-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathemcee_methods.py
774 lines (601 loc) · 31.4 KB
/
emcee_methods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
import batman
import numpy as np
import emcee
import matplotlib.pyplot as plt
from astropy.stats import sigma_clip
from algorithms import bin_data
import copy
import traceback
import os
import errno
import os.path
import pdb
from scipy.ndimage import uniform_filter
import pywt
from dynesty import NestedSampler
from dynesty import plotting as dyplot
import dynesty.utils
def get_batman_params(t0, per, rp, a, inc, limb_dark_coeffs, \
t_secondary=None, w=0, ecc=0, limb_dark_law="nonlinear"):
params = batman.TransitParams() # object to store transit parameters
params.t0 = t0 # time of inferior conjunction
params.per = per # orbital period
params.rp = rp # planet radius (in units of stellar radii)
params.a = a # semi-major axis (in units of stellar radii)
params.inc = inc # orbital inclination (in degrees)
params.ecc = ecc # eccentricity
params.w = w # longitude of periastron (in degrees)
params.limb_dark = limb_dark_law # limb darkening model
params.u = limb_dark_coeffs
params.fp = 1 #we want eclipse to have no planet light
if t_secondary is None:
params.t_secondary = params.t0 + params.per / 2
else:
params.t_secondary = t_secondary
return params
def get_planet_flux(eclipse_model, batman_params, t0, period, bjds, Fp, C1, D1,
C2=None, D2=None, t_secondary=None, pdb=False):
batman_params = copy.deepcopy(batman_params)
if t_secondary is None:
t_secondary = t0 + period/2.0
w = 2*np.pi/period
#if planet_sine is None:
# planet_sine = np.sin(w*bjds)
#if planet_cosine is None:
# planet_cosine = np.cos(w*bjds)
fine_args = w*(bjds - t_secondary)
coarse_args = np.linspace(fine_args[0], fine_args[-1], 1000)
#import pdb
#pdb.set_trace()
assert(np.max(np.diff(fine_args)) < 2*(coarse_args[1] - coarse_args[0]))
planet_sine = np.sin(coarse_args)
planet_cosine = np.cos(coarse_args)
#planet_sine = np.sin(w*bjds)
#planet_cosine = np.cos(w*bjds)
Lplanet_coarse = Fp + C1*planet_cosine + D1*planet_sine - C1
if C2 is not None:
planet_cosine2 = np.cos(2*coarse_args)
Lplanet_coarse += C2*planet_cosine2 - C2
#assert(False)
#print("C2")
if D2 is not None:
planet_sine2 = np.sin(2*coarse_args)
Lplanet_coarse += D2*planet_sine2
#assert(False)
#print("D2")
Lplanet = np.interp(fine_args, coarse_args, Lplanet_coarse)
Lplanet *= (eclipse_model.light_curve(batman_params) - 1)
#plt.plot(eclipse_model.light_curve(batman_params) - 1)
#plt.show()
if pdb:
pdb.set_trace()
return Lplanet
def plot_fit_and_residuals(phases, binsize, Lobserved, Lexpected, gp=None, bjds=None):
if gp is not None:
Lexpected += gp.predict(Lobserved-Lexpected, bjds, return_cov=False)
residuals = Lobserved - Lexpected
f, axarr = plt.subplots(2, sharex=True)
#f.tight_layout()
fontsize = 10
plt.xlabel("Orbital phase", fontsize=fontsize)
#plt.xlim(-0.6, 0.6)
'''#axarr[0].set_ylim([0.997, 1.001])
#axarr[0].set_ylim([0.985, 1.006])
axarr[0].scatter(bin_data(phases,binsize), bin_data(Lobserved - star_variation, binsize), s=10, c='blue', edgecolors='black')
axarr[0].plot(bin_data(phases,binsize), bin_data(Lexpected - star_variation,binsize), color="r")
axarr[0].ticklabel_format(useOffset=False)
axarr[0].set_ylabel("Relative flux", fontsize=fontsize)'''
