From 03ae45afc241131953d62833299037425e7a9acb Mon Sep 17 00:00:00 2001 From: hecrj Date: Sun, 9 Feb 2025 07:38:58 +0000 Subject: [PATCH] deploy: iced-rs/iced@12653114bd1cadb10b9fe185b6f2b1e4300bdcf7 --- iced/animation/struct.Animation.html | 39 +++++------ iced/enum.Length.html | 4 +- iced/struct.Animation.html | 39 +++++------ iced/struct.Pixels.html | 4 +- iced_core/animation/index.html | 2 +- iced_core/animation/struct.Animation.html | 39 +++++------ iced_core/enum.Length.html | 4 +- iced_core/struct.Pixels.html | 4 +- iced_renderer/fallback/enum.Compositor.html | 4 +- iced_renderer/fallback/enum.Renderer.html | 68 +++++++++---------- iced_renderer/geometry/enum.Gradient.html | 2 +- iced_renderer/geometry/enum.Style.html | 6 +- iced_renderer/geometry/fill/enum.Style.html | 6 +- iced_renderer/geometry/fill/struct.Fill.html | 4 +- .../geometry/frame/struct.Frame.html | 28 ++++---- .../geometry/frame/trait.Backend.html | 54 +++++++-------- .../geometry/gradient/enum.Gradient.html | 2 +- iced_renderer/geometry/gradient/fn.pack.html | 2 +- .../geometry/gradient/struct.Linear.html | 18 ++--- .../geometry/path/arc/struct.Arc.html | 12 ++-- .../geometry/path/arc/struct.Elliptical.html | 20 +++--- iced_renderer/geometry/path/struct.Arc.html | 12 ++-- .../geometry/path/struct.Builder.html | 18 ++--- iced_renderer/geometry/path/struct.Path.html | 10 +-- iced_renderer/geometry/stroke/enum.Style.html | 6 +- .../geometry/stroke/struct.Stroke.html | 4 +- iced_renderer/geometry/struct.Cache.html | 2 +- iced_renderer/geometry/struct.Fill.html | 4 +- iced_renderer/geometry/struct.Frame.html | 28 ++++---- iced_renderer/geometry/struct.Image.html | 32 ++++----- iced_renderer/geometry/struct.Path.html | 10 +-- iced_renderer/geometry/struct.Stroke.html | 4 +- iced_renderer/geometry/struct.Svg.html | 30 ++++---- iced_renderer/geometry/struct.Text.html | 34 +++++----- iced_renderer/geometry/trait.Renderer.html | 8 +-- iced_renderer/index.html | 2 +- iced_wgpu/geometry/struct.Frame.html | 12 ++-- iced_wgpu/index.html | 2 +- iced_wgpu/layer/struct.Layer.html | 66 +++++++++--------- iced_wgpu/primitive/struct.Instance.html | 6 +- iced_wgpu/primitive/trait.Primitive.html | 8 +-- iced_wgpu/primitive/trait.Renderer.html | 6 +- iced_wgpu/settings/struct.Settings.html | 8 +-- iced_wgpu/struct.Renderer.html | 48 ++++++------- iced_wgpu/window/compositor/fn.present.html | 2 +- .../window/compositor/fn.screenshot.html | 2 +- .../window/compositor/struct.Compositor.html | 4 +- search-index.js | 4 +- search.desc/iced/iced-desc-0-.js | 2 +- search.desc/iced/iced-desc-1-.js | 2 +- search.desc/iced/iced-desc-2-.js | 2 +- search.desc/iced_core/iced_core-desc-0-.js | 2 +- src/iced_core/animation.rs.html | 28 +++++++- src/iced_core/length.rs.html | 6 +- src/iced_core/pixels.rs.html | 6 +- trait.impl/core/convert/trait.From.js | 2 +- trait.impl/iced_core/image/trait.Renderer.js | 4 +- .../iced_core/renderer/trait.Headless.js | 4 +- .../iced_core/renderer/trait.Renderer.js | 4 +- trait.impl/iced_core/svg/trait.Renderer.js | 4 +- trait.impl/iced_core/text/trait.Renderer.js | 4 +- .../iced_wgpu/primitive/trait.Renderer.js | 4 +- type.impl/iced_graphics/layer/struct.Stack.js | 4 +- .../iced_renderer/fallback/enum.Compositor.js | 4 +- .../iced_renderer/fallback/enum.Renderer.js | 4 +- type.impl/std/primitive.usize.js | 4 +- 66 files changed, 425 insertions(+), 398 deletions(-) diff --git a/iced/animation/struct.Animation.html b/iced/animation/struct.Animation.html index 580eba4857a..a862b3ce718 100644 --- a/iced/animation/struct.Animation.html +++ b/iced/animation/struct.Animation.html @@ -1,34 +1,35 @@ -Animation in iced::animation - Rust

Struct Animation

Source
pub struct Animation<T>
where +Animation in iced::animation - Rust

Struct Animation

Source
pub struct Animation<T>{ /* private fields */ }
Expand description

The animation of some particular state.

It tracks state changes and allows projecting interpolated values through time.

-

Implementations§

Source§

impl<T> Animation<T>

Source

pub fn new(state: T) -> Animation<T>

Creates a new Animation with the given initial state.

-
Source

pub fn easing(self, easing: Easing) -> Animation<T>

Sets the Easing function of the Animation.

+

Implementations§

Source§

impl<T> Animation<T>

Source

pub fn new(state: T) -> Animation<T>

Creates a new Animation with the given initial state.

+
Source

pub fn easing(self, easing: Easing) -> Animation<T>

Sets the Easing function of the Animation.

See the Easing Functions Cheat Sheet for details!

-
Source

pub fn very_quick(self) -> Animation<T>

Sets the duration of the Animation to 100ms.

-
Source

pub fn quick(self) -> Animation<T>

Sets the duration of the Animation to 200ms.

-
Source

pub fn slow(self) -> Animation<T>

Sets the duration of the Animation to 400ms.

-
Source

pub fn very_slow(self) -> Animation<T>

Sets the duration of the Animation to 500ms.

-
Source

pub fn duration(self, duration: Duration) -> Animation<T>

Sets the duration of the Animation to the given value.

-
Source

pub fn delay(self, duration: Duration) -> Animation<T>

Sets a delay for the Animation.

-
Source

pub fn repeat(self, repetitions: u32) -> Animation<T>

Makes the Animation repeat a given amount of times.

+
Source

pub fn very_quick(self) -> Animation<T>

Sets the duration of the Animation to 100ms.

+
Source

pub fn quick(self) -> Animation<T>

Sets the duration of the Animation to 200ms.

+
Source

pub fn slow(self) -> Animation<T>

Sets the duration of the Animation to 400ms.

+
Source

pub fn very_slow(self) -> Animation<T>

Sets the duration of the Animation to 500ms.

+
Source

pub fn duration(self, duration: Duration) -> Animation<T>

Sets the duration of the Animation to the given value.

+
Source

pub fn delay(self, duration: Duration) -> Animation<T>

Sets a delay for the Animation.

+
Source

pub fn repeat(self, repetitions: u32) -> Animation<T>

Makes the Animation repeat a given amount of times.

Providing 1 repetition plays the animation twice in total.

-
Source

pub fn repeat_forever(self) -> Animation<T>

Makes the Animation repeat forever.

-
Source

pub fn auto_reverse(self) -> Animation<T>

Makes the Animation automatically reverse when repeating.

-
Source

pub fn go(self, new_state: T) -> Animation<T>

Transitions the Animation from its current state to the given new state.

-
Source

pub fn go_mut(&mut self, new_state: T)

Transitions the Animation from its current state to the given new state, by reference.

-
Source

pub fn is_animating(&self, at: Instant) -> bool

Returns true if the Animation is currently in progress.

+
Source

pub fn repeat_forever(self) -> Animation<T>

Makes the Animation repeat forever.

+
Source

pub fn auto_reverse(self) -> Animation<T>

Makes the Animation automatically reverse when repeating.

+
Source

pub fn go(self, new_state: T) -> Animation<T>

Transitions the Animation from its current state to the given new state.

+
Source

pub fn go_mut(&mut self, new_state: T)

Transitions the Animation from its current state to the given new state, by reference.

+
Source

pub fn is_animating(&self, at: Instant) -> bool

Returns true if the Animation is currently in progress.

An Animation is in progress when it is transitioning to a different state.

-
Source

pub fn interpolate_with<I>(&self, f: impl Fn(T) -> I, at: Instant) -> I
where +

Source

pub fn interpolate_with<I>(&self, f: impl Fn(T) -> I, at: Instant) -> I
where I: Interpolable,

Projects the Animation into an interpolated value at the given Instant; using the closure provided to calculate the different keyframes of interpolated values.

If the Animation state is a bool, you can use the simpler interpolate method.

-
Source

pub fn value(&self) -> T

Retuns the current state of the Animation.

-
Source§

impl Animation<bool>

Source

pub fn interpolate<I>(&self, start: I, end: I, at: Instant) -> I
where +

Source

pub fn value(&self) -> T

Retuns the current state of the Animation.

+
Source§

impl Animation<bool>

Source

pub fn interpolate<I>(&self, start: I, end: I, at: Instant) -> I
where I: Interpolable + Clone,

Projects the Animation into an interpolated value at the given Instant; using the start and end values as the origin and destination keyframes.

+
Source

pub fn remaining(&self, at: Instant) -> Duration

Returns the remaining Duration of the Animation.

Trait Implementations§

Source§

impl<T> Clone for Animation<T>

Source§

fn clone(&self) -> Animation<T>

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<T> Debug for Animation<T>

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more

Auto Trait Implementations§

§

impl<T> Freeze for Animation<T>
where diff --git a/iced/enum.Length.html b/iced/enum.Length.html index 8b86ca5ae04..43a20c88ee6 100644 --- a/iced/enum.Length.html +++ b/iced/enum.Length.html @@ -1,4 +1,4 @@ -Length in iced - Rust

Enum Length

Source
pub enum Length {
+Length in iced - Rust

Enum Length

Source
pub enum Length {
     Fill,
     FillPortion(u16),
     Shrink,
@@ -25,7 +25,7 @@
 
 

Source

pub fn enclose(self, other: Length) -> Length

Adapts the Length so it can contain the other Length and match its fluidity.

-

Trait Implementations§

Source§

impl Clone for Length

Source§

fn clone(&self) -> Length

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Length

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl From<Pixels> for Length

Source§

fn from(amount: Pixels) -> Length

Converts to this type from the input type.
Source§

impl From<f32> for Length

Source§

fn from(amount: f32) -> Length

Converts to this type from the input type.
Source§

impl From<u16> for Length

Source§

fn from(units: u16) -> Length

Converts to this type from the input type.
Source§

impl PartialEq for Length

Source§

fn eq(&self, other: &Length) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, +

Trait Implementations§

Source§

impl Clone for Length

Source§

fn clone(&self) -> Length

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Length

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl From<Pixels> for Length

Source§

fn from(amount: Pixels) -> Length

Converts to this type from the input type.
Source§

impl From<f32> for Length

Source§

fn from(amount: f32) -> Length

Converts to this type from the input type.
Source§

impl From<u32> for Length

Source§

fn from(units: u32) -> Length

Converts to this type from the input type.
Source§

impl PartialEq for Length

Source§

fn eq(&self, other: &Length) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl Copy for Length

Source§

impl StructuralPartialEq for Length

Auto Trait Implementations§

§

impl Freeze for Length

§

impl RefUnwindSafe for Length

§

impl Send for Length

§

impl Sync for Length

§

impl Unpin for Length

§

impl UnwindSafe for Length

Blanket Implementations§

Source§

impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for S
where T: Real + Zero + Arithmetics + Clone, Swp: WhitePoint<T>, diff --git a/iced/struct.Animation.html b/iced/struct.Animation.html index 200782cc228..167523c81ab 100644 --- a/iced/struct.Animation.html +++ b/iced/struct.Animation.html @@ -1,34 +1,35 @@ -Animation in iced - Rust

Struct Animation

Source
pub struct Animation<T>
where +Animation in iced - Rust

Struct Animation

Source
pub struct Animation<T>{ /* private fields */ }
Expand description

The animation of some particular state.

It tracks state changes and allows projecting interpolated values through time.

-

Implementations§

Source§

impl<T> Animation<T>

Source

pub fn new(state: T) -> Animation<T>

Creates a new Animation with the given initial state.

-
Source

pub fn easing(self, easing: Easing) -> Animation<T>

Sets the Easing function of the Animation.

+

Implementations§

Source§

impl<T> Animation<T>

Source

pub fn new(state: T) -> Animation<T>

Creates a new Animation with the given initial state.

+
Source

pub fn easing(self, easing: Easing) -> Animation<T>

Sets the Easing function of the Animation.

See the Easing Functions Cheat Sheet for details!

-
Source

pub fn very_quick(self) -> Animation<T>

Sets the duration of the Animation to 100ms.

-
Source

pub fn quick(self) -> Animation<T>

Sets the duration of the Animation to 200ms.

-
Source

pub fn slow(self) -> Animation<T>

Sets the duration of the Animation to 400ms.

-
Source

pub fn very_slow(self) -> Animation<T>

Sets the duration of the Animation to 500ms.

-
Source

pub fn duration(self, duration: Duration) -> Animation<T>

Sets the duration of the Animation to the given value.

-
Source

pub fn delay(self, duration: Duration) -> Animation<T>

Sets a delay for the Animation.

-
Source

pub fn repeat(self, repetitions: u32) -> Animation<T>

Makes the Animation repeat a given amount of times.

+
Source

pub fn very_quick(self) -> Animation<T>

Sets the duration of the Animation to 100ms.

+
Source

pub fn quick(self) -> Animation<T>

Sets the duration of the Animation to 200ms.

+
Source

pub fn slow(self) -> Animation<T>

Sets the duration of the Animation to 400ms.

+
Source

pub fn very_slow(self) -> Animation<T>

Sets the duration of the Animation to 500ms.

+
Source

pub fn duration(self, duration: Duration) -> Animation<T>

Sets the duration of the Animation to the given value.

+
Source

pub fn delay(self, duration: Duration) -> Animation<T>

Sets a delay for the Animation.

+
Source

pub fn repeat(self, repetitions: u32) -> Animation<T>

Makes the Animation repeat a given amount of times.

Providing 1 repetition plays the animation twice in total.

-
Source

pub fn repeat_forever(self) -> Animation<T>

Makes the Animation repeat forever.

-
Source

pub fn auto_reverse(self) -> Animation<T>

Makes the Animation automatically reverse when repeating.

-
Source

pub fn go(self, new_state: T) -> Animation<T>

Transitions the Animation from its current state to the given new state.

-
Source

pub fn go_mut(&mut self, new_state: T)

Transitions the Animation from its current state to the given new state, by reference.

-
Source

pub fn is_animating(&self, at: Instant) -> bool

Returns true if the Animation is currently in progress.

+
Source

pub fn repeat_forever(self) -> Animation<T>

Makes the Animation repeat forever.

+
Source

pub fn auto_reverse(self) -> Animation<T>

Makes the Animation automatically reverse when repeating.

+
Source

pub fn go(self, new_state: T) -> Animation<T>

Transitions the Animation from its current state to the given new state.

+
Source

pub fn go_mut(&mut self, new_state: T)

Transitions the Animation from its current state to the given new state, by reference.

+
Source

pub fn is_animating(&self, at: Instant) -> bool

Returns true if the Animation is currently in progress.

An Animation is in progress when it is transitioning to a different state.

-
Source

pub fn interpolate_with<I>(&self, f: impl Fn(T) -> I, at: Instant) -> I
where +

Source

pub fn interpolate_with<I>(&self, f: impl Fn(T) -> I, at: Instant) -> I
where I: Interpolable,

Projects the Animation into an interpolated value at the given Instant; using the closure provided to calculate the different keyframes of interpolated values.

If the Animation state is a bool, you can use the simpler interpolate method.

-
Source

pub fn value(&self) -> T

Retuns the current state of the Animation.

-
Source§

impl Animation<bool>

Source

pub fn interpolate<I>(&self, start: I, end: I, at: Instant) -> I
where +

Source

pub fn value(&self) -> T

Retuns the current state of the Animation.

+
Source§

impl Animation<bool>

Source

pub fn interpolate<I>(&self, start: I, end: I, at: Instant) -> I
where I: Interpolable + Clone,

Projects the Animation into an interpolated value at the given Instant; using the start and end values as the origin and destination keyframes.

+
Source

pub fn remaining(&self, at: Instant) -> Duration

Returns the remaining Duration of the Animation.

Trait Implementations§

Source§

impl<T> Clone for Animation<T>

Source§

fn clone(&self) -> Animation<T>

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<T> Debug for Animation<T>

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more

Auto Trait Implementations§

§

impl<T> Freeze for Animation<T>
where diff --git a/iced/struct.Pixels.html b/iced/struct.Pixels.html index 23cd3cea795..742bdcf2d64 100644 --- a/iced/struct.Pixels.html +++ b/iced/struct.Pixels.html @@ -1,11 +1,11 @@ -Pixels in iced - Rust

Struct Pixels

Source
pub struct Pixels(pub f32);
Expand description

An amount of logical pixels.

+Pixels in iced - Rust

Struct Pixels

Source
pub struct Pixels(pub f32);
Expand description

An amount of logical pixels.

Normally used to represent an amount of space, or the size of something.

This type is normally asked as an argument in a generic way (e.g. impl Into<Pixels>) and, since Pixels implements From both for f32 and u16, you should be able to provide both integers and float literals as needed.

Tuple Fields§

§0: f32

Implementations§

Source§

impl Pixels

Source

pub const ZERO: Pixels

Zero pixels.

-

Trait Implementations§

Source§

impl Add<f32> for Pixels

Source§

type Output = Pixels

The resulting type after applying the + operator.
Source§

fn add(self, rhs: f32) -> Pixels

Performs the + operation. Read more
Source§

impl Add for Pixels

Source§

type Output = Pixels

The resulting type after applying the + operator.
Source§

fn add(self, rhs: Pixels) -> Pixels

Performs the + operation. Read more
Source§

impl Clone for Pixels

Source§

fn clone(&self) -> Pixels

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Pixels

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl Default for Pixels

Source§

fn default() -> Pixels

Returns the “default value” for a type. Read more
Source§

impl Div<f32> for Pixels

Source§

type Output = Pixels

The resulting type after applying the / operator.
Source§

fn div(self, rhs: f32) -> Pixels

Performs the / operation. Read more
Source§

impl Div<u32> for Pixels

Source§

type Output = Pixels

The resulting type after applying the / operator.
Source§

fn div(self, rhs: u32) -> Pixels

Performs the / operation. Read more
Source§

impl Div for Pixels

Source§

type Output = Pixels

The resulting type after applying the / operator.
Source§

fn div(self, rhs: Pixels) -> Pixels

Performs the / operation. Read more
Source§

impl From<Pixels> for Length

Source§

fn from(amount: Pixels) -> Length

Converts to this type from the input type.
Source§

impl From<Pixels> for LineHeight

Source§

fn from(pixels: Pixels) -> LineHeight

Converts to this type from the input type.
Source§

impl From<Pixels> for Padding

Source§

fn from(pixels: Pixels) -> Padding

Converts to this type from the input type.
Source§

impl From<f32> for Pixels

Source§

fn from(amount: f32) -> Pixels

Converts to this type from the input type.
Source§

impl From<u16> for Pixels

Source§

fn from(amount: u16) -> Pixels

Converts to this type from the input type.
Source§

impl Mul<f32> for Pixels

Source§

type Output = Pixels

The resulting type after applying the * operator.
Source§

fn mul(self, rhs: f32) -> Pixels

Performs the * operation. Read more
Source§

impl Mul for Pixels

Source§

type Output = Pixels

The resulting type after applying the * operator.
Source§

fn mul(self, rhs: Pixels) -> Pixels

Performs the * operation. Read more
Source§

impl PartialEq for Pixels

Source§

fn eq(&self, other: &Pixels) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, +

Trait Implementations§

Source§

impl Add<f32> for Pixels

Source§

type Output = Pixels

The resulting type after applying the + operator.
Source§

fn add(self, rhs: f32) -> Pixels

Performs the + operation. Read more
Source§

impl Add for Pixels

Source§

type Output = Pixels

The resulting type after applying the + operator.
Source§

fn add(self, rhs: Pixels) -> Pixels

Performs the + operation. Read more
Source§

impl Clone for Pixels

Source§

fn clone(&self) -> Pixels

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Pixels

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl Default for Pixels

Source§

fn default() -> Pixels

Returns the “default value” for a type. Read more
Source§

impl Div<f32> for Pixels

Source§

type Output = Pixels

The resulting type after applying the / operator.
Source§

fn div(self, rhs: f32) -> Pixels

Performs the / operation. Read more
Source§

impl Div<u32> for Pixels

Source§

type Output = Pixels

The resulting type after applying the / operator.
Source§

fn div(self, rhs: u32) -> Pixels

Performs the / operation. Read more
Source§

impl Div for Pixels

Source§

type Output = Pixels

The resulting type after applying the / operator.
Source§

fn div(self, rhs: Pixels) -> Pixels

Performs the / operation. Read more
Source§

impl From<Pixels> for Length

Source§

fn from(amount: Pixels) -> Length

Converts to this type from the input type.
Source§

impl From<Pixels> for LineHeight

Source§

fn from(pixels: Pixels) -> LineHeight

Converts to this type from the input type.
Source§

impl From<Pixels> for Padding

Source§

fn from(pixels: Pixels) -> Padding

Converts to this type from the input type.
Source§

impl From<f32> for Pixels

Source§

fn from(amount: f32) -> Pixels

Converts to this type from the input type.
Source§

impl From<u32> for Pixels

Source§

fn from(amount: u32) -> Pixels

Converts to this type from the input type.
Source§

impl Mul<f32> for Pixels

Source§

type Output = Pixels

The resulting type after applying the * operator.
Source§

fn mul(self, rhs: f32) -> Pixels

Performs the * operation. Read more
Source§

impl Mul for Pixels

Source§

type Output = Pixels

The resulting type after applying the * operator.
Source§

fn mul(self, rhs: Pixels) -> Pixels

Performs the * operation. Read more
Source§

impl PartialEq for Pixels

Source§

fn eq(&self, other: &Pixels) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl PartialOrd for Pixels

Source§

fn partial_cmp(&self, other: &Pixels) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · Source§

fn lt(&self, other: &Rhs) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · Source§

fn le(&self, other: &Rhs) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · Source§

fn gt(&self, other: &Rhs) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · Source§

fn ge(&self, other: &Rhs) -> bool

Tests greater than or equal to (for self and other) and is used by diff --git a/iced_core/animation/index.html b/iced_core/animation/index.html index f4329421a29..8c4387465a8 100644 --- a/iced_core/animation/index.html +++ b/iced_core/animation/index.html @@ -1,2 +1,2 @@ -iced_core::animation - Rust

Module animation

Source
Expand description

Animate your applications.

+iced_core::animation - Rust

Module animation

Source
Expand description

Animate your applications.

Structs§

Animation
The animation of some particular state.

Enums§

Easing

Traits§

Float
Defines a float representation for arbitrary types
Interpolable
A type implementing Interpolable can be used with Animated<T>.animate(...)
\ No newline at end of file diff --git a/iced_core/animation/struct.Animation.html b/iced_core/animation/struct.Animation.html index dcf873a5abc..a71f8602ac5 100644 --- a/iced_core/animation/struct.Animation.html +++ b/iced_core/animation/struct.Animation.html @@ -1,34 +1,35 @@ -Animation in iced_core::animation - Rust

Struct Animation

Source
pub struct Animation<T>
where +Animation in iced_core::animation - Rust

Struct Animation

Source
pub struct Animation<T>
where T: Clone + Copy + PartialEq + Float,
{ /* private fields */ }
Expand description

The animation of some particular state.

It tracks state changes and allows projecting interpolated values through time.

-

Implementations§

Source§

impl<T> Animation<T>
where - T: Clone + Copy + PartialEq + Float,

Source

pub fn new(state: T) -> Self

Creates a new Animation with the given initial state.

-
Source

pub fn easing(self, easing: Easing) -> Self

Sets the Easing function of the Animation.

+

Implementations§

Source§

impl<T> Animation<T>
where + T: Clone + Copy + PartialEq + Float,

Source

pub fn new(state: T) -> Self

Creates a new Animation with the given initial state.

+
Source

pub fn easing(self, easing: Easing) -> Self

Sets the Easing function of the Animation.

See the Easing Functions Cheat Sheet for details!

-
Source

pub fn very_quick(self) -> Self

Sets the duration of the Animation to 100ms.

-
Source

pub fn quick(self) -> Self

Sets the duration of the Animation to 200ms.

-
Source

pub fn slow(self) -> Self

Sets the duration of the Animation to 400ms.

-
Source

pub fn very_slow(self) -> Self

Sets the duration of the Animation to 500ms.

-
Source

pub fn duration(self, duration: Duration) -> Self

Sets the duration of the Animation to the given value.

-
Source

pub fn delay(self, duration: Duration) -> Self

Sets a delay for the Animation.

-
Source

pub fn repeat(self, repetitions: u32) -> Self

Makes the Animation repeat a given amount of times.

+
Source

pub fn very_quick(self) -> Self

Sets the duration of the Animation to 100ms.

+
Source

pub fn quick(self) -> Self

Sets the duration of the Animation to 200ms.

+
Source

pub fn slow(self) -> Self

Sets the duration of the Animation to 400ms.

+
Source

pub fn very_slow(self) -> Self

Sets the duration of the Animation to 500ms.

+
Source

pub fn duration(self, duration: Duration) -> Self

Sets the duration of the Animation to the given value.

+
Source

pub fn delay(self, duration: Duration) -> Self

Sets a delay for the Animation.

+
Source

pub fn repeat(self, repetitions: u32) -> Self

Makes the Animation repeat a given amount of times.

Providing 1 repetition plays the animation twice in total.

-
Source

pub fn repeat_forever(self) -> Self

Makes the Animation repeat forever.

-
Source

pub fn auto_reverse(self) -> Self

Makes the Animation automatically reverse when repeating.

-
Source

pub fn go(self, new_state: T) -> Self

Transitions the Animation from its current state to the given new state.

-
Source

pub fn go_mut(&mut self, new_state: T)

Transitions the Animation from its current state to the given new state, by reference.

-
Source

pub fn is_animating(&self, at: Instant) -> bool

Returns true if the Animation is currently in progress.

+
Source

pub fn repeat_forever(self) -> Self

Makes the Animation repeat forever.

+
Source

pub fn auto_reverse(self) -> Self

Makes the Animation automatically reverse when repeating.

+
Source

pub fn go(self, new_state: T) -> Self

Transitions the Animation from its current state to the given new state.

+
Source

pub fn go_mut(&mut self, new_state: T)

Transitions the Animation from its current state to the given new state, by reference.

+
Source

pub fn is_animating(&self, at: Instant) -> bool

Returns true if the Animation is currently in progress.

An Animation is in progress when it is transitioning to a different state.

-
Source

pub fn interpolate_with<I>(&self, f: impl Fn(T) -> I, at: Instant) -> I
where +

Source

pub fn interpolate_with<I>(&self, f: impl Fn(T) -> I, at: Instant) -> I
where I: Interpolable,

Projects the Animation into an interpolated value at the given Instant; using the closure provided to calculate the different keyframes of interpolated values.

If the Animation state is a bool, you can use the simpler interpolate method.

-
Source

pub fn value(&self) -> T

Retuns the current state of the Animation.

-
Source§

impl Animation<bool>

Source

pub fn interpolate<I>(&self, start: I, end: I, at: Instant) -> I
where +

Source

pub fn value(&self) -> T

Retuns the current state of the Animation.

+
Source§

impl Animation<bool>

Source

pub fn interpolate<I>(&self, start: I, end: I, at: Instant) -> I
where I: Interpolable + Clone,

Projects the Animation into an interpolated value at the given Instant; using the start and end values as the origin and destination keyframes.

+
Source

pub fn remaining(&self, at: Instant) -> Duration

Returns the remaining Duration of the Animation.

Trait Implementations§

Source§

impl<T> Clone for Animation<T>
where T: Clone + Copy + PartialEq + Float + Clone,

Source§

fn clone(&self) -> Animation<T>

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<T> Debug for Animation<T>
where T: Clone + Copy + PartialEq + Float + Debug,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more

Auto Trait Implementations§

§

impl<T> Freeze for Animation<T>
where diff --git a/iced_core/enum.Length.html b/iced_core/enum.Length.html index d8247c90406..f3a01be7af1 100644 --- a/iced_core/enum.Length.html +++ b/iced_core/enum.Length.html @@ -1,4 +1,4 @@ -Length in iced_core - Rust

Enum Length

Source
pub enum Length {
+Length in iced_core - Rust

Enum Length

Source
pub enum Length {
     Fill,
     FillPortion(u16),
     Shrink,
@@ -25,7 +25,7 @@
 
 

Source

pub fn enclose(self, other: Length) -> Self

Adapts the Length so it can contain the other Length and match its fluidity.

-

Trait Implementations§

Source§

impl Clone for Length

Source§

fn clone(&self) -> Length

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Length

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl From<Pixels> for Length

Source§

fn from(amount: Pixels) -> Self

Converts to this type from the input type.
Source§

impl From<f32> for Length

Source§

fn from(amount: f32) -> Self

Converts to this type from the input type.
Source§

impl From<u16> for Length

Source§

fn from(units: u16) -> Self

Converts to this type from the input type.
Source§

impl PartialEq for Length

Source§

fn eq(&self, other: &Length) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, +

Trait Implementations§

Source§

impl Clone for Length

Source§

fn clone(&self) -> Length

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Length

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl From<Pixels> for Length

Source§

fn from(amount: Pixels) -> Self

Converts to this type from the input type.
Source§

impl From<f32> for Length

Source§

fn from(amount: f32) -> Self

Converts to this type from the input type.
Source§

impl From<u32> for Length

Source§

fn from(units: u32) -> Self

Converts to this type from the input type.
Source§

impl PartialEq for Length

Source§

fn eq(&self, other: &Length) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl Copy for Length

Source§

impl StructuralPartialEq for Length

Auto Trait Implementations§

§

impl Freeze for Length

§

impl RefUnwindSafe for Length

§

impl Send for Length

§

impl Sync for Length

§

impl Unpin for Length

§

impl UnwindSafe for Length

Blanket Implementations§

Source§

impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for S
where T: Real + Zero + Arithmetics + Clone, Swp: WhitePoint<T>, diff --git a/iced_core/struct.Pixels.html b/iced_core/struct.Pixels.html index 18b30b09a2d..f4d0b1d9db6 100644 --- a/iced_core/struct.Pixels.html +++ b/iced_core/struct.Pixels.html @@ -1,11 +1,11 @@ -Pixels in iced_core - Rust

Struct Pixels

Source
pub struct Pixels(pub f32);
Expand description

An amount of logical pixels.

+Pixels in iced_core - Rust

Struct Pixels

Source
pub struct Pixels(pub f32);
Expand description

An amount of logical pixels.

Normally used to represent an amount of space, or the size of something.

This type is normally asked as an argument in a generic way (e.g. impl Into<Pixels>) and, since Pixels implements From both for f32 and u16, you should be able to provide both integers and float literals as needed.

Tuple Fields§

§0: f32

Implementations§

Source§

impl Pixels

Source

pub const ZERO: Self

Zero pixels.

-

Trait Implementations§

Source§

impl Add<f32> for Pixels

Source§

type Output = Pixels

The resulting type after applying the + operator.
Source§

fn add(self, rhs: f32) -> Self

Performs the + operation. Read more
Source§

impl Add for Pixels

Source§

type Output = Pixels

The resulting type after applying the + operator.
Source§

fn add(self, rhs: Self) -> Self

Performs the + operation. Read more
Source§

impl Clone for Pixels

Source§

fn clone(&self) -> Pixels

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Pixels

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Default for Pixels

Source§

fn default() -> Pixels

Returns the “default value” for a type. Read more
Source§

impl Div<f32> for Pixels

Source§

type Output = Pixels

The resulting type after applying the / operator.
Source§

fn div(self, rhs: f32) -> Self

Performs the / operation. Read more
Source§

impl Div<u32> for Pixels

Source§

type Output = Pixels

The resulting type after applying the / operator.
Source§

fn div(self, rhs: u32) -> Self

Performs the / operation. Read more
Source§

impl Div for Pixels

Source§

type Output = Pixels

The resulting type after applying the / operator.
Source§

fn div(self, rhs: Self) -> Self

Performs the / operation. Read more
Source§

impl From<Pixels> for Length

Source§

fn from(amount: Pixels) -> Self

Converts to this type from the input type.
Source§

impl From<Pixels> for LineHeight

Source§

fn from(pixels: Pixels) -> Self

Converts to this type from the input type.
Source§

impl From<Pixels> for Padding

Source§

fn from(pixels: Pixels) -> Self

Converts to this type from the input type.
Source§

impl From<Pixels> for f32

Source§

fn from(pixels: Pixels) -> Self

Converts to this type from the input type.
Source§

impl From<f32> for Pixels

Source§

fn from(amount: f32) -> Self

Converts to this type from the input type.
Source§

impl From<u16> for Pixels

Source§

fn from(amount: u16) -> Self

Converts to this type from the input type.
Source§

impl Mul<f32> for Pixels

Source§

type Output = Pixels

The resulting type after applying the * operator.
Source§

fn mul(self, rhs: f32) -> Self

Performs the * operation. Read more
Source§

impl Mul for Pixels

Source§

type Output = Pixels

The resulting type after applying the * operator.
Source§

fn mul(self, rhs: Self) -> Self

Performs the * operation. Read more
Source§

impl PartialEq for Pixels

Source§

fn eq(&self, other: &Pixels) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, +

Trait Implementations§

Source§

impl Add<f32> for Pixels

Source§

type Output = Pixels

The resulting type after applying the + operator.
Source§

fn add(self, rhs: f32) -> Self

Performs the + operation. Read more
Source§

impl Add for Pixels

Source§

type Output = Pixels

The resulting type after applying the + operator.
Source§

fn add(self, rhs: Self) -> Self

Performs the + operation. Read more
Source§

impl Clone for Pixels

Source§

fn clone(&self) -> Pixels

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Pixels

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Default for Pixels

Source§

fn default() -> Pixels

Returns the “default value” for a type. Read more
Source§

impl Div<f32> for Pixels

Source§

type Output = Pixels

The resulting type after applying the / operator.
Source§

fn div(self, rhs: f32) -> Self

Performs the / operation. Read more
Source§

impl Div<u32> for Pixels

Source§

type Output = Pixels

The resulting type after applying the / operator.
Source§

fn div(self, rhs: u32) -> Self

Performs the / operation. Read more
Source§

impl Div for Pixels

Source§

type Output = Pixels

The resulting type after applying the / operator.
Source§

fn div(self, rhs: Self) -> Self

Performs the / operation. Read more
Source§

impl From<Pixels> for Length

Source§

fn from(amount: Pixels) -> Self

Converts to this type from the input type.
Source§

impl From<Pixels> for LineHeight

Source§

fn from(pixels: Pixels) -> Self

Converts to this type from the input type.
Source§

impl From<Pixels> for Padding

Source§

fn from(pixels: Pixels) -> Self

Converts to this type from the input type.
Source§

impl From<Pixels> for f32

Source§

fn from(pixels: Pixels) -> Self

Converts to this type from the input type.
Source§

impl From<f32> for Pixels

Source§

fn from(amount: f32) -> Self

Converts to this type from the input type.
Source§

impl From<u32> for Pixels

Source§

fn from(amount: u32) -> Self

Converts to this type from the input type.
Source§

impl Mul<f32> for Pixels

Source§

type Output = Pixels

The resulting type after applying the * operator.
Source§

fn mul(self, rhs: f32) -> Self

Performs the * operation. Read more
Source§

impl Mul for Pixels

Source§

type Output = Pixels

The resulting type after applying the * operator.
Source§

fn mul(self, rhs: Self) -> Self

Performs the * operation. Read more
Source§

impl PartialEq for Pixels

Source§

fn eq(&self, other: &Pixels) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl PartialOrd for Pixels

Source§

fn partial_cmp(&self, other: &Pixels) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · Source§

fn lt(&self, other: &Rhs) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · Source§

fn le(&self, other: &Rhs) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · Source§

fn gt(&self, other: &Rhs) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · Source§

fn ge(&self, other: &Rhs) -> bool

Tests greater than or equal to (for self and other) and is used by diff --git a/iced_renderer/fallback/enum.Compositor.html b/iced_renderer/fallback/enum.Compositor.html index 85c1e327fef..b7e4b597afd 100644 --- a/iced_renderer/fallback/enum.Compositor.html +++ b/iced_renderer/fallback/enum.Compositor.html @@ -28,13 +28,13 @@ renderer: &mut Self::Renderer, surface: &mut Self::Surface, viewport: &Viewport, - background_color: Color, + background_color: Color, overlay: &[T], ) -> Result<(), SurfaceError>

Presents the Renderer primitives to the next frame of the given Surface.
Source§

fn screenshot<T: AsRef<str>>( &mut self, renderer: &mut Self::Renderer, viewport: &Viewport, - background_color: Color, + background_color: Color, overlay: &[T], ) -> Vec<u8>

Screenshots the current Renderer primitives to an offscreen texture, and returns the bytes of the texture ordered as RGBA in the sRGB color space.
Source§

fn new<W>( diff --git a/iced_renderer/fallback/enum.Renderer.html b/iced_renderer/fallback/enum.Renderer.html index d2648dce4d5..20d8f26ec4f 100644 --- a/iced_renderer/fallback/enum.Renderer.html +++ b/iced_renderer/fallback/enum.Renderer.html @@ -8,52 +8,52 @@

§

Secondary(B)

The secondary (or fallback) rendering option.

Trait Implementations§

Source§

impl<A: Debug, B: Debug> Debug for Renderer<A, B>

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl<A, B> Default for Renderer<A, B>
where A: Default, - B: Default,

Source§

type Compositor = Compositor<<A as Default>::Compositor, <B as Default>::Compositor>

The compositor of the renderer.
Source§

impl Headless for Renderer<Renderer, Renderer>

Available on crate features wgpu and tiny-skia only.
Source§

fn new(default_font: Font, default_text_size: Pixels) -> Self

Creates a new [Headless] renderer;
Source§

fn screenshot( + B: Default,

Source§

type Compositor = Compositor<<A as Default>::Compositor, <B as Default>::Compositor>

The compositor of the renderer.
Source§

impl Headless for Renderer<Renderer, Renderer>

Available on crate features wgpu and tiny-skia only.
Source§

fn new(default_font: Font, default_text_size: Pixels) -> Self

Creates a new Headless renderer;
Source§

fn screenshot( &mut self, - size: Size<u32>, + size: Size<u32>, scale_factor: f32, - background_color: Color, + background_color: Color, ) -> Vec<u8>

Draws offscreen into a screenshot, returning a collection of -bytes representing the rendered pixels in RGBA order.
Source§

impl<A, B> Renderer for Renderer<A, B>
where - A: Renderer, - B: Renderer,

Source§

fn fill_quad(&mut self, quad: Quad, background: impl Into<Background>)

Fills a [Quad] with the provided [Background].
Source§

fn clear(&mut self)

Clears all of the recorded primitives in the [Renderer].
Source§

fn start_layer(&mut self, bounds: Rectangle)

Starts recording a new layer.
Source§

fn end_layer(&mut self)

Ends recording a new layer. Read more
Source§

fn start_transformation(&mut self, transformation: Transformation)

Starts recording with a new [Transformation].
Source§

fn end_transformation(&mut self)

Ends recording a new layer. Read more
§

fn with_layer(&mut self, bounds: Rectangle, f: impl FnOnce(&mut Self))

Draws the primitives recorded in the given closure in a new layer. Read more
§

fn with_transformation( +bytes representing the rendered pixels in RGBA order.

Source§

impl<A, B> Renderer for Renderer<A, B>
where + A: Renderer, + B: Renderer,

Source§

fn fill_quad(&mut self, quad: Quad, background: impl Into<Background>)

Fills a Quad with the provided Background.
Source§

fn clear(&mut self)

Clears all of the recorded primitives in the Renderer.
Source§

fn start_layer(&mut self, bounds: Rectangle)

Starts recording a new layer.
Source§

fn end_layer(&mut self)

Ends recording a new layer. Read more
Source§

fn start_transformation(&mut self, transformation: Transformation)

Starts recording with a new Transformation.
Source§

fn end_transformation(&mut self)

Ends recording a new layer. Read more
Source§

fn with_layer(&mut self, bounds: Rectangle, f: impl FnOnce(&mut Self))

Draws the primitives recorded in the given closure in a new layer. Read more
Source§

fn with_transformation( &mut self, - transformation: Transformation, + transformation: Transformation, f: impl FnOnce(&mut Self), -)

Applies a [Transformation] to the primitives recorded in the given closure.
§

fn with_translation(&mut self, translation: Vector, f: impl FnOnce(&mut Self))

Applies a translation to the primitives recorded in the given closure.
Source§

impl<A, B> Renderer for Renderer<A, B>
where - A: Renderer, - B: Renderer<Font = A::Font, Paragraph = A::Paragraph, Editor = A::Editor>,

Source§

const ICON_FONT: Self::Font = A::ICON_FONT

The icon font of the backend.
Source§

const CHECKMARK_ICON: char = A::CHECKMARK_ICON

The char representing a ✔ icon in the ICON_FONT.
Source§

const ARROW_DOWN_ICON: char = A::ARROW_DOWN_ICON

The char representing a ▼ icon in the built-in ICON_FONT.
Source§

type Font = <A as Renderer>::Font

The font type used.
Source§

type Paragraph = <A as Renderer>::Paragraph

The [Paragraph] of this [Renderer].
Source§

type Editor = <A as Renderer>::Editor

The [Editor] of this [Renderer].
Source§

fn default_font(&self) -> Self::Font

Returns the default [Self::Font].
Source§

fn default_size(&self) -> Pixels

Returns the default size of [Text].
Source§

fn fill_paragraph( +)

Applies a Transformation to the primitives recorded in the given closure.
Source§

fn with_translation(&mut self, translation: Vector, f: impl FnOnce(&mut Self))

Applies a translation to the primitives recorded in the given closure.
Source§

impl<A, B> Renderer for Renderer<A, B>
where + A: Renderer, + B: Renderer<Font = A::Font, Paragraph = A::Paragraph, Editor = A::Editor>,

Source§

const ICON_FONT: Self::Font = A::ICON_FONT

The icon font of the backend.
Source§

const CHECKMARK_ICON: char = A::CHECKMARK_ICON

The char representing a ✔ icon in the ICON_FONT.
Source§

const ARROW_DOWN_ICON: char = A::ARROW_DOWN_ICON

The char representing a ▼ icon in the built-in ICON_FONT.
Source§

type Font = <A as Renderer>::Font

The font type used.
Source§

type Paragraph = <A as Renderer>::Paragraph

The Paragraph of this Renderer.
Source§

type Editor = <A as Renderer>::Editor

The Editor of this Renderer.
Source§

fn default_font(&self) -> Self::Font

Returns the default Self::Font.
Source§

fn default_size(&self) -> Pixels

Returns the default size of Text.
Source§

fn fill_paragraph( &mut self, - text: &Self::Paragraph, - position: Point, - color: Color, - clip_bounds: Rectangle, -)

Draws the given [Paragraph] at the given position and with the given -[Color].
Source§

fn fill_editor( + text: &Self::Paragraph, + position: Point, + color: Color, + clip_bounds: Rectangle, +)

Draws the given Paragraph at the given position and with the given +Color.
Source§

fn fill_editor( &mut self, - editor: &Self::Editor, - position: Point, - color: Color, - clip_bounds: Rectangle, -)

Draws the given [Editor] at the given position and with the given -[Color].
Source§

fn fill_text( + editor: &Self::Editor, + position: Point, + color: Color, + clip_bounds: Rectangle, +)

Draws the given Editor at the given position and with the given +Color.
Source§

fn fill_text( &mut self, - text: Text<String, Self::Font>, - position: Point, - color: Color, - clip_bounds: Rectangle, -)

Draws the given [Text] at the given position and with the given -[Color].
Source§

impl<A, B> Renderer for Renderer<A, B>
where - A: Renderer, - B: Renderer<Handle = A::Handle>,

Source§

type Handle = <A as Renderer>::Handle

The image Handle to be displayed. Iced exposes its own default implementation of a Handle
Source§

fn measure_image(&self, handle: &Self::Handle) -> Size<u32>

Returns the dimensions of an image for the given [Handle].
Source§

fn draw_image(&mut self, image: Image<A::Handle>, bounds: Rectangle)

Draws an Image inside the provided bounds.
Source§

impl<A, B> Renderer for Renderer<A, B>
where - A: Renderer, - B: Renderer,

Source§

fn measure_svg(&self, handle: &Handle) -> Size<u32>

Returns the default dimensions of an SVG for the given [Handle].
Source§

fn draw_svg(&mut self, svg: Svg, bounds: Rectangle)

Draws an SVG with the given [Handle], an optional [Color] filter, and inside the provided bounds.
Source§

impl<A, B> Renderer for Renderer<A, B>
where + text: Text<String, Self::Font>, + position: Point, + color: Color, + clip_bounds: Rectangle, +)

Draws the given Text at the given position and with the given +Color.
Source§

impl<A, B> Renderer for Renderer<A, B>
where + A: Renderer, + B: Renderer<Handle = A::Handle>,

Source§

type Handle = <A as Renderer>::Handle

The image Handle to be displayed. Iced exposes its own default implementation of a Handle
Source§

fn measure_image(&self, handle: &Self::Handle) -> Size<u32>

Returns the dimensions of an image for the given Handle.
Source§

fn draw_image(&mut self, image: Image<A::Handle>, bounds: Rectangle)

Draws an Image inside the provided bounds.
Source§

impl<A, B> Renderer for Renderer<A, B>
where + A: Renderer, + B: Renderer,

Source§

fn measure_svg(&self, handle: &Handle) -> Size<u32>

Returns the default dimensions of an SVG for the given Handle.
Source§

fn draw_svg(&mut self, svg: Svg, bounds: Rectangle)

Draws an SVG with the given Handle, an optional Color filter, and inside the provided bounds.
Source§

impl<A, B> Renderer for Renderer<A, B>
where A: Renderer, B: Renderer,

Source§

fn draw_mesh(&mut self, mesh: Mesh)

Draws the given Mesh.
Source§

impl<A, B> Renderer for Renderer<A, B>
where A: Renderer, - B: Renderer,

Available on crate feature wgpu only.
Source§

fn draw_primitive(&mut self, bounds: Rectangle, primitive: impl Primitive)

Draws a custom primitive.
Source§

impl<A, B> Renderer for Renderer<A, B>
where + B: Renderer,

Available on crate feature wgpu only.
Source§

fn draw_primitive(&mut self, bounds: Rectangle, primitive: impl Primitive)

Draws a custom primitive.
Source§

impl<A, B> Renderer for Renderer<A, B>
where A: Renderer, - B: Renderer,

Available on crate feature geometry only.
Source§

type Geometry = Geometry<<A as Renderer>::Geometry, <B as Renderer>::Geometry>

The kind of geometry this renderer can draw.
Source§

type Frame = Frame<<A as Renderer>::Frame, <B as Renderer>::Frame>

The kind of Frame this renderer supports.
Source§

fn new_frame(&self, size: Size) -> Self::Frame

Creates a new Self::Frame.
Source§

fn draw_geometry(&mut self, geometry: Self::Geometry)

Draws the given Self::Geometry.

Auto Trait Implementations§

§

impl<A, B> Freeze for Renderer<A, B>
where + B: Renderer,

Available on crate feature geometry only.
Source§

type Geometry = Geometry<<A as Renderer>::Geometry, <B as Renderer>::Geometry>

The kind of geometry this renderer can draw.
Source§

type Frame = Frame<<A as Renderer>::Frame, <B as Renderer>::Frame>

The kind of Frame this renderer supports.
Source§

fn new_frame(&self, size: Size) -> Self::Frame

Creates a new Self::Frame.
Source§

fn draw_geometry(&mut self, geometry: Self::Geometry)

Draws the given Self::Geometry.

Auto Trait Implementations§

§

impl<A, B> Freeze for Renderer<A, B>
where A: Freeze, B: Freeze,

§

impl<A, B> RefUnwindSafe for Renderer<A, B>
where A: RefUnwindSafe, diff --git a/iced_renderer/geometry/enum.Gradient.html b/iced_renderer/geometry/enum.Gradient.html index 2664a9b9f0a..7166429cf0a 100644 --- a/iced_renderer/geometry/enum.Gradient.html +++ b/iced_renderer/geometry/enum.Gradient.html @@ -1,7 +1,7 @@ Gradient in iced_renderer::geometry - Rust

Enum Gradient

Source
pub enum Gradient {
     Linear(Linear),
 }
Available on crate feature geometry only.
Expand description

A fill which linearly interpolates colors along a direction.

-

For a gradient which can be used as a fill for a background of a widget, see [crate::core::Gradient].

+

For a gradient which can be used as a fill for a background of a widget, see crate::core::Gradient.

Variants§

§

Linear(Linear)

A linear gradient interpolates colors along a direction from its start to its end point.

Implementations§

Source§

impl Gradient

Source

pub fn pack(&self) -> Packed

Packs the Gradient for use in shader code.

diff --git a/iced_renderer/geometry/enum.Style.html b/iced_renderer/geometry/enum.Style.html index 4c5fa8deaf2..4cc9132cfb8 100644 --- a/iced_renderer/geometry/enum.Style.html +++ b/iced_renderer/geometry/enum.Style.html @@ -1,10 +1,10 @@ Style in iced_renderer::geometry - Rust

Enum Style

Source
pub enum Style {
-    Solid(Color),
+    Solid(Color),
     Gradient(Gradient),
 }
Available on crate feature geometry only.
Expand description

The coloring style of some drawing.

-

Variants§

§

Solid(Color)

A solid [Color].

+

Variants§

§

Solid(Color)

A solid Color.

§

Gradient(Gradient)

A Gradient color.

-

Trait Implementations§

Source§

impl Clone for Style

Source§

fn clone(&self) -> Style

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Style

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl From<Color> for Style

Source§

fn from(color: Color) -> Style

Converts to this type from the input type.
Source§

impl From<Gradient> for Style

Source§

fn from(gradient: Gradient) -> Style

Converts to this type from the input type.
Source§

impl PartialEq for Style

Source§

fn eq(&self, other: &Style) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, +

Trait Implementations§

Source§

impl Clone for Style

Source§

fn clone(&self) -> Style

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Style

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl From<Color> for Style

Source§

fn from(color: Color) -> Style

Converts to this type from the input type.
Source§

impl From<Gradient> for Style

Source§

fn from(gradient: Gradient) -> Style

Converts to this type from the input type.
Source§

impl PartialEq for Style

Source§

fn eq(&self, other: &Style) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl Copy for Style

Source§

impl StructuralPartialEq for Style

Auto Trait Implementations§

§

impl Freeze for Style

§

impl RefUnwindSafe for Style

§

impl Send for Style

§

impl Sync for Style

§

impl Unpin for Style

§

impl UnwindSafe for Style

Blanket Implementations§

Source§

impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for S
where T: Real + Zero + Arithmetics + Clone, Swp: WhitePoint<T>, diff --git a/iced_renderer/geometry/fill/enum.Style.html b/iced_renderer/geometry/fill/enum.Style.html index dacc26c864c..9e2aec29488 100644 --- a/iced_renderer/geometry/fill/enum.Style.html +++ b/iced_renderer/geometry/fill/enum.Style.html @@ -1,10 +1,10 @@ Style in iced_renderer::geometry::fill - Rust

Enum Style

Source
pub enum Style {
-    Solid(Color),
+    Solid(Color),
     Gradient(Gradient),
 }
Available on crate feature geometry only.
Expand description

The coloring style of some drawing.

-

Variants§

§

Solid(Color)

A solid [Color].

+

Variants§

§

Solid(Color)

A solid Color.

§

Gradient(Gradient)

A Gradient color.

-

Trait Implementations§

Source§

impl Clone for Style

Source§

fn clone(&self) -> Style

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Style

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl From<Color> for Style

Source§

fn from(color: Color) -> Style

Converts to this type from the input type.
Source§

impl From<Gradient> for Style

Source§

fn from(gradient: Gradient) -> Style

Converts to this type from the input type.
Source§

impl PartialEq for Style

Source§

fn eq(&self, other: &Style) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, +

Trait Implementations§

Source§

impl Clone for Style

Source§

fn clone(&self) -> Style

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Style

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl From<Color> for Style

Source§

fn from(color: Color) -> Style

Converts to this type from the input type.
Source§

impl From<Gradient> for Style

Source§

fn from(gradient: Gradient) -> Style

Converts to this type from the input type.
Source§

impl PartialEq for Style

Source§

fn eq(&self, other: &Style) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl Copy for Style

Source§

impl StructuralPartialEq for Style

Auto Trait Implementations§

§

impl Freeze for Style

§

impl RefUnwindSafe for Style

§

impl Send for Style

§

impl Sync for Style

§

impl Unpin for Style

§

impl UnwindSafe for Style

Blanket Implementations§

Source§

impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for S
where T: Real + Zero + Arithmetics + Clone, Swp: WhitePoint<T>, diff --git a/iced_renderer/geometry/fill/struct.Fill.html b/iced_renderer/geometry/fill/struct.Fill.html index 64e20ba523d..8881d2abb76 100644 --- a/iced_renderer/geometry/fill/struct.Fill.html +++ b/iced_renderer/geometry/fill/struct.Fill.html @@ -3,12 +3,12 @@ pub rule: Rule, }
Available on crate feature geometry only.
Expand description

The style used to fill geometry.

Fields§

§style: Style

The color or gradient of the fill.

-

By default, it is set to Style::Solid with [Color::BLACK].

+

By default, it is set to Style::Solid with Color::BLACK.

§rule: Rule

The fill rule defines how to determine what is inside and what is outside of a shape.

See the SVG specification for more details.

By default, it is set to NonZero.

-

Trait Implementations§

Source§

impl Clone for Fill

Source§

fn clone(&self) -> Fill

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Fill

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl Default for Fill

Source§

fn default() -> Fill

Returns the “default value” for a type. Read more
Source§

impl From<Color> for Fill

Source§

fn from(color: Color) -> Fill

Converts to this type from the input type.
Source§

impl From<Gradient> for Fill

Source§

fn from(gradient: Gradient) -> Fill

Converts to this type from the input type.
Source§

impl From<Linear> for Fill

Source§

fn from(gradient: Linear) -> Fill

Converts to this type from the input type.
Source§

impl Copy for Fill

Auto Trait Implementations§

§

impl Freeze for Fill

§

impl RefUnwindSafe for Fill

§

impl Send for Fill

§

impl Sync for Fill

§

impl Unpin for Fill

§

impl UnwindSafe for Fill

Blanket Implementations§

Source§

impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for S
where +

Trait Implementations§

Source§

impl Clone for Fill

Source§

fn clone(&self) -> Fill

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Fill

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl Default for Fill

Source§

fn default() -> Fill

Returns the “default value” for a type. Read more
Source§

impl From<Color> for Fill

Source§

fn from(color: Color) -> Fill

Converts to this type from the input type.
Source§

impl From<Gradient> for Fill

Source§

fn from(gradient: Gradient) -> Fill

Converts to this type from the input type.
Source§

impl From<Linear> for Fill

Source§

fn from(gradient: Linear) -> Fill

Converts to this type from the input type.
Source§

impl Copy for Fill

Auto Trait Implementations§

§

impl Freeze for Fill

§

impl RefUnwindSafe for Fill

§

impl Send for Fill

§

impl Sync for Fill

§

impl Unpin for Fill

§

impl UnwindSafe for Fill

Blanket Implementations§

Source§

impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for S
where T: Real + Zero + Arithmetics + Clone, Swp: WhitePoint<T>, Dwp: WhitePoint<T>, diff --git a/iced_renderer/geometry/frame/struct.Frame.html b/iced_renderer/geometry/frame/struct.Frame.html index 0b3fd6b4b69..aff0d29b70c 100644 --- a/iced_renderer/geometry/frame/struct.Frame.html +++ b/iced_renderer/geometry/frame/struct.Frame.html @@ -1,17 +1,17 @@ Frame in iced_renderer::geometry::frame - Rust

Struct Frame

Source
pub struct Frame<Renderer>
where Renderer: Renderer,
{ /* private fields */ }
Available on crate feature geometry only.
Expand description

The region of a surface that can be used to draw geometry.

Implementations§

Source§

impl<Renderer> Frame<Renderer>
where - Renderer: Renderer,

Source

pub fn new(renderer: &Renderer, size: Size) -> Frame<Renderer>

Creates a new Frame with the given dimensions.

+ Renderer: Renderer,

Source

pub fn new(renderer: &Renderer, size: Size) -> Frame<Renderer>

Creates a new Frame with the given dimensions.

Source

pub fn width(&self) -> f32

Returns the width of the Frame.

Source

pub fn height(&self) -> f32

Returns the height of the Frame.

-
Source

pub fn size(&self) -> Size

Returns the dimensions of the Frame.

-
Source

pub fn center(&self) -> Point

Returns the coordinate of the center of the Frame.

+
Source

pub fn size(&self) -> Size

Returns the dimensions of the Frame.

+
Source

pub fn center(&self) -> Point

Returns the coordinate of the center of the Frame.

Source

pub fn fill(&mut self, path: &Path, fill: impl Into<Fill>)

Draws the given Path on the Frame by filling it with the provided style.

Source

pub fn fill_rectangle( &mut self, - top_left: Point, - size: Size, + top_left: Point, + size: Size, fill: impl Into<Fill>, )

Draws an axis-aligned rectangle given its top-left corner coordinate and its Size on the Frame by filling it with the provided style.

@@ -19,8 +19,8 @@ provided style.

Source

pub fn stroke_rectangle<'a>( &mut self, - top_left: Point, - size: Size, + top_left: Point, + size: Size, stroke: impl Into<Stroke<'a>>, )

Draws the stroke of an axis-aligned rectangle with the provided style given its top-left corner coordinate and its Size on the Frame .

@@ -29,8 +29,8 @@

Warning: All text will be rendered on top of all the layers of a Canvas. Therefore, it is currently only meant to be used for overlays, which is the most common use case.

-
Source

pub fn draw_image(&mut self, bounds: Rectangle, image: impl Into<Image>)

Available on crate feature image only.

Draws the given Image on the Frame inside the given bounds.

-
Source

pub fn draw_svg(&mut self, bounds: Rectangle, svg: impl Into<Svg>)

Available on crate feature svg only.

Draws the given Svg on the Frame inside the given bounds.

+
Source

pub fn draw_image(&mut self, bounds: Rectangle, image: impl Into<Image>)

Available on crate feature image only.

Draws the given Image on the Frame inside the given bounds.

+
Source

pub fn draw_svg(&mut self, bounds: Rectangle, svg: impl Into<Svg>)

Available on crate feature svg only.

Draws the given Svg on the Frame inside the given bounds.

Source

pub fn with_save<R>(&mut self, f: impl FnOnce(&mut Frame<Renderer>) -> R) -> R

Stores the current transform of the Frame and executes the given drawing operations, restoring the transform afterwards.

This method is useful to compose transforms and perform drawing @@ -39,17 +39,17 @@

Source

pub fn pop_transform(&mut self)

Pops a transform from the transform stack and sets it as the current transform.

Source

pub fn with_clip<R>( &mut self, - region: Rectangle, + region: Rectangle, f: impl FnOnce(&mut Frame<Renderer>) -> R, -) -> R

Executes the given drawing operations within a [Rectangle] region, +) -> R

Executes the given drawing operations within a Rectangle region, clipping any geometry that overflows its bounds. Any transformations performed are local to the provided closure.

This method is useful to perform drawing operations that need to be clipped.

-
Source

pub fn translate(&mut self, translation: Vector)

Applies a translation to the current transform of the Frame.

-
Source

pub fn rotate(&mut self, angle: impl Into<Radians>)

Applies a rotation in radians to the current transform of the Frame.

+
Source

pub fn translate(&mut self, translation: Vector)

Applies a translation to the current transform of the Frame.

+
Source

pub fn rotate(&mut self, angle: impl Into<Radians>)

Applies a rotation in radians to the current transform of the Frame.

Source

pub fn scale(&mut self, scale: impl Into<f32>)

Applies a uniform scaling to the current transform of the Frame.

-
Source

pub fn scale_nonuniform(&mut self, scale: impl Into<Vector>)

Applies a non-uniform scaling to the current transform of the Frame.

+
Source

pub fn scale_nonuniform(&mut self, scale: impl Into<Vector>)

Applies a non-uniform scaling to the current transform of the Frame.

Source

pub fn into_geometry(self) -> <Renderer as Renderer>::Geometry

Turns the Frame into its underlying geometry.

Auto Trait Implementations§

§

impl<Renderer> Freeze for Frame<Renderer>
where <Renderer as Renderer>::Frame: Freeze,

§

impl<Renderer> RefUnwindSafe for Frame<Renderer>
where diff --git a/iced_renderer/geometry/frame/trait.Backend.html b/iced_renderer/geometry/frame/trait.Backend.html index 03bc2bc3184..8b8591063c8 100644 --- a/iced_renderer/geometry/frame/trait.Backend.html +++ b/iced_renderer/geometry/frame/trait.Backend.html @@ -4,60 +4,60 @@
Show 20 methods // Required methods fn width(&self) -> f32; fn height(&self) -> f32; - fn size(&self) -> Size; - fn center(&self) -> Point; + fn size(&self) -> Size; + fn center(&self) -> Point; fn push_transform(&mut self); fn pop_transform(&mut self); - fn translate(&mut self, translation: Vector); - fn rotate(&mut self, angle: impl Into<Radians>); + fn translate(&mut self, translation: Vector); + fn rotate(&mut self, angle: impl Into<Radians>); fn scale(&mut self, scale: impl Into<f32>); - fn scale_nonuniform(&mut self, scale: impl Into<Vector>); - fn draft(&mut self, clip_bounds: Rectangle) -> Self; + fn scale_nonuniform(&mut self, scale: impl Into<Vector>); + fn draft(&mut self, clip_bounds: Rectangle) -> Self; fn paste(&mut self, frame: Self); fn stroke<'a>(&mut self, path: &Path, stroke: impl Into<Stroke<'a>>); fn stroke_rectangle<'a>( &mut self, - top_left: Point, - size: Size, + top_left: Point, + size: Size, stroke: impl Into<Stroke<'a>>, ); fn fill(&mut self, path: &Path, fill: impl Into<Fill>); fn fill_text(&mut self, text: impl Into<Text>); fn fill_rectangle( &mut self, - top_left: Point, - size: Size, + top_left: Point, + size: Size, fill: impl Into<Fill>, ); - fn draw_image(&mut self, bounds: Rectangle, image: impl Into<Image>); - fn draw_svg(&mut self, bounds: Rectangle, svg: impl Into<Svg>); + fn draw_image(&mut self, bounds: Rectangle, image: impl Into<Image>); + fn draw_svg(&mut self, bounds: Rectangle, svg: impl Into<Svg>); fn into_geometry(self) -> Self::Geometry;
}
Available on crate feature geometry only.
Expand description

The internal implementation of a Frame.

Analogous to Frame. See Frame for the documentation of each method.

-

Required Associated Types§

Required Methods§

Source

fn width(&self) -> f32

Source

fn height(&self) -> f32

Source

fn size(&self) -> Size

Source

fn center(&self) -> Point

Source

fn push_transform(&mut self)

Source

fn pop_transform(&mut self)

Source

fn translate(&mut self, translation: Vector)

Source

fn rotate(&mut self, angle: impl Into<Radians>)

Source

fn scale(&mut self, scale: impl Into<f32>)

Source

fn scale_nonuniform(&mut self, scale: impl Into<Vector>)

Source

fn draft(&mut self, clip_bounds: Rectangle) -> Self

Source

fn paste(&mut self, frame: Self)

Source

fn stroke<'a>(&mut self, path: &Path, stroke: impl Into<Stroke<'a>>)

Source

fn stroke_rectangle<'a>( +

Required Associated Types§

Required Methods§

Source

fn width(&self) -> f32

Source

fn height(&self) -> f32

Source

fn size(&self) -> Size

Source

fn center(&self) -> Point

Source

fn push_transform(&mut self)

Source

fn pop_transform(&mut self)

Source

fn translate(&mut self, translation: Vector)

Source

fn rotate(&mut self, angle: impl Into<Radians>)

Source

fn scale(&mut self, scale: impl Into<f32>)

Source

fn scale_nonuniform(&mut self, scale: impl Into<Vector>)

Source

fn draft(&mut self, clip_bounds: Rectangle) -> Self

Source

fn paste(&mut self, frame: Self)

Source

fn stroke<'a>(&mut self, path: &Path, stroke: impl Into<Stroke<'a>>)

Source

fn stroke_rectangle<'a>( &mut self, - top_left: Point, - size: Size, + top_left: Point, + size: Size, stroke: impl Into<Stroke<'a>>, -)

Source

fn fill(&mut self, path: &Path, fill: impl Into<Fill>)

Source

fn fill_text(&mut self, text: impl Into<Text>)

Source

fn fill_rectangle(&mut self, top_left: Point, size: Size, fill: impl Into<Fill>)

Source

fn draw_image(&mut self, bounds: Rectangle, image: impl Into<Image>)

Source

fn draw_svg(&mut self, bounds: Rectangle, svg: impl Into<Svg>)

Source

fn into_geometry(self) -> Self::Geometry

Dyn Compatibility§

This trait is not dyn compatible.

In older versions of Rust, dyn compatibility was called "object safety", so this trait is not object safe.

Implementations on Foreign Types§

Source§

impl Backend for ()

Available on debug-assertions enabled only.
Source§

type Geometry = ()

Source§

fn width(&self) -> f32

Source§

fn height(&self) -> f32

Source§

fn size(&self) -> Size

Source§

fn center(&self) -> Point

Source§

fn push_transform(&mut self)

Source§

fn pop_transform(&mut self)

Source§

fn translate(&mut self, _translation: Vector)

Source§

fn rotate(&mut self, _angle: impl Into<Radians>)

Source§

fn scale(&mut self, _scale: impl Into<f32>)

Source§

fn scale_nonuniform(&mut self, _scale: impl Into<Vector>)

Source§

fn draft(&mut self, _clip_bounds: Rectangle)

Source§

fn paste(&mut self, _frame: ())

Source§

fn stroke<'a>(&mut self, _path: &Path, _stroke: impl Into<Stroke<'a>>)

Source§

fn stroke_rectangle<'a>( +)

Source

fn fill(&mut self, path: &Path, fill: impl Into<Fill>)

Source

fn fill_text(&mut self, text: impl Into<Text>)

Source

fn fill_rectangle(&mut self, top_left: Point, size: Size, fill: impl Into<Fill>)

Source

fn draw_image(&mut self, bounds: Rectangle, image: impl Into<Image>)

Source

fn draw_svg(&mut self, bounds: Rectangle, svg: impl Into<Svg>)

Source

fn into_geometry(self) -> Self::Geometry

Dyn Compatibility§

This trait is not dyn compatible.

