-
-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathtransformers_api.py
348 lines (300 loc) · 14.3 KB
/
transformers_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
# transformers_api.py
from transformers import (
Qwen2VLForConditionalGeneration,
Qwen2VLProcessor,
AutoConfig,
AutoModelForCausalLM,
AutoProcessor,
BitsAndBytesConfig,
GenerationConfig,
StopStringCriteria,
set_seed,
)
from typing import List, Union, Optional, Dict, Any
from PIL import Image
from io import BytesIO
import base64
import torch
import logging
import os
import re
from folder_paths import models_dir
from unittest.mock import patch
from transformers.dynamic_module_utils import get_imports
import json
import importlib
import importlib.util
import comfy.model_management as mm
from torchvision.transforms import functional as TF
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
class TransformersModelManager:
def __init__(self):
self.models_dir = models_dir
self.models = {}
self.processors = {}
self.loaded_models = {}
self.device = mm.get_torch_device()
self.offload_device = mm.unet_offload_device()
self.model_path = None
self.model_load_args = {
"device_map": self.device,
"torch_dtype": "auto",
"trust_remote_code": True
}
def download_model_if_not_exists(self, model_name):
from huggingface_hub import snapshot_download
model_dir = model_name.rsplit('/', 1)[-1]
model_path = os.path.join(self.models_dir, "LLM", model_dir)
if not os.path.exists(model_path):
logger.info(f"Downloading model '{model_name}' to: {model_path}")
try:
snapshot_download(
repo_id=model_name,
local_dir=model_path,
local_dir_use_symlinks=False,
token=os.getenv("HUGGINGFACE_TOKEN") or ""
)
logger.info(f"Model '{model_name}' downloaded successfully.")
except Exception as e:
logger.error(f"An error occurred while downloading the model '{model_name}': {e}")
return None
else:
logger.info(f"Model '{model_name}' already exists at: {model_path}")
return model_path
def hash_seed(self, seed):
import hashlib
seed_bytes = str(seed).encode('utf-8')
hash_object = hashlib.sha256(seed_bytes)
hashed_seed = int(hash_object.hexdigest(), 16)
return hashed_seed % (2**32)
def load_model(self, model: str, precision: str, attention: str) -> Optional[Dict[str, Any]]:
if model in self.loaded_models:
logger.info(f"Model '{model}' already loaded and cached.")
return self.loaded_models[model]
if precision == "int8":
quant_config = BitsAndBytesConfig(load_in_8bit=True)
dtype = torch.bfloat16 if 'mpt' in model.lower() or 'llama2' in model.lower() else torch.float16
elif precision == "int4":
quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16
)
dtype = torch.bfloat16
else:
quant_config = None
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}.get(precision, torch.float16)
model_path = self.download_model_if_not_exists(model)
if model_path is None:
logger.error(f"Model path for '{model}' could not be determined.")
return None
config_path = os.path.join(model_path, "config.json")
if not os.path.exists(config_path):
logger.error(f"Config file not found at: {config_path}")
return None
device = self.device
try:
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
architectures = config.architectures
if architectures and isinstance(architectures, list) and len(architectures) > 0:
model_class = architectures[0]
try:
common_args = {
"pretrained_model_name_or_path": model_path,
"attn_implementation": attention,
"torch_dtype": dtype,
"trust_remote_code": True,
"device_map": device,
}
if quant_config:
common_args["quantization_config"] = quant_config
if "florence" in model.lower() or 'florence' in model_path.lower() or "deepseek" in model.lower() or 'deepseek' in model_path.lower():
with patch("transformers.dynamic_module_utils.get_imports", self.fixed_get_imports):
loaded_model = AutoModelForCausalLM.from_pretrained(**common_args)
elif "pixtral" in model.lower():
from transformers import LlavaForConditionalGeneration
loaded_model = LlavaForConditionalGeneration.from_pretrained(**common_args, use_safetensors=True)
elif "molmo" in model.lower():
loaded_model = AutoModelForCausalLM.from_pretrained(**common_args, use_safetensors=True)
elif "qwen2-vl" in model.lower():
min_pixels = 224 * 224
max_pixels = 1024 * 1024
processor = Qwen2VLProcessor.from_pretrained(
model_path,
min_pixels=min_pixels,
max_pixels=max_pixels,
trust_remote_code=True
)
loaded_model = Qwen2VLForConditionalGeneration.from_pretrained(**common_args, use_safetensors=True)
else:
loaded_model = model_class.from_pretrained(**common_args)
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
except AttributeError:
logger.warning(f"AttributeError encountered. Forcing trust_remote_code=True for model: {model}")
loaded_model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, device_map=device)
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
except Exception as e:
logger.error(f"Error loading model from config.json: {e}")
return None
self.loaded_models[model] = {'model': loaded_model, 'processor': processor, 'dtype': dtype}
logger.info(f"Model '{model}' loaded successfully and cached.")
