@@ -342,29 +342,9 @@ def cool_tech(context: "Context") -> dict[str, pd.DataFrame]:
342
342
.drop (columns = 1 )
343
343
)
344
344
345
- # # Filter for rows where parent_tech is "csp_sm1_res"
346
- # csp_rows = cooling_df[cooling_df["parent_tech"] == "csp_sm1_res"].copy()
347
-
348
- # # Define suffixes for historical years
349
- # hist_years = ["hist_2010", "hist_2015", "hist_2020"]
350
-
351
- # # Expand the dataframe for csp historical caapcities
352
- # expanded_rows = []
353
- # for hist_year in hist_years:
354
- # temp_df = csp_rows.copy()
355
- # temp_df["parent_tech"] = temp_df["parent_tech"] + f"_{hist_year}"
356
- # temp_df["technology_name"] = temp_df["technology_name"].str.replace(
357
- # "csp_sm1_res", f"csp_sm1_res_{hist_year}"
358
- # )
359
- # expanded_rows.append(temp_df)
360
-
361
- # # Concatenate with original dataframe
362
- # cooling_df = pd.concat([cooling_df] + expanded_rows, ignore_index=True)
363
-
364
345
scen = context .get_scenario ()
365
346
366
347
# Extracting input database from scenario for parent technologies
367
- # Extracting input values from scenario
368
348
ref_input = scen .par ("input" , {"technology" : cooling_df ["parent_tech" ]})
369
349
# list of tec in cooling_df["parent_tech"] that are not in ref_input
370
350
missing_tec = cooling_df ["parent_tech" ][
@@ -443,17 +423,6 @@ def cool_tech(context: "Context") -> dict[str, pd.DataFrame]:
443
423
input_cool ["consumption_rate" ] * input_cool ["value_cool" ]
444
424
)
445
425
446
- # def foo3(x):
447
- # """
448
- # This function is similar to foo2, but it returns electricity values
449
- # per unit of cooling for techs that require parasitic electricity demand
450
- # """
451
- # if "hpl" in x['index']:
452
- # return x['parasitic_electricity_demand_fraction']
453
- #
454
- # elif x['parasitic_electricity_demand_fraction'] > 0.0:
455
- # return x['parasitic_electricity_demand_fraction'] / x['cooling_fraction']
456
-
457
426
# Filter out technologies that requires parasitic electricity
458
427
electr = input_cool [input_cool ["parasitic_electricity_demand_fraction" ] > 0.0 ]
459
428
@@ -672,8 +641,8 @@ def cool_tech(context: "Context") -> dict[str, pd.DataFrame]:
672
641
share_fut ["value" ] = np .where (share_fut ["value" ] < 0.45 , 0.45 , share_fut ["value" ])
673
642
# keep only after 2050
674
643
share_fut = share_fut [share_fut ["year_act" ] >= 2050 ]
675
- # append share_calib and share_fut
676
- results ["share_commodity_up" ] = pd .concat ([share_calib , share_fut ])
644
+ # append share_calib and ( share_fut only to add constraints on ot_saline)
645
+ results ["share_commodity_up" ] = pd .concat ([share_calib ])
677
646
678
647
# Filtering out 2015 data to use for historical values
679
648
input_cool_2015 = input_cool [
@@ -751,58 +720,6 @@ def cool_tech(context: "Context") -> dict[str, pd.DataFrame]:
751
720
search_cols = search_cols ,
752
721
)
753
722
754
- # changed_value_series = ref_hist_act.apply(
755
- # hist_act, axis=1, context=context, hold_cost=hold_cost
756
- # )
757
- # changed_value_series_flat = [
758
- # row for series in changed_value_series for row in series
759
- # ]
760
- # columns_act = [
761
- # "node_loc",
762
- # "technology",
763
- # "cooling_technology",
764
- # "year_act",
765
- # "value",
766
- # "new_value",
767
- # "unit",
768
- # ]
769
- # # dataframe for historical activities of cooling techs
