-
Notifications
You must be signed in to change notification settings - Fork 0
/
combine_2_csv_files_eye_tracker_data.py
executable file
·401 lines (363 loc) · 18.1 KB
/
combine_2_csv_files_eye_tracker_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
# %% Import modules
from tqdm import tqdm
import os
from os import listdir
from os.path import isfile, join
import pandas as pd
# %% markdown
# IMPORTANT !!
# Before you begin, please look for # TODO (there are 2 places).
# Please change accordingly
# %% Define where separated data available
# NOTE: Adjust this accordingly
path_eye_data_separated = '/hpc/igum002/codes/frontiers_hyperscanning2/eye_tracker_data_separated'
# NOTE: Adjust this accordingly
# Define where to save combined data
path_eye_data_combined = '/hpc/igum002/codes/frontiers_hyperscanning2/eye_tracker_data_combined'
# Get all available file names of eye tracker data that are still separated
onlyfiles = [f for f in listdir(path_eye_data_separated) if isfile(
join(path_eye_data_separated, f))]
# %%Populate all files which have the same subject no into one list.
list_subj_files = []
file = onlyfiles[0]
for i in range(1, 33): # TODO: : Adjust this later on according to how many subjects, eg.32
start_idx_subj = file.find("S")
end_idx_subj = file.index("-")
subj_no = "S" + str(i)
# Populate all files which have the same subject no into one list.
subj_files = [
idx for idx in onlyfiles if idx[start_idx_subj:end_idx_subj] == subj_no]
list_subj_files.append(subj_files)
# %% Put all files that have the same subject no. (Pre & Post ONLY) into the same list
# Even - Pre
averted_pre_right_even = []
averted_pre_left_even = []
direct_pre_right_even = []
direct_pre_left_even = []
natural_pre_right_even = []
natural_pre_left_even = []
# Even - Post
averted_post_right_even = []
averted_post_left_even = []
direct_post_right_even = []
direct_post_left_even = []
natural_post_right_even = []
natural_post_left_even = []
# Odd - Pre
averted_pre_right_odd = []
averted_pre_left_odd = []
direct_pre_right_odd = []
direct_pre_left_odd = []
natural_pre_right_odd = []
natural_pre_left_odd = []
# Odd - Post
averted_post_right_odd = []
averted_post_left_odd = []
direct_post_right_odd = []
direct_post_left_odd = []
natural_post_right_odd = []
natural_post_left_odd = []
for idx, file in enumerate(list_subj_files):
for idx_inside, file_inside in enumerate(file):
start_idx_subj = file_inside.find("S")
end_idx_subj = file_inside.index("-")
subj_no = file_inside[start_idx_subj + 1:end_idx_subj]
# Even subject
if int(subj_no) % 2 == 0:
subj = file[start_idx_subj:end_idx_subj]
# Pre
key_averted_pre_right_even = file_inside[0] + \
subj_no + '-averted_pre_right'
key_averted_pre_left_even = file_inside[0] + \
subj_no + '-averted_pre_left'
key_direct_pre_right_even = file_inside[0] + \
subj_no + '-direct_pre_right'
key_direct_pre_left_even = file_inside[0] + \
subj_no + '-direct_pre_left'
key_natural_pre_right_even = file_inside[0] + \
subj_no + '-natural_pre_right'
key_natural_pre_left_even = file_inside[0] + \
subj_no + '-natural_pre_left'
# Post
key_averted_post_right_even = file_inside[0] + \
subj_no + '-averted_post_right'
key_averted_post_left_even = file_inside[0] + \
subj_no + '-averted_post_left'
key_direct_post_right_even = file_inside[0] + \
subj_no + '-direct_post_right'
key_direct_post_left_even = file_inside[0] + \
subj_no + '-direct_post_left'
key_natural_post_right_even = file_inside[0] + \
subj_no + '-natural_post_right'
key_natural_post_left_even = file_inside[0] + \
subj_no + '-natural_post_left'
# Pre-training
if key_averted_pre_right_even in file_inside:
averted_pre_right_even.append(
key_averted_pre_right_even + "_point.csv")
elif key_averted_pre_left_even in file_inside:
averted_pre_left_even.append(
key_averted_pre_left_even + "_point.csv")
elif key_direct_pre_right_even in file_inside:
direct_pre_right_even.append(
key_direct_pre_right_even + "_point.csv")
elif key_direct_pre_left_even in file_inside:
direct_pre_left_even.append(
key_direct_pre_left_even + "_point.csv")
elif key_natural_pre_right_even in file_inside:
