-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_descriptions.py
86 lines (65 loc) · 3.18 KB
/
generate_descriptions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# SPDX-FileCopyrightText: 2024 Idiap Research Institute <[email protected]>
# SPDX-FileContributor: Alina Elena Baia <[email protected]>
#
# SPDX-License-Identifier: CC-BY-NC-SA-4.0
import argparse
import os
import numpy as np
import pandas as pd
from tqdm import tqdm
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration
import torch
from PIL import Image
device = "cuda" if torch.cuda.is_available() else "cpu"
print("device: ", device)
print("loading model...")
model = InstructBlipForConditionalGeneration.from_pretrained("Salesforce/instructblip-vicuna-7b", load_in_8bit = True, device_map={"":0})
processor = InstructBlipProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b")
model.tie_weights()
model.config.text_config.pad_token_id = processor.tokenizer.pad_token_id
print("done loading model")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='./data/dataset_train/')
parser.add_argument("-csv", "--csv_name", help="csv file with the image ids", type=str, default ="./data/dataset_train_info.csv")
parser.add_argument("-output", "--csv_name_output", help="csv file with the generated description", type=str, default ="image_descriptions")
parser.add_argument("-b", "--batch_size", help="batch size", type=int, default=1)
args = parser.parse_args()
if not os.path.exists("./generated_data"):
os.makedirs("./generated_data")
dataset_dir = args.dataset
csv_name = args.csv_name
csv_name_output = args.csv_name_output
batch_size = args.batch_size
dataset_urls = pd.read_csv(csv_name)
images_name = list(dataset_urls["image_name"])
# print(dataset_urls.head())
descriptions_dict = {}
prompt = "Describe this image as detailed as possible."
nr_iterations = int(np.ceil(len(images_name)/batch_size))
print("generating descriptions...")
for i in tqdm(range(nr_iterations)):
start_index = i*batch_size
end_index = (i*batch_size) + batch_size
images_to_describe = [Image.open(os.path.join(dataset_dir, img_path)).convert("RGB") for img_path in images_name[start_index:end_index]]
inputs = processor(images=images_to_describe, text=[prompt]*batch_size, return_tensors="pt").to(device)
outputs = model.generate(
**inputs,
do_sample=True,
num_beams=5,
max_length=256,
min_length=1,
top_p=0.9,
repetition_penalty=1.5,
length_penalty=1.0,
temperature=1,
)
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)
for idx,gt in enumerate(generated_text):
img_name = images_name[start_index:end_index][idx]
descriptions_dict[img_name] = {"image_name": images_name[start_index:end_index][idx],
"description": gt }
print("done generating descriptions.")
descriptions_dict_df = pd.DataFrame.from_dict(descriptions_dict, orient="index").reset_index().drop(columns=['index'])
descriptions_dict_df = pd.merge(descriptions_dict_df, dataset_urls, on="image_name")
descriptions_dict_df.to_csv("./generated_data/{}.csv".format(csv_name_output), encoding = "utf-8", index=False)