-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkmeansAUD.py
647 lines (537 loc) · 22.2 KB
/
kmeansAUD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
import math
import os
import matplotlib.pyplot as plt
import numpy as np
import pandas
import pandas as pd
import sklearn
from joblib.numpy_pickle_utils import xrange
from kneed import KneeLocator
from plotly.graph_objs.layout import Scene
from plotly.graph_objs.layout.scene import XAxis, YAxis, ZAxis
from plotly.offline import iplot
from plotly.validators.box.marker import SymbolValidator
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from sklearn.model_selection import RepeatedKFold
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import scale
from sklearn import model_selection
from sklearn.decomposition import PCA
from sklearn.linear_model import LinearRegression
from sklearn.cross_decomposition import PLSRegression, PLSSVD
from sklearn.metrics import mean_squared_error
import plotly.express as px
import plotly as pgo
import plotly.io as pio
import glob
from random import seed
import plotly.graph_objects as go
from random import random
import kmeans
from old.code import base85 as encode
pd.options.plotting.backend = "plotly"
import csv
# Confusion Labels
CONF_LABELS = {"903t1": "j+8KD6la:fa3?39",
"668t1": "j.uQ81e2)Y2>evw5IK*05][W{7gX.t",
"149t1": "v3<lf0m.u}2]%sE3Cv5B63g$A",
"811t1": "v3&7M4dK^67:f-v",
"556t1": "yLFa^1L<s94C}T#4UbdR6E1l#9A:L2a$>fy",
"291t1": "yLLp+2vN{(3/}*.4OWHd5&7fE6>5058*rxbaUL5ybA-3b",
"391t1": "y+lZ+0cFKx2[WRk4t+!06[4078QP!Db(4Au",
"670t1": "y+kl00]TB#4a#E]",
"913t1": "FPfUW0e*&&0W!5?3qQT4",
"425t1": "O}{M0V.B}49n}Q4kwCu",
"305t1": "G[aeB1&QXI2Lwwp349gd4nEvN4Czr{5BHco6?e%39Q$nfa$0u<",
"622t1": "G[a=j2aVbu4+hgM8qckY",
"194t1": "HfkH=1fz:p5IjUA",
"833t1": "Hfh)>0bI^H1-aT44.@)e7TKv]bn}^!buK{C",
"903t2": "j-9^*62+KB6[3{n97.CGdA9??fV=n7j4RSYk=sU.",
"668t2": "j.*}m1doH/4fmcD6AG4#8c[c-8Tek/cdsmjdu2)Ah/Z}>i:a:{kH@9U",
"279t2": "j<{971?s}C34SJA4{oK[6)yMW9wF&0dWI^}h90=O",
"843t2": "j<(#{0{G>v2eZV)2t2i-3?T#W4{xGT5HXlN63.iy6#Z@k8F6<m8{YH#9vS2%9*X0&a)Qu%cs57Xer@pb",
"149t2": "v4q1Q0zSVf0+8nx1.4Xj33D:o4hGGU6snND7!#1V9wex(9^P4)b*4GOej7{kgtT}BhSl*2",
"811t2": "v4o$f2ak.O30vS03/ILx4(B(f5FL&&6r&g&caUX>gRbHgh*du>",
"731t2": "yzTs%0r&OZ2GWym7T<)D",
"177t2": "yzX@-15PgV27l=O5jmBXb-%}e",