In older versions of Rust, dyn compatibility was called "object safety", so this trait is not object safe.

Implementations on Foreign Types§

Source§

impl Backend for ()

Available on debug-assertions enabled only.
Source§

type Geometry = ()

Source§

fn width(&self) -> f32

Source§

fn height(&self) -> f32

Source§

fn size(&self) -> Size

Source§

fn center(&self) -> Point

Source§

fn push_transform(&mut self)

Source§

fn pop_transform(&mut self)

Source§

fn translate(&mut self, _translation: Vector)

Source§

fn rotate(&mut self, _angle: impl Into<Radians>)

Source§

fn scale(&mut self, _scale: impl Into<f32>)

Source§

fn scale_nonuniform(&mut self, _scale: impl Into<Vector>)

Source§

fn draft(&mut self, _clip_bounds: Rectangle)

Source§

fn paste(&mut self, _frame: ())

Source§

fn stroke<'a>(&mut self, _path: &Path, _stroke: impl Into<Stroke<'a>>)

Source§

fn stroke_rectangle<'a>( &mut self, - _top_left: Point, - _size: Size, + _top_left: Point, + _size: Size, _stroke: impl Into<Stroke<'a>>, )

Source§

fn fill(&mut self, _path: &Path, _fill: impl Into<Fill>)

Source§

fn fill_text(&mut self, _text: impl Into<Text>)

Source§

fn fill_rectangle( &mut self, - _top_left: Point, - _size: Size, + _top_left: Point, + _size: Size, _fill: impl Into<Fill>, -)

Source§

fn draw_image(&mut self, _bounds: Rectangle, _image: impl Into<Image>)

Source§

fn draw_svg(&mut self, _bounds: Rectangle, _svg: impl Into<Svg>)

Source§

fn into_geometry(self) -> <() as Backend>::Geometry

Source§

impl Backend for Frame

Source§

type Geometry = Geometry

Source§

fn width(&self) -> f32

Source§

fn height(&self) -> f32

Source§

fn size(&self) -> Size

Source§

fn center(&self) -> Point

Source§

fn fill(&mut self, path: &Path, fill: impl Into<Fill>)

Source§

fn fill_rectangle(&mut self, top_left: Point, size: Size, fill: impl Into<Fill>)

Source§

fn stroke<'a>(&mut self, path: &Path, stroke: impl Into<Stroke<'a>>)

Source§

fn stroke_rectangle<'a>( +)

Source§

fn draw_image(&mut self, _bounds: Rectangle, _image: impl Into<Image>)

Source§

fn draw_svg(&mut self, _bounds: Rectangle, _svg: impl Into<Svg>)

Source§

fn into_geometry(self) -> <() as Backend>::Geometry

Source§

impl Backend for Frame

Source§

type Geometry = Geometry

Source§

fn width(&self) -> f32

Source§

fn height(&self) -> f32

Source§

fn size(&self) -> Size

Source§

fn center(&self) -> Point

Source§

fn fill(&mut self, path: &Path, fill: impl Into<Fill>)

Source§

fn fill_rectangle(&mut self, top_left: Point, size: Size, fill: impl Into<Fill>)

Source§

fn stroke<'a>(&mut self, path: &Path, stroke: impl Into<Stroke<'a>>)

Source§

fn stroke_rectangle<'a>( &mut self, - top_left: Point, - size: Size, + top_left: Point, + size: Size, stroke: impl Into<Stroke<'a>>, -)

Source§

fn fill_text(&mut self, text: impl Into<Text>)

Source§

fn push_transform(&mut self)

Source§

fn pop_transform(&mut self)

Source§

fn draft(&mut self, clip_bounds: Rectangle) -> Frame

Source§

fn paste(&mut self, frame: Frame)

Source§

fn translate(&mut self, translation: Vector)

Source§

fn rotate(&mut self, angle: impl Into<Radians>)

Source§

fn scale(&mut self, scale: impl Into<f32>)

Source§

fn scale_nonuniform(&mut self, scale: impl Into<Vector>)

Source§

fn into_geometry(self) -> Geometry

Source§

fn draw_image(&mut self, bounds: Rectangle, image: impl Into<Image>)

Source§

fn draw_svg(&mut self, bounds: Rectangle, svg: impl Into<Svg>)

Source§

impl Backend for Frame

Source§

type Geometry = Geometry

Source§

fn width(&self) -> f32

Source§

fn height(&self) -> f32

Source§

fn size(&self) -> Size

Source§

fn center(&self) -> Point

Source§

fn fill(&mut self, path: &Path, fill: impl Into<Fill>)

Source§

fn fill_rectangle(&mut self, top_left: Point, size: Size, fill: impl Into<Fill>)

Source§

fn stroke<'a>(&mut self, path: &Path, stroke: impl Into<Stroke<'a>>)

Source§

fn stroke_rectangle<'a>( +)

Source§

fn fill_text(&mut self, text: impl Into<Text>)

Source§

fn push_transform(&mut self)

Source§

fn pop_transform(&mut self)

Source§

fn draft(&mut self, clip_bounds: Rectangle) -> Frame

Source§

fn paste(&mut self, frame: Frame)

Source§

fn translate(&mut self, translation: Vector)

Source§

fn rotate(&mut self, angle: impl Into<Radians>)

Source§

fn scale(&mut self, scale: impl Into<f32>)

Source§

fn scale_nonuniform(&mut self, scale: impl Into<Vector>)

Source§

fn into_geometry(self) -> Geometry

Source§

fn draw_image(&mut self, bounds: Rectangle, image: impl Into<Image>)

Source§

fn draw_svg(&mut self, bounds: Rectangle, svg: impl Into<Svg>)

Source§

impl Backend for Frame

Source§

type Geometry = Geometry

Source§

fn width(&self) -> f32

Source§

fn height(&self) -> f32

Source§

fn size(&self) -> Size

Source§

fn center(&self) -> Point

Source§

fn fill(&mut self, path: &Path, fill: impl Into<Fill>)

Source§

fn fill_rectangle(&mut self, top_left: Point, size: Size, fill: impl Into<Fill>)

Source§

fn stroke<'a>(&mut self, path: &Path, stroke: impl Into<Stroke<'a>>)

Source§

fn stroke_rectangle<'a>( &mut self, - top_left: Point, - size: Size, + top_left: Point, + size: Size, stroke: impl Into<Stroke<'a>>, -)

Source§

fn fill_text(&mut self, text: impl Into<Text>)

Source§

fn translate(&mut self, translation: Vector)

Source§

fn rotate(&mut self, angle: impl Into<Radians>)

Source§

fn scale(&mut self, scale: impl Into<f32>)

Source§

fn scale_nonuniform(&mut self, scale: impl Into<Vector>)

Source§

fn push_transform(&mut self)

Source§

fn pop_transform(&mut self)

Source§

fn draft(&mut self, clip_bounds: Rectangle) -> Frame

Source§

fn paste(&mut self, frame: Frame)

Source§

fn into_geometry(self) -> <Frame as Backend>::Geometry

Source§

fn draw_image(&mut self, bounds: Rectangle, image: impl Into<Image>)

Source§

fn draw_svg(&mut self, bounds: Rectangle, svg: impl Into<Svg>)

Implementors§

\ No newline at end of file +)

Source§

fn fill_text(&mut self, text: impl Into<Text>)

Source§

fn translate(&mut self, translation: Vector)

Source§

fn rotate(&mut self, angle: impl Into<Radians>)

Source§

fn scale(&mut self, scale: impl Into<f32>)

Source§

fn scale_nonuniform(&mut self, scale: impl Into<Vector>)

Source§

fn push_transform(&mut self)

Source§

fn pop_transform(&mut self)

Source§

fn draft(&mut self, clip_bounds: Rectangle) -> Frame

Source§

fn paste(&mut self, frame: Frame)

Source§

fn into_geometry(self) -> <Frame as Backend>::Geometry

Source§

fn draw_image(&mut self, bounds: Rectangle, image: impl Into<Image>)

Source§

fn draw_svg(&mut self, bounds: Rectangle, svg: impl Into<Svg>)

Implementors§

\ No newline at end of file diff --git a/iced_renderer/geometry/gradient/enum.Gradient.html b/iced_renderer/geometry/gradient/enum.Gradient.html index 1bace9ea9b5..ba807ec529b 100644 --- a/iced_renderer/geometry/gradient/enum.Gradient.html +++ b/iced_renderer/geometry/gradient/enum.Gradient.html @@ -1,7 +1,7 @@ Gradient in iced_renderer::geometry::gradient - Rust

Enum Gradient

Source
pub enum Gradient {
     Linear(Linear),
 }
Available on crate feature geometry only.
Expand description

A fill which linearly interpolates colors along a direction.

-

For a gradient which can be used as a fill for a background of a widget, see [crate::core::Gradient].

+

For a gradient which can be used as a fill for a background of a widget, see crate::core::Gradient.

Variants§

§

Linear(Linear)

A linear gradient interpolates colors along a direction from its start to its end point.

Implementations§

Source§

impl Gradient

Source

pub fn pack(&self) -> Packed

Packs the Gradient for use in shader code.

diff --git a/iced_renderer/geometry/gradient/fn.pack.html b/iced_renderer/geometry/gradient/fn.pack.html index 0f45692a925..11fcf82cfe6 100644 --- a/iced_renderer/geometry/gradient/fn.pack.html +++ b/iced_renderer/geometry/gradient/fn.pack.html @@ -1,2 +1,2 @@ -pack in iced_renderer::geometry::gradient - Rust

Function pack

Source
pub fn pack(gradient: &Gradient, bounds: Rectangle) -> Packed
Available on crate feature geometry only.
Expand description

Creates a new Packed gradient for use in shader code.

+pack in iced_renderer::geometry::gradient - Rust

Function pack

Source
pub fn pack(gradient: &Gradient, bounds: Rectangle) -> Packed
Available on crate feature geometry only.
Expand description

Creates a new Packed gradient for use in shader code.

\ No newline at end of file diff --git a/iced_renderer/geometry/gradient/struct.Linear.html b/iced_renderer/geometry/gradient/struct.Linear.html index 39a53a8ba0c..12c9f108859 100644 --- a/iced_renderer/geometry/gradient/struct.Linear.html +++ b/iced_renderer/geometry/gradient/struct.Linear.html @@ -1,16 +1,16 @@ Linear in iced_renderer::geometry::gradient - Rust

Struct Linear

Source
pub struct Linear {
-    pub start: Point,
-    pub end: Point,
-    pub stops: [Option<ColorStop>; 8],
+    pub start: Point,
+    pub end: Point,
+    pub stops: [Option<ColorStop>; 8],
 }
Available on crate feature geometry only.
Expand description

A linear gradient.

-

Fields§

§start: Point

The absolute starting position of the gradient.

-
§end: Point

The absolute ending position of the gradient.

-
§stops: [Option<ColorStop>; 8]

[ColorStop]s along the linear gradient direction.

-

Implementations§

Source§

impl Linear

Source

pub fn new(start: Point, end: Point) -> Linear

Creates a new Linear builder.

-
Source

pub fn add_stop(self, offset: f32, color: Color) -> Linear

Adds a new [ColorStop], defined by an offset and a color, to the gradient.

+

Fields§

§start: Point

The absolute starting position of the gradient.

+
§end: Point

The absolute ending position of the gradient.

+
§stops: [Option<ColorStop>; 8]

ColorStops along the linear gradient direction.

+

Implementations§

Source§

impl Linear

Source

pub fn new(start: Point, end: Point) -> Linear

Creates a new Linear builder.

+
Source

pub fn add_stop(self, offset: f32, color: Color) -> Linear

Adds a new ColorStop, defined by an offset and a color, to the gradient.

Any offset that is not within 0.0..=1.0 will be silently ignored.

Any stop added after the 8th will be silently ignored.

-
Source

pub fn add_stops(self, stops: impl IntoIterator<Item = ColorStop>) -> Linear

Adds multiple [ColorStop]s to the gradient.

+
Source

pub fn add_stops(self, stops: impl IntoIterator<Item = ColorStop>) -> Linear

Adds multiple ColorStops to the gradient.

Any stop added after the 8th will be silently ignored.

Source

pub fn pack(&self) -> Packed

Packs the Gradient for use in shader code.

Trait Implementations§

Source§

impl Clone for Linear

Source§

fn clone(&self) -> Linear

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Linear

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl From<Linear> for Fill

Source§

fn from(gradient: Linear) -> Fill

Converts to this type from the input type.
Source§

impl From<Linear> for Gradient

Source§

fn from(gradient: Linear) -> Gradient

Converts to this type from the input type.
Source§

impl PartialEq for Linear

Source§

fn eq(&self, other: &Linear) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, diff --git a/iced_renderer/geometry/path/arc/struct.Arc.html b/iced_renderer/geometry/path/arc/struct.Arc.html index 42365f26087..57a51426513 100644 --- a/iced_renderer/geometry/path/arc/struct.Arc.html +++ b/iced_renderer/geometry/path/arc/struct.Arc.html @@ -1,13 +1,13 @@ Arc in iced_renderer::geometry::path::arc - Rust

Struct Arc

Source
pub struct Arc {
-    pub center: Point,
+    pub center: Point,
     pub radius: f32,
-    pub start_angle: Radians,
-    pub end_angle: Radians,
+    pub start_angle: Radians,
+    pub end_angle: Radians,
 }
Available on crate feature geometry only.
Expand description

A segment of a differentiable curve.

-

Fields§

§center: Point

The center of the arc.

+

Fields§

§center: Point

The center of the arc.

§radius: f32

The radius of the arc.

-
§start_angle: Radians

The start of the segment’s angle, clockwise rotation from positive x-axis.

-
§end_angle: Radians

The end of the segment’s angle, clockwise rotation from positive x-axis.

+
§start_angle: Radians

The start of the segment’s angle, clockwise rotation from positive x-axis.

+
§end_angle: Radians

The end of the segment’s angle, clockwise rotation from positive x-axis.

Trait Implementations§

Source§

impl Clone for Arc

Source§

fn clone(&self) -> Arc

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Arc

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl From<Arc> for Elliptical

Source§

fn from(arc: Arc) -> Elliptical

Converts to this type from the input type.
Source§

impl Copy for Arc

Auto Trait Implementations§

§

impl Freeze for Arc

§

impl RefUnwindSafe for Arc

§

impl Send for Arc

§

impl Sync for Arc

§

impl Unpin for Arc

§

impl UnwindSafe for Arc

Blanket Implementations§

Source§

impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for S
where T: Real + Zero + Arithmetics + Clone, Swp: WhitePoint<T>, diff --git a/iced_renderer/geometry/path/arc/struct.Elliptical.html b/iced_renderer/geometry/path/arc/struct.Elliptical.html index 31c753767ed..d00a21f3ed7 100644 --- a/iced_renderer/geometry/path/arc/struct.Elliptical.html +++ b/iced_renderer/geometry/path/arc/struct.Elliptical.html @@ -1,15 +1,15 @@ Elliptical in iced_renderer::geometry::path::arc - Rust

Struct Elliptical

Source
pub struct Elliptical {
-    pub center: Point,
-    pub radii: Vector,
-    pub rotation: Radians,
-    pub start_angle: Radians,
-    pub end_angle: Radians,
+    pub center: Point,
+    pub radii: Vector,
+    pub rotation: Radians,
+    pub start_angle: Radians,
+    pub end_angle: Radians,
 }
Available on crate feature geometry only.
Expand description

An elliptical Arc.

-

Fields§

§center: Point

The center of the arc.

-
§radii: Vector

The radii of the arc’s ellipse. The horizontal and vertical half-dimensions of the ellipse will match the x and y values of the radii vector.

-
§rotation: Radians

The clockwise rotation of the arc’s ellipse.

-
§start_angle: Radians

The start of the segment’s angle, clockwise rotation from positive x-axis.

-
§end_angle: Radians

The end of the segment’s angle, clockwise rotation from positive x-axis.

+

Fields§

§center: Point

The center of the arc.

+
§radii: Vector

The radii of the arc’s ellipse. The horizontal and vertical half-dimensions of the ellipse will match the x and y values of the radii vector.

+
§rotation: Radians

The clockwise rotation of the arc’s ellipse.

+
§start_angle: Radians

The start of the segment’s angle, clockwise rotation from positive x-axis.

+
§end_angle: Radians

The end of the segment’s angle, clockwise rotation from positive x-axis.

Trait Implementations§

Source§

impl Clone for Elliptical

Source§

fn clone(&self) -> Elliptical

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Elliptical

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl From<Arc> for Elliptical

Source§

fn from(arc: Arc) -> Elliptical

Converts to this type from the input type.
Source§

impl Copy for Elliptical

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for S
where T: Real + Zero + Arithmetics + Clone, Swp: WhitePoint<T>, diff --git a/iced_renderer/geometry/path/struct.Arc.html b/iced_renderer/geometry/path/struct.Arc.html index c132b9f0796..ee6dfa01027 100644 --- a/iced_renderer/geometry/path/struct.Arc.html +++ b/iced_renderer/geometry/path/struct.Arc.html @@ -1,13 +1,13 @@ Arc in iced_renderer::geometry::path - Rust

Struct Arc

Source
pub struct Arc {
-    pub center: Point,
+    pub center: Point,
     pub radius: f32,
-    pub start_angle: Radians,
-    pub end_angle: Radians,
+    pub start_angle: Radians,
+    pub end_angle: Radians,
 }
Available on crate feature geometry only.
Expand description

A segment of a differentiable curve.

-

Fields§

§center: Point

The center of the arc.

+

Fields§

§center: Point

The center of the arc.

§radius: f32

The radius of the arc.

-
§start_angle: Radians

The start of the segment’s angle, clockwise rotation from positive x-axis.

-
§end_angle: Radians

The end of the segment’s angle, clockwise rotation from positive x-axis.

+
§start_angle: Radians

The start of the segment’s angle, clockwise rotation from positive x-axis.

+
§end_angle: Radians

The end of the segment’s angle, clockwise rotation from positive x-axis.

Trait Implementations§

Source§

impl Clone for Arc

Source§

fn clone(&self) -> Arc

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Arc

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl From<Arc> for Elliptical

Source§

fn from(arc: Arc) -> Elliptical

Converts to this type from the input type.
Source§

impl Copy for Arc

Auto Trait Implementations§

§

impl Freeze for Arc

§

impl RefUnwindSafe for Arc

§

impl Send for Arc

§

impl Sync for Arc

§

impl Unpin for Arc

§

impl UnwindSafe for Arc

Blanket Implementations§

Source§

impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for S
where T: Real + Zero + Arithmetics + Clone, Swp: WhitePoint<T>, diff --git a/iced_renderer/geometry/path/struct.Builder.html b/iced_renderer/geometry/path/struct.Builder.html index 21c66d17a91..87d7f7ba822 100644 --- a/iced_renderer/geometry/path/struct.Builder.html +++ b/iced_renderer/geometry/path/struct.Builder.html @@ -1,12 +1,12 @@ Builder in iced_renderer::geometry::path - Rust

Struct Builder

Source
pub struct Builder { /* private fields */ }
Available on crate feature geometry only.
Expand description

A Path builder.

Once a Path is built, it can no longer be mutated.

Implementations§

Source§

impl Builder

Source

pub fn new() -> Builder

Creates a new Builder.

-
Source

pub fn move_to(&mut self, point: Point)

Moves the starting point of a new sub-path to the given Point.

-
Source

pub fn line_to(&mut self, point: Point)

Connects the last point in the Path to the given Point with a +

Source

pub fn move_to(&mut self, point: Point)

Moves the starting point of a new sub-path to the given Point.

+
Source

pub fn line_to(&mut self, point: Point)

Connects the last point in the Path to the given Point with a straight line.

Source

pub fn arc(&mut self, arc: Arc)

Adds an Arc to the Path from start_angle to end_angle in a clockwise direction.

-
Source

pub fn arc_to(&mut self, a: Point, b: Point, radius: f32)

Adds a circular arc to the Path with the given control points and +

Source

pub fn arc_to(&mut self, a: Point, b: Point, radius: f32)

Adds a circular arc to the Path with the given control points and radius.

This essentially draws a straight line segment from the current position to a, but fits a circular arc of radius tangent to that @@ -17,15 +17,15 @@

See the HTML5 specification of arcTo for more details and examples.

Source

pub fn ellipse(&mut self, arc: Elliptical)

Adds an ellipse to the Path using a clockwise direction.

-
Source

pub fn bezier_curve_to(&mut self, control_a: Point, control_b: Point, to: Point)

Adds a cubic Bézier curve to the Path given its two control points +

Source

pub fn bezier_curve_to(&mut self, control_a: Point, control_b: Point, to: Point)

Adds a cubic Bézier curve to the Path given its two control points and its end point.

-
Source

pub fn quadratic_curve_to(&mut self, control: Point, to: Point)

Adds a quadratic Bézier curve to the Path given its control point +

Source

pub fn quadratic_curve_to(&mut self, control: Point, to: Point)

Adds a quadratic Bézier curve to the Path given its control point and its end point.

-
Source

pub fn rectangle(&mut self, top_left: Point, size: Size)

Adds a rectangle to the Path given its top-left corner coordinate +

Source

pub fn rectangle(&mut self, top_left: Point, size: Size)

Adds a rectangle to the Path given its top-left corner coordinate and its Size.

-
Source

pub fn rounded_rectangle(&mut self, top_left: Point, size: Size, radius: Radius)

Adds a rounded rectangle to the Path given its top-left -corner coordinate its [Size] and [border::Radius].

-
Source

pub fn circle(&mut self, center: Point, radius: f32)

Adds a circle to the Path given its center coordinate and its +

Source

pub fn rounded_rectangle(&mut self, top_left: Point, size: Size, radius: Radius)

Adds a rounded rectangle to the Path given its top-left +corner coordinate its Size and border::Radius.

+
Source

pub fn circle(&mut self, center: Point, radius: f32)

Adds a circle to the Path given its center coordinate and its radius.

Source

pub fn close(&mut self)

Closes the current sub-path in the Path with a straight line to the starting point.

diff --git a/iced_renderer/geometry/path/struct.Path.html b/iced_renderer/geometry/path/struct.Path.html index e174f4b184c..ca26da8cb7b 100644 --- a/iced_renderer/geometry/path/struct.Path.html +++ b/iced_renderer/geometry/path/struct.Path.html @@ -2,13 +2,13 @@

A single Path can represent different kinds of 2D shapes!

Implementations§

Source§

impl Path

Source

pub fn new(f: impl FnOnce(&mut Builder)) -> Path

Creates a new Path with the provided closure.

Use the Builder to configure your Path.

-
Source

pub fn line(from: Point, to: Point) -> Path

Creates a new Path representing a line segment given its starting +

Source

pub fn line(from: Point, to: Point) -> Path

Creates a new Path representing a line segment given its starting and end points.

-
Source

pub fn rectangle(top_left: Point, size: Size) -> Path

Creates a new Path representing a rectangle given its top-left +

Source

pub fn rectangle(top_left: Point, size: Size) -> Path

Creates a new Path representing a rectangle given its top-left corner coordinate and its Size.

-
Source

pub fn rounded_rectangle(top_left: Point, size: Size, radius: Radius) -> Path

Creates a new Path representing a rounded rectangle given its top-left -corner coordinate, its [Size] and [border::Radius].

-
Source

pub fn circle(center: Point, radius: f32) -> Path

Creates a new Path representing a circle given its center +

Source

pub fn rounded_rectangle(top_left: Point, size: Size, radius: Radius) -> Path

Creates a new Path representing a rounded rectangle given its top-left +corner coordinate, its Size and border::Radius.

+
Source

pub fn circle(center: Point, radius: f32) -> Path

Creates a new Path representing a circle given its center coordinate and its radius.

Source

pub fn raw(&self) -> &Path

Returns the internal lyon_path::Path.

Source

pub fn transform( diff --git a/iced_renderer/geometry/stroke/enum.Style.html b/iced_renderer/geometry/stroke/enum.Style.html index 3efcede7eae..9c09453aa7c 100644 --- a/iced_renderer/geometry/stroke/enum.Style.html +++ b/iced_renderer/geometry/stroke/enum.Style.html @@ -1,10 +1,10 @@ Style in iced_renderer::geometry::stroke - Rust

Enum Style

Source
pub enum Style {
-    Solid(Color),
+    Solid(Color),
     Gradient(Gradient),
 }
Available on crate feature geometry only.
Expand description

The coloring style of some drawing.

-

Variants§

§

Solid(Color)

A solid [Color].

+

Variants§

§

Solid(Color)

A solid Color.

§

Gradient(Gradient)

A Gradient color.

-

Trait Implementations§

Source§

impl Clone for Style

Source§

fn clone(&self) -> Style

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Style

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl From<Color> for Style

Source§

fn from(color: Color) -> Style

Converts to this type from the input type.
Source§

impl From<Gradient> for Style

Source§

fn from(gradient: Gradient) -> Style

Converts to this type from the input type.
Source§

impl PartialEq for Style

Source§

fn eq(&self, other: &Style) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, +

Trait Implementations§

Source§

impl Clone for Style

Source§

fn clone(&self) -> Style

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Style

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl From<Color> for Style

Source§

fn from(color: Color) -> Style

Converts to this type from the input type.
Source§

impl From<Gradient> for Style

Source§

fn from(gradient: Gradient) -> Style

Converts to this type from the input type.
Source§

impl PartialEq for Style

Source§

fn eq(&self, other: &Style) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl Copy for Style

Source§

impl StructuralPartialEq for Style

Auto Trait Implementations§

§

impl Freeze for Style

§

impl RefUnwindSafe for Style

§

impl Send for Style

§

impl Sync for Style

§

impl Unpin for Style

§

impl UnwindSafe for Style

Blanket Implementations§

Source§

impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for S
where T: Real + Zero + Arithmetics + Clone, Swp: WhitePoint<T>, diff --git a/iced_renderer/geometry/stroke/struct.Stroke.html b/iced_renderer/geometry/stroke/struct.Stroke.html index 8f647037d54..d5bb61891bb 100644 --- a/iced_renderer/geometry/stroke/struct.Stroke.html +++ b/iced_renderer/geometry/stroke/struct.Stroke.html @@ -6,13 +6,13 @@ pub line_dash: LineDash<'a>, }
Available on crate feature geometry only.
Expand description

The style of a stroke.

Fields§

§style: Style

The color or gradient of the stroke.

-

By default, it is set to a Style::Solid with [Color::BLACK].

+

By default, it is set to a Style::Solid with Color::BLACK.

§width: f32

The distance between the two edges of the stroke.

§line_cap: LineCap

The shape to be used at the end of open subpaths when they are stroked.

§line_join: LineJoin

The shape to be used at the corners of paths or basic shapes when they are stroked.

§line_dash: LineDash<'a>

The dash pattern used when stroking the line.

-

Implementations§

Source§

impl Stroke<'_>

Source

pub fn with_color(self, color: Color) -> Stroke<'_>

Sets the color of the Stroke.

+

Implementations§

Source§

impl Stroke<'_>

Source

pub fn with_color(self, color: Color) -> Stroke<'_>

Sets the color of the Stroke.

Source

pub fn with_width(self, width: f32) -> Stroke<'_>

Sets the width of the Stroke.

Source

pub fn with_line_cap(self, line_cap: LineCap) -> Stroke<'_>

Sets the LineCap of the Stroke.

Source

pub fn with_line_join(self, line_join: LineJoin) -> Stroke<'_>

Sets the LineJoin of the Stroke.

diff --git a/iced_renderer/geometry/struct.Cache.html b/iced_renderer/geometry/struct.Cache.html index a2d6851a27d..35c91bcaada 100644 --- a/iced_renderer/geometry/struct.Cache.html +++ b/iced_renderer/geometry/struct.Cache.html @@ -12,7 +12,7 @@
Source

pub fn draw( &self, renderer: &Renderer, - bounds: Size, + bounds: Size, draw_fn: impl FnOnce(&mut Frame<Renderer>), ) -> <Renderer as Renderer>::Geometry

Draws geometry using the provided closure and stores it in the Cache.

diff --git a/iced_renderer/geometry/struct.Fill.html b/iced_renderer/geometry/struct.Fill.html index c9ac8671de1..530ae86102c 100644 --- a/iced_renderer/geometry/struct.Fill.html +++ b/iced_renderer/geometry/struct.Fill.html @@ -3,12 +3,12 @@ pub rule: Rule, }
Available on crate feature geometry only.
Expand description

The style used to fill geometry.

Fields§

§style: Style

The color or gradient of the fill.

-

By default, it is set to Style::Solid with [Color::BLACK].

+

By default, it is set to Style::Solid with Color::BLACK.

§rule: Rule

The fill rule defines how to determine what is inside and what is outside of a shape.

See the SVG specification for more details.

By default, it is set to NonZero.

-

Trait Implementations§

Source§

impl Clone for Fill

Source§

fn clone(&self) -> Fill

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Fill

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl Default for Fill

Source§

fn default() -> Fill

Returns the “default value” for a type. Read more
Source§

impl From<Color> for Fill

Source§

fn from(color: Color) -> Fill

Converts to this type from the input type.
Source§

impl From<Gradient> for Fill

Source§

fn from(gradient: Gradient) -> Fill

Converts to this type from the input type.
Source§

impl From<Linear> for Fill

Source§

fn from(gradient: Linear) -> Fill

Converts to this type from the input type.
Source§

impl Copy for Fill

Auto Trait Implementations§

§

impl Freeze for Fill

§

impl RefUnwindSafe for Fill

§

impl Send for Fill

§

impl Sync for Fill

§

impl Unpin for Fill

§

impl UnwindSafe for Fill

Blanket Implementations§

Source§

impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for S
where +

Trait Implementations§

Source§

impl Clone for Fill

Source§

fn clone(&self) -> Fill

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Fill

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl Default for Fill

Source§

fn default() -> Fill

Returns the “default value” for a type. Read more
Source§

impl From<Color> for Fill

Source§

fn from(color: Color) -> Fill

Converts to this type from the input type.
Source§

impl From<Gradient> for Fill

Source§

fn from(gradient: Gradient) -> Fill

Converts to this type from the input type.
Source§

impl From<Linear> for Fill

Source§

fn from(gradient: Linear) -> Fill

Converts to this type from the input type.
Source§

impl Copy for Fill

Auto Trait Implementations§

§

impl Freeze for Fill

§

impl RefUnwindSafe for Fill

§

impl Send for Fill

§

impl Sync for Fill

§

impl Unpin for Fill

§

impl UnwindSafe for Fill

Blanket Implementations§

Source§

impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for S
where T: Real + Zero + Arithmetics + Clone, Swp: WhitePoint<T>, Dwp: WhitePoint<T>, diff --git a/iced_renderer/geometry/struct.Frame.html b/iced_renderer/geometry/struct.Frame.html index 01c359778c0..bb386b70267 100644 --- a/iced_renderer/geometry/struct.Frame.html +++ b/iced_renderer/geometry/struct.Frame.html @@ -1,17 +1,17 @@ Frame in iced_renderer::geometry - Rust

Struct Frame

Source
pub struct Frame<Renderer>
where Renderer: Renderer,
{ /* private fields */ }
Available on crate feature geometry only.
Expand description

The region of a surface that can be used to draw geometry.

Implementations§

Source§

impl<Renderer> Frame<Renderer>
where - Renderer: Renderer,

Source

pub fn new(renderer: &Renderer, size: Size) -> Frame<Renderer>

Creates a new Frame with the given dimensions.

+ Renderer: Renderer,

Source

pub fn new(renderer: &Renderer, size: Size) -> Frame<Renderer>

Creates a new Frame with the given dimensions.

Source

pub fn width(&self) -> f32

Returns the width of the Frame.

Source

pub fn height(&self) -> f32

Returns the height of the Frame.

-
Source

pub fn size(&self) -> Size

Returns the dimensions of the Frame.

-
Source

pub fn center(&self) -> Point

Returns the coordinate of the center of the Frame.

+
Source

pub fn size(&self) -> Size

Returns the dimensions of the Frame.

+
Source

pub fn center(&self) -> Point

Returns the coordinate of the center of the Frame.

Source

pub fn fill(&mut self, path: &Path, fill: impl Into<Fill>)

Draws the given Path on the Frame by filling it with the provided style.

Source

pub fn fill_rectangle( &mut self, - top_left: Point, - size: Size, + top_left: Point, + size: Size, fill: impl Into<Fill>, )

Draws an axis-aligned rectangle given its top-left corner coordinate and its Size on the Frame by filling it with the provided style.

@@ -19,8 +19,8 @@ provided style.

Source

pub fn stroke_rectangle<'a>( &mut self, - top_left: Point, - size: Size, + top_left: Point, + size: Size, stroke: impl Into<Stroke<'a>>, )

Draws the stroke of an axis-aligned rectangle with the provided style given its top-left corner coordinate and its Size on the Frame .

@@ -29,8 +29,8 @@

Warning: All text will be rendered on top of all the layers of a Canvas. Therefore, it is currently only meant to be used for overlays, which is the most common use case.

-
Source

pub fn draw_image(&mut self, bounds: Rectangle, image: impl Into<Image>)

Available on crate feature image only.

Draws the given Image on the Frame inside the given bounds.

-
Source

pub fn draw_svg(&mut self, bounds: Rectangle, svg: impl Into<Svg>)

Available on crate feature svg only.

Draws the given Svg on the Frame inside the given bounds.

+
Source

pub fn draw_image(&mut self, bounds: Rectangle, image: impl Into<Image>)

Available on crate feature image only.

Draws the given Image on the Frame inside the given bounds.

+
Source

pub fn draw_svg(&mut self, bounds: Rectangle, svg: impl Into<Svg>)

Available on crate feature svg only.

Draws the given Svg on the Frame inside the given bounds.

Source

pub fn with_save<R>(&mut self, f: impl FnOnce(&mut Frame<Renderer>) -> R) -> R

Stores the current transform of the Frame and executes the given drawing operations, restoring the transform afterwards.

This method is useful to compose transforms and perform drawing @@ -39,17 +39,17 @@

Source

pub fn pop_transform(&mut self)

Pops a transform from the transform stack and sets it as the current transform.

Source

pub fn with_clip<R>( &mut self, - region: Rectangle, + region: Rectangle, f: impl FnOnce(&mut Frame<Renderer>) -> R, -) -> R

Executes the given drawing operations within a [Rectangle] region, +) -> R

Executes the given drawing operations within a Rectangle region, clipping any geometry that overflows its bounds. Any transformations performed are local to the provided closure.

This method is useful to perform drawing operations that need to be clipped.

-
Source

pub fn translate(&mut self, translation: Vector)

Applies a translation to the current transform of the Frame.

-
Source

pub fn rotate(&mut self, angle: impl Into<Radians>)

Applies a rotation in radians to the current transform of the Frame.

+
Source

pub fn translate(&mut self, translation: Vector)

Applies a translation to the current transform of the Frame.

+
Source

pub fn rotate(&mut self, angle: impl Into<Radians>)

Applies a rotation in radians to the current transform of the Frame.

Source

pub fn scale(&mut self, scale: impl Into<f32>)

Applies a uniform scaling to the current transform of the Frame.

-
Source

pub fn scale_nonuniform(&mut self, scale: impl Into<Vector>)

Applies a non-uniform scaling to the current transform of the Frame.

+
Source

pub fn scale_nonuniform(&mut self, scale: impl Into<Vector>)

Applies a non-uniform scaling to the current transform of the Frame.

Source

pub fn into_geometry(self) -> <Renderer as Renderer>::Geometry

Turns the Frame into its underlying geometry.

Auto Trait Implementations§

§

impl<Renderer> Freeze for Frame<Renderer>
where <Renderer as Renderer>::Frame: Freeze,

§

impl<Renderer> RefUnwindSafe for Frame<Renderer>
where diff --git a/iced_renderer/geometry/struct.Image.html b/iced_renderer/geometry/struct.Image.html index 23a043eb23e..3156f23ecc0 100644 --- a/iced_renderer/geometry/struct.Image.html +++ b/iced_renderer/geometry/struct.Image.html @@ -1,28 +1,28 @@ -Image in iced_renderer::geometry - Rust

Struct Image

pub struct Image<H = Handle> {
+Image in iced_renderer::geometry - Rust

Struct Image

Source
pub struct Image<H = Handle> {
     pub handle: H,
-    pub filter_method: FilterMethod,
-    pub rotation: Radians,
+    pub filter_method: FilterMethod,
+    pub rotation: Radians,
     pub opacity: f32,
     pub snap: bool,
 }
Available on crate feature geometry only.
Expand description

A raster image that can be drawn.

Fields§

§handle: H

The handle of the image.

-
§filter_method: FilterMethod

The filter method of the image.

-
§rotation: Radians

The rotation to be applied to the image; on its center.

+
§filter_method: FilterMethod

The filter method of the image.

+
§rotation: Radians

The rotation to be applied to the image; on its center.

§opacity: f32

The opacity of the image.

0 means transparent. 1 means opaque.

§snap: bool

If set to true, the image will be snapped to the pixel grid.

This can avoid graphical glitches, specially when using -[FilterMethod::Nearest].

-

Implementations§

§

impl Image

pub fn new(handle: impl Into<Handle>) -> Image

Creates a new Image with the given handle.

-

pub fn filter_method(self, filter_method: FilterMethod) -> Image

Sets the filter method of the Image.

-

pub fn rotation(self, rotation: impl Into<Radians>) -> Image

Sets the rotation of the Image.

-

pub fn opacity(self, opacity: impl Into<f32>) -> Image

Sets the opacity of the Image.

-

pub fn snap(self, snap: bool) -> Image

Sets whether the Image should be snapped to the pixel grid.

-

Trait Implementations§

§

impl<H> Clone for Image<H>
where - H: Clone,

§

fn clone(&self) -> Image<H>

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
§

impl<H> Debug for Image<H>
where - H: Debug,

§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
§

impl From<&Handle> for Image

§

fn from(handle: &Handle) -> Image

Converts to this type from the input type.
§

impl<H> PartialEq for Image<H>
where - H: PartialEq,

§

fn eq(&self, other: &Image<H>) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, -and should not be overridden without very good reason.
§

impl<H> StructuralPartialEq for Image<H>

Auto Trait Implementations§

§

impl<H> Freeze for Image<H>

Implementations§

Source§

impl Image

Source

pub fn new(handle: impl Into<Handle>) -> Image

Creates a new Image with the given handle.

+
Source

pub fn filter_method(self, filter_method: FilterMethod) -> Image

Sets the filter method of the Image.

+
Source

pub fn rotation(self, rotation: impl Into<Radians>) -> Image

Sets the rotation of the Image.

+
Source

pub fn opacity(self, opacity: impl Into<f32>) -> Image

Sets the opacity of the Image.

+
Source

pub fn snap(self, snap: bool) -> Image

Sets whether the Image should be snapped to the pixel grid.

+

Trait Implementations§

Source§

impl<H> Clone for Image<H>
where + H: Clone,

Source§

fn clone(&self) -> Image<H>

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<H> Debug for Image<H>
where + H: Debug,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl From<&Handle> for Image

Source§

fn from(handle: &Handle) -> Image

Converts to this type from the input type.
Source§

impl<H> PartialEq for Image<H>
where + H: PartialEq,

Source§

fn eq(&self, other: &Image<H>) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, +and should not be overridden without very good reason.
Source§

impl<H> StructuralPartialEq for Image<H>

Auto Trait Implementations§

§

impl<H> Freeze for Image<H>
where H: Freeze,

§

impl<H> RefUnwindSafe for Image<H>
where H: RefUnwindSafe,

§

impl<H> Send for Image<H>
where H: Send,

§

impl<H> Sync for Image<H>
where diff --git a/iced_renderer/geometry/struct.Path.html b/iced_renderer/geometry/struct.Path.html index 328da170d2a..c61b7c841d4 100644 --- a/iced_renderer/geometry/struct.Path.html +++ b/iced_renderer/geometry/struct.Path.html @@ -2,13 +2,13 @@

A single Path can represent different kinds of 2D shapes!

Implementations§

Source§

impl Path

Source

pub fn new(f: impl FnOnce(&mut Builder)) -> Path

Creates a new Path with the provided closure.

Use the Builder to configure your Path.

-
Source

pub fn line(from: Point, to: Point) -> Path

Creates a new Path representing a line segment given its starting +

Source

pub fn line(from: Point, to: Point) -> Path

Creates a new Path representing a line segment given its starting and end points.

-
Source

pub fn rectangle(top_left: Point, size: Size) -> Path

Creates a new Path representing a rectangle given its top-left +

Source

pub fn rectangle(top_left: Point, size: Size) -> Path

Creates a new Path representing a rectangle given its top-left corner coordinate and its Size.

-
Source

pub fn rounded_rectangle(top_left: Point, size: Size, radius: Radius) -> Path

Creates a new Path representing a rounded rectangle given its top-left -corner coordinate, its [Size] and [border::Radius].

-
Source

pub fn circle(center: Point, radius: f32) -> Path

Creates a new Path representing a circle given its center +

Source

pub fn rounded_rectangle(top_left: Point, size: Size, radius: Radius) -> Path

Creates a new Path representing a rounded rectangle given its top-left +corner coordinate, its Size and border::Radius.

+
Source

pub fn circle(center: Point, radius: f32) -> Path

Creates a new Path representing a circle given its center coordinate and its radius.

Source

pub fn raw(&self) -> &Path

Returns the internal lyon_path::Path.

Source

pub fn transform( diff --git a/iced_renderer/geometry/struct.Stroke.html b/iced_renderer/geometry/struct.Stroke.html index 82a1425d129..2c3f4b21de3 100644 --- a/iced_renderer/geometry/struct.Stroke.html +++ b/iced_renderer/geometry/struct.Stroke.html @@ -6,13 +6,13 @@ pub line_dash: LineDash<'a>, }
Available on crate feature geometry only.
Expand description

The style of a stroke.

Fields§

§style: Style

The color or gradient of the stroke.

-

By default, it is set to a Style::Solid with [Color::BLACK].

+

By default, it is set to a Style::Solid with Color::BLACK.

§width: f32

The distance between the two edges of the stroke.

§line_cap: LineCap

The shape to be used at the end of open subpaths when they are stroked.

§line_join: LineJoin

The shape to be used at the corners of paths or basic shapes when they are stroked.

§line_dash: LineDash<'a>

The dash pattern used when stroking the line.

-

Implementations§

Source§

impl Stroke<'_>

Source

pub fn with_color(self, color: Color) -> Stroke<'_>

Sets the color of the Stroke.

+

Implementations§

Source§

impl Stroke<'_>

Source

pub fn with_color(self, color: Color) -> Stroke<'_>

Sets the color of the Stroke.

Source

pub fn with_width(self, width: f32) -> Stroke<'_>

Sets the width of the Stroke.

Source

pub fn with_line_cap(self, line_cap: LineCap) -> Stroke<'_>

Sets the LineCap of the Stroke.

Source

pub fn with_line_join(self, line_join: LineJoin) -> Stroke<'_>

Sets the LineJoin of the Stroke.

diff --git a/iced_renderer/geometry/struct.Svg.html b/iced_renderer/geometry/struct.Svg.html index 75f1b265389..e49e6703a8f 100644 --- a/iced_renderer/geometry/struct.Svg.html +++ b/iced_renderer/geometry/struct.Svg.html @@ -1,27 +1,27 @@ -Svg in iced_renderer::geometry - Rust

Struct Svg

pub struct Svg<H = Handle> {
+Svg in iced_renderer::geometry - Rust

Struct Svg

Source
pub struct Svg<H = Handle> {
     pub handle: H,
-    pub color: Option<Color>,
-    pub rotation: Radians,
+    pub color: Option<Color>,
+    pub rotation: Radians,
     pub opacity: f32,
 }
Available on crate feature geometry only.
Expand description

A raster image that can be drawn.

Fields§

§handle: H

The handle of the Svg.

-
§color: Option<Color>

The [Color] filter to be applied to the Svg.

-

If some [Color] is set, the whole Svg will be +

§color: Option<Color>

The Color filter to be applied to the Svg.

+

If some Color is set, the whole Svg will be painted with it—ignoring any intrinsic colors.

This can be useful for coloring icons programmatically (e.g. with a theme).

-
§rotation: Radians

The rotation to be applied to the image; on its center.

+
§rotation: Radians

The rotation to be applied to the image; on its center.

§opacity: f32

The opacity of the Svg.

0 means transparent. 1 means opaque.

-

Implementations§

§

impl Svg

pub fn new(handle: impl Into<Handle>) -> Svg

Creates a new Svg with the given handle.

-

pub fn color(self, color: impl Into<Color>) -> Svg

Sets the [Color] filter of the Svg.

-

pub fn rotation(self, rotation: impl Into<Radians>) -> Svg

Sets the rotation of the Svg.

-

pub fn opacity(self, opacity: impl Into<f32>) -> Svg

Sets the opacity of the Svg.

-

Trait Implementations§

§

impl<H> Clone for Svg<H>
where - H: Clone,

§

fn clone(&self) -> Svg<H>

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
§

impl<H> Debug for Svg<H>
where - H: Debug,

§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
§

impl From<&Handle> for Svg

§

fn from(handle: &Handle) -> Svg

Converts to this type from the input type.
§

impl<H> PartialEq for Svg<H>
where - H: PartialEq,

§

fn eq(&self, other: &Svg<H>) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, -and should not be overridden without very good reason.
§

impl<H> StructuralPartialEq for Svg<H>

Auto Trait Implementations§

§

impl<H> Freeze for Svg<H>
where +

Implementations§

Source§

impl Svg

Source

pub fn new(handle: impl Into<Handle>) -> Svg

Creates a new Svg with the given handle.

+
Source

pub fn color(self, color: impl Into<Color>) -> Svg

Sets the Color filter of the Svg.

+
Source

pub fn rotation(self, rotation: impl Into<Radians>) -> Svg

Sets the rotation of the Svg.

+
Source

pub fn opacity(self, opacity: impl Into<f32>) -> Svg

Sets the opacity of the Svg.

+

Trait Implementations§

Source§

impl<H> Clone for Svg<H>
where + H: Clone,

Source§

fn clone(&self) -> Svg<H>

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<H> Debug for Svg<H>
where + H: Debug,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl From<&Handle> for Svg

Source§

fn from(handle: &Handle) -> Svg

Converts to this type from the input type.
Source§

impl<H> PartialEq for Svg<H>
where + H: PartialEq,

Source§

fn eq(&self, other: &Svg<H>) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, +and should not be overridden without very good reason.
Source§

impl<H> StructuralPartialEq for Svg<H>

Auto Trait Implementations§

§

impl<H> Freeze for Svg<H>
where H: Freeze,

§

impl<H> RefUnwindSafe for Svg<H>
where H: RefUnwindSafe,

§

impl<H> Send for Svg<H>
where H: Send,

§

impl<H> Sync for Svg<H>
where diff --git a/iced_renderer/geometry/struct.Text.html b/iced_renderer/geometry/struct.Text.html index 02b0be97513..582e85a6713 100644 --- a/iced_renderer/geometry/struct.Text.html +++ b/iced_renderer/geometry/struct.Text.html @@ -1,16 +1,16 @@ Text in iced_renderer::geometry - Rust

Struct Text

Source
pub struct Text {
     pub content: String,
-    pub position: Point,
-    pub color: Color,
-    pub size: Pixels,
-    pub line_height: LineHeight,
-    pub font: Font,
-    pub horizontal_alignment: Horizontal,
-    pub vertical_alignment: Vertical,
-    pub shaping: Shaping,
+    pub position: Point,
+    pub color: Color,
+    pub size: Pixels,
+    pub line_height: LineHeight,
+    pub font: Font,
+    pub horizontal_alignment: Horizontal,
+    pub vertical_alignment: Vertical,
+    pub shaping: Shaping,
 }
Available on crate feature geometry only.
Expand description

A bunch of text that can be drawn to a canvas

Fields§

§content: String

The contents of the text

-
§position: Point

The position of the text relative to the alignment properties. +

§position: Point

The position of the text relative to the alignment properties. By default, this position will be relative to the top-left corner coordinate meaning that if the horizontal and vertical alignments are unchanged, this property will tell where the top-left corner of the text should be placed. @@ -18,14 +18,14 @@ change what part of text is placed at this positions. For example, when the horizontal_alignment and vertical_alignment are set to Center, the center of the text will be placed at the given position NOT the top-left coordinate.

-
§color: Color

The color of the text

-
§size: Pixels

The size of the text

-
§line_height: LineHeight

The line height of the text.

-
§font: Font

The font of the text

-
§horizontal_alignment: Horizontal

The horizontal alignment of the text

-
§vertical_alignment: Vertical

The vertical alignment of the text

-
§shaping: Shaping

The shaping strategy of the text.

-

Implementations§

Source§

impl Text

Source

pub fn draw_with(&self, f: impl FnMut(Path, Color))

Computes the Paths of the Text and draws them using +

§color: Color

The color of the text

+
§size: Pixels

The size of the text

+
§line_height: LineHeight

The line height of the text.

+
§font: Font

The font of the text

+
§horizontal_alignment: Horizontal

The horizontal alignment of the text

+
§vertical_alignment: Vertical

The vertical alignment of the text

+
§shaping: Shaping

The shaping strategy of the text.

+

Implementations§

Source§

impl Text

Source

pub fn draw_with(&self, f: impl FnMut(Path, Color))

Computes the Paths of the Text and draws them using the given closure.

Trait Implementations§

Source§

impl Clone for Text

Source§

fn clone(&self) -> Text

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Text

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl Default for Text

Source§

fn default() -> Text

Returns the “default value” for a type. Read more
Source§

impl From<&str> for Text

Source§

fn from(content: &str) -> Text

Converts to this type from the input type.
Source§

impl From<String> for Text

Source§

fn from(content: String) -> Text

Converts to this type from the input type.

Auto Trait Implementations§

§

impl Freeze for Text

§

impl RefUnwindSafe for Text

§

impl Send for Text

§

impl Sync for Text

§

impl Unpin for Text

§

impl UnwindSafe for Text

Blanket Implementations§

Source§

impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for S
where T: Real + Zero + Arithmetics + Clone, diff --git a/iced_renderer/geometry/trait.Renderer.html b/iced_renderer/geometry/trait.Renderer.html index 7f9dd566250..3d83abffa3d 100644 --- a/iced_renderer/geometry/trait.Renderer.html +++ b/iced_renderer/geometry/trait.Renderer.html @@ -1,15 +1,15 @@ -Renderer in iced_renderer::geometry - Rust

Trait Renderer

Source
pub trait Renderer: Renderer {
+Renderer in iced_renderer::geometry - Rust

Trait Renderer

Source
pub trait Renderer: Renderer {
     type Geometry: Cached;
     type Frame: Backend<Geometry = Self::Geometry>;
 
     // Required methods
-    fn new_frame(&self, size: Size) -> Self::Frame;
+    fn new_frame(&self, size: Size) -> Self::Frame;
     fn draw_geometry(&mut self, geometry: Self::Geometry);
 }
Available on crate feature geometry only.
Expand description

A renderer capable of drawing some Self::Geometry.

Required Associated Types§

Source

type Geometry: Cached

The kind of geometry this renderer can draw.

Source

type Frame: Backend<Geometry = Self::Geometry>

The kind of Frame this renderer supports.

-

Required Methods§

Source

fn new_frame(&self, size: Size) -> Self::Frame

Creates a new Self::Frame.

+

Required Methods§

Source

fn new_frame(&self, size: Size) -> Self::Frame

Creates a new Self::Frame.

Source

fn draw_geometry(&mut self, geometry: Self::Geometry)

Draws the given Self::Geometry.

-

Dyn Compatibility§

This trait is not dyn compatible.

In older versions of Rust, dyn compatibility was called "object safety", so this trait is not object safe.

Implementations on Foreign Types§

Source§

impl Renderer for ()

Available on debug-assertions enabled only.
Source§

type Geometry = ()

Source§

type Frame = ()

Source§

fn new_frame(&self, _size: Size) -> <() as Renderer>::Frame

Source§

fn draw_geometry(&mut self, _geometry: <() as Renderer>::Geometry)

Source§

impl Renderer for Renderer

Source§

type Geometry = Geometry

Source§

type Frame = Frame

Source§

fn new_frame(&self, size: Size) -> <Renderer as Renderer>::Frame

Source§

fn draw_geometry(&mut self, geometry: <Renderer as Renderer>::Geometry)

Source§

impl Renderer for Renderer

Source§

type Geometry = Geometry

Source§

type Frame = Frame

Source§

fn new_frame(&self, size: Size) -> <Renderer as Renderer>::Frame

Source§

fn draw_geometry(&mut self, geometry: <Renderer as Renderer>::Geometry)

Implementors§

Source§

impl<A, B> Renderer for iced_renderer::fallback::Renderer<A, B>
where +

Dyn Compatibility§

This trait is not dyn compatible.

In older versions of Rust, dyn compatibility was called "object safety", so this trait is not object safe.

Implementations on Foreign Types§

Source§

impl Renderer for ()

Available on debug-assertions enabled only.
Source§

type Geometry = ()

Source§

type Frame = ()

Source§

fn new_frame(&self, _size: Size) -> <() as Renderer>::Frame

Source§

fn draw_geometry(&mut self, _geometry: <() as Renderer>::Geometry)

Source§

impl Renderer for Renderer

Source§

impl Renderer for Renderer

Implementors§

Source§

impl<A, B> Renderer for iced_renderer::fallback::Renderer<A, B>
where A: Renderer, B: Renderer,

Source§

type Geometry = Geometry<<A as Renderer>::Geometry, <B as Renderer>::Geometry>

Source§

type Frame = Frame<<A as Renderer>::Frame, <B as Renderer>::Frame>

\ No newline at end of file diff --git a/iced_renderer/index.html b/iced_renderer/index.html index 58c9c0ab61e..bef8789e840 100644 --- a/iced_renderer/index.html +++ b/iced_renderer/index.html @@ -1,2 +1,2 @@ iced_renderer - Rust

Crate iced_renderer

Source
Expand description

The official renderer for iced.

-

Re-exports§

pub use iced_wgpu as wgpu;wgpu
pub use iced_graphics as graphics;
pub use iced_graphics::core;

Modules§

fallback
Compose existing renderers and create type-safe fallback strategies.
geometrygeometry
Build and draw geometry.

Type Aliases§

Compositor
The default graphics compositor for iced.
Renderer
The default graphics renderer for iced.
\ No newline at end of file +

Re-exports§

pub use iced_wgpu as wgpu;wgpu
pub use iced_graphics as graphics;
pub use iced_graphics::core;

Modules§

fallback
Compose existing renderers and create type-safe fallback strategies.
geometrygeometry
Build and draw geometry.

Type Aliases§

Compositor
The default graphics compositor for iced.
Renderer
The default graphics renderer for iced.
\ No newline at end of file diff --git a/iced_wgpu/geometry/struct.Frame.html b/iced_wgpu/geometry/struct.Frame.html index 003a33f8c3d..54ef047c45b 100644 --- a/iced_wgpu/geometry/struct.Frame.html +++ b/iced_wgpu/geometry/struct.Frame.html @@ -1,12 +1,12 @@ Frame in iced_wgpu::geometry - Rust

Struct Frame

Source
pub struct Frame { /* private fields */ }
Available on crate feature geometry only.
Expand description

A frame for drawing some geometry.

-

Implementations§

Source§

impl Frame

Source

pub fn new(size: Size) -> Frame

Creates a new Frame with the given [Size].

-
Source

pub fn with_clip(bounds: Rectangle) -> Frame

Creates a new Frame with the given clip bounds.

-

Trait Implementations§

Source§

impl Backend for Frame

Source§

type Geometry = Geometry

Source§

fn width(&self) -> f32

Source§

fn height(&self) -> f32

Source§

fn size(&self) -> Size

Source§

fn center(&self) -> Point

Source§

fn fill(&mut self, path: &Path, fill: impl Into<Fill>)

Source§

fn fill_rectangle(&mut self, top_left: Point, size: Size, fill: impl Into<Fill>)

Source§

fn stroke<'a>(&mut self, path: &Path, stroke: impl Into<Stroke<'a>>)

Source§

fn stroke_rectangle<'a>( +

Implementations§

Source§

impl Frame

Source

pub fn new(size: Size) -> Frame

Creates a new Frame with the given Size.

+
Source

pub fn with_clip(bounds: Rectangle) -> Frame

Creates a new Frame with the given clip bounds.

+

Trait Implementations§

Source§

impl Backend for Frame

Source§

type Geometry = Geometry

Source§

fn width(&self) -> f32

Source§

fn height(&self) -> f32

Source§

fn size(&self) -> Size

Source§

fn center(&self) -> Point

Source§

fn fill(&mut self, path: &Path, fill: impl Into<Fill>)

Source§

fn fill_rectangle(&mut self, top_left: Point, size: Size, fill: impl Into<Fill>)

Source§

fn stroke<'a>(&mut self, path: &Path, stroke: impl Into<Stroke<'a>>)

Source§

fn stroke_rectangle<'a>( &mut self, - top_left: Point, - size: Size, + top_left: Point, + size: Size, stroke: impl Into<Stroke<'a>>, -)

Source§

fn fill_text(&mut self, text: impl Into<Text>)

Source§

fn translate(&mut self, translation: Vector)

Source§

fn rotate(&mut self, angle: impl Into<Radians>)

Source§

fn scale(&mut self, scale: impl Into<f32>)

Source§

fn scale_nonuniform(&mut self, scale: impl Into<Vector>)

Source§

fn push_transform(&mut self)

Source§

fn pop_transform(&mut self)

Source§

fn draft(&mut self, clip_bounds: Rectangle) -> Frame

Source§

fn paste(&mut self, frame: Frame)

Source§

fn into_geometry(self) -> Self::Geometry

Source§

fn draw_image(&mut self, bounds: Rectangle, image: impl Into<Image>)

Source§

fn draw_svg(&mut self, bounds: Rectangle, svg: impl Into<Svg>)

Auto Trait Implementations§

§

impl Freeze for Frame

§

impl RefUnwindSafe for Frame

§

impl Send for Frame

§

impl Sync for Frame

§

impl Unpin for Frame

§

impl UnwindSafe for Frame

Blanket Implementations§

Source§

impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for S
where +)

Source§

fn fill_text(&mut self, text: impl Into<Text>)

Source§

fn translate(&mut self, translation: Vector)

Source§

fn rotate(&mut self, angle: impl Into<Radians>)

Source§

fn scale(&mut self, scale: impl Into<f32>)

Source§

fn scale_nonuniform(&mut self, scale: impl Into<Vector>)

Source§

fn push_transform(&mut self)

Source§

fn pop_transform(&mut self)

Source§

fn draft(&mut self, clip_bounds: Rectangle) -> Frame

Source§

fn paste(&mut self, frame: Frame)

Source§

fn into_geometry(self) -> Self::Geometry

Source§

fn draw_image(&mut self, bounds: Rectangle, image: impl Into<Image>)

Source§

fn draw_svg(&mut self, bounds: Rectangle, svg: impl Into<Svg>)

Auto Trait Implementations§

§

impl Freeze for Frame

§

impl RefUnwindSafe for Frame

§

impl Send for Frame

§

impl Sync for Frame

§

impl Unpin for Frame

§

impl UnwindSafe for Frame

Blanket Implementations§

Source§

impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for S
where T: Real + Zero + Arithmetics + Clone, Swp: WhitePoint<T>, Dwp: WhitePoint<T>, diff --git a/iced_wgpu/index.html b/iced_wgpu/index.html index 6d86f45802d..6dffe8e8c23 100644 --- a/iced_wgpu/index.html +++ b/iced_wgpu/index.html @@ -11,4 +11,4 @@
  • Images and SVG, loaded from memory or the file system.
  • Meshes of triangles, useful to draw geometry freely.
  • -

    Re-exports§

    pub use layer::Layer;
    pub use primitive::Primitive;
    pub use settings::Settings;
    pub use geometry::Geometry;geometry
    pub use iced_graphics as graphics;
    pub use iced_graphics::core;
    pub use wgpu;

    Modules§

    geometrygeometry
    Build and draw geometry.
    layer
    primitive
    Draw custom primitives.
    settings
    Configure a renderer.
    window
    Display rendering results on windows.

    Structs§

    Engine
    Renderer
    A wgpu graphics renderer for iced.
    \ No newline at end of file +

    Re-exports§

    pub use layer::Layer;
    pub use primitive::Primitive;
    pub use settings::Settings;
    pub use geometry::Geometry;geometry
    pub use iced_graphics as graphics;
    pub use iced_graphics::core;
    pub use wgpu;

    Modules§

    geometrygeometry
    Build and draw geometry.
    layer
    primitive
    Draw custom primitives.
    settings
    Configure a renderer.
    window
    Display rendering results on windows.

    Structs§

    Engine
    Renderer
    A wgpu graphics renderer for iced.
    \ No newline at end of file diff --git a/iced_wgpu/layer/struct.Layer.html b/iced_wgpu/layer/struct.Layer.html index d9d330f18e2..0b4e91a1cf7 100644 --- a/iced_wgpu/layer/struct.Layer.html +++ b/iced_wgpu/layer/struct.Layer.html @@ -1,61 +1,61 @@ Layer in iced_wgpu::layer - Rust

    Struct Layer

    Source
    pub struct Layer {
    -    pub bounds: Rectangle,
    +    pub bounds: Rectangle,
         pub quads: Batch,
         pub triangles: Vec<Item>,
         pub primitives: Batch,
         pub images: Vec<Image>,
         pub text: Vec<Item>,
         /* private fields */
    -}

    Fields§

    §bounds: Rectangle§quads: Batch§triangles: Vec<Item>§primitives: Batch§images: Vec<Image>§text: Vec<Item>

    Implementations§

    Source§

    impl Layer

    Source

    pub fn draw_quad( +}

    Fields§

    §bounds: Rectangle§quads: Batch§triangles: Vec<Item>§primitives: Batch§images: Vec<Image>§text: Vec<Item>

    Implementations§

    Source§

    impl Layer

    Source

    pub fn draw_quad( &mut self, - quad: Quad, - background: Background, - transformation: Transformation, + quad: Quad, + background: Background, + transformation: Transformation, )

    Source

    pub fn draw_paragraph( &mut self, paragraph: &Paragraph, - position: Point, - color: Color, - clip_bounds: Rectangle, - transformation: Transformation, + position: Point, + color: Color, + clip_bounds: Rectangle, + transformation: Transformation, )

    Source

    pub fn draw_editor( &mut self, editor: &Editor, - position: Point, - color: Color, - clip_bounds: Rectangle, - transformation: Transformation, + position: Point, + color: Color, + clip_bounds: Rectangle, + transformation: Transformation, )

    Source

    pub fn draw_text( &mut self, - text: Text, - position: Point, - color: Color, - clip_bounds: Rectangle, - transformation: Transformation, -)

    Source

    pub fn draw_image(&mut self, image: Image, transformation: Transformation)

    Source

    pub fn draw_raster( + text: Text, + position: Point, + color: Color, + clip_bounds: Rectangle, + transformation: Transformation, +)

    Source

    pub fn draw_image(&mut self, image: Image, transformation: Transformation)

    Source

    pub fn draw_raster( &mut self, - image: Image, - bounds: Rectangle, - transformation: Transformation, + image: Image, + bounds: Rectangle, + transformation: Transformation, )

    Source

    pub fn draw_svg( &mut self, - svg: Svg, - bounds: Rectangle, - transformation: Transformation, -)

    Source

    pub fn draw_mesh(&mut self, mesh: Mesh, transformation: Transformation)

    Source

    pub fn draw_mesh_group( + svg: Svg, + bounds: Rectangle, + transformation: Transformation, +)

    Source

    pub fn draw_mesh(&mut self, mesh: Mesh, transformation: Transformation)

    Source

    pub fn draw_mesh_group( &mut self, meshes: Vec<Mesh>, - transformation: Transformation, -)

    Source

    pub fn draw_mesh_cache(&mut self, cache: Cache, transformation: Transformation)

    Source

    pub fn draw_text_group( + transformation: Transformation, +)

    Source

    pub fn draw_mesh_cache(&mut self, cache: Cache, transformation: Transformation)

    Source

    pub fn draw_text_group( &mut self, text: Vec<Text>, - transformation: Transformation, -)

    Source

    pub fn draw_text_cache(&mut self, cache: Cache, transformation: Transformation)

    Source

    pub fn draw_primitive( + transformation: Transformation, +)

    Source

    pub fn draw_text_cache(&mut self, cache: Cache, transformation: Transformation)

    Source

    pub fn draw_primitive( &mut self, - bounds: Rectangle, + bounds: Rectangle, primitive: Box<dyn Primitive>, - transformation: Transformation, -)

    Trait Implementations§

    Source§

    impl Debug for Layer

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result

    Formats the value using the given formatter. Read more
    Source§

    impl Default for Layer

    Source§

    fn default() -> Self

    Returns the “default value” for a type. Read more
    Source§

    impl Layer for Layer

    Source§

    fn with_bounds(bounds: Rectangle) -> Self

    Creates a new Layer with the given bounds.
    Source§

    fn flush(&mut self)

    Flushes and settles any pending group of primitives in the Layer. Read more
    Source§

    fn resize(&mut self, bounds: Rectangle)

    Resizes the Layer to the given bounds.
    Source§

    fn reset(&mut self)

    Clears all the layers contents and resets its bounds.

    Auto Trait Implementations§

    §

    impl Freeze for Layer

    §

    impl !RefUnwindSafe for Layer

    §

    impl Send for Layer

    §

    impl Sync for Layer

    §

    impl Unpin for Layer

    §

    impl !UnwindSafe for Layer

    Blanket Implementations§

    Source§

    impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for S
    where + transformation: Transformation, +)

    Trait Implementations§

    Source§

    impl Debug for Layer

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result

    Formats the value using the given formatter. Read more
    Source§

    impl Default for Layer

    Source§

    fn default() -> Self

    Returns the “default value” for a type. Read more
    Source§

    impl Layer for Layer

    Source§

    fn with_bounds(bounds: Rectangle) -> Self

    Creates a new Layer with the given bounds.
    Source§

    fn flush(&mut self)

    Flushes and settles any pending group of primitives in the Layer. Read more
    Source§

    fn resize(&mut self, bounds: Rectangle)

    Resizes the Layer to the given bounds.
    Source§

    fn reset(&mut self)

    Clears all the layers contents and resets its bounds.

