-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprepare_ip_text.py
executable file
·66 lines (58 loc) · 1.56 KB
/
prepare_ip_text.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#!/usr/bin/python
import pandas as pd
import numpy as np
import json
from collections import Counter
import re
import codecs
import sys
training_text_fname = sys.argv[1]
training_labels_fname = sys.argv[2]
test_text_fname = sys.argv[3]
test_labels_fname = sys.argv[4]
number_training = sys.argv[5]
number_test = sys.argv[6]
print "Start loading data"
with open('yelp_academic_dataset_review.json', 'r') as f:
review_data = pd.DataFrame(json.loads(line) for line in f)
training_data = review_data.ix[:2000000]
test_data = review_data.ix[2000001:]
print "End loading data"
f1 = codecs.open(training_text_fname, 'w', encoding='utf-8')
f2 = codecs.open(training_labels_fname, 'w', encoding='utf-8')
ind = 0
stars = 1
grouped = training_data.groupby('stars')
for name, group in grouped:
for review in group['text']:
review = review.replace('\n', ' ')
f1.write(review)
f1.write('\n')
f2.write(str(stars))
f2.write('\n')
ind +=1
if ind == int(number_training):
ind = 0
break
stars += 1
f1.close()
f2.close()
f1 = codecs.open(test_text_fname, 'w', encoding='utf-8')
f2 = codecs.open(test_labels_fname, 'w', encoding='utf-8')
ind = 0
stars = 1
grouped = test_data.groupby('stars')
for name, group in grouped:
for review in group['text']:
review = review.replace('\n', ' ')
f1.write(review)
f1.write('\n')
f2.write(str(stars))
f2.write('\n')
ind +=1
if ind == int(number_test):
ind = 0
break
stars += 1
f1.close()
f2.close()