#define I2S_TASK_STACK 2048
//
void mic_i2s_reader_task(void* parameter) {
mic_i2s_init();
// Discard first block, microphone may have startup time (i.e. INMP441 up to 83ms)
size_t bytes_read = 0;
i2s_read(I2S_PORT, &samples, SAMPLES_SHORT * sizeof(int32_t), &bytes_read, portMAX_DELAY);
while (true) {
// Block and wait for microphone values from I2S
//
// Data is moved from DMA buffers to our 'samples' buffer by the driver ISR
// and when there is requested ammount of data, task is unblocked
//
// Note: i2s_read does not care it is writing in float[] buffer, it will write
// integer values to the given address, as received from the hardware peripheral.
i2s_read(I2S_PORT, &samples, SAMPLES_SHORT * sizeof(SAMPLE_T), &bytes_read, portMAX_DELAY);
TickType_t start_tick = xTaskGetTickCount();
// Convert (including shifting) integer microphone values to floats,
// using the same buffer (assumed sample size is same as size of float),
// to save a bit of memory
SAMPLE_T* int_samples = (SAMPLE_T*)&samples;
for(int i=0; i<SAMPLES_SHORT; i++) samples[i] = MIC_CONVERT(int_samples[i]);
sum_queue_t q;
// Apply equalization and calculate Z-weighted sum of squares,
// writes filtered samples back to the same buffer.
q.sum_sqr_SPL = MIC_EQUALIZER.filter(samples, samples, SAMPLES_SHORT);
// Apply weighting and calucate weigthed sum of squares
q.sum_sqr_weighted = WEIGHTING.filter(samples, samples, SAMPLES_SHORT);
// Debug only. Ticks we spent filtering and summing block of I2S data
q.proc_ticks = xTaskGetTickCount() - start_tick;
// Send the sums to FreeRTOS queue where main task will pick them up
// and further calcualte decibel values (division, logarithms, etc...)
xQueueSend(samples_queue, &q, portMAX_DELAY);
}
}
//
// Setup and main loop
//
// Note: Use doubles, not floats, here unless you want to pin
// the task to whichever core it happens to run on at the moment
//
void setup() {
// If needed, now you can actually lower the CPU frquency,
// i.e. if you want to (slightly) reduce ESP32 power consumption
setCpuFrequencyMhz(80); // It should run as low as 80MHz
Serial.begin(112500);
delay(1000); // Safety
#if (USE_DISPLAY > 0)
display.init();
#if (OLED_FLIP_V > 0)
display.flipScreenVertically();
#endif
display.setFont(ArialMT_Plain_16);
#endif
// Create FreeRTOS queue
samples_queue = xQueueCreate(8, sizeof(sum_queue_t));
// Create the I2S reader FreeRTOS task
// NOTE: Current version of ESP-IDF will pin the task
// automatically to the first core it happens to run on
// (due to using the hardware FPU instructions).
// For manual control see: xTaskCreatePinnedToCore
xTaskCreate(mic_i2s_reader_task, "Mic I2S Reader", I2S_TASK_STACK, NULL, I2S_TASK_PRI, NULL);
sum_queue_t q;
uint32_t Leq_samples = 0;
double Leq_sum_sqr = 0;
double Leq_dB = 0;
// Read sum of samaples, calculated by 'i2s_reader_task'
while (xQueueReceive(samples_queue, &q, portMAX_DELAY)) {
// Calculate dB values relative to MIC_REF_AMPL and adjust for microphone reference
double short_RMS = sqrt(double(q.sum_sqr_SPL) / SAMPLES_SHORT);
double short_SPL_dB = MIC_OFFSET_DB + MIC_REF_DB + 20 * log10(short_RMS / MIC_REF_AMPL);
// In case of acoustic overload or below noise floor measurement, report infinty Leq value
if (short_SPL_dB > MIC_OVERLOAD_DB) {
Leq_sum_sqr = INFINITY;
} else if (isnan(short_SPL_dB) || (short_SPL_dB < MIC_NOISE_DB)) {
Leq_sum_sqr = -INFINITY;
}
// Accumulate Leq sum
Leq_sum_sqr += q.sum_sqr_weighted;
Leq_samples += SAMPLES_SHORT;
// When we gather enough samples, calculate new Leq value
if (Leq_samples >= SAMPLE_RATE * LEQ_PERIOD) {
double Leq_RMS = sqrt(Leq_sum_sqr / Leq_samples);
Leq_dB = MIC_OFFSET_DB + MIC_REF_DB + 20 * log10(Leq_RMS / MIC_REF_AMPL);
Leq_sum_sqr = 0;
Leq_samples = 0;
// Serial output, customize (or remove) as needed
Serial.printf("%.1f\n", Leq_dB);
// Debug only
//Serial.printf("%u processing ticks\n", q.proc_ticks);
}
#if (USE_DISPLAY > 0)
//
// Example code that displays the measured value.
// You should customize the below code for your display
// and display library used.
//
display.clear();
// It is important to somehow notify when the deivce is out of its range
// as the calculated values are very likely with big error
if (Leq_dB > MIC_OVERLOAD_DB) {
// Display 'Overload' if dB value is over the AOP
display.drawString(0, 24, "Overload");
} else if (isnan(Leq_dB) || (Leq_dB < MIC_NOISE_DB)) {
// Display 'Low' if dB value is below noise floor
display.drawString(0, 24, "Low");
}
// The 'short' Leq line
double short_Leq_dB = MIC_OFFSET_DB + MIC_REF_DB + 20 * log10(sqrt(double(q.sum_sqr_weighted) / SAMPLES_SHORT) / MIC_REF_AMPL);
uint16_t len = min(max(0, int(((short_Leq_dB - MIC_NOISE_DB) / MIC_OVERLOAD_DB) * (display.getWidth()-1))), display.getWidth()-1);
display.drawHorizontalLine(0, 0, len);
display.drawHorizontalLine(0, 1, len);
display.drawHorizontalLine(0, 2, len);
// The Leq numeric decibels
display.drawString(0, 4, String(Leq_dB, 1) + " " + DB_UNITS);
display.display();
#endif // USE_DISPLAY
}
}
void loop() {
// Nothing here..
}