770
- # act_value_df = pd.DataFrame(changed_value_series_flat, columns=columns_act)
771
- # act_value_df = act_value_df[act_value_df["new_value"] > 0]
772
-
773
- # # now hist capacity
774
- # changed_value_series = ref_hist_cap.apply(
775
- # hist_cap, axis=1, context=context, hold_cost=hold_cost
776
- # )
777
- # changed_value_series_flat = [
778
- # row for series in changed_value_series for row in series
779
- # ]
780
- # columns_cap = [
781
- # "node_loc",
782
- # "technology",
783
- # "cooling_technology",
784
- # "year_vtg",
785
- # "value",
786
- # "new_value",
787
- # "unit",
788
- # ]
789
- # cap_value_df = pd.DataFrame(changed_value_series_flat, columns=columns_cap)
790
- # cap_value_df = cap_value_df[cap_value_df["new_value"] > 0]
791
-
792
- # h_act = make_df(
793
- # "historical_activity",
794
- # node_loc=act_value_df["node_loc"],
795
- # technology=act_value_df["cooling_technology"],
796
- # year_act=act_value_df["year_act"],
797
- # mode="M1",
798
- # time="year",
799
- # value=act_value_df["new_value"],
800
- # # TODO finalize units
801
- # unit="GWa",
802
- # )
803
-
804
- # results["historical_activity"] = h_act
805
-
806
723
# hist cap to be divided by cap_factor of the parent tec
807
724
cap_fact_parent = scen .par (
808
725
"capacity_factor" , {"technology" : cooling_df ["parent_tech" ]}
@@ -845,25 +762,6 @@ def cool_tech(context: "Context") -> dict[str, pd.DataFrame]:
845
762
columns = {"value" : "cap_fact" , "technology" : "utype" }, inplace = True
846
763
)
847
764
848
- # # merge cap_fact_parent with cap_value_df
849
- # cap_value_df = pd.merge(cap_value_df, cap_fact_parent, how="left")
850
- # # divide new_value by cap_fact
851
- # cap_value_df["new_value"] = cap_value_df["new_value"] / cap_value_df["cap_fact"]
852
- # # drop cap_fact
853
- # cap_value_df.drop(columns="cap_fact", inplace=True)
854
-
855
- # # Make model compatible df for histroical new capacity
856
- # h_cap = make_df(
857
- # "historical_new_capacity",
858
- # node_loc=cap_value_df["node_loc"],
859
- # technology=cap_value_df["cooling_technology"],
860
- # year_vtg=cap_value_df["year_vtg"],
861
- # value=cap_value_df["new_value"],
862
- # unit="GWa",
863
- # )
864
-
865
- # results["historical_new_capacity"] = h_cap
866
-
867
765
# Manually removing extra technologies not required
868
766
# TODO make it automatic to not include the names manually
869
767
techs_to_remove = [
@@ -1043,20 +941,6 @@ def cool_tech(context: "Context") -> dict[str, pd.DataFrame]:
1043
941
[results .get (param_name , pd .DataFrame ()), df_param_share ], ignore_index = True
1044
942
)
1045
943
1046
- # # Function to rename and add transformed parameters
1047
- # def rename_and_add(param_name, new_name, rename_dict):
1048
- # if param_name in results:
1049
- # df_transformed = (
1050
- # results[param_name].drop(columns="time").rename(columns=rename_dict)
1051
- # )
1052
- # results[new_name] = df_transformed
1053
-
1054
- # # Apply renaming for multiple parameters
1055
- # rename_and_add("soft_activity_up", "soft_new_capacity_up", {"year_act": "year_vtg"})
1056
- # rename_and_add(
1057
- # "growth_activity_up", "growth_new_capacity_up", {"year_act": "year_vtg"}
1058
- # )
1059
-
1060
944
# add share constraints for cooling technologies based on SSP assumptions
1061
945
df_share = cooling_shares_SSP_from_yaml (context )
1062
946
0 commit comments