"556t2": "yL{sc0qV.e0@h#}1-BT}32f<U4Utl15rNT%7dn#28wsabacE=<bDJehb@l$@e1!PvgQ68&",
"291t2": "yM0Yo0@SA$3uDXC6QxVPbloj{f0)p+gDmy{jtn]&k6f0I",
"139t2": "yX6n}1gY1%a&bSZ",
"998t2": "yX9::0nW^l2F7gr3LA(A80S0z8ShL(bKcZ{ey(z5g7=oV",
"391t2": "y+XrD3+WqS8*9krax{4)b?jp0dUPCkfKlCWg[uXEjK<Ai",
"670t2": "y+V5n6rSff8myE-fYt7vjEl3F",
"913t2": "FPxCe0Gvr64UB-Y",
"425t2": "FPf7}19>ac4Ej:77GRGK8.SpVaU+fkcIF}BdU/PNg.hSJi$RC)",
"305t2": "G[JK00o11)1-jE52pfTl3aHri3Kvdw3{UB%6b?JC6V.g08X%xB9Gqg$b10LPbATv{dn.-Fhnq5@jOnWO",
"622t2": "G[La<0rSUJ4lUlo6djL98}=HBdOzO]hoN(e",
"194t2": "HfTX:0Hj5T5G8sf7@mJ$dS)Fi",
"833t2": "HfP#V0Ypej3bm0+5l6n26C}Lz7nz!79RyLfaVQ/Eb/}x<dz)R{fnqemf!29sjcY^C",
"903t3": "j-W$#24m&>5N=rF6A]iG7v-h]895TX8]S[^aO^tMcOW9RfI:M$jF$z&kSnVy",
"668t3": "j-?Td5Tr#p8D!gZeibEzg/l9DhsS^UlnnDu",
"279t3": "j>Qdv21Y4[2#Is}7e2IH95wUUcFH0=f>SpaiC*&Akd%he",
"843t3": "j>N4f1dYQZ362sP4NRdL8!Qwlblxc>b[.ItjRx]ak6xe)lzsCW",
"731t3": "yAn[30Hi}B5UQ<AfxAfl",
"177t3": "yAu=H0Hi$C7PwN1bv8=}",
"556t3": "yMR#f16L(X2n)+W3FbW-4ycGw5J{:r7cJC:7LAWe8w0<.9m#B.betS=dF>QBe9[*sf-9OAgdTk9hiG>#hYT([kF/Vql5U^z",
"291t3": "yM.<u2H%eJ3zOsQ6&=9Gc@zJRgvWp6h]dJTi*&jJ",
"139t3": "yX[6-0cFpE3*!u57y.z8ddYC2",
"998t3": "yXY&L0uzwR2yM{Z3AT/p7d/o(9%A?}a@@2cdzWGsd-<s?ff7!7gw9B.g.z&lj-7f0",
"391t3": "y=ysx1c0No2#.i&5cS.d8Ejwr9Tr^cfNU+Jkfi^8",
"670t3": "y=vCC1yqpV6=4!<9&HjKcosFo",
"913t3": "FQcHh0I6TJ6R=)Ycq2U5emFOV",
"425t3": "FP>2^0NRau3ayK+66f}n9S)F*aa>=mbx1>zc?O}VedTpveIO&Se-OF=",
"305t3": "G]j>I0pZgq2/Nuw7{s>UaZ36gdub&keSP(i",
"622t3": "G]jTd0iVyB0>eT(4>Ow*6LOQ3ab7/0bc&Gce$%#3f^O::h}m)d",
"194t3": "HgrK82%/mDb^/D]",
"833t3": "Hgn&50!*+{2ZW9oa3hjc",
"149t3": "^KD3/2gTqF7ekVK8o%oTc(aHhhqg4*kh2#p",
"811t3": "^JYT/0X<[R3rW}.5}7zJ6E1qi8A5Kubuuv-e^0)Bhm>]^jnw<R",}
# Feature Names
TXT_HEADERS = ['start_time', 'end_time', 'is_question', 'is_pause', 'curr_sentence_length', 'speech_rate',
'is_edit_word', 'is_reparandum', 'is_interregnum', 'is_repair']
AUD_HEADERS = ['pcm_RMSenergy_sma', 'pcm_fftMag_mfcc_sma[1]', 'pcm_fftMag_mfcc_sma[2]', 'pcm_fftMag_mfcc_sma[3]',
'pcm_fftMag_mfcc_sma[4]', 'pcm_fftMag_mfcc_sma[5]', 'pcm_fftMag_mfcc_sma[6]', 'pcm_fftMag_mfcc_sma[7]',
'pcm_fftMag_mfcc_sma[8]', 'pcm_fftMag_mfcc_sma[9]', 'pcm_fftMag_mfcc_sma[10]', 'pcm_fftMag_mfcc_sma[11]',
'pcm_fftMag_mfcc_sma[12]', 'pcm_zcr_sma', 'voiceProb_sma', 'F0_sma', 'pcm_RMSenergy_sma_de',
