-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseinfeld_app.py
52 lines (37 loc) · 1.25 KB
/
seinfeld_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import streamlit as st
from scipy import spatial
import numpy as np
from app import logic as lg
st.set_page_config(page_icon="🎤",
page_title="Seinfeld Searcher",
layout="centered",)
st.title("Seinfeld")
df = lg.load_seinfeld_embeddings()
episodes = df.index.tolist()
TREE = spatial.KDTree(df.values)
col1, _plus, col2 = st.columns([5,1,5])
# , _equals, col3 = st.columns([5,2,5,2,5])
with col1:
ep1 = st.selectbox("Select an Episode", options=episodes, key="one")
with _plus:
st.markdown("#### +")
with col2:
ep2 = st.selectbox("Select an Episode", options=episodes, key="two")
# with _equals:
# st.markdown("#### =")
# with col3:
_, cntr, _ = st.columns([2,5,2])
with cntr:
# _sum = df.loc[ep1].values + df.loc[ep2].values
v1, v2 = df.loc[ep1].values, df.loc[ep2].values
_mean = np.mean(np.array([v1, v2]), axis=0)
print(_mean)
print(_mean.shape)
print(type(_mean))
distances, indices = TREE.query(_mean, k=3)
episode_names = [df.iloc[ii].name for ii in indices]
episode_names = [ep for ep in episode_names if ep not in [ep1, ep2]]
st.write(episode_names[0])
# st.write(distances, indices)
# st.write(df.iloc[indices[0]].name)
# st.write(df.iloc[ii].name)