diff --git a/R/degseq.R b/R/degseq.R index dd13def53d..02992b3b1f 100644 --- a/R/degseq.R +++ b/R/degseq.R @@ -68,9 +68,9 @@ is.degree.sequence <- function(out.deg, in.deg = NULL) { # nocov start #' @param in.deg `NULL` or an integer vector. For undirected graphs, it #' should be `NULL`. For directed graphs it specifies the in-degrees. #' @return A logical scalar. -#' @author Tamas Nepusz \email{ntamas@@gmail.com} and Szabolcs Horvat \email{szhorvat@gmail.com} -#' @references Z Kiraly, Recognizing graphic degree sequences and generating -#' all realizations. TR-2011-11, Egervary Research Group, H-1117, Budapest, +#' @author Tamás Nepusz \email{ntamas@@gmail.com} and Szabolcs Horvát \email{szhorvat@gmail.com} +#' @references Z Király, Recognizing graphic degree sequences and generating +#' all realizations. TR-2011-11, Egerváry Research Group, H-1117, Budapest, #' Hungary. ISSN 1587-4451 (2012). #' #' B. Cloteaux, Is This for Real? Fast Graphicality Testing, *Comput. Sci. Eng.* 17, 91 (2015). @@ -111,11 +111,11 @@ is_degseq <- function(out.deg, in.deg = NULL) { #' are not. \sQuote{all} means that both loop edges and multiple edges are #' allowed. #' @return A logical scalar. -#' @author Tamas Nepusz \email{ntamas@@gmail.com} +#' @author Tamás Nepusz \email{ntamas@@gmail.com} #' @references Hakimi SL: On the realizability of a set of integers as degrees #' of the vertices of a simple graph. *J SIAM Appl Math* 10:496-506, 1962. #' -#' PL Erdos, I Miklos and Z Toroczkai: A simple Havel-Hakimi type algorithm to +#' PL Erdős, I Miklós and Z Toroczkai: A simple Havel-Hakimi type algorithm to #' realize graphical degree sequences of directed graphs. *The Electronic #' Journal of Combinatorics* 17(1):R66, 2010. #' @keywords graphs diff --git a/R/games.R b/R/games.R index 96d23fed0b..49e53b4393 100644 --- a/R/games.R +++ b/R/games.R @@ -459,7 +459,7 @@ aging.prefatt.game <- function(n, pa.exp, aging.exp, m = NULL, aging.bin = 300, #' `start.graph`. #' @return A graph object. #' @author Gabor Csardi \email{csardi.gabor@@gmail.com} -#' @references Barabasi, A.-L. and Albert R. 1999. Emergence of scaling in +#' @references Barabási, A.-L. and Albert R. 1999. Emergence of scaling in #' random networks *Science*, 286 509--512. #' #' de Solla Price, D. J. 1965. Networks of Scientific Papers *Science*, @@ -1604,7 +1604,7 @@ cit_cit_types <- function(...) constructor_spec(sample_cit_cit_types, ...) #' Bipartite random graphs #' -#' Generate bipartite graphs using the Erdos-Renyi model +#' Generate bipartite graphs using the Erdős-Rényi model #' #' Similarly to unipartite (one-mode) networks, we can define the \eqn{G(n,p)}, and #' \eqn{G(n,m)} graph classes for bipartite graphs, via their generating process. @@ -1871,7 +1871,7 @@ dot_product <- function(...) constructor_spec(sample_dot_product, ...) #' A graph with subgraphs that are each a random graph. #' -#' Create a number of Erdos-Renyi random graphs with identical parameters, and +#' Create a number of Erdős-Rényi random graphs with identical parameters, and #' connect them with the specified number of edges. #' #' @section Examples: @@ -2131,8 +2131,8 @@ sample_forestfire <- forest_fire_game_impl #' graph (the adjacency matrix being used as a vector). #' @param p A numeric scalar, the probability of an edge between two #' vertices, it must in the open (0,1) interval. The default is the empirical -#' edge density of the graph. If you are resampling an Erdos-Renyi graph and -#' you know the