'pcm_fftMag_mfcc_sma_de[1]', 'pcm_fftMag_mfcc_sma_de[2]', 'pcm_fftMag_mfcc_sma_de[3]',
'pcm_fftMag_mfcc_sma_de[4]', 'pcm_fftMag_mfcc_sma_de[5]', 'pcm_fftMag_mfcc_sma_de[6]',
'pcm_fftMag_mfcc_sma_de[7]', 'pcm_fftMag_mfcc_sma_de[8]', 'pcm_fftMag_mfcc_sma_de[9]',
'pcm_fftMag_mfcc_sma_de[10]', 'pcm_fftMag_mfcc_sma_de[11]', 'pcm_fftMag_mfcc_sma_de[12]',
'pcm_zcr_sma_de', 'voiceProb_sma_de', 'F0_sma_de']
VID_HEADERS = ['AU01_r', 'AU02_r', 'AU04_r', 'AU05_r', 'AU06_r', 'AU07_r', 'AU09_r', 'AU10_r', 'AU12_r', 'AU14_r',
'AU15_r', 'AU17_r', 'AU20_r', 'AU23_r', 'AU25_r', 'AU26_r', 'AU45_r', 'AU01_c', 'AU02_c', 'AU04_c',
'AU05_c', 'AU06_c', 'AU07_c', 'AU09_c', 'AU10_c', 'AU12_c', 'AU14_c', 'AU15_c', 'AU17_c', 'AU20_c',
'AU23_c', 'AU25_c', 'AU26_c', 'AU28_c', 'AU45_c']
ALL_HEADERS = TXT_HEADERS + AUD_HEADERS + VID_HEADERS
def getFrames():
# open each csv and get the final timestamp to get maximum times
#initialize frames
fileFrames = dict()
for key in CONF_LABELS.keys():
fileFrames[key] = 0
print(fileFrames)
keys = fileFrames.keys()
for key in keys:
csv = open("data/" + str(key) + ".csv", "r")
csvLines = csv.readlines()
lastLine = csvLines[-1].strip().split(",")
endTime = float(lastLine[1].strip())
frames = int(endTime/.04)
fileFrames[key] = frames
csv.close()
return fileFrames
# Press the green button in the gutter to run the script.
if __name__ == '__main__':
print(len(ALL_HEADERS))
# dataset containing all featuers for all frames accross users and all modalities
dataSet = pandas.read_csv("data/output.csv", names=ALL_HEADERS, index_col=False)
#Dropping headers that are not TXT
dataSet = dataSet[AUD_HEADERS]
#get label frame counts for each csv
fileFrames = getFrames()
# assign resulting label frames to the csvs
labelFrames = dict()
for key in CONF_LABELS.keys():
labelFrames[key] = encode.time16_to_frames(CONF_LABELS[key], fileFrames[key])
#map labels to rows
labelMap = dict()
# go through each file
for file in os.listdir("data"):
#skip output
if(file == "output.csv"):
continue
filename = os.fsdecode(file)
# open the file
l = open("data/" + filename,"r")
labelMap[filename[:5]] = []
#read all the lines
lines = l.readlines()
for line in lines:
#find start time
entries = line.split(",")
#assign use start time to get frame index.