    Auto Trait Implementations§

    §

    impl Freeze for Layer

    §

    impl !RefUnwindSafe for Layer

    §

    impl Send for Layer

    §

    impl Sync for Layer

    §

    impl Unpin for Layer

    §

    impl !UnwindSafe for Layer

    Blanket Implementations§

    Source§

    impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for S
    where T: Real + Zero + Arithmetics + Clone, Swp: WhitePoint<T>, Dwp: WhitePoint<T>, diff --git a/iced_wgpu/primitive/struct.Instance.html b/iced_wgpu/primitive/struct.Instance.html index 73fb26bc826..0c937a86f66 100644 --- a/iced_wgpu/primitive/struct.Instance.html +++ b/iced_wgpu/primitive/struct.Instance.html @@ -1,10 +1,10 @@ Instance in iced_wgpu::primitive - Rust

    Struct Instance

    Source
    pub struct Instance {
    -    pub bounds: Rectangle,
    +    pub bounds: Rectangle,
         pub primitive: Box<dyn Primitive>,
     }
    Expand description

    An instance of a specific Primitive.

    -

    Fields§

    §bounds: Rectangle

    The bounds of the Instance.

    +

    Fields§

    §bounds: Rectangle

    The bounds of the Instance.

    §primitive: Box<dyn Primitive>

    The Primitive to render.

    -

    Implementations§

    Source§

    impl Instance

    Source

    pub fn new(bounds: Rectangle, primitive: impl Primitive) -> Self

    Creates a new Instance with the given Primitive.

    +

    Implementations§

    Source§

    impl Instance

    Source

    pub fn new(bounds: Rectangle, primitive: impl Primitive) -> Self

    Creates a new Instance with the given Primitive.

    Trait Implementations§

    Source§

    impl Debug for Instance

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result

    Formats the value using the given formatter. Read more

    Auto Trait Implementations§

    Blanket Implementations§

    Source§

    impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for S
    where T: Real + Zero + Arithmetics + Clone, Swp: WhitePoint<T>, diff --git a/iced_wgpu/primitive/trait.Primitive.html b/iced_wgpu/primitive/trait.Primitive.html index 57f014fbf0f..454a3c2bfd5 100644 --- a/iced_wgpu/primitive/trait.Primitive.html +++ b/iced_wgpu/primitive/trait.Primitive.html @@ -10,7 +10,7 @@ queue: &Queue, format: TextureFormat, storage: &mut Storage, - bounds: &Rectangle, + bounds: &Rectangle, viewport: &Viewport, ); fn render( @@ -18,7 +18,7 @@ encoder: &mut CommandEncoder, storage: &Storage, target: &TextureView, - clip_bounds: &Rectangle<u32>, + clip_bounds: &Rectangle<u32>, ); }
    Expand description

    A set of methods which allows a Primitive to be rendered.

    Required Methods§

    Source

    fn prepare( @@ -27,7 +27,7 @@ queue: &Queue, format: TextureFormat, storage: &mut Storage, - bounds: &Rectangle, + bounds: &Rectangle, viewport: &Viewport, )

    Processes the Primitive, allowing for GPU buffer allocation.

    Source

    fn render( @@ -35,6 +35,6 @@ encoder: &mut CommandEncoder, storage: &Storage, target: &TextureView, - clip_bounds: &Rectangle<u32>, + clip_bounds: &Rectangle<u32>, )

    Renders the Primitive.

    Implementors§

    \ No newline at end of file diff --git a/iced_wgpu/primitive/trait.Renderer.html b/iced_wgpu/primitive/trait.Renderer.html index 223cbc3fa93..c2a9735495f 100644 --- a/iced_wgpu/primitive/trait.Renderer.html +++ b/iced_wgpu/primitive/trait.Renderer.html @@ -1,6 +1,6 @@ -Renderer in iced_wgpu::primitive - Rust

    Trait Renderer

    Source
    pub trait Renderer: Renderer {
    +Renderer in iced_wgpu::primitive - Rust

    Trait Renderer

    Source
    pub trait Renderer: Renderer {
         // Required method
    -    fn draw_primitive(&mut self, bounds: Rectangle, primitive: impl Primitive);
    +    fn draw_primitive(&mut self, bounds: Rectangle, primitive: impl Primitive);
     }
    Expand description

    A renderer than can draw custom primitives.

    -

    Required Methods§

    Source

    fn draw_primitive(&mut self, bounds: Rectangle, primitive: impl Primitive)

    Draws a custom primitive.

    +

    Required Methods§

    Source

    fn draw_primitive(&mut self, bounds: Rectangle, primitive: impl Primitive)

    Draws a custom primitive.

    Dyn Compatibility§

    This trait is not dyn compatible.

    In older versions of Rust, dyn compatibility was called "object safety", so this trait is not object safe.

    Implementors§

    \ No newline at end of file diff --git a/iced_wgpu/settings/struct.Settings.html b/iced_wgpu/settings/struct.Settings.html index 422cfbc1113..1daff78a104 100644 --- a/iced_wgpu/settings/struct.Settings.html +++ b/iced_wgpu/settings/struct.Settings.html @@ -1,14 +1,14 @@ Settings in iced_wgpu::settings - Rust

    Struct Settings

    Source
    pub struct Settings {
         pub present_mode: PresentMode,
         pub backends: Backends,
    -    pub default_font: Font,
    -    pub default_text_size: Pixels,
    +    pub default_font: Font,
    +    pub default_text_size: Pixels,
         pub antialiasing: Option<Antialiasing>,
     }
    Expand description

    The settings of a Renderer.

    Fields§

    §present_mode: PresentMode

    The present mode of the Renderer.

    §backends: Backends

    The graphics backends to use.

    -
    §default_font: Font

    The default [Font] to use.

    -
    §default_text_size: Pixels

    The default size of text.

    +
    §default_font: Font

    The default Font to use.

    +
    §default_text_size: Pixels

    The default size of text.

    By default, it will be set to 16.0.

    §antialiasing: Option<Antialiasing>

    The antialiasing strategy that will be used for triangle primitives.

    By default, it is None.

    diff --git a/iced_wgpu/struct.Renderer.html b/iced_wgpu/struct.Renderer.html index 1d887876fe3..b2c6374bb53 100644 --- a/iced_wgpu/struct.Renderer.html +++ b/iced_wgpu/struct.Renderer.html @@ -2,45 +2,45 @@

    Implementations§

    Source§

    impl Renderer

    Source

    pub fn new( device: &Device, engine: &Engine, - default_font: Font, - default_text_size: Pixels, + default_font: Font, + default_text_size: Pixels, ) -> Self

    Source

    pub fn present<T: AsRef<str>>( &mut self, engine: &mut Engine, device: &Device, queue: &Queue, encoder: &mut CommandEncoder, - clear_color: Option<Color>, + clear_color: Option<Color>, format: TextureFormat, frame: &TextureView, viewport: &Viewport, overlay: &[T], -)

    Trait Implementations§

    Source§

    impl Default for Renderer

    Source§

    type Compositor = Compositor

    The compositor of the renderer.
    Source§

    impl Renderer for Renderer

    Source§

    fn start_layer(&mut self, bounds: Rectangle)

    Starts recording a new layer.
    Source§

    fn end_layer(&mut self)

    Ends recording a new layer. Read more
    Source§

    fn start_transformation(&mut self, transformation: Transformation)

    Starts recording with a new [Transformation].
    Source§

    fn end_transformation(&mut self)

    Ends recording a new layer. Read more
    Source§

    fn fill_quad(&mut self, quad: Quad, background: impl Into<Background>)

    Fills a [Quad] with the provided [Background].
    Source§

    fn clear(&mut self)

    Clears all of the recorded primitives in the [Renderer].
    §

    fn with_layer(&mut self, bounds: Rectangle, f: impl FnOnce(&mut Self))

    Draws the primitives recorded in the given closure in a new layer. Read more
    §

    fn with_transformation( +)

    Trait Implementations§

    Source§

    impl Default for Renderer

    Source§

    type Compositor = Compositor

    The compositor of the renderer.
    Source§

    impl Renderer for Renderer

    Source§

    fn start_layer(&mut self, bounds: Rectangle)

    Starts recording a new layer.
    Source§

    fn end_layer(&mut self)

    Ends recording a new layer. Read more
    Source§

    fn start_transformation(&mut self, transformation: Transformation)

    Starts recording with a new Transformation.
    Source§

    fn end_transformation(&mut self)

    Ends recording a new layer. Read more
    Source§

    fn fill_quad(&mut self, quad: Quad, background: impl Into<Background>)

    Fills a Quad with the provided Background.
    Source§

    fn clear(&mut self)

    Clears all of the recorded primitives in the Renderer.
    Source§

    fn with_layer(&mut self, bounds: Rectangle, f: impl FnOnce(&mut Self))

    Draws the primitives recorded in the given closure in a new layer. Read more
    Source§

    fn with_transformation( &mut self, - transformation: Transformation, + transformation: Transformation, f: impl FnOnce(&mut Self), -)

    Applies a [Transformation] to the primitives recorded in the given closure.
    §

    fn with_translation(&mut self, translation: Vector, f: impl FnOnce(&mut Self))

    Applies a translation to the primitives recorded in the given closure.
    Source§

    impl Renderer for Renderer

    Source§

    const ICON_FONT: Font

    The icon font of the backend.
    Source§

    const CHECKMARK_ICON: char = '\u{f00c}'

    The char representing a ✔ icon in the ICON_FONT.
    Source§

    const ARROW_DOWN_ICON: char = '\u{e800}'

    The char representing a ▼ icon in the built-in ICON_FONT.
    Source§

    type Font = Font

    The font type used.
    Source§

    type Paragraph = Paragraph

    The [Paragraph] of this [Renderer].
    Source§

    type Editor = Editor

    The [Editor] of this [Renderer].
    Source§

    fn default_font(&self) -> Self::Font

    Returns the default [Self::Font].
    Source§

    fn default_size(&self) -> Pixels

    Returns the default size of [Text].
    Source§

    fn fill_paragraph( +)

    Applies a Transformation to the primitives recorded in the given closure.
    Source§

    fn with_translation(&mut self, translation: Vector, f: impl FnOnce(&mut Self))

    Applies a translation to the primitives recorded in the given closure.
    Source§

    impl Renderer for Renderer

    Source§

    const ICON_FONT: Font

    The icon font of the backend.
    Source§

    const CHECKMARK_ICON: char = '\u{f00c}'

    The char representing a ✔ icon in the ICON_FONT.
    Source§

    const ARROW_DOWN_ICON: char = '\u{e800}'

    The char representing a ▼ icon in the built-in ICON_FONT.
    Source§

    type Font = Font

    The font type used.
    Source§

    type Paragraph = Paragraph

    The Paragraph of this Renderer.
    Source§

    type Editor = Editor

    The Editor of this Renderer.
    Source§

    fn default_font(&self) -> Self::Font

    Returns the default Self::Font.
    Source§

    fn default_size(&self) -> Pixels

    Returns the default size of Text.
    Source§

    fn fill_paragraph( &mut self, - text: &Self::Paragraph, - position: Point, - color: Color, - clip_bounds: Rectangle, -)

    Draws the given [Paragraph] at the given position and with the given -[Color].
    Source§

    fn fill_editor( + text: &Self::Paragraph, + position: Point, + color: Color, + clip_bounds: Rectangle, +)

    Draws the given Paragraph at the given position and with the given +Color.
    Source§

    fn fill_editor( &mut self, - editor: &Self::Editor, - position: Point, - color: Color, - clip_bounds: Rectangle, -)

    Draws the given [Editor] at the given position and with the given -[Color].
    Source§

    fn fill_text( + editor: &Self::Editor, + position: Point, + color: Color, + clip_bounds: Rectangle, +)

    Draws the given Editor at the given position and with the given +Color.
    Source§

    fn fill_text( &mut self, - text: Text, - position: Point, - color: Color, - clip_bounds: Rectangle, -)

    Draws the given [Text] at the given position and with the given -[Color].
    Source§

    impl Renderer for Renderer

    Available on crate feature image only.
    Source§

    type Handle = Handle

    The image Handle to be displayed. Iced exposes its own default implementation of a Handle
    Source§

    fn measure_image(&self, handle: &Self::Handle) -> Size<u32>

    Returns the dimensions of an image for the given [Handle].
    Source§

    fn draw_image(&mut self, image: Image, bounds: Rectangle)

    Draws an [Image] inside the provided bounds.
    Source§

    impl Renderer for Renderer

    Available on crate feature svg only.
    Source§

    fn measure_svg(&self, handle: &Handle) -> Size<u32>

    Returns the default dimensions of an SVG for the given [Handle].
    Source§

    fn draw_svg(&mut self, svg: Svg, bounds: Rectangle)

    Draws an SVG with the given [Handle], an optional [Color] filter, and inside the provided bounds.
    Source§

    impl Renderer for Renderer

    Source§

    fn draw_mesh(&mut self, mesh: Mesh)

    Draws the given Mesh.
    Source§

    impl Renderer for Renderer

    Available on crate feature geometry only.
    Source§

    type Geometry = Geometry

    The kind of geometry this renderer can draw.
    Source§

    type Frame = Frame

    The kind of Frame this renderer supports.
    Source§

    fn new_frame(&self, size: Size) -> Self::Frame

    Creates a new Self::Frame.
    Source§

    fn draw_geometry(&mut self, geometry: Self::Geometry)

    Draws the given Self::Geometry.
    Source§

    impl Renderer for Renderer

    Source§

    fn draw_primitive(&mut self, bounds: Rectangle, primitive: impl Primitive)

    Draws a custom primitive.

    Auto Trait Implementations§

    Blanket Implementations§

    Source§

    impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for S
    where + text: Text, + position: Point, + color: Color, + clip_bounds: Rectangle, +)

    Draws the given Text at the given position and with the given +Color.
    Source§

    impl Renderer for Renderer

    Available on crate feature image only.
    Source§

    type Handle = Handle

    The image Handle to be displayed. Iced exposes its own default implementation of a Handle
    Source§

    fn measure_image(&self, handle: &Self::Handle) -> Size<u32>

    Returns the dimensions of an image for the given Handle.
    Source§

    fn draw_image(&mut self, image: Image, bounds: Rectangle)

    Draws an Image inside the provided bounds.
    Source§

    impl Renderer for Renderer

    Available on crate feature svg only.
    Source§

    fn measure_svg(&self, handle: &Handle) -> Size<u32>

    Returns the default dimensions of an SVG for the given Handle.
    Source§

    fn draw_svg(&mut self, svg: Svg, bounds: Rectangle)

    Draws an SVG with the given Handle, an optional Color filter, and inside the provided bounds.
    Source§

    impl Renderer for Renderer

    Source§

    fn draw_mesh(&mut self, mesh: Mesh)

    Draws the given Mesh.
    Source§

    impl Renderer for Renderer

    Available on crate feature geometry only.
    Source§

    type Geometry = Geometry

    The kind of geometry this renderer can draw.
    Source§

    type Frame = Frame

    The kind of Frame this renderer supports.
    Source§

    fn new_frame(&self, size: Size) -> Self::Frame

    Creates a new Self::Frame.
    Source§

    fn draw_geometry(&mut self, geometry: Self::Geometry)

    Draws the given Self::Geometry.
    Source§

    impl Renderer for Renderer

    Source§

    fn draw_primitive(&mut self, bounds: Rectangle, primitive: impl Primitive)

    Draws a custom primitive.

    Auto Trait Implementations§

    Blanket Implementations§

    Source§

    impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for S
    where T: Real + Zero + Arithmetics + Clone, Swp: WhitePoint<T>, Dwp: WhitePoint<T>, diff --git a/iced_wgpu/window/compositor/fn.present.html b/iced_wgpu/window/compositor/fn.present.html index 2ad82e1e534..d852e0251e0 100644 --- a/iced_wgpu/window/compositor/fn.present.html +++ b/iced_wgpu/window/compositor/fn.present.html @@ -3,7 +3,7 @@ renderer: &mut Renderer, surface: &mut Surface<'static>, viewport: &Viewport, - background_color: Color, + background_color: Color, overlay: &[T], ) -> Result<(), SurfaceError>
    Expand description

    Presents the given primitives with the given Compositor.

    \ No newline at end of file diff --git a/iced_wgpu/window/compositor/fn.screenshot.html b/iced_wgpu/window/compositor/fn.screenshot.html index c77fd4c0d28..2b0a89f4a12 100644 --- a/iced_wgpu/window/compositor/fn.screenshot.html +++ b/iced_wgpu/window/compositor/fn.screenshot.html @@ -2,7 +2,7 @@ compositor: &mut Compositor, renderer: &mut Renderer, viewport: &Viewport, - background_color: Color, + background_color: Color, overlay: &[T], ) -> Vec<u8>
    Expand description

    Renders the current surface to an offscreen buffer.

    Returns RGBA bytes of the texture data.

    diff --git a/iced_wgpu/window/compositor/struct.Compositor.html b/iced_wgpu/window/compositor/struct.Compositor.html index 85f48acc954..673724c4f0e 100644 --- a/iced_wgpu/window/compositor/struct.Compositor.html +++ b/iced_wgpu/window/compositor/struct.Compositor.html @@ -23,13 +23,13 @@ renderer: &mut Self::Renderer, surface: &mut Self::Surface, viewport: &Viewport, - background_color: Color, + background_color: Color, overlay: &[T], ) -> Result<(), SurfaceError>
    Presents the Renderer primitives to the next frame of the given Surface.
    Source§

    fn screenshot<T: AsRef<str>>( &mut self, renderer: &mut Self::Renderer, viewport: &Viewport, - background_color: Color, + background_color: Color, overlay: &[T], ) -> Vec<u8>

    Screenshots the current Renderer primitives to an offscreen texture, and returns the bytes of the texture ordered as RGBA in the sRGB color space.
    Source§