original edge probability of the Erdos-Renyi model, you should +#' edge density of the graph. If you are resampling an Erdős-Rényi graph and +#' you know the original edge probability of the Erdős-Rényi model, you should #' supply that explicitly. #' @param permutation A numeric vector, a permutation vector that is #' applied on the vertices of the first graph, to get the second graph. If @@ -2143,7 +2143,7 @@ sample_forestfire <- forest_fire_game_impl #' matrix entries is a pair of correlated Bernoulli random variables. #' #' @references Lyzinski, V., Fishkind, D. E., Priebe, C. E. (2013). Seeded -#' graph matching for correlated Erdos-Renyi graphs. +#' graph matching for correlated Erdős-Rényi graphs. #' #' @family games #' @export @@ -2178,7 +2178,7 @@ sample_correlated_gnp <- correlated_game_impl #' correlated with `corr`. #' #' @references Lyzinski, V., Fishkind, D. E., Priebe, C. E. (2013). Seeded -#' graph matching for correlated Erdos-Renyi graphs. +#' graph matching for correlated Erdős-Rényi graphs. #' #' @keywords graphs #' @family games diff --git a/R/igraph-package.R b/R/igraph-package.R index 07e28f7531..a342371866 100644 --- a/R/igraph-package.R +++ b/R/igraph-package.R @@ -99,7 +99,7 @@ NULL #' probably the best choices. #' #' The igraph package includes some classic random graphs like the -#' Erdos-Renyi GNP and GNM graphs ([sample_gnp()], [sample_gnm()]) and +#' Erdős-Rényi GNP and GNM graphs ([sample_gnp()], [sample_gnm()]) and #' some recent popular models, like preferential attachment #' ([sample_pa()]) and the small-world model #' ([sample_smallworld()]). diff --git a/man/aaa-igraph-package.Rd b/man/aaa-igraph-package.Rd index 512cec4617..6b25c86dac 100644 --- a/man/aaa-igraph-package.Rd +++ b/man/aaa-igraph-package.Rd @@ -70,7 +70,7 @@ To create graphs from field data, \code{\link[=graph_from_edgelist]{graph_from_e probably the best choices. The igraph package includes some classic random graphs like the -Erdos-Renyi GNP and GNM graphs (\code{\link[=sample_gnp]{sample_gnp()}}, \code{\link[=sample_gnm]{sample_gnm()}}) and +Erdős-Rényi GNP and GNM graphs (\code{\link[=sample_gnp]{sample_gnp()}}, \code{\link[=sample_gnm]{sample_gnm()}}) and some recent popular models, like preferential attachment (\code{\link[=sample_pa]{sample_pa()}}) and the small-world model (\code{\link[=sample_smallworld]{sample_smallworld()}}). diff --git a/man/is_degseq.Rd b/man/is_degseq.Rd index 0e5d8708b1..da1c352a91 100644 --- a/man/is_degseq.Rd +++ b/man/is_degseq.Rd @@ -31,8 +31,8 @@ is_degseq(degree(g)) is_graphical(degree(g)) } \references{ -Z Kiraly, Recognizing graphic degree sequences and generating -all realizations. TR-2011-11, Egervary Research Group, H-1117, Budapest, +Z Király, Recognizing graphic degree sequences and generating +all realizations. TR-2011-11, Egerváry Research Group, H-1117, Budapest, Hungary. ISSN 1587-4451 (2012). B. Cloteaux, Is This for Real? Fast Graphicality Testing, \emph{Comput. Sci. Eng.