startTime = float(entries[0])
startIndex = int(startTime/0.04)
#get label at index and append to labelMap
labelMap[str(file[:5])].append(labelFrames[str(file[:5])][startIndex])
l.close()
notConfusedCount = 0
somewhatConfusedCount = 0
veryConfusedCount = 0
extremelyConfusedCount = 0
for key in labelMap.keys():
subjectLabels = labelMap[key]
notConfusedCount += subjectLabels.count(0)
somewhatConfusedCount += subjectLabels.count(1)
veryConfusedCount += subjectLabels.count(2)
extremelyConfusedCount += subjectLabels.count(3)
totalInstance = notConfusedCount + somewhatConfusedCount + veryConfusedCount + extremelyConfusedCount
print(notConfusedCount,somewhatConfusedCount,veryConfusedCount,extremelyConfusedCount, totalInstance)
# check if any nulls
#print(dataSet.isnull().sum())
# standardize dataset so that data works better with K-means
scaledDataSet = pd.DataFrame(StandardScaler().fit_transform(dataSet))
#scaledDataSet = dataSet
# # determine number of clusters using elbow method
#
# ks = range(1, 10)
# inertias = []
# for k in ks:
# # Create a KMeans instance with k clusters: model
# model = KMeans(n_clusters=k)
#
# # Fit model to samples
# model.fit(scaledDataSet)
#
# # Append the inertia to the list of inertias
# inertias.append(model.inertia_)
#
# plt.plot(ks, inertias, '-o', color='black')
# plt.xlabel('number of clusters, k')
# plt.ylabel('inertia (SSE)')
# plt.title('Inertia v.s Number of Clusters for Audio Modality')
# plt.xticks(ks)
#
# plt.show()
numberClusters = 3
# Using sklearn
km = sklearn.cluster.KMeans(n_clusters=numberClusters, init='k-means++', n_init=600 )
km.fit(scaledDataSet)
# Find which cluster each data-point belongs to
clusters = km.predict(scaledDataSet)
# Format results as a DataFrame
# Add the cluster vector to our scaled DataFrame
scaledDataSet["Cluster"] = clusters
# # PCA varience graphed
#
# pca = PCA().fit(scaledDataSet)
# plt.plot(np.cumsum(pca.explained_variance_ratio_))
# plt.plot(3, np.cumsum(pca.explained_variance_ratio_)[3], marker='o', markersize=6, color="black", label='3 PCA components')
# print(np.cumsum(pca.explained_variance_ratio_)[4])
# plt.xlabel('number of components')
# plt.ylabel('cumulative explained variance')
# plt.title('cumulative explained variance vs number of PCA components')
#
# #plt.show()
#get cluster centers
#print(km.cluster_centers_)
# #sampled subset of the entire scaledDataSet
#
#
# #using PCA to display data
# features = ALL_HEADERS
#
# pca = PCA()
# components = pca.fit_transform(subSet)
# labels = {
# str(i): f"PC {i + 1} ({var:.1f}%)"
# for i, var in enumerate(pca.explained_variance_ratio_ * 100)
# }
#
# fig = px.scatter_matrix(
# components,
# labels=labels,
# dimensions=range(4),
# color=subSet["Cluster"]
# )
# fig.update_traces(diagonal_visible=False)
# fig.show()
subSet = scaledDataSet#.sample(5000)
#PCA 3
print("showing")
# PCA with one principal component
pca_1d = PCA(n_components=1)
# PCA with two principal components
pca_2d = PCA(n_components=2)
# PCA with three principal components
pca_3d = PCA(n_components=3)
# This DataFrame holds that single principal component mentioned above
PCs_1d = pd.DataFrame(pca_1d.fit_transform(subSet.drop(["Cluster"], axis=1)))
# This DataFrame contains the two principal components that will be used
# for the 2-D visualization mentioned above
PCs_2d = pd.DataFrame(pca_2d.fit_transform(subSet.drop(["Cluster"], axis=1)))
# And this DataFrame contains three principal components that will aid us
# in visualizing our clusters in 3-D
PCs_3d = pd.DataFrame(pca_3d.fit_transform(subSet.drop(["Cluster"], axis=1)))
#rename the columns of these models
PCs_1d.columns = ["PC1_1d"]