#axarr[1].set_ylim([0.9996, 1.0008])
#axarr[1].set_ylim([0.998, 1.006])
axarr[0].scatter(bin_data(phases,binsize), bin_data(Lobserved, binsize), s=10, c='blue', edgecolors='black')
axarr[0].plot(bin_data(phases,binsize), bin_data(Lexpected, binsize), color="r")
axarr[0].set_ylabel("Relative flux", fontsize=fontsize)
axarr[0].ticklabel_format(useOffset=False)
axarr[0].set_ylim([0.9985, max(Lobserved)])
#axarr[0].set_ylim([0.9985, 1.0015])
#axarr[2].set_ylim([-0.0005, 0.0005])
#axarr[2].set_ylim([-0.002, 0.002])
axarr[1].scatter(bin_data(phases,binsize), bin_data(residuals,binsize), s=10, c='blue', edgecolors='black')
axarr[1].set_ylabel("Relative flux", fontsize=fontsize)
def lnprob_transit(params, initial_batman_params, transit_model, bjds,
fluxes, errors, y, x, initial_t0, plot_result=False,
return_residuals=False,
output_filename="white_lightcurve.txt"):
transit_offset, rp, a_star, b, error_factor, Fstar, A, tau, y_coeff, x_coeff, m, q1, q2 = params
#a_star = 7.61
inc = np.arccos(b/a_star) * 180/np.pi
u1 = 2*np.sqrt(q1) * q2
u2 = np.sqrt(q1) * (1 - 2*q2)
if q1 < 0 or q1 > 1 or q2 < 0 or q2 > 1: return -np.inf
batman_params = initial_batman_params
batman_params.u = [u1, u2]
#batman_params.u[1] = u2 # = [initial_batman_params.u[0], u2]
batman_params.t0 = initial_t0 + transit_offset
batman_params.rp = rp
batman_params.a = a_star
batman_params.inc = inc
#now account for prior
if (np.abs(params[0])) >= batman_params.per/4.0:
return -np.inf
if tau <= 1e-3 or tau > 0.1: return -np.inf
if error_factor <= 0 or error_factor >= 5: return -np.inf
if rp <= 0 or rp >= 1 or a_star <= 0 or b <= 0 or b >= 1: return -np.inf
scaled_errors = error_factor * errors
delta_t = bjds - bjds[0]
systematics = Fstar * (1 + A*np.exp(-delta_t/tau) + y_coeff * y + x_coeff * x + m * (bjds - np.mean(bjds)))
astro = transit_model.light_curve(batman_params)
model = systematics * astro
phases = (bjds-batman_params.t0)/batman_params.per
phases -= np.round(np.median(phases))
residuals = fluxes - model
if abs(batman_params.t0 - 59820.937747) < 1e-3:
#assert(False)
residuals[np.logical_and(phases > -0.0024, phases < 0.007)] = 0
result = -0.5*(np.sum(residuals**2/scaled_errors**2 - np.log(1.0/scaled_errors**2)))
if plot_result:
with open(output_filename, "w") as f:
f.write("#time flux uncertainty systematics_model astro_model total_model residuals\n")
for i in range(len(residuals)):
f.write("{} {} {} {} {} {} {}\n".format(
bjds[i], fluxes[i] / Fstar, scaled_errors[i] / Fstar,
systematics[i] / Fstar, astro[i], model[i] / Fstar,
residuals[i] / Fstar))
binsize = len(fluxes) // 100
plot_fit_and_residuals(phases, binsize, fluxes / systematics, astro)
plt.figure()
plt.scatter(bjds, systematics)
print("STD", np.std(residuals))
if np.random.randint(0, 1000) == 0:
print(result/len(residuals), error_factor, np.median(np.abs(residuals)), rp, a_star, inc, b)
if return_residuals:
return result, residuals
if np.isnan(result):
pdb.set_trace()
return result
def lnprob_transit_limited(params, batman_params, transit_model, bjds,
fluxes, errors, y, x, fix_tau=None, plot_result=False,
return_residuals=False, wavelength=None, output_filename="lightcurves.txt"):
batman_params = copy.deepcopy(batman_params)
depth, error_factor, Fstar, A, tau, y_coeff, x_coeff, m, u1, u2 = params