} 17, 91 (2015). @@ -46,7 +46,7 @@ Other graphical degree sequences: \code{\link{is_graphical}()} } \author{ -Tamas Nepusz \email{ntamas@gmail.com} and Szabolcs Horvat \email{szhorvat@gmail.com} +Tamás Nepusz \email{ntamas@gmail.com} and Szabolcs Horvát \email{szhorvat@gmail.com} } \concept{graphical degree sequences} \keyword{graphs} diff --git a/man/is_graphical.Rd b/man/is_graphical.Rd index bdbdc81464..f963422e9c 100644 --- a/man/is_graphical.Rd +++ b/man/is_graphical.Rd @@ -45,7 +45,7 @@ is_graphical(degree(g)) Hakimi SL: On the realizability of a set of integers as degrees of the vertices of a simple graph. \emph{J SIAM Appl Math} 10:496-506, 1962. -PL Erdos, I Miklos and Z Toroczkai: A simple Havel-Hakimi type algorithm to +PL Erdős, I Miklós and Z Toroczkai: A simple Havel-Hakimi type algorithm to realize graphical degree sequences of directed graphs. \emph{The Electronic Journal of Combinatorics} 17(1):R66, 2010. } @@ -54,7 +54,7 @@ Other graphical degree sequences: \code{\link{is_degseq}()} } \author{ -Tamas Nepusz \email{ntamas@gmail.com} +Tamás Nepusz \email{ntamas@gmail.com} } \concept{graphical degree sequences} \keyword{graphs} diff --git a/man/sample_bipartite.Rd b/man/sample_bipartite.Rd index 3af55bc085..2dce0355e9 100644 --- a/man/sample_bipartite.Rd +++ b/man/sample_bipartite.Rd @@ -48,7 +48,7 @@ is ignored for undirected graphs.} A bipartite igraph graph. } \description{ -Generate bipartite graphs using the Erdos-Renyi model +Generate bipartite graphs using the Erdős-Rényi model } \details{ Similarly to unipartite (one-mode) networks, we can define the \eqn{G(n,p)}, and diff --git a/man/sample_correlated_gnp.Rd b/man/sample_correlated_gnp.Rd index afd73d3bb9..06e64fa5eb 100644 --- a/man/sample_correlated_gnp.Rd +++ b/man/sample_correlated_gnp.Rd @@ -21,8 +21,8 @@ graph (the adjacency matrix being used as a vector).} \item{p}{A numeric scalar, the probability of an edge between two vertices, it must in the open (0,1) interval. The default is the empirical -edge density of the graph. If you are resampling an Erdos-Renyi graph and -you know the original edge probability of the Erdos-Renyi model, you should +edge density of the graph. If you are resampling an Erdős-Rényi graph and +you know the original edge probability of the Erdős-Rényi model, you should supply that explicitly.} \item{permutation}{A numeric vector, a permutation vector that is @@ -51,7 +51,7 @@ g2 } \references{ Lyzinski, V., Fishkind, D. E., Priebe, C. E. (2013). Seeded -graph matching for correlated Erdos-Renyi graphs. +graph matching for correlated Erdős-Rényi graphs. \url{https://arxiv.org/abs/1304.7844} } \seealso{ diff --git a/man/sample_correlated_gnp_pair.Rd b/man/sample_correlated_gnp_pair.Rd index 98ef5cc1c3..da95e5c7c3 100644 --- a/man/sample_correlated_gnp_pair.Rd +++ b/man/sample_correlated_gnp_pair.Rd @@ -44,7 +44,7 @@ cor(as.vector(gg[[1]][]), as.vector(gg[[2]][])) } \references{ Lyzinski, V., Fishkind, D. E., Priebe, C. E. (2013). Seeded -graph matching for correlated Erdos-Renyi graphs. +graph matching for correlated Erdős-Rényi graphs. \url{https://arxiv.org/abs/1304.7844} } \seealso{ diff --git a/man/sample_islands.Rd b/man/sample_islands.Rd index a3e70db73d..902967f8f0 100644 --- a/man/sample_islands.Rd +++ b/man/sample_islands.Rd @@ -20,7 +20,7 @@ island.} An igraph graph. } \description{ -Create a number of Erdos-Renyi random graphs with identical parameters, and +Create a number of Erdős-Rényi random graphs with identical parameters, and connect them with the specified number of edges. } \section{Examples}{ diff --git a/man/sample_pa.Rd b/man/sample_pa.Rd index d7945e8a0e..e051038bf8 100644 --- a/man/sample_pa.Rd +++ b/man/sample_pa.Rd @@ -119,7 +119,7 @@ degree_distribution(g) } \references{ -Barabasi, A.-L. and Albert R. 1999. Emergence of scaling in +Barabási, A.-L. and Albert R. 1999. Emergence of scaling in random networks \emph{Science}, 286 509--512. de Solla Price, D. J. 1965. Networks of Scientific Papers \emph{Science},