# "PC1_2d" means: 'The first principal component of the components created for 2-D visualization, by PCA.'
# And "PC2_2d" means: 'The second principal component of the components created for 2-D visualization, by PCA.'
PCs_2d.columns = ["PC1_2d", "PC2_2d"]
PCs_3d.columns = ["PC1_3d", "PC2_3d", "PC3_3d"]
subSet = pd.concat([subSet, PCs_1d, PCs_2d, PCs_3d], axis=1, join='inner')
#divide the plots by cluster
cluster0 = subSet[subSet["Cluster"] == 0]
cluster1 = subSet[subSet["Cluster"] == 1]
cluster2 = subSet[subSet["Cluster"] == 2]
cluster3 = subSet[subSet["Cluster"] == 3]
cluster4 = subSet[subSet["Cluster"] == 4]
cluster5 = subSet[subSet["Cluster"] == 5]
cluster6 = subSet[subSet["Cluster"] == 6]
cluster7 = subSet[subSet["Cluster"] == 7]
cluster03d = pd.concat([cluster0["PC1_3d"], cluster0["PC2_3d"], cluster0["PC3_3d"]], axis=1, join='inner')
cluster13d = pd.concat([cluster1["PC1_3d"], cluster1["PC2_3d"], cluster1["PC3_3d"]], axis=1, join='inner')
cluster23d = pd.concat([cluster2["PC1_3d"], cluster2["PC2_3d"], cluster2["PC3_3d"]], axis=1, join='inner')
cluster33d = pd.concat([cluster3["PC1_3d"], cluster3["PC2_3d"], cluster3["PC3_3d"]], axis=1, join='inner')
cluster43d = pd.concat([cluster4["PC1_3d"], cluster4["PC2_3d"], cluster4["PC3_3d"]], axis=1, join='inner')
cluster53d = pd.concat([cluster5["PC1_3d"], cluster5["PC2_3d"], cluster5["PC3_3d"]], axis=1, join='inner')
cluster63d = pd.concat([cluster6["PC1_3d"], cluster6["PC2_3d"], cluster6["PC3_3d"]], axis=1, join='inner')
cluster73d = pd.concat([cluster7["PC1_3d"], cluster7["PC2_3d"], cluster7["PC3_3d"]], axis=1, join='inner')
cluster02d = pd.concat([cluster0["PC1_2d"], cluster0["PC2_2d"]], axis=1, join='inner')
cluster12d = pd.concat([cluster1["PC1_2d"], cluster1["PC2_2d"]], axis=1, join='inner')
cluster22d = pd.concat([cluster2["PC1_2d"], cluster2["PC2_2d"]], axis=1, join='inner')
cluster32d = pd.concat([cluster3["PC1_2d"], cluster3["PC2_2d"]], axis=1, join='inner')
cluster42d = pd.concat([cluster4["PC1_2d"], cluster4["PC2_2d"]], axis=1, join='inner')
cluster52d = pd.concat([cluster5["PC1_2d"], cluster5["PC2_2d"]], axis=1, join='inner')
cluster62d = pd.concat([cluster6["PC1_2d"], cluster6["PC2_2d"]], axis=1, join='inner')
cluster72d = pd.concat([cluster7["PC1_2d"], cluster7["PC2_2d"]], axis=1, join='inner')
cluster0Centroid2d = cluster02d.mean(0)
cluster1Centroid2d = cluster12d.mean(0)
cluster2Centroid2d = cluster22d.mean(0)
cluster3Centroid2d = cluster32d.mean(0)
cluster4Centroid2d = cluster42d.mean(0)
cluster5Centroid2d = cluster52d.mean(0)
cluster6Centroid2d = cluster62d.mean(0)
cluster7Centroid2d = cluster72d.mean(0)
cluster0Centroid3d = cluster03d.mean(0)
cluster1Centroid3d = cluster13d.mean(0)
cluster2Centroid3d = cluster23d.mean(0)
cluster3Centroid3d = cluster33d.mean(0)
cluster4Centroid3d = cluster43d.mean(0)
cluster5Centroid3d = cluster53d.mean(0)
cluster6Centroid3d = cluster63d.mean(0)
cluster7Centroid3d = cluster73d.mean(0)
centroids2d = pd.concat([cluster0Centroid2d, cluster1Centroid2d, cluster2Centroid2d, cluster3Centroid2d,
cluster4Centroid2d, cluster5Centroid2d, cluster6Centroid2d, cluster7Centroid2d], axis=0)
