-
Notifications
You must be signed in to change notification settings - Fork 672
/
Copy pathgan_cifar.py
219 lines (176 loc) · 8.16 KB
/
gan_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import os, sys
sys.path.append(os.getcwd())
import time
import numpy as np
import tensorflow as tf
import tflib as lib
import tflib.ops.linear
import tflib.ops.conv2d
import tflib.ops.batchnorm
import tflib.ops.deconv2d
import tflib.save_images
import tflib.cifar10
import tflib.inception_score
import tflib.plot
# Download CIFAR-10 (Python version) at
# https://www.cs.toronto.edu/~kriz/cifar.html and fill in the path to the
# extracted files here!
DATA_DIR = ''
if len(DATA_DIR) == 0:
raise Exception('Please specify path to data directory in gan_cifar.py!')
MODE = 'wgan-gp' # Valid options are dcgan, wgan, or wgan-gp
DIM = 128 # This overfits substantially; you're probably better off with 64
LAMBDA = 10 # Gradient penalty lambda hyperparameter
CRITIC_ITERS = 5 # How many critic iterations per generator iteration
BATCH_SIZE = 64 # Batch size
ITERS = 200000 # How many generator iterations to train for
OUTPUT_DIM = 3072 # Number of pixels in CIFAR10 (3*32*32)
lib.print_model_settings(locals().copy())
def LeakyReLU(x, alpha=0.2):
return tf.maximum(alpha*x, x)
def ReLULayer(name, n_in, n_out, inputs):
output = lib.ops.linear.Linear(name+'.Linear', n_in, n_out, inputs)
return tf.nn.relu(output)
def LeakyReLULayer(name, n_in, n_out, inputs):
output = lib.ops.linear.Linear(name+'.Linear', n_in, n_out, inputs)
return LeakyReLU(output)
def Generator(n_samples, noise=None):
if noise is None:
noise = tf.random_normal([n_samples, 128])
output = lib.ops.linear.Linear('Generator.Input', 128, 4*4*4*DIM, noise)
output = lib.ops.batchnorm.Batchnorm('Generator.BN1', [0], output)
output = tf.nn.relu(output)
output = tf.reshape(output, [-1, 4*DIM, 4, 4])
output = lib.ops.deconv2d.Deconv2D('Generator.2', 4*DIM, 2*DIM, 5, output)
output = lib.ops.batchnorm.Batchnorm('Generator.BN2', [0,2,3], output)
output = tf.nn.relu(output)
output = lib.ops.deconv2d.Deconv2D('Generator.3', 2*DIM, DIM, 5, output)
output = lib.ops.batchnorm.Batchnorm('Generator.BN3', [0,2,3], output)
output = tf.nn.relu(output)
output = lib.ops.deconv2d.Deconv2D('Generator.5', DIM, 3, 5, output)
output = tf.tanh(output)
return tf.reshape(output, [-1, OUTPUT_DIM])
def Discriminator(inputs):
output = tf.reshape(inputs, [-1, 3, 32, 32])
output = lib.ops.conv2d.Conv2D('Discriminator.1', 3, DIM, 5, output, stride=2)
output = LeakyReLU(output)
output = lib.ops.conv2d.Conv2D('Discriminator.2', DIM, 2*DIM, 5, output, stride=2)
if MODE != 'wgan-gp':
output = lib.ops.batchnorm.Batchnorm('Discriminator.BN2', [0,2,3], output)
output = LeakyReLU(output)
output = lib.ops.conv2d.Conv2D('Discriminator.3', 2*DIM, 4*DIM, 5, output, stride=2)
if MODE != 'wgan-gp':
output = lib.ops.batchnorm.Batchnorm('Discriminator.BN3', [0,2,3], output)
output = LeakyReLU(output)
output = tf.reshape(output, [-1, 4*4*4*DIM])
output = lib.ops.linear.Linear('Discriminator.Output', 4*4*4*DIM, 1, output)
return tf.reshape(output, [-1])
real_data_int = tf.placeholder(tf.int32, shape=[BATCH_SIZE, OUTPUT_DIM])
real_data = 2*((tf.cast(real_data_int, tf.float32)/255.)-.5)
fake_data = Generator(BATCH_SIZE)
disc_real = Discriminator(real_data)
disc_fake = Discriminator(fake_data)
gen_params = lib.params_with_name('Generator')
disc_params = lib.params_with_name('Discriminator')
if MODE == 'wgan':
gen_cost = -tf.reduce_mean(disc_fake)
disc_cost = tf.reduce_mean(disc_fake) - tf.reduce_mean(disc_real)
gen_train_op = tf.train.RMSPropOptimizer(learning_rate=5e-5).minimize(gen_cost, var_list=gen_params)
disc_train_op = tf.train.RMSPropOptimizer(learning_rate=5e-5).minimize(disc_cost, var_list=disc_params)
clip_ops = []
for var in disc_params:
clip_bounds = [-.01, .01]
clip_ops.append(
tf.assign(
var,
tf.clip_by_value(var, clip_bounds[0], clip_bounds[1])
)
)
clip_disc_weights = tf.group(*clip_ops)
elif MODE == 'wgan-gp':
# Standard WGAN loss
gen_cost = -tf.reduce_mean(disc_fake)
disc_cost = tf.reduce_mean(disc_fake) - tf.reduce_mean(disc_real)
# Gradient penalty
alpha = tf.random_uniform(
shape=[BATCH_SIZE,1],
minval=0.,
maxval=1.