    fn new<W>( diff --git a/search-index.js b/search-index.js index ed28d0ca22d..408f02d55dc 100644 --- a/search-index.js +++ b/search-index.js @@ -1,4 +1,4 @@ -var searchIndex = new Map(JSON.parse('[["futures_core",{"t":"EEEEEECQCCIRKEIRKMMIRKRIRKKMMNMEEEEE","n":["FusedFuture","FusedStream","Future","Stream","TryFuture","TryStream","future","ready","stream","task","BoxFuture","Error","FusedFuture","Future","LocalBoxFuture","Ok","TryFuture","is_terminated","try_poll","BoxStream","Error","FusedStream","Item","LocalBoxStream","Ok","Stream","TryStream","is_terminated","poll_next","size_hint","try_poll_next","Context","Poll","RawWaker","RawWakerVTable","Waker"],"q":[[0,"futures_core"],[10,"futures_core::future"],[19,"futures_core::stream"],[31,"futures_core::task"],[36,"core::pin"],[37,"core::task::wake"],[38,"core::result"],[39,"core::task::poll"],[40,"core::option"],[41,"core::future::future"]],"i":"```````````n```0`b1`Bd`Al`1``Ah112`````","f":"`````````````````{{{d{b}}}f}{{{A`{{d{h{n{}{{j{c}}{l{e}}}}}}}}{d{hAb}}}{{Af{{Ad{ce}}}}}{}{}}````````{{{d{Ah}}}f}{{{A`{{d{h{Al{}{{Aj{c}}}}}}}}{d{hAb}}}{{Af{{An{c}}}}}{}}{{{d{{Al{}{{Aj{c}}}}}}}{{Bb{B`{An{B`}}}}}{}}{{{A`{{d{h{Bd{}{{j{c}}{l{e}}}}}}}}{d{hAb}}}{{Af{{An{{Ad{ce}}}}}}}{}{}}`````","D":"Cb","p":[[10,"FusedFuture",10],[1,"reference",null,null,1],[1,"bool"],[0,"mut"],[17,"Ok"],[17,"Error"],[10,"TryFuture",10],[5,"Pin",36],[5,"Context",37],[6,"Result",38,null,1],[6,"Poll",39],[10,"FusedStream",19],[17,"Item"],[10,"Stream",19],[6,"Option",40,null,1],[1,"usize"],[1,"tuple",null,null,1],[10,"TryStream",19]],"r":[[0,10],[1,19],[2,41],[3,19],[4,10],[5,19],[13,41],[31,37],[32,39],[33,37],[34,37],[35,37]],"b":[],"c":"OjAAAAAAAAA=","e":"OzAAAAEAAAsAAwABAAUADgAAACAABAA=","P":[[18,"TryFuture::Ok,TryFuture::Error"],[27,""],[28,"Stream::Item"],[30,"TryStream::Ok,TryStream::Error"]]}],["iced",{"t":"TGFETGFEPPPPEPFPPGPPTEPFPIPPGGKRPPEPPEPPPFGPPPPTTTPPPPPEGPPTRPPPPPTPPTFFFPKTTFFIRIEGPPFFEPFPPPPRFTFGRPPPEPFTFTPPTTTTONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCCNNCOCHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNOCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOQNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCCHNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNEONNCNNNNOOENONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNONNNNCNNNNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNNNONCCNNNNNNNNNNONNONNNNONNNHNNNNNNNNNNNNNNNNNNMCNONNNNNNNNNNNNNNNNNNNONNNNNNNNNCCCNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNOECNOOOCNNNNNOOOOOOKFKKFFKNNNNNNNNNNNNNNNNNNNNNNNONNNNNNMCNNNNNNNNNONNNNNNNNNNMMNNNMMNMNNNONNNNNNNNNEOCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCMMONCNNNNNNCNNNNMNCNNNNNOMONMMNCCNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNCNNNNOMKGFPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNMNFPGGRFFPPPKPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNONNNNNNNNNONNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOFFTFNNNNNNNNNNNNHNNNNNNNNNNNNNNNNHNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNHHNNNHNNNNNNNNNNNNNNNNNNNNNNNNGPPNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNPPGPPPFPPGPPPGPPPPPGPPPPPPPPPPPPPPPGPPPPPPNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOFPGPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFFKNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNKFKFNNNNNNNNNNONNNNONNMNNNNNNNNNNNNNNNNNNMMNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNMOMMONNNNNNNNNNNNNNNNNNNNNNNGIIPGPRGPPKNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOPGFPKFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNONONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTPPPPPTPGKRRRRIPFRKGTKRGPPPKRPKRPGFFPPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNONNNNNNNNNNNNNNNMONNNNNNNMNNNNNNNNNNNNNNNNNNNNNNONMNNNNNNNOMMNMNNNNMMNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNMMMNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNMNNNMOMCMMMONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNMMMNOONONMMNNMNNNNNNOCMMMONOOMNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNMMMONNNNNNNMMMOGPPPPPGPGPPPPGPKPPRPPPPPPFGGPPPPPPPPPPPPPPPPNNNNNNNNNNNNNNMNNNNNNNNNNMMNNNNNNNNONNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNMMMMMMONNNNNNNNNNNNNNNNNNMNNMOFRKRFRNNNNNNNNNNNNNNNNMNNNNNNNONNMNNNNNNNNNNNNNONNNNNNMNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNMNNNRKFNNNNNNNNNNNMNNNNNNNNNNMMMMNNNNNNNNNNNMNNNNNNNNMMNNNNNNNNNNMNNMMFKFFKNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNMNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNHNNCNNNMNNNNNONNNOCNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNPKPKGKPKNNNNNHNNNNMNNNNNNNMCNNNNNNNNNNNNNMHMMMHMMCNMMNCNHNNNNNNNMNNFKNNNNNNNNNNNNHNNNNNNNNNHNHMHHONNNNNNNNNNNNNMNNONNNNNNNMNNFFKHMHMHMOOOOKHMHMHMHMPPPKRPGPPGFFIFPPGHOHHMHHHHMHPPGFFNNNNNNNNNNNNNNNNONNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONONNNNNNNNNNNNNNNNNNNGPPPPPGPPPPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPGKKPNNNNNNNNNNNNNNNNNNMNNNNNMNNNNNNNNNNNNNNNNNNNNNFKKKNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNMMNNNFFNNNNNNNHNHNOHNONNNNHONNNNNNNNNNNNNNNNNNNNNNNNNHNNNHOHNHNHNHNOHNONNNNNNNNNHOHHHHFKKNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNMNPGPPPPGPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHHHNNNNNNNNNNNIKNMMPPPPGPPPPPGPFPPPPPPPPPPPPPPGGPPPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOFGFPNNNNONNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONONNNNNNNNNNNNNNNNNNNNTTTPGGPPTPGFPPPPTPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNHHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOOOOOPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPGPGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNPPGPPPPPGPPPGPPPPPGPPPPPPPPPPPPPPPGPPPPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOICKRFFFINNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOMONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFHHOHOHOHOHHFNNNNNNNNNNNNOONNNNHNNNNOONNNNNNNNNNOOOOOONNNNNNNNNNFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNKTTTTPPPPFPTTPPTPTTPPTTTPPPTPTPTTPPTPFTTPPFTTTGPPPNNNNNNNNNNNNNNNOOMNNNNNNNNNNNNNNNNNNNNNOHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCOOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONFFJJJJJJJJJJJJJJJJJJJJJJFFFFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNOOOOOOOOOOOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOOFFTTTTTTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNHHNNNNNNNNNNHNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGFPPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOOFFFPPPPFFFKFPTTTTTTPPRPPPFPPPFPPFPPPFFFFPFFFIFFFFPFFPPFFRFIFFGFFPPPFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHHCHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCHNNHNHNHNCHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHQCHHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHHHNNNNNNCHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCHQNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNCHNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNCHCHHNNCHNCHNNNNNNNCHCHNNHHQHHNNHQCNCHNCHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCHNNNNNNNNHHQNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCHNNNNNNNNNNNNNNNNNNNNNNNCHQNNCHCHNNNNNNNNNNNNNNNCHNCHCHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNHNNHCHHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNPFKRPPPGFINNNNNNNNNNOONNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHOMHHONNNNNNNNNNNNNNNNNNNNHNFPPIFGFIIGPFFPPGFGPPPFKPPPPRFGFPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNCONNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCONONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOONNNNNNNNOONNCONNONOOOOOCOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNONNNNPFPPGPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNGFPFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNOONNNNNNNNNNNNNNNNNNNNFFFNNCNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNONNNNNNNNNNNNNNNNNNNFFNNNNNNNNOONNNNNNNNOONNNNNNNNNNNNNNNOOOOONNNNNNNNNNFIFKIPPPPIFFPFPPPPPPFPGFGTTTIFFFFPPPGGPPSPPPFFFFFIFFKKPPPPPFPPGPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNMNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCONNNNNNNCNNNNNNNNNNNNNNNNNMNNNNNNNNNCCNNNOOCMNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOFKFFKRKFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNOOMNNNNNNNNNNNNNNNNNNMNNNNNNNNNNMMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMMNNNNNNMNNNNNNNNNMNNNNNNNMMNNNNNNMNMNMNMNMNMNMNNNNNNNNNNNNNNMNMNMNMNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNFFFFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFFFIFTTTTTTFFFTTTTIFITTKRIKIFTTTIIFITNONNNNNNNNNNNNNNMNNNNNNNNONNNMNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOCNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNMNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNOOOONNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNOOOOOOONONNNNNNNNNNNNNHONNCNNNOOOMNNNNNNNNNNNNNNHNNNNNNNNMNNNNNNNNNMNNNNNNNNNNNNONNNNOONMNNNNNNNNOOOONNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCMHONNNNNNNNNNNONNNNNNNNNOOONNNNOONNNNNNNNNOOONNNNNFFFFNNNNNNNNONNNNNONONNNNNNNNNNNNNONOOOOOONNNNNNNNNOOFFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFFNNNNNNNNNOONNNNNONNNNNNNNNNNNNNNONNNNNNNNNFFFFFFFFFFFFFFFFFFFFFKFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNCCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOHHHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNCNNNNNNNNNNNNNNNNNMNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOONNNNNNNNNNNNNNNNNOOOOOOOOOOOOOOOOOOOOOONNNNNNNNNNNNNOONNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNONNNNNNNNNNNNHHNNNNNNNNNNNONOMHNNNNONNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNOHHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNOONNNNNNNNNOOOOOOOOONNNNNNNNNNNOOOOOOOOONNNNNNNNNOOOOONNNNNNNNNNNNNNNNNNNNNNKMNMHHIIIIIIIIIIIIIIIIIIIIOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOKKKKKMMMMMFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNRKKMMMMNNMMMMMMMMMNNHHHHHHFFFKFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNIIIIIIIIIOOOOOOOOOOHOHHOOOOOOOIFFFFFFFFFFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFFFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNKKKRKMMMMMMMMMMMMMMMMMMMMMMMMMMPPPGFGPPPPPFGOOOOOOOPKFRPPFGFINNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNONNNHMNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOHHOOMHONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOKFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNKRFFFINNNNNNNNNNHNONOHNNNNNNNNNNNNNNNHHMNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNHHHNOMHONNHNNNNNNNNNNNNNNNNNHNNPGGFPPPPFNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNCHNNOOOOFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNFNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFKPFPPPPPPPGFPGPPFFFFKNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHMNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOONNNNHNNNNNNNNNNNNNNNNOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNONNNMNHNNHNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNHHNNNNNNNNNOOOOOOOOCKRFFFIOOHMOOMOGPPKPRGFFGPGKPGPPFPPPFGFPPPFPGFPPFPPFFIGFPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNOONNNNONNNNCMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONOOOOOOOOOOOOOGPPFPFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNOOOOPPKRPGPFPPFPGFINNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNONNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONOOOMONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOFKRFFINNNNNOOONNNNNNNHMNNNNNNNNNNNNNNNNNNNHHMHNNNNNNNNNNHKRFPGGPPPPPPPPFPFIPGNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNPKRPFGFINNNNNNNNNNOOONNNNNNNNNNNNNNHMNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMONNNNNNNNNNNNNNNNNNNNOOPKRGPPPFFINNNNNNNNNNNNNNNNNNNNNNONNHMNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNOMNNNNNNNNNNNNNNNNNNNNOFPGPKRGPTPPPFFFTFFFPGFIPFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNONHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHONHNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNOOOOOOOOOOOOOOOOFKRKFRFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNMNNNNNNNNNNNNNNNNNNNNNNNPKPRPFGPFPFGFINNNNNNNNNNNNNNNNNNNNNNNNNOOOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONOOOKRFPPGFIFNNNNNNNNNNNNNNNNNNNNNNONNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNPPPPKRIPRKKRGPPPFRGFFFIIPPGNNNNNNNNNNNNNNNNNHNNNNNNNNNNMNNNNNOONNNNMHHMNNNNNNNNNNNNHNNNNNNNNONNNNNNNNNNNOMNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNHNNOONMNNNNNOHHNNONOMNHNONNNNNNNNNNNNNNNNNNNNNNONNNMNNNNNNNGPPPGKRPFPPPPPPPPPPPPGPPPPPPPPPFPPPFGGPPPPPPPPPPPPPPPPPPFGFIFPPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNONNNNNONOOMNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNOOPKRFSPPPFFPPGFGFIFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNCNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNONNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNHNNHNNNNNNNNONNNNNHNNNOOOONMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNOFPPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOKPPPPFPPPPPPPPPPPPPPFPPFGPPPOOMOHCOOOOOFFJJJJJJJJJJJJJJJJJJJJJJFFFFFFFOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOPKRPPGFIFNNNNNNNNNNOOONNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNOOONNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNOOPPPGPFPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNPKPRPFGPPGFIFOOOHMOOOMOOOGPPPPPPPPPGPPPPPGPPPPPPPPPPPPPPPPFFFPGPPGPPPPPPPPPGGPPPPPFPPPPPPPPFPPPPPPPPPGPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHHNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNHHNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNHONNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOHHHHHHHHHHNCONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOHOOHHNNNNHHNNOOHOHHHOCHHHHHHHHCHOONNNNNNNNNNNNNHHONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNOOGFPPPNNNNNNNNNNNNNNNNNNNNHHHNNNNNNNNNNNNNNNNNNNNNNNPFPFPPFFFPPFFPPFFPPFFGKKKKPPFPFPPFFGGPPFFPPPFFPPPFFPFFPFPFFPFPPFFPPFFONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOONNOMNMNOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOMNNGPFPNNNNNNNONNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNFFNONNNNNNNNNNNONNNNNNNNNONNNNOONNNNNNNNNNOOOONOOOOONONNNNNNNNON","n":["ALL","Alignment","Animation","Application","BLACK","Background","Border","Bottom","CatppuccinFrappe","CatppuccinLatte","CatppuccinMacchiato","CatppuccinMocha","Center","","Color","","Contain","ContentFit","Cover","Custom","DEFAULT","Daemon","Dark","Degrees","Dracula","Element","End","Err","Error","Event","Executor","","ExecutorCreationFailed","Ferra","Fill","","","FillPortion","","Fixed","Floating","Font","Gradient","","GraphicsCreationFailed","GruvboxDark","GruvboxLight","IDENTITY","INFINITE","INFINITY","InputMethod","KanagawaDragon","KanagawaLotus","KanagawaWave","Keyboard","Left","Length","Light","Linear","MONOSPACE","Message","Moonfly","Mouse","Nightfly","None","Nord","ORIGIN","Ok","Oxocarbon","PI","Padding","Pixels","Point","Primary","Program","RANGE","","Radians","Rectangle","Renderer","","Result","Right","Rotation","ScaleDown","Secondary","Settings","Shadow","Shrink","","Size","SolarizedDark","SolarizedLight","Solid","Start","State","Subscription","TRANSPARENT","Task","Theme","","TokyoNight","TokyoNightLight","TokyoNightStorm","Top","Touch","Transformation","UNIT","Vector","WHITE","Window","WindowCreationFailed","ZERO","","","","a","abortable","adapt_into_using","","","","","","","","","","","","","","","","","","","","","","","","","","add","","","","","","","","add_assign","advanced","alignment","and_then","","animation","antialiasing","application","","apply","area","arrays_from","","","","","","","","","","","","","","","","","","","","","","","","","","arrays_into","","","","","","","","","","","","","","","","","","","","","","","","","","as_any","","","","","","","","","","","","","","","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","","","","","","","","","","","","","","","as_ref","auto_reverse","b","base","batch","","blur_radius","border","borrow","","","","","","","","","","","","","","","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","","","","","","","","","","","","","","","bottom","","cam16_into_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","","center","center_x","center_y","chain","clipboard","clone","","","","","","","","","","","","","","","","","","","","","","","clone_into","","","","","","","","","","","","","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","","","","","","","","","","","","","code_block","collect","color","","","","components_from","","","","","","","","","","","","","","","","","","","","","","","","","","contains","custom","custom_with_fn","daemon","","default","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","default_font","default_text_size","degrees","delay","deref","","","","","","","","","","","","","","","","","","","","","","","","","","deref_mut","","","","","","","","","","","","","","","","","","","","","","","","","","discard","distance","","div","","","","","done","downcast","","","","","","","","","","","","","","","","","","","","","","","","","","drop","","","","","","","","","","","","","","","","","","","","","","","","","","duration","easing","enclose","enter","eq","","","","","","","","","","","","","","","","","","","","","","","equivalent","","","","","","","","","","","","","","","","","","","","","event","executor","exit","expand","","extended_palette","family","fill_factor","fit","","fluid","fmt","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","font","fonts","from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","","","","","","","","","","","","","","","","","from_f64","","from_i64","","from_linear_rgba","from_rgb","from_rgb8","from_rgba","from_rgba8","from_stimulus","","","","","","","","","","","","","","","","","","","","","","","","","","from_u64","","future","futures","g","go","go_mut","gradient","hash","","","","height","","highlighter","horizontal","id","init","","","","","","","","","","","","","","","","","","","","","","","","","","interpolate","interpolate_with","intersection","intersects","into","","","","","","","","","","","","","","","","","","","","","","","","","","into_angle","","","","","","","","","","","","","","","","","","","","","","","","","","into_any","","","","","","","","","","","","","","","","","","","","","","","","","","into_any_arc","","","","","","","","","","","","","","","","","","","","","","","","into_any_rc","","","","","","","","","","","","","","","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","","into_color","","","","","","","","","","","","","","","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","","into_linear","into_rgba8","into_stimulus","","","","","","","","","","","","","","","","","","","","","","","","","","inverse","invert","is_animating","is_fill","is_within","keyboard","left","","map","","max","min","mouse","mul","","","","","","","","","","","","","","","neg","never","new","","","","","","","none","","null_value","","","","","","","","","","","","","","","offset","orthographic","overlay","padding","palette","parse","partial_cmp","","","","","perform","position","quick","r","radians","radians_mut","radius","rem","repeat","repeat_forever","right","","rotate","","rounded","run","","","","","run_with","","","scale","scale_alpha","","","scale_factor","","","shrink","size","slow","snap","spawn","stream","","stretch","style","","","","","","","","","","","","","","","","","","","","sub","","","","","","sub_assign","subscription","","system","task","theme","","","then","time","title","","to_distance","to_owned","","","","","","","","","","","","","","","","","","","","","","","to_smolstr","","","","","to_string","","","","","top","","touch","translate","translation","try_components_into","","","","","","","","","","","","","","","","","","","","","","","","","","try_from","","","","","","","","","","","","","","","","","","","","","","","","","","try_into","","","","","","","","","","","","","","","","","","","","","","","","","","try_into_color","","","","","","","","","","","","","","","","","","","","","","","","","","type_id","","","","","","","","","","","","","","","","","","","","","","","","","","uints_from","","","","","","","","","","","","","","","","","","","","","","","","","","uints_into","","","","","","","","","","","","","","","","","","","","","","","","","","union","upcast","","","","","","","","","","","","","","","","","","","","","","","","","","update","value","vertical","very_quick","very_slow","view","vzip","","","","","","","","","","","","","","","","","","","","","","","","","","weight","wgpu","widget","width","","","","window","with","with_name","with_radius","with_size","with_vertices","x","","","y","","","Clipboard","Layout","Overlay","Renderer","Shell","Text","Widget","adapt_into_using","","","are_widgets_invalid","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","borrow","","","borrow_mut","","","bounds","","cam16_into_unclamped","","","capture_event","children","","clear","clipboard","clone","","clone_into","","clone_to_uninit","","components_from","","","content","deref","","","deref_mut","","","diff","downcast","","","draw","","drop","","","end_layer","end_transformation","event_status","fill_quad","fmt","","","font","from","","","from_angle","","","from_stimulus","","","graphics","horizontal_alignment","image","init","","","input_method","input_method_mut","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","invalidate_layout","invalidate_widgets","is_empty","is_event_captured","is_layout_invalid","is_over","layout","","","line_height","merge","mouse","mouse_interaction","","new","","operate","","overlay","","","position","publish","read","redraw_request","renderer","replace_redraw_request","request_input_method","request_redraw","request_redraw_at","revalidate_layout","shaping","size","","size_hint","start_layer","start_transformation","state","subscription","svg","tag","text","to_owned","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","update","","vertical_alignment","vzip","","","widget","with_layer","with_offset","with_transformation","with_translation","wrapping","write","Clipboard","Kind","Null","Primary","Standard","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","deref","","deref_mut","","downcast","","drop","","eq","equivalent","","","fmt","","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","read","","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","write","","Bytes","","FilterMethod","Handle","","Id","Image","Linear","Nearest","Path","Renderer","Rgba","adapt_into_using","","","","","advance","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","as_ref","borrow","","","","","","borrow_mut","","","","","cam16_into_unclamped","","","","","chunk","clear","clone","","","","","clone_into","","","","","clone_to_uninit","","","","","cmp","","compare","","components_from","","","","","copy_from_slice","copy_to_bytes","default","","deref","","","","","","deref_mut","","","","","downcast","","","","","draw_image","drop","","","","","","encode_hex","encode_hex_upper","eq","","","","","","","","","","","equivalent","","","","","","","","","","","","filter_method","","fmt","","","","","","","from","","","","","","","","","","","","","","","from_angle","","","","","from_bytes","from_iter","from_owner","from_path","from_rgba","from_static","from_stimulus","","","","","handle","hash","","","id","init","","","","","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","","","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_iter","","into_stimulus","","","","","is_empty","is_unique","len","measure_image","new","","null_value","","opacity","","partial_cmp","","","","","","","remaining","rotation","","slice","slice_ref","snap","","split_off","split_to","to_owned","","","","","truncate","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","try_into_mut","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","vzip","","","","","height","id","pixels","width","Layout","Limits","NONE","Node","adapt_into_using","","align","align_mut","arrays_from","","arrays_into","","as_any","","as_any_mut","","atomic","borrow","","borrow_mut","","bounds","cam16_into_unclamped","","children","clone","","clone_into","","clone_to_uninit","","components_from","","contained","container","default","deref","","deref_mut","","downcast","","drop","","eq","flex","fmt","","from","","from_angle","","from_stimulus","","height","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","loose","max","max_height","max_width","min","min_height","min_width","move_to","move_to_mut","new","","next_to_each_other","null_value","padded","positioned","resolve","shrink","size","sized","to_owned","","translate","translate_mut","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","width","with_children","Axis","Horizontal","Vertical","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","components_from","deref","deref_mut","downcast","drop","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","resolve","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Available","Back","Button","ButtonPressed","ButtonReleased","Cell","Click","Copy","Crosshair","Cursor","CursorEntered","CursorLeft","CursorMoved","Event","Forward","Grab","Grabbing","Help","Idle","Interaction","Left","Levitating","Lines","Middle","Move","None","NotAllowed","Other","Pixels","Pointer","ResizingDiagonallyDown","ResizingDiagonallyUp","ResizingHorizontally","ResizingVertically","Right","ScrollDelta","Text","Unavailable","WheelScrolled","Working","ZoomIn","ZoomOut","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","click","clone","clone_into","clone_to_uninit","components_from","deref","deref_mut","downcast","drop","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","kind","mul","new","position","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","delta","position","x","","y","","Click","Double","Kind","Single","Triple","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","deref","deref_mut","downcast","drop","eq","equivalent","","","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Element","Group","Overlay","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","components_from","","default","deref","","deref_mut","","downcast","","draw","","","drop","","from","","","from_angle","","from_children","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","is_over","","","layout","","","map","mouse_interaction","","","new","","null_value","operate","","","overlay","","","","push","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","update","","","vzip","","with_children","Headless","Quad","Renderer","Style","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","border","borrow","","borrow_mut","","bounds","cam16_into_unclamped","","clear","clone","","clone_into","","clone_to_uninit","","components_from","","default","","deref","","deref_mut","","downcast","","drop","","end_layer","end_transformation","eq","","fill_quad","fmt","","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","new","null_value","","screenshot","shadow","start_layer","start_transformation","text_color","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","with_layer","with_transformation","with_translation","Event","EventStream","Hasher","Interaction","MacOS","","Output","PlatformSpecific","","ReceivedUrl","Recipe","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","","","clone_into","","","clone_to_uninit","","","components_from","","","deref","","","deref_mut","","","downcast","","","drop","","","eq","","","equivalent","","","","","","fmt","","","from","","","from_angle","","","from_recipe","from_stimulus","","","hash","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_recipes","into_stimulus","","","stream","to_owned","","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","event","status","window","Bytes","Data","Handle","Path","Renderer","Svg","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","","","clone_into","","","clone_to_uninit","","","color","","components_from","","","data","deref","","","deref_mut","","","downcast","","","draw_svg","drop","","","eq","","","equivalent","","","","","","fmt","","","from","","","","","from_angle","","","from_memory","from_path","from_stimulus","","","handle","hash","","id","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","measure_svg","new","opacity","","rotation","","to_owned","","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","ARROW_DOWN_ICON","Absolute","Advanced","Basic","Borrowed","Bounds","CHECKMARK_ICON","CharOffset","Difference","Editor","","Font","","","Fragment","Glyph","Highlight","","Highlighter","Hit","ICON_FONT","IntoFragment","Iterator","LineHeight","None","","Owned","Paragraph","","Relative","Renderer","Settings","Shape","Shaping","Span","Text","Word","WordOrGlyph","Wrapping","adapt_into_using","","","","","","","arrays_from","","","","","","","arrays_into","","","","","","","as_any","","","","","","","as_any_mut","","","","","","","background","","background_maybe","border","","border_maybe","borrow","","","","","","","borrow_mut","","","","","","","bounds","","cam16_into_unclamped","","","","","","","change_line","clone","","","","","","","clone_into","","","","","","","clone_to_uninit","","","","","","","color","","color_maybe","compare","components_from","","","","","","","content","current_line","cursor","","cursor_position","default","","","","default_font","default_size","deref","","","","","","","deref_mut","","","","","","","downcast","","","","","","","drop","","","","","","","editor","eq","","","","","","","equivalent","","","","","","","","","fill_editor","fill_paragraph","fill_text","fmt","","","","","","","font","","","font_maybe","from","","","","","","","","","","from_angle","","","","","","","from_stimulus","","","","","","","grapheme_position","hash","","","highlight","","highlight_line","highlighter","hit_span","hit_test","horizontal_alignment","","init","","","","","","","into","","","","","","","into_angle","","","","","","","into_any","","","","","","","into_any_arc","","","","","","","into_any_rc","","","","","","","into_cam16_unclamped","","","","","","","into_color","","","","","","","into_color_unclamped","","","","","","","into_fragment","into_stimulus","","","","","","","is_empty","line","line_count","line_height","","","link","","link_maybe","min_bounds","","min_height","min_width","new","","null_value","","","","padding","","paragraph","perform","resize","selection","shaping","size","","","span_bounds","strikethrough","","text","to_absolute","to_owned","","","","","","","to_static","try_components_into","","","","","","","try_from","","","","","","","try_into","","","","","","","try_into_color","","","","","","","type_id","","","","","","","uints_from","","","","","","","uints_into","","","","","","","underline","","upcast","","","","","","","update","","vertical_alignment","","vzip","","","","","","","with_spans","with_text","","wrapping","Action","Backspace","Caret","Click","Cr","CrLf","Cursor","Delete","Direction","DocumentEnd","DocumentStart","Down","Drag","Edit","","Editor","End","Enter","Font","Home","Insert","Left","","Lf","LfCr","Line","LineEnding","Motion","Move","None","PageDown","PageUp","Paste","Right","","Scroll","Select","SelectAll","SelectLine","SelectWord","Selection","Up","WordLeft","WordRight","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","bounds","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","cursor","cursor_position","deref","","deref_mut","","downcast","","drop","","ending","eq","equivalent","","","fmt","","from","","from_angle","","from_stimulus","","highlight","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","is_empty","line","line_count","min_bounds","perform","selection","text","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","update","vzip","","with_text","lines","Format","Highlight","Highlighter","Iterator","PlainText","Settings","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","change_line","","clone","","clone_into","","clone_to_uninit","","color","components_from","","current_line","","default","deref","","deref_mut","","downcast","","drop","","eq","fmt","","font","from","","from_angle","","from_stimulus","","highlight_line","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","new","","null_value","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","update","","vzip","","Font","Paragraph","Plain","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","compare","components_from","default","deref","deref_mut","downcast","drop","fmt","from","from_angle","from_stimulus","grapheme_position","hit_span","hit_test","horizontal_alignment","","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","min_bounds","","min_height","","min_width","","new","null_value","raw","resize","span_bounds","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","update","vertical_alignment","","vzip","with_spans","with_text","Id","Operation","Text","Tree","Widget","adapt_into_using","","","align_x","align_y","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","center","children","","class","clone","clone_into","clone_to_uninit","color","color_maybe","components_from","","","container","custom","deref","","","deref_mut","","","diff","","diff_children","diff_children_custom","downcast","","","draw","","drop","","","empty","eq","equivalent","","","finish","fmt","","focusable","font","from","","","","","","","from_angle","","","from_stimulus","","","hash","height","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","layout","","line_height","mouse_interaction","new","","","operate","","","operation","overlay","scrollable","shaping","size","","","size_hint","state","","","style","tag","","","text","","text_input","to_owned","tree","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","unique","upcast","","","update","vzip","","","width","wrapping","Chain","Focusable","None","Operation","Outcome","Scrollable","Some","TextInput","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","black_box","borrow","borrow_mut","cam16_into_unclamped","components_from","container","custom","deref","deref_mut","downcast","drop","finish","fmt","focus","focusable","","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","is_focused","map","move_cursor_to","move_cursor_to_end","move_cursor_to_front","scope","scroll_by","scroll_to","scrollable","","select_all","snap_to","text","text_input","","then","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","unfocus","upcast","vzip","Count","Focusable","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","count","default","deref","deref_mut","downcast","drop","eq","equivalent","","","find_focused","fmt","focus","","focus_next","focus_previous","focused","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","is_focused","null_value","to_owned","total","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","unfocus","upcast","vzip","AbsoluteOffset","RelativeOffset","Scrollable","scroll_by","","scroll_to","","snap_to","","x","","y","","TextInput","move_cursor_to","","move_cursor_to_end","","move_cursor_to_front","","select_all","","Absolute","Advanced","Basic","Catalog","Class","Glyph","LineHeight","None","Relative","Shaping","State","Style","StyleFn","Text","Word","WordOrGlyph","Wrapping","base","color","danger","default","","draw","layout","primary","secondary","style","success","None","Some","State","Tag","Tree","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","children","clone","clone_into","clone_to_uninit","cmp","compare","components_from","","deref","","deref_mut","","diff_children_custom_with_search","downcast","","downcast_mut","downcast_ref","drop","","eq","equivalent","","","fmt","","from","","from_angle","","from_stimulus","","hash","init","","into","","into_angle","","into_any","","into_any_arc","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","new","of","partial_cmp","state","stateless","tag","to_owned","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","Alignment","Bottom","Center","","","End","Horizontal","Left","Right","Start","Top","Vertical","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","deref","","deref_mut","","downcast","","drop","","eq","","equivalent","","","","","","fmt","","from","","","","from_angle","","from_stimulus","","hash","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","Animation","Custom","EaseIn","EaseInBack","EaseInBounce","EaseInCirc","EaseInCubic","EaseInElastic","EaseInExpo","EaseInOut","EaseInOutBack","EaseInOutBounce","EaseInOutCirc","EaseInOutCubic","EaseInOutElastic","EaseInOutExpo","EaseInOutQuad","EaseInOutQuart","EaseInOutQuint","EaseInQuad","EaseInQuart","EaseInQuint","EaseOut","EaseOutBack","EaseOutBounce","EaseOutCirc","EaseOutCubic","EaseOutElastic","EaseOutExpo","EaseOutQuad","EaseOutQuart","EaseOutQuint","Easing","Float","Interpolable","Linear","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","default","deref","deref_mut","downcast","drop","eq","float_value","fmt","from","from_angle","from_stimulus","init","interpolated","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","null_value","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","value","vzip","Application","Title","Update","View","adapt_into_using","antialiasing","application","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","centered","components_from","decorations","default_font","deref","deref_mut","downcast","drop","executor","exit_on_close_request","fmt","font","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","level","position","resizable","run","run_with","scale_factor","settings","style","subscription","theme","title","transparent","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","update","view","vzip","window","window_size","Border","Radius","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","bottom","","bottom_left","","","bottom_right","","","cam16_into_unclamped","clone","clone_into","clone_to_uninit","color","","components_from","default","deref","deref_mut","downcast","drop","eq","fmt","from","","","","","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","left","","new","null_value","radius","","right","","rounded","to_owned","top","","top_left","","","top_right","","","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","width","","read","read_primary","write","write_primary","Daemon","Title","View","adapt_into_using","antialiasing","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","components_from","daemon","default_font","deref","deref_mut","downcast","drop","executor","fmt","font","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","run","run_with","scale_factor","settings","style","subscription","theme","title","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","view","vzip","Captured","Event","Ignored","InputMethod","Keyboard","Mouse","Status","Touch","Window","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","deref","deref_mut","downcast","drop","eq","equivalent","","","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","listen","listen_raw","listen_url","listen_with","merge","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Default","Executor","enter","new","spawn","Black","Bold","Condensed","Cursive","Error","Expanded","ExtraBold","ExtraCondensed","ExtraExpanded","ExtraLight","Family","Fantasy","Font","Italic","Light","Medium","Monospace","Name","Normal","","","Oblique","SansSerif","SemiCondensed","SemiExpanded","Semibold","Serif","Stretch","Style","Thin","UltraCondensed","UltraExpanded","Weight","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","borrow","","","","","borrow_mut","","","","","cam16_into_unclamped","","","","","clone","","","","","clone_into","","","","","clone_to_uninit","","","","","components_from","","","","","default","","","","deref","","","","","deref_mut","","","","","downcast","","","","","drop","","","","","eq","","","","","equivalent","","","","","","","","","","","","","","","family","fmt","","","","","from","","","","","from_angle","","","","","from_stimulus","","","","","hash","","","","init","","","","","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","","","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_stimulus","","","","","load","null_value","","","","stretch","style","to_owned","","","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","vzip","","","","","weight","ColorStop","Gradient","Linear","","adapt_into_using","","add_stop","add_stops","angle","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","color","components_from","","default","deref","","deref_mut","","downcast","","drop","","eq","","fmt","","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","new","null_value","offset","scale_alpha","stops","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","ALT","COMMAND","CTRL","Character","Event","Key","KeyPressed","KeyReleased","LOGO","Left","Location","Modifiers","ModifiersChanged","Named","Numpad","Right","SHIFT","Standard","Unidentified","adapt_into_using","","","","all","alt","arrays_from","","","","arrays_into","","","","as_any","","","","as_any_mut","","","","as_ref","bitand","bitand_assign","bitor","bitor_assign","bits","","bitxor","bitxor_assign","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","clone","","","","clone_into","","","","clone_to_uninit","","","","cmp","","command","compare","","complement","components_from","","","","contains","control","default","deref","","","","deref_mut","","","","difference","downcast","","","","drop","","","","empty","eq","","","","equivalent","","","","","","","","","","","","extend","fmt","","","","","","","","from","","","","","from_angle","","","","from_bits","from_bits_retain","","from_bits_truncate","from_iter","from_name","from_stimulus","","","","hash","","init","","","","insert","intersection","intersects","into","","","","into_angle","","","","into_any","","","","into_any_arc","","","","into_any_rc","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_iter","into_stimulus","","","","is_all","is_empty","iter","iter_names","jump","key","logo","macos_command","not","null_value","on_key_press","on_key_release","partial_cmp","","remove","set","shift","sub","sub_assign","symmetric_difference","to_owned","","","","toggle","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","union","upcast","","","","vzip","","","","key","","location","","modified_key","","modifiers","","physical_key","","text","AVRInput","AVRPower","Abort","Accept","Again","","AllCandidates","Alphanumeric","Alt","AltGraph","AltLeft","AltRight","Android","AppSwitch","ArrowDown","","ArrowLeft","","ArrowRight","","ArrowUp","","Attn","AudioBalanceLeft","AudioBalanceRight","AudioBassBoostDown","AudioBassBoostToggle","AudioBassBoostUp","AudioFaderFront","AudioFaderRear","AudioSurroundModeNext","AudioTrebleDown","AudioTrebleUp","AudioVolumeDown","","AudioVolumeMute","","AudioVolumeUp","","Backquote","Backslash","Backspace","","BracketLeft","BracketRight","BrightnessDown","BrightnessUp","BrowserBack","","BrowserFavorites","","BrowserForward","","BrowserHome","","BrowserRefresh","","BrowserSearch","","BrowserStop","","Call","Camera","CameraFocus","Cancel","CapsLock","","ChannelDown","ChannelUp","Character","Clear","Close","ClosedCaptionToggle","Code","","CodeInput","ColorF0Red","ColorF1Green","ColorF2Yellow","ColorF3Blue","ColorF4Grey","ColorF5Brown","Comma","Compose","ContextMenu","","Control","ControlLeft","ControlRight","Convert","","Copy","","CrSel","Cut","","DVR","Delete","","Digit0","Digit1","Digit2","Digit3","Digit4","Digit5","Digit6","Digit7","Digit8","Digit9","Dimmer","DisplaySwap","Eisu","Eject","","End","","EndCall","Enter","","Equal","EraseEof","Escape","","ExSel","Execute","Exit","F1","","F10","","F11","","F12","","F13","","F14","","F15","","F16","","F17","","F18","","F19","","F2","","F20","","F21","","F22","","F23","","F24","","F25","","F26","","F27","","F28","","F29","","F3","","F30","","F31","","F32","","F33","","F34","","F35","","F4","","F5","","F6","","F7","","F8","","F9","","FavoriteClear0","FavoriteClear1","FavoriteClear2","FavoriteClear3","FavoriteRecall0","FavoriteRecall1","FavoriteRecall2","FavoriteRecall3","FavoriteStore0","FavoriteStore1","FavoriteStore2","FavoriteStore3","FinalMode","Find","","Fn","","FnLock","","GoBack","GoHome","GroupFirst","GroupLast","GroupNext","GroupPrevious","Guide","GuideNextDay","GuidePreviousDay","HangulMode","HanjaMode","Hankaku","HeadsetHook","Help","","Hibernate","Hiragana","","HiraganaKatakana","Home","","Hyper","","Info","Insert","","InstantReplay","IntlBackslash","IntlRo","IntlYen","JunjaMode","KanaMode","","KanjiMode","Katakana","","Key","Key11","Key12","KeyA","KeyB","KeyC","KeyD","KeyE","KeyF","KeyG","KeyH","KeyI","KeyJ","KeyK","KeyL","KeyM","KeyN","KeyO","KeyP","KeyQ","KeyR","KeyS","KeyT","KeyU","KeyV","KeyW","KeyX","KeyY","KeyZ","Lang1","Lang2","Lang3","Lang4","Lang5","LastNumberRedial","LaunchApp1","LaunchApp2","LaunchApplication1","LaunchApplication2","LaunchCalendar","LaunchContacts","LaunchMail","","LaunchMediaPlayer","LaunchMusicPlayer","LaunchPhone","LaunchScreenSaver","LaunchSpreadsheet","LaunchWebBrowser","LaunchWebCam","LaunchWordProcessor","Link","ListProgram","LiveContent","Lock","LogOff","MacOS","MailForward","MailReply","MailSend","MannerMode","MediaApps","MediaAudioTrack","MediaClose","MediaFastForward","MediaLast","MediaPause","MediaPlay","MediaPlayPause","","MediaRecord","MediaRewind","MediaSelect","MediaSkipBackward","MediaSkipForward","MediaStepBackward","MediaStepForward","MediaStop","","MediaTopMenu","MediaTrackNext","","MediaTrackPrevious","","Meta","","MicrophoneToggle","MicrophoneVolumeDown","MicrophoneVolumeMute","MicrophoneVolumeUp","Minus","ModeChange","Named","","NativeCode","NavigateIn","NavigateNext","NavigateOut","NavigatePrevious","New","NextCandidate","NextFavoriteChannel","NextUserProfile","NonConvert","","Notification","NumLock","","Numpad0","Numpad1","Numpad2","Numpad3","Numpad4","Numpad5","Numpad6","Numpad7","Numpad8","Numpad9","NumpadAdd","NumpadBackspace","NumpadClear","NumpadClearEntry","NumpadComma","NumpadDecimal","NumpadDivide","NumpadEnter","NumpadEqual","NumpadHash","NumpadMemoryAdd","NumpadMemoryClear","NumpadMemoryRecall","NumpadMemoryStore","NumpadMemorySubtract","NumpadMultiply","NumpadParenLeft","NumpadParenRight","NumpadStar","NumpadSubtract","OnDemand","Open","","PageDown","","PageUp","","Pairing","Paste","","Pause","","Period","Physical","PinPDown","PinPMove","PinPToggle","PinPUp","Play","PlaySpeedDown","PlaySpeedReset","PlaySpeedUp","Power","","PowerOff","PreviousCandidate","Print","PrintScreen","","Process","Props","","Quote","RandomToggle","RcLowBattery","RecordSpeedNext","Redo","Resume","RfBypass","Romaji","STBInput","STBPower","Save","ScanChannelsToggle","ScreenModeNext","ScrollLock","","Select","","Semicolon","Settings","Shift","ShiftLeft","ShiftRight","SingleCandidate","Slash","Sleep","Soft1","Soft2","Soft3","Soft4","Space","","SpeechCorrectionList","SpeechInputToggle","SpellCheck","SplitScreenToggle","Standby","Subtitle","Super","SuperLeft","SuperRight","Suspend","Symbol","SymbolLock","TV","TV3DMode","TVAntennaCable","TVAudioDescription","TVAudioDescriptionMixDown","TVAudioDescriptionMixUp","TVContentsMenu","TVDataService","TVInput","TVInputComponent1","TVInputComponent2","TVInputComposite1","TVInputComposite2","TVInputHDMI1","TVInputHDMI2","TVInputHDMI3","TVInputHDMI4","TVInputVGA1","TVMediaContext","TVNetwork","TVNumberEntry","TVPower","TVRadioService","TVSatellite","TVSatelliteBS","TVSatelliteCS","TVSatelliteToggle","TVTerrestrialAnalog","TVTerrestrialDigital","TVTimer","Tab","","Teletext","Turbo","Undo","","Unidentified","","","VideoModeNext","VoiceDial","WakeUp","","Windows","Wink","Xkb","Zenkaku","ZenkakuHankaku","ZoomIn","ZoomOut","ZoomToggle","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","as_any","","","","as_any_mut","","","","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","clone","","","","clone_into","","","","clone_to_uninit","","","","cmp","","","","compare","","","","components_from","","","","deref","","","","deref_mut","","","","downcast","","","","drop","","","","eq","","","","","","","","equivalent","","","","","","","","","","","","fmt","","","","from","","","","from_angle","","","","from_stimulus","","","","hash","","","","init","","","","into","","","","into_angle","","","","into_any","","","","into_any_arc","","","","into_any_rc","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_stimulus","","","","partial_cmp","","","","to_owned","","","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","upcast","","","","vzip","","","","Available","Back","Button","ButtonPressed","ButtonReleased","Cell","Copy","Crosshair","Cursor","CursorEntered","CursorLeft","CursorMoved","Event","Forward","Grab","Grabbing","Help","Idle","Interaction","Left","Levitating","Lines","Middle","Move","None","NotAllowed","Other","Pixels","Pointer","ResizingDiagonallyDown","ResizingDiagonallyUp","ResizingHorizontally","ResizingVertically","Right","ScrollDelta","Text","Unavailable","WheelScrolled","Working","ZoomIn","ZoomOut","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","borrow","","","","","borrow_mut","","","","","cam16_into_unclamped","","","","","clone","","","","","clone_into","","","","","clone_to_uninit","","","","","cmp","compare","components_from","","","","","default","","deref","","","","","deref_mut","","","","","downcast","","","","","drop","","","","","eq","","","","","equivalent","","","","","","fmt","","","","","from","","","","","from_angle","","","","","from_stimulus","","","","","hash","init","","","","","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","","","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_stimulus","","","","","is_levitating","is_over","land","levitate","mul","null_value","","partial_cmp","position","position_from","position_in","position_over","to_owned","","","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","vzip","","","","","delta","position","x","","y","","Element","menu","Catalog","Class","Menu","State","Style","StyleFn","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","background","border","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","clone_into","clone_to_uninit","components_from","","","default","","","default_scrollable","","deref","","","deref_mut","","","downcast","","","drop","","","eq","fmt","","font","from","","","from_angle","","","from_stimulus","","","init","","","into","","","into_angle","","","into_any","","","into_any_arc","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","new","","null_value","overlay","padding","selected_background","selected_text_color","style","text_color","text_line_height","text_shaping","text_size","to_owned","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","width","Padding","all","bottom","","left","","right","","top","","channel","try_channel","Information","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","cpu_brand","cpu_cores","deref","deref_mut","downcast","drop","fetch_information","fmt","from","from_angle","from_stimulus","graphics_adapter","graphics_backend","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","memory_total","memory_used","system_kernel","system_name","system_short_version","system_version","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Handle","Task","abort","abort_on_drop","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","deref","deref_mut","downcast","drop","","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","is_aborted","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Base","CATPPUCCIN_FRAPPE","CATPPUCCIN_LATTE","CATPPUCCIN_MACCHIATO","CATPPUCCIN_MOCHA","CatppuccinFrappe","CatppuccinLatte","CatppuccinMacchiato","CatppuccinMocha","Custom","","DARK","DRACULA","Dark","Dracula","FERRA","Ferra","GRUVBOX_DARK","GRUVBOX_LIGHT","GruvboxDark","GruvboxLight","KANAGAWA_DRAGON","KANAGAWA_LOTUS","KANAGAWA_WAVE","KanagawaDragon","KanagawaLotus","KanagawaWave","LIGHT","Light","MOONFLY","Moonfly","NIGHTFLY","NORD","Nightfly","Nord","OXOCARBON","Oxocarbon","Palette","SOLARIZED_DARK","SOLARIZED_LIGHT","SolarizedDark","SolarizedLight","Style","TOKYO_NIGHT","TOKYO_NIGHT_LIGHT","TOKYO_NIGHT_STORM","Theme","TokyoNight","TokyoNightLight","TokyoNightStorm","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","background","background_color","base","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","","","clone_into","","","clone_to_uninit","","","components_from","","","danger","default","deref","","","deref_mut","","","downcast","","","drop","","","eq","","","fmt","","","","from","","","from_angle","","","from_stimulus","","","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","new","palette","primary","success","text","text_color","to_owned","","","to_smolstr","to_string","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","warning","with_fn","Background","Danger","EXTENDED_CATPPUCCIN_FRAPPE","EXTENDED_CATPPUCCIN_LATTE","EXTENDED_CATPPUCCIN_MACCHIATO","EXTENDED_CATPPUCCIN_MOCHA","EXTENDED_DARK","EXTENDED_DRACULA","EXTENDED_FERRA","EXTENDED_GRUVBOX_DARK","EXTENDED_GRUVBOX_LIGHT","EXTENDED_KANAGAWA_DRAGON","EXTENDED_KANAGAWA_LOTUS","EXTENDED_KANAGAWA_WAVE","EXTENDED_LIGHT","EXTENDED_MOONFLY","EXTENDED_NIGHTFLY","EXTENDED_NORD","EXTENDED_OXOCARBON","EXTENDED_SOLARIZED_DARK","EXTENDED_SOLARIZED_LIGHT","EXTENDED_TOKYO_NIGHT","EXTENDED_TOKYO_NIGHT_LIGHT","EXTENDED_TOKYO_NIGHT_STORM","Extended","Pair","Palette","Primary","Secondary","Success","Warning","adapt_into_using","","","","","","","","arrays_from","","","","","","","","arrays_into","","","","","","","","as_any","","","","","","","","as_any_mut","","","","","","","","background","","base","","","","","","borrow","","","","","","","","borrow_mut","","","","","","","","cam16_into_unclamped","","","","","","","","clone","","","","","","","","clone_into","","","","","","","","clone_to_uninit","","","","","","","","color","components_from","","","","","","","","danger","","deref","","","","","","","","deref_mut","","","","","","","","downcast","","","","","","","","drop","","","","","","","","eq","","","","","","","","fmt","","","","","","","","from","","","","","","","","from_angle","","","","","","","","from_stimulus","","","","","","","","generate","","","","","","init","","","","","","","","into","","","","","","","","into_angle","","","","","","","","into_any","","","","","","","","into_any_arc","","","","","","","","into_any_rc","","","","","","","","into_cam16_unclamped","","","","","","","","into_color","","","","","","","","into_color_unclamped","","","","","","","","into_stimulus","","","","","","","","is_dark","new","","primary","","secondary","strong","","","","","","success","","text","","to_owned","","","","","","","","try_components_into","","","","","","","","try_from","","","","","","","","try_into","","","","","","","","try_into_color","","","","","","","","type_id","","","","","","","","uints_from","","","","","","","","uints_into","","","","","","","","upcast","","","","","","","","vzip","","","","","","","","warning","","weak","","","","","","Duration","Instant","MAX","MICROSECOND","MILLISECOND","NANOSECOND","SECOND","ZERO","abs_diff","adapt_into_using","","add","","","","add_assign","","","","arrays_from","","arrays_into","","as_any","","as_any_mut","","as_micros","as_millis","as_millis_f32","as_millis_f64","as_nanos","as_secs","as_secs_f32","as_secs_f64","borrow","","","borrow_mut","","cam16_into_unclamped","","checked_add","","checked_add_signed","checked_div","checked_duration_since","checked_mul","checked_sub","","checked_sub_signed","clone","","clone_into","","clone_to_uninit","","cmp","","compare","","components_from","","days","default","deref","","deref_mut","","deserialize","deserializer_for_signature","div","","div_assign","div_duration_f32","div_duration_f64","div_f32","div_f64","downcast","","drop","","duration_since","elapsed","elapsed_since","eq","","","equivalent","","","","","","every","fmt","","from","","","","","from_angle","","from_days","from_hours","from_micros","from_millis","from_mins","from_nanos","from_secs","from_secs_f32","from_secs_f64","from_stimulus","","from_weeks","hash","","hours","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","is_zero","milliseconds","minutes","mul","mul_assign","mul_f32","mul_f64","new","now","null_value","partial_cmp","","","repeat","saturating_add","saturating_duration_since","saturating_mul","saturating_sub","seconds","serialize","signature","signed_duration_since","sub","","","","","sub_assign","","","","subsec_micros","subsec_millis","subsec_nanos","sum","","to_owned","","try_components_into","","try_from","","","try_from_secs_f32","try_from_secs_f64","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","Event","Finger","FingerLifted","FingerLost","FingerMoved","FingerPressed","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","deref","","deref_mut","","downcast","","drop","","eq","","equivalent","","","fmt","","from","","from_angle","","from_stimulus","","hash","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","id","","","","position","","","","Action","Button","Canvas","CatppuccinFrappe","CatppuccinLatte","CatppuccinMacchiato","CatppuccinMocha","Checkbox","Column","ComboBox","Component","Container","Custom","DEFAULT_GIRTH","DEFAULT_HEIGHT","DEFAULT_SIZE","","DEFAULT_SPACING","DEFAULT_WIDTH","Dark","Dracula","Event","Ferra","GruvboxDark","GruvboxLight","Image","KanagawaDragon","KanagawaLotus","KanagawaWave","Lazy","Light","Moonfly","MouseArea","Nightfly","Nord","Oxocarbon","PaneGrid","PickList","Pin","Pop","Primary","ProgressBar","QRCode","Radio","Renderer","Responsive","Row","Rule","Scrollable","Secondary","Shader","Slider","SolarizedDark","SolarizedLight","Space","Stack","State","Svg","Text","TextEditor","TextInput","Theme","Themer","Toggler","TokyoNight","TokyoNightLight","TokyoNightStorm","Tooltip","VerticalSlider","adapt_into_using","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","align_bottom","align_left","align_right","align_top","align_x","","","align_y","","anchor_bottom","anchor_left","anchor_right","anchor_top","anchor_x","anchor_y","and_capture","anticipate","arrays_from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","arrays_into","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","as_any","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","background","borrow","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","bottom","bottom_center","bottom_right","button","","cam16_into_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","canvas","","capture","cell_size","center","","center_x","","center_y","","checkbox","","children","","","","","","","","","","","","","","class","","","","","","","","","","","","","","","","","clip","","","","clone","clone_into","clone_to_uninit","column","","combo_box","","component","components_from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","container","","content_fit","","default","","","","","deref","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","deref_mut","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","diff","","","","","","","","","","","","","","direction","downcast","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","draw","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","drop","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","extend","","","filter_method","fmt","","","","focus_next","focus_previous","font","","","","","","","from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","from_iter","","from_path","from_stimulus","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","from_vec","","","gap","girth","handle","height