-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathloss.py
222 lines (188 loc) · 7.61 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import torch
import torch.nn as nn
from torch.nn.modules.loss import _Loss
def compute_layerwise_distillation(
args,
teacher_hidden_states,
student_hidden_states,
teacher_attention_maps,
student_attention_maps,
track_layerwise_loss=False,
):
student_fkt = 0.0
student_akt = 0.0
if track_layerwise_loss:
layer_wise_fkt = []
layer_wise_akt = []
else:
layer_wise_fkt = None
layer_wise_akt = None
non_trainable_layernorm = nn.LayerNorm(
teacher_hidden_states[-1].shape[1:], elementwise_affine=False
)
for teacher_hidden, student_hidden in zip(
teacher_hidden_states, student_hidden_states
):
teacher_hidden = non_trainable_layernorm(teacher_hidden.detach())
student_hidden = non_trainable_layernorm(student_hidden)
fkt = nn.MSELoss()(teacher_hidden, student_hidden)
student_fkt = student_fkt + fkt
if track_layerwise_loss:
layer_wise_fkt.append(fkt)
# the attention maps already have softmax applied, hence we pass logits = False
loss_alpha_div = AdaptiveLossSoft(
args.alpha_min, args.alpha_max, args.beta_clip, logits=False
)
for (teacher_attention, student_attention) in zip(
teacher_attention_maps, student_attention_maps
):
# attentions are already in probabilities, hence no softmax
if args.alpha_divergence:
# TODO - Check if the reduction is mean or sum
student_akt = loss_alpha_div(teacher_attention, student_attention)
else:
student_attention = student_attention.clamp(min=1e-4).log()
student_kl = -(teacher_attention.detach() * student_attention)
akt = torch.mean(torch.sum(student_kl, axis=-1))
student_akt = student_akt + akt
if track_layerwise_loss:
layer_wise_akt.append(akt)
return student_akt, student_fkt, layer_wise_akt, layer_wise_fkt
def compute_student_loss(
outputs,
teacher_hidden_states,
teacher_attention_maps,
args,
track_layerwise_loss=False,
):
# outputs = model(**batch, use_soft_loss=True)
loss = outputs.loss
student_hidden_states = outputs.hidden_states
student_attention_maps = outputs.attentions
student_mlm_loss = loss
student_mlm_loss = student_mlm_loss / args.gradient_accumulation_steps
overall_loss = student_mlm_loss
losses = {
"overall_loss": overall_loss,
"student_distill_loss": 0,
"student_mlm_loss": student_mlm_loss,
"student_feature_knowledge_transfer_loss": 0,
"student_attention_knowledge_transfer_loss": 0,
"layer_wise_akt": [],
"layer_wise_fkt": [],
}
if args.layerwise_distillation:
(
student_akt,
student_fkt,
layer_wise_akt,
layer_wise_fkt,
) = compute_layerwise_distillation(
# the official mobilbeBert repo skips the first layer
# teacher_hidden_states[1:],
# student_hidden_states[1:],
# teacher_attention_maps[1:],
# student_attention_maps[1:],
args,
teacher_hidden_states,
student_hidden_states,
teacher_attention_maps,
student_attention_maps,
track_layerwise_loss=track_layerwise_loss,
)
student_distill_loss = 0.5 * student_fkt + 0.5 * student_akt
student_distill_loss = student_distill_loss / args.gradient_accumulation_steps
overall_loss = overall_loss + student_distill_loss
losses["overall_loss"] = overall_loss
losses["student_distill_loss"] = student_distill_loss
losses["student_feature_knowledge_transfer_loss"] = student_fkt
losses["student_attention_knowledge_transfer_loss"] = student_akt
