-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPerceptron.py
31 lines (23 loc) · 1003 Bytes
/
Perceptron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import tensorflow as tf
import numpy as np
class Perceptron:
def __init__(self, input_num: int, class_num: int):
self.input_num = input_num
self.class_num = class_num
self.weights, self.biases = self.getWeights()
def getWeights(self) -> (dict, dict):
# Store layers weight & bias
weights = {
'out': tf.Variable(tf.random.truncated_normal([self.input_num, self.class_num], stddev=0.1))
}
biases = {
'out': tf.Variable(tf.constant(0.1, shape=[self.class_num]))
}
tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, weights['out'])
tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, biases['out'])
return weights, biases
# Define the neural network
def getModel(self, x: np.ndarray):
# Output fully connected layer with a neuron for each class
out_layer = tf.add(tf.matmul(x, self.weights['out']), self.biases['out'])
return out_layer