-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path6.3.llama-huggingface-pipeline.py
54 lines (40 loc) · 1.45 KB
/
6.3.llama-huggingface-pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# 导入HuggingFace API Token
from dotenv import load_dotenv
load_dotenv(override=True)
# 指定预训练模型的名称
model = "meta-llama/Llama-2-7b-chat-hf"
# 从预训练模型中加载词汇器
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model)
# 创建一个文本生成的管道
import transformers
import torch
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
max_length=1000
)
# 创建HuggingFacePipeline实例
from langchain.llms import HuggingFacePipeline
llm = HuggingFacePipeline(pipeline=pipeline,
model_kwargs={'temperature': 0})
# 定义输入模板,该模板用于生成花束的描述
template = """
为以下的花束生成一个详细且吸引人的描述:
花束的详细信息:
```{flower_details}```
"""
# 使用模板创建提示
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
prompt = PromptTemplate(template=template,
input_variables=["flower_details"])
# 创建LLMChain实例
# from langchain import PromptTemplate
llm_chain = LLMChain(prompt=prompt, llm=llm)
# 需要生成描述的花束的详细信息
flower_details = "12支红玫瑰,搭配白色满天星和绿叶,包装在浪漫的红色纸中。"
# 打印生成的花束描述
print(llm_chain.run(flower_details))