","","","","","","","","","","","","","","","","highlight","highlight_with","horizontal","","horizontal_rule","horizontal_space","hover","iced","icon","","","id","","","image","","init","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","input_class","input_style","interaction","into","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into_angle","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into_any","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into_any_arc","","","","","","","","","into_any_rc","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into_color","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into_inner","into_stimulus","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","key","key_binding","keyed","keyed_column","","label","layout","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","lazy","length","line_height","","","markdown","","max_height","","max_width","","menu_class","","menu_style","","min_height","mouse_area","mouse_interaction","","","","","","","","","","","","","","","","","","","","","","","","","new","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","null_value","","","on_action","on_click","on_close","","on_double_click","on_drag","on_enter","on_exit","on_hide","on_input","","on_input_maybe","on_middle_press","on_middle_release","on_move","on_open","","on_option_hovered","on_paste","on_paste_maybe","on_press","","on_press_maybe","on_press_with","on_release","","","on_resize","","on_right_press","on_right_release","on_scroll","","on_show","on_submit","on_submit_maybe","on_toggle","","on_toggle_maybe","","opacity","","opaque","operate","","","","","","","","","","","","","","","","","overlay","","","","","","","","","","","","","","","","","padding","","","","","","","","","pane_grid","","pick_list","","pin","placeholder","","pop","","position","progress_bar","","publish","push","","","push_maybe","","","qr_code","","radio","","request_redraw","request_redraw_at","responsive","rich_text","","right","right_center","rotation","","row","","rule","scale","scrollable","","secure","shader","","shift_step","","size","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","size_hint","","","","slider","","snap_within_viewport","spacing","","","","","","","span","stack","","state","","","","","","","","","","","","","","","","","","","","","","","step","","style","","","","","","","","","","","","","","","","","svg","","tag","","","","","","","","","","","","","","","","","","","","","","","text","","","text_alignment","text_color","text_editor","","text_input","","text_line_height","","","","text_shaping","","","","text_size","","","","text_wrapping","","","theme","themer","to_owned","toggler","","tooltip","","total_size","try_components_into","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","try_from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","try_into","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","try_into_color","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","type_id","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","uints_from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","uints_into","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","upcast","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","update","","","","","","","","","","","","","","","","","","","","","","","","","","value","vertical","","vertical_rule","vertical_slider","","vertical_space","view","vzip","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","width","","","","","","","","","","","","","","","","","","","","","","with_capacity","","","with_children","","","with_direction","with_height","with_width","wrap","wrapping","x","y","Active","Button","Catalog","Class","Disabled","Hovered","Pressed","Status","Style","StyleFn","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","background","border","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","danger","default","","deref","","deref_mut","","downcast","","drop","","eq","","equivalent","","","fmt","","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","null_value","primary","secondary","shadow","style","success","text","text_color","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","warning","with_background","Action","Bevel","Butt","Cache","Canvas","Event","Fill","Frame","Geometry","Gradient","","Group","Image","InputMethod","Keyboard","LineCap","LineDash","LineJoin","Linear","Miter","Mouse","Path","Program","Round","","Solid","Square","State","Stroke","Style","Text","Touch","Window","adapt_into_using","","","","","","","","","","arrays_from","","","","","","","","","","arrays_into","","","","","","","","","","as_any","","","","","","","","","","as_any_mut","","","","","","","","","","borrow","","","","","","","","","","borrow_mut","","","","","","","","","","cam16_into_unclamped","","","","","","","","","","circle","clone","","","","","","","","","","clone_into","","","","","","","","","","clone_to_uninit","","","","","","","","","","cmp","color","compare","components_from","","","","","","","","","","content","default","","","","","","deref","","","","","","","","","","deref_mut","","","","","","","","","","downcast","","","","","","","","","","draw","draw_with","drop","","","","","","","","","","eq","","","equivalent","","","fill","filter_method","fmt","","","","","","","","","","font","from","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","from_stimulus","","","","","","","","","","gradient","handle","hash","horizontal_alignment","init","","","","","","","","","","into","","","","","","","","","","into_angle","","","","","","","","","","into_any","","","","","","","","","","into_any_arc","","","","","","","","","","into_any_rc","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","into_color","","","","","","","","","","into_color_unclamped","","","","","","","","","","into_stimulus","","","","","","","","","","is_singleton","line","line_cap","line_dash","line_height","line_join","mouse_interaction","new","null_value","","","","","","offset","opacity","pack","partial_cmp","path","position","raw","rectangle","rotation","rounded_rectangle","rule","segments","shaping","size","snap","stroke","style","","to_owned","","","","","","","","","","transform","try_components_into","","","","","","","","","","try_from","","","","","","","","","","try_into","","","","","","","","","","try_into_color","","","","","","","","","","type_id","","","","","","","","","","uints_from","","","","","","","","","","uints_into","","","","","","","","","","unique","upcast","","","","","","","","","","update","vertical_alignment","vzip","","","","","","","","","","width","with_color","with_line_cap","with_line_join","with_width","EvenOdd","Fill","Gradient","NonZero","Rule","Solid","Style","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","deref","deref_mut","downcast","drop","eq","equivalent","","","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","rule","style","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Gradient","Linear","","Packed","adapt_into_using","","add_stop","add_stops","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","deref","","deref_mut","","downcast","","drop","","end","eq","","fmt","","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","is_valid_bit_pattern","new","pack","","start","stops","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","Arc","Builder","Path","adapt_into_using","","arc","","arc_to","arrays_from","","arrays_into","","as_any","","as_any_mut","","bezier_curve_to","borrow","","borrow_mut","","build","cam16_into_unclamped","","center","circle","clone","clone_into","clone_to_uninit","close","components_from","","default","deref","","deref_mut","","downcast","","drop","","ellipse","end_angle","fmt","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","line_to","move_to","new","null_value","quadratic_curve_to","radius","rectangle","rounded_rectangle","start_angle","to_owned","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","Arc","Elliptical","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","center","","clone","clone_into","clone_to_uninit","components_from","deref","deref_mut","downcast","drop","end_angle","","fmt","from","","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","radii","radius","rotation","start_angle","","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","ArcFlags","AttributeIndex","AttributeSlice","AttributeStore","Attributes","Begin","","","Bevel","Builder","BuilderImpl","BuilderWithAttributes","Butt","ControlPointId","Cubic","","","End","","","EndpointId","EvenOdd","Event","EventId","FillRule","INVALID","","","IdEvent","IdIter","IdPolygon","Iter","IterWithAttributes","Line","","","LineCap","LineJoin","Miter","MiterClip","NO_ATTRIBUTES","Negative","","NonZero","Path","PathBuffer","PathBufferSlice","PathCommands","PathCommandsSlice","PathEvent","PathSlice","Polygon","Position","PositionStore","Positive","","Quadratic","","","Reversed","Round","","Side","Square","Winding","adapt_into_using","","","","","","","","","","","","","","","","","","","","","","","","","arrays_from","","","","","","","","","","","","","","","","","","","","","","","","","arrays_into","","","","","","","","","","","","","","","","","","","","","","","","","as_any","","","","","","","","","","","","","","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","","","","","","","","","","","","","","as_slice","","","attributes","","begin","","","borrow","","","","","","","","","","","","","","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","","","","","","","","","","","","","","build","","","builder","","","","builder_with_attributes","cam16_into_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","clear","clone","","","","","","","","","","","","","","","","","","","","","","","clone_into","","","","","","","","","","","","","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","","","","","","","","","","","","","closed","","commands","components_from","","","","","","","","","","","","","","","","","","","","","","","","","cubic_bezier_to","","","default","","","","deref","","","","","","","","","","","","","","","","","","","","","","","","","deref_mut","","","","","","","","","","","","","","","","","","","","","","","","","downcast","","","","","","","","","","","","","","","","","","","","","","","","","drop","","","","","","","","","","","","","","","","","","","","","","","","","end","","","eq","","","","","","","","","","equivalent","","","","","","","","","","","","","","","event","","","","events","extend_from_paths","","first_endpoint","","fmt","","","","","","","","","","","","","","","","","for_each_flattened","from","","","","","","","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","","","","","","","","","","","","","","","","from_iter","","from_stimulus","","","","","","","","","","","","","","","","","","","","","","","","","from_usize","","get","","","","","","get_control_point","","","","get_endpoint","","","","hash","","","","","id_iter","","","index","","","","","indices","","init","","","","","","","","","","","","","","","","","","","","","","","","","into","","","","","","","","","","","","","","","","","","","","","","","","","into_angle","","","","","","","","","","","","","","","","","","","","","","","","","into_any","","","","","","","","","","","","","","","","","","","","","","","","","into_any_arc","","","","","","","","","","","","","","","","","","","","","","","into_any_rc","","","","","","","","","","","","","","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","into_color","","","","","","","","","","","","","","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","into_iter","","","","","","","","into_path","into_stimulus","","","","","","","","","","","","","","","","","","","","","","","","","is_edge","is_empty","","","is_in","is_negative","is_out","is_positive","iter","","","","","","","","iter_with_attributes","","iterator","large_arc","last_endpoint","","len","","line_to","","","math","new","","","","","next","","","","next_event_id_in_path","","next_event_id_in_sub_path","","null_value","","","","num_attributes","","","","","","","offset","","opposite","path","path_buffer","path_events","path_slice","points","","","polygon","position","quadratic_bezier_to","","","reserve","","","","reversed","","svg_builder","sweep","to","to_f32","to_owned","","","","","","","","","","","","","","","","","","","","","","","to_usize","","","traits","transformed","","try_components_into","","","","","","","","","","","","","","","","","","","","","","","","","try_from","","","","","","","","","","","","","","","","","","","","","","","","","try_into","","","","","","","","","","","","","","","","","","","","","","","","","try_into_color","","","","","","","","","","","","","","","","","","","","","","","","","type_id","","","","","","","","","","","","","","","","","","","","","","","","","uints_from","","","","","","","","","","","","","","","","","","","","","","","","","uints_into","","","","","","","","","","","","","","","","","","","","","","","","","upcast","","","","","","","","","","","","","","","","","","","","","","","","","vzip","","","","","","","","","","","","","","","","","","","","","","","","","with_attributes","with_capacity","","with_points","with_svg","at","close","ctrl","ctrl1","ctrl2","first","from","","","last","to","","","at","close","ctrl","ctrl1","ctrl2","first","from","","","last","to","","","at","close","ctrl","ctrl1","ctrl2","first","from","","","last","to","","","BorderRadii","Build","Flattened","NoAttributes","PathBuilder","PathType","SvgPathBuilder","Transformed","WithSvg","adapt_into_using","","","","","add_circle","","","add_ellipse","","","add_line_segment","","","add_point","","","add_polygon","","","","","add_rectangle","","","add_rounded_rectangle","","","arc","arc_to","","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","begin","","","","","borrow","","","","","borrow_mut","","","","","bottom_left","bottom_right","build","","","","","","","","cam16_into_unclamped","","","","","clone","","clone_into","","clone_to_uninit","","close","","","","","","components_from","","","","","cubic_bezier_to","","","","","","","","current_position","default","","deref","","","","","deref_mut","","","","","downcast","","","","","drop","","","","","end","","","","","eq","","event","","extend_from_paths","flattened","","","","fmt","","","from","","","","","from_angle","","","","","from_stimulus","","","","","hash","horizontal_line_to","","init","","","","","inner","inner_mut","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","","","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_inner","into_stimulus","","","","","line_to","","","","","","","","move_to","","","new","","","","","null_value","","num_attributes","","","","partial_cmp","path_event","","","quadratic_bezier_to","","","","","","","","relative_arc_to","","relative_cubic_bezier_to","","relative_horizontal_line_to","","relative_line_to","","relative_move_to","","relative_quadratic_bezier_to","","relative_vertical_line_to","","reserve","","","","","","","","","","set_tolerance","set_transform","","smooth_cubic_bezier_to","","smooth_quadratic_bezier_to","","smooth_relative_cubic_bezier_to","","smooth_relative_quadratic_bezier_to","","to_owned","","to_smolstr","to_string","top_left","top_right","transformed","","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","vertical_line_to","","vzip","","","","","with_capacity","with_svg","","","wrap","CommandsPathSlice","Events","Iter","PathCommands","PathCommandsBuilder","PathCommandsSlice","PointEvents","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","begin","borrow","","","","","borrow_mut","","","","","build","cam16_into_unclamped","","","","","clone","","","","","clone_into","","","","","clone_to_uninit","","","","","components_from","","","","","cubic_bezier_to","default","deref","","","","","deref_mut","","","","","downcast","","","","","drop","","","","","end","events","fmt","","from","","","","","from_angle","","","","","from_stimulus","","","","","get_control_point","get_endpoint","index","","init","","","","","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_iter","","","into_stimulus","","","","","iter","line_to","new","next","","","null_value","points","quadratic_bezier_to","to_owned","","","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","vzip","","","","","with_capacity","Angle","Arc","ArcFlags","Box2D","CubicBezierSegment","DIV_EPSILON","EIGHT","EPSILON","FIVE","FOUR","HALF","Line","LineEquation","LineSegment","MAX","MIN","NINE","ONE","Point","QuadraticBezierSegment","Rotation","SEVEN","SIX","Scalar","","Scale","Segment","Size","SvgArc","TEN","THREE","TWO","Transform","Translation","Triangle","Vector","ZERO","a","","ab","ac","adapt_into_using","","","","","","","","","add","","add_assign","after_split","","","","","","","","","angle","angle_to","approx_epsilon","approx_eq_eps","approximate_length","","","","","","","arc","arrays_from","","","","","","","","","arrays_into","","","","","","","","","as_any","","","","","","","","","as_any_mut","","","","","","","","","b","","ba","baseline","","bc","before_split","","","","","","","","","borrow","","","","","","","","","borrow_mut","","","","","","","","","bounding_box","","","","","bounding_range_x","","","","bounding_range_y","","","","bounding_triangle","c","","ca","cam16_into_unclamped","","","","","","","","","cast","","","cb","center","circle","clipped","clipped_x","clipped_y","clone","","","","","","","","","clone_into","","","","","","","","","clone_to_uninit","","","","","","","","","closest_point","","components_from","","","","","","","","","contains_point","contains_segment","ctrl","ctrl1","ctrl2","cubic_bezier","cubic_intersections","cubic_intersections_t","default","degrees","deref","","","","","","","","","deref_mut","","","","","","","","","derivative","","","","","","","distance_to_point","","","","div","","div_assign","downcast","","","","","","","","","drag","","drag_with_weight","drop","","","","","","","","","dx","","","","","","dy","","","","","","end_angle","epsilon_for","eq","","","","","","","","equation","equivalent","","","","","","fast_bounding_box","","","fast_bounding_range_x","","","fast_bounding_range_y","","","fat_line","","flags","flattened","","","flattened_t","flattening_step","flip","","","","","","","","","fmt","","","","","","","","","for_each_cubic_bezier","","for_each_flattened","","","","for_each_flattened_with_t","","","","","","","","","for_each_inflection_t","for_each_local_x_extremum_t","","for_each_local_y_extremum_t","","for_each_monotonic","","for_each_monotonic_range","","for_each_quadratic_bezier","","","for_each_quadratic_bezier_with_t","","","for_each_x_monotonic","","for_each_x_monotonic_range","","for_each_y_monotonic","","for_each_y_monotonic_range","","frac_pi_2","frac_pi_3","frac_pi_4","from","","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","from_stimulus","","","","","","","","","from_svg_arc","get","get_angle","hash","height","horizontal_line_intersection","horizontal_line_intersection_t","init","","","","","","","","","intersection","","intersection_t","intersects","","intersects_box","intersects_line","intersects_line_segment","into","","","","","","","","","into_angle","","","","","","","","","into_any","","","","","","","","","into_any_arc","","","","","","","","","into_any_rc","","","","","","","","","into_cam16_unclamped","","","","","","","","","into_color","","","","","","","","","into_color_unclamped","","","","","","","","","into_stimulus","","","","","","","","","invert","is_a_point","is_finite","is_horizontal","is_linear","","is_monotonic","","is_quadratic","is_straight_line","is_vertical","is_x_monotonic","","is_y_monotonic","","large_arc","length","","lerp","line_intersection","line_intersection_t","line_intersections","","line_intersections_t","","line_segment_intersections","","line_segment_intersections_t","","local_x_extremum_t","local_y_extremum_t","m11","m12","m21","m22","m31","m32","max","mid_point","min","mul","mul_assign","neg","new","normal","null_value","num_quadratics","offset","overlaps_line","overlaps_segment","parallel_line","partial_cmp","pi","point","","positive","project_point","quadratic_bezier","quadratic_intersections","quadratic_intersections_t","radians","","radii","","sample","","","","","","","","","sample_tangent","set_length","signed","signed_distance_to_point","","sin_cos","size","solve_t_for_x","","solve_t_for_y","","solve_x_for_y","","solve_y_for_x","","split","","","","","","","","","split_at_x","split_range","","","","","","","","","square_distance_to_point","","","square_length","start_angle","sub","sub_assign","sum","","sweep","sweep_angle","tangent","to","","","","","","","","","","","","","to_arc","to_cubic","to_degrees","to_f32","","","","","to_f64","","","","","to_line","to_owned","","","","","","","","","to_quadratic","to_quadratic_error","to_svg_arc","to_vector","traits","transform","transformed","","","translate","try_cast","try_components_into","","","","","","","","","try_from","","","","","","","","","try_into","","","","","","","","","try_into_color","","","","","","","","","two_pi","type_id","","","","","","","","","uints_from","","","","","","","","","uints_into","","","","","","","","","upcast","","","","","","","","","utils","value","vector","","vertical_line_intersection","vertical_line_intersection_t","vzip","","","","","","","","","width","x","","","","","","","","","","","","x_maximum_t","","x_minimum_t","","x_rotation","","y","","","","","","","","","","","","y_maximum_t","","y_minimum_t","","zero","Arc","ArcFlags","Flattened","SvgArc","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","center","components_from","deref","deref_mut","downcast","drop","flags","from","","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_iter","into_stimulus","large_arc","next","radii","","start_angle","sweep","sweep_angle","to","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","x_rotation","","ArrayString","ArrayVec","CapacityError","Drain","IntoIter","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","as_mut","as_mut_ptr","","as_mut_slice","","as_mut_str","as_ptr","","as_ref","","","as_slice","","as_str","borrow","","","","","","","borrow_mut","","","","","","","cam16_into_unclamped","","","","","capacity","","clear","","clone","","","","clone_from","","clone_into","","","","clone_to_uninit","","","","cmp","","","compare","","","components_from","","","","","default","","deref","","","","","","","deref_mut","","","","","","","downcast","","","","","drain","drop","","","","","","","","element","encode_hex","encode_hex_upper","eq","","","","","equivalent","","","","","","","","","extend","flush","fmt","","","","","","from","","","","","","","from_angle","","","","","from_byte_string","from_iter","from_stimulus","","","","","from_str","ge","","","gt","","","hash","","init","","","","","insert","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","","","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_inner","into_inner_unchecked","into_iter","","","","","into_stimulus","","","","","is_empty","","is_full","","le","","","len","","","limit_ptr","lt","","","multiunzip","","","","","","","","","","","","","","","","","","","","","","","","","","new","","","new_const","","next","","next_back","","null_value","","partial_cmp","","","","pop","","pop_at","push","","push_str","push_unchecked","remaining_capacity","","remove","","retain","set_len","","simplify","size_hint","","start_ptr","swap_pop","swap_remove","take","to_owned","","","","to_smolstr","","to_string","","truncate","","try_components_into","","","","","try_extend_from_slice","try_from","","","","","","","","try_insert","try_into","","","","","try_into_color","","","","","try_push","","try_push_str","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","vzip","","","","","write","write_as_big_endian","","","","","","","","","","","","","","","","","","","","","","","","write_as_little_endian","","","","","","","","","","","","","","","","","","","","","","","","write_char","write_f32","write_f64","write_i128","write_i16","write_i32","write_i64","write_i8","write_str","write_u128","write_u16","write_u32","write_u64","write_u8","zero_filled","CubicBezierSegment","Flattened","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","components_from","ctrl1","ctrl2","deref","deref_mut","downcast","drop","from","","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_iter","into_stimulus","next","size_hint","to","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Angle","BoolVector2D","BoolVector3D","Box2D","Box3D","HomogeneousVector","Length","Point2D","Point3D","Rect","RigidTransform3D","Rotation2D","Rotation3D","Scale","SideOffsets2D","Size2D","Size3D","Transform2D","Transform3D","Translation2D","Translation3D","Trig","UnknownUnit","Vector2D","Vector3D","abs","","","","adapt_into_using","","","","","","","","","","","","","","","","","","","","","","","add","","","","","","","","","","","","","","","","","","add_assign","","","","","","","","","","","","add_size","","all","","and","","angle","angle_from_x_axis","angle_to","","any","","approx_epsilon","","","","","","","","","approx_eq","","approx_eq_eps","","","","","","","","","","","approxeq","approxord","area","","","around_axis","around_x","around_y","around_z","arrays_from","","","","","","","","","","","","","","","","","","","","","","","arrays_into","","","","","","","","","","","","","","","","","","","","","","","as_any","","","","","","","","","","","","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","","","","","","","","","","","","borrow","","","","","","","","","","","","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","","","","","","","","","","","","bottom","box3d","bvec2","bvec3","cam16_into_unclamped","","","","","","","","","","","","","","","","","","","","","","","cast","","","","","","","","","","","","","","","cast_unit","","","","","","","","","","","","","ceil","","","","","","","","","","","","center","","","clamp","","","","","","","clamp_length","","clone","","","","","","","","","","","","","","","","","","","","","","","clone_into","","","","","","","","","","","","","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","","","","","","","","","","","","","cmp","","","compare","","","component_div","","component_mul","","components_from","","","","","","","","","","","","","","","","","","","","","","","contains","","","","","contains_box","","contains_inclusive","","contains_rect","cos","cross","","decompose_reversed","default","","","","","","","","","","","","","","","","","","degrees_to_radians","depth","","deref","","","","","","","","","","","","","","","","","","","","","","","deref_mut","","","","","","","","","","","","","","","","","","","","","","","determinant","","distance_to","","div","","","","","","","","","","","","","","","","","","","","","","","div_assign","","","","","","","","","","","","","","","","","","","","","div_euclid","","dot","","downcast","","","","","","","","","","","","","","","","","","","","","","","drop","","","","","","","","","","","","","","","","","","","","","","","eq","","","","","","","","","","","","","","","","","","","","","","","equal","","","","equivalent","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","euler","extend","","fast_atan2","floor","","","","","","","","","","","","fmt","","","","","","","","","","","","","","","","","","","","","","","from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","","","","","","","","","","","","","","from_angle_and_length","from_array","","from_arrays","","from_length_all_same","from_lengths","","","","","","","from_origin_and_size","","from_points","","","from_rotation","from_scale","from_size","","","from_stimulus","","","","","","","","","","","","","","","","","","","","","","","from_translation","from_untyped","","","","","","","","","","","","","","","","from_vectors_inner","from_vectors_outer","get","","get_angle","greater_than","","","","hash","","","","","","","","","","","","","","","","","","","","","","","height","","","","","horizontal","i","identity","","","","","","","","inflate","","","init","","","","","","","","","","","","","","","","","","","","","","","inner_box","inner_rect","intersection","","","intersection_unchecked","","intersects","","","into","","","","","","","","","","","","","","","","","","","","","","","into_angle","","","","","","","","","","","","","","","","","","","","","","","into_any","","","","","","","","","","","","","","","","","","","","","","","into_any_arc","","","","","","","","","","","","","","","","","","","","","","","into_any_rc","","","","","","","","","","","","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","","","","","","","","","","","","into_color","","","","","","","","","","","","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","","","","","","","","","","","","into_stimulus","","","","","","","","","","","","","","","","","","","","","","","inverse","","","","","","","","is_2d","is_backface_visible","is_empty","","","","","is_finite","","","","","","","","","is_identity","","","is_invertible","","is_negative","","is_normalized","is_positive","","is_zero","j","k","left","length","","lerp","","","","","","","","","","","lower_than","","","","m11","","m12","","m13","m14","m21","","m22","","m23","m24","m31","","m32","","m33","m34","m41","m42","m43","m44","map","","","","max","","","","","","","","","","","max_x","max_y","min","","","","","","","","","","","min_x","min_y","mul","","","","","","","","","","","","","","","","","","","","","","","mul_assign","","","","","","","","","","","","","","","","","","","","","mul_s","neg","","","","","","","","new","","","","","","","","","","","","","","","","","","","new_2d","new_all_same","new_from_reversed","none","","norm","normalize","","","not","","not_equal","","","","null_value","","","","","","","","","","","","","","","","","num","one","","","or","","origin","","","ortho","outer_box","outer_rect","outer_transformed_box","outer_transformed_box2d","outer_transformed_box3d","outer_transformed_rect","","partial_cmp","","","perspective","point2","point3","position","pre_rotate","","pre_scale","","pre_translate","","project_onto_vector","","project_to_2d","quaternion","r","radians","","radians_to_degrees","rect","reflect","","rem_euclid","","right","robust_normalize","","rotation","","","round","","","","","","","","","","","","","","","round_in","","","round_out","","","saturating_add","saturating_sub","scale","","","","","select_point","","select_size","","select_vector","","set_size","sin","size","","","size2","size3","skew","slerp","splat","","","","","","","","square_length","","square_norm","sub","","","","","","","","","","","","","","","sub_assign","","","","","","","","","","","","sum","","","","","","","","","","tan","then","","","","","then_rotate","","then_scale","","then_translate","","to_2d","","","to_3d","","","","to_array","","","","","","","","","","to_array_4d","","to_array_transposed","","to_arrays","","to_arrays_transposed","to_box2d","to_f32","","","","","","","","","","","to_f64","","","","","","","","","","","to_i32","","","","","","","","","","","to_i64","","","","","","","","","","","to_non_empty","","","to_owned","","","","","","","","","","","","","","","","","","","","","","","to_point","","to_point2d","to_point3d","to_rect","to_size","to_transform","","","","","","","to_tuple","","","","","","","","to_tuple_4d","","to_u32","","","","","","","","","","","to_u64","","to_untyped","","","","","","","","","","","","","","","","to_usize","","","","","","","","","","","to_vector","","","","","","top","transform_box","transform_box2d","","transform_box3d","","transform_point","","","","","","","","transform_point2d","","","transform_point2d_homogeneous","transform_point3d","","","","transform_point3d_homogeneous","transform_rect","","","transform_size","","","transform_vector","","","","","","","transform_vector2d","","transform_vector3d","","translate","","","translation","","","try_cast","","","","","","","","","","","","","","","try_components_into","","","","","","","","","","","","","","","","","","","","","","","try_from","","","","","","","","","","","","","","","","","","","","","","","try_into","","","","","","","","","","","","","","","","","","","","","","","try_into_color","","","","","","","","","","","","","","","","","","","","","","","try_normalize","","type_id","","","","","","","","","","","","","","","","","","","","","","","uints_from","","","","","","","","","","","","","","","","","","","","","","","uints_into","","","","","","","","","","","","","","","","","","","","","","","union","","","unit_quaternion","upcast","","","","","","","","","","","","","","","","","","","","","","","vec2","vec3","vector_part","vertical","volume","","vzip","","","","","","","","","","","","","","","","","","","","","","","w","width","","","","","with_destination","","with_length","with_max_length","","with_min_length","","with_source","","x","","","","","","","","","x_range","","","xy","","","xy_area","xz","","","xz_area","y","","","","","","","","","y_range","","","yx","","yz","","","yz_area","z","","","","","z_range","zero","","","","","","","","","","","","","","","","","zip","","","","ApproxEq","approx_epsilon","approx_eq","approx_eq_eps","max","min","Box2D","Box3D","HomogeneousVector","Length","Point2D","Point3D","Rect","RigidTransform3D","Rotation2D","Rotation3D","Scale","SideOffsets2D","Size2D","Size3D","Transform2D","Transform3D","Translation2D","Translation3D","Vector2D","Vector3D","angle","bottom","depth","height","","i","j","k","left","m11","","m12","","m13","m14","m21","","m22","","m23","m24","m31","","m32","","m33","m34","m41","m42","m43","m44","max","","min","","origin","r","right","rotation","size","top","translation","w","width","","x","","","","","","","y","","","","","","","z","","","","Ceil","Floor","One","Round","Zero","ceil","floor","one","round","zero","Flattened","FlattenedT","FlatteningParameters","QuadraticBezierSegment","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","components_from","","","ctrl","deref","","","deref_mut","","","downcast","","","drop","","","from","","","","from_angle","","","from_stimulus","","","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_iter","","into_stimulus","","","new","next","","size_hint","","to","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","Scalar","Segment","Transformation","after_split","approximate_length","before_split","derivative","dx","dy","flip","for_each_flattened_with_t","from","sample","split","split_range","to","transform_point","transform_vector","x","y","cubic_polynomial_roots","directed_angle","directed_angle2","min_max","normalized_tangent","tangent","Flattened","FromPolyline","NoAttributes","PathIterator","Transformed","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","as_any","","","","as_any_mut","","","","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","closed","components_from","","","","deref","","","","deref_mut","","","","downcast","","","","drop","","","","flattened","","from","","","","from_angle","","","","from_stimulus","","","","init","","","","into","","","","into_angle","","","","into_any","","","","into_any_arc","","","","into_any_rc","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_iter","","","","into_stimulus","","","","new","","","next","","","","open","size_hint","transformed","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","upcast","","","","vzip","","","","with_attributes","Angle","Box2D","Point","Rotation","Scale","Size","Transform","Translation","Vector","angle","height","m11","m12","m21","m22","m31","m32","max","min","point","radians","size","vector","width","x","","","y","","","Builder","BuilderImpl","BuilderWithAttributes","IdIter","Iter","IterWithAttributes","Path","PathSlice","Reversed","Builder","BuilderWithAttributes","Iter","PathBuffer","PathBufferSlice","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","begin","","","","borrow","","","borrow_mut","","","build","","","","cam16_into_unclamped","","","clone","clone_into","clone_to_uninit","components_from","","","cubic_bezier_to","","","","deref","","","deref_mut","","","downcast","","","drop","","","end","","","","from","","","from_angle","","","from_stimulus","","","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_iter","into_stimulus","","","line_to","","","","new","next","next_back","num_attributes","","quadratic_bezier_to","","","","reserve","","","","size_hint","to_owned","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","with_attributes","IdPolygon","IdPolygonIter","PathEvents","Polygon","PolygonIdIter","PolygonIter","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","as_any","","","","as_any_mut","","","","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","clone","","","","clone_into","","","","clone_to_uninit","","","","closed","","components_from","","","","deref","","","","deref_mut","","","","downcast","","","","drop","","","","from","","","","from_angle","","","","from_stimulus","","","","init","","","","into","","","","into_angle","","","","into_any","","","","into_any_arc","","","","into_any_rc","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_iter","","","","into_stimulus","","","","new","next","","","","par_bridge","points","","to_owned","","","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","upcast","","","","vzip","","","","Build","PathBuilder","PathIterator","PathType","SvgPathBuilder","arc_to","begin","build","close","cubic_bezier_to","","end","horizontal_line_to","line_to","","move_to","num_attributes","quadratic_bezier_to","","relative_arc_to","relative_cubic_bezier_to","relative_horizontal_line_to","relative_line_to","relative_move_to","relative_quadratic_bezier_to","relative_vertical_line_to","smooth_cubic_bezier_to","smooth_quadratic_bezier_to","smooth_relative_cubic_bezier_to","smooth_relative_quadratic_bezier_to","vertical_line_to","Bevel","Butt","Gradient","LineCap","LineDash","LineJoin","Miter","Round","","Solid","Square","Stroke","Style","line_cap","line_dash","line_join","offset","segments","style","width","Active","Catalog","Checkbox","Class","Disabled","Hovered","Icon","Status","Style","StyleFn","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","background","border","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","","","clone_into","","","clone_to_uninit","","","code_point","components_from","","","danger","default","deref","","","deref_mut","","","downcast","","","drop","","","eq","","","equivalent","","","fmt","","","font","from","","","from_angle","","","from_stimulus","","","icon_color","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","line_height","primary","secondary","shaping","size","style","success","text_color","to_owned","","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","is_checked","","","Catalog","ComboBox","State","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","default","default_input","default_menu","deref","deref_mut","downcast","drop","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","new","null_value","options","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","with_selection","Catalog","Class","Container","Id","Style","StyleFn","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","background","","","border","","bordered_box","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","color","components_from","","danger","dark","default","","deref","","deref_mut","","downcast","","draw_background","drop","","eq","","equivalent","","","fmt","","from","","","","","","from_angle","","from_stimulus","","hash","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","layout","new","null_value","primary","rounded_box","secondary","shadow","","style","success","text_color","to_owned","","transparent","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","unique","upcast","","visible_bounds","vzip","","Bytes","FilterMethod","Handle","Image","Linear","Nearest","Path","Rgba","Viewer","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","components_from","content_fit","deref","deref_mut","downcast","draw","","drop","filter_method","from","from_angle","from_stimulus","height","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","layout","","max_scale","min_scale","mouse_interaction","new","padding","scale_step","size","state","tag","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","update","viewer","","vzip","width","height","id","pixels","width","State","Viewer","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","default","deref","deref_mut","downcast","drop","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","is_cursor_grabbed","new","null_value","scaled_image_size","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Column","adapt_into_using","align_items","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","children","column","components_from","default","deref","deref_mut","diff","downcast","draw","drop","extend","from","from_angle","from_stimulus","from_vecs","height","init","into","into_angle","into_any","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","layout","max_width","mouse_interaction","new","null_value","operate","overlay","padding","push","push_maybe","size","spacing","state","tag","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","update","vzip","width","with_capacity","with_children","Column","Catalog","CodeBlock","Content","H1","H2","H3","H4","H5","H6","Heading","HeadingLevel","Highlight","Image","Item","List","Paragraph","Settings","Style","Text","Url","Viewer","adapt_into_using","","","","","","","arrays_from","","","","","","","arrays_into","","","","","","","as_any","","","","","","","as_any_mut","","","","","","","as_ref","as_str","authority","background","border","borrow","","","","","","","borrow_mut","","","","","","","cam16_into_unclamped","","","","","","","cannot_be_a_base","clone","","","","","","clone_into","","","","","","clone_to_uninit","","","","","","cmp","","code_block","","","code_size","compare","","components_from","","","","","","","default","deref","","","","","","","deref_mut","","","","","","","deserialize","deserialize_internal","deserializer_for_signature","domain","downcast","","","","","","","drop","","","","","","","eq","","","equivalent","","","","","","fmt","","","","","","","","","fragment","from","","","","","","","","","","","","from_angle","","","","","","","from_directory_path","from_file_path","from_palette","from_stimulus","","","","","","","from_str","h1_size","h2_size","h3_size","h4_size","h5_size","h6_size","has_authority","has_host","hash","","heading","","host","host_str","image","images","index","","","","init","","","","","","","inline_code_color","inline_code_highlight","inline_code_padding","into","","","","","","","into_angle","","","","","","","into_any","","","","","","","into_any_arc","","","","into_any_rc","","","","","","","into_cam16_unclamped","","","","","","","into_color","","","","","","","into_color_unclamped","","","","","","","into_stimulus","","","","","","","into_string","is_special","item","items","join","len","limit_ptr","link_color","make_relative","new","null_value","on_link_click","options","ordered_list","","origin","paragraph","","parse","","","parse_with_params","partial_cmp","","password","path","path_segments","path_segments_mut","port","port_or_known_default","push_str","query","query_pairs","query_pairs_mut","scheme","serialize","serialize_internal","set_fragment","set_host","set_ip_host","set_password","set_path","set_port","set_query","set_scheme","set_username","signature","socket_addrs","spacing","spans","start_ptr","style","text_size","to_file_path","to_owned","","","","","","to_smolstr","","to_string","","try_components_into","","","","","","","try_from","","","","","","","","","try_into","","","","","","","try_into_color","","","","","","","type_id","","","","","","","uints_from","","","","","","","uints_into","","","","","","","unordered_list","","upcast","","","","","","","username","view","view_with","vzip","","","","","","","with_style","with_text_size","alt","code","items","language","lines","start","title","url","menu","Catalog","Class","Menu","State","Style","StyleFn","background","border","default","","selected_background","selected_text_color","style","text_color","Axis","Bottom","Canceled","Catalog","Center","Class","Configuration","Content","Controls","Direction","Down","DragEvent","Draggable","Dropped","Edge","","","Highlight","Horizontal","Left","","Line","Node","Pane","","","","PaneGrid","Picked","Region","ResizeEvent","Right","","Split","","","State","Style","StyleFn","Target","TitleBar","Top","Up","Vertical","adapt_into_using","","","","","","","","","","","","","","","","","","adjacent","always_show_controls","arrays_from","","","","","","","","","","","","","","","","","","arrays_into","","","","","","","","","","","","","","","","","","as_any","","","","","","","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","","","","","","","background","border","borrow","","","","","","","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","","","","","","","cam16_into_unclamped","","","","","","","","","","","","","","","","","","can_be_dragged_at","","class","","clone","","","","","","","","","","","","","","","clone_into","","","","","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","","","","","close","cmp","","color","compare","","components_from","","","","","","","","","","","","","","","","","","controls","default","","","deref","","","","","","","","","","","","","","","","","","deref_mut","","","","","","","","","","","","","","","","","","downcast","","","","","","","","","","","","","","","","","","draw","","drop","","","","","","","","","","","","","","","","","","","dynamic","eq","","","","","","","equivalent","","","","","","","","","","","","fmt","","","","","","","","","","","","","","","from","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","","","","","","","","","from_stimulus","","","","","","","","","","","","","","","","","","get","get_mut","hash","","","","hovered_region","hovered_split","init","","","","","","","","","","","","","","","","","","internal","into","","","","","","","","","","","","","","","","","","into_angle","","","","","","","","","","","","","","","","","","into_any","","","","","","","","","","","","","","","","","","into_any_arc","","","","","","","","","","","","","","","into_any_rc","","","","","","","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","","","","","","","into_color","","","","","","","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","","","","","","","into_stimulus","","","","","","","","","","","","","","","","","","is_empty","is_over_pick_area","iter","iter_mut","layout","len","maximize","maximized","move_to_edge","new","","","","null_value","padding","pane_regions","panes","partial_cmp","","picked_split","ratio","resize","restore","split","","","split_line_bounds","split_regions","split_with","splits","state","style","","","swap","title_bar","to_owned","","","","","","","","","","","","","","","try_components_into","","","","","","","","","","","","","","","","","","try_from","","","","","","","","","","","","","","","","","","try_into","","","","","","","","","","","","","","","","","","try_into_color","","","","","","","","","","","","","","","","","","type_id","","","","","","","","","","","","","","","","","","uints_from","","","","","","","","","","","","","","","","","","uints_into","","","","","","","","","","","","","","","","","","upcast","","","","","","","","","","","","","","","","","","vzip","","","","","","","","","","","","","","","","","","width","with_configuration","a","axis","b","ratio","pane","","","target","a","axis","b","id","ratio","Action","Dragging","Idle","Internal","Resizing","State","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","default","deref","","deref_mut","","downcast","","drop","","eq","fmt","","from","","from_angle","","from_configuration","from_stimulus","","init","","internal","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","null_value","panes","picked_pane","picked_split","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","axis","origin","pane","split","Active","Arrow","Catalog","Class","Dynamic","Handle","Hovered","Icon","None","Opened","PickList","Static","Status","Style","StyleFn","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","as_any","","","","as_any_mut","","","","background","border","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","clone","","","","clone_into","","","","clone_to_uninit","","","","code_point","components_from","","","","default","","","default_menu","deref","","","","deref_mut","","","","downcast","","","","drop","","","","eq","","","","equivalent","","","fmt","","","","font","from","","","","from_angle","","","","from_stimulus","","","","handle_color","init","","","","into","","","","into_angle","","","","into_any","","","","into_any_arc","","","","into_any_rc","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_stimulus","","","","line_height","null_value","placeholder_color","shaping","size","style","text_color","to_owned","","","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","upcast","","","","vzip","","","","closed","open","size","is_hovered","Pop","Catalog","Class","ProgressBar","Style","StyleFn","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","background","bar","border","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","danger","default","deref","deref_mut","downcast","drop","eq","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","primary","secondary","style","success","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","warning","Catalog","Class","Data","DataTooLong","Error","ErrorCorrection","High","InvalidCharacter","InvalidEciDesignator","InvalidVersion","Low","Medium","Micro","Normal","QRCode","Quartile","Style","StyleFn","UnsupportedCharacterSet","Version","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","background","borrow","","","","","borrow_mut","","","","","cam16_into_unclamped","","","","","cell","clone","","","","clone_into","","","","clone_to_uninit","","","","components_from","","","","","default","","deref","","","","","deref_mut","","","","","downcast","","","","","drop","","","","","eq","","","","equivalent","","","","","","","","","fmt","","","","","","from","","","","","","from_angle","","","","","from_stimulus","","","","","init","","","","","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_stimulus","","","","","new","style","to_owned","","","","to_smolstr","to_string","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","vzip","","","","","with_error_correction","with_version","Active","Catalog","Class","Hovered","Radio","Status","Style","StyleFn","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","background","border_color","border_width","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","default","","deref","","deref_mut","","dot_color","downcast","","drop","","eq","","equivalent","","","fmt","","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","style","text_color","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","is_selected","","AsymmetricPadding","Catalog","Class","FillMode","Full","Padded","Percent","Rule","Style","StyleFn","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","color","components_from","","default","","deref","","deref_mut","","downcast","","drop","","eq","","fill","fill_mode","fmt","","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","radius","style","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","width","AbsoluteOffset","Active","Anchor","Both","Catalog","Class","Direction","Dragged","END","End","Horizontal","Hovered","Id","Rail","RelativeOffset","START","Scrollable","Scrollbar","Scroller","Start","Status","Style","StyleFn","Vertical","Viewport","absolute_offset","absolute_offset_reversed","adapt_into_using","","","","","","","","","","","anchor","arrays_from","","","","","","","","","","","arrays_into","","","","","","","","","","","as_any","","","","","","","","","","","as_any_mut","","","","","","","","","","","background","border","","borrow","","","","","","","","","","","borrow_mut","","","","","","","","","","","bounds","cam16_into_unclamped","","","","","","","","","","","clone","","","","","","","","","","","clone_into","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","color","components_from","","","","","","","","","","","container","content_bounds","default","","","","","","","deref","","","","","","","","","","","deref_mut","","","","","","","","","","","downcast","","","","","","","","","","","drop","","","","","","","","","","","eq","","","","","","","","","","equivalent","","","","","","","","","fmt","","","","","","","","","","","from","","","","","","","","","","","","from_angle","","","","","","","","","","","from_stimulus","","","","","","","","","","","gap","hash","horizontal","horizontal_rail","init","","","","","","","","","","","into","","","","","","","","","","","into_angle","","","","","","","","","","","into_any","","","","","","","","","","","into_any_arc","","","","","","","","","","","into_any_rc","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","into_color","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","into_stimulus","","","","","","","","","","","margin","new","","null_value","","","","","relative_offset","scroll_by","scroll_to","scroller","scroller_width","snap_to","spacing","style","to_owned","","","","","","","","","","","try_components_into","","","","","","","","","","","try_from","","","","","","","","","","","try_into","","","","","","","","","","","try_into_color","","","","","","","","","","","type_id","","","","","","","","","","","uints_from","","","","","","","","","","","uints_into","","","","","","","","","","","unique","upcast","","","","","","","","","","","vertical","vertical_rail","vzip","","","","","","","","","","","width","x","","y","","horizontal","vertical","is_horizontal_scrollbar_disabled","","","is_horizontal_scrollbar_dragged","is_horizontal_scrollbar_hovered","is_vertical_scrollbar_disabled","","","is_vertical_scrollbar_dragged","is_vertical_scrollbar_hovered","Action","Primitive","","Program","Shader","State","Storage","Viewport","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","clone_into","clone_to_uninit","components_from","","default","deref","","deref_mut","","downcast","","draw","drop","","fmt","","from","","from_angle","","from_stimulus","","get","get_mut","has","init","","into","","into_angle","","into_any","","into_any_arc","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","logical_size","mouse_interaction","null_value","physical_height","physical_size","physical_width","prepare","projection","render","scale_factor","store","to_owned","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","update","vzip","","with_physical_size","Active","Catalog","Circle","Class","Dragged","Handle","HandleShape","Hovered","Rail","Rectangle","Slider","Status","Style","StyleFn","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","background","backgrounds","border","border_color","border_width","borrow","","","","","borrow_mut","","","","","cam16_into_unclamped","","","","","clone","","","","","clone_into","","","","","clone_to_uninit","","","","","components_from","","","","","default","","deref","","","","","deref_mut","","","","","downcast","","","","","drop","","","","","eq","","","","","equivalent","","","fmt","","","","","from","","","","","from_angle","","","","","from_stimulus","","","","","handle","init","","","","","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","","","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_stimulus","","","","","rail","shape","style","to_owned","","","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","vzip","","","","","width","with_circular_handle","border_radius","radius","width","Catalog","Class","Handle","Hovered","Idle","Status","Style","StyleFn","Svg","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","color","components_from","","default","","deref","","deref_mut","","downcast","","drop","","eq","","equivalent","","","fmt","","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","null_value","style","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","Absolute","Advanced","Basic","Borrowed","Catalog","Class","Fragment","Glyph","Highlight","Highlighter","IntoFragment","Iterator","LineHeight","None","Owned","Relative","Rich","Settings","Shaping","Span","State","Style","StyleFn","Text","Word","WordOrGlyph","Wrapping","adapt_into_using","","","align_x","align_y","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","base","borrow","","","borrow_mut","","","cam16_into_unclamped","","","center","change_line","class","clone","clone_into","clone_to_uninit","color","","","color_maybe","components_from","","","current_line","danger","default","","","","","deref","","","deref_mut","","","downcast","","","draw","","drop","","","eq","fmt","","font","","from","","","from_angle","","","from_iter","from_stimulus","","","height","highlight","highlight_line","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_fragment","into_stimulus","","","layout","","line_height","","link","mouse_interaction","new","","null_value","","","on_link_click","padding","primary","secondary","size","","","state","strikethrough","style","","success","tag","text","to_owned","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","underline","upcast","","","update","","vzip","","","width","with_spans","wrapping","Action","Active","Backspace","","Binding","Catalog","Class","Click","Content","Copy","Cr","CrLf","Custom","Cut","Delete","","Disabled","DocumentEnd","DocumentStart","Down","Drag","Edit","","End","Enter","","Focused","Home","Hovered","Insert","","KeyPress","Left","Lf","LfCr","Line","LineEnding","Motion","Move","","None","PageDown","PageUp","Paste","","Right","Scroll","Select","","SelectAll","","SelectLine","","SelectWord","","Sequence","State","Status","Style","StyleFn","TextEditor","Unfocus","Up","WordLeft","WordRight","adapt_into_using","","","","","","","","","","","arrays_from","","","","","","","","","","","arrays_into","","","","","","","","","","","as_any","","","","","","","","","","","as_any_mut","","","","","","","","","","","as_str","background","border","borrow","","","","","","","","","","","borrow_mut","","","","","","","","","","","cam16_into_unclamped","","","","","","","","","","","clone","","","","","","","","","clone_into","","","","","","","","","clone_to_uninit","","","","","","","","","components_from","","","","","","","","","","","cursor_position","default","","","","","deref","","","","","","","","","","","deref_mut","","","","","","","","","","","direction","downcast","","","","","","","","","","","drop","","","","","","","","","","","ending","eq","","","","","","","","","equivalent","","","","","","","","","","","","fmt","","","","","","","","","","","focus","from","","","","","","","","","","","from_angle","","","","","","","","","","","from_key_press","from_stimulus","","","","","","","","","","","icon","init","","","","","","","","","","","into","","","","","","","","","","","into_angle","","","","","","","","","","","into_any","","","","","","","","","","","into_any_arc","","","","","","","","","into_any_rc","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","into_color","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","into_stimulus","","","","","","","","","","","is_edit","is_focused","","key","line","line_count","line_ending","lines","modifiers","new","null_value","","","perform","placeholder","selection","","status","style","text","","","to_owned","","","","","","","","","try_components