-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathauxiliary_loss.py
159 lines (132 loc) · 6.28 KB
/
auxiliary_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import datetime
import os
import io
from tensorflow import keras
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
from datetime import datetime
from utils import prepareData
def main():
DATA_DIR = "data/mini_data"
CATEGORIES = os.listdir(DATA_DIR)
img_size = img_h = img_w = 64
train_x, test_x, train_y, test_y = \
prepareData(
img_folder=DATA_DIR,
img_size=img_size,
sample_size=-128,
normalize=True)
epoch = len(train_x)
# Network construction
# Encoder
input_img = layers.Input(shape=(img_h, img_w, 1))
x = layers.Conv2D(32, (5, 5), activation='relu', padding='same')(input_img)
x = layers.Conv2D(32, (5, 5), activation='relu', padding='same')(x)
x = layers.Conv2D(32, (5, 5), activation='relu', padding='same')(x)
x = layers.Conv2D(32, (5, 5), strides=(2, 2), activation='relu', padding='same')(x)
x = layers.Conv2D(64, (5, 5), activation='relu', padding='same')(x)
x = layers.Conv2D(64, (5, 5), activation='relu', padding='same')(x)
x = layers.Conv2D(64, (5, 5), activation='relu', padding='same')(x)
x = layers.Conv2D(32, (5, 5), strides=(2, 2), activation='relu', padding='same')(x)
x = layers.Conv2D(128, (5, 5), activation='relu', padding='same')(x)
x = layers.Conv2D(128, (5, 5), activation='relu', padding='same')(x)
x = layers.Conv2D(128, (5, 5), activation='relu', padding='same')(x)
x = layers.Flatten()(x)
mid_size = img_size // 4
encoder = layers.Dense(mid_size ** 2, activation='relu', name='encoder_output')(x)
# Decoder
x = layers.Dense(128 * (mid_size ** 2), activation='relu')(encoder)
x = layers.Reshape((mid_size, mid_size, 128))(x)
x = layers.Conv2DTranspose(128, (5, 5), activation='relu', padding='same')(x)
x = layers.Conv2DTranspose(128, (5, 5), activation='relu', padding='same')(x)
x = layers.Conv2DTranspose(128, (5, 5), strides=2, activation='relu', padding='same')(x)
x = layers.Conv2DTranspose(64, (5, 5), activation='relu', padding='same')(x)
x = layers.Conv2DTranspose(64, (5, 5), activation='relu', padding='same')(x)
x = layers.Conv2DTranspose(64, (5, 5), strides=2, activation='relu', padding='same')(x)
x = layers.Conv2DTranspose(64, (5, 5), activation='relu', padding='same')(x)
x = layers.Conv2DTranspose(64, (5, 5), activation='relu', padding='same')(x)
# AutoEncoder output
decoder = layers.Conv2D(1, (5, 5), activation='relu', padding='same', name="decoder_output")(x)
# ANN connected to the encoder
x = layers.Flatten()(encoder)
x = layers.Dense(32, activation='relu', name="Reg_nn")(x)
x = layers.Dense(32, activation='relu')(x)
x = layers.Dense(32, activation='relu')(x)
x = layers.Dropout(0.4)(x)
# Main output
main_output = layers.Dense(len(CATEGORIES),
activation=tf.keras.activations.softmax,
name='main_output')(x)
model = keras.Model(input_img, [main_output, decoder])
decoder_model = keras.Model(input_img, decoder)
initial_learning_rate_main = 1e-4
lr_schedule_main = keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate_main,
decay_steps=epoch * 5,
decay_rate=1e-1,
staircase=True)
model.compile(optimizer=keras.optimizers.Adam(learning_rate=lr_schedule_main),
metrics={'main_output': 'accuracy'},
loss={'main_output': keras.losses.sparse_categorical_crossentropy,
'decoder_output': tf.keras.losses.mse},
loss_weights={'main_output': 1, 'decoder_output': 1})
log_dir = os.path.join("tf_logs", "AL", datetime.now().strftime("%Y%m%d-%H%M%S/"))
os.makedirs(os.path.join(log_dir, 'encoder'))
tensorboard_callback = keras.callbacks.TensorBoard(log_dir=log_dir, profile_batch=0)
save_callback = keras.callbacks.ModelCheckpoint(log_dir, monitor='val_main_output_accuracy', verbose=True,
save_best_only=True,
save_weights_only=False, mode='max', save_freq='epoch')
print(model.summary())
file_writer = tf.summary.create_file_writer(log_dir)
# Use the model to display the state of the autoencoder from the validation dataset.
def log_img_pred(epoch, logs):
test_img = decoder_model.predict(test_x[2:3, :, :, :])
test_img = test_img.reshape((1, img_size, img_size, 1))
fig, ax = plt.subplots(1, 2)
ax[0].imshow(test_x[2, :, :, :].squeeze())
ax[1].imshow(test_img.squeeze())
buf = io.BytesIO()
plt.savefig(buf, format='png')
plt.close(fig)
buf.seek(0)
# Convert PNG buffer to TF image
image = tf.image.decode_png(buf.getvalue(), channels=4)
# Add the batch dimension
image = tf.expand_dims(image, 0)
# Log the confusion matrix as an image summary.
with file_writer.as_default():
tf.summary.image("Test prediction", image, step=epoch)
# Define the per-epoch callback.
cm_callback = keras.callbacks.LambdaCallback(on_epoch_end=log_img_pred)
model.fit(x=train_x,
y=[train_y, train_x],
batch_size=128,
epochs=200,
use_multiprocessing=True,
validation_data=(test_x, [test_y, test_x]),
callbacks=[tensorboard_callback,
save_callback,
cm_callback
])
img = test_x[0, :, :, 0].reshape((img_h, img_w))
showTest(model, img)
def showTest(model: keras.Model, img: np.ndarray):
h, w = img.shape
pred = model.predict(img.reshape((1, h, w, 1)))
fig, axs = plt.subplots(1, 2)
axs[0].imshow(img)
axs[1].imshow(pred[1].squeeze())
plt.show()
if __name__ == "__main__":
if 0:
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
else:
physical_devices = tf.config.experimental.list_physical_devices('GPU')
assert len(physical_devices) > 0, "Not enough GPU hardware devices available"
config = tf.config.experimental.set_memory_growth(physical_devices[0], True)
main()