natural_pre_right_even.append(
key_natural_pre_right_even + "_point.csv")
elif key_natural_pre_left_even in file_inside:
natural_pre_left_even.append(
key_natural_pre_left_even + "_point.csv")
# Post-training
elif key_averted_post_right_even in file_inside:
averted_post_right_even.append(
key_averted_post_right_even + "_point.csv")
elif key_averted_post_left_even in file_inside:
averted_post_left_even.append(
key_averted_post_left_even + "_point.csv")
elif key_direct_post_right_even in file_inside:
direct_post_right_even.append(
key_direct_post_right_even + "_point.csv")
elif key_direct_post_left_even in file_inside:
direct_post_left_even.append(
key_direct_post_left_even + "_point.csv")
elif key_natural_post_right_even in file_inside:
natural_post_right_even.append(
key_natural_post_right_even + "_point.csv")
elif key_natural_post_left_even in file_inside:
natural_post_left_even.append(
key_natural_post_left_even + "_point.csv")
# Odd subject
else:
subj = file[start_idx_subj:end_idx_subj]
# Pre
key_averted_pre_right_odd = file_inside[0] + \
subj_no + '-averted_pre_right'
key_averted_pre_left_odd = file_inside[0] + \
subj_no + '-averted_pre_left'
key_direct_pre_right_odd = file_inside[0] + \
subj_no + '-direct_pre_right'
key_direct_pre_left_odd = file_inside[0] + \
subj_no + '-direct_pre_left'
key_natural_pre_right_odd = file_inside[0] + \
subj_no + '-natural_pre_right'
key_natural_pre_left_odd = file_inside[0] + \
subj_no + '-natural_pre_left'
# Post
key_averted_post_right_odd = file_inside[0] + \
subj_no + '-averted_post_right'
key_averted_post_left_odd = file_inside[0] + \
subj_no + '-averted_post_left'
key_direct_post_right_odd = file_inside[0] + \
subj_no + '-direct_post_right'
key_direct_post_left_odd = file_inside[0] + \
subj_no + '-direct_post_left'
key_natural_post_right_odd = file_inside[0] + \
subj_no + '-natural_post_right'
key_natural_post_left_odd = file_inside[0] + \
subj_no + '-natural_post_left'
# Pre-training
if key_averted_pre_right_odd in file_inside:
averted_pre_right_odd.append(
key_averted_pre_right_odd + "_point.csv")
elif key_averted_pre_left_odd in file_inside:
averted_pre_left_odd.append(
key_averted_pre_left_odd + "_point.csv")
elif key_direct_pre_right_odd in file_inside:
direct_pre_right_odd.append(
key_direct_pre_right_odd + "_point.csv")
elif key_direct_pre_left_odd in file_inside:
direct_pre_left_odd.append(
key_direct_pre_left_odd + "_point.csv")
elif key_natural_pre_right_odd in file_inside:
natural_pre_right_odd.append(
key_natural_pre_right_odd + "_point.csv")
elif key_natural_pre_left_odd in file_inside:
natural_pre_left_odd.append(
key_natural_pre_left_odd + "_point.csv")
# Post-training
elif key_averted_post_right_odd in file_inside:
averted_post_right_odd.append(
key_averted_post_right_odd + "_point.csv")
elif key_averted_post_left_odd in file_inside:
averted_post_left_odd.append(
key_averted_post_left_odd + "_point.csv")
elif key_direct_post_right_odd in file_inside:
direct_post_right_odd.append(
key_direct_post_right_odd + "_point.csv")
elif key_direct_post_left_odd in file_inside:
direct_post_left_odd.append(
key_direct_post_left_odd + "_point.csv")
elif key_natural_post_right_odd in file_inside:
natural_post_right_odd.append(
key_natural_post_right_odd + "_point.csv")
elif key_natural_post_left_odd in file_inside:
natural_post_left_odd.append(
key_natural_post_left_odd + "_point.csv")
# %% Combine list for left-right (even) and right-left(odd)
# TODO: Adjust the value of range according to how many files to combine in a list,
# eg. find len(averted_pre_left_even) = 16 or len(averted_pre_right_even) = 16
for idx in tqdm(range(16), desc="In progress Bro...:)"):
# ####################### Even subject and Pre-training ##################
# Averted pre combined even
df1_averted_pre_even = pd.read_csv(os.path.join(
path_eye_data_separated, averted_pre_left_even[idx])) # Left
df2_averted_pre_even = pd.read_csv(os.path.join(
path_eye_data_separated, averted_pre_right_even[idx])) # Right
df_combined_averted_pre_even = pd.concat(
[df1_averted_pre_even, df2_averted_pre_even], ignore_index=True)
# save to csv file
# NOTE: this is even subject from 2, 4, etc ...
fname_combined_averted_pre_even = "S" + \
str(idx * 2 + 2) + "-averted_pre_" + "left_right_combined" + ".csv"
df_combined_averted_pre_even.to_csv(os.path.join(
path_eye_data_combined, fname_combined_averted_pre_even))
# Direct pre combined even
df1_direct_pre_even = pd.read_csv(os.path.join(
path_eye_data_separated, direct_pre_left_even[idx])) # Left
df2_direct_pre_even = pd.read_csv(os.path.join(
path_eye_data_separated, direct_pre_right_even[idx])) # Right
df_combined_direct_pre_even = pd.concat(
[df1_direct_pre_even, df2_direct_pre_even], ignore_index=True)
# save to csv file
# NOTE: this is even subject from 2, 4, etc ...
fname_combined_direct_pre_even = "S" + \
str(idx * 2 + 2) + "-direct_pre_" + "left_right_combined" + ".csv"
df_combined_direct_pre_even.to_csv(os.path.join(
path_eye_data_combined, fname_combined_direct_pre_even))
# Natural pre combined even
df1_natural_pre_even = pd.read_csv(os.path.join(
path_eye_data_separated, natural_pre_left_even[idx])) # Left
df2_natural_pre_even = pd.read_csv(os.path.join(
path_eye_data_separated, natural_pre_right_even[idx])) # Right
df_combined_natural_pre_even = pd.concat(
[df1_natural_pre_even, df2_natural_pre_even], ignore_index=True)
# save to csv file
# NOTE: this is even subject from 2, 4, etc ...
fname_combined_natural_pre_even = "S" + \
str(idx * 2 + 2) + "-natural_pre_" + "left_right_combined" + ".csv"
df_combined_natural_pre_even.to_csv(os.path.join(
path_eye_data_combined, fname_combined_natural_pre_even))
# ####################### Even subject and Post-training ##################
# Averted post combined even
df1_averted_post_even = pd.read_csv(os.path.join(
path_eye_data_separated, averted_post_left_even[idx])) # Left
df2_averted_post_even = pd.read_csv(os.path.join(
path_eye_data_separated, averted_post_right_even[idx])) # Right
df_combined_averted_post_even = pd.concat(
[df1_averted_post_even, df2_averted_post_even], ignore_index=True)
# save to csv file
# NOTE: this is even subject from 2, 4, etc ...
fname_combined_averted_post_even = "S" + \
str(idx * 2 + 2) + "-averted_post_" + "left_right_combined" + ".csv"
df_combined_averted_post_even.to_csv(os.path.join(
path_eye_data_combined, fname_combined_averted_post_even))
# Direct post combined even
df1_direct_post_even = pd.read_csv(os.path.join(
path_eye_data_separated, direct_post_left_even[idx])) # Left
df2_direct_post_even = pd.read_csv(os.path.join(
path_eye_data_separated, direct_post_right_even[idx])) # Right
df_combined_direct_post_even = pd.concat(
[df1_direct_post_even, df2_direct_post_even], ignore_index=True)
# save to csv file
# NOTE: this is even subject from 2, 4, etc ...
fname_combined_direct_post_even = "S" + \
str(idx * 2 + 2) + "-direct_post_" + "left_right_combined" + ".csv"
df_combined_direct_post_even.to_csv(os.path.join(
path_eye_data_combined, fname_combined_direct_post_even))
# Natural post combined even
df1_natural_post_even = pd.read_csv(os.path.join(
path_eye_data_separated, natural_post_left_even[idx])) # Left
df2_natural_post_even = pd.read_csv(os.path.join(
path_eye_data_separated, natural_post_right_even[idx])) # Right
df_combined_natural_post_even = pd.concat(
[df1_natural_post_even, df2_natural_post_even], ignore_index=True)
# save to csv file
# NOTE: this is even subject from 2, 4, etc ...
fname_combined_natural_post_even = "S" + \
str(idx * 2 + 2) + "-natural_post_" + "left_right_combined" + ".csv"
df_combined_natural_post_even.to_csv(os.path.join(
path_eye_data_combined, fname_combined_natural_post_even))
# ####################### Odd subject and Pre-training ##################
# Averted pre combined odd
df1_averted_pre_odd = pd.read_csv(os.path.join(
path_eye_data_separated, averted_pre_right_odd[idx])) # Right
df2_averted_pre_odd = pd.read_csv(os.path.join(
path_eye_data_separated, averted_pre_left_odd[idx])) # Left
df_combined_averted_pre_odd = pd.concat(
[df1_averted_pre_odd, df2_averted_pre_odd], ignore_index=True)