_into","","","","","","","","","","","try_from","","","","","","","","","","","try_into","","","","","","","","","","","try_into_color","","","","","","","","","","","type_id","","","","","","","","","","","uints_from","","","","","","","","","","","uints_into","","","","","","","","","","","unfocus","upcast","","","","","","","","","","","value","vzip","","","","","","","","","","","widen","with_text","lines","is_hovered","Active","Catalog","Class","Cursor","DEFAULT_PADDING","Disabled","Focused","Hovered","Icon","Id","Left","Right","Side","State","Status","Style","StyleFn","TextInput","Value","adapt_into_using","","","","","","","","arrays_from","","","","","","","","arrays_into","","","","","","","","as_any","","","","","","","","as_any_mut","","","","","","","","background","border","borrow","","","","","","","","borrow_mut","","","","","","","","cam16_into_unclamped","","","","","","","","clone","","","","","","","","clone_into","","","","","","","","clone_to_uninit","","","","","","","","code_point","components_from","","","","","","","","cursor","","default","","","","deref","","","","","","","","deref_mut","","","","","","","","downcast","","","","","","","","drop","","","","","","","","eq","","","","equivalent","","","","","","","","","fmt","","","","","","","","","focus","","","font","from","","","","","","","","","","from_angle","","","","","","","","from_stimulus","","","","","","","","hash","icon","init","","","","","","","","insert","insert_many","into","","","","","","","","into_angle","","","","","","","","into_any","","","","","","","","into_any_arc","","","","","","","","into_any_rc","","","","","","","","into_cam16_unclamped","","","","","","","","into_color","","","","","","","","into_color_unclamped","","","","","","","","into_stimulus","","","","","","","","is_empty","is_focused","","len","move_cursor_to","","","move_cursor_to_end","","","move_cursor_to_front","","","new","","","next_end_of_word","null_value","","placeholder","previous_start_of_word","remove","remove_many","secure","select","select_all","","","selection","","side","size","spacing","state","style","to_owned","","","","","","","","to_smolstr","to_string","try_components_into","","","","","","","","try_from","","","","","","","","try_into","","","","","","","","try_into_color","","","","","","","","type_id","","","","","","","","uints_from","","","","","","","","uints_into","","","","","","","","unfocus","","unique","until","upcast","","","","","","","","value","vzip","","","","","","","","is_hovered","Cursor","Index","Selection","State","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","deref","deref_mut","downcast","drop","eq","equivalent","","","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","end","start","Base","CatppuccinFrappe","CatppuccinLatte","CatppuccinMacchiato","CatppuccinMocha","Custom","","Dark","Dracula","Ferra","GruvboxDark","GruvboxLight","KanagawaDragon","KanagawaLotus","KanagawaWave","Light","Moonfly","Nightfly","Nord","Oxocarbon","Palette","SolarizedDark","SolarizedLight","Style","Theme","TokyoNight","TokyoNightLight","TokyoNightStorm","background","background_color","base","danger","default","palette","primary","success","text","text_color","warning","Background","Danger","EXTENDED_CATPPUCCIN_FRAPPE","EXTENDED_CATPPUCCIN_LATTE","EXTENDED_CATPPUCCIN_MACCHIATO","EXTENDED_CATPPUCCIN_MOCHA","EXTENDED_DARK","EXTENDED_DRACULA","EXTENDED_FERRA","EXTENDED_GRUVBOX_DARK","EXTENDED_GRUVBOX_LIGHT","EXTENDED_KANAGAWA_DRAGON","EXTENDED_KANAGAWA_LOTUS","EXTENDED_KANAGAWA_WAVE","EXTENDED_LIGHT","EXTENDED_MOONFLY","EXTENDED_NIGHTFLY","EXTENDED_NORD","EXTENDED_OXOCARBON","EXTENDED_SOLARIZED_DARK","EXTENDED_SOLARIZED_LIGHT","EXTENDED_TOKYO_NIGHT","EXTENDED_TOKYO_NIGHT_LIGHT","EXTENDED_TOKYO_NIGHT_STORM","Extended","Pair","Palette","Primary","Secondary","Success","Warning","background","","base","","","","","","color","danger","","is_dark","primary","","secondary","strong","","","","","","success","","text","","warning","","weak","","","","","","Active","Catalog","Class","Disabled","Hovered","Status","Style","StyleFn","Toggler","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","background","background_border_color","background_border_width","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","default","","deref","","deref_mut","","downcast","","drop","","eq","","equivalent","","","fmt","","foreground","foreground_border_color","foreground_border_width","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","style","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","is_toggled","","Bottom","FollowCursor","Left","Position","Right","Tooltip","Top","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","default","deref","deref_mut","downcast","drop","eq","equivalent","","","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","null_value","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Active","Catalog","Circle","Class","Dragged","Handle","HandleShape","Hovered","Rectangle","Status","Style","StyleFn","VerticalSlider","background","border_color","border_width","default","","handle","rail","shape","style","border_radius","radius","width","Action","AlwaysOnBottom","AlwaysOnTop","At","Centered","Close","CloseRequested","Closed","Critical","Default","Direction","DisableMousePassthrough","Drag","DragResize","East","EnableMousePassthrough","Event","FileDropped","FileHovered","FilesHoveredLeft","Focused","Fullscreen","GainFocus","GetLatest","GetMaximized","GetMinimized","GetMode","GetOldest","GetPosition","GetRawId","GetScaleFactor","GetSize","Hidden","Icon","","Id","Informational","Level","Maximize","Minimize","Mode","Move","Moved","NextFrame","Normal","North","NorthEast","NorthWest","Open","Opened","Position","RedrawRequest","RedrawRequested","RequestUserAttention","Resize","Resized","RunWithHandle","Screenshot","","SetIcon","SetLevel","SetMaxSize","SetMinSize","SetMode","SetResizable","SetResizeIncrements","Settings","ShowSystemMenu","South","SouthEast","SouthWest","Specific","SpecificWith","ToggleDecorations","ToggleMaximize","Unfocused","UserAttention","Wait","West","Windowed","adapt_into_using","","","","","","","","","","","","arrays_from","","","","","","","","","","","","arrays_into","","","","","","","","","","","","as_any","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","as_ref","borrow","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","bytes","cam16_into_unclamped","","","","","","","","","","","","clone","","","","","","","","","","","clone_into","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","close","close_events","close_requests","cmp","","compare","","components_from","","","","","","","","","","","","crop","decorations","default","","","deref","","","","","","","","","","","","deref_mut","","","","","","","","","","","","disable_mouse_passthrough","downcast","","","","","","","","","","","","drag","drag_resize","drop","","","","","","","","","","","","enable_mouse_passthrough","encode_hex","encode_hex_upper","eq","","","","","","equivalent","","","","","","","","","","","","events","exit_on_close_request","fmt","","","","","","","","","","","","frames","from","","","","","","","","","","","","","from_angle","","","","","","","","","","","","from_stimulus","","","","","","","","","","","","fullscreen","gain_focus","get_latest","get_maximized","get_minimized","get_mode","get_oldest","get_position","get_raw_id","get_scale_factor","get_size","hash","icon","","init","","","","","","","","","","","","into","","","","","","","","","","","","into_angle","","","","","","","","","","","","into_any","","","","","","","","","","","","into_any_arc","","","","","","","","","","","into_any_rc","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","into_color","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","into_raw","into_stimulus","","","","","","","","","","","","level","max_size","maximize","maximized","min_size","minimize","move_to","new","null_value","","","open","open_events","partial_cmp","","platform_specific","position","request_user_attention","resizable","resize","resize_events","run_with_handle","scale_factor","screenshot","","set_icon","set_level","set_max_size","set_min_size","set_mode","set_resizable","set_resize_increments","settings","show_system_menu","size","","to_owned","","","","","","","","","","","to_smolstr","to_string","toggle_decorations","toggle_maximize","transparent","try_components_into","","","","","","","","","","","","try_from","","","","","","","","","","","","try_into","","","","","","","","","","","","try_into_color","","","","","","","","","","","","type_id","","","","","","","","","","","","uints_from","","","","","","","","","","","","uints_into","","","","","","","","","","","","unique","upcast","","","","","","","","","","","","visible","vzip","","","","","","","","","","","","position","size","Error","Icon","ImageError","InvalidError","OsError","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","components_from","deref","deref_mut","downcast","drop","fmt","","from","","","","from_angle","from_file","from_file_data","from_rgba","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","source","to_smolstr","to_string","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Android","AndroidDisplayHandle","AndroidNdk","AndroidNdkWindowHandle","AppKit","","AppKitDisplayHandle","AppKitWindowHandle","DisplayHandle","Drm","","DrmDisplayHandle","DrmWindowHandle","Gbm","","GbmDisplayHandle","GbmWindowHandle","Haiku","","HaikuDisplayHandle","HaikuWindowHandle","HandleError","HasDisplayHandle","HasRawDisplayHandle","HasRawWindowHandle","HasWindowHandle","NotSupported","Ohos","OhosDisplayHandle","OhosNdk","OhosNdkWindowHandle","Orbital","","OrbitalDisplayHandle","OrbitalWindowHandle","RawDisplayHandle","RawWindowHandle","UiKit","","UiKitDisplayHandle","UiKitWindowHandle","Unavailable","Wayland","","WaylandDisplayHandle","WaylandWindowHandle","Web","","WebCanvas","WebCanvasWindowHandle","WebDisplayHandle","WebOffscreenCanvas","WebOffscreenCanvasWindowHandle","WebWindowHandle","Win32","Win32WindowHandle","WinRt","WinRtWindowHandle","WindowHandle","Windows","WindowsDisplayHandle","Xcb","","XcbDisplayHandle","XcbWindowHandle","Xlib","","XlibDisplayHandle","XlibWindowHandle","a_native_window","adapt_into_using","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","android","appkit","arrays_from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","arrays_into","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","as_any","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","as_raw","","as_ref","","b_direct_window","b_window","borrow","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","borrow_raw","","cam16_into_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","clone","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","clone_into","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","components_from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","connection","core_window","deref","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","deref_mut","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","display","","display_handle","","downcast","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","drop","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","eq","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","equivalent","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","fd","fmt","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","from_stimulus","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","gbm_device","gbm_surface","haiku","hash","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","hinstance","hwnd","id","init","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into_angle","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into_any","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into_any_arc","","","","","","","","","","","","","","","into_any_rc","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into_color","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into_stimulus","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","native_window","new","","","","","","","","","","","","","","","","","","","","","","","","","","","","","ns_view","obj","","ohos","orbital","plane","raw_display_handle","","raw_window_handle","","screen","","surface","to_owned","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","to_smolstr","to_string","try_components_into","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","try_from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","try_into","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","try_into_color","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","type_id","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","ui_view","ui_view_controller","uikit","uints_from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","uints_into","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","upcast","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","visual_id","","vzip","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","web","window","","","window_handle","","windows","CropError","OutOfBounds","Screenshot","Zero","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","bytes","cam16_into_unclamped","components_from","deref","deref_mut","downcast","drop","fmt","","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","scale_factor","size","to_smolstr","to_string","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","PlatformSpecific","Settings","adapt_into_using","application_id","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","decorations","default","deref","deref_mut","downcast","drop","eq","equivalent","","","exit_on_close_request","fmt","from","from_angle","from_stimulus","fullscreen","icon","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","level","max_size","maximized","min_size","null_value","override_redirect","platform_specific","position","resizable","size","to_owned","transparent","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","visible","vzip"],"q":[[0,"iced"],[1552,"iced::advanced"],[1749,"iced::advanced::clipboard"],[1818,"iced::advanced"],[1819,"iced::advanced::clipboard"],[1840,"iced::advanced"],[1841,"iced::advanced::clipboard"],[1842,"iced::advanced::image"],[2150,"iced::advanced::image::Handle"],[2154,"iced::advanced::layout"],[2272,"iced::advanced::layout::flex"],[2312,"iced::mouse"],[2314,"iced::advanced::mouse"],[2315,"iced::mouse"],[2318,"iced::advanced::mouse"],[2319,"iced::mouse"],[2321,"iced::advanced::mouse"],[2322,"iced::mouse"],[2325,"iced::advanced::mouse"],[2326,"iced::mouse"],[2331,"iced::advanced::mouse"],[2332,"iced::mouse"],[2347,"iced::advanced::mouse"],[2348,"iced::mouse"],[2354,"iced::advanced::mouse"],[2399,"iced::mouse::Event"],[2401,"iced::mouse::ScrollDelta"],[2405,"iced::advanced::mouse::click"],[2454,"iced::advanced::overlay"],[2482,"iced::advanced"],[2483,"iced::advanced::overlay"],[2515,"iced::advanced"],[2517,"iced::advanced::overlay"],[2522,"iced::advanced"],[2523,"iced::advanced::overlay"],[2528,"iced::advanced"],[2529,"iced::advanced::overlay"],[2532,"iced::advanced"],[2533,"iced::advanced::overlay"],[2552,"iced::advanced"],[2553,"iced::advanced::overlay"],[2556,"iced::advanced::renderer"],[2578,"iced::advanced"],[2579,"iced::advanced::renderer"],[2597,"iced::advanced"],[2599,"iced::advanced::renderer"],[2601,"iced::advanced"],[2602,"iced::advanced::renderer"],[2635,"iced::advanced"],[2637,"iced::advanced::renderer"],[2658,"iced::advanced"],[2661,"iced::advanced::subscription"],[2805,"iced::advanced::subscription::Event"],[2808,"iced::advanced::svg"],[2961,"iced::advanced::text"],[3056,"iced::advanced"],[3057,"iced::advanced::text"],[3097,"iced::advanced"],[3098,"iced::advanced::text"],[3164,"iced::advanced"],[3165,"iced::advanced::text"],[3202,"iced::advanced"],[3203,"iced::advanced::text"],[3278,"iced::advanced"],[3279,"iced::advanced::text"],[3299,"iced::advanced"],[3300,"iced::advanced::text"],[3301,"iced::advanced"],[3302,"iced::advanced::text"],[3377,"iced::advanced"],[3378,"iced::advanced::text"],[3388,"iced::advanced"],[3389,"iced::advanced::text::editor"],[3390,"iced::widget::text_editor"],[3391,"iced::advanced::text::editor"],[3392,"iced::widget::text_editor"],[3395,"iced::advanced::text::editor"],[3396,"iced::widget::text_editor"],[3397,"iced::advanced::text::editor"],[3398,"iced::widget::text_editor"],[3402,"iced::advanced::text::editor"],[3403,"iced::widget::text_editor"],[3404,"iced::advanced::text::editor"],[3405,"iced::widget::text_editor"],[3407,"iced::advanced::text"],[3408,"iced::widget::text_editor"],[3411,"iced::advanced::text::editor"],[3412,"iced::widget::text_editor"],[3414,"iced::advanced::text::editor"],[3417,"iced::widget::text_editor"],[3423,"iced::advanced::text::editor"],[3424,"iced::widget::text_editor"],[3429,"iced::advanced::text::editor"],[3430,"iced::widget::text_editor"],[3433,"iced::advanced::text::editor"],[3447,"iced::advanced::text"],[3448,"iced::advanced::text::editor"],[3458,"iced::advanced::text"],[3460,"iced::advanced::text::editor"],[3468,"iced::widget::text_editor"],[3469,"iced::advanced::text::editor"],[3481,"iced::advanced::text"],[3482,"iced::advanced::text::editor"],[3502,"iced::advanced::text"],[3508,"iced::widget::text_editor"],[3509,"iced::advanced::text::editor"],[3527,"iced::advanced::text"],[3528,"iced::advanced::text::editor"],[3530,"iced::advanced::text"],[3531,"iced::widget::text_editor::Action"],[3532,"iced::advanced::text::highlighter"],[3533,"iced::advanced::text"],[3534,"iced::advanced::text::highlighter"],[3535,"iced::advanced::text"],[3536,"iced::advanced::text::highlighter"],[3537,"iced::advanced::text"],[3538,"iced::advanced::text::highlighter"],[3554,"iced::advanced::text"],[3555,"iced::advanced::text::highlighter"],[3565,"iced::advanced::text"],[3566,"iced::advanced::text::highlighter"],[3586,"iced::advanced::text"],[3587,"iced::advanced::text::highlighter"],[3608,"iced::advanced::text"],[3609,"iced::advanced::text::highlighter"],[3629,"iced::advanced::text"],[3630,"iced::advanced::text::highlighter"],[3633,"iced::advanced::text"],[3634,"iced::advanced::text::paragraph"],[3647,"iced::advanced::text"],[3648,"iced::advanced::text::paragraph"],[3658,"iced::advanced::text"],[3662,"iced::advanced::text::paragraph"],[3673,"iced::advanced::text"],[3674,"iced::advanced::text::paragraph"],[3675,"iced::advanced::text"],[3676,"iced::advanced::text::paragraph"],[3677,"iced::advanced::text"],[3678,"iced::advanced::text::paragraph"],[3682,"iced::advanced::text"],[3684,"iced::advanced::text::paragraph"],[3694,"iced::advanced::text"],[3695,"iced::advanced::text::paragraph"],[3697,"iced::advanced::text"],[3699,"iced::advanced::widget"],[3731,"iced::advanced"],[3732,"iced::advanced::widget"],[3750,"iced::advanced"],[3751,"iced::advanced::widget"],[3757,"iced::advanced"],[3758,"iced::advanced::widget"],[3816,"iced::advanced"],[3817,"iced::advanced::widget"],[3819,"iced::advanced"],[3820,"iced::advanced::widget"],[3825,"iced::advanced"],[3826,"iced::advanced::widget"],[3827,"iced::advanced"],[3828,"iced::advanced::widget"],[3830,"iced::advanced"],[3831,"iced::advanced::widget"],[3833,"iced::advanced"],[3834,"iced::advanced::widget"],[3835,"iced::advanced"],[3836,"iced::advanced::widget"],[3839,"iced::advanced"],[3840,"iced::advanced::widget"],[3871,"iced::advanced"],[3872,"iced::advanced::widget"],[3877,"iced::advanced::widget::operation"],[3895,"iced::advanced::widget"],[3897,"iced::advanced::widget::operation"],[3901,"iced::advanced::widget"],[3902,"iced::advanced::widget::operation"],[3905,"iced::advanced::widget"],[3906,"iced::advanced::widget::operation"],[3927,"iced::advanced::widget"],[3928,"iced::advanced::widget::operation"],[3930,"iced::advanced::widget"],[3931,"iced::advanced::widget::operation"],[3932,"iced::advanced::widget"],[3933,"iced::advanced::widget::operation"],[3944,"iced::advanced::widget::operation::focusable"],[3971,"iced::advanced::widget::operation"],[3972,"iced::advanced::widget::operation::focusable"],[3988,"iced::advanced::widget::operation"],[3989,"iced::advanced::widget::operation::focusable"],[3999,"iced::advanced::widget::operation"],[4000,"iced::advanced::widget::operation::focusable"],[4002,"iced::advanced::widget::operation::scrollable"],[4006,"iced::advanced::widget::operation"],[4007,"iced::advanced::widget::operation::scrollable"],[4008,"iced::advanced::widget::operation"],[4009,"iced::advanced::widget::operation::scrollable"],[4010,"iced::advanced::widget::operation"],[4011,"iced::widget::scrollable"],[4015,"iced::advanced::widget::operation::text_input"],[4017,"iced::advanced::widget::operation"],[4018,"iced::advanced::widget::operation::text_input"],[4019,"iced::advanced::widget::operation"],[4020,"iced::advanced::widget::operation::text_input"],[4021,"iced::advanced::widget::operation"],[4022,"iced::advanced::widget::operation::text_input"],[4023,"iced::advanced::widget::operation"],[4024,"iced::advanced::text"],[4027,"iced::advanced::widget::text"],[4028,"iced::widget::text"],[4029,"iced::advanced::text"],[4030,"iced::advanced::widget::text"],[4031,"iced::advanced::text"],[4033,"iced::advanced::widget::text"],[4038,"iced::advanced::text"],[4040,"iced::advanced::widget::text"],[4042,"iced::widget::text"],[4043,"iced::advanced::widget::text"],[4045,"iced::widget::text"],[4046,"iced::advanced::widget::text"],[4050,"iced::widget::text"],[4051,"iced::advanced::widget::text"],[4052,"iced::advanced::widget::tree"],[4073,"iced::advanced::widget"],[4074,"iced::advanced::widget::tree"],[4127,"iced::advanced::widget"],[4128,"iced::advanced::widget::tree"],[4129,"iced::advanced::widget"],[4130,"iced::advanced::widget::tree"],[4149,"iced::alignment"],[4151,"iced"],[4152,"iced::alignment"],[4154,"iced"],[4155,"iced::alignment"],[4158,"iced"],[4159,"iced::alignment"],[4253,"iced::animation"],[4335,"iced::application"],[4399,"iced::border"],[4421,"iced"],[4422,"iced::border"],[4452,"iced"],[4453,"iced::border"],[4475,"iced"],[4476,"iced::clipboard"],[4480,"iced::daemon"],[4533,"iced::event"],[4536,"iced"],[4539,"iced::event"],[4540,"iced"],[4542,"iced::event"],[4591,"iced::executor"],[4593,"iced"],[4596,"iced::font"],[4733,"iced"],[4734,"iced::font"],[4813,"iced"],[4815,"iced::font"],[4865,"iced"],[4866,"iced::gradient"],[4869,"iced"],[4870,"iced::gradient"],[4962,"iced::keyboard"],[5219,"iced::keyboard::Event"],[5230,"iced::keyboard::key"],[5299,"iced::keyboard"],[5300,"iced::keyboard::key"],[5574,"iced::keyboard"],[5575,"iced::keyboard::key"],[5730,"iced::keyboard"],[5731,"iced::keyboard::key"],[5941,"iced::mouse"],[6210,"iced::mouse::Event"],[6212,"iced::mouse::ScrollDelta"],[6216,"iced::overlay"],[6218,"iced::overlay::menu"],[6355,"iced::padding"],[6358,"iced"],[6359,"iced::padding"],[6360,"iced"],[6361,"iced::padding"],[6362,"iced"],[6363,"iced::padding"],[6364,"iced"],[6365,"iced::stream"],[6367,"iced::system"],[6419,"iced::task"],[6465,"iced::theme"],[6470,"iced"],[6474,"iced::theme"],[6475,"iced"],[6476,"iced::theme"],[6478,"iced"],[6480,"iced::theme"],[6481,"iced"],[6482,"iced::theme"],[6484,"iced"],[6486,"iced::theme"],[6489,"iced"],[6492,"iced::theme"],[6493,"iced"],[6494,"iced::theme"],[6495,"iced"],[6496,"iced::theme"],[6498,"iced"],[6500,"iced::theme"],[6501,"iced"],[6502,"iced::theme"],[6505,"iced"],[6507,"iced::theme"],[6512,"iced"],[6515,"iced::theme"],[6654,"iced::theme::palette"],[6725,"iced::theme"],[6726,"iced::theme::palette"],[6790,"iced::theme"],[6791,"iced::theme::palette"],[6953,"iced::theme"],[6954,"iced::theme::palette"],[6962,"iced::theme"],[6963,"iced::theme::palette"],[6964,"iced::theme"],[6965,"iced::theme::palette"],[7046,"iced::theme"],[7047,"iced::theme::palette"],[7054,"iced::time"],[7252,"iced::touch"],[7344,"iced::touch::Event"],[7352,"iced::widget"],[7355,"iced"],[7359,"iced::widget"],[7364,"iced"],[7365,"iced::widget"],[7371,"iced"],[7373,"iced::widget"],[7374,"iced"],[7377,"iced::widget"],[7378,"iced"],[7381,"iced::widget"],[7382,"iced"],[7384,"iced::widget"],[7385,"iced"],[7388,"iced::widget"],[7392,"iced"],[7393,"iced::widget"],[7401,"iced"],[7402,"iced::widget"],[7404,"iced"],[7406,"iced::widget"],[7416,"iced"],[7419,"iced::widget"],[9178,"iced::widget::button"],[9288,"iced::widget::canvas"],[9301,"iced"],[9303,"iced::widget::canvas"],[9308,"iced"],[9309,"iced::widget::canvas"],[9319,"iced"],[9321,"iced::widget::canvas"],[9501,"iced::advanced::image"],[9502,"iced::widget::canvas"],[9552,"iced::advanced::image"],[9553,"iced::widget::canvas"],[9670,"iced::advanced::image"],[9671,"iced::widget::canvas"],[9677,"iced::advanced::image"],[9678,"iced::widget::canvas"],[9683,"iced::advanced::image"],[9684,"iced::widget::canvas"],[9796,"iced::widget::canvas::fill"],[9798,"iced::widget::canvas"],[9799,"iced::widget::canvas::fill"],[9801,"iced::widget::canvas"],[9802,"iced::widget::canvas::fill"],[9837,"iced::widget::canvas"],[9839,"iced::widget::canvas::fill"],[9849,"iced::widget::canvas::gradient"],[9851,"iced::widget::canvas"],[9852,"iced::widget::canvas::gradient"],[9944,"iced::widget::canvas::path"],[10042,"iced::widget::canvas::path::arc"],[10052,"iced::widget::canvas::path"],[10053,"iced::widget::canvas::path::arc"],[10062,"iced::widget::canvas::path"],[10063,"iced::widget::canvas::path::arc"],[10080,"iced::widget::canvas::path"],[10081,"iced::widget::canvas::path::arc"],[10082,"iced::widget::canvas::path"],[10083,"iced::widget::canvas::path::arc"],[10094,"iced::widget::canvas::path::lyon_path"],[11339,"iced::widget::canvas::path::lyon_path::Event"],[11378,"iced::widget::canvas::path::lyon_path::builder"],[11735,"iced::widget::canvas::path::lyon_path::commands"],[11959,"iced::widget::canvas::path::lyon_path::geom"],[12504,"iced::widget::canvas::path::lyon_path"],[12505,"iced::widget::canvas::path::lyon_path::geom"],[12605,"iced::widget::canvas::path::lyon_path"],[12606,"iced::widget::canvas::path::lyon_path::geom"],[12779,"iced::widget::canvas::path::lyon_path::geom::arc"],[12791,"iced::widget::canvas::path::lyon_path::geom"],[12792,"iced::widget::canvas::path::lyon_path::geom::arc"],[12797,"iced::widget::canvas::path::lyon_path::geom"],[12798,"iced::widget::canvas::path::lyon_path::geom::arc"],[12799,"iced::widget::canvas::path::lyon_path::geom"],[12800,"iced::widget::canvas::path::lyon_path::geom::arc"],[12813,"iced::widget::canvas::path::lyon_path"],[12814,"iced::widget::canvas::path::lyon_path::geom::arc"],[12815,"iced::widget::canvas::path::lyon_path::geom"],[12818,"iced::widget::canvas::path::lyon_path"],[12819,"iced::widget::canvas::path::lyon_path::geom"],[12821,"iced::widget::canvas::path::lyon_path::geom::arc"],[12830,"iced::widget::canvas::path::lyon_path::geom"],[12832,"iced::widget::canvas::path::lyon_path::geom::arrayvec"],[13268,"iced::widget::canvas::path::lyon_path::geom::cubic_bezier"],[13279,"iced::widget::canvas::path::lyon_path::geom"],[13281,"iced::widget::canvas::path::lyon_path::geom::cubic_bezier"],[13286,"iced::widget::canvas::path::lyon_path::geom"],[13287,"iced::widget::canvas::path::lyon_path::geom::cubic_bezier"],[13302,"iced::widget::canvas::path::lyon_path::geom"],[13303,"iced::widget::canvas::path::lyon_path::geom::cubic_bezier"],[13312,"iced::widget::canvas::path::lyon_path::geom::euclid"],[14746,"iced::widget::canvas::path::lyon_path::geom"],[14747,"iced::widget::canvas::path::lyon_path::geom::euclid"],[15386,"iced::widget::canvas::path::lyon_path::geom::euclid::approxeq"],[15390,"iced::widget::canvas::path::lyon_path::geom::euclid::approxord"],[15392,"iced::widget::canvas::path::lyon_path::geom::euclid::default"],[15415,"iced::widget::canvas::path::lyon_path::geom"],[15416,"iced::widget::canvas::path::lyon_path::geom::euclid::default"],[15443,"iced::widget::canvas::path::lyon_path::geom"],[15444,"iced::widget::canvas::path::lyon_path::geom::euclid::default"],[15445,"iced::widget::canvas::path::lyon_path::geom"],[15446,"iced::widget::canvas::path::lyon_path::geom::euclid::default"],[15455,"iced::widget::canvas::path::lyon_path::geom"],[15456,"iced::widget::canvas::path::lyon_path::geom::euclid::default"],[15457,"iced::widget::canvas::path::lyon_path::geom"],[15458,"iced::widget::canvas::path::lyon_path::geom::euclid::default"],[15459,"iced::widget::canvas::path::lyon_path::geom"],[15460,"iced::widget::canvas::path::lyon_path::geom::euclid::default"],[15464,"iced::widget::canvas::path::lyon_path::geom"],[15465,"iced::widget::canvas::path::lyon_path::geom::euclid::default"],[15466,"iced::widget::canvas::path::lyon_path::geom"],[15467,"iced::widget::canvas::path::lyon_path::geom::euclid::default"],[15475,"iced::widget::canvas::path::lyon_path::geom::euclid::num"],[15485,"iced::widget::canvas::path::lyon_path::geom::quadratic_bezier"],[15516,"iced::widget::canvas::path::lyon_path::geom"],[15517,"iced::widget::canvas::path::lyon_path::geom::quadratic_bezier"],[15532,"iced::widget::canvas::path::lyon_path::geom"],[15533,"iced::widget::canvas::path::lyon_path::geom::quadratic_bezier"],[15576,"iced::widget::canvas::path::lyon_path::geom"],[15577,"iced::widget::canvas::path::lyon_path::geom::quadratic_bezier"],[15604,"iced::widget::canvas::path::lyon_path::geom"],[15605,"iced::widget::canvas::path::lyon_path::geom::traits"],[15607,"iced::widget::canvas::path::lyon_path::geom"],[15620,"iced::widget::canvas::path::lyon_path::geom::traits"],[15622,"iced::widget::canvas::path::lyon_path::geom"],[15624,"iced::widget::canvas::path::lyon_path::geom::utils"],[15630,"iced::widget::canvas::path::lyon_path::iterator"],[15794,"iced::widget::canvas::path::lyon_path::math"],[15824,"iced::widget::canvas::path::lyon_path::path"],[15833,"iced::widget::canvas::path::lyon_path::path_buffer"],[15983,"iced::widget::canvas::path::lyon_path::polygon"],[16033,"iced::widget::canvas::path::lyon_path"],[16035,"iced::widget::canvas::path::lyon_path::polygon"],[16117,"iced::widget::canvas::path::lyon_path"],[16119,"iced::widget::canvas::path::lyon_path::polygon"],[16159,"iced::widget::canvas::path::lyon_path::traits"],[16162,"iced::widget::canvas::path::lyon_path::builder"],[16163,"iced::widget::canvas::path::lyon_path::traits"],[16164,"iced::widget::canvas::path::lyon_path::builder"],[16190,"iced::widget::canvas"],[16193,"iced::widget::canvas::stroke"],[16196,"iced::widget::canvas"],[16201,"iced::widget::canvas::stroke"],[16203,"iced::widget::canvas"],[16210,"iced::widget::checkbox"],[16361,"iced::widget::checkbox::Status"],[16364,"iced::widget::combo_box"],[16413,"iced::widget::container"],[16535,"iced::advanced::image"],[16536,"iced::widget::image"],[16539,"iced::advanced::image"],[16543,"iced::widget::image"],[16599,"iced::advanced::image::Handle"],[16603,"iced::widget::image::viewer"],[16650,"iced::widget::keyed"],[16712,"iced::widget::keyed::column"],[16713,"iced::widget::markdown"],[16772,"iced::advanced::text"],[16774,"iced::widget::markdown"],[17137,"iced::widget::markdown::Item"],[17145,"iced::widget::overlay"],[17146,"iced::widget::overlay::menu"],[17147,"iced::overlay::menu"],[17148,"iced::widget::overlay::menu"],[17152,"iced::overlay::menu"],[17154,"iced::widget::overlay::menu"],[17155,"iced::overlay::menu"],[17160,"iced::widget::pane_grid"],[17996,"iced::widget::pane_grid::Configuration"],[18000,"iced::widget::pane_grid::DragEvent"],[18004,"iced::widget::pane_grid::Node"],[18009,"iced::widget::pane_grid::state"],[18060,"iced::widget::pane_grid"],[18061,"iced::widget::pane_grid::state"],[18080,"iced::widget::pane_grid"],[18081,"iced::widget::pane_grid::state"],[18103,"iced::widget::pane_grid::state::Action"],[18107,"iced::widget::pick_list"],[18305,"iced::widget::pick_list::Handle"],[18308,"iced::widget::pick_list::Status"],[18309,"iced::widget::pop"],[18310,"iced::widget::progress_bar"],[18366,"iced::widget::qr_code"],[18606,"iced::widget::radio"],[18707,"iced::widget::radio::Status"],[18709,"iced::widget::rule"],[18809,"iced::widget::scrollable"],[19339,"iced::widget::scrollable::Direction"],[19341,"iced::widget::scrollable::Status"],[19351,"iced::widget::shader"],[19452,"iced::widget::slider"],[19687,"iced::widget::slider::HandleShape"],[19690,"iced::widget::svg"],[19789,"iced::advanced::text"],[19793,"iced::widget::text"],[19796,"iced::advanced::text"],[19798,"iced::widget::text"],[19800,"iced::advanced::text"],[19801,"iced::widget::text"],[19802,"iced::advanced::text"],[19805,"iced::widget::text"],[19806,"iced::advanced::text"],[19807,"iced::widget::text"],[19813,"iced::advanced::text"],[19815,"iced::widget::text"],[19844,"iced::advanced::text"],[19845,"iced::widget::text"],[19850,"iced::advanced::text"],[19851,"iced::widget::text"],[19856,"iced::advanced::text"],[19857,"iced::widget::text"],[19881,"iced::advanced::text"],[19882,"iced::widget::text"],[19893,"iced::advanced::text"],[19895,"iced::widget::text"],[19921,"iced::advanced::text"],[19922,"iced::widget::text"],[19928,"iced::advanced::text"],[19930,"iced::widget::text"],[19931,"iced::advanced::text"],[19932,"iced::widget::text"],[19937,"iced::advanced::text"],[19938,"iced::widget::text"],[19942,"iced::advanced::text"],[19943,"iced::widget::text"],[19944,"iced::advanced::text"],[19945,"iced::widget::text"],[19949,"iced::advanced::text"],[19950,"iced::widget::text"],[19972,"iced::advanced::text"],[19973,"iced::widget::text"],[19976,"iced::advanced::text"],[19977,"iced::widget::text"],[19984,"iced::widget::text_editor"],[20540,"iced::widget::text_editor::Action"],[20541,"iced::widget::text_editor::Status"],[20542,"iced::widget::text_input"],[20956,"iced::widget::text_input::Status"],[20957,"iced::widget::text_input::cursor"],[21005,"iced::widget::text_input::cursor::State"],[21007,"iced::widget::theme"],[21008,"iced"],[21012,"iced::widget::theme"],[21013,"iced"],[21027,"iced::widget::theme"],[21028,"iced"],[21030,"iced::widget::theme"],[21032,"iced"],[21035,"iced::theme"],[21039,"iced::widget::theme"],[21041,"iced::theme"],[21046,"iced::widget::theme::palette"],[21077,"iced::theme"],[21078,"iced::theme::palette"],[21086,"iced::theme"],[21087,"iced::theme::palette"],[21089,"iced::theme"],[21090,"iced::theme::palette"],[21098,"iced::theme"],[21099,"iced::theme::palette"],[21100,"iced::theme"],[21101,"iced::theme::palette"],[21102,"iced::theme"],[21103,"iced::theme::palette"],[21110,"iced::widget::toggler"],[21213,"iced::widget::toggler::Status"],[21215,"iced::widget::tooltip"],[21268,"iced::widget::slider"],[21269,"iced::widget::vertical_slider"],[21270,"iced::widget::slider"],[21273,"iced::widget::vertical_slider"],[21275,"iced::widget::slider"],[21277,"iced::widget::vertical_slider"],[21281,"iced::widget::slider"],[21284,"iced::widget::vertical_slider"],[21285,"iced::widget::slider"],[21290,"iced::widget::slider::HandleShape"],[21293,"iced::window"],[21948,"iced::window::Event"],[21950,"iced::window::icon"],[22001,"iced::window::raw_window_handle"],[23691,"iced::window::screenshot"],[23702,"iced::window"],[23703,"iced::window::screenshot"],[23724,"iced::window"],[23726,"iced::window::screenshot"],[23737,"iced::window::settings"],[23752,"iced::window"],[23753,"iced::window::settings"],[23762,"iced::window"],[23763,"iced::window::settings"],[23767,"iced::window"],[23769,"iced::window::settings"],[23779,"iced::window"],[23783,"iced::window::settings"],[23785,"iced::window"],[23789,"iced::window::settings"],[23790,"iced::window"],[23791,"iced::window::settings"],[23799,"iced::window"],[23800,"iced::window::settings"],[23801,"iced_core::color"],[23802,"iced_runtime::task"],[23803,"palette::chromatic_adaptation"],[23804,"iced_core::angle"],[23805,"iced_core::pixels"],[23806,"iced_core::point"],[23807,"iced_core::vector"],[23808,"core::ops::arith"],[23809,"iced_core::rectangle"],[23810,"iced_core::size"],[23811,"core::option"],[23812,"iced_futures::maybe::platform"],[23813,"core::ops::function"],[23814,"core::result"],[23815,"iced_core::settings"],[23816,"iced::program"],[23817,"core::marker"],[23818,"core::fmt"],[23819,"core::default"],[23820,"iced_core::theme"],[23821,"iced_core::rotation"],[23822,"core::any"],[23823,"iced_core::transformation"],[23824,"iced_core::animation"],[23825,"core::clone"],[23826,"core::cmp"],[23827,"core::iter::traits::collect"],[23828,"iced_futures::subscription"],[23829,"iced_core::shadow"],[23830,"iced_core::padding"],[23831,"core::convert"],[23832,"palette::cam16::parameters"],[23833,"iced_core::alignment"],[23834,"iced_core::border"],[23835,"iced_core::event"],[23836,"iced_core::font"],[23837,"iced_core::gradient"],[23838,"iced_core::background"],[23839,"iced_core::content_fit"],[23840,"iced_core::length"],[23841,"alloc::vec"],[23842,"alloc::string"],[23843,"iced_core::theme::palette"],[23844,"alloc::boxed"],[23845,"core::time"],[23846,"num_traits::float"],[23847,"num_traits"],[23848,"lilt::animated"],[23849,"iced_futures::executor"],[23850,"iced::error"],[23851,"iced_winit::error"],[23852,"palette::rgb::rgb"],[23853,"palette::alpha::alpha"],[23854,"core::future::future"],[23855,"core::hash"],[23856,"std::time"],[23857,"lilt::traits"],[23858,"alloc::sync"],[23859,"alloc::rc"],[23860,"std::io::error"],[23861,"iced_core::window::settings"],[23862,"futures_core::stream"],[23863,"iced_core::window::id"],[23864,"iced_widget::toggler"],[23865,"iced_widget::container"],[23866,"iced_widget::checkbox"],[23867,"iced_widget::radio"],[23868,"iced_widget::pick_list"],[23869,"iced_widget::rule"],[23870,"iced_widget::svg"],[23871,"iced_widget::progress_bar"],[23872,"iced_widget::scrollable"],[23873,"iced_widget::text_editor"],[23874,"iced_widget::pane_grid"],[23875,"iced_widget::overlay::menu"],[23876,"iced_widget::slider"],[23877,"iced_widget::qr_code"],[23878,"iced_core::widget::text"],[23879,"iced_widget::button"],[23880,"iced_widget::text_input"],[23881,"smol_str"],[23882,"palette::convert::try_from_into_color"],[23883,"iced_core::shell"],[23884,"iced_core::layout"],[23885,"iced_core::text"],[23886,"iced_core::widget"],[23887,"iced_core::widget::tree"],[23888,"core::iter::traits::double_ended"],[23889,"iced_core::renderer"],[23890,"iced_core::overlay"],[23891,"iced_core::mouse::cursor"],[23892,"iced_core::input_method"],[23893,"iced_core::layout::node"],[23894,"iced_core::layout::limits"],[23895,"iced_core::mouse::interaction"],[23896,"iced_core::widget::operation"],[23897,"iced_core::overlay::element"],[23898,"iced_core::clipboard"],[23899,"iced_core::window::redraw_request"],[23900,"bytes::bytes"],[23901,"iced_core::image"],[23902,"bytes::bytes_mut"],[23903,"iced_core::window::screenshot"],[23904,"std::path"],[23905,"core::ops::range"],[23906,"iced_core::layout::flex"],[23907,"iced_core::element"],[23908,"iced_core::mouse::click"],[23909,"iced_core::mouse::button"],[23910,"iced_core::mouse::event"],[23911,"iced_core::overlay::group"],[23912,"rustc_hash"],[23913,"core::pin"],[23914,"iced_core::svg"],[23915,"alloc::borrow"],[23916,"iced_core::text::editor"],[23917,"iced_core::text::highlighter"],[23918,"core::iter::traits::iterator"],[23919,"iced_core::text::paragraph"],[23920,"iced_core::widget::id"],[23921,"core::borrow"],[23922,"iced_core::widget::operation::focusable"],[23923,"iced_core::widget::operation::scrollable"],[23924,"iced_core::widget::operation::text_input"],[23925,"iced_core::window::level"],[23926,"iced_core::window::position"],[23927,"iced_runtime::font"],[23928,"iced_core::keyboard::modifiers"],[23929,"iced_core::keyboard::key"],[23930,"iced_core::keyboard::event"],[23931,"iced_core::keyboard::location"],[23932,"bitflags::iter"],[23933,"futures_channel::mpsc"],[23934,"iced_runtime::system"],[23935,"std::sync::lazy_lock"],[23936,"time::duration"],[23937,"serde::de"],[23938,"zvariant_utils::signature"],[23939,"zvariant::error"],[23940,"tokio::time::instant"],[23941,"image::animation"],[23942,"nix::sys::time"],[23943,"serde::ser"],[23944,"time::error::conversion_range"],[23945,"iced_core::touch"],[23946,"iced_widget::column"],[23947,"iced_widget::row"],[23948,"iced_widget::action"],[23949,"iced_widget::pop"],[23950,"iced_widget::themer"],[23951,"iced_widget::canvas"],[23952,"iced_graphics::geometry"],[23953,"iced_widget::canvas::program"],[23954,"iced_widget::mouse_area"],[23955,"iced_widget::pin"],[23956,"iced_widget::stack"],[23957,"iced_widget::combo_box"],[23958,"iced_widget::tooltip"],[23959,"iced_widget::lazy"],[23960,"iced_widget::vertical_slider"],[23961,"iced_widget::lazy::component"],[23962,"iced_widget::image"],[23963,"num_traits::cast"],[23964,"iced_widget::text_input::value"],[23965,"iced_widget::lazy::responsive"],[23966,"iced_widget::shader"],[23967,"iced_widget::shader::program"],[23968,"iced_wgpu::primitive"],[23969,"iced_wgpu"],[23970,"iced_tiny_skia"],[23971,"iced_renderer::fallback"],[23972,"iced_widget::space"],[23973,"iced_highlighter"],[23974,"iced_widget::keyed::column"],[23975,"url"],[23976,"iced_widget::markdown"],[23977,"iced_widget::pane_grid::state"],[23978,"iced_widget::pane_grid::pane"],[23979,"iced_widget::pane_grid::content"],[23980,"iced_widget::text::rich"],[23981,"iced_graphics::geometry::path"],[23982,"iced_graphics::cache"],[23983,"iced_graphics::gradient"],[23984,"iced_graphics::geometry::fill"],[23985,"iced_graphics::geometry::stroke"],[23986,"iced_graphics::geometry::style"],[23987,"iced_graphics::geometry::text"],[23988,"iced_graphics::geometry::path::builder"],[23989,"lyon_path::path"],[23990,"euclid"],[23991,"euclid::transform2d"],[23992,"iced_graphics::geometry::path::arc"],[23993,"lyon_path::commands"],[23994,"lyon_path::path_buffer"],[23995,"lyon_path"],[23996,"euclid::point"],[23997,"lyon_path::builder"],[23998,"lyon_geom::arc"],[23999,"lyon_path::events"],[24000,"lyon_path::polygon"],[24001,"lyon_path::iterator"],[24002,"lyon_geom::traits"],[24003,"euclid::vector"],[24004,"euclid::angle"],[24005,"lyon_geom::line"],[24006,"euclid::box2d"],[24007,"lyon_geom::scalar"],[24008,"lyon_geom::triangle"],[24009,"lyon_geom::segment"],[24010,"lyon_geom::cubic_bezier"],[24011,"lyon_geom::quadratic_bezier"],[24012,"lyon_geom"],[24013,"num_traits::identities"],[24014,"euclid::approxeq"],[24015,"arrayvec::arrayvec"],[24016,"euclid::trig"],[24017,"euclid::default"],[24018,"num_traits::real"],[24019,"euclid::size"],[24020,"arrayvec::array_string"],[24021,"arrayvec::errors"],[24022,"core::str::error"],[24023,"endi::endian"],[24024,"num_traits::sign"],[24025,"euclid::length"],[24026,"euclid::scale"],[24027,"euclid::side_offsets"],[24028,"euclid::translation"],[24029,"euclid::rotation"],[24030,"euclid::transform3d"],[24031,"euclid::rect"],[24032,"euclid::box3d"],[24033,"euclid::rigid"],[24034,"euclid::num"],[24035,"euclid::homogen"],[24036,"num_traits::ops::euclid"],[24037,"num_traits::ops::saturating"],[24038,"lyon_path::math"],[24039,"rayon::iter::par_bridge"],[24040,"iced_widget::image::viewer"],[24041,"pulldown_cmark"],[24042,"url::parser"],[24043,"url::host"],[24044,"std::collections::hash::set"],[24045,"url::slicing"],[24046,"url::origin"],[24047,"core::str::iter"],[24048,"url::path_segments"],[24049,"form_urlencoded"],[24050,"core::net::ip_addr"],[24051,"core::net::socket_addr"],[24052,"iced_widget::pane_grid::direction"],[24053,"iced_widget::pane_grid::title_bar"],[24054,"iced_widget::pane_grid::draggable"],[24055,"iced_widget::pane_grid::axis"],[24056,"iced_widget::pane_grid::configuration"],[24057,"iced_widget::pane_grid::node"],[24058,"iced_widget::pane_grid::split"],[24059,"iced_widget::pane_grid::controls"],[24060,"alloc::collections::btree::map"],[24061,"qrcode::types"],[24062,"iced_graphics::viewport"],[24063,"wgpu::api::device"],[24064,"wgpu::api::queue"],[24065,"wgpu_types"],[24066,"wgpu::api::command_encoder"],[24067,"wgpu::api::texture_view"],[24068,"iced_widget::text_input::cursor"],[24069,"iced_core::window::icon"],[24070,"iced_core::window::direction"],[24071,"iced_core::window::event"],[24072,"iced_core::window::mode"],[24073,"iced_core::window::user_attention"],[24074,"iced_core::window::settings::platform"],[24075,"raw_window_handle::borrowed"],[24076,"image::error"],[24077,"image::image"],[24078,"core::error"],[24079,"raw_window_handle::android"],[24080,"core::ptr::non_null"],[24081,"raw_window_handle"],[24082,"raw_window_handle::haiku"],[24083,"raw_window_handle::appkit"],[24084,"raw_window_handle::ohos"],[24085,"raw_window_handle::redox"],[24086,"raw_window_handle::uikit"],[24087,"raw_window_handle::unix"],[24088,"raw_window_handle::web"],[24089,"raw_window_handle::windows"],[24090,"core::num::nonzero"],[24091,"core::ffi"],[24092,"iced_core::alignment::Vertical"],[24093,"iced_core::alignment::Alignment"],[24094,"iced_core::length::Length"],[24095,"iced_core::alignment::Horizontal"],[24096,"iced_renderer"],[24097,"iced_core"],[24098,"iced_runtime"],[24099,"iced_futures"],[24100,"iced_core::mouse"],[24101,"iced_runtime::clipboard"],[24102,"iced_futures::event"],[24103,"iced_core::keyboard"],[24104,"iced_futures::keyboard"],[24105,"iced_widget::overlay"],[24106,"iced_futures::stream"],[24107,"iced_winit::system"],[24108,"iced_core::time"],[24109,"iced_futures::backend::native::tokio::time"],[24110,"iced_widget::text"],[24111,"iced_widget::helpers"],[24112,"iced_widget"],[24113,"iced_widget::lazy::helpers"],[24114,"iced_graphics"],[24115,"euclid::approxord"],[24116,"lyon_geom::utils"],[24117,"iced_widget::keyed"],[24118,"iced_runtime::window"],[24119,"iced_core::window"]],"i":"El```b```1111`Fn`GhGj`04Gd`5`5`3Mn```ChJh8`4Gl`00Dj``72::DnAlAnGb>>>0``>Gf:8?1?;?Ad:Eln```EKl`A`2```=```Gj2```<`44;Fn?`b``Ch777`:`;`1:JhFhAb>Af5f0Fd58EbG`GbGdGf9ElA`nGhbGjGl?AdAlDjBnFfAnDnAf<<;:987654889EbfFdJhFn48Gb8Gf87A`nGhbGjGlAbAdAlDjBnFfAnDnAffFdJhFnEbG`GbGdGfFhElA`nGhbGjGlAbAdAlDjBnFfAnDnAff87>>99900FdJhFnEbG`GbGdGfFhElA`nGhbGjGlAbAdAlDjBnFfAnDnAffFdJhFnEbG`GbGdGfFhElA`nGhbGjGlAbAdAlDjBnFfAnDnAfEb0:InFnG`GbGdGfFhElA`0n0GhbGjGlAbAdAlDjFfAnDnAfFn00Gd00;;;888777444222```74El1;Fh==>=;;;;;fFdJhFnEbG`GbGdGfFhElA`nGhbGjGlAbAdAlDjBnFfAnDnAf>=f`6:6`Fh94FdJh45G`Gb5Gf5ElA`nGhbGjGlAbAdAlDjBnFfAnDnAfEb077fFdJhFn4G`GbGdGfFhElA`nGhbGjGlAbAdAlDjBnFfAnDnAffFdJhFnEbG`GbGdGfFhElA`nGhbGjGlAbAdAlDjBnFfAnDnAffFdJhFnEbG`GbGdGfFhElA`nGhbGjGlAbAdAlDjBnFfAnDnAfJhFnEbG`GbGdGfFhElA`nGhbGjGlAbAdAlDjBnFfAnDnAffFdJhFnEbG`GbGdGfFhElA`nGhbGjGlAbAdAlDjBnFfAnDnAffFdJhFnEbG`GbGdGfFhElA`nGhbGjGlAbAdAlDjBnFfAnDnAffFdJhFnEbG`GbGdGfFhElA`nGhbGjGlAbAdAlDjBnFfAnDnAffFdJhFnEbG`GbGdGfFhElA`nGhbGjGlAbAdAlDjBnFfAnDnAf;;fFdJhFnEbG`GbGdGfFhElA`nGhbGjGlAbAdAlDjBnFfAnDnAf;;Eb:7`Fh0fFd66`A`n0>>=<<<8887666`In65>=9743G`Gd7ElbGjAbAdAlDjBnFfAnDnAf31``;:A`0n0:f9Eb>99G`311Fh0<81`Ch04Fd1109GfGhb4415151515151515151515>>>>>>0151515151515151515>15>ANj`<`<`1101010010>10101010100100101010>110101010101010101010>10101010101010101010>110AMd``AO`00000000001000000000011110000000000010101000011000000000010011`````AObAClAOf222102102102102102102102ACj2311133321AEf04324321333432144323222203204443222243243224432432432432424324324324324321441432`41`10414414134413`002`4324324324324324324322432143244AOj`0```0`00000`000011000010AOl`21111111111110`B@f00`B@d0`4104`4`3333333233``B@l00000000000`000000000`0`3``0000000000000030000000000300````1`1`1B@hB@j10``4`4`4`4AEbAFb0`AOdAFh`03`````00``AAj``2````2`AFd0```0AFf10101010101010ACl11111212121`212221111121212121121212121121212121212110101212121212121212121`KbFnK`21`0012`02020202020202020202020202020202020002220200220202020202020202020202020202020202020202020202`Il000000000000000000000000000000```0000000000000000000Ej11111Lh222222222222222222222````Cj0`000000000000000000000000000000000000000000Cl111111111DbDh333``Ml000000`0`00`000000`G`1111111111111111111111111`111`0`1`1`1`11`11111111111`0```````Hj000000000`0000000000000000000000000000Hl11111111Hn2ADh`0Gb00`001111111111111111111111111111111111````11111111111``In00AC`0NlJ``12112`0`ABd3311320012231``322`BAf2431024310243102431024310243102431024310243102431024310243124310243102431024310243102431000222444333111Gd13542135421354213542354213542135421354213542135421354213542135421354213542`354200135421354213542135421354213542135421354213542135420```GfBAhKd000101010101010101010101101101010101010101010101010101010101010100110010101010101010101010BAj00BAl``BAn02BB```12003022103332103210321032103233333333210321032103210321032103233233210333321032103321032103321032221110003333210333332210321033333332103232103333210321032103210321032103210321033210333333`3333``23333333210332103210321032103210321032103321032103BBlBBn101010101BBd0BCb110111100BCd221212121222222222222121211121112221212121212121222221227222`BC`33333332332322323233233222222222223333232332233233332323232323232323232323232323232323232323232323232323232323232323232323333333333333323232333333333333332332332323323222332332`3322222222222222222222222222222223223333323333333333333133333333333323323333323323232333323`8`33333333323322222222222222222222222222222223323232332322`33333333323333233223333233333333232233223223333323333333222333333333333333333333333333333333232328103332131333333210321032103210321032103210321032103210321032103210321032103210321032103221100033322211100032103210321032103210321032103210321032103210321032103210321032103210321032103210321032103210321032103210ADfAId`BCf0AEd00`111`20000`23AIh311130111113`142111342013420134201342013420134201342013420134201342013420111342014134201342013420134201342013331113420134201342013420133420134201342013420134201342013420134201342013420144444411444434201342013420134201342013420134201342013420134201AIfAIjAIlAIn10```BCn````BCjBChAAb21021021021000210210210000210`31332102102102100102210210210210210210210021021021021021021122003022202102102102102102102102102102```Fh`0`0`0```BDb00000000000000000`00000000000000000000000000000000``h0000000000000000000000000000000000000000000`Hd000El000`011001011001110001010110010`1100`111`0001BDdEn31031031031030Df4214214214214214214214`42142142142142142214214214214214214214214214214214214214212`44414212242142142142142142142142142142```````````````````````````````HfBDjBDhBDlBDnBE`BEbBEd76543210765432107654321076543210<7543210765432107654321076543210765432107654321076543210676543210<776543210765432107654321076543210765432107654321076543210765432107654321074321076543210765432107654321076543210765432107654321076543210765432107654321076543210765<77543210<7<676543210765432107654321076543210765432107654321076543210765432107654321076543210<7543210``Ib000000Lf10011001101010101111111110110101010101010010101010101`101011111111110101000011000111`01001110111111111101101`010101010101010101011``1111101011`1011`1100001100111111101010111101010101010101``BFl0000BFn101010101010101010101010101010100001010101001010101010101010101010101010101010101010BG`BGbBGdBGf3210```El000`````0BKhBLdBKlBLn1BMb55BMj666`666`66`666````EKl````````0``77``1```````777``BGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGh000BGl1>BHb2BHd000007BHl3BJbBJd4BJfBHnBI`BInBJh;BJlBKd9BKhBKlBL`=BLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBHnBGlBJbBJdBHbBJf5BI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBId`````BGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBId``34`BGh`0`0``BGlBJbBJdBHbBJfBHnBI`BJh8BJlBHlBHdBK`BKb6BIn>5BKdBKhBKlBL`7BLdBLjBGnBLn:BMbBMdBIjBGlBHbBI`BGhBHj00`````4BJbBJd5BJfBHn6BInBJh7BJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBId``51BGlBHbBJfBLd=3BJbBJd43BHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHd>BLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BGhBJlBHlBHdBGnBK`BKb3=<;:987BInBJh87BKd7BKhBKlBL`9BLdBLj:BLn:BMbBNd;BNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGn0BLnBK`BMbBNdBKbBNfBMdBIjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBHbBJf46543``BInBJhBKdBKlBLjBGnBLn9BJbBJd:9BHnBI`:9BGhBJl:BHlBKh;BL`BHdBLd=<;BK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBHb71BJbBJd2BJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBHbBJf=BKhBKd4BJd43BI`BGhBJlBHdBLdBLjBMbBNfBMdBObBMlBId66BL`9````BInBJhBGn><0``BGlBJbBJdBHbBJfBHnBI`98BGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBJh0BJbBGl1BJdBHbBJfBHnBI`BIn8BGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBKhBKlBL`986543BGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHl?>=BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBId3BGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBHl>```=``BGh?BGl12BKd30BLj`2BJbBJdBHbBJfBHnBI`BIn;:BJl9BHlBKlBHdBLdBIn=BJl=BKhBKlBL`BHd?>=BLn=BKl31?031?03103``BHj````6BGlBJbBJdBHbBJf8BI`8BJhBGhBJlBKdBHlBKh=BL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBMjBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKlBHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBId`BKhBL`````BMjBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHl?BKl?BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJdBHbBJfBI`BInBJhBGhBJlBKdBKlBHdBLdBLjBGnBLnBMbBNfBMdBObBMlBIdBGlBHbBJf210=551;BJd0AAl``BIb111```1AAn202020200020202020202020`10202020202022220202020202020202020202020200``01``020202020202020202020`0`CCdCCb```````CCh``Gb0```CBl41``3423BIh```22CBj2CBnCBhCC`89CCf8CCj57432:;19057432:;19057432:;19057432:;19057432:;19057432:;19057432:;190357432:;19057432:;19057432:;19050557432:;190042:;1057432:;19057432:;19057432:;1906057432:;190579555`AG`68543;<2:11688555543;<2:::11168543;<2:168543;<2:1`06168543;<2:168543;<2:168543;<2:168543;<2:168543;<2:168543;<2:168543;<2:168543;<2:168543;<2:168543;<2:16433137453;<212086`1440452110`5368543;<2:1468543;<2:168543;<2:168543;<2:168543;<2:168543;<2:168543;<2:168543;<2:1668543;<2:17168543;<2:133333CDd`;0`;`0000000000000000000000000000000000660000000000``9`CClCD`11101010101010101010101010101010110101010101010101010101010101001`11110101010101010101010```CCnCDj`11101010101101011001000110110101010100101010101010101010101010101111101100101010101010101010``CDl0000000100000000010000000000000000010100000000000`````EL`ELbCFhCGf```CGd`432432`CGj```CGnCEhCH``````876``55`CGhCGl5``````````10:98`67`6`CI`CFfCHfCDnCE`=CDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CDnCDb=0CEbCEjCEn0CI`CFfCHf7CE`CFh8765CFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CEjCEn0`CDnCDb?0CI`CFfCHf4CE`CFh5CEb98CFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`;CFfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CFfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CFfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`98`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CEjCEn0CFfCDb3?CI`2CHfCDnCE`CFh5CEb98CFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CEjCEn0CFfCFh;:987654000777666555444CDnCE`?>154CDbCEb532410CFnCEdCEfCGdCGfCGhCGjCGlCGnCEhCH`CFlCI`CFfCHfCDnCE`0CFh0CDbCEb0CEjCEnCFj;CFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CDbCHh21>021>CFh987632?3322?CEdCEfCI`CFf8CDnCE`698CEjCEnCFjCFlCFn:9CG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CDnCDbCEb0CFjCFlCFn66CFfCHf7CE`CFh87CEjCEn876CEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`>CEb<;5656CDnCE`CDb3?>=<03`CFf14CEdCEfCEjCEn0`CHf6214CI`CFjCFlCFn<;<;9:68CHd5;>766CGnCEhCGh``CG`CDn71CGb`CHj>==>==CEdCDbCEb1CFfCFh917CE`143CEjCEnCFjCFlCFn:CEf?=CGdCGfCGhCGjCGlCGnCEhCH`210`?CDbCI`CFfCHfCDnCE`CFh6CEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CDbCEj=CFh1CJdCJfCJhCJj02CJl21302143211302130214321130213021`````CLb```CKlCKnCJ`CKjCFbCJn0100100100100CKf0211211240465432654326543265432165226543265432337665442265432323232011442654321065442243265432654326543265432165223211211423326543265432654322046543222654326543265432654326543265432654326543226543210654422044654323216523112106544220404040404040411006544226540404040432333311426543265432654326543265432654326543265432046543221122```````CIlCF`CHbCHnCLd43210432104321043210343210432103432104321043210432104321033432104321043210432103443432104321043210444443210432104321043210434321043210432104321021043210433210323432104321043210432104321043210432104321043210432103`````CLh00000```0000```00`CM`````111````1CLfCLj00CMbCNdCMdCKdCNf6CMf6CKb000966443311CMh111:775542`765439281765439281765439281765439281988528:77554422765439281765439281754287528752829887654392817218774447654392817654392817654392814276543928184255`5511765439281765439281:7554224392111765439281525765439281:55422:554227;76549281399911175275275252675222:77554422765439281767652:7765542257575525276576552525252111:77776555444392228165427654392817654392817171COh5587654:3925455945987654:39287654:39287654:39287654:39287654:39287654:39287654:39287654:39287654:392:32:636367:6363CFf643667474747444COj00000COl80555==59=88=55`75=`9955;:>;;998866;857=5`98988=8=>;;9988668>;;9988668768;55552;=>;;998866:986:6598765987658;:987=6<599;8`<98685;:987=6<5;:987=6<5;:987=6<5;:987=6<55;:987=6<5;:987=6<5;:987=6<5;:987=6<5`?`788;:987=6<53>;;998866D@hD@jD@l<9<9>=CM`??==<<::321=:=:9````CO`0000000CMb11111CNd2022222222222229210191022222222210`````CNhDA`DAfD@nDAd432104321043210432104414314141143144321104432110432104141431041431043104104104321041443211044321104321044433221004444110444111000444311004432110432101443210141141141432104432104321043210432104321043210432104321044444324321041414114111411333333333333322222222222224104132324141104144114414144103214444310101041432104443211104432104321041143210432104321043210432104444444444444444444444444444444444444444444444444144444441444441``COb00000000CMd01111101111111111111110111111111`````````````````````````D@dDBdCK`DBfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBn?>DC`DCb?>CDhDCjDCdDCfCDf??>>==87D@d0DBd087CK`0DBf0DBhCEl0DBj0>65=<43109898DCh554:93210DCl65=<=<4321065==<<``CKhDCn:22221DD`DDh8762DDb65DBlDBn?>DC`DCb?>CDhDCjDCdDCfCDf=;:DBhCElDBj?=<54321DBn<;DC`DCb<;CDhDCjDCdDCfCDf?>8DBhCElDBjDCnDDbDChDClDBl?D@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfDBh=10=17676CKhDD`DDh3CElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DCn=<21210CNj:9DDb`43DBhCElDBj5DBlDBnD@dDBdDC`DCbCK`DBfCDhDCjCDf?DD`8CKh1DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDf43CElDBjCKh0DD`0DBh004433DCn0DBn0D@d0DBd0??>>66554887733221100??>>87?>65DDh5984DDbDChDClDBl765DC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`?DBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDf:965CKh00DD`00DDh00DBh00CEl00DBj00DCn00DDb00DCh00DCl00DBl00DBn00D@d00DBd00DC`00DCb00CK`00DBf00CDh00DCj00DCd00DCf00CDf00=CEl7CNj11DBj0==<<9988CKhDD`DDhDBh64DCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKh0DD`0DDh0000DBhCEl00DBj00DCn0DDb00DChDClDBlDBnD@d000DBd000DC`0DCb0CK`0000DBf000CDh0DCj0DCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDf64343;CElDBj=<;87CKhDD`10DCnDDb932132DDhDBh7632DChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfDDbCKhDD`CElDBjDCn5DChDClD@dDBdDC`DCbCK`DBfCDhDCjDBn0DBhDBl<:965CKhDD`DDh4CElDBjDCnDDbDChDCl9;D@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DCn==98798DDhDBhCElDBj;9876:D@dDBd76CK`DBfCDhDCjDCdDCfCDfCKhDCn1DD`12020120?>=<1DDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDf?>=<874333CKhDD`DCn=<21CElDBj2?>;:DBl>=:954DClD@dDBdDBn330CK`DBf;:DBh98:654215421CDhDCj10001010001010000000;:432;:<97643>=<<2;:<97643>=<<>>==22;;::<<95577664433>>==2;;::<<557766443302;:57643>=DDh3<;=DDbDCh<8:9DC`DCb98655:3DCdDCf??;:10>=;:CKhDD`;CElDBjDCnDBlDBnD@dDBd<;CK`DBfCDhDCjCDf`843?>;:91=921121DBh912``<323232542DCl0DChCKbCNj`98CElDBj>;:98DDbCKhDD`4433DCnD@d0DBd0CK`0DBf0654654>>654CDhDCjDCdDCf1010:>:98``2DCl>=87DC`DCb87872DBhCEl00DBj00DBlDBn?>65=<433220?>65=<44??>>==<=>=>=>=5?=60CK`?76D@dDBd<;2DBfCDhDCj;210100DCnCKhDD`?>276DC`DCb:732CElDBj6;:32<954106;:32<954106;:32<954654DDhDBh328DDbDChDClDBlDBnD@dDBd<;CK`DBfCDhDCjDCdDCfCDf65??CKh7>=54=<0?61320DDbDChDClD@dDBd:9CK`DBfCDhDCj?:<;954>=32<;54>=DBn?DBl?0?9900DC`0449DCb44:2044210210;;22155:4:4CKh?