losses["layer_wise_akt"] = layer_wise_akt
losses["layer_wise_fkt"] = layer_wise_fkt
return overall_loss, losses
## Alpha Divergence loss codes adapted from https://github.com/facebookresearch/AlphaNet ##
def f_divergence(q_logits, p_logits, alpha, iw_clip=1e3, logits=True):
assert isinstance(alpha, float)
if logits:
q_prob = torch.nn.functional.softmax(q_logits, dim=1).detach()
p_prob = torch.nn.functional.softmax(p_logits, dim=1).detach()
q_log_prob = torch.nn.functional.log_softmax(
q_logits, dim=1
) # gradient is only backpropagated here
else:
q_prob = q_logits.detach()
p_prob = p_logits.detach()
p_prob = p_prob.view(p_prob.shape[0], -1) ### Getting the correct view
q_log_prob = q_logits.log()
importance_ratio = p_prob / q_prob
if abs(alpha) < 1e-3:
importance_ratio = importance_ratio.clamp(0, iw_clip)
f = -importance_ratio.log()
f_base = 0
rho_f = importance_ratio.log() - 1.0
elif abs(alpha - 1.0) < 1e-3:
f = importance_ratio * importance_ratio.log()
f_base = 0
rho_f = importance_ratio
else:
iw_alpha = torch.pow(importance_ratio, alpha)
iw_alpha = iw_alpha.clamp(0, iw_clip)
f = iw_alpha / alpha / (alpha - 1.0)
f_base = 1.0 / alpha / (alpha - 1.0)
rho_f = iw_alpha / alpha + f_base
loss = torch.sum(q_prob * (f - f_base), dim=1)
grad_loss = -torch.sum(q_prob * rho_f * q_log_prob, dim=1)
return loss, grad_loss
"""
It's often necessary to clip the maximum
gradient value (e.g., 1.0) when using this adaptive KD loss
"""
class AdaptiveLossSoft(torch.nn.modules.loss._Loss):
def __init__(self, alpha_min=-1.0, alpha_max=1.0, iw_clip=5.0, logits=True):
super(AdaptiveLossSoft, self).__init__()
self.alpha_min = alpha_min
self.alpha_max = alpha_max
self.iw_clip = iw_clip
self.logits = logits
def forward(self, output, target, alpha_min=None, alpha_max=None):
alpha_min = alpha_min or self.alpha_min
alpha_max = alpha_max or self.alpha_max
loss_left, grad_loss_left = f_divergence(
output, target, alpha_min, iw_clip=self.iw_clip, logits=self.logits
)
loss_right, grad_loss_right = f_divergence(
output, target, alpha_max, iw_clip=self.iw_clip, logits=self.logits
)
ind = torch.gt(loss_left, loss_right).float()
loss = ind * grad_loss_left + (1.0 - ind) * grad_loss_right
# reduction is mean by default https://pytorch-enhance.readthedocs.io/en/latest/_modules/torch/nn/modules/loss.html
if self.reduction == "mean":
return loss.mean()
elif self.reduction == "sum":
return loss.sum()
return loss
def ce_soft(pred, soft_target):
logsoftmax = nn.LogSoftmax()
return torch.mean(torch.sum(-soft_target * logsoftmax(pred), 1))
# https://github.com/pytorch/pytorch/issues/11959
class CrossEntropyLossSoft(_Loss):
def forward(self, preds, target_logits, reduction="mean"):
"""
:param input: (batch, *)
:param target: (batch, *) same shape as input, each item must be a valid distribution: target[i, :].sum() == 1.
"""
logprobs = torch.nn.functional.log_softmax(
preds.view(preds.shape[0], -1), dim=1
)
target = torch.nn.functional.softmax(
target_logits.view(target_logits.shape[0], -1).detach(), dim=1
)
batchloss = -torch.sum(target.view(target.shape[0], -1) * logprobs, dim=1)
if reduction == "none":
return batchloss
elif reduction == "mean":
return torch.mean(batchloss)
elif reduction == "sum":
return torch.sum(batchloss)
else:
raise NotImplementedError("Unsupported reduction mode.")