if Fstar <= 0:
return -np.inf
if error_factor <= 0: return -np.inf
if depth <= 0 or depth >= 1: return -np.inf
if tau < 0 or tau > 0.1: return -np.inf
if fix_tau is not None:
tau = fix_tau
#if q1 <= 0 or q1 >= 1 or q2 <= 0 or q2 >= 1: return -np.inf
#q1 = 0.0334
#q2 = 0.445
#q1 = 0.050
#q2 = 0.08
#q1 = 0.04
#q1_init = (batman_params.u[0] + batman_params.u[1])**2
#q2_init = 0.5 * batman_params.u[0] / (batman_params.u[0] + batman_params.u[1])
#u1 = 2*np.sqrt(q1) * q2
#u2 = np.sqrt(q1) * (1 - 2*q2)
rp = np.sqrt(depth)
#lnprior = -0.5 * ((q1 - q1_init)**2 + (q2 - q2_init)**2) / 0.1**2
lnprior = -0.5 * ((u1 - batman_params.u[0])**2 + (u2 - batman_params.u[1])**2) / 0.1**2
#lnprior = 0
#batman_params.u[1] = u2# = [u1, u2]
#batman_params.u = [u1, u2]
batman_params.rp = rp
delta_t = bjds - bjds[0]
systematics = Fstar * (1 + A*np.exp(-delta_t/tau) + y_coeff * y + x_coeff * x + m * (bjds - np.mean(bjds)))
astro = transit_model.light_curve(batman_params)
model = systematics * astro
residuals = fluxes - model
scaled_errors = errors * error_factor
phases = (bjds-batman_params.t0)/batman_params.per
phases -= np.round(np.median(phases))
if abs(batman_params.t0 - 59820.937747) < 1e-3:
#assert(False)
#residuals[np.logical_and(phases > -0.0024, phases < 0.007)] = 0
residuals[np.logical_and(phases > -5.19e-4, phases < 6.95e-3)] = 0
result = lnprior -0.5*(np.sum(residuals**2/scaled_errors**2 - np.log(1.0/scaled_errors**2)))
if plot_result:
print("lnprob", result)
if not os.path.exists(output_filename):
with open(output_filename, "w") as f:
f.write("#wavelength time flux uncertainty systematics_model astro_model total_model residuals\n")
with open(output_filename, "a") as f:
for i in range(len(residuals)):
f.write("{} {} {} {} {} {} {} {}\n".format(wavelength, bjds[i], fluxes[i] / Fstar, scaled_errors[i] / Fstar,
systematics[i] / Fstar, astro[i], model[i] / Fstar,
residuals[i] / Fstar))
binsize = len(fluxes) // 100
#residuals -= np.mean(residuals)
phases = (bjds-batman_params.t0)/batman_params.per
phases -= np.round(np.median(phases))
plot_fit_and_residuals(phases, binsize, fluxes / systematics, astro)
plt.figure()
plt.scatter(bjds, systematics)
plt.title("systematics")
print("STD of residuals", np.std(residuals))
if np.random.randint(0, 1000) == 0:
print(result/len(residuals), rp**2, np.median(scaled_errors), error_factor, Fstar, np.median(np.abs(residuals)), rp)
#if result/len(residuals) > 4.7:
# Lplanet = get_planet_flux(eclipse_model, batman_params, batman_params.t0, batman_params.per, bjds, Fp, C1, D1, t_secondary=batman_params.t_secondary, pdb=True)
#print(result/len(residuals), Fp, np.median(np.abs(residuals)), rp, a_star, inc, b)
if return_residuals:
return result, residuals
if np.isnan(result):
pdb.set_trace()
print("result")
return result
def lnprob_eclipse(params, initial_batman_params, eclipse_model, bjds,
fluxes, errors, y, x, initial_t_secondary, plot_result=False,
return_residuals=False, max_Fp=0.02,
output_filename="white_lightcurve.txt"):
eclipse_offset, Fp, error_factor, Fstar, A, tau, y_coeff, x_coeff, m = params
#x_coeff = -0.0152
batman_params = initial_batman_params
batman_params.t_secondary = initial_t_secondary + eclipse_offset
#now account for prior
if (np.abs(params[0])) >= batman_params.per/4.0:
return -np.inf
if tau <= 0 or tau > 0.9: return -np.inf
if Fp < 0 or Fp > max_Fp: return -np.inf
if error_factor <= 0 or error_factor >= 5: return -np.inf
scaled_errors = error_factor * errors
delta_t = bjds - bjds[0]
systematics = Fstar * (1 + A*np.exp(-delta_t/tau) + 0*y_coeff * y + x_coeff * x + m * (bjds - np.mean(bjds)))
astro = 1 + get_planet_flux(eclipse_model, batman_params, batman_params.t0, batman_params.per, bjds, Fp, 0, 0, 0, 0, t_secondary=batman_params.t_secondary)
model = systematics * astro
residuals = fluxes - model
result = -0.5*(np.sum(residuals**2/scaled_errors**2 - np.log(1.0/scaled_errors**2)))
if plot_result:
print("lnprob of plotted", result)
with open(output_filename, "w") as f:
f.write("#time flux uncertainty systematics_model astro_model total_model residuals\n")
for i in range(len(residuals)):
f.write("{} {} {} {} {} {} {}\n".format(
bjds[i], fluxes[i] / Fstar, scaled_errors[i] / Fstar,
systematics[i] / Fstar, astro[i], model[i] / Fstar,
residuals[i] / Fstar))
binsize = len(fluxes) // 100
phases = (bjds-batman_params.t0)/batman_params.per
phases -= np.round(np.median(phases))
plot_fit_and_residuals(phases, binsize, fluxes / systematics, astro)
plt.figure()
plt.scatter(bjds, systematics)
print("Residuals STD", np.std(residuals))
if np.random.randint(0, 1000) == 0:
print(result/len(residuals), Fp, error_factor, np.median(np.abs(residuals)))
if return_residuals:
return result, residuals
if np.isnan(result):
pdb.set_trace()
return result
def lnprob_eclipse_limited(params, initial_batman_params, eclipse_model, bjds,
fluxes, errors, y, x, wavelength=None,
plot_result=False,
return_residuals=False, max_Fp=0.02,
output_filename="lightcurves.txt"):
Fp, error_factor, Fstar, A, tau, y_coeff, x_coeff, m = params
batman_params = initial_batman_params
#now account for prior
if (np.abs(params[0])) >= batman_params.per/4.0:
return -np.inf
if tau <= 0.01 or tau > 0.9: return -np.inf
if Fp < -max_Fp or Fp > max_Fp: return -np.inf
if error_factor <= 0 or error_factor >= 5: return -np.inf
scaled_errors = error_factor * errors
delta_t = bjds - bjds[0]
#Hack in x_coeff
center_waves = np.array([5.3645, 5.9735, 6.5825, 7.1915, 7.8005, 8.4095, 9.0185, 9.6275, 10.2365, 10.8455, 11.4545, 12.0635])
#Slopes
#No correction for saturated pixels
#theoretical_x_coeffs = np.array([-0.0062, -0.018, -0.019, -0.020, -0.018, -0.011, -0.015, -0.012, -0.020, -0.021, -0.017, -0.021])
#Opt
theoretical_x_coeffs = np.array([-0.00142, -0.00328, -0.00831, -0.0151, -0.0186, -0.0109, -0.0153, -0.0121, -0.0197, -0.0207, -0.0162, -0.0209])
#GJ 367b
#theoretical_x_coeffs = np.array([-0.033, -0.023, -0.024, -0.017, -0.021, -0.011, -0.013, -0.012, -0.020, -0.020, -0.017, -0.020])
#Simple, window 3
#theoretical_x_coeffs = np.array([-0.0014, -0.0033, -0.0083, -0.015, -0.019, -0.011, -0.015, -0.012, -0.020, -0.021, -0.016, -0.021])
#0th group
#theoretical_x_coeffs = np.array([-0.031, -0.024, -0.016, -0.017, -0.019, -0.010, -0.015, -0.012, -0.021, -0.022, -0.014, -0.027])
curr_theoretical_x_coeff = theoretical_x_coeffs[np.argmin(np.abs(wavelength - center_waves))]
#x_coeff = curr_theoretical_x_coeff
systematics = Fstar * (1 + A*np.exp(-delta_t/tau) + 0*y_coeff * y + x_coeff * x + m * (bjds - np.mean(bjds)))
astro = 1 + get_planet_flux(eclipse_model, batman_params, batman_params.t0, batman_params.per, bjds, Fp, 0, 0, 0, 0, t_secondary=batman_params.t_secondary)
model = systematics * astro
residuals = fluxes - model
phases = (bjds - batman_params.t0) / batman_params.per
phases -= np.round(np.median(phases))
#scaled_errors[phases > 0.544] = 10 #GJ 486b visit 1 only
result = -0.5*(np.sum(residuals**2/scaled_errors**2 - np.log(1.0/scaled_errors**2)))
if plot_result:
print("lnprob of plotted", result)
if not os.path.exists(output_filename):
with open(output_filename, "w") as f:
f.write("#wavelength time flux uncertainty systematics_model astro_model total_model residuals\n")
with open(output_filename, "a") as f:
for i in range(len(residuals)):
f.write("{} {} {} {} {} {} {} {}\n".format(
wavelength, bjds[i], fluxes[i] / Fstar, scaled_errors[i] / Fstar,
systematics[i] / Fstar, astro[i], model[i] / Fstar,
residuals[i] / Fstar))
binsize = len(fluxes) // 100
plot_fit_and_residuals(phases, binsize, fluxes / systematics, astro)
plt.figure()
plt.scatter(bjds, systematics)
print("Residuals STD", np.std(residuals))
if np.random.randint(0, 1000) == 0:
print(result/len(residuals), Fp, error_factor, np.median(np.abs(residuals)))
if return_residuals:
return result, residuals
if np.isnan(result):
pdb.set_trace()
return result
def lnprob(params, initial_batman_params, transit_model, eclipse_model, bjds,
fluxes, errors, y, x, initial_t0,
extra_phase_terms=False, plot_result=False, max_Fp=1,
return_residuals=False, output_filename="white_lightcurve.txt"):
transit_offset = params[0]
eclipse_offset = params[1]
Fp = params[2]
C1 = params[3]
D1 = params[4]
if extra_phase_terms:
C2 = params[5]
D2 = params[6]
end_phase_terms = 7
else:
end_phase_terms = 5
rp, a_star, b, error_factor, Fstar, A, tau, y_coeff, x_coeff, m = params[end_phase_terms:]
inc = np.arccos(b/a_star) * 180/np.pi
batman_params = initial_batman_params
batman_params.t0 = initial_t0 + transit_offset
batman_params.rp = rp
batman_params.a = a_star
batman_params.inc = inc
#batman_params.ecc = np.sqrt(ecosw**2 + esinw**2)
#batman_params.w = 180/np.pi * np.arctan2(esinw, ecosw)
batman_params.t_secondary = initial_t0 + batman_params.per/2 + eclipse_offset
if b <= 0 or b >= 1: return -np.inf
#now account for prior
if (np.abs(params[0])) >= batman_params.per/20.0:
return -np.inf
if (np.abs(params[1])) >= batman_params.per/20.0:
return -np.inf
if Fstar <= 0:
return -np.inf
if tau < 1e-2 or tau > 0.3: return -np.inf
#if one_over_tau < 5 or one_over_tau > 100: return -np.inf
#tau = 1./one_over_tau
if Fp <= 0 or Fp >= max_Fp: return -np.inf
if error_factor <= 0 or error_factor >= 5: return -np.inf
#if rp <= 0 or rp >= 1 or a_star <= 0 or b <= 0 or b >= 1: return -np.inf
lnprior = -0.5 * A**2 / 0.1**2
scaled_errors = error_factor * errors
delta_t = bjds - bjds[0]
systematics = Fstar * (1 + A*np.exp(-delta_t/tau) + y_coeff * y + x_coeff * x + m * (bjds - np.mean(bjds)))
if extra_phase_terms:
Lplanet = get_planet_flux(eclipse_model, batman_params, batman_params.t0, batman_params.per, bjds, Fp, C1, D1, C2, D2, t_secondary=batman_params.t_secondary)
else:
Lplanet = get_planet_flux(eclipse_model, batman_params, batman_params.t0, batman_params.per, bjds, Fp, C1, D1, t_secondary=batman_params.t_secondary)
#if np.min(Lplanet) < 0: return -np.inf
astro = transit_model.light_curve(batman_params) + Lplanet
model = systematics * astro
phases = (bjds - initial_t0) / batman_params.per
phases -= np.round(np.median(phases))
#scaled_errors[np.logical_and(phases > -0.06, phases < -0.011)] = 10
residuals = fluxes - model
#residuals[np.logical_and(phases > -0.3506, phases < -0.3451)] = 0
#residuals[np.logical_and(phases > 0.19879, phases < 0.206)] = 0
result = lnprior -0.5*(np.sum(residuals**2/scaled_errors**2 - np.log(1.0/scaled_errors**2)))
if plot_result:
print("lnprob of plotted", result)
with open(output_filename, "w") as f:
f.write("#time flux uncertainty systematics_model astro_model total_model residuals\n")
for i in range(len(residuals)):
f.write("{} {} {} {} {} {} {}\n".format(bjds[i], fluxes[i] / Fstar, scaled_errors[i] / Fstar,
systematics[i] / Fstar, astro[i], model[i] / Fstar,
residuals[i] / Fstar))
binsize = len(bjds) // 200
phases = (bjds-batman_params.t0)/batman_params.per
phases -= np.round(np.median(phases))
plot_fit_and_residuals(phases, binsize, fluxes / systematics, astro)
plt.figure()
plt.scatter(bjds, Lplanet)
plt.figure()
plt.scatter(bjds[::binsize], uniform_filter(systematics, binsize)[::binsize])
print("STD including & excluding near-transit:", np.std(residuals), np.std(residuals[np.abs(phases) > 0.1]))
if np.random.randint(0, 1000) == 0:
print(result/len(residuals), error_factor, Fp, np.median(np.abs(residuals)), rp)
if return_residuals:
return result, residuals
if np.isnan(result):
print("result")
return result
def norm_lnlike(residuals, sigma_sqr):
return -0.5 * np.sum(residuals**2 / sigma_sqr + np.log(2 * np.pi * sigma_sqr))
def wavelet_lnlike(residuals, sigma_w, sigma_r, gamma=1):
if np.log2(len(residuals)).is_integer():
N = len(residuals)
padded_residuals = np.copy(residuals)
else:
power = np.ceil(np.log2(len(residuals)))
N = int(2**power)
padded_residuals = np.zeros(N)
padded_residuals[0:len(residuals)] = residuals
assert(np.log2(N).is_integer())
level = int(np.log2(N / 2))
result = pywt.wavedec(padded_residuals, 'db2', mode='periodization', level=level)
cA = result[0]
cDs = result[1:]
if gamma == 1:
g_gamma = 1.0 / (2 * np.log(2))
else:
g_gamma = 1.0 / (2**(1-gamma) - 1)
sigma_cA_sqr = sigma_r**2 * 2**(-gamma) * g_gamma + sigma_w**2
lnlike = norm_lnlike(cA, sigma_cA_sqr)
for m in range(1, level + 1):
sigma_cD_sqr = sigma_r**2 * 2**(-gamma*m) + sigma_w**2
lnlike += norm_lnlike(cDs[m-1], sigma_cD_sqr)
return lnlike
def lnprob_limited(params, batman_params, transit_model, eclipse_model, bjds,
fluxes, errors, y, x, initial_t0, fix_tau, extra_phase_terms=False, wavelength=None, plot_result=False, max_Fp=1,
return_residuals=False, output_filename="lightcurves.txt"):
batman_params = copy.deepcopy(batman_params)
Fp = params[0]
C1 = params[1]
D1 = params[2]
if extra_phase_terms:
C2 = params[3]
D2 = params[4]
end_phase_terms = 5
else:
end_phase_terms = 3
rp, error_factor, Fstar, A, tau, y_coeff, x_coeff, m = params[end_phase_terms:]
'''#Hack in x_coeff
center_waves = np.array([5.3645, 5.9735, 6.5825, 7.1915, 7.8005, 8.4095, 9.0185, 9.6275, 10.2365, 10.8455, 11.4545, 12.0635])
theoretical_x_coeffs = np.array([-0.033, -0.023, -0.024, -0.017, -0.021, -0.011, -0.013, -0.013, -0.012, -0.019, -0.020, -0.017, -0.020])
curr_theoretical_x_coeff = theoretical_x_coeffs[np.argmin(np.abs(wavelength - center_waves))]
x_coeff = curr_theoretical_x_coeff'''
if Fstar <= 0:
return -np.inf
if Fp >= max_Fp: return -np.inf
if error_factor <= 0: return -np.inf
if rp <= 0 or rp >= 1: return -np.inf
#if A <= 0: return -np.inf
#if one_over_tau < 5 or one_over_tau > 100: return -np.inf
batman_params.rp = rp
#if tau < 0.01 or tau > 1: return -np.inf
if tau < 0.01 or tau > 0.2: return -np.inf
#if tau_power <= 0 or tau_power > 3: return -np.inf
#tau = 1./one_over_tau
#tau2 = 1./one_over_tau2
#if tau2 > tau/2: return -np.inf
lnprior = 0
#lnprior = -0.5 * A**2 / 0.1**2 #-0.5 * A2**2 / 0.1**2
delta_t = bjds - bjds[0]
#Fix ramp values
#A = 3e-4
#tau = 0.12
systematics = Fstar * (1 + A*np.exp(-delta_t/tau) + y_coeff * y + x_coeff * x + m * (bjds - np.mean(bjds)))
if extra_phase_terms:
Lplanet = get_planet_flux(eclipse_model, batman_params, batman_params.t0, batman_params.per, bjds, Fp, C1, D1, C2, D2, t_secondary=batman_params.t_secondary)
else:
Lplanet = get_planet_flux(eclipse_model, batman_params, batman_params.t0, batman_params.per, bjds, Fp, C1, D1, t_secondary=batman_params.t_secondary)
#if np.min(Lplanet) < 0: return -np.inf
astro = transit_model.light_curve(batman_params) + Lplanet
model = systematics * astro
residuals = fluxes - model
scaled_errors = errors * error_factor
phases = (bjds-batman_params.t0)/batman_params.per
phases -= np.round(np.median(phases))
residuals[np.logical_and(phases > -0.3506, phases < -0.3451)] = 0
#residuals[np.logical_and(phases > -0.28154, phases < -0.246)] = 0
residuals[np.logical_and(phases > 0.19879, phases < 0.206)] = 0
result = lnprior - 0.5*(np.sum(residuals**2/scaled_errors**2 - np.log(1.0/scaled_errors**2)))
if plot_result:
print("lnprob", result)
if not os.path.exists(output_filename):
with open(output_filename, "w") as f:
f.write("#wavelength time flux uncertainty systematics_model astro_model total_model residuals\n")
with open(output_filename, "a") as f:
for i in range(len(residuals)):
f.write("{} {} {} {} {} {} {} {}\n".format(wavelength, bjds[i], fluxes[i] / Fstar, scaled_errors[i] / Fstar,
systematics[i] / Fstar, astro[i], model[i] / Fstar,
residuals[i] / Fstar))
binsize = len(bjds) // 200
#residuals -= np.mean(residuals)
phases = (bjds-batman_params.t0)/batman_params.per
phases -= np.round(np.median(phases))
plot_fit_and_residuals(phases, binsize, fluxes / systematics, astro)
plt.figure()
plt.scatter(bjds, Lplanet)
plt.title("Lplanet")
plt.figure()
plt.scatter(bjds, systematics)
plt.title("systematics")
print(np.std(residuals[phases < -0.09]), np.std(residuals[phases > -0.09]))
if np.random.randint(0, 1000) == 0:
print(result/len(residuals), np.median(scaled_errors), error_factor, Fstar, Fp, np.median(np.abs(residuals)), rp)
#if result/len(residuals) > 4.7:
# Lplanet = get_planet_flux(eclipse_model, batman_params, batman_params.t0, batman_params.per, bjds, Fp, C1, D1, t_secondary=batman_params.t_secondary, pdb=True)
#print(result/len(residuals), Fp, np.median(np.abs(residuals)), rp, a_star, inc, b)
if return_residuals:
return result, residuals
if np.isnan(result):
pdb.set_trace()
print("result")
return result
def get_initial_positions(initial_params, lnprob, lnprob_args, nwalkers):
initial_params = np.array(initial_params)
ndim = len(initial_params)
positions = []
for i in range(nwalkers):
curr_lnprob = -np.inf
curr_pos = None
while np.isinf(curr_lnprob):
curr_pos = initial_params + 1e-2*np.random.randn(ndim) + 1e-2*np.random.randn(ndim)*initial_params
#curr_pos[7] = initial_params[7] + 0.5*np.random.rand()*initial_params[7]
#curr_pos[5] = initial_params[5] + 0.5*np.random.rand()*initial_params[5]
curr_lnprob = lnprob(curr_pos, *lnprob_args)
positions.append(curr_pos)
lnprobs = np.array([lnprob(p, *lnprob_args) for p in positions])
assert(np.sum(np.isinf(lnprobs)) == 0)
return positions
def run_sampler_return_best(sampler, total_runs, output_dir, output_prefix, init_positions, chunk_size=5000):
try:
os.makedirs(output_dir)
except OSError as exception:
if exception.errno != errno.EEXIST:
raise
run_counter = 0
chunk_counter = 0
positions = init_positions
best_lnprob = -np.inf
best_step = None
while run_counter < total_runs:
sampler.reset()
runs_in_chunk = min(total_runs - run_counter, chunk_size)
for i, (positions, lnp, _) in enumerate(sampler.sample(positions, iterations=runs_in_chunk)):
run_counter += 1
if (run_counter + 1) % 10 == 0:
print("Progress: {0}/{1}".format(run_counter + 1, total_runs))
if np.max(sampler.flatlnprobability) > best_lnprob:
index = np.argmax(sampler.flatlnprobability)
best_lnprob = sampler.flatlnprobability[index]
best_step = sampler.flatchain[index]
chain_name = os.path.join(output_dir, output_prefix + str(chunk_counter) + "_chain.npy")
lnprob_name = os.path.join(output_dir, output_prefix + str(chunk_counter) + "_lnprob.npy")
np.save(chain_name, sampler.flatchain)
np.save(lnprob_name, sampler.flatlnprobability)
print("Burn in acceptance fraction for chunk {0}: {1}".format(chunk_counter, np.median(sampler.acceptance_fraction)))
chunk_counter += 1
return best_step
def run_dynesty(lnlike, lnlike_args, prior_transform, num_dim, output_dir, nlive=200):
def dynesty_ln_like(params):
return lnlike(params, *lnlike_args)
sampler = NestedSampler(dynesty_ln_like, prior_transform, num_dim, bound='multi', nlive=nlive)
sampler.run_nested()
result = sampler.results
best_step = result.samples[np.argmax(result.logl)]
normalized_weights = np.exp(result.logwt - np.max(result.logwt))
normalized_weights /= np.sum(normalized_weights)
equal_samples = dynesty.utils.resample_equal(result.samples, normalized_weights)
np.random.shuffle(equal_samples)
equal_logl = np.zeros(len(equal_samples))
for i in range(len(equal_samples)):
index = np.argwhere((result.samples == equal_samples[i]).all(-1))[0,0]
equal_logl[i] = result.logl[index]
return best_step, equal_samples, equal_logl
def run_emcee(lnprob, lnprob_args, initial_params, nwalkers, output_dir, burn_in_runs, production_runs):
ndim = len(initial_params)
positions = get_initial_positions(initial_params, lnprob, lnprob_args, nwalkers)
sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob,
args=lnprob_args)
print("Starting burn-in run")
best_step = run_sampler_return_best(sampler, burn_in_runs, output_dir, "burnin", positions)
latest_positions = [best_step + 1e-4*np.random.randn(ndim)*best_step
for i in range(nwalkers)]
sampler.reset() #Should already be reset, but be safe
print("Resetting...")
print("Starting production run")
best_step = run_sampler_return_best(sampler, production_runs, output_dir, "production", latest_positions)
return best_step, sampler.flatchain, sampler.flatlnprobability