-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimal_extract.py
149 lines (123 loc) · 6 KB
/
optimal_extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from astropy.io import fits
import sys
import matplotlib.pyplot as plt
import numpy as np
from numpy.polynomial.chebyshev import chebval
import scipy.linalg
import os.path
import astropy.stats
import pdb
from constants import HIGH_ERROR, TOP_MARGIN, X_MIN, X_MAX, OPT_EXTRACT_WINDOW, BKD_REG_TOP, BKD_REG_BOT, Y_CENTER, INSTRUMENT, FILTER, SUBARRAY
from scipy.stats import median_abs_deviation
from wave_sol import get_wavelengths
def horne_iteration(image, bkd, spectrum, M, V, badpix, read_noise, n_groups_used, smoothed_profile, sigma=5):
#N is the number of groups used, minus one
V[image == 0] = HIGH_ERROR**2
cols = np.arange(image.shape[1])
model_image = smoothed_profile * spectrum
l = np.arccosh(1 + np.abs(model_image + bkd) / read_noise**2 / 2)
N = n_groups_used - 1
V = 1 / (read_noise**-2 * np.exp(l) * (-N*np.exp(-l*N) + np.exp(2*l)*N + np.exp(l-l*N)*(2+N) - np.exp(l)*(2+N)) / (np.exp(l) - 1)**3 / (np.exp(-l*N) + np.exp(l)))
V[badpix] = HIGH_ERROR**2
#plt.figure(0, figsize=(18,3))
#plt.clf()
#plt.imshow(badpix, aspect='auto')
#plt.show()
z_scores = (image - model_image)/np.sqrt(V)
M = np.array(z_scores**2 < sigma**2, dtype=bool)
V[~M] = HIGH_ERROR**2
original_spectrum = np.copy(spectrum)
spectrum = np.sum(smoothed_profile * image / V, axis=0) / np.sum(smoothed_profile**2 / V, axis=0)
spectrum_variance = np.sum(smoothed_profile, axis=0) / np.sum(smoothed_profile**2 / V, axis=0)
#plt.imshow(z_scores, vmin=-5, vmax=5, aspect='auto')
#plt.show()
return spectrum, spectrum_variance, V, M, z_scores
def optimal_extract(image, bkd, badpix, read_noise, n_groups_used, P, max_iter=10):
#plt.imshow(image, aspect='auto', vmin=0, vmax=20)
#plt.show()
if badpix is None:
badpix = np.zeros(image.shape, dtype=bool)
print("Num badpix", np.sum(badpix))
spectrum = np.sum(image, axis=0)
simple_spectrum = np.copy(spectrum)
V = np.ones(image.shape)
M = np.ones(image.shape, dtype=bool)
counter = 0
while True:
spectrum, spectrum_variance, V, new_M, z_scores = horne_iteration(image, bkd, spectrum, M, V, badpix, read_noise, n_groups_used, P)
#plt.figure(figsize=(16,16))
#plt.imshow(z_scores, vmin=-10, vmax=10)
#plt.figure()
print("Iter, num bad:", counter, np.sum(~new_M))
if np.all(M == new_M) or counter > max_iter: break
M = new_M
counter += 1
print("Final std of z_scores (should be around 1)", np.std(z_scores[M]))
return spectrum, spectrum_variance, z_scores, simple_spectrum
def get_profile(filename="median_image.npy"):
median_image = np.load(filename)[Y_CENTER - OPT_EXTRACT_WINDOW : Y_CENTER + OPT_EXTRACT_WINDOW + 1, X_MIN : X_MAX]
median_spectrum = np.sum(median_image, axis=0)
P = median_image / median_spectrum
P[P < 0] = 0
P /= np.sum(P, axis=0)
return P
def get_positions(filename="positions.txt"):
y_positions = {}
for line in open(filename):
if line[0] == '#': continue
elements = line.split()
filename = elements[0]
integration = int(elements[1])
y = float(elements[2])
if np.isnan(y):
y = 0
y_positions[(filename, integration)] = y
return y_positions
print("Applying optimal extraction")
P = get_profile()
y_positions = get_positions()
for filename in sys.argv[1:]:
with fits.open(filename) as hdul:
assert(hdul[0].header["INSTRUME"] == INSTRUMENT and hdul[0].header["FILTER"] == FILTER and hdul[0].header["SUBARRAY"] == SUBARRAY)
wavelengths = get_wavelengths(hdul[0].header["INSTRUME"], hdul[0].header["FILTER"])
hdulist = [hdul[0], hdul["INT_TIMES"]]
for i in range(len(hdul["SCI"].data)):
print("Processing integration", i)
data = hdul["SCI"].data[i,:,X_MIN:X_MAX]
err = hdul["ERR"].data[i,:,X_MIN:X_MAX]
data[:TOP_MARGIN] = 0
s = np.s_[Y_CENTER - OPT_EXTRACT_WINDOW : Y_CENTER + OPT_EXTRACT_WINDOW + 1, X_MIN : X_MAX]
#Shift profile
shift = y_positions[(filename, i)]
rows = np.arange(P.shape[0])
shifted_P = scipy.interpolate.interp1d(rows, P.T, kind="cubic", bounds_error=False, fill_value=(P[0], P[-1]))(rows + shift).T
spectrum, variance, z_scores, simple_spectrum = optimal_extract(
hdul["SCI"].data[i][s],
hdul["BKD"].data[i][s],
hdul["DQ"].data[i][s] != 0,
hdul["RNOISE"].data[s],
hdul[0].header["NGROUPS"],
shifted_P)
bkd = hdul["BKD"].data[i][s].mean(axis=0)
hdulist.append(fits.BinTableHDU.from_columns([
fits.Column(name="WAVELENGTH", format="D", unit="um", array=wavelengths[X_MIN:X_MAX]),
fits.Column(name="FLUX", format="D", unit="Electrons/group", array=spectrum),
fits.Column(name="ERROR", format="D", unit="Electrons/group", array=np.sqrt(variance)),
fits.Column(name="SIMPLE FLUX", format="D", unit="Electrons/group", array=simple_spectrum),
fits.Column(name="BKD", format="D", unit="Electrons/group", array=bkd)
]))
if i == 20:
z_scores_filename = "zscores_{}_" + filename[:-4] + "png"
plt.clf()
plt.figure(0, figsize=(18,3))
plt.imshow(z_scores, vmin=-5, vmax=5, aspect='auto')
plt.savefig(z_scores_filename.format(i))
#plt.show()
spectra_filename = "optspectra_{}_" + filename[:-4] + "png"
N = hdul[0].header["NGROUPS"] - 1
plt.clf()
plt.plot(spectrum * N, label="Spectra")
plt.plot(variance * N**2, label="Variance")
plt.savefig(spectra_filename.format(i))
output_hdul = fits.HDUList(hdulist)
output_hdul.writeto("optx1d_" + os.path.basename(filename), overwrite=True)