>65=0?DBhCElDBjDCn7>=65<;:94DD`DDh5432DDbDChDCl<=D@dDBd==DBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDf65CKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DCnDCl32DDhDBhCElDBj5DDbDCh6DBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDf``DCl=87::9:9873CElDBj>=<;874320;730;73510>=<;874321<0;7350=;7343DBh22113DBnD@d0DBd0CK`0DBf07610`CN`00``````````````````````DEdDEfDEhCOh1DEj003DElDEn10001010001010000000COlDF`10DFb58DFd190DFf89D@jDFhD@lDFj4DFlDFn54326104260`````DDdDDnDDfDE`DDj````DG`COdCOf210210210210210210210210CMf321321321321321032132132132132132132132132132132121321321210321321321321321321321321321CM```0000000000000CJb011```````````CInDGfDGhDGb3210321032103210321032103210032103210321032103210DGd043214321432143214321432143214321432143214321432143214321321432113004321432143214321432143214321432143214`````````DGjDGlDGn00000DH`0`DHb``3DHdDHfDHh210``````````````CFdDHjCId2102102102102211210210221121000021022112102102102102211210210210210210210210210210210210210021022111002122112211002102102102102102102102102102``````CIhCIfCIjCHl3210321032103210321032103210321032103210CG`CGb5432543254325432543254325432543254325432543254325432543254325432543254325432254322105432543254325432543254325432543254325432```CLb`CKfCJn210101011001111111111111CCdCCbCCh```21201``CC`00CCf011Od``BJ`11````BOj2Of130130130130001301301301301301301130`2130130130130130333130113013013001301301301301301301301301301301``112`0130130130130130130130130130130DHnDI`DIb```BMh000000000000BJj01111111111111111111111111111111`BGj````B@bOb10101010`0000`101010101010010``20101010`1010111101100001010110101010101010101010`10```002`010`10101010101010110`10AGb```AGf011`DId000000000000`00000000000000000`0000000000000000000``00AHj000``DIf000000000000000000000000000000000`0000000000`C@b000000000`00000000000000000000000000000000000000000000000000``C@f`DIh000001``1`11`````C@d1DJ`3DIjC@hDIl4536210453621045362104536210444AKn0564732156473215647321556732156732156732156`C@jDIn478786954367869543786954377777869543786954378377788877886954377869544433337869543773786954374444447778`077067777786954333378695437869543786954378437869543786954378695437869543786954377`6777376607`07`0`767787777776777777777777777774574477895437878786954377886954378695437869543786954378695437869543`078695437``786954344DLbDLdDLf11022``BCn````AAb0`10010`DMlCAl`DMjBJn````DLh``3`DMh3`DM`26```DMbDMd3`7``48`10`````842CA`DN`DLj5473C@nDMfC@l=9<>CAnAA`DLlDMn47987<;>:654CAl>DMjDMl6543<;:?>DLh>:983DMh328765>==<7365;:98CA`DN`DLj5473C@nDMfC@l=9<;CAnAA`DLlDMn11987<;>:654CAl>DMjDMl6543<;:?>DLh>:983DMh328765>==<7365;:98DLnCA`0DLj5473C@nDMfC@l=9<;CAnAA`DLlDMn<;>:654CAl>DMjDMl6543?>DLh>:983DMh3287659;:5;:=DN`=DM`DMb4DMd?>=8476<;:9DLj`BJn9CA`625483C@nDMfC@l>:==<7DMh76<;:9CA`DLj1706543C@nDMfC@l0=5<;CAnAA`DLlDMn>=;65210===;;;666555=<;:654CAl:DMjDMl6543;;DN`0;DM`DMbDLhDMd>=<7DMh76<;:9CA`6DLj6543C@nDMfC@l=5<;CAnAA`DLlDMn8>7=<;:654CAl:DMjDMl654377DM`>:966=<7DMh76<;:9=CA`5DLj7543C@nDMfC@l=5<;CAnAA`DLlDMn8=7><;:654CAl:DMjDMl6543;DN`;DM`DMbDLhDMd>=<7DMh76<;:94321?>=8076<;:9CA`6DLj6543C@nDMfC@l=5<;CAnAA`DLlDMn8>7=<;:654CAl:DMjDMl6543;DN`;DM`DMbDLhDMd>=<7DMh76<;:9CA`6DLj6543C@nDMfC@l=5<;CAnAA`DLlDMn8>7=<;:654CAl:DMjDMl65437:7777777;DN`;82;>8:96788DM`980?9?`BJn>=:>1DMbDLhDMd?>=8DMh87=<;:CA`7DLj7543C@nDMfC@l>5=<;:654CAl:DMjDMl6543;DN`;DM`DMbDLhDMd>=<7DMh76<;:9CA`6DLj6543C@nDMfC@l=5<;CAnAA`DLlDMn8>7=<;:654CAl:DMjDMl6543;DN`;DM`DMbDLhDMd>=<7DMh76<;:9CA`6DLj6543C@nDMfC@l=5<;CAnAA`DLlDMn8>7=<;:654CAl:DMjDMl6543;DN`;DM`DMbDLhDMd>=<7DMh76<;:99=DNf000DNhDNjDNl1DNn0000`DO`0`0`DNb10101010101010101010101101010101101010100101C@l121212121212121212202212121212121212121212DObDOd01OlBOd`BKf1`2`12`1```1DOf3On31403140314031400031403140314031403140314013140`23231403140314031403140444314013140314031400314031403140314031403140314031403140314013011203140314031403140314031403140314031403140DOh0DOjDOl``BKj```A@f00000000000000`10000000000000000000``1`0000000000``BIl`E@b``E@`11100DOn0`1``2`CAj123AAh123401234012340123400123401234012340023402340234012340`5123401234012340123402340222333444123440123440123401234012340123401234012340234012340123401234012340123401523404412340123401234012340123401234012340123401234011Oh`BKn1````1Oj2020202000020202020202020`12020020202022220202020202020202020202020201020202020202020202020E@fE@hE@j`BLb`111```A@`202020202020202020202002`1020202020220020202020202020202020202020201020202020202020202020`A@h`BMn`BHf`2B@jBHh34```1```0```3`CB`0B@h35E@l3B@`38A@jE@nEA`458:4736;21058:4736;21058:4736;21058:4736;21011058:4736;21058:4736;210658:4736;21058:4736;21058:4736;21058:4736;210058:4736;21026`958:4758:4736;21058:4736;21058:4736;21058:4736;21058:473;210777333;;;58:4736;21058:47336;21058:4736;21058:4736;21023:258:4736;21058:4736;21058:4736;21058:4736;21058:4736;21058:4736;21058:4736;21058:4736;21058:4736;21058:4736;21044358:476``14`4958:4736;21058:4736;21058:4736;21058:4736;21058:4736;21058:4736;21058:4736;21058:4736;210358:4736;210:258:4736;21045858EAb0EAdEAfEAh0121001``BNh``0``EAjEAl10101010101010111100101010210101010100001010101011010101010120111EB`2021221212121212121213212AAd`EC`BLh2``2`1````2AAfEBnEBl4521045210452104521040110052104521045210452104521045210452104`35210452104521045210452104555521045210452104521042521045210452104521045210452104521045210452104521042035210452104521045210452104521045210452104521045210412ECbECd1`BMf`A@b0````0A@d1010101010101010101001020101010101011110101010101010101010101010100210101010101010101010AEbAFb0EKn`AOd`AFhALj``0`135`0``````11`CBdB@nAAj22210210210210`2102102102320002AKl133214``6321321321321`332112130321321332130432132132132121321321321321AN`432`441145443241``4414174`412432432432432432432432143254432444`A@lECfC@```BLlANd`2ANh033435ECh002`205460654`011```241005402242424244`````4000CAf361ANb3ECj7BOn:A@n47:536291;047:536291;047:536291;047:536291;060047:536291;047:536291;047:536291;07:53691;07:53691;07:53691;047:536291;04`843647:536291;047:536291;0547:536291;047:536291;037:53691;0333666111;;;47:536291;0247:536291;047:536291;0947:536291;0047:536291;047:536291;047:536291;047:536291;07:53691;047:536291;047:536291;047:536291;047:536291;047:536291;072214444144364040184317:53691;047:536291;047:536291;047:536291;047:536291;047:536291;047:536291;047:536291;0247:536291;0047:536291;054ANjEClAB``BH```111``ED`0```````BNbECnBOl3AOnEDb7ABb5436218054362180543621805436218000543621805436218054362180543621805436218054362180354362180`1`741543621805436218054362180543621804280444222888554362180`113543622218054362180543621802054362180555436218054362180543621805436218054362180543621805436218054362180543621805115`11`11`11521541055555`114033347543621805554362180543621805436218054362180543621805436218054362180112554362180054362180EDf`EDd0`00000000000000000000000000000000000000000000EDh0`El000`00000000000000`00``000HdEnDf2``22212```````````````````````````````2HfBDhBDlBDnBE`BEbBEdBDj:77:77654321:7:0:7654321Nn`BM`11````1O`2020202000020202020202020`120202020202222000020202020202020202020202020120202020202020202020EDjEDlCAh00`0`00000000000000000000000000000000000000000000000AAd`EC`BLh2``21````EBl00`1AAf012ECbECd1`BAb0AEnBAdELdEEb0EEf3`222EE`3`2222EEd44444444440```2`44`436711143``34434`44444444`411155443`6104EDnAHdNd46Nj;49:68321570;49:68321570;49:68321570;49:68321570;49:628321570;49:68321570;49:628321570;49:6321570;49:6321570;49:6321570;49:6```0:0:8321570;49:6211;98321570;49:68321570;49:6`8321570;49:6``8321570;49:6`2270;49:000;;;444:::`13215700;49:6`8321570;49::68321570;49:68321570;49:61``````````0`18321570;49:68321570;49:68321570;49:68321570;49:6321570;49:68321570;49:68321570;49:68321570;49:68321570;49:638321570;49:611`11``21;9``0:11`1```2```````````21321570;49:600``18321570;49:68321570;49:68321570;49:68321570;49:68321570;49:68321570;49:68321570;49:608321570;49:618321570;49:6EEn0``EF`0000000000000000000000```00000000000000000000000EG``EGb`01```01``01``01```````EJl2`1`12````12``012``121``1``1`1``2`12``12``EFjEGf1EGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEFn0EGfEFjEGhEGj4EElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEFnEEl10EGd0EGfEFjEGhEGj6655EGl5EGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEFnEElEGfEFjEGhEGj54EGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEHn4EGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEHjEIbEJnEFnEGfEFjEGhEGj4EElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EGf00EFj00EGh00EGj00EFn00EEl00EGl00EGd00EGn00EH`00EHb00EHd00EHf00EHh00EHj00EHl00EHn00EI`00EIb00EId00EIf00EIh00EIj00EIl00EIn00EJ`00EJb00EJd00EJf00EJh00EJj00EGb00EG`00=EFj=EGjEFnEEl?EGd?EH`?EHd?EHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEH`EGfEFjEGhEGjEGlEGdEGn7EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGj54EFn0;EKf1EKhEElEHjEHnEIdEGfEFjEGh:96EGlEGdEGnEH`EHbEHdEHfEHh=EHl=EI`EIb>EIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJl00EGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEHh0EFnEGfEFjEGhEGj4EElEGlEGdEGnEH`EHbEHdEHf=EHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEHlEI`EGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEFnEHdEHlEI`EKjEEl5`EEh`00000000AHd1111111111111111111110011111111111``EEj000000000000Nd111111111011110011111111110000110000101111111101","f":"````````````````````````````````````````````````````````````````````````````````````````````````````````````````````{bd}{{{f{c}}}{{j{{f{c}}h}}}{}}{eg{}{{l{c}}}{}}0000000000000000000000000{{nn}}{{nA`}}{{AbAb}Ab}{{Abd}Ab}{{{Ad{c}}{Af{c}}}{{Ad{c}}}{{Aj{}{{Ah{}}}}}}{{{Al{c}}{Af{c}}}{{Al{c}}}{{Aj{}{{Ah{}}}}}}{{{An{c}}{An{c}}}{}{{Aj{}{{Ah{}}}}}}{{{Af{c}}{Af{c}}}{{Af{c}}}{{Aj{}{{Ah{}}}}}}{{{Bb{B`n}}n}Bd}``{{{f{{Bf{c}}}}g}{{f{e}}}BhBh{{Bj{c}{{Ah{{f{e}}}}}}Bh}}{{{f{{Bl{ce}}}}i}{{f{g}}}BhBhBh{{Bj{c}{{Ah{{f{g}}}}}}Bh}}`{BnC`}`{{eio}{{Cj{{`{{Ch{}{{Cb{c}}{Cd{g}}{Cf{k}}}}}}}}}{}{{Cl{c}}}{CnD`}{{Db{cg}}}{DdDf}`{{Dh{cgkm}}}}{{DjAn}An}{{{Bb{Al}}}d}{ce{}{}}0000000000000000000000000{{}c{}}0000000000000000000000000{Bb{{Bb{Dl}}}}0000000000000000000000000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000000000000000000000000{{{Bb{Dn}}}{{Bb{{E`{d}}}}}}{{{Eb{c}}}{{Eb{c}}}{EdEfEhEj}}{bd}{{{Bb{El}}}En}{e{{f{c}}}{}{{Fb{}{{F`{{f{c}}}}}}}}{e{{Fd{c}}}{}{{Fb{}{{F`{{Fd{c}}}}}}}}{Ffd}`{Bb{{Bb{c}}}{}}0000000000000000000000000{{{Bb{B`}}}{{Bb{B`c}}}{}}0000000000000000000000000{{Fhc}Fh{{Fj{Ab}}}}{Fhd}{{{Fl{c}}}e{}{}}0000000000000000000000000{{{Bb{Al}}}Ad}{{{Bb{Al}}}d}0{{{f{c}}{f{c}}}{{f{c}}}{}}`{{{Bb{Fn}}}Fn}{{{Bb{{Eb{c}}}}}{{Eb{c}}}{EdEdEfEhEj}}{{{Bb{G`}}}G`}{{{Bb{Gb}}}Gb}{{{Bb{Gd}}}Gd}{{{Bb{Gf}}}Gf}{{{Bb{Fh}}}Fh}{{{Bb{El}}}El}{{{Bb{A`}}}A`}{{{Bb{n}}}n}{{{Bb{Gh}}}Gh}{{{Bb{b}}}b}{{{Bb{Gj}}}Gj}{{{Bb{Gl}}}Gl}{{{Bb{Ab}}}Ab}{{{Bb{{Ad{c}}}}}{{Ad{c}}}Ed}{{{Bb{{Al{c}}}}}{{Al{c}}}Ed}{{{Bb{Dj}}}Dj}{{{Bb{Bn}}}Bn}{{{Bb{Ff}}}Ff}{{{Bb{{An{c}}}}}{{An{c}}}Ed}{{{Bb{Dn}}}Dn}{{{Bb{{Af{c}}}}}{{Af{c}}}Ed}{{Bb{Bb{B`c}}}Bd{}}0000000000000000000000{{BbGn}Bd}0000000000000000000000{{}}{{{f{c}}}{{f{{H`{c}}}}}Bh}{{G`c}G`{{Fj{b}}}}{G`b}{Ffb}`{ce{}{}}0000000000000000000000000{{{Bb{Al}}Ad}C`}{{HbHd}El}{{HbHdc}El{{Hh{Hd}{{Ah{Hf}}}}}}`{{eio}{{Hj{{`{{Ch{}{{Cb{c}}{Cd{g}}{Cf{k}}}}}}}}}{}{{Hl{c}}}{CnD`}{{Db{cg}}}{DdDf}`{{Hn{cgkm}}}}{{}G`}{{}Gd}{{}Fh}<<<<<<<<<<<{{}El}={{}{{I`{Bj}}}}>0>0{{}b}{{}Gj}{{}Ab}{{}{{Ad{c}}}Dd}{{}{{Al{c}}}Dd}{{}Dj}{{}Bn}{{}Ff}{{}{{An{c}}}Dd}{{}Dn}{{}{{Af{c}}}Dd}{BnGd}{BnAb}{DjA`}{{{Eb{c}}Ib}{{Eb{c}}}{EdEfEhEj}}{Id{{Bb{c}}}{}}0000000000000000000000000{Id{{Bb{B`c}}}{}}0000000000000000000000000{{{f{c}}}{{f{e}}}BhBh}{{{Bb{{Ad{c}}}}{Ad{c}}}c{IfIh}}{{{Bb{Al}}Ad}d}{{nd}}{{nn}}{{AbAb}Ab}{{Abd}Ab}{{AbIj}Ab}{c{{f{c}}}Bh}{Bb{{Bb{c}}}{}}0000000000000000000000000{IdBd}0000000000000000000000000={{{Eb{c}}Il}{{Eb{c}}}{EdEfEhEj}}{{GlGl}Gl}{{{Bb{In}}e}c{}{{Hh{}{{Ah{c}}}}}}{{{Bb{Fn}}{Bb{Fn}}}C`}{{{Bb{G`}}{Bb{G`}}}C`}{{{Bb{Gb}}{Bb{Gb}}}C`}{{{Bb{Gd}}{Bb{Gd}}}C`}{{{Bb{Gf}}{Bb{Gf}}}C`}{{{Bb{Fh}}{Bb{Fh}}}C`}{{{Bb{El}}{Bb{El}}}C`}{{{Bb{A`}}{Bb{A`}}}C`}{{{Bb{A`}}{Bb{d}}}C`}{{{Bb{n}}{Bb{d}}}C`}{{{Bb{n}}{Bb{n}}}C`}{{{Bb{Gh}}{Bb{Gh}}}C`}{{{Bb{b}}{Bb{b}}}C`}{{{Bb{Gj}}{Bb{Gj}}}C`}{{{Bb{Gl}}{Bb{Gl}}}C`}{{{Bb{Ab}}{Bb{Ab}}}C`}{{{Bb{{Ad{c}}}}{Bb{{Ad{c}}}}}C`Eh}{{{Bb{{Al{c}}}}{Bb{{Al{c}}}}}C`Eh}{{{Bb{Dj}}{Bb{Dj}}}C`}{{{Bb{Ff}}{Bb{Ff}}}C`}{{{Bb{{An{c}}}}{Bb{{An{c}}}}}C`Eh}{{{Bb{Dn}}{Bb{Dn}}}C`}{{{Bb{{Af{c}}}}{Bb{{Af{c}}}}}C`Eh}{{Bb{Bb{c}}}C`{}}00000000000000000000``{{}{{f{c}}}{}}{{Alc}Al{{Fj{Fh}}}}{{Anc}An{{Fj{An}}}}{{{Bb{El}}}{{Bb{Hf}}}}{GdJ`}{{{Bb{Gl}}}Jb}{{FhAnAn}Fh}{{{Bb{Gj}}AnAn}An}{{{Bb{Gl}}}Gl}{{{Bb{{Fd{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}{}}{{{Bb{Jh}}{Bb{B`Jd}}}Jj}0{{{Bb{Fn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{{Eb{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}{D`EdEfEhEj}}{{{Bb{G`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Gb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Gd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Gf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Fh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{El}}{Bb{B`Jd}}}{{Bl{BdJf}}}}0{{{Bb{A`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{n}}{Bb{B`Jd}}}{{Bl{BdJf}}}}0{{{Bb{Gh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{b}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Gj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}0{{{Bb{Gl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Ab}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{{Ad{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{{Ad{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}Jl}{{{Bb{{Al{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{Dj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Bn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Ff}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{{An{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{Dn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{{Af{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}`{BnH`}{Bd{{f{c}}}{}}{cc{}}00{JnJh}{K`Fn}{KbFn}33333{KdGf}4{AbFh}{JbFh}{{{E`{d}}}Fh}{{{E`{Jb}}}Fh}{dFh}999{dA`}{GnA`}{A`n}{Gnn}={dn}>{GfGh}{KdGh}{bGh}{{{E`{d}}}b}{{{Kh{Kfd}}}b}{Kfb}2{cc{}}00{AbGl}{dGl}{JbGl}3{dAb}{JbAb}{{{j{cc}}}{{Ad{c}}}Ih}6{{{E`{c}}}{{Ad{c}}}Ih}7{{{Al{Ij}}}Al}{dDj}{nDj}:::{{{j{cc}}}{{An{c}}}{}}{{{E`{c}}}{{An{c}}}{}}{FhAn}={{{Af{c}}}{{An{c}}}{}}>{{{E`{c}}}{{Af{c}}}{}}{{{An{c}}}{{Af{c}}}{}}{cc{}}00000000000000000000000000{Kj{{Bf{A`}}}}{Kj{{Bf{n}}}}{Kl{{Bf{A`}}}}{Kl{{Bf{n}}}}{{dddd}b}{{ddd}b}{{GnGnGn}b}2{{GnGnGnd}b}{ce{}{}}0000000000000000000000000{Kn{{Bf{A`}}}}{Kn{{Bf{n}}}}{e{{f{c}}}{}{{L`{}{{Ah{c}}}}Bh}}`{bd}{{{Eb{c}}c}{{Eb{c}}}{EdEfEhEj}}{{{Bb{B`{Eb{c}}}}c}Bd{EdEfEhEj}}`{{{Bb{Fn}}{Bb{B`c}}}BdLb}{{{Bb{Gd}}{Bb{B`c}}}BdLb}{{{Bb{Gj}}{Bb{B`c}}}BdLb}{{{Bb{{An{c}}}}{Bb{B`e}}}BdLdLb}{Al}{An}`{Fhd}{BnBf}{{}Id}0000000000000000000000000{{{Bb{{Eb{C`}}}}ccLf}c{LhEd}}{{{Bb{{Eb{c}}}}gLf}e{EdEfEhEj}Lh{{Bj{c}{{Ah{e}}}}}}{{{Bb{Al}}{Bb{Al}}}{{Bf{Al}}}}{{{Bb{Al}}{Bb{Al}}}C`}{{}c{}}000000000000000000000000000000000000000000000000000{{{I`{c}}}{{I`{Dl}}}{}}0000000000000000000000000{{{Lj{c}}}{{Lj{Dl}}}{}}00000000000000000000000{{{Ll{c}}}{{Ll{Dl}}}{}}0000000000000000000000000{{{Fl{c}}}e{}{}}00000000000000000000000004444444444444444444444444444444444444444444444444444{b{{E`{d}}}}{b{{E`{Gn}}}}{{}c{}}0000000000000000000000000{bb}{{{Bb{B`b}}}Bd}{{{Bb{{Eb{c}}}}Lf}C`{EdEfEhEj}}{{{Bb{Gl}}}C`}<`{{Fhc}Fh{{Fj{Ab}}}}{Fhd}{{{f{c}}g}{{f{e}}}BhBh{{Ln{c}{{Ah{e}}}}Bh}}{{{Fd{c}}g}{{Fd{e}}}{}{}{{Bj{c}{{Ah{e}}}}BhEd}}{{AnAn}An}0`{{A`d}}{{nn}}{{nd}}{{Abd}Ab}{{AbAb}Ab}{{AdDn}Ad}{{Ald}Al}{{{Al{c}}{Af{c}}}{{Al{c}}}{{M`{}{{Ah{}}}}Ef}}{{AlDn}Al}{{{An{c}}c}{}{{M`{}{{Ah{}}}}Ef}}{{{An{c}}{Af{c}}}{}{{M`{}{{Ah{}}}}Ef}}{{AnDn}An}{{DnDn}Dn}{{{Af{c}}c}{{Af{c}}}{{M`{}{{Ah{}}}}Ef}}{{AfDn}Af}{{{Af{c}}}{}{{Mb{}{{Ah{}}}}}}{Mdc{}}{{}{{Bl{InMf}}}}{c{{Eb{c}}}{EdEfEhEj}}{dFh}{{cc}{{Ad{c}}}Ih}{{AdAn}Al}{{cc}{{An{c}}}{}}{{cc}{{Af{c}}}{}}{{}{{f{c}}}{}}{{}{{Fd{c}}}{}}{{}c{}}00000000000000{FfAf}{{IjIj}Dn}``{{{Bb{El}}}Hd}{{{Bb{Mh}}}{{Bf{b}}}}{{{Bb{A`}}{Bb{A`}}}{{Bf{Mj}}}}{{{Bb{A`}}{Bb{d}}}{{Bf{Mj}}}}{{{Bb{n}}{Bb{d}}}{{Bf{Mj}}}}{{{Bb{n}}{Bb{n}}}{{Bf{Mj}}}}{{{Bb{Ab}}{Bb{Ab}}}{{Bf{Mj}}}}{{ei}{{f{g}}}Bh{{L`{}{{Ah{c}}}}Bh}Bh{{Bj{c}{{Ah{g}}}}Bh}}{{{Bb{Al}}}Ad}{{{Eb{c}}}{{Eb{c}}}{EdEfEhEj}}{bd}{Djn}{{{Bb{B`Dj}}}{{Bb{B`n}}}}{G`Ml}{{nn}}{{{Eb{c}}Ij}{{Eb{c}}}{EdEfEhEj}}6{{Fhc}Fh{{Fj{Ab}}}}{Fhd}{{Aln}Al}{{Ann}An}{{G`c}G`{{Fj{Ml}}}}{{eio}MnDd{{Cl{c}}}{D`Cn}{{Db{cg}}}{DdDf}`{{Dh{cgkm}}}}{{{Ch{}{{Cb{c}}{Cd{e}}{Cf{g}}{N`{i}}{Nb{k}}}}Bn{Bf{Nd}}}Mn{}{CnD`}{DdDf}`In}0{{ei}{{f{g}}}{}{{Nf{}{{F`{c}}}}Bh}{}{{Bj{c}{{Ah{g}}}}Bh}}{{{Nh{}{{Ah{e}}}}}{{Fd{c}}}{}{{Nf{}{{F`{c}}}}Bh}}{{{Ch{}{{Cb{c}}{Cd{e}}{Cf{g}}{N`{i}}{Nb{k}}}}Bn{Bf{Nd}}m}Mn{}{CnD`}{DdDf}`In{{Hh{}{{Ah{{j{c{f{e}}}}}}}}}}0{{c{Nh{{Bb{c}}}{{Ah{g}}}}}{{Fd{e}}}Ld{}{{Nf{}{{F`{e}}}}Bh}}{dDn}{{Gfd}Gf}{{Ghd}Gh}{{bd}b}{{{Bb{{Ch{}{{Cb{c}}{Cd{e}}{Cf{g}}{N`{i}}{Nb{k}}}}}}{Bb{c}}Nj}Kj{}{CnD`}{DdDf}`In}0{{{Bb{Dn}}}d}{{Alc}Al{{Fj{Fh}}}}{{{Bb{Al}}}An}{{{Eb{c}}}{{Eb{c}}}{EdEfEhEj}}{Al{{Bf{{Al{Ij}}}}}}{{{Bb{In}}c}Bd{{L`{}{{Ah{Bd}}}}Bh}}`{e{{f{c}}}{}{{Nf{}{{F`{c}}}}Bh}}{GdNl}{{{Bb{{Ch{}{{Cb{c}}{Cd{e}}{Cf{g}}{N`{i}}{Nb{k}}}}}}{Bb{c}}{Bb{g}}}En{}{CnD`}{DdDf}`In}0{{{Bb{El}}BbNn}O`}{{{Bb{El}}Bb}Ob}{{{Bb{El}}BbOd}Of}{{{Bb{El}}BbOh}Oj}{{{Bb{El}}{Bb{{I`{Bj}}}}Ol}On}{{{Bb{El}}Bb}A@`}{{{Bb{El}}BbA@b}A@d}{{{Bb{El}}Bb}A@f}{{{Bb{El}}BbA@h}A@j}{{{Bb{El}}BbA@l}A@n}{{{Bb{El}}{Bb{{I`{Bj}}}}}AA`}{{{Bb{El}}{Bb{{I`{Bj}}}}}AAb}{{{Bb{El}}BbAAd}AAf}{{{Bb{El}}Bb}AAh}{{{Bb{El}}Bb}AAj}{{{Bb{El}}BbAAl}AAn}{{{Bb{El}}BbAB`}ABb}{GdABd}{{nn}}{{{Ad{c}}{Af{c}}}{{Ad{c}}}{{ABf{}{{Ah{}}}}}}{{{Ad{c}}{Ad{c}}}{{Af{c}}}{{ABf{}{{Ah{}}}}}}{{{Al{c}}{Af{c}}}{{Al{c}}}{{ABf{}{{Ah{}}}}}}{{{An{c}}{An{c}}}{}{{ABf{}{{Ah{}}}}}}{{{Af{c}}{Af{c}}}{{Af{c}}}{{ABf{}{{Ah{}}}}}}{{{Bb{B`n}}n}Bd}{{{Bb{{Ch{}{{Cb{c}}{Cd{e}}{Cf{g}}{N`{i}}{Nb{k}}}}}}{Bb{c}}}{{Fd{e}}}{}{CnD`}{DdDf}`In}0```{{{Bb{{Ch{}{{Cb{c}}{Cd{e}}{Cf{g}}{N`{i}}{Nb{k}}}}}}{Bb{c}}Nj}g{}{CnD`}{DdDf}`In}0{{{f{c}}g}{{f{e}}}BhBh{{Ln{c}{{Ah{{f{e}}}}}}Bh}}`{{{Bb{{Ch{}{{Cb{c}}{Cd{e}}{Cf{g}}{N`{i}}{Nb{k}}}}}}{Bb{c}}Nj}Hb{}{CnD`}{DdDf}`In}0{{{Bb{n}}{Bb{Al}}}{{j{AdAd}}}}{Bbc{}}0000000000000000000000{BbABh}0000{BbHb}0000{{Fhc}Fh{{Fj{Ab}}}}{Fhd}`{{dd}Dn}{{{Bb{Dn}}}Af}{{}{{Bl{c}}}{}}0000000000000000000000000{c{{Bl{e}}}{}{}}0000000000000000000000000{{}{{Bl{c}}}{}}0000000000000000000000000{{}{{Bl{c{ABj{c}}}}}{}}0000000000000000000000000{BbABl}0000000000000000000000000{ce{}{}}0000000000000000000000000{{}c{}}0000000000000000000000000{{{Bb{Al}}{Bb{Al}}}Al}{Bb{{Bf{{Bb{c}}}}}{}}0000000000000000000000000{{{Bb{{Ch{}{{Cb{c}}{Cd{e}}{Cf{g}}{N`{i}}{Nb{k}}}}}}{Bb{B`c}}e}{{f{e}}}{}{CnD`}{DdDf}`In}{{{Bb{{Eb{c}}}}}c{EdEfEhEj}}={{{Eb{c}}}{{Eb{c}}}{EdEfEhEj}}0{{{Bb{{Ch{}{{Cb{c}}{Cd{e}}{Cf{g}}{N`{i}}{Nb{k}}}}}}{Bb{c}}Nj}{{ABn{egi}}}{}{CnD`}{DdDf}`In}{{}c{}}0000000000000000000000000{GdAC`}``{{G`c}G`{{Fj{Ab}}}}{G`d}{Al}{An}`{{{Fd{c}}e}{{Fd{{j{ec}}}}}{}{LdEdCnACb}}{{{Bb{Mh}}}Gd}{dAl}{{{An{c}}}{{Al{c}}}Dd}{{AdAdAd}{{j{Aln}}}}{Ad}7{Af}180```````{eg{}{{l{c}}}{}}00{{{Bb{{ACd{c}}}}}C`{}}{ce{}{}}00{{}c{}}00{Bb{{Bb{Dl}}}}00{{{Bb{B`}}}{{Bb{B`Dl}}}}00{Bb{{Bb{c}}}{}}00{{{Bb{B`}}}{{Bb{B`c}}}{}}00{{{Bb{ACf}}}Al}{AChAn}{{{Fl{c}}}e{}{}}00{{{Bb{B`{ACd{c}}}}}Bd{}}{{{Bb{ACj}}}{{H`{ACl}}}}{ACf{{`{ACn}}}}{{{Bb{B`AD`}}}Bd}`{{{Bb{ACf}}}ACf}{{{Bb{{ACh{ce}}}}}{{ACh{ce}}}EdEd}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0{ce{}{}}00{ACh}{Id{{Bb{c}}}{}}00{Id{{Bb{B`c}}}{}}00{{{Bb{ACj}}{Bb{B`ACl}}}Bd}{Bb{{Bb{c}}}{}}00{{{Bb{ADb}}{Bb{B`c}}{Bb{e}}{Bb{ADd}}ACfADf}BdAD`{}}{{{Bb{ACj}}{Bb{ACl}}{Bb{B`c}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}BdAD`{}}{IdBd}00=={{{Bb{{ACd{c}}}}}ADh{}}{{{Bb{B`AD`}}ADjc}Bd{{Fj{Gh}}}}{{{Bb{ACf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{{ACh{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`D`}{{{Bb{{ACd{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}<{cc{}}00000{ce{}{}}00`{AChK`}`{{}Id}00{{{Bb{{ACd{c}}}}}{{Bb{ADl}}}{}}{{{Bb{B`{ACd{c}}}}}{{Bb{B`ADl}}}{}}{{}c{}}00000{{{I`{c}}}{{I`{Dl}}}{}}00{{{Lj{c}}}{{Lj{Dl}}}{}}00{{{Ll{c}}}{{Ll{Dl}}}{}}00{{{Fl{c}}}e{}{}}00444444{{}c{}}00{{{Bb{B`{ACd{c}}}}}Bd{}}0{{{Bb{{ACd{c}}}}}C`{}}00{{{Bb{ADb}}ACf{Bb{c}}Ad}C`AD`}`{{{Bb{B`ADb}}{Bb{c}}An}ADnAD`}{{{Bb{ACj}}{Bb{B`ACl}}{Bb{c}}{Bb{AE`}}}ADnAD`}{AChAEb}{{{Bb{B`{ACd{c}}}}{ACd{e}}g}Bd{}{}{{Bj{e}{{Ah{c}}}}}}`{{{Bb{ADb}}ACfADf{Bb{Al}}{Bb{c}}}AEdAD`}{{{Bb{ACj}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{c}}}AEdAD`}{{{Bb{ADn}}}ACf}{{{Bb{B`{H`{c}}}}}{{ACd{c}}}{}}{{{Bb{B`ADb}}ACf{Bb{c}}{Bb{B`AEf}}}BdAD`}{{{Bb{ACj}}{Bb{B`ACl}}ACf{Bb{c}}{Bb{B`AEf}}}BdAD`}`{{{Bb{B`ADb}}ACf{Bb{c}}}{{Bf{{AEh{egc}}}}}AD`{}{}}{{{Bb{B`ACj}}{Bb{B`ACl}}ACf{Bb{c}}Af}{{Bf{{AEh{egc}}}}}AD`{}{}}{{{Bb{ACf}}}Ad}{{{Bb{B`{ACd{c}}}}c}Bd{}}{{{Bb{AEj}}AEl}{{Bf{Hb}}}}{{{Bb{{ACd{c}}}}}AEn{}}`{{{Bb{B`{ACd{c}}}}AEn}Bd{}}{{{Bb{B`{ACd{c}}}}{Bb{{ADl{e}}}}}Bd{}{{AF`{Mh}}}}{{{Bb{B`{ACd{c}}}}}Bd{}}{{{Bb{B`{ACd{c}}}}e}Bd{}{{Fj{AEn}}}}{{{Bb{B`{ACd{c}}}}e}Bd{}Hh}{AChAFb}{{{Bb{ACj}}}{{An{Gl}}}}{AChAb}1{{{Bb{B`AD`}}Al}Bd}{{{Bb{B`AD`}}Dn}Bd}{{{Bb{ACj}}}AFd}``{{{Bb{ACj}}}AFf}`{Bbc{}}0{{}{{Bl{c}}}{}}00{c{{Bl{e}}}{}{}}00{{}{{Bl{c}}}{}}00{{}{{Bl{c{ABj{c}}}}}{}}00{BbABl}00{ce{}{}}00{{}c{}}00{Bb{{Bf{{Bb{c}}}}}{}}00{{{Bb{B`ADb}}{Bb{Gb}}ACfADf{Bb{c}}{Bb{B`AEj}}{Bb{B`{ACd{e}}}}}BdAD`{}}{{{Bb{B`ACj}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{c}}{Bb{B`AEj}}{Bb{B`{ACd{e}}}}{Bb{Al}}}BdAD`{}}{AChKb}{{}c{}}00`{{{Bb{B`AD`}}Alc}Bd{{Hh{{Bb{B`AD`}}}}}}{{Af{Bb{ADn}}}ACf}{{{Bb{B`AD`}}Dnc}Bd{{Hh{{Bb{B`AD`}}}}}}{{{Bb{B`AD`}}Afc}Bd{{Hh{{Bb{B`AD`}}}}}}{AChAFh}{{{Bb{B`AEj}}AElHb}Bd}`````{eg{}{{l{c}}}{}}0{ce{}{}}0=={Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{AEl}}}AEl}{{{Bb{AFj}}}AFj}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}099{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}088{IdBd}0{{{Bb{AEl}}{Bb{AEl}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{AEl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AFj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{ce{}{}}0{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{{{Bb{AEj}}AEl}{{Bf{Hb}}}}{{{Bb{AFj}}AEl}{{Bf{Hb}}}}{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0{{{Bb{B`AEj}}AElHb}Bd}{{{Bb{B`AFj}}AElHb}Bd}````````````{eg{}{{l{c}}}{}}0000{{{Bb{B`AFl}}Id}Bd}{ce{}{}}000077777{Bb{{Bb{Dl}}}}0000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000{{{Bb{AFl}}}{{Bb{{AFn{Gn}}}}}}0{Bb{{Bb{c}}}{}}0000{{{Bb{B`}}}{{Bb{B`c}}}{}}0000{{{Fl{c}}}e{}{}}00003{{{Bb{B`AFl}}}Bd}{{{Bb{AFl}}}AFl}{{{Bb{{AG`{c}}}}}{{AG`{c}}}Ed}{{{Bb{AGb}}}AGb}{{{Bb{AGd}}}AGd}{{{Bb{AGf}}}AGf}{{Bb{Bb{B`c}}}Bd{}}0000{{BbGn}Bd}0000{{{Bb{AFl}}{Bb{AFl}}}Mj}{{{Bb{AGd}}{Bb{AGd}}}Mj}{{Bb{Bb{c}}}Mj{}}0{ce{}{}}0000{{{Bb{{AFn{Gn}}}}}AFl}{{{Bb{B`AFl}}Id}AFl}{{}AFl}{{}AGf}{{{Bb{AFl}}}{{Bb{{AFn{Gn}}}}}}{Id{{Bb{c}}}{}}0000{Id{{Bb{B`c}}}{}}0000{Bb{{Bb{c}}}{}}0000{{{Bb{B`{AGj{}{{AGh{c}}}}}}{AG`{c}}Al}BdEd}{IdBd}{{{Bb{B`AFl}}}Bd}1111{Bbc{{AGn{AGl}}}}0{{{Bb{AFl}}{Bb{AFl}}}C`}{{{Bb{AFl}}{Bb{{Bb{c}}}}}C`AH`}{{{Bb{AFl}}{Bb{{AFn{Gn}}}}}C`}{{{Bb{AFl}}{Bb{Mh}}}C`}{{{Bb{AFl}}{Bb{{H`{Gn}}}}}C`}{{{Bb{AFl}}{Bb{Hb}}}C`}{{{Bb{AFl}}{Bb{AHb}}}C`}{{{Bb{{AG`{c}}}}{Bb{{AG`{c}}}}}C`Eh}{{{Bb{AGb}}{Bb{AGb}}}C`}{{{Bb{AGd}}{Bb{AGd}}}C`}{{{Bb{AGf}}{Bb{AGf}}}C`}{{Bb{Bb{c}}}C`{}}00000000000{{AG`AGf}AG`}{AG`AGf}{{{Bb{AFl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}00{{{Bb{{AG`{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{AGb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AGd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AGf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{I`{{AFn{Gn}}}}}AFl}{AHdAFl}{{{Bb{{AFn{Gn}}}}}AFl}{{{Bb{Mh}}}AFl}{{{H`{Gn}}}AFl}{cc{}}{AHbAFl}{HbAFl}2{{{Bb{AGb}}}AG`}3{cAGb{{Fj{AHf}}}}{{{Bb{AGb}}}AGb}5555555{cAGb{{Fj{AFl}}}}{cAFl{{Fb{}{{F`{Gn}}}}}}{cAFl{{AF`{{AFn{Gn}}}}Cn}}4{{IjIjc}AGb{{Fj{AFl}}}}<{ce{}{}}0000{AG`}{{{Bb{AFl}}{Bb{B`c}}}BdLb}{{{Bb{AGd}}{Bb{B`c}}}BdLb}{{{Bb{AGf}}{Bb{B`c}}}BdLb}{{{Bb{AGb}}}AGd}{{}Id}0000{{}c{}}000000000{{{I`{c}}}{{I`{Dl}}}{}}0000{{{Lj{c}}}{{Lj{Dl}}}{}}0000{{{Ll{c}}}{{Ll{Dl}}}{}}0000{{{Fl{c}}}e{}{}}00004444444444{{{Bb{AFl}}}}{AFl}{{}c{}}0000{{{Bb{AFl}}}C`}0{{{Bb{AFl}}}Id}{{{Bb{{AGj{}{{AGh{c}}}}}}{Bb{c}}}{{An{Ij}}}Ed}{{}AFl}{cAG`{{Fj{AGb}}}}55{{AG`c}AG`{{Fj{d}}}}{AG`d}{{{Bb{AFl}}{Bb{{AFn{Gn}}}}}{{Bf{Mj}}}}{{{Bb{AFl}}{Bb{AFl}}}{{Bf{Mj}}}}{{{Bb{AFl}}{Bb{Mh}}}{{Bf{Mj}}}}{{{Bb{AFl}}{Bb{{Bb{c}}}}}{{Bf{Mj}}}AH`}{{{Bb{AFl}}{Bb{Hb}}}{{Bf{Mj}}}}{{{Bb{AFl}}{Bb{{H`{Gn}}}}}{{Bf{Mj}}}}{{{Bb{AGd}}{Bb{AGd}}}{{Bf{Mj}}}}<{{AG`c}AG`{{Fj{n}}}}{AG`n}{{{Bb{AFl}}c}AFl{{AHh{Id}}}}{{{Bb{AFl}}{Bb{{AFn{Gn}}}}}AFl}{{AG`C`}AG`}{AG`C`}{{{Bb{B`AFl}}Id}AFl}0{Bbc{}}0000{{{Bb{B`AFl}}Id}Bd}{{}{{Bl{c}}}{}}0000{c{{Bl{e}}}{}{}}0000{{}{{Bl{c}}}{}}0000{{}{{Bl{c{ABj{c}}}}}{}}0000{AFl{{Bl{AHbAFl}}}}{BbABl}0000{ce{}{}}0000{{}c{}}0000{Bb{{Bf{{Bb{c}}}}}{}}0000{{}c{}}0000{AHjIj}{AHjAGd}{AHjAFl}2````{eg{}{{l{c}}}{}}0{{ADnFnFnAn}ADn}{{{Bb{B`ADn}}FnFnAn}Bd}{ce{}{}}099{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{{{Bb{AE`}}ce}ADn{{Fj{Gl}}}{{Fj{Gl}}}}{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Bb{ADn}}}Al}{{{Fl{c}}}e{}{}}0{{{Bb{ADn}}}{{Bb{{AFn{ADn}}}}}}{{{Bb{AE`}}}AE`}{{{Bb{ADn}}}ADn}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0<<{{{Bb{AE`}}ceg}ADn{{Fj{Gl}}}{{Fj{Gl}}}{{Hh{{Bb{AE`}}}{{Ah{ADn}}}}}}{{ADnFh}ADn}{{}ADn}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}0=={IdBd}0{{{Bb{AE`}}{Bb{AE`}}}C`}`{{{Bb{AE`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{ADn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{ce{}{}}0{{AE`c}AE`{{Fj{Gl}}}}{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{{{Bb{AE`}}}AE`}{{{Bb{AE`}}}An}{{AE`d}AE`}0100{{ADnc}ADn{{Fj{Ad}}}}{{{Bb{B`ADn}}c}Bd{{Fj{Ad}}}}{{AnAn}AE`}{AnADn}{{{Bb{AE`}}dce}ADn{{Hh{{Bb{AE`}}}{{Ah{ADn}}}}}{{Hh{{Bb{AE`}}}{{Ah{ADn}}}}}}8{{{Bb{AE`}}cegi}ADn{{Fj{Gl}}}{{Fj{Gl}}}{{Fj{Fh}}}{{Hh{{Bb{AE`}}}{{Ah{ADn}}}}}}{{{Bb{AE`}}cegik}ADn{{Fj{Gl}}}{{Fj{Gl}}}{{Fj{Fh}}}{{Hh{{Bb{AE`}}}{{Ah{ADn}}}}}{{Hh{ADnAn}{{Ah{ADn}}}}}}{{{Bb{AE`}}ceAn}An{{Fj{Gl}}}{{Fj{Gl}}}}{{{Bb{AE`}}c}AE`{{Fj{An}}}}{{{Bb{ADn}}}An}{{{Bb{AE`}}ceg}ADn{{Fj{Gl}}}{{Fj{Gl}}}{{Hh{{Bb{AE`}}}{{Ah{An}}}}}}{Bbc{}}0{{ADnc}ADn{{Fj{Af}}}}{{{Bb{B`ADn}}c}Bd{{Fj{Af}}}}{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0{{AE`c}AE`{{Fj{Gl}}}}{{An{H`{ADn}}}ADn}```{eg{}{{l{c}}}{}}{ce{}{}}6{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}5{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}4{IdBd}{{{Bb{AHl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}};33{{}c{}}{{AHl{Bb{c}}{Bb{AE`}}GlGlFhdFn{Bb{{AFn{{AHn{egc}}}}}}{Bb{B`{AFn{ACl}}}}}ADnAD`{}{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}``````````````````````````````````````````{eg{}{{l{c}}}{}}{ce{}{}}4{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}`{{{Bb{AI`}}}AI`}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}8{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}7{IdBd}{{{Bb{AI`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}>33{{}c{}}{{{Bb{AI`}}}AIb}{{AI`Dn}AI`}{{AdAId{Bf{AI`}}}AI`}{{{Bb{AI`}}}Ad}{Bbc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}{AIfAIh}{AIjAd}{AIld}{AInd}10`````{eg{}{{l{c}}}{}}{ce{}{}}8{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{AIb}}}AIb}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}8{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}7{IdBd}{{{Bb{AIb}}{Bb{AIb}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{AIb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}44{{}c{}}{Bbc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}```{eg{}{{l{c}}}{}}0{ce{}{}}044{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}055{{}{{AJ`{ceg}}}{}{}AD`}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}055{{{Bb{ADb}}{Bb{B`c}}{Bb{e}}{Bb{ADd}}ACfADf}BdAD`{}}{{{Bb{{AEh{ceg}}}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf}Bd{}{}AD`}{{{Bb{{AJ`{ceg}}}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf}Bd{}{}AD`}{IdBd}0{cc{}}{{{AJ`{ceg}}}{{AEh{ceg}}}{}{}AD`}111{{{Bb{B`{AFn{{AHn{ceg}}}}}}{Bb{B`ACl}}ACf{Bb{g}}Af}{{Bf{{AEh{ceg}}}}}{}{}AD`}{ce{}{}}0{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0??2222{{}c{}}0{{{Bb{{AEh{ceg}}}}ACf{Bb{g}}Ad}C`{}{}AD`}{{{Bb{{AJ`{ceg}}}}ACf{Bb{g}}Ad}C`{}{}AD`}{{{Bb{ADb}}ACf{Bb{c}}Ad}C`AD`}{{{Bb{B`ADb}}{Bb{c}}An}ADnAD`}{{{Bb{B`{AEh{ceg}}}}{Bb{g}}An}ADn{}{}AD`}{{{Bb{B`{AJ`{ceg}}}}{Bb{g}}An}ADn{}{}AD`}{{{AEh{ceg}}{Bb{Bj}}}{{AEh{ieg}}}{}{}AD`{}}{{{Bb{{AEh{ceg}}}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}{}AD`}{{{Bb{{AJ`{ceg}}}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}{}AD`}{{{Bb{ADb}}ACfADf{Bb{Al}}{Bb{c}}}AEdAD`}{{{I`{ADb}}}{{AEh{ceg}}}{}{}AD`}{{}{{AJ`{ceg}}}{}{}AD`}<{{{Bb{B`{AEh{ceg}}}}ACf{Bb{g}}{Bb{B`AEf}}}Bd{}{}AD`}{{{Bb{B`{AJ`{ceg}}}}ACf{Bb{g}}{Bb{B`AEf}}}Bd{}{}AD`}{{{Bb{B`ADb}}ACf{Bb{c}}{Bb{B`AEf}}}BdAD`}{{{Bb{B`{AEh{ceg}}}}ACf{Bb{g}}}{{Bf{{AEh{ceg}}}}}{}{}AD`}{{{AJ`{ceg}}}{{AEh{ceg}}}{}{}AD`}{{{Bb{B`{AJ`{ceg}}}}ACf{Bb{g}}}{{Bf{{AEh{ceg}}}}}{}{}AD`}{{{Bb{B`ADb}}ACf{Bb{c}}}{{Bf{{AEh{egc}}}}}AD`{}{}}{{{AJ`{ceg}}i}{{AJ`{ceg}}}{}{}AD`{{Fj{{AEh{ceg}}}}}}{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{{Bb{B`{AEh{ceg}}}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}}Bd{}{}AD`}{{{Bb{B`{AJ`{ceg}}}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}}Bd{}{}AD`}{{{Bb{B`ADb}}{Bb{Gb}}ACfADf{Bb{c}}{Bb{B`AEj}}{Bb{B`{ACd{e}}}}}BdAD`{}}{{}c{}}0{{{H`{{AEh{ceg}}}}}{{AJ`{ceg}}}{}{}AD`}````{eg{}{{l{c}}}{}}0{ce{}{}}088{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{ADjG`}{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{ADjAl}{{{Fl{c}}}e{}{}}0{{{Bb{B`AD`}}}Bd}{{{Bb{ADj}}}ADj}{{{Bb{ADd}}}ADd}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0<<{{}ADj}{{}ADd}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}0<<{IdBd}099{{{Bb{ADj}}{Bb{ADj}}}C`}{{{Bb{ADd}}{Bb{ADd}}}C`}{{{Bb{B`AD`}}ADjc}Bd{{Fj{Gh}}}}{{{Bb{ADj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{ADd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{ce{}{}}0{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{{GdAb}AJb}11{{{Bb{B`AJb}}{An{Ij}}db}{{H`{Gn}}}}{ADjFf}{{{Bb{B`AD`}}Al}Bd}{{{Bb{B`AD`}}Dn}Bd}{ADdb}{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0{{{Bb{B`AD`}}Alc}Bd{{Hh{{Bb{B`AD`}}}}}}{{{Bb{B`AD`}}Dnc}Bd{{Hh{{Bb{B`AD`}}}}}}{{{Bb{B`AD`}}Afc}Bd{{Hh{{Bb{B`AD`}}}}}}```````````{eg{}{{l{c}}}{}}00{ce{}{}}00777{Bb{{Bb{Dl}}}}00{{{Bb{B`}}}{{Bb{B`Dl}}}}00{Bb{{Bb{c}}}{}}00{{{Bb{B`}}}{{Bb{B`c}}}{}}00{{{Fl{c}}}e{}{}}00{{{Bb{AJd}}}AJd}{{{Bb{AJf}}}AJf}{{{Bb{AJh}}}AJh}{{Bb{Bb{B`c}}}Bd{}}00{{BbGn}Bd}00:::{Id{{Bb{c}}}{}}00{Id{{Bb{B`c}}}{}}00999{IdBd}00{{{Bb{AJd}}{Bb{AJd}}}C`}{{{Bb{AJf}}{Bb{AJf}}}C`}{{{Bb{AJh}}{Bb{AJh}}}C`}{{Bb{Bb{c}}}C`{}}00000{{{Bb{AJd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AJf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AJh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}00000{e{{Fd{c}}}{}{{AJj{}{{Ah{c}}}}}}{ce{}{}}00{{{Bb{{AJj{}{{Ah{c}}}}}}{Bb{B`AJl}}}Bd{}}{{}Id}00{{}c{}}00000{{{I`{c}}}{{I`{Dl}}}{}}00{{{Lj{c}}}{{Lj{Dl}}}{}}00{{{Ll{c}}}{{Ll{Dl}}}{}}00{{{Fl{c}}}e{}{}}00444444{{{Fd{c}}}{{H`{{I`{AJj}}}}}{}}{{}c{}}00{{{I`{{AJj{}{{Ah{c}}}}}}{AJn{{I`{Nf}}}}}{{AJn{{I`{Nf}}}}}{}}{Bbc{}}00{{}{{Bl{c}}}{}}00{c{{Bl{e}}}{}{}}00{{}{{Bl{c}}}{}}00{{}{{Bl{c{ABj{c}}}}}{}}00{BbABl}00{ce{}{}}00{{}c{}}00{Bb{{Bf{{Bb{c}}}}}{}}00{{}c{}}00{AK`Gb}{AK`ADh}{AK`Nj}``````{eg{}{{l{c}}}{}}00{ce{}{}}00777{Bb{{Bb{Dl}}}}00{{{Bb{B`}}}{{Bb{B`Dl}}}}00{Bb{{Bb{c}}}{}}00{{{Bb{B`}}}{{Bb{B`c}}}{}}00{{{Fl{c}}}e{}{}}00{{{Bb{{AKb{c}}}}}{{AKb{c}}}Ed}{{{Bb{AKd}}}AKd}{{{Bb{AKf}}}AKf}{{Bb{Bb{B`c}}}Bd{}}00{{BbGn}Bd}00{{AKbc}AKb{{Fj{b}}}}{AKbBf}<<<{{{Bb{AKd}}}{{Bb{AKf}}}}{Id{{Bb{c}}}{}}00{Id{{Bb{B`c}}}{}}00<<<{{{Bb{B`AKh}}AKbAl}Bd}{IdBd}00{{{Bb{{AKb{c}}}}{Bb{{AKb{c}}}}}C`Eh}{{{Bb{AKd}}{Bb{AKd}}}C`}{{{Bb{AKf}}{Bb{AKf}}}C`}{{Bb{Bb{c}}}C`{}}00000{{{Bb{{AKb{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{AKd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AKf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AKd}}}AKb}{cc{}}{cAKd{{Fj{AHf}}}}11111{cAKd{{Fj{{AKj{{AFn{Gn}}}}}}}}{cAKd{{Fj{AHf}}}}{ce{}{}}00{AKb}{{{Bb{AKd}}{Bb{B`c}}}BdLb}{{{Bb{AKf}}{Bb{B`c}}}BdLb}{{{Bb{AKd}}}Kn}{{}Id}00{{}c{}}00000{{{I`{c}}}{{I`{Dl}}}{}}00{{{Lj{c}}}{{Lj{Dl}}}{}}00{{{Ll{c}}}{{Ll{Dl}}}{}}00{{{Fl{c}}}e{}{}}00444444{{}c{}}00{{{Bb{AKh}}{Bb{AKd}}}{{An{Ij}}}}{cAKb{{Fj{AKd}}}}{{AKbc}AKb{{Fj{d}}}}{AKbd}{{AKbc}AKb{{Fj{n}}}}{AKbn}{Bbc{}}00{{}{{Bl{c}}}{}}00{c{{Bl{e}}}{}{}}00{{}{{Bl{c}}}{}}00{{}{{Bl{c{ABj{c}}}}}{}}00{BbABl}00{ce{}{}}00{{}c{}}00{Bb{{Bf{{Bb{c}}}}}{}}00{{}c{}}00```````````````````````````````````````{eg{}{{l{c}}}{}}000000{ce{}{}}0000004444444{Bb{{Bb{Dl}}}}000000{{{Bb{B`}}}{{Bb{B`Dl}}}}000000{{{AKl{ce}}g}{{AKl{ce}}}{}{}{{Fj{Gh}}}}{AKnGh}{{{AKl{ce}}{Bf{g}}}{{AKl{ce}}}{}{}{{Fj{Gh}}}}{{{AKl{ce}}g}{{AKl{ce}}}{}{}{{Fj{G`}}}}{AKnG`}{{{AKl{ce}}{Bf{g}}}{{AKl{ce}}}{}{}{{Fj{G`}}}}{Bb{{Bb{c}}}{}}000000{{{Bb{B`}}}{{Bb{B`c}}}{}}000000{{{Bb{{ALb{}{{AL`{c}}}}}}}An{EfEhDd}}{AChAn}{{{Fl{c}}}e{}{}}000000{{{Bb{B`{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}}Id}Bd{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}{{{Bb{AFb}}}AFb}{{{Bb{AFh}}}AFh}{{{Bb{AEb}}}AEb}{{{Bb{AM`}}}AM`}{{{Bb{AMb}}}AMb}{{{Bb{{AKl{ce}}}}}{{AKl{ce}}}EdEd}{{{Bb{AKn}}}AKn}{{Bb{Bb{B`c}}}Bd{}}000000{{BbGn}Bd}000000{{{AKl{ce}}g}{{AKl{ce}}}{}{}{{Fj{b}}}}{AKlBf}{{{AKl{ce}}{Bf{g}}}{{AKl{ce}}}{}{}{{Fj{b}}}}{{{Bb{{AMd{}{{AL`{c}}}}}}{ACh{Bdc}}}AMb{EfEh}}{ce{}{}}000000{ACh}{{{Bb{{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}}}Id{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}{{{Bb{{ALb{}{{AL`{c}}}}}}}AMf{EfEhDd}}{AM`Id}{{{Bb{{ALb{}{{AL`{c}}}}}}}{{j{IdId}}}{EfEhDd}}{{}AFb}{{}AFh}{{}AEb}{{}{{AKl{ce}}}{}{}}{{{Bb{{AMl{}{{AL`{c}}{AMh{e}}{AMj{g}}}}}}}c{EfEh}{{AMd{}{{AL`{c}}}}}{{ALb{}{{AL`{c}}}}}}{{{Bb{{AMl{}{{AL`{c}}{AMh{e}}{AMj{g}}}}}}}Ab{EfEh}{{AMd{}{{AL`{c}}}}}{{ALb{}{{AL`{c}}}}}}{Id{{Bb{c}}}{}}000000{Id{{Bb{B`c}}}{}}000000{Bb{{Bb{c}}}{}}000000{IdBd}000000`{{{Bb{AFb}}{Bb{AFb}}}C`}{{{Bb{AFh}}{Bb{AFh}}}C`}{{{Bb{AEb}}{Bb{AEb}}}C`}{{{Bb{AM`}}{Bb{AM`}}}C`}{{{Bb{AMb}}{Bb{AMb}}}C`}{{{Bb{{AKl{ce}}}}{Bb{{AKl{ce}}}}}C`{}Eh}{{{Bb{AKn}}{Bb{AKn}}}C`}{{Bb{Bb{c}}}C`{}}00000000{{{Bb{B`{AMl{}{{AL`{c}}{AMh{e}}{AMj{g}}}}}}{Bb{g}}AdbAl}Bd{EfEh}{{AMd{}{{AL`{c}}}}}{{ALb{}{{AL`{c}}}}}}{{{Bb{B`{AMl{}{{AL`{c}}{AMh{e}}{AMj{g}}}}}}{Bb{e}}AdbAl}Bd{EfEh}{{AMd{}{{AL`{c}}}}}{{ALb{}{{AL`{c}}}}}}{{{Bb{B`{AMl{}{{AL`{c}}{AMh{e}}{AMj{g}}}}}}{ACh{Hbc}}AdbAl}Bd{EfEh}{{AMd{}{{AL`{c}}}}}{{ALb{}{{AL`{c}}}}}}{{{Bb{AFb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AFh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AEb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AM`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AMb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{{AKl{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`D`}{{{Bb{AKn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{AKl{ce}}g}{{AKl{ce}}}{}{}{{Fj{e}}}}{ACh}{AKlBf}{{{AKl{ce}}{Bf{g}}}{{AKl{ce}}}{}{}{{Fj{e}}}}{cc{}}00{AbAEb}{dAEb}222{{{Bb{Mh}}}{{AKl{ce}}}{}{}}33333333{ce{}{}}000000{{{Bb{{AMd{}{{AL`{c}}}}}}IdId}{{Bf{Ad}}}{EfEh}}{{{Bb{AFb}}{Bb{B`c}}}BdLb}{{{Bb{AFh}}{Bb{B`c}}}BdLb}{{{Bb{AEb}}{Bb{B`c}}}BdLb}{{{Bb{B`{ALb{}{{AL`{c}}}}}}c{Bb{B`e}}g}Bd{EfEhDd}ALj{{Bj{Bb}{{Ah{{AMn{c}}}}}}}};{{{Bb{B`{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}}{Bb{Mh}}}g{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}`{{{Bb{{AMd{}{{AL`{c}}}}}}Ad}{{Bf{Id}}}{EfEh}}{{{Bb{{AMd{}{{AL`{c}}}}}}Ad}{{Bf{AM`}}}{EfEh}}{{{Bb{{AMd{}{{AL`{c}}}}}}}K`{EfEh}}{AChK`}{{}Id}000000{{}c{}}0000000000000{{{I`{c}}}{{I`{Dl}}}{}}000000{{{Lj{c}}}{{Lj{Dl}}}{}}000000{{{Ll{c}}}{{Ll{Dl}}}{}}000000{{{Fl{c}}}e{}{}}00000044444444444444{AN`{{AKj{Mh}}}}{{}c{}}000000{{{Bb{{ALb{}{{AL`{c}}}}}}}C`{EfEhDd}}{{{Bb{{ALb{}{{AL`{c}}}}}}Id}{{Bf{ANb}}}{EfEhDd}}{{{Bb{{ALb{}{{AL`{c}}}}}}}Id{EfEhDd}}{{{AKl{ce}}g}{{AKl{ce}}}{}{}{{Fj{AEb}}}}{AChAEb}{AKlBf}{{{AKl{ce}}g}{{AKl{ce}}}{}{}{{Fj{c}}}}1{{{AKl{ce}}{Bf{g}}}{{AKl{ce}}}{}{}{{Fj{c}}}}{{{Bb{{ALb{}{{AL`{c}}}}}}}An{EfEhDd}}{{{Bb{{AMd{}{{AL`{c}}}}}}}An{EfEh}}{{{Bb{{AMd{}{{AL`{c}}}}}}}d{EfEh}}0{{{Bb{c}}}{{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}{c{{AKl{eg}}}AN`{}{}}===={{{AKl{ce}}g}{{AKl{ce}}}{}{}{{Fj{Fh}}}}{AKlFh}`{{{Bb{B`{ALb{}{{AL`{c}}}}}}ANd}Bd{EfEhDd}}{{{Bb{B`{AMd{}{{AL`{c}}}}}}An}Bd{EfEh}}{{{Bb{{ALb{}{{AL`{c}}}}}}}{{Bf{Hb}}}{EfEhDd}}{AChAFb}{{{AKl{ce}}g}{{AKl{ce}}}{}{}{{Fj{Ab}}}}{AChAb}?{{{Bb{{AMd{}{{AL`{c}}}}}}Id}{{H`{Al}}}{EfEh}}{{{AKl{ce}}C`}{{AKl{ce}}}{}{}}{AKlC`}{AKlAKj}{{AEbAb}Ab}{Bbc{}}000000{{{AKl{ce}}}{{AKl{ce}}}{}{}}{{}{{Bl{c}}}{}}000000{c{{Bl{e}}}{}{}}000000{{}{{Bl{c}}}{}}000000{{}{{Bl{c{ABj{c}}}}}{}}000000{BbABl}000000{ce{}{}}000000{{}c{}}000000<;{Bb{{Bf{{Bb{c}}}}}{}}000000{{{Bb{B`{ALb{}{{AL`{c}}}}}}AncAbAEbAFh{Bb{B`e}}}Bd{EfEhDd}ALj}{{{Bb{B`{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}}{Bb{c}}}Bd{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}{{{Bb{{AMd{}{{AL`{c}}}}}}}Kb{EfEh}}{AChKb}{{}c{}}000000{{{ACh{{Bb{{AFn{{AKl{ce}}}}}}e}}}{{AMd{}{{AL`{e}}}}}{}{EfEh}}{{{Bb{Mh}}}{{ALb{}{{AL`{c}}}}}{EfEhDd}}{{{ACh{{Bb{Mh}}c}}}{{AMd{}{{AL`{c}}}}}{EfEh}}{AChAFh}````````````````````````````````````````````{eg{}{{l{c}}}{}}0{ce{}{}}0<<{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Bb{{ALb{}{{AL`{c}}}}}}}An{EfEhDd}}{{{Fl{c}}}e{}{}}0{{{Bb{ANf}}}ANf}{{{Bb{AMf}}}AMf}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0::{{{Bb{{ALb{}{{AL`{c}}}}}}}AMf{EfEhDd}}{{{Bb{{ALb{}{{AL`{c}}}}}}}{{j{IdId}}}{EfEhDd}}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}0;;{IdBd}0{ANbANh}{{{Bb{ANf}}{Bb{ANf}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{ANf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AMf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{ce{}{}}0{{{Bb{B`{ALb{}{{AL`{c}}}}}}c{Bb{B`e}}g}Bd{EfEhDd}ALj{{Bj{Bb}{{Ah{{AMn{c}}}}}}}}{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{{{Bb{{ALb{}{{AL`{c}}}}}}}C`{EfEhDd}}{{{Bb{{ALb{}{{AL`{c}}}}}}Id}{{Bf{ANb}}}{EfEhDd}}{{{Bb{{ALb{}{{AL`{c}}}}}}}Id{EfEhDd}}{{{Bb{{ALb{}{{AL`{c}}}}}}}An{EfEhDd}}{{{Bb{B`{ALb{}{{AL`{c}}}}}}ANd}Bd{EfEhDd}}{{{Bb{{ALb{}{{AL`{c}}}}}}}{{Bf{Hb}}}{EfEhDd}}{ANbAKj}{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{{Bb{B`{ALb{}{{AL`{c}}}}}}AncAbAEbAFh{Bb{B`e}}}Bd{EfEhDd}ALj}{{}c{}}0{{{Bb{Mh}}}{{ALb{}{{AL`{c}}}}}{EfEhDd}}{ANjANl}``````{eg{}{{l{c}}}{}}0{ce{}{}}077{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{B`{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}}Id}Bd{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}{{{Bb{B`ANn}}Id}Bd}{{{Bb{ANn}}}ANn}{{{Bb{{AMn{c}}}}}{{AMn{c}}}Ed}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0{AMnBf}<<{{{Bb{{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}}}Id{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}{{{Bb{ANn}}}Id}{{}{{AMn{c}}}{}}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}0>>{IdBd}0{{{Bb{{AMn{c}}}}{Bb{{AMn{c}}}}}C`Eh}{{{Bb{ANn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{{AMn{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}9{cc{}}000{ce{}{}}0{{{Bb{B`{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}}{Bb{Mh}}}g{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}{{{Bb{B`ANn}}{Bb{Mh}}}}{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{{{Bb{c}}}{{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}{BbANn}2{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{{Bb{B`{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}}{Bb{c}}}Bd{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}{{{Bb{B`ANn}}Bb}Bd}{{}c{}}0```{eg{}{{l{c}}}{}}{ce{}{}}6{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{{AO`{c}}}}}{{AO`{c}}}{EdAMd}}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}{{{Bb{{AMd{}{{AL`{c}}}}}}{ACh{Bdc}}}AMb{EfEh}}9{{}{{AO`{c}}}{DdAMd}}{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}9{IdBd}{{{Bb{{AO`{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}{D`AMd}}{cc{}}0{ce{}{}}{{{Bb{{AMd{}{{AL`{c}}}}}}IdId}{{Bf{Ad}}}{EfEh}}{{{Bb{{AMd{}{{AL`{c}}}}}}Ad}{{Bf{Id}}}{EfEh}}{{{Bb{{AMd{}{{AL`{c}}}}}}Ad}{{Bf{AM`}}}{EfEh}}{{{Bb{{AMd{}{{AL`{c}}}}}}}K`{EfEh}}{{{Bb{{AO`{c}}}}}K`AMd}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}44{{}c{}}{{{Bb{{AMd{}{{AL`{c}}}}}}}An{EfEh}}{{{Bb{{AO`{c}}}}}AnAMd}{{{Bb{{AMd{}{{AL`{c}}}}}}}d{EfEh}}{{{Bb{{AO`{c}}}}}dAMd}10{{{ACh{{Bb{Mh}}}}}{{AO`{c}}}AMd}5{{{Bb{{AO`{c}}}}}{{Bb{c}}}AMd}{{{Bb{B`{AMd{}{{AL`{c}}}}}}An}Bd{EfEh}}{{{Bb{{AMd{}{{AL`{c}}}}}}Id}{{H`{Al}}}{EfEh}}{Bbc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{{Bb{B`{AO`{c}}}}{ACh{{Bb{Mh}}}}}BdAMd}{{{Bb{{AMd{}{{AL`{c}}}}}}}Kb{EfEh}}{{{Bb{{AO`{c}}}}}KbAMd}{{}c{}}{{{ACh{{Bb{{AFn{{AKl{ce}}}}}}e}}}{{AMd{}{{AL`{e}}}}}{}{EfEh}}{{{ACh{{Bb{Mh}}c}}}{{AMd{}{{AL`{c}}}}}{EfEh}}`````{eg{}{{l{c}}}{}}00{{{AOb{ce}}g}{{AOb{ce}}}AOdAMl{{Fj{K`}}}}{{{AOb{ce}}g}{{AOb{ce}}}AOdAMl{{Fj{Kb}}}}{ce{}{}}00;;;{Bb{{Bb{Dl}}}}00{{{Bb{B`}}}{{Bb{B`Dl}}}}00{Bb{{Bb{c}}}{}}00{{{Bb{B`}}}{{Bb{B`c}}}{}}00{{{Fl{c}}}e{}{}}00{{{AOb{ce}}}{{AOb{ce}}}AOdAMl}{{{Bb{ACj}}}{{H`{ACl}}}}{AClH`}{{{AOb{ce}}g}{{AOb{ce}}}AOdAMlFj}{{{Bb{AOf}}}AOf}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}{{{AOb{ce}}g}{{AOb{ce}}}AOdAMl{{Fj{b}}}}{{{AOb{ce}}{Bf{g}}}{{AOb{ce}}}AOdAMl{{Fj{b}}}}>>>{{{Bb{B`AEf}}{Bf{{Bb{AOf}}}}Al{Bb{B`Ln}}}Bd}{{{Bb{B`AEf}}{Bf{{Bb{AOf}}}}Al{Bb{B`Dl}}}Bd}{Id{{Bb{c}}}{}}00{Id{{Bb{B`c}}}{}}00{{{Bb{ACj}}{Bb{B`ACl}}}Bd}{{{Bb{B`ACl}}c}Bd{{AOh{ACj}}}}{{{Bb{B`ACl}}{Bb{{AFn{c}}}}}Bd{{AOh{ACj}}}}{{{Bb{B`ACl}}{Bb{{AFn{c}}}}eg}Bd{}{{Bj{{Bb{B`ACl}}{Bb{c}}}}}{{Bj{{Bb{c}}}{{Ah{ACl}}}}}}{Bb{{Bb{c}}}{}}00{{{Bb{ACj}}{Bb{ACl}}{Bb{B`c}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}BdAD`{}}{{{Bb{{AOb{ce}}}}{Bb{ACl}}{Bb{B`e}}{Bb{c}}{Bb{ADd}}ACfADf{Bb{Al}}}BdAOdAMl}{IdBd}00{{}ACl}{{{Bb{AOf}}{Bb{AOf}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{AEf}}}{{AOj{c}}}{}}{{{Bb{ACl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AOf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{B`AEf}}{Bf{{Bb{AOf}}}}Al{Bb{B`AOl}}}Bd}{{{AOb{ce}}g}{{AOb{ce}}}AOdAMlFj}{cc{}}{{{Bb{Mh}}}{{AOb{ce}}}AOdAMl}11{AOnAOf}{B@`AOf}{B@bAOf}444{ce{}{}}00{{{Bb{AOf}}{Bb{B`c}}}BdLb}{{{AOb{ce}}g}{{AOb{ce}}}AOdAMl{{Fj{Gl}}}}{{}Id}00{{}c{}}00000{{{I`{c}}}{{I`{Dl}}}{}}00{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}00{{{Fl{c}}}e{}{}}00444444{{}c{}}00{{{Bb{ACj}}{Bb{B`ACl}}{Bb{c}}{Bb{AE`}}}ADnAD`}{{{Bb{{AOb{ce}}}}{Bb{B`ACl}}{Bb{e}}{Bb{AE`}}}ADnAOdAMl}{{{AOb{ce}}g}{{AOb{ce}}}AOdAMl{{Fj{AEb}}}}{{{Bb{ACj}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{c}}}AEdAD`}{c{{AOb{eg}}}AN`AOdAMl}{cACl{{AOh{ACj}}}}{cAOf{{Fj{{AKj{Mh}}}}}}{e{{f{c}}}Cn{{AEf{c}}}}{{{Bb{{AOb{ce}}}}{Bb{B`ACl}}ACf{Bb{e}}{Bb{B`AEf}}}BdAOdAMl}{{{Bb{ACj}}{Bb{B`ACl}}ACf{Bb{c}}{Bb{B`AEf}}}BdAD`}`{{{Bb{B`ACj}}{Bb{B`ACl}}ACf{Bb{c}}Af}{{Bf{{AEh{egc}}}}}AD`{}{}}{{{Bb{B`AEf}}{Bf{{Bb{AOf}}}}AlAlAf{Bb{B`B@d}}}Bd}{{{AOb{ce}}AFb}{{AOb{ce}}}AOdAMl}{{{Bb{ACj}}}{{An{Gl}}}}{{{AOb{ce}}g}{{AOb{ce}}}AOdAMl{{Fj{Ab}}}}{{{Bb{{AOb{ce}}}}}{{An{Gl}}}AOdAMl}2{{{Bb{{AOb{ce}}}}}AFdAOdAMl}{{{Bb{ACj}}}AFd}{AClAFd}{{{AOb{ce}}g}{{AOb{ce}}}AOdAMl{{Bj{{Bb{c}}}{{Ah{AAj}}}}}}{{{Bb{{AOb{ce}}}}}AFfAOdAMl}{{{Bb{ACj}}}AFf}{AClAFf}`{{{Bb{B`AEf}}{Bf{{Bb{AOf}}}}Al{Bb{Mh}}}Bd}{{{Bb{B`AEf}}{Bf{{Bb{AOf}}}}Al{Bb{B`B@f}}}Bd}{Bbc{}}`{{}{{Bl{c}}}{}}00{c{{Bl{e}}}{}{}}00{{}{{Bl{c}}}{}}00{{}{{Bl{c{ABj{c}}}}}{}}00{BbABl}00{ce{}{}}00{{}c{}}00{{}AOf}{Bb{{Bf{{Bb{c}}}}}{}}00{{{Bb{B`ACj}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{c}}{Bb{B`AEj}}{Bb{B`{ACd{e}}}}{Bb{Al}}}BdAD`{}}{{}c{}}00{{{AOb{ce}}g}{{AOb{ce}}}AOdAMl{{Fj{Gl}}}}{{{AOb{ce}}AFh}{{AOb{ce}}}AOdAMl}````````{eg{}{{l{c}}}{}}{ce{}{}}8{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{{{Bb{B`AEf}}}{{`{{AEf{c}}}}}{}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}6{{{Bb{B`AEf}}{Bf{{Bb{AOf}}}}Al{Bb{B`Ln}}}Bd}{{{Bb{B`AEf}}{Bf{{Bb{AOf}}}}Al{Bb{B`Dl}}}Bd}{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}6{IdBd}{{{Bb{AEf}}}{{AOj{c}}}{}}{{{Bb{{AOj{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{B`AOl}}}Bd}`{{{Bb{B`AEf}}{Bf{{Bb{AOf}}}}Al{Bb{B`AOl}}}Bd}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}?22{{}c{}}{{{Bb{AOl}}}C`}{{ei}{{`{{AEf{g}}}}}{}{{AEf{c}}}{}{{Bj{c}{{Ah{g}}}}CnACb}}{{{Bb{B`B@f}}Id}Bd}{{{Bb{B`B@f}}}Bd}0{{AOfe}{{`{{AEf{c}}}}}{}{{AEf{c}}}}{{{Bb{B`B@d}}B@hAlAl}Bd}{{{Bb{B`B@d}}B@h}Bd}`{{{Bb{B`AEf}}{Bf{{Bb{AOf}}}}AlAlAf{Bb{B`B@d}}}Bd}4{{{Bb{B`B@d}}B@j}Bd}{{{Bb{B`AEf}}{Bf{{Bb{AOf}}}}Al{Bb{Mh}}}Bd}`{{{Bb{B`AEf}}{Bf{{Bb{AOf}}}}Al{Bb{B`B@f}}}Bd}{{e{Nh{c}{{Ah{i}}}}}{{`{{AEf{g}}}}}{}{{AEf{c}}}Cn{{AEf{g}}}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{{{Bb{B`AOl}}}Bd}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}``{eg{}{{l{c}}}{}}{ce{}{}}5{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{B@l}}}B@l}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}8{{}{{`{{AEf{B@l}}}}}}{{}B@l}{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}9{IdBd}{{{Bb{B@l}}{Bb{B@l}}}C`}{{Bb{Bb{c}}}C`{}}00{{}{{`{{AEf{AOf}}}}}}{{{Bb{B@l}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{AOf{{`{{AEf{c}}}}}{}}{{{Bb{B`AOl}}}Bd}{{}{{`{{AEf{c}}}}}Cn}0{B@lBf}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}44{{}c{}}{{{Bb{AOl}}}C`}1{Bbc{}}{B@lId}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{{{Bb{B`AOl}}}Bd}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}```{{AOfB@h}{{`{{AEf{c}}}}}{}}{{{Bb{B`B@d}}B@hAlAl}Bd}1{{{Bb{B`B@d}}B@h}Bd}{{AOfB@j}{{`{{AEf{c}}}}}{}}{{{Bb{B`B@d}}B@j}Bd}{B@hd}{B@jd}10`{{AOfId}{{`{{AEf{c}}}}}{}}{{{Bb{B`B@f}}Id}Bd}{AOf{{`{{AEf{c}}}}}{}}{{{Bb{B`B@f}}}Bd}1010`````````````````{{{Bb{El}}}AAj}{AAjBf}11{{}c{}}{{{Bb{B`c}}{Bb{ADd}}ACfBbAAj{Bb{Al}}}BdAMl}{{{Bb{B`B@n}}{Bb{c}}{Bb{AE`}}GlGl{Bb{Mh}}AEb{Bf{Ab}}BfK`KbAFbAFh}ADnAMl}44{{{Bb{{AOd{}{{BA`{c}}}}}}{Bb{c}}}AAj{}}5`````{eg{}{{l{c}}}{}}0{ce{}{}}0{{}c{}}0{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{AClH`}{{{Bb{AFf}}}AFf}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}{{{Bb{AFf}}{Bb{AFf}}}Mj}{{Bb{Bb{c}}}Mj{}}<<{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}0{{{Bb{B`{H`{ACl}}}}{Bb{{AFn{c}}}}egi}Bd{}{{Bj{{Bb{B`ACl}}{Bb{c}}}}}{{Bj{Id}{{Ah{C`}}}}}{{Bj{{Bb{c}}}{{Ah{ACl}}}}}};;{{{Bb{B`AFd}}}{{Bb{B`c}}}{}}{{{Bb{AFd}}}{{Bb{c}}}{}}{IdBd}0{{{Bb{AFf}}{Bb{AFf}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{AFd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AFf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{ce{}{}}0{{{Bb{AFf}}{Bb{B`c}}}BdLb}{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{cAFd{}}{{}AFf}{{{Bb{AFf}}{Bb{AFf}}}{{Bf{Mj}}}}{AClAFd}2{AClAFf}{Bbc{}}{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0````````````{eg{}{{l{c}}}{}}0{ce{}{}}044{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{K`}}}K`}{{{Bb{Kb}}}Kb}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}099{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}088{IdBd}0{{{Bb{K`}}{Bb{K`}}}C`}{{{Bb{Kb}}{Bb{Kb}}}C`}{{Bb{Bb{c}}}C`{}}00000{{{Bb{K`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Kb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{FnK`}{cc{}}{FnKb}111{ce{}{}}0{{{Bb{K`}}{Bb{B`c}}}BdLb}{{{Bb{Kb}}{Bb{B`c}}}BdLb}{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0````````````````````````````````````{eg{}{{l{c}}}{}}{ce{}{}}4{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{Il}}}Il}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}8{{}Il}{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}8{IdBd}{{{Bb{Il}}{Bb{Il}}}C`}{{{Bb{Ej}}}d}{{{Bb{Il}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0{ce{}{}}{{}Id}{{{Bb{Lh}}Lhd}Lh}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}44{{}c{}}0{Bbc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{Ild}d}{{}c{}}````{eg{}{{l{c}}}{}}{{{Cj{c}}C`}{{Cj{c}}}Ch}{{eio}{{Cj{{`{{Ch{}{{Cb{c}}{Cd{g}}{Cf{k}}}}}}}}}{}{{Cl{c}}}{CnD`}{{Db{cg}}}{DdDf}`{{Dh{cgkm}}}}{ce{}{}}7{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Cj{c}}}{{Cj{c}}}Ch}68{{{Cj{c}}Gd}{{Cj{c}}}Ch}{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}6{IdBd}{{{Cj{c}}}{{Cj{{`{{Ch{}{{Cb{}}{Cd{}}{Cf{}}}}}}}}}Ch}={{{Bb{{Cj{c}}}}{Bb{B`Jd}}}Jj{D`Ch}}{{{Cj{c}}e}{{Cj{c}}}Ch{{Fj{{AKj{{AFn{Gn}}}}}}}}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}?33{{}c{}}{{{Cj{c}}BAb}{{Cj{c}}}Ch}{{{Cj{c}}BAd}{{Cj{c}}}Ch}{{{Cj{c}}C`}{{Cj{c}}}Ch}{{{Cj{c}}}MnCh}{{{Cj{c}}e}MnCh{{Hh{}{{Ah{{j{f}}}}}}}}{{{Cj{c}}e}{{Cj{{`{{Ch{}{{Cb{}}{Cd{}}{Cf{}}}}}}}}}Ch{{Bj{Bb}{{Ah{Kj}}}}}}{{{Cj{c}}Bn}{{Cj{c}}}Ch}{{{Cj{c}}e}{{Cj{{`{{Ch{}{{Cb{}}{Cd{}}{Cf{}}}}}}}}}Ch{{Bj{BbBb}{{Ah{En}}}}}}{{{Cj{c}}e}{{Cj{{`{{Ch{}{{Cb{}}{Cd{}}{Cf{}}}}}}}}}Ch{{Bj{Bb}{{Ah{Fd}}}}}}{{{Cj{c}}e}{{Cj{{`{{Ch{}{{Cb{}}{Cd{}}{Cf{}}}}}}}}}Ch{{Bj{Bb}{{Ah{}}}}}}{{{Bb{Cl}}{Bb{c}}}Hb{}}8{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{{Bb{Db}}{Bb{B`c}}e}{{`{{Fj{{f{e}}}}}}}{}{}}{{{Bb{Dh}}{Bb{c}}}{{`{{Fj{{ABn{egi}}}}}}}{}{}{}{}}{{}c{}}{{{Cj{c}}Nd}{{Cj{c}}}Ch}{{{Cj{c}}e}{{Cj{c}}}Ch{{Fj{An}}}}``{eg{}{{l{c}}}{}}{ce{}{}}8{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{cMl{{Fj{Ab}}}}{{Mlc}Ml{{Fj{Ab}}}}10{Mld}210{{{Fl{c}}}e{}{}}{{{Bb{Ml}}}Ml}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}{cG`{{Fj{b}}}}{G`b}={{}Ml}{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}={IdBd}{{{Bb{Ml}}{Bb{Ml}}}C`}{{{Bb{Ml}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}{GnMl}{JbMl}{ANlMl}{dMl}4{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}44{{}c{}}{cMl{{Fj{Ab}}}}{{Mlc}Ml{{Fj{Ab}}}}121{G`Ml}21{cG`{{Fj{Ml}}}}{Bbc{}}4343{Mld}540{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}{cG`{{Fj{Ab}}}}{G`d}{{}{{f{{Bf{Hb}}}}}}0{Hb{{f{c}}}{}}{Hb{{f{c}}}{}}```{eg{}{{l{c}}}{}}{{{Hj{c}}C`}{{Hj{c}}}Ch}{ce{}{}}:{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}5{{eio}{{Hj{{`{{Ch{}{{Cb{c}}{Cd{g}}{Cf{k}}}}}}}}}{}{{Hl{c}}}{CnD`}{{Db{cg}}}{DdDf}`{{Hn{cgkm}}}}{{{Hj{c}}Gd}{{Hj{c}}}Ch}{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}6{IdBd}{{{Hj{c}}}{{Hj{{`{{Ch{}{{Cb{}}{Cd{}}{Cf{}}}}}}}}}Ch}{{{Bb{{Hj{c}}}}{Bb{B`Jd}}}Jj{D`Ch}}{{{Hj{c}}e}{{Hj{c}}}Ch{{Fj{{AKj{{AFn{Gn}}}}}}}}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}?33{{}c{}}{{{Hj{c}}}MnCh}{{{Hj{c}}e}MnCh{{Hh{}{{Ah{{j{f}}}}}}}}{{{Hj{c}}e}{{Hj{{`{{Ch{}{{Cb{}}{Cd{}}{Cf{}}}}}}}}}Ch{{Bj{BbNj}{{Ah{Kj}}}}}}{{{Hj{c}}Bn}{{Hj{c}}}Ch}{{{Hj{c}}e}{{Hj{{`{{Ch{}{{Cb{}}{Cd{}}{Cf{}}}}}}}}}Ch{{Bj{BbBb}{{Ah{En}}}}}}{{{Hj{c}}e}{{Hj{{`{{Ch{}{{Cb{}}{Cd{}}{Cf{}}}}}}}}}Ch{{Bj{Bb}{{Ah{Fd}}}}}}{{{Hj{c}}e}{{Hj{{`{{Ch{}{{Cb{}}{Cd{}}{Cf{}}}}}}}}}Ch{{Bj{BbNj}{{Ah{}}}}}}{{{Bb{Hl}}{Bb{c}}Nj}Hb{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{{Bb{Hn}}{Bb{c}}Nj}{{`{{Fj{{ABn{egi}}}}}}}{}{}{}{}}{{}c{}}`````````{eg{}{{l{c}}}{}}{ce{}{}}5{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{ADh}}}ADh}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}8{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}7{IdBd}{{{Bb{ADh}}{Bb{ADh}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{ADh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}44{{}c{}}{{}{{Fd{Gb}}}}{{{Nh{GbADhNj}{{Ah{{Bf{c}}}}}}}{{Fd{c}}}Bh}{{}{{Fd{Hb}}}}1{{ADhADh}ADh}{Bbc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}``{{{Bb{In}}e}c{}{{Hh{}{{Ah{c}}}}}}{{}{{Bl{InMf}}}}{{{Bb{In}}c}Bd{{L`{}{{Ah{Bd}}}}Bh}}`````````````````````````````````{eg{}{{l{c}}}{}}0000{ce{}{}}000077777{Bb{{Bb{Dl}}}}0000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000{Bb{{Bb{c}}}{}}0000{{{Bb{B`}}}{{Bb{B`c}}}{}}0000{{{Fl{c}}}e{}{}}0000{{{Bb{BAf}}}BAf}{{{Bb{J`}}}J`}{{{Bb{AC`}}}AC`}{{{Bb{Nl}}}Nl}{{{Bb{ABd}}}ABd}{{Bb{Bb{B`c}}}Bd{}}0000{{BbGn}Bd}0000<<<<<{{}J`}{{}AC`}{{}Nl}{{}ABd}{Id{{Bb{c}}}{}}0000{Id{{Bb{B`c}}}{}}0000?????{IdBd}0000{{{Bb{BAf}}{Bb{BAf}}}C`}{{{Bb{J`}}{Bb{J`}}}C`}{{{Bb{AC`}}{Bb{AC`}}}C`}{{{Bb{Nl}}{Bb{Nl}}}C`}{{{Bb{ABd}}{Bb{ABd}}}C`}{{Bb{Bb{c}}}C`{}}00000000000000{GdJ`}{{{Bb{BAf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{J`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AC`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Nl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{ABd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000000000{ce{}{}}0000{{{Bb{J`}}{Bb{B`c}}}BdLb}{{{Bb{AC`}}{Bb{B`c}}}BdLb}{{{Bb{Nl}}{Bb{B`c}}}BdLb}{{{Bb{ABd}}{Bb{B`c}}}BdLb}{{}Id}0000{{}c{}}000000000{{{I`{c}}}{{I`{Dl}}}{}}0000{{{Lj{c}}}{{Lj{Dl}}}{}}0000{{{Ll{c}}}{{Ll{Dl}}}{}}0000{{{Fl{c}}}e{}{}}00004444444444{{}c{}}0000{c{{f{{Bl{BdBAf}}}}}{{Fj{{AKj{{AFn{Gn}}}}}}}}1111{GdNl}{GdABd}{Bbc{}}0000{{}{{Bl{c}}}{}}0000{c{{Bl{e}}}{}{}}0000{{}{{Bl{c}}}{}}0000{{}{{Bl{c{ABj{c}}}}}{}}0000{BbABl}0000{ce{}{}}0000{{}c{}}0000{Bb{{Bf{{Bb{c}}}}}{}}0000{{}c{}}0000{GdAC`}````{eg{}{{l{c}}}{}}0{{Kddb}Kd}{{Kdc}Kd{{Fb{}{{F`{BAh}}}}}}{Kdn}{ce{}{}}088{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{BAh}}}BAh}{{{Bb{Kd}}}Kd}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0{BAhb}::{{}BAh}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}0::{IdBd}0{{{Bb{BAh}}{Bb{BAh}}}C`}{{{Bb{Kd}}{Bb{Kd}}}C`}{{{Bb{BAh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Kd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{ce{}{}}0{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{cKd{{Fj{n}}}}1{BAhd}{{Kdd}Kd}{KdE`}{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0```````````````````{eg{}{{l{c}}}{}}000{{}BAj}{BAjC`}{ce{}{}}0006666{Bb{{Bb{Dl}}}}000{{{Bb{B`}}}{{Bb{B`Dl}}}}000{{{Bb{BAl}}}{{BAl{{Bb{Mh}}}}}}{{BAjBAj}BAj}{{{Bb{B`BAj}}BAj}Bd}10{{{Bb{BAj}}}Ij}021{Bb{{Bb{c}}}{}}000{{{Bb{B`}}}{{Bb{B`c}}}{}}000{{{Fl{c}}}e{}{}}000{{{Bb{{BAl{c}}}}}{{BAl{c}}}Ed}{{{Bb{BAn}}}BAn}{{{Bb{BB`}}}BB`}{{{Bb{BAj}}}BAj}{{Bb{Bb{B`c}}}Bd{}}000{{BbGn}Bd}000{{{Bb{{BAl{c}}}}{Bb{{BAl{c}}}}}MjBBb}{{{Bb{BAj}}{Bb{BAj}}}Mj}{BAjC`}{{Bb{Bb{c}}}Mj{}}0{BAjBAj}{ce{}{}}000{{{Bb{BAj}}BAj}C`}4{{}BAj}{Id{{Bb{c}}}{}}000{Id{{Bb{B`c}}}{}}000{{BAjBAj}BAj}{Bb{{Bb{c}}}{}}000{IdBd}0005{{{Bb{{BAl{c}}}}{Bb{{BAl{c}}}}}C`Eh}{{{Bb{BAn}}{Bb{BAn}}}C`}{{{Bb{BB`}}{Bb{BB`}}}C`}{{{Bb{BAj}}{Bb{BAj}}}C`}{{Bb{Bb{c}}}C`{}}00000000000{{{Bb{B`BAj}}c}Bd{{Fb{}{{F`{BAj}}}}}}{{{Bb{{BAl{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{BAn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BB`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BAj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}0000{cc{}}{BBdBAl}1111111{Ij{{Bf{BAj}}}}{IjBAj}00{cBAj{{Fb{}{{F`{BAj}}}}}}{{{Bb{Mh}}}{{Bf{BAj}}}}{ce{}{}}000{{{Bb{{BAl{c}}}}{Bb{B`e}}}BdLdLb}{{{Bb{BAj}}{Bb{B`c}}}BdLb}{{}Id}000{{{Bb{B`BAj}}BAj}Bd}{{BAjBAj}BAj}{{{Bb{BAj}}BAj}C`}{{}c{}}0000000{{{I`{c}}}{{I`{Dl}}}{}}000{{{Lj{c}}}{{Lj{Dl}}}{}}000{{{Ll{c}}}{{Ll{Dl}}}{}}000{{{Fl{c}}}e{}{}}00044444444{BAj}{{}c{}}000{{{Bb{BAj}}}C`}0{{{Bb{BAj}}}{{BBf{BAj}}}}{{{Bb{BAj}}}{{BBh{BAj}}}}{BAjC`}`00{BAjBAj}5{{{Nh{BAlBAj}{{Ah{{Bf{c}}}}}}}{{Fd{c}}}Bh}0{{{Bb{{BAl{c}}}}{Bb{{BAl{c}}}}}{{Bf{Mj}}}BBj}{{{Bb{BAj}}{Bb{BAj}}}{{Bf{Mj}}}}{{{Bb{B`BAj}}BAj}Bd}{{{Bb{B`BAj}}BAjC`}Bd}6{{BAjBAj}BAj}20{Bbc{}}0003{{}{{Bl{c}}}{}}000{c{{Bl{e}}}{}{}}000{{}{{Bl{c}}}{}}000{{}{{Bl{c{ABj{c}}}}}{}}000{BbABl}000{ce{}{}}000{{}c{}}0008{Bb{{Bf{{Bb{c}}}}}{}}000{{}c{}}000{BBlBAl}{BBnBAl}{BBlBB`}{BBnBB`}32{BBlBAj}{BBnBAj}{BBlBC`}{BBnBC`}{BBlBf}```````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````{eg{}{{l{c}}}{}}000{ce{}{}}000===={Bb{{Bb{Dl}}}}000{{{Bb{B`}}}{{Bb{B`Dl}}}}000{Bb{{Bb{c}}}{}}000{{{Bb{B`}}}{{Bb{B`c}}}{}}000{{{Fl{c}}}e{}{}}000{{{Bb{BBd}}}BBd}{{{Bb{BCb}}}BCb}{{{Bb{BCd}}}BCd}{{{Bb{BC`}}}BC`}{{Bb{Bb{B`c}}}Bd{}}000{{BbGn}Bd}000{{{Bb{BBd}}{Bb{BBd}}}Mj}{{{Bb{BCb}}{Bb{BCb}}}Mj}{{{Bb{BCd}}{Bb{BCd}}}Mj}{{{Bb{BC`}}{Bb{BC`}}}Mj}{{Bb{Bb{c}}}Mj{}}000{ce{}{}}000{Id{{Bb{c}}}{}}000{Id{{Bb{B`c}}}{}}000{Bb{{Bb{c}}}{}}000{IdBd}000{{{Bb{BBd}}{Bb{BBd}}}C`}{{{Bb{BCb}}{Bb{BC`}}}C`}{{{Bb{BCb}}{Bb{BCb}}}C`}{{{Bb{BCd}}{Bb{BC`}}}C`}{{{Bb{BCd}}{Bb{BCd}}}C`}{{{Bb{BC`}}{Bb{BCd}}}C`}{{{Bb{BC`}}{Bb{BCb}}}C`}{{{Bb{BC`}}{Bb{BC`}}}C`}{{Bb{Bb{c}}}C`{}}00000000000{{{Bb{BBd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BCb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BCd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BC`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0000000{ce{}{}}000{{{Bb{BBd}}{Bb{B`c}}}BdLb}{{{Bb{BCb}}{Bb{B`c}}}BdLb}{{{Bb{BCd}}{Bb{B`c}}}BdLb}{{{Bb{BC`}}{Bb{B`c}}}BdLb}{{}Id}000{{}c{}}0000000{{{I`{c}}}{{I`{Dl}}}{}}000{{{Lj{c}}}{{Lj{Dl}}}{}}000{{{Ll{c}}}{{Ll{Dl}}}{}}000{{{Fl{c}}}e{}{}}00044444444{{}c{}}000{{{Bb{BBd}}{Bb{BBd}}}{{Bf{Mj}}}}{{{Bb{BCb}}{Bb{BCb}}}{{Bf{Mj}}}}{{{Bb{BCd}}{Bb{BCd}}}{{Bf{Mj}}}}{{{Bb{BC`}}{Bb{BC`}}}{{Bf{Mj}}}}{Bbc{}}000{{}{{Bl{c}}}{}}000{c{{Bl{e}}}{}{}}000{{}{{Bl{c}}}{}}000{{}{{Bl{c{ABj{c}}}}}{}}000{BbABl}000{ce{}{}}000{{}c{}}000{Bb{{Bf{{Bb{c}}}}}{}}000{{}c{}}000`````````````````````````````````````````{eg{}{{l{c}}}{}}0000{ce{}{}}000044444{Bb{{Bb{Dl}}}}0000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000{Bb{{Bb{c}}}{}}0000{{{Bb{B`}}}{{Bb{B`c}}}{}}0000{{{Fl{c}}}e{}{}}0000{{{Bb{AId}}}AId}{{{Bb{ADf}}}ADf}{{{Bb{BCf}}}BCf}{{{Bb{AIh}}}AIh}{{{Bb{AEd}}}AEd}{{Bb{Bb{B`c}}}Bd{}}0000{{BbGn}Bd}0000{{{Bb{AEd}}{Bb{AEd}}}Mj}{{Bb{Bb{c}}}Mj{}}>>>>>{{}ADf}{{}AEd}{Id{{Bb{c}}}{}}0000{Id{{Bb{B`c}}}{}}0000?????{IdBd}0000{{{Bb{AId}}{Bb{AId}}}C`}{{{Bb{ADf}}{Bb{ADf}}}C`}{{{Bb{BCf}}{Bb{BCf}}}C`}{{{Bb{AIh}}{Bb{AIh}}}C`}{{{Bb{AEd}}{Bb{AEd}}}C`}{{Bb{Bb{c}}}C`{}}00000{{{Bb{AId}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{ADf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BCf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AIh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AEd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000000000{ce{}{}}0000{{{Bb{AId}}{Bb{B`c}}}BdLb}{{}Id}0000{{}c{}}000000000{{{I`{c}}}{{I`{Dl}}}{}}0000{{{Lj{c}}}{{Lj{Dl}}}{}}0000{{{Ll{c}}}{{Ll{Dl}}}{}}0000{{{Fl{c}}}e{}{}}00004444444444{{}c{}}0000{ADfC`}{{ADfAl}C`}{ADfADf}0{{ADfDn}ADf}44{{{Bb{AEd}}{Bb{AEd}}}{{Bf{Mj}}}}{ADf{{Bf{Ad}}}}{{ADfAd}{{Bf{Ad}}}}{{ADfAl}{{Bf{Ad}}}}0{Bbc{}}0000{{}{{Bl{c}}}{}}0000{c{{Bl{e}}}{}{}}0000{{}{{Bl{c}}}{}}0000{{}{{Bl{c{ABj{c}}}}}{}}0000{BbABl}0000{ce{}{}}0000{{}c{}}0000{Bb{{Bf{{Bb{c}}}}}{}}0000{{}c{}}0000{AIfAIh}{AIjAd}{AIld}{AInd}10````````{eg{}{{l{c}}}{}}00{ce{}{}}00888{Bb{{Bb{Dl}}}}00{{{Bb{B`}}}{{Bb{B`Dl}}}}00{AAbGh}{AAbG`}{Bb{{Bb{c}}}{}}00{{{Bb{B`}}}{{Bb{B`c}}}{}}00{{{Fl{c}}}e{}{}}00{{{Bb{AAb}}}AAb}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}:::{{{Bb{El}}}AAb}{{}c{}}{{}BCh}11{Id{{Bb{c}}}{}}00{Id{{Bb{B`c}}}{}}00:::{IdBd}00{{{Bb{AAb}}{Bb{AAb}}}C`}{{{Bb{BCh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AAb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{BCj{cegi}}k}{{BCj{cegi}}}{BClEd}{}BCnAMlFj}{cc{}}00000{ce{}{}}00{{}Id}00{{}c{}}00000{{{I`{c}}}{{I`{Dl}}}{}}00{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}00{{{Fl{c}}}e{}{}}00444444{{}c{}}00{{{Bb{B`BCh}}{Bb{{AFn{c}}}}{Bb{B`{Bf{Id}}}}g{Bf{{Bb{Bj}}}}Bb}{{BCj{ceik}}}{BClEd}{}{{Ln{c}{{Ah{e}}}}}BCnAMl}{{}BCh}2{{{BCj{cegi}}Add}{{AEh{egi}}}{BClEd}{}BCnAMl}{{{BCj{cegi}}k}{{BCj{cegi}}}{BClEd}{}BCnAMl{{Fj{Fh}}}}{AAbGh}{AAbb}{{{Bb{{BCn{}{{BA`{c}}}}}}{Bb{c}}}AAb{}}1{{{BCj{cegi}}k}{{BCj{cegi}}}{BClEd}{}BCnAMl{{Fj{AEb}}}}{{{BCj{cegi}}AFb}{{BCj{cegi}}}{BClEd}{}BCnAMl}{{{BCj{cegi}}k}{{BCj{cegi}}}{BClEd}{}BCnAMl{{Fj{Ab}}}}{Bbc{}}{{}{{Bl{c}}}{}}00{c{{Bl{e}}}{}{}}00{{}{{Bl{c}}}{}}00{{}{{Bl{c{ABj{c}}}}}{}}00{BbABl}00{ce{}{}}00{{}c{}}00{Bb{{Bf{{Bb{c}}}}}{}}00{{}c{}}00{{{BCj{cegi}}d}{{BCj{cegi}}}{BClEd}{}BCnAMl}`{cFh{{Fj{Ab}}}}0{Fhd}101010{{Idg}{{`{{Nf{}{{F`{c}}}}}}}{}{{L`{}{{Ah{Bd}}}}}{{Hh{{BD`{c}}}{{Ah{e}}}}}}{{Idi}{{`{{Nf{}{{F`{{Bl{ce}}}}}}}}}{}{}{{L`{}{{Ah{{Bl{Bde}}}}}}}{{Hh{{BD`{c}}}{{Ah{g}}}}}}`{eg{}{{l{c}}}{}}{ce{}{}}9{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{BDb}}}BDb}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}8{BDbHb}{BDbBf}{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}9{IdBd}{{}{{f{BDb}}}}{{{Bb{BDb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0{ce{}{}}88{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}44{{}c{}}{BDbKn}?????