centroids3d = pd.concat([cluster0Centroid3d, cluster1Centroid3d, cluster2Centroid3d, cluster3Centroid3d,
cluster4Centroid3d, cluster5Centroid3d, cluster6Centroid3d, cluster7Centroid3d], axis=0)
# divide the plots by cluster
#PLOT 2D
# trace1 is for 'Cluster 0'
trace12d = go.Scatter(
x=cluster0["PC1_2d"],
y=cluster0["PC2_2d"],
mode="markers",
name="Cluster 0",
marker=dict(color='rgba(255, 128, 255, 0.8)'),
text=None)
# trace2 is for 'Cluster 1'
trace22d = go.Scatter(
x=cluster1["PC1_2d"],
y=cluster1["PC2_2d"],
mode="markers",
name="Cluster 1",
marker=dict(color='rgba(255, 128, 2, 0.8)'),
text=None)
# trace3 is for 'Cluster 2'
trace32d = go.Scatter(
x=cluster2["PC1_2d"],
y=cluster2["PC2_2d"],
mode="markers",
name="Cluster 2",
marker=dict(color='rgba(0, 255, 200, 0.8)'),
text=None)
# trace3 is for 'Cluster 2'
trace42d = go.Scatter(
x=cluster3["PC1_2d"],
y=cluster3["PC2_2d"],
mode="markers",
name="Cluster 3",
marker=dict(color='brown'),
text=None)
# trace3 is for 'Cluster 2'
trace52d = go.Scatter(
x=cluster4["PC1_2d"],
y=cluster4["PC2_2d"],
mode="markers",
name="Cluster 4",
marker=dict(color='green'),
text=None)
# trace3 is for 'Cluster 2'
trace62d = go.Scatter(
x=cluster5["PC1_2d"],
y=cluster5["PC2_2d"],
mode="markers",
name="Cluster 5",
marker=dict(color='#D3212D'),
text=None)
# trace3 is for 'Cluster 2'
trace72d = go.Scatter(
x=cluster6["PC1_2d"],
y=cluster6["PC2_2d"],
mode="markers",
name="Cluster 6",
marker=dict(color='purple'),
text=None)
# trace3 is for 'Cluster 2'
trace82d = go.Scatter(
x=cluster7["PC1_2d"],
y=cluster7["PC2_2d"],
mode="markers",
name="Cluster 7",
marker=dict(color='yellow'),
text=None)
centroidsTrace2d = go.Scatter(
x=centroids2d["PC1_2d"],
y=centroids2d["PC2_2d"],
mode="markers",
name="Cluster Centroids",
marker=dict(symbol=2, color='black', size=10),
text=None
)
# data = [trace1, trace2, trace3, centroidsTrace]
data2d = [trace12d, trace22d, trace32d, trace42d, trace52d, trace62d, trace72d, trace82d, centroidsTrace2d]
title2d = "KMeans Clustering of Audio Modality Using PC 1 and 2"
layout2d = dict(title=title2d,
xaxis=dict(title='PC1', ticklen=5, zeroline=False),
yaxis=dict(title='PC2', ticklen=5, zeroline=False)
)
fig2d = dict(data=data2d, layout=layout2d)
iplot(fig2d)
# Instructions for building the 3-D plot
# trace1 is for 'Cluster 0'
trace13d = go.Scatter3d(
x=cluster0["PC1_3d"],
y=cluster0["PC2_3d"],
z=cluster0["PC3_3d"],
mode="markers",
name="Cluster 0",
marker=dict(color='rgba(255, 128, 255, 0.8)'),
text=None,
opacity=.5)
# trace2 is for 'Cluster 1'
trace23d = go.Scatter3d(
x=cluster1["PC1_3d"],
y=cluster1["PC2_3d"],
z=cluster1["PC3_3d"],
mode="markers",
name="Cluster 1",
marker=dict(color='rgba(255, 128, 2, 0.8)'),
text=None,
opacity=.5)
# trace3 is for 'Cluster 2'
trace33d = go.Scatter3d(
x=cluster2["PC1_3d"],
y=cluster2["PC2_3d"],
z=cluster2["PC3_3d"],
mode="markers",
name="Cluster 2",
marker=dict(color='rgba(0, 255, 200, 0.8)'),
text=None,
opacity=.5)
# trace3 is for 'Cluster 3'
trace43d = go.Scatter3d(
x=cluster3["PC1_3d"],
y=cluster3["PC2_3d"],
