diff --git a/simulations.ipynb b/simulations.ipynb index 349b892..8d3ebae 100644 --- a/simulations.ipynb +++ b/simulations.ipynb @@ -6,41 +6,72 @@ "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "[-1.88951825 -1.67562088 -1.65214474 -1.62064284 -1.562736 -1.50039701\n", - " -1.46558166 -1.41107123 -1.33930541 -1.33348901 -1.22021545 -1.16896446\n", - " -1.11823493 -1.11364725 -1.0355334 -0.99155624 -0.9322802 -0.91862877\n", - " -0.89289741 -0.87632799 -0.85337447 -0.82952583 -0.80436763 -0.77718609\n", - " -0.77606566 -0.74560126 -0.6891231 -0.66738905 -0.65431026 -0.60114386\n", - " -0.51794973 -0.51688887 -0.4953134 -0.44496799 -0.40446697 -0.39829545\n", - " -0.39799426 -0.31320473 -0.284331 -0.28041655 -0.22160632 -0.17987713\n", - " -0.17326124 -0.11955245 -0.08257138 -0.00575042 0.01167684 0.03075504\n", - " 0.05233829 0.06073081 0.08723611 0.09763968 0.10284089 0.13299994\n", - " 0.1459378 0.25129287 0.2637708 0.26529311 0.28513058 0.3164859\n", - " 0.35035412 0.35802117 0.36623514 0.3697894 0.40023227 0.41085433\n", - " 0.48258617 0.48964917 0.50151693 0.50449019 0.51650857 0.53792918\n", - " 0.56122631 0.57075674 0.57988314 0.5942923 0.62610387 0.6539129\n", - " 0.66528933 0.73613501 0.74289003 0.80039489 0.80555165 0.81712376\n", - " 0.94335029 0.99278054 1.01699842 1.02001017 1.05444052 1.07084284\n", - " 1.09992702 1.16661601 1.17901527 1.20899573 1.2415302 1.3356225\n", - " 1.4081054 1.61840104 1.83143626 1.85685823]\n", - "\n" - ] + "data": { + "text/plain": [ + "array([-0.13232203, 0.43740831, -1.17082002, -0.23752026, -0.29514267,\n", + " -0.12570246, -0.0199769 , 0.584793 , -1.23747854, -0.87275655])" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ "import numpy as np\n", - "import scipy.stats\n", + "import scipy\n", "import matplotlib.pyplot as plt\n", "from ensemble.distributions import distribution_dict\n", "from ensemble.ensemble_model import EnsembleFitter\n", "\n", + "def ensemble_cdf(x, distributions, weights, mean, variance):\n", + " my_objs = []\n", + " for distribution in distributions:\n", + " my_objs.append(distribution_dict[distribution](mean, variance))\n", + " return sum(weight * distribution.cdf(x) for distribution, weight in zip(my_objs, weights))\n", "\n", - "std_norm = distribution_dict[\"normal\"](0, 1).rvs(100)\n", + "def ppf_to_solve(x, q):\n", + " return ensemble_cdf(x, [\"normal\", \"gumbel\"], [0.7, 0.3], 0, 1) - q\n", + "\n", + "def ppf_single(q):\n", + " factor = 10.\n", + " left = -factor\n", + " right = factor\n", + "\n", + " while ppf_to_solve(left, q) > 0:\n", + " left, right = left * factor, left\n", + "\n", + " while ppf_to_solve(right, q) < 0:\n", + " left, right = right, right * factor\n", + "\n", + " return scipy.optimize.brentq(ppf_to_solve, left, right, args=q)\n", + "\n", + "def ensemble_rvs(size):\n", + " ppf_vec = np.vectorize(ppf_single, otypes=\"d\")\n", + " unif_samp = scipy.stats.uniform.rvs(size=size)\n", + " return ppf_vec(unif_samp)\n", + "\n", + "ensemble_rvs(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.77402318 0.2793297 ]\n" + ] + } + ], + "source": [ + "# std_norm = distribution_dict[\"normal\"](0, 1).rvs(100)\n", + "temp = ensemble_rvs(10)\n", "model = EnsembleFitter([\"normal\", \"gumbel\"], None)\n", - "res = model.fit(std_norm)\n", + "res = model.fit(temp)\n", "print(res.weights)\n", "\n", "\n", @@ -80,7 +111,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -91,7 +122,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ {