-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathpredict.py
68 lines (53 loc) · 2.24 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import argparse
import numpy as np
from model.one_hot_model import OneHotModel
from model.augmented_model import AugmentedModel
from model.data_processor import DataProcessor
from model.setting import ProposedSetting
DATA_ROOT = os.path.join(os.path.dirname(__file__), "data")
MODEL_ROOT = os.path.join(os.path.dirname(__file__), "trained_model")
def prepare_dataset(dataset_kind):
dp = DataProcessor()
if dataset_kind == "ptb":
dataset = dp.get_ptb(DATA_ROOT, vocab_size=10000)
else:
dataset = dp.get_wiki2(DATA_ROOT, vocab_size=30000)
return dataset
def predict(model_kind, network_size, dataset_kind):
setting = ProposedSetting(network_size, dataset_kind)
dataset = prepare_dataset(dataset_kind)
vocab = dataset.vocab_data()
vocab_size = len(vocab)
sequence_size = 20
test_data = dataset.test_data()
model = None
if model_kind == "onehot":
model = OneHotModel(vocab_size, sequence_size, setting)
elif model_kind == "aug" or model_kind == "tying":
model = AugmentedModel(vocab_size, sequence_size, setting, tying=(model_kind == "tying"))
path = os.path.join(MODEL_ROOT, model.get_name() + ".h5")
model.load(path)
test_seq = np.array(test_data.sample(1).iloc[0].values[0])
model_pred = model.predict(test_seq)
rev_vocab = {v:k for k, v in vocab.items()}
print([rev_vocab[i] for i in test_seq])
for s, p in zip(test_seq, model_pred):
print("{} -> {}".format(rev_vocab[s], rev_vocab[p]))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Predict the word")
parser.add_argument("--aug", action="store_const", const=True, default=False,
help="use augmented model")
parser.add_argument("--tying", action="store_const", const=True, default=False,
help="use tying model")
parser.add_argument("--nsize", default="small", help="network size (small, medium, large)")
parser.add_argument("--dataset", default="ptb", help="dataset kind (ptb or wiki2)")
args = parser.parse_args()
n_size = args.nsize
dataset = args.dataset
kind = "onehot"
if args.aug:
kind = "aug"
elif args.tying:
kind = "tying"
predict(kind, n_size, dataset)