# save to csv file
# NOTE: this is odd subject from 1, 3, etc ...
fname_combined_averted_pre_odd = "S" + \
str(idx * 2 + 1) + "-averted_pre_" + "right_left_combined" + ".csv"
df_combined_averted_pre_odd.to_csv(os.path.join(
path_eye_data_combined, fname_combined_averted_pre_odd))
# Direct pre combined odd
df1_direct_pre_odd = pd.read_csv(os.path.join(
path_eye_data_separated, direct_pre_right_odd[idx])) # Right
df2_direct_pre_odd = pd.read_csv(os.path.join(
path_eye_data_separated, direct_pre_left_odd[idx])) # Left
df_combined_direct_pre_odd = pd.concat(
[df1_direct_pre_odd, df2_direct_pre_odd], ignore_index=True)
# save to csv file
# NOTE: this is odd subject from 1, 3, etc ...
fname_combined_direct_pre_odd = "S" + \
str(idx * 2 + 1) + "-direct_pre_" + "right_left_combined" + ".csv"
df_combined_direct_pre_odd.to_csv(os.path.join(
path_eye_data_combined, fname_combined_direct_pre_odd))
# Natural pre combined odd
df1_natural_pre_odd = pd.read_csv(os.path.join(
path_eye_data_separated, natural_pre_right_odd[idx])) # Right
df2_natural_pre_odd = pd.read_csv(os.path.join(
path_eye_data_separated, natural_pre_left_odd[idx])) # Left
df_combined_natural_pre_odd = pd.concat(
[df1_natural_pre_odd, df2_natural_pre_odd], ignore_index=True)
# save to csv file
# NOTE: this is odd subject from 1, 3, etc ...
fname_combined_natural_pre_odd = "S" + \
str(idx * 2 + 1) + "-natural_pre_" + "right_left_combined" + ".csv"
df_combined_natural_pre_odd.to_csv(os.path.join(
path_eye_data_combined, fname_combined_natural_pre_odd))
# ####################### Odd subject and Post-training ##################
# Averted post combined odd
df1_averted_post_odd = pd.read_csv(os.path.join(
path_eye_data_separated, averted_post_right_odd[idx])) # Right
df2_averted_post_odd = pd.read_csv(os.path.join(
path_eye_data_separated, averted_post_left_odd[idx])) # Left
df_combined_averted_post_odd = pd.concat(
[df1_averted_post_odd, df2_averted_post_odd], ignore_index=True)
# save to csv file
# NOTE: this is odd subject from 1, 3, etc ...
fname_combined_averted_post_odd = "S" + \
str(idx * 2 + 1) + "-averted_post_" + "right_left_combined" + ".csv"
df_combined_averted_post_odd.to_csv(os.path.join(
path_eye_data_combined, fname_combined_averted_post_odd))
# Direct post combined odd
df1_direct_post_odd = pd.read_csv(os.path.join(
path_eye_data_separated, direct_post_right_odd[idx])) # Right
df2_direct_post_odd = pd.read_csv(os.path.join(
path_eye_data_separated, direct_post_left_odd[idx])) # Left
df_combined_direct_post_odd = pd.concat(
[df1_direct_post_odd, df2_direct_post_odd], ignore_index=True)
# save to csv file
# NOTE: this is odd subject from 1, 3, etc ...
fname_combined_direct_post_odd = "S" + \
str(idx * 2 + 1) + "-direct_post_" + "right_left_combined" + ".csv"
df_combined_direct_post_odd.to_csv(os.path.join(
path_eye_data_combined, fname_combined_direct_post_odd))
# Natural post combined odd
df1_natural_post_odd = pd.read_csv(os.path.join(
path_eye_data_separated, natural_post_right_odd[idx])) # Right
df2_natural_post_odd = pd.read_csv(os.path.join(
path_eye_data_separated, natural_post_left_odd[idx])) # Left
df_combined_natural_post_odd = pd.concat(
[df1_natural_post_odd, df2_natural_post_odd], ignore_index=True)
# save to csv file
# NOTE: this is odd subject from 1, 3, etc ...
fname_combined_natural_post_odd = "S" + \
str(idx * 2 + 1) + "-natural_post_" + "right_left_combined" + ".csv"
df_combined_natural_post_odd.to_csv(os.path.join(
path_eye_data_combined, fname_combined_natural_post_odd))
print("All eye tracker files have been combined. Done ! ")