z=cluster3["PC3_3d"],
mode="markers",
name="Cluster 3",
marker=dict(color='brown'),
text=None,
opacity=.5)
# trace3 is for 'Cluster 4'
trace53d = go.Scatter3d(
x=cluster4["PC1_3d"],
y=cluster4["PC2_3d"],
z=cluster4["PC3_3d"],
mode="markers",
name="Cluster 4",
marker=dict(color='green'),
text=None,
opacity=.5)
# trace3 is for 'Cluster 5'
trace63d = go.Scatter3d(
x=cluster5["PC1_3d"],
y=cluster5["PC2_3d"],
z=cluster5["PC3_3d"],
mode="markers",
name="Cluster 5",
marker=dict(color='#D3212D'),
text=None,
opacity=.5)
# trace3 is for 'Cluster 6'
trace73d = go.Scatter3d(
x=cluster6["PC1_3d"],
y=cluster6["PC2_3d"],
z=cluster6["PC3_3d"],
mode="markers",
name="Cluster 6",
marker=dict(color='purple'),
text=None,
opacity=.5)
# trace3 is for 'Cluster 7'
trace83d = go.Scatter3d(
x=cluster7["PC1_3d"],
y=cluster7["PC2_3d"],
z=cluster7["PC3_3d"],
mode="markers",
name="Cluster 7",
marker=dict(color='yellow'),
text=None,
opacity=.5)
centroidTrace3d = go.Scatter3d(
x=centroids3d["PC1_3d"],
y=centroids3d["PC2_3d"],
z=centroids3d["PC3_3d"],
mode="markers",
name="Cluster Centroid",
marker=dict(color='black'),
text=None,
opacity=.7)
trace103d = go.Scatter3d(
x=subSet["PC1_3d"],
y=subSet["PC2_3d"],
z=subSet["PC3_3d"],
mode="markers",
name="Points",
marker=dict(color=subSet["Cluster"]),
text=None,
opacity=.5)
data = [trace13d, trace23d, trace33d, trace43d, trace53d, trace63d, trace73d, trace83d, centroidTrace3d]
#data = [centroidTrace, trace10]
title = "KMeans Clustering of Audio Modality Using PC 1, 2, and 3"
layout = dict(title=title,
xaxis=dict(title='PC1', ticklen=5, zeroline=False),
yaxis=dict(title='PC2', ticklen=5, zeroline=False),
scene=Scene(
xaxis=XAxis(title='PC1'),
yaxis=YAxis(title='PC2'),
zaxis=ZAxis(title='PC3')
)
)
fig = dict(data=data, layout=layout)
print(len(scaledDataSet.index), end="")
print(" instances clustered.")
print("showing")
iplot(fig)
print("\n", sklearn.metrics.silhouette_score(scaledDataSet, km.labels_))
print(sklearn.metrics.davies_bouldin_score(scaledDataSet, km.labels_))
print(sklearn.metrics.calinski_harabasz_score(scaledDataSet, km.labels_))
#implement cluster purity
#cluster purity implementation
puritySet = subSet
continuousLabelsList = []
for key in labelMap:
l = labelMap[key]
for value in l:
continuousLabelsList.append(value)
#labels are assigned to clusters
puritySet["continuousLabelsList"] = continuousLabelsList
#track label values within each cluster
clusterTallys = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
print()
for i in range(len(puritySet['Cluster'].index)):
clusterTallys[puritySet['Cluster'][i]][puritySet['continuousLabelsList'][i]] += 1
print(clusterTallys)
#now that data is updated, run cluster purity for each custer
maxTallys = []
for index in range(km.n_clusters):
maxTallys.append(max(clusterTallys[index]))
print(maxTallys)
clusterPurity = sum(maxTallys)/len(subSet.index)
print("\n", sklearn.metrics.silhouette_score(scaledDataSet, km.labels_))
print(sklearn.metrics.davies_bouldin_score(scaledDataSet, km.labels_))
print(sklearn.metrics.calinski_harabasz_score(scaledDataSet, km.labels_))
print(clusterPurity)