)
differences = fake_data - real_data
interpolates = real_data + (alpha*differences)
gradients = tf.gradients(Discriminator(interpolates), [interpolates])[0]
slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), reduction_indices=[1]))
gradient_penalty = tf.reduce_mean((slopes-1.)**2)
disc_cost += LAMBDA*gradient_penalty
gen_train_op = tf.train.AdamOptimizer(learning_rate=1e-4, beta1=0.5, beta2=0.9).minimize(gen_cost, var_list=gen_params)
disc_train_op = tf.train.AdamOptimizer(learning_rate=1e-4, beta1=0.5, beta2=0.9).minimize(disc_cost, var_list=disc_params)
elif MODE == 'dcgan':
gen_cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(disc_fake, tf.ones_like(disc_fake)))
disc_cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(disc_fake, tf.zeros_like(disc_fake)))
disc_cost += tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(disc_real, tf.ones_like(disc_real)))
disc_cost /= 2.
gen_train_op = tf.train.AdamOptimizer(learning_rate=2e-4, beta1=0.5).minimize(gen_cost,
var_list=lib.params_with_name('Generator'))
disc_train_op = tf.train.AdamOptimizer(learning_rate=2e-4, beta1=0.5).minimize(disc_cost,
var_list=lib.params_with_name('Discriminator.'))
# For generating samples
fixed_noise_128 = tf.constant(np.random.normal(size=(128, 128)).astype('float32'))
fixed_noise_samples_128 = Generator(128, noise=fixed_noise_128)
def generate_image(frame, true_dist):
samples = session.run(fixed_noise_samples_128)
samples = ((samples+1.)*(255./2)).astype('int32')
lib.save_images.save_images(samples.reshape((128, 3, 32, 32)), 'samples_{}.jpg'.format(frame))
# For calculating inception score
samples_100 = Generator(100)
def get_inception_score():
all_samples = []
for i in xrange(10):
all_samples.append(session.run(samples_100))
all_samples = np.concatenate(all_samples, axis=0)
all_samples = ((all_samples+1.)*(255./2)).astype('int32')
all_samples = all_samples.reshape((-1, 3, 32, 32)).transpose(0,2,3,1)
return lib.inception_score.get_inception_score(list(all_samples))
# Dataset iterators
train_gen, dev_gen = lib.cifar10.load(BATCH_SIZE, data_dir=DATA_DIR)
def inf_train_gen():
while True:
for images,_ in train_gen():
yield images
# Train loop
with tf.Session() as session:
session.run(tf.initialize_all_variables())
gen = inf_train_gen()
for iteration in xrange(ITERS):
start_time = time.time()
# Train generator
if iteration > 0:
_ = session.run(gen_train_op)
# Train critic
if MODE == 'dcgan':
disc_iters = 1
else:
disc_iters = CRITIC_ITERS
for i in xrange(disc_iters):
_data = gen.next()
_disc_cost, _ = session.run([disc_cost, disc_train_op], feed_dict={real_data_int: _data})
if MODE == 'wgan':
_ = session.run(clip_disc_weights)
lib.plot.plot('train disc cost', _disc_cost)
lib.plot.plot('time', time.time() - start_time)
# Calculate inception score every 1K iters
if iteration % 1000 == 999:
inception_score = get_inception_score()
lib.plot.plot('inception score', inception_score[0])
# Calculate dev loss and generate samples every 100 iters
if iteration % 100 == 99:
dev_disc_costs = []
for images,_ in dev_gen():
_dev_disc_cost = session.run(disc_cost, feed_dict={real_data_int: images})
dev_disc_costs.append(_dev_disc_cost)
lib.plot.plot('dev disc cost', np.mean(dev_disc_costs))
generate_image(iteration, _data)
# Save logs every 100 iters
if (iteration < 5) or (iteration % 100 == 99):
lib.plot.flush()
lib.plot.tick()