return self.loaded_models[model]
async def send_transformers_request(
self,
model_name,
system_message,
user_message,
messages,
max_new_tokens,
images,
temperature,
top_p,
top_k,
stop_strings_list,
repetition_penalty,
seed,
keep_alive=True,
precision="fp16",
attention="sdpa",
):
try:
if model_name in self.loaded_models:
logger.info(f"Model '{model_name}' already loaded and cached.")
model_data = self.loaded_models[model_name]
else:
model_data = self.load_model(model_name, precision=precision, attention=attention)
if model_data is None:
raise ValueError(f"Failed to load model '{model_name}'.")
model = model_data['model']
processor = model_data['processor']
tokenizer = processor.tokenizer
dtype = model_data['dtype']
if seed is not None:
logger.info(f"Setting seed: {seed}")
set_seed(self.hash_seed(seed))
# Convert to PIL Images if necessary
pil_images = []
if isinstance(images, torch.Tensor):
images = images.permute(0, 3, 1, 2)
for img in images:
pil_images.append(TF.to_pil_image(img))
elif isinstance(images, list) and all(isinstance(img, Image.Image) for img in images):
pil_images = images
else:
raise ValueError("Images must be either a torch.Tensor or a list of PIL Images")
logger.debug(f"Number of images processed: {len(pil_images)}")
# Construct standardized messages
formatted_messages = self.construct_messages(system_message, user_message, messages, pil_images)
logger.debug(f"Formatted messages: {formatted_messages}")
if 'florence' in model_name.lower():
# Process input for Florence models
generated_texts = []
responses = []
images_pil = []
for pil_image in pil_images:
inputs = processor(images=[pil_image], text=user_message, return_tensors="pt", do_rescale=False).to(dtype).to(model.device)
logger.debug(f"Inputs shape: {inputs['pixel_values'].shape}, dtype: {inputs['pixel_values'].dtype}")
logger.debug(f"Input IDs shape: {inputs['input_ids'].shape}, dtype: {inputs['input_ids'].dtype}")
with torch.random.fork_rng(devices=[model.device]):
torch.random.manual_seed(seed)
try:
generated_ids = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
num_beams=3,
do_sample=True,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
)
except Exception as e:
logger.error(f"Error during model.generate: {e}")
raise
results = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
generated_text = self.clean_results(results, user_message)
response = processor.post_process_generation(generated_text, task=user_message, image_size=pil_image.size)
generated_texts.append(generated_text)
responses.append(response)
# images_pil.append(pil_image)
result = (generated_texts, responses)
else:
# Handle other transformers models
inputs = processor(formatted_messages, return_tensors="pt", padding=True).to(model.device)
# Convert inputs to the correct dtype
inputs = {k: v.to(dtype=torch.long if v.dtype == torch.int64 else dtype) if torch.is_tensor(v) else v for k, v in inputs.items()}
with torch.no_grad():
try:
outputs = model.generate(
**inputs,
generation_config=GenerationConfig(
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
),
stopping_criteria=[StopStringCriteria(tokenizer=tokenizer, stop_strings=stop_strings_list)],
)
except Exception as e:
logger.error(f"Error during model.generate: {e}")
raise
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0]
result = generated_text
if not keep_alive:
self.unload_model(model_name)
return result
except Exception as e:
logger.error(f"Error in Transformers API request: {e}", exc_info=True)
return str(e)
def clean_results(self, results, task):
if task == 'ocr_with_region':
clean_results = re.sub(r'</?s>|<[^>]*>', '\n', results)
clean_results = re.sub(r'\n+', '\n', clean_results)
else:
clean_results = results.replace('</s>', '').replace('<s>', '')
return clean_results
def construct_messages(self, system_message, user_message, messages, pil_images):
"""Constructs a standardized message format for transformer models."""
formatted_messages = []
if system_message:
formatted_messages.append({"role": "system", "content": system_message})
for msg in messages:
formatted_messages.append({"role": msg['role'], "content": msg['content']})
if user_message:
formatted_messages.append({
"role": "user",
"content": [
{"type": "text", "text": user_message},
*[{"type": "image", "image": img} for img in pil_images]
]
})
return formatted_messages
def unload_model(self, model_name: str):
print(f"Offloading model: {model_name}")
if model_name in self.loaded_models:
model = self.loaded_models[model_name]['model']
model.to(self.offload_device)
del self.loaded_models[model_name]
mm.soft_empty_cache()
else:
print(f"Model {model_name} not found in loaded models.")
@classmethod
def fixed_get_imports(cls, filename: Union[str, os.PathLike], *args, **kwargs) -> List[str]:
"""Remove 'flash_attn' from imports if present."""
try:
if not str(filename).endswith("modeling_florence2.py") or not str(filename).endswith("modeling_deepseek.py"):
return get_imports(filename)
imports = get_imports(filename)
if "flash_attn" in imports:
imports.remove("flash_attn")
return imports
except Exception as e:
print(f"No flash_attn import to remove: {e}")
return get_imports(filename)
# Initialize a global manager instance
_transformers_manager = TransformersModelManager()