{Bbc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}``{{{Bb{h}}}Bd}{hh}{eg{}{{l{c}}}{}}{ce{}{}}6{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{h}}}h}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}8{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}7{{{Bb{B`h}}}Bd}{IdBd}{{{Bb{h}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}?33{{}c{}}{{{Bb{h}}}C`}{Bbc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}``````````````````````````````````````````````````{eg{}{{l{c}}}{}}00{ce{}{}}00444{Bb{{Bb{Dl}}}}00{{{Bb{B`}}}{{Bb{B`Dl}}}}00{Hdb}{Enb}{{{Bb{Df}}}En}{Bb{{Bb{c}}}{}}00{{{Bb{B`}}}{{Bb{B`c}}}{}}00{{{Fl{c}}}e{}{}}00{{{Bb{Hd}}}Hd}{{{Bb{BDd}}}BDd}{{{Bb{En}}}En}{{Bb{Bb{B`c}}}Bd{}}00{{BbGn}Bd}00===:{{{Bb{El}}}En}{Id{{Bb{c}}}{}}00{Id{{Bb{B`c}}}{}}00:::{IdBd}00{{{Bb{Hd}}{Bb{Hd}}}C`}{{{Bb{BDd}}{Bb{BDd}}}C`}{{{Bb{En}}{Bb{En}}}C`}{{{Bb{Hd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BDd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}0{{{Bb{En}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}00000{ce{}{}}00{{}Id}00{{}c{}}00000{{{I`{c}}}{{I`{Dl}}}{}}00{{{Lj{c}}}{{Lj{Dl}}}{}}00{{{Ll{c}}}{{Ll{Dl}}}{}}00{{{Fl{c}}}e{}{}}00444444{{}c{}}00{{HbHd}BDd}`{Hdb}00{Enb}{Bbc{}}00{BbABh}{BbHb}{{}{{Bl{c}}}{}}00{c{{Bl{e}}}{}{}}00{{}{{Bl{c}}}{}}00{{}{{Bl{c{ABj{c}}}}}{}}00{BbABl}00{ce{}{}}00{{}c{}}00{Bb{{Bf{{Bb{c}}}}}{}}00{{}c{}}00={{HbHdc}BDd{{Hh{Hd}{{Ah{Hf}}}}}}``{{}BDf}000000000000000000000```````{eg{}{{l{c}}}{}}0000000{ce{}{}}000000066666666{Bb{{Bb{Dl}}}}0000000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000000{Hdb}{HfBDh}{BDhBDj}{BDlBDj}{BDnBDj}{BE`BDj}{BEbBDj}{BEdBDj}{Bb{{Bb{c}}}{}}0000000{{{Bb{B`}}}{{Bb{B`c}}}{}}0000000{{{Fl{c}}}e{}{}}0000000{{{Bb{Hf}}}Hf}{{{Bb{BDj}}}BDj}{{{Bb{BDh}}}BDh}{{{Bb{BDl}}}BDl}{{{Bb{BDn}}}BDn}{{{Bb{BE`}}}BE`}{{{Bb{BEb}}}BEb}{{{Bb{BEd}}}BEd}{{Bb{Bb{B`c}}}Bd{}}0000000{{BbGn}Bd}0000000{BDjb}{ce{}{}}0000000{Hdb}{HfBEd}{Id{{Bb{c}}}{}}0000000{Id{{Bb{B`c}}}{}}0000000{Bb{{Bb{c}}}{}}0000000{IdBd}0000000{{{Bb{Hf}}{Bb{Hf}}}C`}{{{Bb{BDj}}{Bb{BDj}}}C`}{{{Bb{BDh}}{Bb{BDh}}}C`}{{{Bb{BDl}}{Bb{BDl}}}C`}{{{Bb{BDn}}{Bb{BDn}}}C`}{{{Bb{BE`}}{Bb{BE`}}}C`}{{{Bb{BEb}}{Bb{BEb}}}C`}{{{Bb{BEd}}{Bb{BEd}}}C`}{{{Bb{Hf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BDj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BDh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BDl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BDn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BE`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BEb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BEd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000000000000000{ce{}{}}0000000{HdHf}{{bbb}BDl}{{bb}BDn}{{bbb}BE`}{{bbb}BEb}{{bbb}BEd}{{}Id}0000000{{}c{}}000000000000000{{{I`{c}}}{{I`{Dl}}}{}}0000000{{{Lj{c}}}{{Lj{Dl}}}{}}0000000{{{Ll{c}}}{{Ll{Dl}}}{}}0000000{{{Fl{c}}}e{}{}}00000004444444444444444{{}c{}}0000000{HfC`}{{bb}BDj}{{bb}BDh}{Hdb}{HfBDl}{HfBDn}{BDhBDj}{BDlBDj}{BDnBDj}{BE`BDj}{BEbBDj}{BEdBDj}8{HfBE`}9{BDjb}{Bbc{}}0000000{{}{{Bl{c}}}{}}0000000{c{{Bl{e}}}{}{}}0000000{{}{{Bl{c}}}{}}0000000{{}{{Bl{c{ABj{c}}}}}{}}0000000{BbABl}0000000{ce{}{}}0000000{{}c{}}0000000{Bb{{Bf{{Bb{c}}}}}{}}0000000{{}c{}}0000000{Hdb}{HfBEb}{BDhBDj}{BDlBDj}{BDnBDj}{BE`BDj}{BEbBDj}{BEdBDj}````````{{IbIb}Ib}{eg{}{{l{c}}}{}}0{{LfBEf}}{{LfIb}Lf}3{{IbBEf}}{{{Bb{B`Lf}}Ib}Bd}{{{Bb{B`Lf}}BEf}Bd}{{{Bb{B`Ib}}Ib}Bd}{{{Bb{B`Ib}}BEf}Bd}{ce{}{}}0{{}c{}}0{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{{{Bb{Ib}}}BEh}0{{{Bb{Ib}}}d}{{{Bb{Ib}}}Kj}2{{{Bb{Ib}}}Kn}21{Bb{{Bb{c}}}{}}0{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{Lf}}Ib}{{Bf{Lf}}}}{{IbIb}{{Bf{Ib}}}}{{{Bb{Lf}}BEf}{{Bf{Lf}}}}{{IbIj}{{Bf{Ib}}}}{{{Bb{Lf}}Lf}{{Bf{Ib}}}}1432{{{Bb{Lf}}}Lf}{{{Bb{Ib}}}Ib}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0{{{Bb{Lf}}{Bb{Lf}}}Mj}{{{Bb{Ib}}{Bb{Ib}}}Mj}{{Bb{Bb{c}}}Mj{}}0{ce{}{}}0{KnIb}{{}Ib}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}0{c{{Bl{Ib}}}BEj}{{{Bb{BEl}}}{{Bl{BEn}}}}{{IbBEf}}{{IbIj}Ib}{{{Bb{B`Ib}}Ij}Bd}{{IbIb}d}{{IbIb}Kj}{{Ibd}Ib}{{IbKj}Ib}{Bb{{Bb{c}}}{}}0{IdBd}0{{{Bb{Lf}}Lf}Ib}{{{Bb{Lf}}}Ib}{{LfLf}d}{{{Bb{Lf}}{Bb{Lf}}}C`}{{{Bb{Ib}}{Bb{Ib}}}C`}{{{Bb{Ib}}{Bb{BEf}}}C`}{{Bb{Bb{c}}}C`{}}00000{Ib{{Fd{Lf}}}}{{{Bb{Lf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Ib}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{BF`Lf}{cc{}}{BFbIb}{BFdIb}222{KnIb}000000{dIb}{KjIb}{ce{}{}}03{{{Bb{Lf}}{Bb{B`c}}}BdLb}{{{Bb{Ib}}{Bb{B`c}}}BdLb}5{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{{{Bb{Ib}}}C`}=={{IbIj}Ib}{{{Bb{B`Ib}}Ij}Bd}{{Ibd}Ib}{{IbKj}Ib}{{KnIj}Ib}{{}Lf}7{{{Bb{Lf}}{Bb{Lf}}}{{Bf{Mj}}}}{{{Bb{Ib}}{Bb{BEf}}}{{Bf{Mj}}}}{{{Bb{Ib}}{Bb{Ib}}}{{Bf{Mj}}}}{{{Nh{}{{Ah{e}}}}Ib}{{Fd{c}}}Bh{{L`{}{{Ah{c}}}}Bh}}{{IbIb}Ib}{{{Bb{Lf}}Lf}Ib};1{KnIb}{{{Bb{Ib}}c}BlBFf}{BbBEl}{{{Bb{Lf}}Lf}BEf}{{LfIb}Lf}{{LfBEf}}{{LfLf}Ib}8{{IbBEf}}{{{Bb{B`Lf}}BEf}Bd}{{{Bb{B`Lf}}Ib}Bd}{{{Bb{B`Ib}}BEf}Bd}{{{Bb{B`Ib}}Ib}Bd}{{{Bb{Ib}}}Ij}00{cIb{{ALn{}{{F`{Ib}}}}}}{cIb{{ALn{}{{F`{{Bb{Ib}}}}}}}}{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{BEf{{Bl{IbBFh}}}}{d{{Bl{IbBFj}}}}{Kj{{Bl{IbBFj}}}}{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0``````{eg{}{{l{c}}}{}}0{ce{}{}}044{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{BFl}}}BFl}{{{Bb{BFn}}}BFn}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}099{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}088{IdBd}0{{{Bb{BFl}}{Bb{BFl}}}C`}{{{Bb{BFn}}{Bb{BFn}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{BFl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BFn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{ce{}{}}0{{{Bb{BFn}}{Bb{B`c}}}BdLb}{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0{BG`BFn}{BGbBFn}{BGdBFn}{BGfBFn}{BG`Ad}{BGbAd}{BGdAd}{BGfAd}`````````````````````````````````````````````````````````````````````{eg{}{{l{c}}}{}}0000000000000000000000000000000{{{BGh{ceg}}i}{{BGh{ceg}}}{}BGjAD`{{Fj{Gl}}}}000{{{BGl{ceg}}i}{{BGl{ceg}}}{}{}AD`{{Fj{K`}}}}{{{BGh{ceg}}i}{{BGh{ceg}}}{}BGjAD`{{Fj{K`}}}}{{{BGn{ceg}}i}{{BGn{ceg}}}EdBH`AMl{{Fj{K`}}}}{{{BHb{ceg}}i}{{BHb{ceg}}}{}{}AD`{{Fj{Kb}}}}{{{BGh{ceg}}i}{{BGh{ceg}}}{}BGjAD`{{Fj{Kb}}}}{{{BHd{ceg}}}{{BHd{ceg}}}{}BHfAD`}000{{{BHd{ceg}}BHh}{{BHd{ceg}}}{}BHfAD`}0{{{BHj{c}}}{{BHj{c}}}{}}{{{BHl{ceg}}i}{{BHl{ceg}}}Ed{}AD`{{Fj{Ab}}}}{ce{}{}}0000000000000000000000000000000{{}c{}}0000000000000000000000000000000{Bb{{Bb{Dl}}}}0000000000000000000000000000000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000000000000000000000000000000{{{BHn{cegik}}{Nh{{Bb{g}}}{{Ah{Gh}}}}}{{BHn{cegik}}}{}{}{}{{Bj{{Bb{e}}}{{Ah{g}}}}}AD`}{Bb{{Bb{c}}}{}}0000000000000000000000000000000{{{Bb{B`}}}{{Bb{B`c}}}{}}0000000000000000000000000000000{i{{BGh{ceg}}}{}BGjAD`{{Fj{{AHn{ceg}}}}}}00`{i{{BI`{ceg}}}{}BIbAD`{{Fj{{AHn{ceg}}}}}}{{{Fl{c}}}e{}{}}0000000000000000000000000000000`{i{{BId{iceg}}}{}{}BIf{{BIh{ceg}}}}{{}{{BHj{c}}}{}}{{{BIj{c}}e}{{BIj{c}}}BIl{{Fj{Ab}}}}5{{{BGh{ceg}}i}{{BGh{ceg}}}{}BGjAD`{{Fj{Gl}}}}6060`{{cC`}{{BIn{egi}}}{{Fj{Hb}}}{}BJ`AMl}{{{Bb{{BGl{ceg}}}}}{{H`{ACl}}}{}{}AD`}{{{Bb{{BJb{ceg}}}}}{{H`{ACl}}}Ed{}AD`}{{{Bb{{BJd{ceg}}}}}{{H`{ACl}}}{}{}AD`}{{{Bb{{BHb{ceg}}}}}{{H`{ACl}}}{}{}AD`}{{{Bb{{BJf{ceg}}}}}{{H`{ACl}}}{}{}AD`}{{{Bb{{BHn{cegik}}}}}{{H`{ACl}}}{}{}{}{{Bj{{Bb{e}}}{{Ah{g}}}}}AD`}{{{Bb{{BI`{ceg}}}}}{{H`{ACl}}}EdBIbAD`}{{{Bb{{BJh{cegi}}}}}{{H`{ACl}}}{JlEd}EdBJjAMl}{{{Bb{{BGh{ceg}}}}}{{H`{ACl}}}{}BGjAD`}{{{Bb{{BJl{ceg}}}}}{{H`{ACl}}}{}BJnAD`}{{{Bb{{BHl{ceg}}}}}{{H`{ACl}}}Ed{}AD`}{{{Bb{{BHd{ceg}}}}}{{H`{ACl}}}{}BHfAD`}{{{Bb{{BK`{ceg}}}}}{{H`{ACl}}}{}BGjAMl}{{{Bb{{BKb{cegik}}}}}{{H`{ACl}}}{}{}AD`Ld{{Fj{{AHn{ceg}}}}}}{{{BI`{ceg}}i}{{BI`{ceg}}}{}BIbAD`Fj}{{{BIn{ceg}}i}{{BIn{ceg}}}{}BJ`AMlFj}{{{BGh{ceg}}i}{{BGh{ceg}}}{}BGjAD`Fj}{{{BJl{ceg}}i}{{BJl{ceg}}}{}BJnAD`Fj}{{{BKd{cegikm}}o}{{BKd{cegikm}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMlFj}{{{BKh{c}}e}{{BKh{c}}}BKjFj}{{{BKl{ceg}}i}{{BKl{ceg}}}EdBKnAMlFj}{{{BL`{c}}e}{{BL`{c}}}BLbFj}{{{BHd{ceg}}i}{{BHd{ceg}}}{}BHfAD`Fj}{{{BLd{ceg}}i}{{BLd{ceg}}}{Ef{BLf{Gn}}BBj}EdBLhFj}{{{BLj{cegi}}k}{{BLj{cegi}}}ALj{}BLlAMlFj}{{{BGn{ceg}}i}{{BGn{ceg}}}EdBH`AMlFj}{{{BLn{ceg}}i}{{BLn{ceg}}}{}BM`AMlFj}{{{BK`{ceg}}i}{{BK`{ceg}}}{}BGjAMlFj}{{{BMb{ceg}}i}{{BMb{ceg}}}{Ef{BLf{Gn}}BBj}EdBLhFj}{{{BMd{c}}e}{{BMd{c}}}BMfFj}{{{BIj{c}}e}{{BIj{c}}}BIlFj}{{{BGl{ceg}}C`}{{BGl{ceg}}}{}{}AD`}{{{BHb{ceg}}C`}{{BHb{ceg}}}{}{}AD`}{{{BI`{ceg}}C`}{{BI`{ceg}}}{}BIbAD`}{{{BGh{ceg}}C`}{{BGh{ceg}}}{}BGjAD`}{{{Bb{{BHj{c}}}}}{{BHj{c}}}Ed}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}{i{{BGl{ceg}}}{}{}AD`{{Fb{}{{F`{{AHn{ceg}}}}}}}}``{{{Bb{{BMh{c}}}}{Bb{Mh}}{Bf{{Bb{c}}}}g}{{BJh{ceik}}}{JlEd}{}{{Bj{c}{{Ah{e}}}}}BJjAMl}{i{{AHn{ceg}}}{}{}AD`{{BMj{ceg}}}}{ce{}{}}0000000000000000000000000000000`{i{{BGh{ceg}}}{}BGjAD`{{Fj{{AHn{ceg}}}}}}{{{BMd{c}}Gj}{{BMd{c}}}BMf}{{{BMl{c}}Gj}{{BMl{c}}}{}}{{}{{BGl{ce}}}{}AD`}{{}{{BHb{ce}}}{}AD`}{{}{{BJf{ce}}}{}AD`}{{{BLd{ceg}}i}{{BLd{ceg}}}{Ef{BLf{Gn}}BBj}EdBLh{{Fj{c}}}}{{{BMb{ceg}}i}{{BMb{ceg}}}{Ef{BLf{Gn}}BBj}EdBLh{{Fj{c}}}}{Id{{Bb{c}}}{}}0000000000000000000000000000000{Id{{Bb{B`c}}}{}}0000000000000000000000000000000{{{Bb{{BGl{ceg}}}}{Bb{B`ACl}}}Bd{}{}AD`}{{{Bb{{BJb{ceg}}}}{Bb{B`ACl}}}BdEd{}AD`}{{{Bb{{BJd{ceg}}}}{Bb{B`ACl}}}Bd{}{}AD`}{{{Bb{{BHb{ceg}}}}{Bb{B`ACl}}}Bd{}{}AD`}{{{Bb{{BJf{ceg}}}}{Bb{B`ACl}}}Bd{}{}AD`}{{{Bb{{BHn{cegik}}}}{Bb{B`ACl}}}Bd{}{}{}{{Bj{{Bb{e}}}{{Ah{g}}}}}AD`}{{{Bb{{BI`{ceg}}}}{Bb{B`ACl}}}BdEdBIbAD`}{{{Bb{{BGh{ceg}}}}{Bb{B`ACl}}}Bd{}BGjAD`}{{{Bb{{BJl{ceg}}}}{Bb{B`ACl}}}Bd{}BJnAD`}{{{Bb{{BHl{ceg}}}}{Bb{B`ACl}}}BdEd{}AD`}{{{Bb{{BHd{ceg}}}}{Bb{B`ACl}}}Bd{}BHfAD`}{{{Bb{{BGn{ceg}}}}{Bb{B`ACl}}}BdEdBH`AMl}{{{Bb{{BK`{ceg}}}}{Bb{B`ACl}}}Bd{}BGjAMl}{{{Bb{{BKb{cegik}}}}{Bb{B`ACl}}}Bd{}{}AD`Ld{{Fj{{AHn{ceg}}}}}}{{{BHd{ceg}}i}{{BHd{ceg}}}{}BHfAD`{{Fj{BMn}}}}{Bb{{Bb{c}}}{}}0000000000000000000000000000000{{{Bb{{BGl{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}{}AD`}{{{Bb{{BJb{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}BdEd{}AD`}{{{Bb{{BJd{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}{}AD`}{{{Bb{{BHb{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}{}AD`}{{{Bb{{BJf{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}{}AD`}{{{Bb{{BHn{cegik}}}}{Bb{ACl}}{Bb{B`k}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}{}{}{{Bj{{Bb{e}}}{{Ah{g}}}}}AD`}{{{Bb{{BI`{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}BdEdBIbAD`}{{{Bb{{BIn{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}BJ`AMl}{{{Bb{{BJh{cegi}}}}{Bb{ACl}}{Bb{B`i}}{Bb{g}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{JlEd}EdBJjAMl}{{{Bb{{BGh{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}BGjAD`}{{{Bb{{BJl{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}BJnAD`}{{{Bb{{BKd{cegikm}}}}{Bb{ACl}}{Bb{B`m}}{Bb{k}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{EdBClEh}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl}{{{Bb{{BHl{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}BdEd{}AD`}{{{Bb{{BKh{c}}}}{Bb{ACl}}{Bb{B`e}}{Bb{c}}{Bb{ADd}}ACfADf{Bb{Al}}}BdBKjAD`}{{{Bb{{BKl{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}BdEdBKnAMl}{{{Bb{{BL`{c}}}}{Bb{ACl}}{Bb{B`e}}{Bb{c}}{Bb{ADd}}ACfADf{Bb{Al}}}BdBLbAD`}{{{Bb{{BHd{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}BHfAD`}{{{Bb{{BLd{ceg}}}}{Bb{ACl}}{Bb{B`i}}{Bb{g}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{Ef{Fj{Kj}}BN`}EdBLhAD`}{{{Bb{{BLj{cegi}}}}{Bb{ACl}}{Bb{B`i}}{Bb{g}}{Bb{ADd}}ACfADf{Bb{Al}}}BdALj{}BLlAMl}{{{Bb{{BGn{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}BdEdBH`AMl}{{{Bb{{BGn{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}ACfADf{Bf{{Bb{BNb}}}}{Bb{Al}}}BdEdBH`AMl}{{{Bb{{BLn{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}BM`AMl}{{{Bb{{BK`{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}BGjAMl}{{{Bb{{BMb{ceg}}}}{Bb{ACl}}{Bb{B`i}}{Bb{g}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{Ef{Fj{Kj}}BN`}EdBLhAD`}{{{Bb{{BNd{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}{}AD`}{{{Bb{{BKb{cegik}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}{}AD`Ld{{Fj{{AHn{ceg}}}}}}{{{Bb{{BNf{ce}}}}{Bb{ACl}}{Bb{B`g}}{Bb{i}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}{{BNh{c}}}BNj{}}{{{Bb{{BMd{c}}}}{Bb{ACl}}{Bb{B`e}}{Bb{c}}{Bb{ADd}}ACfADf{Bb{Al}}}BdBMfAKh}{{{Bb{{BIj{c}}}}{Bb{ACl}}{Bb{B`{BO`{BNlBNn}}}}{Bb{c}}{Bb{ADd}}ACfADf{Bb{Al}}}BdBIl}{{{Bb{BOb}}{Bb{ACl}}{Bb{B`c}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}BdAD`{}}{{{Bb{{BMl{c}}}}{Bb{ACl}}{Bb{B`e}}{Bb{g}}{Bb{ADd}}ACfADf{Bb{Al}}}BdEd{{AGj{}{{AGh{c}}}}}{}}{{{Bb{{BId{iceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}{}BIf{{BIh{ceg}}}}{IdBd}0000000000000000000000000000000{{{BGl{ceg}}i}{{BGl{ceg}}}{}{}AD`{{Fb{}{{F`{{AHn{ceg}}}}}}}}{{{BHb{ceg}}i}{{BHb{ceg}}}{}{}AD`{{Fb{}{{F`{{AHn{ceg}}}}}}}}{{{BJf{ceg}}i}{{BJf{ceg}}}{}{}AD`{{Fb{}{{F`{{AHn{ceg}}}}}}}}{{{BMl{c}}AGf}{{BMl{c}}}{}}{{{Bb{{BHj{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{BOb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{{BMl{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{{BId{iceg}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`D`{D`BIf}{D`{BIh{ceg}}}}{{}{{f{c}}}{}}0{{{BIn{ceg}}i}{{BIn{ceg}}}{}BJ`AMlFj}{{{BJh{cegi}}}{{BJh{cegi}}}{JlEd}{}BJjAMl}{{{BKd{cegikm}}o}{{BKd{cegikm}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMlFj}{{{BKl{ceg}}i}{{BKl{ceg}}}EdBKnAMlFj}{{{BLj{cegi}}k}{{BLj{cegi}}}ALj{}BLlAMlFj}{{{BGn{ceg}}}{{BGn{ceg}}}EdBH`AMl}{{{BLn{ceg}}i}{{BLn{ceg}}}{}BM`AMlFj}{cc{}}000000000000000000000000000000000000000000000000000000000000000{i{{BGl{ceg}}}{}{}AD`{{Fb{}{{F`{{AHn{ceg}}}}}}}}{i{{BHb{ceg}}}{}{}AD`{{Fb{}{{F`{{AHn{ceg}}}}}}}}{c{{BMd{e}}}{{Fj{AHf}}}BMf}{ce{}{}}0000000000000000000000000000000{{{H`{{AHn{ceg}}}}}{{BGl{ceg}}}{}{}AD`}{{{H`{{AHn{ceg}}}}}{{BHb{ceg}}}{}{}AD`}{{{H`{{AHn{ceg}}}}}{{BJf{ceg}}}{}{}AD`}{{{BK`{ceg}}i}{{BK`{ceg}}}{}BGjAMl{{Fj{Ab}}}}{{{BKh{c}}e}{{BKh{c}}}BKj{{Fj{Gl}}}}{{{BKd{cegikm}}BOd}{{BKd{cegikm}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl}{{{BGl{ceg}}i}{{BGl{ceg}}}{}{}AD`{{Fj{Gl}}}}{{{BJd{ceg}}i}{{BJd{ceg}}}{}{}AD`{{Fj{Gl}}}}{{{BHb{ceg}}i}{{BHb{ceg}}}{}{}AD`{{Fj{Gl}}}}{{{BJf{ceg}}i}{{BJf{ceg}}}{}{}AD`{{Fj{Gl}}}}{{{BI`{ceg}}i}{{BI`{ceg}}}{}BIbAD`{{Fj{Gl}}}}{{{BGh{ceg}}i}{{BGh{ceg}}}{}BGjAD`{{Fj{Gl}}}}{{{BJl{ceg}}i}{{BJl{ceg}}}{}BJnAD`{{Fj{Gl}}}}{{{BHd{ceg}}i}{{BHd{ceg}}}{}BHfAD`{{Fj{Gl}}}}{{{BLd{ceg}}i}{{BLd{ceg}}}{Ef{BLf{Gn}}BBj}EdBLh{{Fj{Ab}}}}{{{BLj{cegi}}k}{{BLj{cegi}}}ALj{}BLlAMl{{Fj{Gl}}}}{{{BMb{ceg}}i}{{BMb{ceg}}}{Ef{BLf{Gn}}BBj}EdBLh{{Fj{Gl}}}}{{{BNf{ce}}g}{{BNf{ce}}}{}{{BNh{c}}}{{Fj{Gl}}}}{{{BMd{c}}e}{{BMd{c}}}BMf{{Fj{Gl}}}}{{BObc}BOb{{Fj{Gl}}}}{{{BMl{c}}e}{{BMl{c}}}{}{{Fj{Gl}}}}{{{BId{iceg}}k}{{BId{iceg}}}{}{}BIf{{BIh{ceg}}}{{Fj{Gl}}}}{{{BLj{cegi}}{Bb{Mh}}BOf}{{BLj{BOhegi}}}ALj{}BLl{{AMl{}{{AL`{Gd}}}}AMl}}{{{BLj{cegi}}{Nh{Bb{Bb{g}}}{{Ah{AMn}}}}}{{BLj{kegi}}}ALj{}BLlAMlALj}{c{{BL`{e}}}{{Fj{Ab}}}BLb}{{{BHd{ceg}}}{{BHd{ceg}}}{}BHfAD`}1{{}BOb}{{ik}{{AHn{ceg}}}{}{}AD`{{Fj{{AHn{ceg}}}}}{{Fj{{AHn{ceg}}}}}}{c{{AHn{egi}}}{{Fj{Ab}}}{}{AOdBMf}{AD`{AMl{}{{AL`{Gd}}}}AKh}}{{{BIn{ceg}}BOj}{{BIn{ceg}}}{}BJ`AMl}{{{BJh{cegi}}BOl}{{BJh{cegi}}}{JlEd}{}BJjAMl}{{{BGn{ceg}}BOl}{{BGn{ceg}}}EdBH`AMl}{{{BGh{ceg}}i}{{BGh{ceg}}}{}BGjAD`{{Fj{B@b}}}}{{{BHd{ceg}}i}{{BHd{ceg}}}{}BHfAD`{{Fj{B@`}}}}{{{BGn{ceg}}i}{{BGn{ceg}}}EdBH`AMl{{Fj{AOn}}}}`{e{{BMl{c}}}{}{{Fj{c}}}}{{}Id}0000000000000000000000000000000{{{BJh{cegi}}k}{{BJh{cegi}}}{JlEd}{}BJjAMlFj}{{{BJh{cegi}}k}{{BJh{cegi}}}{JlEd}{}BJjAMl{{Bj{{Bb{g}}AB`}{{Ah{ABb}}}}}}{{{BJb{ceg}}AEd}{{BJb{ceg}}}{}{}{}}{{}c{}}000000000000000000000000000000000000000000000000000000000000000{{{I`{c}}}{{I`{Dl}}}{}}0000000000000000000000000000000{{{Lj{c}}}{{Lj{Dl}}}{}}00000000{{{Ll{c}}}{{Ll{Dl}}}{}}0000000000000000000000000000000{{{Fl{c}}}e{}{}}00000000000000000000000000000004444444444444444444444444444444444444444444444444444444444444444{{{BHj{c}}}{{j{{Bf{c}}AEnADh}}}{}}{{}c{}}0000000000000000000000000000000{{{BHl{ceg}}i}{{BHl{ceg}}}Ed{}AD`AN`}{{{BLj{cegi}}k}{{BLj{cegi}}}ALj{}BLlAMl{{Bj{BOn}{{Ah{{Bf{{C@`{e}}}}}}}}}}`{k{{C@b{cegi}}}{EfEh}{}{}AD`{{Fb{}{{F`{{j{c{AHn{egi}}}}}}}}}}`{{{BLn{ceg}}i}{{BLn{ceg}}}{}BM`AMlAN`}{{{Bb{{BGl{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADn{}{}AD`}{{{Bb{{BJb{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADnEd{}AD`}{{{Bb{{BJd{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADn{}{}AD`}{{{Bb{{BHb{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADn{}{}AD`}{{{Bb{{BJf{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADn{}{}AD`}{{{Bb{{BHn{cegik}}}}{Bb{B`ACl}}{Bb{k}}{Bb{AE`}}}ADn{}{}{}{{Bj{{Bb{e}}}{{Ah{g}}}}}AD`}{{{Bb{{BI`{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADnEdBIbAD`}{{{Bb{{BIn{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADn{}BJ`AMl}{{{Bb{{BJh{cegi}}}}{Bb{B`ACl}}{Bb{i}}{Bb{AE`}}}ADn{JlEd}EdBJjAMl}{{{Bb{{BGh{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADn{}BGjAD`}{{{Bb{{BJl{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADn{}BJnAD`}{{{Bb{{BKd{cegikm}}}}{Bb{B`ACl}}{Bb{m}}{Bb{AE`}}}ADn{EdBClEh}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl}{{{Bb{{BHl{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADnEd{}AD`}{{{Bb{{BKh{c}}}}{Bb{B`ACl}}{Bb{e}}{Bb{AE`}}}ADnBKjAD`}{{{Bb{{BKl{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADnEdBKnAMl}{{{Bb{{BL`{c}}}}{Bb{B`ACl}}{Bb{e}}{Bb{AE`}}}ADnBLbAD`}{{{Bb{{BHd{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADn{}BHfAD`}{{{Bb{{BLd{ceg}}}}{Bb{B`ACl}}{Bb{i}}{Bb{AE`}}}ADn{Ef{Fj{Kj}}BN`}EdBLhAD`}{{{Bb{{BLj{cegi}}}}{Bb{B`ACl}}{Bb{i}}{Bb{AE`}}}ADnALj{}BLlAMl}{{{Bb{{BGn{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADnEdBH`AMl}{{{Bb{{BGn{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}{Bf{{Bb{BNb}}}}}ADnEdBH`AMl}{{{Bb{{BLn{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADn{}BM`AMl}{{{Bb{{BK`{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADn{}BGjAMl}{{{Bb{{BMb{ceg}}}}{Bb{B`ACl}}{Bb{i}}{Bb{AE`}}}ADn{Ef{Fj{Kj}}BN`}EdBLhAD`}{{{Bb{{BNd{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADn{}{}AD`}{{{Bb{{BKb{cegik}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADn{}{}AD`Ld{{Fj{{AHn{ceg}}}}}}{{{Bb{{BNf{ce}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADn{}{{BNh{c}}}BNj}{{{Bb{{BMd{c}}}}{Bb{B`ACl}}{Bb{e}}{Bb{AE`}}}ADnBMfAKh}{{{Bb{{BIj{c}}}}{Bb{B`ACl}}{Bb{{BO`{BNlBNn}}}}{Bb{AE`}}}ADnBIl}{{{Bb{BOb}}{Bb{B`ACl}}{Bb{c}}{Bb{AE`}}}ADnAD`}{{{Bb{{BMl{c}}}}{Bb{B`ACl}}{Bb{e}}{Bb{AE`}}}ADnEd{{AGj{}{{AGh{c}}}}}}{{{Bb{{BId{iceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADn{}{}BIf{{BIh{ceg}}}}{{cm}{{BKb{egick}}}Ld{}{}{}{{Fj{{AHn{egi}}}}}{{Bj{{Bb{c}}}{{Ah{k}}}}}}{{{BKh{c}}e}{{BKh{c}}}BKj{{Fj{Gl}}}}{{{BJh{cegi}}k}{{BJh{cegi}}}{JlEd}{}BJjAMl{{Fj{AEb}}}}{{{BLj{cegi}}k}{{BLj{cegi}}}ALj{}BLlAMl{{Fj{AEb}}}}{{{BGn{ceg}}i}{{BGn{ceg}}}EdBH`AMl{{Fj{AEb}}}}`{{ce}{{AHn{C@dgi}}}{{Fb{}{{F`{{Bb{C@f}}}}}}}{{Fj{C@h}}}C@j{{AMl{}{{AL`{Gd}}}}}}{{{BGh{ceg}}i}{{BGh{ceg}}}{}BGjAD`{{Fj{Ab}}}}{{{BLj{cegi}}k}{{BLj{cegi}}}ALj{}BLlAMl{{Fj{Ab}}}}{{{BGl{ceg}}i}{{BGl{ceg}}}{}{}AD`{{Fj{Ab}}}}2{{{BJh{cegi}}k}{{BJh{cegi}}}{JlEd}{}BJjAMlFj}{{{BKd{cegikm}}o}{{BKd{cegikm}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMlFj}{{{BJh{cegi}}k}{{BJh{cegi}}}{JlEd}{}BJjAMl{{Bj{{Bb{g}}}{{Ah{AAb}}}}}}{{{BKd{cegikm}}o}{{BKd{cegikm}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl{{Bj{{Bb{k}}}{{Ah{AAb}}}}}}5{i{{BJb{ceg}}}{}{}AD`{{Fj{{AHn{ceg}}}}}}{{{Bb{{BGl{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}{}AD`}{{{Bb{{BJb{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEdEd{}AD`}{{{Bb{{BJd{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}{}AD`}{{{Bb{{BHb{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}{}AD`}{{{Bb{{BJf{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}{}AD`}{{{Bb{{BHn{cegik}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{k}}}AEd{}{}{}{{Bj{{Bb{e}}}{{Ah{g}}}}}AD`}{{{Bb{{BI`{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEdEdBIbAD`}{{{Bb{{BIn{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}BJ`AMl}{{{Bb{{BJh{cegi}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{i}}}AEd{JlEd}EdBJjAMl}{{{Bb{{BGh{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}BGjAD`}{{{Bb{{BJl{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}BJnAD`}{{{Bb{{BKd{cegikm}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{m}}}AEd{EdBClEh}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl}{{{Bb{{BHl{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEdEd{}AD`}{{{Bb{{BKl{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEdEdBKnAMl}{{{Bb{{BHd{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}BHfAD`}{{{Bb{{BLd{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{i}}}AEd{Ef{Fj{Kj}}BN`}EdBLhAD`}{{{Bb{{BLj{cegi}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{i}}}AEdALj{}BLlAMl}{{{Bb{{BGn{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEdEdBH`AMl}{{{Bb{{BLn{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}BM`AMl}{{{Bb{{BK`{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}BGjAMl}{{{Bb{{BMb{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{i}}}AEd{Ef{Fj{Kj}}BN`}EdBLhAD`}{{{Bb{{BNd{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}{}AD`}{{{Bb{{BKb{cegik}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}{}AD`Ld{{Fj{{AHn{ceg}}}}}}{{{Bb{{BNf{ce}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}{{BNh{c}}}BNj}{{{Bb{{BId{iceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}{}BIf{{BIh{ceg}}}}{{}{{BGl{ceg}}}{}{}AD`}{i{{BJb{ceg}}}{}{}{}{{Fj{{AHn{ceg}}}}}}{i{{BJd{ceg}}}{}{}AD`{{Fj{{AHn{ceg}}}}}}{{}{{BHb{ceg}}}{}{}AD`}{{}{{BJf{ceg}}}{}{}AD`}{{gm}{{BHn{icegk}}}{}{}{{Bj{{Bb{c}}}{{Ah{e}}}}}{}AD`{{Fj{{AHn{iek}}}}}}{i{{BI`{ceg}}}{}BIbAD`{{Fj{{AHn{ceg}}}}}}{{cC`}{{BIn{egi}}}{{Fj{Hb}}}{}BJ`AMl}{{{Bb{{BMh{c}}}}{Bb{Mh}}{Bf{{Bb{c}}}}g}{{BJh{ceik}}}{JlEd}{}{{Bj{c}{{Ah{e}}}}}BJjAMl}{i{{BGh{ceg}}}{}BGjAD`{{Fj{{AHn{ceg}}}}}}{{{Bb{{C@l{c}}}}k}{{BJl{egi}}}{}{}BJnAD`{{Bj{C@n{Bb{c}}C`}{{Ah{{CA`{egi}}}}}}}}{{e{Bf{g}}k}{{BKd{cegimo}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}Ed{{Bj{c}{{Ah{i}}}}}BKfAMl}{i{{BHl{ceg}}}Ed{}AD`{{Fj{{AHn{ceg}}}}}}{{{CAb{d}}d}{{BKh{c}}}BKj}{{ce{Bf{e}}i}{{BKl{gkm}}}{{Fj{Hb}}}{CAdEf}Ed{{Hh{e}{{Ah{g}}}}}BKnAMl}{i{{BHd{ceg}}}{}BHfAD`{{Fj{{AHn{ceg}}}}}}{{{CAb{c}}cg}{{BLd{cei}}}{Ef{BLf{Gn}}BBj}Ed{{Bj{c}{{Ah{e}}}}}BLh}{{{Bb{{CAf{c}}}}}{{BLj{ANnegc}}}AMl{}BLl}{{{Bb{Mh}}{Bb{Mh}}}{{BGn{ceg}}}EdBH`AMl}{C`{{BLn{ceg}}}{}BM`AMl}{{ikCAh}{{BK`{ceg}}}{}BGjAMl{{Fj{{AHn{ceg}}}}}{{Fj{{AHn{ceg}}}}}}{{{CAb{c}}cg}{{BMb{cei}}}{Ef{BLf{Gn}}BBj}Ed{{Bj{c}{{Ah{e}}}}}BLh}{i{{BNd{ceg}}}{}{}AD`{{Bj{An}{{Ah{{AHn{ceg}}}}}}}}{{cm}{{BKb{egick}}}Ld{}{}{}{{Fj{{AHn{egi}}}}}{{Bj{{Bb{c}}}{{Ah{k}}}}}}{e{{BNf{ce}}}{}{{BNh{c}}}}{c{{BMd{e}}}{{Fj{AKd}}}BMf}{{{Bb{CAj}}}{{BIj{c}}}BIl}{{ce}BOb{{Fj{Gl}}}{{Fj{Gl}}}}{e{{BMl{c}}}{}{{Fj{c}}}}{i{{BId{iceg}}}{}{}BIf{{BIh{ceg}}}}{{}c{}}00{{{BLj{cegi}}k}{{BLj{cegi}}}ALj{}BLlAMl{{Bj{ANd}{{Ah{e}}}}}}{{{BJl{ceg}}i}{{BJl{ceg}}}{}BJnAD`{{Bj{C@n}{{Ah{c}}}}}}{{{BJh{cegi}}e}{{BJh{cegi}}}{JlEd}{}BJjAMl}{{{BKd{cegikm}}i}{{BKd{cegikm}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl}{{{BJb{ceg}}c}{{BJb{ceg}}}{}{}{}}{{{BJl{ceg}}i}{{BJl{ceg}}}{}BJnAD`{{Bj{CAl}{{Ah{c}}}}}}11{{{BHl{ceg}}c}{{BHl{ceg}}}Ed{}AD`}{{{BJh{cegi}}k}{{BJh{cegi}}}{JlEd}{}BJjAMl{{Bj{Hb}{{Ah{e}}}}}}{{{BGn{ceg}}i}{{BGn{ceg}}}EdBH`AMl{{Bj{Hb}{{Ah{c}}}}}}{{{BGn{ceg}}{Bf{i}}}{{BGn{ceg}}}EdBH`AMl{{Bj{Hb}{{Ah{c}}}}}}55{{{BJb{ceg}}i}{{BJb{ceg}}}{}{}{}{{Bj{Ad}{{Ah{c}}}}}}87{{{BJh{cegi}}k}{{BJh{cegi}}}{JlEd}{}BJjAMl{{Bj{c}{{Ah{e}}}}}}327{{{BI`{ceg}}c}{{BI`{ceg}}}{}BIbAD`}{{{BI`{ceg}}{Bf{c}}}{{BI`{ceg}}}{}BIbAD`}{{{BI`{ceg}}i}{{BI`{ceg}}}{}BIbAD`{{Bj{}{{Ah{c}}}}}}:{{{BLd{ceg}}e}{{BLd{ceg}}}{Ef{BLf{Gn}}BBj}EdBLh}{{{BMb{ceg}}e}{{BMb{ceg}}}{Ef{BLf{Gn}}BBj}EdBLh}{{{BJl{ceg}}ik}{{BJl{ceg}}}{}BJnAD`{{Fj{Ab}}}{{Bj{CAn}{{Ah{c}}}}}}{{{BHl{ceg}}i}{{BHl{ceg}}}Ed{}AD`{{Bj{An}{{Ah{c}}}}}}>>{{{BJb{ceg}}i}{{BJb{ceg}}}{}{}{}{{Bj{AIh}{{Ah{c}}}}}}{{{BHd{ceg}}i}{{BHd{ceg}}}{}BHfAD`{{Bj{CB`}{{Ah{c}}}}}}2{{{BGn{ceg}}c}{{BGn{ceg}}}EdBH`AMl}{{{BGn{ceg}}{Bf{c}}}{{BGn{ceg}}}EdBH`AMl}{{{BIn{ceg}}i}{{BIn{ceg}}}{}BJ`AMl{{Bj{C`}{{Ah{c}}}}}}{{{BLn{ceg}}i}{{BLn{ceg}}}{}BM`AMl{{Bj{C`}{{Ah{c}}}}}}{{{BIn{ceg}}{Bf{i}}}{{BIn{ceg}}}{}BJ`AMl{{Bj{C`}{{Ah{c}}}}}}{{{BLn{ceg}}{Bf{i}}}{{BLn{ceg}}}{}BM`AMl{{Bj{C`}{{Ah{c}}}}}}{{{BMd{c}}e}{{BMd{c}}}BMf{{Fj{d}}}}{{{BMl{c}}e}{{BMl{c}}}{}{{Fj{d}}}}{i{{AHn{ceg}}}{}{}AD`{{Fj{{AHn{ceg}}}}}}{{{Bb{{BGl{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}{Bb{B`AEf}}}Bd{}{}AD`}{{{Bb{{BJb{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}{Bb{B`AEf}}}BdEd{}AD`}{{{Bb{{BJd{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}{Bb{B`AEf}}}Bd{}{}AD`}{{{Bb{{BHb{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}{Bb{B`AEf}}}Bd{}{}AD`}{{{Bb{{BJf{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}{Bb{B`AEf}}}Bd{}{}AD`}{{{Bb{{BHn{cegik}}}}{Bb{B`ACl}}ACf{Bb{k}}{Bb{B`AEf}}}Bd{}{}{}{{Bj{{Bb{e}}}{{Ah{g}}}}}AD`}{{{Bb{{BI`{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}{Bb{B`AEf}}}BdEdBIbAD`}{{{Bb{{BIn{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}{Bb{B`AEf}}}Bd{}BJ`AMl}{{{Bb{{BGh{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}{Bb{B`AEf}}}Bd{}BGjAD`}{{{Bb{{BJl{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}{Bb{B`AEf}}}Bd{}BJnAD`}{{{Bb{{BHl{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}{Bb{B`AEf}}}BdEd{}AD`}{{{Bb{{BHd{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}{Bb{B`AEf}}}Bd{}BHfAD`}{{{Bb{{BLj{cegi}}}}{Bb{B`ACl}}ACf{Bb{i}}{Bb{B`AEf}}}BdALj{}BLlAMl}{{{Bb{{BGn{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}{Bb{B`AEf}}}BdEdBH`AMl}{{{Bb{{BMj{}{{Cb{c}}{CBb{e}}}}}}{Bb{B`c}}{Bb{B`AEf}}}BdDd{}}{{{Bb{{BNd{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}{Bb{B`AEf}}}Bd{}{}AD`}{{{Bb{{BKb{cegik}}}}{Bb{B`ACl}}ACf{Bb{g}}{Bb{B`AEf}}}Bd{}{}AD`Ld{{Fj{{AHn{ceg}}}}}}`{{{Bb{B`{BGl{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}Af}{{Bf{{AEh{ceg}}}}}{}{}AD`}{{{Bb{B`{BJb{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}Af}{{Bf{{AEh{ceg}}}}}Ed{}AD`}{{{Bb{B`{BJd{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}Af}{{Bf{{AEh{ceg}}}}}{}{}AD`}{{{Bb{B`{BHb{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}Af}{{Bf{{AEh{ceg}}}}}{}{}AD`}{{{Bb{B`{BJf{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}Af}{{Bf{{AEh{ceg}}}}}{}{}AD`}{{{Bb{B`{BHn{cegik}}}}{Bb{B`ACl}}ACf{Bb{k}}Af}{{Bf{{AEh{cek}}}}}{}{}{}{{Bj{{Bb{e}}}{{Ah{g}}}}}AD`}{{{Bb{B`{BI`{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}Af}{{Bf{{AEh{ceg}}}}}EdBIbAD`}{{{Bb{B`{BJh{cegi}}}}{Bb{B`ACl}}ACf{Bb{i}}Af}{{Bf{{AEh{egi}}}}}{JlEd}EdBJjAMl}{{{Bb{B`{BGh{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}Af}{{Bf{{AEh{ceg}}}}}{}BGjAD`}{{{Bb{B`{BJl{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}Af}{{Bf{{AEh{ceg}}}}}{}BJnAD`}{{{Bb{B`{BKd{cegikm}}}}{Bb{B`ACl}}ACf{Bb{m}}Af}{{Bf{{AEh{ikm}}}}}{EdBClEh}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl}{{{Bb{B`{BHl{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}Af}{{Bf{{AEh{ceg}}}}}Ed{}AD`}{{{Bb{B`{BHd{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}Af}{{Bf{{AEh{ceg}}}}}{}BHfAD`}{{{Bb{B`{BK`{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}Af}{{Bf{{AEh{ceg}}}}}{}BGjAMl}{{{Bb{B`{BNd{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}Af}{{Bf{{AEh{ceg}}}}}{}{}AD`}{{{Bb{B`{BKb{cegik}}}}{Bb{B`ACl}}ACf{Bb{g}}Af}{{Bf{{AEh{ceg}}}}}{}{}AD`Ld{{Fj{{AHn{ceg}}}}}}{{{BGl{ceg}}i}{{BGl{ceg}}}{}{}AD`{{Fj{Fh}}}}{{{BHb{ceg}}i}{{BHb{ceg}}}{}{}AD`{{Fj{Fh}}}}{{{BI`{ceg}}i}{{BI`{ceg}}}{}BIbAD`{{Fj{Fh}}}}{{{BJh{cegi}}k}{{BJh{cegi}}}{JlEd}{}BJjAMl{{Fj{Fh}}}}{{{BGh{ceg}}i}{{BGh{ceg}}}{}BGjAD`{{Fj{Fh}}}}{{{BKd{cegikm}}o}{{BKd{cegikm}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl{{Fj{Fh}}}}{{{BLj{cegi}}k}{{BLj{cegi}}}ALj{}BLlAMl{{Fj{Fh}}}}{{{BGn{ceg}}i}{{BGn{ceg}}}EdBH`AMl{{Fj{Fh}}}}{{{BK`{ceg}}i}{{BK`{ceg}}}{}BGjAMl{{Fj{Ab}}}}`{{{Bb{{C@l{c}}}}k}{{BJl{egi}}}{}{}BJnAD`{{Bj{C@n{Bb{c}}C`}{{Ah{{CA`{egi}}}}}}}}`{{e{Bf{g}}k}{{BKd{cegimo}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}Ed{{Bj{c}{{Ah{i}}}}}{BKfBCn}AMl}{i{{BJd{ceg}}}{}{}AD`{{Fj{{AHn{ceg}}}}}}{{{BKd{cegikm}}o}{{BKd{cegikm}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl{{Fj{Hb}}}}{{{BLj{cegi}}k}{{BLj{cegi}}}ALj{}BLlAMlAN`}`{i{{BHl{ceg}}}Ed{}AD`{{Fj{{AHn{ceg}}}}}}{{{BJd{ceg}}i}{{BJd{ceg}}}{}{}AD`{{Fj{Ad}}}}`{{{CAb{d}}d}{{BKh{c}}}BKj}{c{{BHj{c}}}{}}{{{BGl{ceg}}i}{{BGl{ceg}}}{}{}AD`{{Fj{{AHn{ceg}}}}}}{{{BHb{ceg}}i}{{BHb{ceg}}}{}{}AD`{{Fj{{AHn{ceg}}}}}}{{{BJf{ceg}}i}{{BJf{ceg}}}{}{}AD`{{Fj{{AHn{ceg}}}}}}{{{BGl{ceg}}{Bf{i}}}{{BGl{ceg}}}{}{}AD`{{Fj{{AHn{ceg}}}}}}{{{BHb{ceg}}{Bf{i}}}{{BHb{ceg}}}{}{}AD`{{Fj{{AHn{ceg}}}}}}{{{BJf{ceg}}{Bf{i}}}{{BJf{ceg}}}{}{}AD`{{Fj{{AHn{ceg}}}}}}`{{{Bb{CAj}}}{{BIj{c}}}BIl}`{{ce{Bf{e}}i}{{BKl{gkm}}}{{Fj{Hb}}}{EfCAd}Ed{{Hh{e}{{Ah{g}}}}}BKnAMl}{{}{{BHj{c}}}{}}{Lf{{BHj{c}}}{}}{i{{BNd{ceg}}}{}{}AD`{{Bj{An}{{Ah{{AHn{ceg}}}}}}}}{e{{CBd{cgik}}}Ed{{AF`{{AFn{{AKl{c}}}}}}}{}AOdAMl}`{i{{BGh{ceg}}}{}BGjAD`{{Fj{{AHn{ceg}}}}}}0{{{BMd{c}}e}{{BMd{c}}}BMf{{Fj{Dj}}}}{{{BMl{c}}e}{{BMl{c}}}{}{{Fj{Dj}}}}{i{{BHb{ceg}}}{}{}AD`{{Fb{}{{F`{{AHn{ceg}}}}}}}}``{{{BMl{c}}e}{{BMl{c}}}{}{{Fj{d}}}}`{i{{BHd{ceg}}}{}BHfAD`{{Fj{{AHn{ceg}}}}}}{{{BGn{ceg}}C`}{{BGn{ceg}}}EdBH`AMl}`{e{{BNf{ce}}}{}{{BNh{c}}}}{{{BLd{ceg}}i}{{BLd{ceg}}}{Ef{BLf{Gn}}BBj}EdBLh{{Fj{c}}}}{{{BMb{ceg}}i}{{BMb{ceg}}}{Ef{BLf{Gn}}BBj}EdBLh{{Fj{c}}}}{{{Bb{{BGl{ceg}}}}}{{An{Gl}}}{}{}AD`}{{{Bb{{BJb{ceg}}}}}{{An{Gl}}}Ed{}AD`}{{{Bb{{BJd{ceg}}}}}{{An{Gl}}}{}{}AD`}{{{Bb{{BHb{ceg}}}}}{{An{Gl}}}{}{}AD`}{{{Bb{{BJf{ceg}}}}}{{An{Gl}}}{}{}AD`}{{{Bb{{BHn{cegik}}}}}{{An{Gl}}}{}{}{}{{Bj{{Bb{e}}}{{Ah{g}}}}}AD`}{{{Bb{{BI`{ceg}}}}}{{An{Gl}}}EdBIbAD`}{{{Bb{{BIn{ceg}}}}}{{An{Gl}}}{}BJ`AMl}{{{BIn{ceg}}i}{{BIn{ceg}}}{}BJ`AMl{{Fj{Ab}}}}{{{Bb{{BJh{cegi}}}}}{{An{Gl}}}{JlEd}EdBJjAMl}{{{BJh{cegi}}d}{{BJh{cegi}}}{JlEd}{}BJjAMl}{{{Bb{{BGh{ceg}}}}}{{An{Gl}}}{}BGjAD`}{{{Bb{{BJl{ceg}}}}}{{An{Gl}}}{}BJnAD`}{{{Bb{{BKd{cegikm}}}}}{{An{Gl}}}{EdBClEh}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl}{{{Bb{{BHl{ceg}}}}}{{An{Gl}}}Ed{}AD`}{{{Bb{{BKh{c}}}}}{{An{Gl}}}BKj}{{{Bb{{BKl{ceg}}}}}{{An{Gl}}}EdBKnAMl}{{{BKl{ceg}}i}{{BKl{ceg}}}EdBKnAMl{{Fj{Ab}}}}{{{Bb{{BL`{c}}}}}{{An{Gl}}}BLb}{{{Bb{{BHd{ceg}}}}}{{An{Gl}}}{}BHfAD`}{{{Bb{{BLd{ceg}}}}}{{An{Gl}}}{Ef{Fj{Kj}}BN`}EdBLh}{{{Bb{{BLj{cegi}}}}}{{An{Gl}}}ALj{}BLlAMl}{{{BLj{cegi}}k}{{BLj{cegi}}}ALj{}BLlAMl{{Fj{Ab}}}}{{{Bb{{BGn{ceg}}}}}{{An{Gl}}}EdBH`AMl}{{{BGn{ceg}}i}{{BGn{ceg}}}EdBH`AMl{{Fj{Ab}}}}{{{Bb{{BLn{ceg}}}}}{{An{Gl}}}{}BM`AMl}{{{BLn{ceg}}i}{{BLn{ceg}}}{}BM`AMl{{Fj{Ab}}}}{{{Bb{{BK`{ceg}}}}}{{An{Gl}}}{}BGjAMl}{{{Bb{{BMb{ceg}}}}}{{An{Gl}}}{Ef{Fj{Kj}}BN`}EdBLh}{{{Bb{{BNd{ceg}}}}}{{An{Gl}}}{}{}AD`}{{{Bb{{BKb{cegik}}}}}{{An{Gl}}}{}{}AD`Ld{{Fj{{AHn{ceg}}}}}}{{{Bb{{BNf{ce}}}}}{{An{Gl}}}{}{{BNh{c}}}}{{{Bb{{BMd{c}}}}}{{An{Gl}}}BMf}{{{Bb{{BIj{c}}}}}{{An{Gl}}}BIl}{{{Bb{BOb}}}{{An{Gl}}}}{{{Bb{{BMl{c}}}}}{{An{Gl}}}Ed}{{{Bb{{BId{iceg}}}}}{{An{Gl}}}{}{}BIf{{BIh{ceg}}}}{{{Bb{{BHl{ceg}}}}}{{An{Gl}}}Ed{}AD`}:{{{Bb{{BMj{}{{Cb{c}}{CBb{e}}}}}}}{{An{Gl}}}Dd{}}8`{{{CAb{c}}cg}{{BLd{cei}}}{Ef{BLf{Gn}}BBj}Ed{{Bj{c}{{Ah{e}}}}}BLh}{{{BK`{ceg}}C`}{{BK`{ceg}}}{}BGjAMl}{{{BGl{ceg}}i}{{BGl{ceg}}}{}{}AD`{{Fj{Ab}}}}{{{BHb{ceg}}i}{{BHb{ceg}}}{}{}AD`{{Fj{Ab}}}}{{{BIn{ceg}}i}{{BIn{ceg}}}{}BJ`AMl{{Fj{Ab}}}}{{{BJl{ceg}}i}{{BJl{ceg}}}{}BJnAD`{{Fj{Ab}}}}{{{BKl{ceg}}i}{{BKl{ceg}}}EdBKnAMl{{Fj{Ab}}}}{{{BHd{ceg}}i}{{BHd{ceg}}}{}BHfAD`{{Fj{Ab}}}}{{{BLn{ceg}}i}{{BLn{ceg}}}{}BM`AMl{{Fj{Ab}}}}{c{{AKl{eg}}}AN`{}{}}{i{{BJf{ceg}}}{}{}AD`{{Fb{}{{F`{{AHn{ceg}}}}}}}}`{{{Bb{{BJb{ceg}}}}}AFdEd{}AD`}{{{Bb{{BJd{ceg}}}}}AFd{}{}AD`}{{{Bb{{BHn{cegik}}}}}AFd{}{}{}{{Bj{{Bb{e}}}{{Ah{g}}}}}AD`}{{{Bb{{BI`{ceg}}}}}AFdEdBIbAD`}{{{Bb{{BIn{ceg}}}}}AFd{}BJ`AMl}{{{Bb{{BJh{cegi}}}}}AFd{JlEd}EdBJjAMl}{{{Bb{{BGh{ceg}}}}}AFd{}BGjAD`}{{{Bb{{BJl{ceg}}}}}AFd{}BJnAD`}{{{Bb{{BKd{cegikm}}}}}AFd{EdBClEh}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl}{{{Bb{{BHl{ceg}}}}}AFdEd{}AD`}{{{Bb{{BKl{ceg}}}}}AFdEdBKnAMl}{{{Bb{{BHd{ceg}}}}}AFd{}BHfAD`}{{{Bb{{BLd{ceg}}}}}AFd{Ef{Fj{Kj}}BN`}EdBLh}{{{Bb{{BLj{cegi}}}}}AFdALj{}BLlAMl}{{{Bb{{BGn{ceg}}}}}AFdEdBH`AMl}{{{Bb{{BLn{ceg}}}}}AFd{}BM`AMl}{{{Bb{{BK`{ceg}}}}}AFd{}BGjAMl}{{{Bb{{BMb{ceg}}}}}AFd{Ef{Fj{Kj}}BN`}EdBLh}{{{Bb{{BNd{ceg}}}}}AFd{}{}AD`}{{{Bb{{BKb{cegik}}}}}AFd{}{}AD`Ld{{Fj{{AHn{ceg}}}}}}{{{Bb{{BNf{ce}}}}}AFd{}{{BNh{c}}}}{{{Bb{{BIj{c}}}}}AFdBIl}{{{Bb{{BId{iceg}}}}}AFd{}{}BIf{{BIh{ceg}}}}{{{BLd{ceg}}i}{{BLd{ceg}}}{Ef{BLf{Gn}}BBj}EdBLh{{Fj{c}}}}{{{BMb{ceg}}c}{{BMb{ceg}}}{Ef{BLf{Gn}}BBj}EdBLh}{{{BI`{ceg}}i}{{BI`{ceg}}}{}BIbAD`{{Bj{{Bb{e}}AAl}{{Ah{AAn}}}}}}{{{BIn{ceg}}i}{{BIn{ceg}}}{}BJ`AMl{{Bj{{Bb{e}}Od}{{Ah{Of}}}}}}{{{BGh{ceg}}i}{{BGh{ceg}}}{}BGjAD`{{Bj{{Bb{e}}}{{Ah{Ob}}}}}}{{{BJl{ceg}}i}{{BJl{ceg}}}{}BJnAD`{{Bj{{Bb{e}}}{{Ah{AA`}}}}}}{{{BKd{cegikm}}o}{{BKd{cegikm}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl{{Bj{{Bb{k}}Ol}{{Ah{On}}}}}}{{{BKh{c}}e}{{BKh{c}}}BKj{{Bj{{Bb{c}}}{{Ah{A@f}}}}}}{{{BKl{ceg}}i}{{BKl{ceg}}}EdBKnAMl{{Bj{{Bb{e}}Oh}{{Ah{Oj}}}}}}{{{BL`{c}}e}{{BL`{c}}}BLb{{Bj{{Bb{c}}}{{Ah{A@`}}}}}}{{{BHd{ceg}}i}{{BHd{ceg}}}{}BHfAD`{{Bj{{Bb{e}}A@h}{{Ah{A@j}}}}}}{{{BLd{ceg}}i}{{BLd{ceg}}}{Ef{BLf{Gn}}BBj}EdBLh{{Bj{{Bb{g}}AAd}{{Ah{AAf}}}}}}{{{BLj{cegi}}k}{{BLj{cegi}}}ALj{}BLlAMl{{Bj{{Bb{g}}A@l}{{Ah{A@n}}}}}}{{{BGn{ceg}}i}{{BGn{ceg}}}EdBH`AMl{{Bj{{Bb{e}}AB`}{{Ah{ABb}}}}}}{{{BLn{ceg}}i}{{BLn{ceg}}}{}BM`AMl{{Bj{{Bb{e}}Nn}{{Ah{O`}}}}}}{{{BK`{ceg}}i}{{BK`{ceg}}}{}BGjAMl{{Bj{{Bb{e}}}{{Ah{Ob}}}}}}{{{BMb{ceg}}i}{{BMb{ceg}}}{Ef{BLf{Gn}}BBj}EdBLh{{Bj{{Bb{g}}AAd}{{Ah{AAf}}}}}}{{{BMd{c}}e}{{BMd{c}}}BMf{{Bj{{Bb{c}}A@b}{{Ah{A@d}}}}}}{{{BIj{c}}e}{{BIj{c}}}BIl{{Bj{{Bb{c}}}{{Ah{AAh}}}}}}`{c{{BMd{e}}}{{Fj{AKd}}}BMf}{{{Bb{{BJb{ceg}}}}}AFfEd{}AD`}{{{Bb{{BJd{ceg}}}}}AFf{}{}AD`}{{{Bb{{BHn{cegik}}}}}AFf{}{}{}{{Bj{{Bb{e}}}{{Ah{g}}}}}AD`}{{{Bb{{BI`{ceg}}}}}AFfEdBIbAD`}{{{Bb{{BIn{ceg}}}}}AFf{}BJ`AMl}{{{Bb{{BJh{cegi}}}}}AFf{JlEd}EdBJjAMl}{{{Bb{{BGh{ceg}}}}}AFf{}BGjAD`}{{{Bb{{BJl{ceg}}}}}AFf{}BJnAD`}{{{Bb{{BKd{cegikm}}}}}AFf{EdBClEh}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl}{{{Bb{{BHl{ceg}}}}}AFfEd{}AD`}{{{Bb{{BKl{ceg}}}}}AFfEdBKnAMl}{{{Bb{{BHd{ceg}}}}}AFf{}BHfAD`}{{{Bb{{BLd{ceg}}}}}AFf{Ef{Fj{Kj}}BN`}EdBLh}{{{Bb{{BLj{cegi}}}}}AFfALj{}BLlAMl}{{{Bb{{BGn{ceg}}}}}AFfEdBH`AMl}{{{Bb{{BLn{ceg}}}}}AFf{}BM`AMl}{{{Bb{{BK`{ceg}}}}}AFf{}BGjAMl}{{{Bb{{BMb{ceg}}}}}AFf{Ef{Fj{Kj}}BN`}EdBLh}{{{Bb{{BNd{ceg}}}}}AFf{}{}AD`}{{{Bb{{BKb{cegik}}}}}AFf{}{}AD`Ld{{Fj{{AHn{ceg}}}}}}{{{Bb{{BNf{ce}}}}}AFf{}{{BNh{c}}}}{{{Bb{{BIj{c}}}}}AFfBIl}{{{Bb{{BId{iceg}}}}}AFf{}{}BIf{{BIh{ceg}}}}`{c{{AOb{eg}}}AN`AOdAMl}`{{{BLn{ceg}}K`}{{BLn{ceg}}}{}BM`AMl}{{{BHn{cegik}}{Nh{{Bb{g}}}{{Ah{b}}}}}{{BHn{cegik}}}{}{}{}{{Bj{{Bb{e}}}{{Ah{g}}}}}AD`}`{{{Bb{{CAf{c}}}}}{{BLj{ANnegc}}}AMlEdBLl}`{{{Bb{Mh}}{Bb{Mh}}}{{BGn{ceg}}}EdBH`AMl}{{{BIn{ceg}}i}{{BIn{ceg}}}{}BJ`AMl{{Fj{AEb}}}}{{{BKd{cegikm}}o}{{BKd{cegikm}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl{{Fj{AEb}}}}{{{BKl{ceg}}i}{{BKl{ceg}}}EdBKnAMl{{Fj{AEb}}}}{{{BLn{ceg}}i}{{BLn{ceg}}}{}BM`AMl{{Fj{AEb}}}}{{{BIn{ceg}}AFb}{{BIn{ceg}}}{}BJ`AMl}{{{BKd{cegikm}}AFb}{{BKd{cegikm}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl}{{{BKl{ceg}}AFb}{{BKl{ceg}}}EdBKnAMl}{{{BLn{ceg}}AFb}{{BLn{ceg}}}{}BM`AMl}{{{BIn{ceg}}i}{{BIn{ceg}}}{}BJ`AMl{{Fj{Ab}}}}{{{BKd{cegikm}}o}{{BKd{cegikm}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl{{Fj{Ab}}}}{{{BKl{ceg}}i}{{BKl{ceg}}}EdBKnAMl{{Fj{Ab}}}}{{{BLn{ceg}}i}{{BLn{ceg}}}{}BM`AMl{{Fj{Ab}}}}{{{BIn{ceg}}AFh}{{BIn{ceg}}}{}BJ`AMl}{{{BKl{ceg}}AFh}{{BKl{ceg}}}EdBKnAMl}{{{BLn{ceg}}AFh}{{BLn{ceg}}}{}BM`AMl}`{{ci}{{BHn{ekc{`{{Bj{{Bb{k}}}}}}g}}}Ed{}AD`{{Fj{{AHn{ecg}}}}}{}}{Bbc{}}`{C`{{BLn{ceg}}}{}BM`AMl}`{{ikCAh}{{BK`{ceg}}}{}BGjAMl{{Fj{{AHn{ceg}}}}}{{Fj{{AHn{ceg}}}}}}{{{BIj{c}}e}{{BIj{c}}}BIl{{Fj{Ab}}}}{{}{{Bl{c}}}{}}0000000000000000000000000000000{c{{Bl{e}}}{}{}}0000000000000000000000000000000{{}{{Bl{c}}}{}}0000000000000000000000000000000{{}{{Bl{c{ABj{c}}}}}{}}0000000000000000000000000000000{BbABl}0000000000000000000000000000000{ce{}{}}0000000000000000000000000000000{{}c{}}0000000000000000000000000000000{Bb{{Bf{{Bb{c}}}}}{}}0000000000000000000000000000000{{{Bb{B`{BMj{}{{Cb{c}}{CBb{e}}}}}}{Bb{B`c}}e}{{Bf{g}}}Dd{}{}}{{{Bb{B`{BGl{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}{}AD`}{{{Bb{B`{BJb{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}BdEd{}AD`}{{{Bb{B`{BJd{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}{}AD`}{{{Bb{B`{BHb{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}{}AD`}{{{Bb{B`{BJf{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}{}AD`}{{{Bb{B`{BHn{cegik}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{k}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}{}{}{{Bj{{Bb{e}}}{{Ah{g}}}}}AD`}{{{Bb{B`{BI`{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}BdEdBIbAD`}{{{Bb{B`{BIn{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}BJ`AMl}{{{Bb{B`{BJh{cegi}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{i}}{Bb{B`AEj}}{Bb{B`{ACd{e}}}}{Bb{Al}}}Bd{JlEd}EdBJjAMl}{{{Bb{B`{BGh{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}BGjAD`}{{{Bb{B`{BJl{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}BJnAD`}{{{Bb{B`{BKd{cegikm}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{m}}{Bb{B`AEj}}{Bb{B`{ACd{i}}}}{Bb{Al}}}Bd{EdBClEh}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl}{{{Bb{B`{BHl{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}BdEd{}AD`}{{{Bb{B`{BKl{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}BdEdBKnAMl}{{{Bb{B`{BHd{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}BHfAD`}{{{Bb{B`{BLd{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{i}}{Bb{B`AEj}}{Bb{B`{ACd{e}}}}{Bb{Al}}}Bd{Ef{Fj{Kj}}BN`}EdBLhAD`}{{{Bb{B`{BLj{cegi}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{i}}{Bb{B`AEj}}{Bb{B`{ACd{e}}}}{Bb{Al}}}BdALj{}BLlAMl}{{{Bb{B`{BGn{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}BdEdBH`AMl}{{{Bb{B`{BLn{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}BM`AMl}{{{Bb{B`{BK`{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}BGjAMl}{{{Bb{B`{BMb{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{i}}{Bb{B`AEj}}{Bb{B`{ACd{e}}}}{Bb{Al}}}Bd{Ef{Fj{Kj}}BN`}EdBLhAD`}{{{Bb{B`{BNd{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}{}AD`}{{{Bb{B`{BKb{cegik}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}{}AD`Ld{{Fj{{AHn{ceg}}}}}}{{{Bb{B`{BNf{ce}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}{{BNh{c}}}BNj}{{{Bb{B`{BId{iceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}{}BIf{{BIh{ceg}}}}{c{{AOb{eg}}}BClAOdAMl}{{{BKh{c}}}{{BKh{c}}}BKj}{c{{BL`{e}}}{{Fj{Ab}}}BLb}0`{{{CAb{c}}cg}{{BMb{cei}}}{Ef{BLf{Gn}}BBj}Ed{{Bj{c}{{Ah{e}}}}}BLh}{{}BOb}{{{Bb{{BMj{}{{Cb{c}}{CBb{e}}}}}}{Bb{c}}}{{AHn{egi}}}Dd{}{}{}}{{}c{}}0000000000000000000000000000000{{{BGl{ceg}}i}{{BGl{ceg}}}{}{}AD`{{Fj{Gl}}}}{{{BJd{ceg}}i}{{BJd{ceg}}}{}{}AD`{{Fj{Gl}}}}{{{BHb{ceg}}i}{{BHb{ceg}}}{}{}AD`{{Fj{Gl}}}}{{{BJf{ceg}}i}{{BJf{ceg}}}{}{}AD`{{Fj{Gl}}}}{{{BI`{ceg}}i}{{BI`{ceg}}}{}BIbAD`{{Fj{Gl}}}}{{{BIn{ceg}}i}{{BIn{ceg}}}{}BJ`AMl{{Fj{Gl}}}}{{{BJh{cegi}}k}{{BJh{cegi}}}{JlEd}{}BJjAMl{{Fj{Gl}}}}{{{BGh{ceg}}i}{{BGh{ceg}}}{}BGjAD`{{Fj{Gl}}}}{{{BJl{ceg}}i}{{BJl{ceg}}}{}BJnAD`{{Fj{Gl}}}}{{{BKd{cegikm}}o}{{BKd{cegikm}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl{{Fj{Gl}}}}{{{BKl{ceg}}i}{{BKl{ceg}}}EdBKnAMl{{Fj{Gl}}}}{{{BHd{ceg}}i}{{BHd{ceg}}}{}BHfAD`{{Fj{Gl}}}}{{{BLd{ceg}}i}{{BLd{ceg}}}{Ef{BLf{Gn}}BBj}EdBLh{{Fj{Gl}}}}{{{BLj{cegi}}k}{{BLj{cegi}}}ALj{}BLlAMl{{Fj{Ab}}}}{{{BGn{ceg}}i}{{BGn{ceg}}}EdBH`AMl{{Fj{Gl}}}}{{{BLn{ceg}}i}{{BLn{ceg}}}{}BM`AMl{{Fj{Gl}}}}{{{BMb{ceg}}i}{{BMb{ceg}}}{Ef{BLf{Gn}}BBj}EdBLh{{Fj{Ab}}}}{{{BNf{ce}}g}{{BNf{ce}}}{}{{BNh{c}}}{{Fj{Gl}}}}{{{BMd{c}}e}{{BMd{c}}}BMf{{Fj{Gl}}}}{{BObc}BOb{{Fj{Gl}}}}{{{BMl{c}}e}{{BMl{c}}}{}{{Fj{Gl}}}}{{{BId{iceg}}k}{{BId{iceg}}}{}{}BIf{{BIh{ceg}}}{{Fj{Gl}}}}{Id{{BGl{ceg}}}{}{}AD`}{Id{{BHb{ceg}}}{}{}AD`}{Id{{BJf{ceg}}}{}{}AD`}{i{{BGl{ceg}}}{}{}AD`{{Fb{}{{F`{{AHn{ceg}}}}}}}}{i{{BHb{ceg}}}{}{}AD`{{Fb{}{{F`{{AHn{ceg}}}}}}}}{i{{BJf{ceg}}}{}{}AD`{{Fb{}{{F`{{AHn{ceg}}}}}}}}{{ik}{{BHd{ceg}}}{}BHfAD`{{Fj{{AHn{ceg}}}}}{{Fj{BMn}}}}{cBOb{{Fj{Gl}}}}0{{{BHb{ceg}}}{{CBf{ceg}}}{}{}AD`}{{{BLj{cegi}}AFh}{{BLj{cegi}}}ALj{}BLlAMl}{{{BJd{ceg}}i}{{BJd{ceg}}}{}{}AD`{{Fj{Ab}}}}0``````````{eg{}{{l{c}}}{}}0{ce{}{}}0{{}c{}}0{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{AAnBf}{AAnG`}{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{AAl}}}AAl}{{{Bb{AAn}}}AAn}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0<<{{{Bb{El}}AAl}AAn}{{}c{}}{{}AAn}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}0;;{IdBd}0{{{Bb{AAl}}{Bb{AAl}}}C`}{{{Bb{AAn}}{Bb{AAn}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{AAl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AAn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{ce{}{}}0{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}00{{{Bb{El}}AAl}AAn}0{AAnFf}{{{Bb{{BIb{}{{BA`{c}}}}}}{Bb{c}}AAl}AAn{}}22{AAnb}{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0={{AAnc}AAn{{Fj{Gh}}}}`````````````````````````````````{eg{}{{l{c}}}{}}000000000{ce{}{}}0000000005555555555{Bb{{Bb{Dl}}}}000000000{{{Bb{B`}}}{{Bb{B`Dl}}}}000000000{Bb{{Bb{c}}}{}}000000000{{{Bb{B`}}}{{Bb{B`c}}}{}}000000000{{{Fl{c}}}e{}{}}000000000{{Add}CBh}{{{Bb{CBj}}}CBj}{{{Bb{CBl}}}CBl}{{{Bb{CBn}}}CBn}{{{Bb{CBh}}}CBh}{{{Bb{CC`}}}CC`}{{{Bb{CCb}}}CCb}{{{Bb{CCd}}}CCd}{{{Bb{CCf}}}CCf}{{{Bb{CCh}}}CCh}{{{Bb{CCj}}}CCj}{{Bb{Bb{B`c}}}Bd{}}000000000{{BbGn}Bd}000000000{{{Bb{CBj}}{Bb{CBj}}}Mj}{CCjb}{{Bb{Bb{c}}}Mj{}}{ce{}{}}000000000{CCjHb}{{}CBn}{{}CC`}{{}CCb}{{}CCd}{{}CCf}{{}CCj}{Id{{Bb{c}}}{}}000000000{Id{{Bb{B`c}}}{}}000000000{Bb{{Bb{c}}}{}}000000000{{{Bb{{BIh{}{{Cb{c}}}}}}{Bb{c}}{Bb{e}}{Bb{g}}AlADf}H`DdBIf{}}{{{Bb{CCj}}c}Bd{{Ln{CBhb}}}}{IdBd}000000000{{{Bb{CBj}}{Bb{CBj}}}C`}{{{Bb{CBl}}{Bb{CBl}}}C`}{{{Bb{CCh}}{Bb{CCh}}}C`}{{Bb{Bb{c}}}C`{}}00`{AG`AGf}{{{Bb{CBj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CBl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CBn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CBh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CC`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CCb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CCd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CCf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CCh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CCj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{CCjGd}{cc{}}0{CClCBl}{CBlCBn}{bCBn}3{CClCBn}44444{bCCh}5{CBlCCh}6{HbCCj}{{{Bb{Mh}}}CCj}8888888888{ce{}{}}000000000`{AG`}{{{Bb{CBj}}{Bb{B`c}}}BdLb}{CCjK`}{{}Id}000000000{{}c{}}0000000000000000000{{{I`{c}}}{{I`{Dl}}}{}}000000000{{{Lj{c}}}{{Lj{Dl}}}{}}000000000{{{Ll{c}}}{{Ll{Dl}}}{}}000000000{{{Fl{c}}}e{}{}}00000000044444444444444444444{{}c{}}000000000{CBjC`}{{AdAd}CBh}{CC`CCb}{CC`CCf}{CCjAEb}{CC`CCd}{{{Bb{{BIh{}{{Cb{c}}}}}}{Bb{c}}AlADf}AEdDd}{cCBh{{Hh{{Bb{B`CCn}}}}}}888888{CCfId}{AG`d}{{{Bb{CBl}}}CD`}{{{Bb{CBj}}{Bb{CBj}}}{{Bf{Mj}}}}`{CCjAd}{{{Bb{CBh}}}{{Bb{CDb}}}}{{AdAn}CBh}{AG`n}{{AdAnMl}CBh}{CBnCDd}{CCfBb}{CCjAFb}{CCjAb}{AG`C`}`{CBnCCh}{CC`CCh}{Bbc{}}000000000{{{Bb{CBh}}{Bb{{CDh{dCDfCDf}}}}}CBh}{{}{{Bl{c}}}{}}000000000{c{{Bl{e}}}{}{}}000000000{{}{{Bl{c}}}{}}000000000{{}{{Bl{c{ABj{c}}}}}{}}000000000{BbABl}000000000{ce{}{}}000000000{{}c{}}000000000{{}CBj}{Bb{{Bf{{Bb{c}}}}}{}}000000000{{{Bb{{BIh{}{{Cb{c}}}}}}{Bb{B`c}}{Bb{Gb}}AlADf}{{Bf{{BHj{e}}}}}Dd{}}{CCjKb}{{}c{}}000000000{CC`d}{{CC`b}CC`}{{CC`CCb}CC`}{{CC`CCd}CC`}{{CC`d}CC`}```````{eg{}{{l{c}}}{}}{ce{}{}}<{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{CDd}}}CDd}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}8{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}7{IdBd}{{{Bb{CDd}}{Bb{CDd}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{CDd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}44{{}c{}}{CBnCDd}{CBnCCh}{Bbc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}````{eg{}{{l{c}}}{}}0{{CCldb}CCl}{{CClc}CCl{{Fb{}{{F`{BAh}}}}}}{ce{}{}}066{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{CCl}}}CCl}{{{Bb{CD`}}}CD`}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}099{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}088{IdBd}0{CClAd}{{{Bb{CCl}}{Bb{CCl}}}C`}{{{Bb{CD`}}{Bb{CD`}}}C`}{{{Bb{CCl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CD`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{ce{}{}}0{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{{{Bb{c}}}C`{}}{{AdAd}CCl}{{{Bb{Gf}}Al}CD`}{{{Bb{CCl}}}CD`}{CClAd}{CClE`}{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0```{eg{}{{l{c}}}{}}0`{{{Bb{B`CCn}}CDj}Bd}{{{Bb{B`CCn}}AdAdd}Bd}{ce{}{}}066{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{{{Bb{B`CCn}}AdAdAd}Bd}{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{CCnCBh}{{{Fl{c}}}e{}{}}0{CDjAd}{{{Bb{B`CCn}}Add}Bd}{{{Bb{CDj}}}CDj}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}{{{Bb{B`CCn}}}Bd}=={{}CCn}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}0<<{IdBd}0{{{Bb{B`CCn}}CDl}Bd}{CDjn}{{{Bb{CDj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{ce{}{}}0{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{{{Bb{B`CCn}}Ad}Bd}0{{}CCn}2{{{Bb{B`CCn}}AdAd}Bd}{CDjd}{{{Bb{B`CCn}}AdAn}Bd}{{{Bb{B`CCn}}AdAnMl}Bd}{CDjn}{Bbc{}}{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0``{eg{}{{l{c}}}{}}{ce{}{}}4{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{CDjAd}{CDlAd}{{{Bb{CDl}}}CDl}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}:{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}9{IdBd}{CDjn}{CDln}{{{Bb{CDl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{CDjCDl}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}44{{}c{}}{CDlAf}{CDjd}=>={Bbc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}````````````````````````````````````````{{}Bb}````````````````````````{eg{}{{l{c}}}{}}000000000000000000000000{ce{}{}}0000000000000000000000005555555555555555555555555{Bb{{Bb{Dl}}}}000000000000000000000000{{{Bb{B`}}}{{Bb{B`Dl}}}}000000000000000000000000{{{Bb{CDn}}}CE`}{{{Bb{CDb}}}CEb}{{{Bb{CEd}}}CEf}{{{Bb{CDb}}CEh}{{Bb{{AFn{d}}}}}}{{{Bb{CEb}}CEh}{{Bb{{AFn{d}}}}}}{{{Bb{B`CEj}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}{{{Bb{B`CEn}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}0{Bb{{Bb{c}}}{}}000000000000000000000000{{{Bb{B`}}}{{Bb{B`c}}}{}}000000000000000000000000{CEjCDb}{CEnCDb}0`{{}CF`}{{}{{CFb{CEj}}}}{{{Bb{B`CEd}}}CFd}{IdCEn}{{{Fl{c}}}e{}{}}000000000000000000000000{{{Bb{B`CEd}}}Bd}{{{Bb{CFf}}}CFf}{{{Bb{CDn}}}CDn}{{{Bb{CE`}}}CE`}{{{Bb{{CFh{ce}}}}}{{CFh{ce}}}EdEd}{{{Bb{CDb}}}CDb}{{{Bb{CEb}}}CEb}{{{Bb{CEj}}}CEj}{{{Bb{CEn}}}CEn}{{{Bb{CFj}}}CFj}{{{Bb{CFl}}}CFl}{{{Bb{CFn}}}CFn}{{{Bb{CEd}}}CEd}{{{Bb{CEf}}}CEf}{{{Bb{{CG`{c}}}}}{{CG`{c}}}Ed}{{{Bb{CGb}}}CGb}{{{Bb{CGd}}}CGd}{{{Bb{CGf}}}CGf}{{{Bb{CGh}}}CGh}{{{Bb{CGj}}}CGj}{{{Bb{CGl}}}CGl}{{{Bb{CGn}}}CGn}{{{Bb{CEh}}}CEh}{{{Bb{CH`}}}CH`}{{Bb{Bb{B`c}}}Bd{}}0000000000000000000000{{BbGn}Bd}0000000000000000000000{CG`C`}{CGbC`}`{ce{}{}}000000000000000000000000{{{Bb{B`CEj}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}{{{Bb{B`CEn}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}0{{}CFf}{{}CDb}{{}CEj}{{}CEd}{Id{{Bb{c}}}{}}000000000000000000000000{Id{{Bb{B`c}}}{}}000000000000000000000000{Bb{{Bb{c}}}{}}000000000000000000000000{IdBd}000000000000000000000000{{{Bb{B`CEj}}C`}Bd}{{{Bb{B`CEn}}C`}Bd}0{{{Bb{CFf}}{Bb{CFf}}}C`}{{{Bb{{CFh{ce}}}}{Bb{{CFh{ce}}}}}C`EhEh}{{{Bb{CGd}}{Bb{CGd}}}C`}{{{Bb{CGf}}{Bb{CGf}}}C`}{{{Bb{CGh}}{Bb{CGh}}}C`}{{{Bb{CGj}}{Bb{CGj}}}C`}{{{Bb{CGl}}{Bb{CGl}}}C`}{{{Bb{CGn}}{Bb{CGn}}}C`}{{{Bb{CEh}}{Bb{CEh}}}C`}{{{Bb{CH`}}{Bb{CH`}}}C`}{{Bb{Bb{c}}}C`{}}00000000000000{{{Bb{CDn}}CH`}{{CFh{CEhCGn}}}}{{{Bb{CE`}}CH`}{{CFh{CEhCGn}}}}{{{Bb{{CG`{c}}}}CH`}{{CFh{{Bb{c}}Bd}}}{}}{{{Bb{CGb}}CH`}{{CFh{CEhCGn}}}}{{{Bb{CDn}}{Bb{{AFn{c}}}}{Bb{{AFn{e}}}}}{{CHb{ce}}}{}{}}{{{Bb{B`CEj}}{Bb{{AFn{CEb}}}}}Bd}{{{Bb{B`CEn}}{Bb{{AFn{CEb}}}}}Bd}{{{Bb{CDb}}}{{Bf{{j{{CEl{dCDf}}{Bb{{AFn{d}}}}}}}}}}{{{Bb{CEb}}}{{Bf{{j{{CEl{dCDf}}{Bb{{AFn{d}}}}}}}}}}{{{Bb{CFf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CDn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CE`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{{CFh{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`D`}{{{Bb{CDb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CEb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CFn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CEd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CEf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CGd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CGf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CGh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CGj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CGl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CGn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CEh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CH`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{CFld{Bb{B`c}}}Bd{{Ln{{Bb{{CFh{{j{{CEl{dCDf}}{Bb{{AFn{d}}}}}}{CEl{dCDf}}}}}}}}}}{cc{}}000{{{Bb{CDn}}}CE`}1{{{Bb{{CFh{ce}}}}}cEd{}}222{{{Bb{CDb}}}CEb}333333333333333333333333333333333333333333{cCDb{{Fb{}{{F`{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}}}}}}{cCEd{{Fb{}{{F`{CEb}}}}}}{ce{}{}}000000000000000000000000{IdCGn}{IdCEh}{{{Bb{CHd}}CEh}{{Bb{{AFn{d}}}}}}{{{Bb{CHf}}CEh}{{Bb{{AFn{d}}}}}}{{{Bb{CDb}}CEh}{{Bb{{AFn{d}}}}}}{{{Bb{CEb}}CEh}{{Bb{{AFn{d}}}}}}{{{Bb{CEd}}Id}CEb}{{{Bb{CEf}}Id}CEb}{{{Bb{CHh}}CGn}{{CEl{dCDf}}}}{{{Bb{CDb}}CGn}{{CEl{dCDf}}}}{{{Bb{CEb}}CGn}{{CEl{dCDf}}}}{{{Bb{{CG`{c}}}}CGn}{{CEl{dCDf}}}CHj}{{{Bb{CHh}}CEh}{{CEl{dCDf}}}}{{{Bb{CDb}}CEh}{{CEl{dCDf}}}}{{{Bb{CEb}}CEh}{{CEl{dCDf}}}}{{{Bb{{CG`{c}}}}CEh}{{CEl{dCDf}}}CHj}{{{Bb{{CFh{ce}}}}{Bb{B`g}}}BdLdLdLb}{{{Bb{CGl}}{Bb{B`c}}}BdLb}{{{Bb{CGn}}{Bb{B`c}}}BdLb}{{{Bb{CEh}}{Bb{B`c}}}BdLb}{{{Bb{CH`}}{Bb{B`c}}}BdLb}{{{Bb{CDb}}}CFn}{{{Bb{CEb}}}CFn}{{{Bb{{CG`{c}}}}}CHl{}}{{{Bb{CDb}}CGn}{{Bb{{CEl{dCDf}}}}}}{{{Bb{CDb}}CEh}{{Bb{{CEl{dCDf}}}}}}{{{Bb{CEb}}CGn}{{Bb{{CEl{dCDf}}}}}}{{{Bb{CEb}}CEh}{{Bb{{CEl{dCDf}}}}}}{{{Bb{{CG`{c}}}}CEh}{{Bb{c}}}{}}{{{Bb{CEd}}}{{ALl{Id}}}}{{{Bb{CEf}}}{{ALl{Id}}}}{{}Id}000000000000000000000000{{}c{}}0000000000000000000000000000000000000000000000000{{{I`{c}}}{{I`{Dl}}}{}}000000000000000000000000{{{Lj{c}}}{{Lj{Dl}}}{}}0000000000000000000000{{{Ll{c}}}{{Ll{Dl}}}{}}000000000000000000000000{{{Fl{c}}}e{}{}}00000000000000000000000044444444444444444444444444444444444444444444444444{{}c{}}{{{Bb{CDn}}}CHn}{{{Bb{CDb}}}CFj}{{{Bb{CEb}}}CFj}{CEbCFj}444{CI`CDb}{{}c{}}000000000000000000000000{{{Bb{{CFh{ce}}}}}C`{}{}}{{{Bb{CEb}}}C`}{{{Bb{CEd}}}C`}{{{Bb{CEf}}}C`}{{{Bb{CGj}}CIb}C`}{CGhC`}10;{{{Bb{CE`}}}CHn};:{{{Bb{CEd}}}CId}{{{Bb{CEf}}}CId}{{{Bb{{CG`{c}}}}}{{CIf{c}}}{}}{{{Bb{CGb}}}CIh}{{{Bb{CDb}}}CFl}{{{Bb{CEb}}}CFl}`{CFfC`}{{{Bb{CDb}}}{{Bf{{j{{CEl{dCDf}}{Bb{{AFn{d}}}}}}}}}}{{{Bb{CEb}}}{{Bf{{j{{CEl{dCDf}}{Bb{{AFn{d}}}}}}}}}}{{{Bb{CEd}}}Id}{{{Bb{CEf}}}Id}{{{Bb{B`CEj}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}{{{Bb{B`CEn}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}0`{{{Bb{{AFn{d}}}}Id}CHf}{{}CDb}{{}CEj}{IdCEn}{{}CEd}{{{Bb{B`CI`}}}Bf}{{{Bb{B`CFj}}}{{Bf{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}}}}{{{Bb{B`CFl}}}Bf}{{{Bb{B`CFn}}}{{Bf{{CFh{CEhCGn}}}}}}{{{Bb{CDn}}CH`}{{Bf{CH`}}}}{{{Bb{CE`}}CH`}{{Bf{CH`}}}}{{{Bb{CDn}}CH`}CH`}{{{Bb{CE`}}CH`}CH`}{{}c{}}000{{{Bb{CHd}}}Id}{{{Bb{CHf}}}Id}{{{Bb{CDb}}}Id}{{{Bb{CEb}}}Id}{{{Bb{CEj}}}Id}{{{Bb{CEn}}}Id}0{CGnId}{CEhId}{CGhCGh}``{{{Bb{{CG`{c}}}}}{{CIj{c}}}CHj}{{{Bb{CDn}}{Bb{{AFn{c}}}}{Bb{{AFn{e}}}}}{{CIl{ce}}}{}{}}{CFlCFj}{CG`Bb}{CGbBb}`{{{Bb{CHj}}}{{CEl{dCDf}}}}{{{Bb{B`CEj}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}{{{Bb{B`CEn}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}0{{{Bb{B`CEj}}IdId}Bd}{{{Bb{B`CEn}}IdId}Bd}0{{{Bb{B`CEd}}IdIdId}Bd}{{{Bb{CDb}}}{{CIn{CI`}}}}{{{Bb{CEb}}}{{CIn{CI`}}}}{{}{{CJ`{CEj}}}}{CFfC`}{{{Bb{{CFh{ce}}}}}cEd{}}{CGhd}{Bbc{}}0000000000000000000000{CGnId}{CEhId}{CH`Id}`{{{Bb{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}}{Bb{c}}}{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}{{CJb{d}}}}{{CDb{Bb{c}}}CDb{{CJb{d}}}}{{}{{Bl{c}}}{}}000000000000000000000000{c{{Bl{e}}}{}{}}000000000000000000000000{{}{{Bl{c}}}{}}000000000000000000000000{{}{{Bl{c{ABj{c}}}}}{}}000000000000000000000000{BbABl}000000000000000000000000{ce{}{}}000000000000000000000000{{}c{}}000000000000000000000000{Bb{{Bf{{Bb{c}}}}}{}}000000000000000000000000{{}c{}}000000000000000000000000{IdCDb}{{IdId}CEj}{{IdIdId}CEd}{{{Bb{{CFh{ce}}}}}{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}CHjCHj}{CEj{{CJ`{CEj}}}}{CJd}{CJfC`}{CJh}{CJj}0{CJf}{CJl}321032{CJdCEh}5{CJhCGn}{CJjCGn}0{CJfCEh}{CJlCEh}{CJhCEh}{CJjCEh}3210{CJdCEl}<{CJhCEl}{CJjCEl}0{CJfCEl}{CJlCEl}321032`````````{eg{}{{l{c}}}{}}0000{{{Bb{B`CJn}}{CEl{dCDf}}dCGl{Bb{{AFn{d}}}}}Bd}0{{{Bb{B`{CFb{c}}}}{CEl{dCDf}}dCGl}BdCJn}{{{Bb{B`CJn}}{CEl{dCDf}}{CK`{dCDf}}{CKb{d}}CGl{Bb{{AFn{d}}}}}Bd}0{{{Bb{B`{CFb{c}}}}{CEl{dCDf}}{CK`{dCDf}}{CKb{d}}CGl}BdCJn}{{{Bb{B`CJn}}{Bb{{CKd{d}}}}{Bb{{AFn{d}}}}}{{j{CEhCEh}}}}0{{{Bb{B`{CFb{c}}}}{Bb{{CKd{d}}}}}{{j{CEhCEh}}}CJn}{{{Bb{B`CJn}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}0{{{Bb{B`{CFb{c}}}}{CEl{dCDf}}}CEhCJn}{{{Bb{B`CJn}}{CG`{{CEl{dCDf}}}}{Bb{{AFn{d}}}}}Bd}0{{{Bb{B`CKf}}{CG`{{CEl{dCDf}}}}}Bd}0{{{Bb{B`{CFb{c}}}}{CG`{{CEl{dCDf}}}}}BdCJn}{{{Bb{B`CJn}}{Bb{{CKh{dCDf}}}}CGl{Bb{{AFn{d}}}}}Bd}0{{{Bb{B`{CFb{c}}}}{Bb{{CKh{dCDf}}}}CGl}BdCJn}{{{Bb{B`CJn}}{Bb{{CKh{dCDf}}}}{Bb{CKj}}CGl{Bb{{AFn{d}}}}}Bd}0{{{Bb{B`{CFb{c}}}}{Bb{{CKh{dCDf}}}}{Bb{CKj}}CGl}BdCJn}{{{Bb{B`{CJ`{c}}}}{CEl{dCDf}}{CK`{dCDf}}{CKb{d}}{CKb{d}}}BdCJn}{{{Bb{B`CKf}}{CK`{dCDf}}{CKb{d}}CFf{CEl{dCDf}}}Bd}{{{Bb{B`{CJ`{c}}}}{CK`{dCDf}}{CKb{d}}CFf{CEl{dCDf}}}BdCJn}{ce{}{}}0000{{}c{}}0000{Bb{{Bb{Dl}}}}0000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000?{{{Bb{B`{CKl{c}}}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEhCJn}{{{Bb{B`{CKn{ce}}}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEhCJn{{CJb{d}}}}{{{Bb{B`{CFb{c}}}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEhCJn}{{{Bb{B`{CFb{c}}}}{CEl{dCDf}}}CEhCJn}{Bb{{Bb{c}}}{}}0000{{{Bb{B`}}}{{Bb{B`c}}}{}}0000{CKjd}0{{{CLb{}{{CL`{c}}}}}c{}}{{{CKl{c}}}{}{CLbCJn}}{{{CKl{c}}}{}CLb}{{{CKn{ce}}}{}CLb{}}{{{CJ`{c}}}{}{CJnCLb}}{{{CJ`{c}}}{}{CLbCJn}}{{{CFb{c}}}{}{CJnCLb}}{{{CFb{e}}}c{}{{CLb{}{{CL`{c}}}}CJn}}{{{Fl{c}}}e{}{}}0000{{{Bb{CKj}}}CKj}{{{Bb{{CFb{c}}}}}{{CFb{c}}}{EdCJn}}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0{{{Bb{B`CKf}}}Bd}{{{Bb{B`CJn}}}Bd}0{{{Bb{B`{CJ`{c}}}}}BdCJn}0{{{Bb{B`{CFb{c}}}}}BdCJn}{ce{}{}}0000{{{Bb{B`CJn}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}{{{Bb{B`CKf}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}}Bd}{{{Bb{B`{CKl{c}}}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEhCJn}{{{Bb{B`{CKn{ce}}}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEhCJn{{CJb{d}}}}{{{Bb{B`{CJ`{c}}}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}}CEhCJn}{{{Bb{B`{CJ`{c}}}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}}BdCJn}{{{Bb{B`{CFb{c}}}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}}CEhCJn}{{{Bb{B`{CFb{c}}}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEhCJn}{{{Bb{{CJ`{c}}}}}{{CEl{dCDf}}}CJn}{{}CKj}{{}{{CFb{c}}}{CJnDd}}{Id{{Bb{c}}}{}}0000{Id{{Bb{B`c}}}{}}0000{Bb{{Bb{c}}}{}}0000{IdBd}0000{{{Bb{B`CJn}}C`}Bd}{{{Bb{B`{CKl{c}}}}C`}BdCJn}{{{Bb{B`{CKn{ce}}}}C`}BdCJn{{CJb{d}}}}{{{Bb{B`{CFb{c}}}}C`}BdCJn}0{{{Bb{CKj}}{Bb{CKj}}}C`}{{{Bb{{CFb{c}}}}{Bb{{CFb{c}}}}}C`{EhCJn}}{{{Bb{B`CJn}}{CFh{{j{{CEl{dCDf}}{Bb{{AFn{d}}}}}}{CEl{dCDf}}}}}Bd}0{{{Bb{B`{CFb{CEj}}}}{Bb{{AFn{CEb}}}}}Bd}{{CJnd}{{CKl{CJn}}}}0{{{CJ`{c}}d}{{CJ`{{CKl{c}}}}}CJn}{{{CFb{c}}d}{{CFb{{CKl{c}}}}}CJn}{{{Bb{CKj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}0{{{Bb{{CFb{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}{D`CJn}}{cc{}}000000000{ce{}{}}0000{{{Bb{{CFb{c}}}}{Bb{B`e}}}Bd{LdCJn}Lb}{{{Bb{B`CKf}}d}Bd}{{{Bb{B`{CJ`{c}}}}d}BdCJn}{{}Id}0000{{{Bb{{CFb{c}}}}}{{Bb{c}}}CJn}{{{Bb{B`{CFb{c}}}}}{{Bb{B`c}}}CJn}{{}c{}}000000000{{{I`{c}}}{{I`{Dl}}}{}}0000{{{Lj{c}}}{{Lj{Dl}}}{}}0000{{{Ll{c}}}{{Ll{Dl}}}{}}0000{{{Fl{c}}}e{}{}}00004444444444{{{CFb{c}}}cCJn}{{}c{}}0000{{{Bb{B`CJn}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}{{{Bb{B`CKf}}{CEl{dCDf}}}Bd}{{{Bb{B`{CKl{c}}}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEhCJn}{{{Bb{B`{CKn{ce}}}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEhCJn{{CJb{d}}}}{{{Bb{B`{CJ`{c}}}}{CEl{dCDf}}}BdCJn}{{{Bb{B`{CJ`{c}}}}{CEl{dCDf}}}CEhCJn}{{{Bb{B`{CFb{c}}}}{CEl{dCDf}}}CEhCJn}{{{Bb{B`{CFb{c}}}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEhCJn}632{{cd}{{CKl{c}}}CJn}{{ce}{{CKn{ce}}}{}{}}{c{{CJ`{c}}}CJn}{dCKj}{{}{{CFb{c}}}{DdCJn}}=={{{Bb{CJn}}}Id}{{{Bb{{CKl{c}}}}}IdCJn}{{{Bb{{CKn{ce}}}}}IdCJn{{CJb{d}}}}{{{Bb{{CFb{c}}}}}IdCJn}{{{Bb{CKj}}{Bb{CKj}}}{{Bf{Mj}}}}{{{Bb{B`CJn}}{CFh{{CEl{dCDf}}{CEl{dCDf}}}}{Bb{{AFn{d}}}}}Bd}0{{{Bb{B`{CFb{c}}}}{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}BdCJn}{{{Bb{B`CJn}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}{{{Bb{B`CKf}}{CEl{dCDf}}{CEl{dCDf}}}Bd}{{{Bb{B`{CKl{c}}}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEhCJn}{{{Bb{B`{CKn{ce}}}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEhCJn{{CJb{d}}}}{{{Bb{B`{CJ`{c}}}}{CEl{dCDf}}{CEl{dCDf}}}BdCJn}{{{Bb{B`{CJ`{c}}}}{CEl{dCDf}}{CEl{dCDf}}}CEhCJn}{{{Bb{B`{CFb{c}}}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEhCJn}{{{Bb{B`{CFb{c}}}}{CEl{dCDf}}{CEl{dCDf}}}CEhCJn}{{{Bb{B`CKf}}{CK`{dCDf}}{CKb{d}}CFf{CK`{dCDf}}}Bd}{{{Bb{B`{CJ`{c}}}}{CK`{dCDf}}{CKb{d}}CFf{CK`{dCDf}}}BdCJn}{{{Bb{B`CKf}}{CK`{dCDf}}{CK`{dCDf}}{CK`{dCDf}}}Bd}{{{Bb{B`{CJ`{c}}}}{CK`{dCDf}}{CK`{dCDf}}{CK`{dCDf}}}BdCJn}{{{Bb{B`CKf}}d}Bd}{{{Bb{B`{CJ`{c}}}}d}BdCJn}{{{Bb{B`CKf}}{CK`{dCDf}}}Bd}{{{Bb{B`{CJ`{c}}}}{CK`{dCDf}}}BdCJn}10{{{Bb{B`CKf}}{CK`{dCDf}}{CK`{dCDf}}}Bd}{{{Bb{B`{CJ`{c}}}}{CK`{dCDf}}{CK`{dCDf}}}BdCJn}54{{{Bb{B`CJn}}IdId}Bd}0{{{Bb{B`CKf}}IdId}Bd}0{{{Bb{B`{CKl{c}}}}IdId}BdCJn}{{{Bb{B`{CKn{ce}}}}IdId}BdCJn{{CJb{d}}}}{{{Bb{B`{CJ`{c}}}}IdId}BdCJn}0{{{Bb{B`{CFb{c}}}}IdId}BdCJn}0{{{Bb{B`{CKl{c}}}}d}BdCJn}{{{Bb{B`{CKn{ce}}}}e}Bd{}{}}{{{Bb{B`{CJ`{{CKn{ce}}}}}}e}BdCJn{{CJb{d}}}}{{{Bb{B`CKf}}{CEl{dCDf}}{CEl{dCDf}}}Bd}{{{Bb{B`{CJ`{c}}}}{CEl{dCDf}}{CEl{dCDf}}}BdCJn}{{{Bb{B`CKf}}{CEl{dCDf}}}Bd}{{{Bb{B`{CJ`{c}}}}{CEl{dCDf}}}BdCJn}>={{{Bb{B`CKf}}{CK`{dCDf}}}Bd}{{{Bb{B`{CJ`{c}}}}{CK`{dCDf}}}BdCJn}{Bbc{}}0{BbABh}{BbHb}{CKjd}0{{CJnc}{{CKn{CJnc}}}{{CJb{d}}}}0{{{CJ`{c}}e}{{CJ`{{CKn{ce}}}}}CJn{{CJb{d}}}}{{{CFb{c}}e}{{CFb{{CKn{ce}}}}}CJn{{CJb{d}}}}{{}{{Bl{c}}}{}}0000{c{{Bl{e}}}{}{}}0000{{}{{Bl{c}}}{}}0000{{}{{Bl{c{ABj{c}}}}}{}}0000{BbABl}0000{ce{}{}}0000{{}c{}}0000{Bb{{Bf{{Bb{c}}}}}{}}0000{{{Bb{B`CKf}}d}Bd}{{{Bb{B`{CJ`{c}}}}d}BdCJn}{{}c{}}0000{{IdId}{{CFb{c}}}{DdCJn}}{CJn{{CJ`{CJn}}}}0{{{CFb{c}}}{{CJ`{c}}}CJn}{c{{CFb{c}}}CJn}```````{eg{}{{l{c}}}{}}0000{ce{}{}}0000:::::{Bb{{Bb{Dl}}}}0000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000{{{Bb{B`CF`}}CEh}CH`}{Bb{{Bb{c}}}{}}0000{{{Bb{B`}}}{{Bb{B`c}}}{}}0000{CF`CDn}{{{Fl{c}}}e{}{}}0000{{{Bb{{CIl{ce}}}}}{{CIl{ce}}}EdEd}{{{Bb{CF`}}}CF`}{{{Bb{{CHb{ce}}}}}{{CHb{ce}}}EdEd}{{{Bb{CHn}}}CHn}{{{Bb{{CLd{ce}}}}}{{CLd{ce}}}EdEd}{{Bb{Bb{B`c}}}Bd{}}0000{{BbGn}Bd}0000>>>>>{{{Bb{B`CF`}}CGnCGnCEh}CH`}{{}CF`}{Id{{Bb{c}}}{}}0000{Id{{Bb{B`c}}}{}}0000>>>>>{IdBd}0000{{{Bb{B`CF`}}C`}{{Bf{CH`}}}}{{{Bb{{CIl{ce}}}}}{{CHb{ce}}}{}{}}{{{Bb{{CIl{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`D`}{{{Bb{CF`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000000000{ce{}{}}0000{{{Bb{{CIl{ce}}}}CGn}{{CEl{dCDf}}}CHjCHj}{{{Bb{{CIl{ce}}}}CEh}{{CEl{dCDf}}}CHjCHj}{{{Bb{{CIl{ce}}}}CGn}{{Bb{e}}}{}{}}{{{Bb{{CIl{ce}}}}CEh}{{Bb{c}}}{}{}}{{}Id}0000{{}c{}}000000000{{{I`{c}}}{{I`{Dl}}}{}}0000{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0000{{{Fl{c}}}e{}{}}00004444444444{{}c{}}00{{}c{}}0000{{{Bb{{CIl{ce}}}}}CHn{}{}}{{{Bb{B`CF`}}CEh}CH`}{{}CF`}{{{Bb{B`{CHb{ce}}}}}{{Bf{{CFh{{Bb{c}}{Bb{e}}}}}}}{}{}}{{{Bb{B`CHn}}}{{Bf{{CFh{CEhCGn}}}}}}{{{Bb{B`{CLd{ce}}}}}{{Bf{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}}}CHjCHj}6{{{CHb{ce}}}{{CLd{ce}}}CHjCHj}{{{Bb{B`CF`}}CGnCEh}CH`}{Bbc{}}0000{{}{{Bl{c}}}{}}0000{c{{Bl{e}}}{}{}}0000{{}{{Bl{c}}}{}}0000{{}{{Bl{c{ABj{c}}}}}{}}0000{BbABl}0000{ce{}{}}0000{{}c{}}0000{Bb{{Bf{{Bb{c}}}}}{}}0000{{}c{}}0000{IdCF`}`````````````````````````````````````{{{Bb{{CLf{c}}}}}cCLh}{CLjCEl}{{{Bb{{CLj{c}}}}}{{CKd{c}}}CLh}0{eg{}{{l{c}}}{}}00000000{{{CKb{c}}{Bb{{CKb{c}}}}}{{CKb{c}}}{Ef{Aj{}{{Ah{}}}}}}{{{CKb{c}}{CKb{c}}}{{CKb{c}}}{{Aj{}{{Ah{}}}}}}{{{Bb{B`{CKb{c}}}}{CKb{c}}}BdCLl}{{{Bb{{CM`{}{{CLn{c}}}}}}c}{{CM`{}{{CLn{c}}}}}CLh}{{{Bb{{CMb{c}}}}c}{{CMb{c}}}CLh}0{{{Bb{{CMd{c}}}}c}{{CMd{c}}}CLh}0{{{Bb{{CKd{c}}}}c}{{CKd{c}}}CLh}0{{{Bb{{CMf{c}}}}c}{{CMf{c}}}CLh}0{CMh}{{{Bb{{CKb{c}}}}{CKb{c}}}{{CKb{c}}}{{CMj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}CMlCMnEf}}{{}cCN`}{{{Bb{{CKb{c}}}}{Bb{{CKb{c}}}}{Bb{c}}}C`CN`}{{{Bb{{CM`{}{{CLn{c}}}}}}c}cCLh}{{{Bb{{CMb{c}}}}c}cCLh}0{{{Bb{{CMd{c}}}}c}cCLh}0{{{Bb{{CKd{c}}}}c}cCLh}{{{Bb{{CMf{c}}}}c}cCLh}`{ce{}{}}00000000{{}c{}}00000000{Bb{{Bb{Dl}}}}00000000{{{Bb{B`}}}{{Bb{B`Dl}}}}00000000{{{Bb{{CLf{c}}}}}cCLh}{CLjCEl}{{{Bb{{CLj{c}}}}}{{CKd{c}}}CLh}{{{Bb{{CMd{c}}}}}{{CKd{c}}}CLh}{{{Bb{{CMf{c}}}}}{{CKd{c}}}CLh}2{{{Bb{{CM`{}{{CLn{c}}}}}}c}{{CM`{}{{CLn{c}}}}}CLh}{{{Bb{{CMb{c}}}}c}{{CMb{c}}}CLh}0{{{Bb{{CMd{c}}}}c}{{CMd{c}}}CLh}0{{{Bb{{CKd{c}}}}c}{{CKd{c}}}CLh}0{{{Bb{{CMf{c}}}}c}{{CMf{c}}}CLh}0{Bb{{Bb{c}}}{}}00000000{{{Bb{B`}}}{{Bb{B`c}}}{}}00000000{{{Bb{{CMb{c}}}}}{{CKh{cCDf}}}CLh}{{{Bb{{CMd{c}}}}}{{CKh{cCDf}}}CLh}{{{Bb{{CKd{c}}}}}{{CKh{cCDf}}}CLh}{{{Bb{{CMf{c}}}}}{{CKh{cCDf}}}CLh}{{{Bb{{CLj{c}}}}}{{CKh{cCDf}}}CLh}{{{Bb{{CMb{c}}}}}{{j{cc}}}CLh}{{{Bb{{CMd{c}}}}}{{j{cc}}}CLh}{{{Bb{{CMf{c}}}}}{{j{cc}}}CLh}{{{Bb{{CLj{c}}}}}{{j{cc}}}CLh}3210{{{Bb{{CMf{c}}}}}{{CLj{c}}}CLh}{{{Bb{{CLf{c}}}}}cCLh}{CLjCEl}{{{Bb{{CLj{c}}}}}{{CKd{c}}}CLh}{{{Fl{c}}}e{}{}}00000000{{{CMb{c}}}{{CMb{e}}}CLhCNb}{{{CMf{c}}}{{CMf{e}}}CLhCNb}{{{Bb{{CKb{c}}}}}{{CKb{e}}}{CNbEf}CNb}4{CMbCEl}{{{CEl{cCDf}}c}{{CMb{c}}}CLh}{{{Bb{{CKd{c}}}}{Bb{{CKh{cCDf}}}}}{{Bf{{CKd{c}}}}}CLh}{{{Bb{{CKd{c}}}}{ALl{c}}}{{Bf{{CKd{c}}}}}CLh}0{{{Bb{{CMb{c}}}}}{{CMb{c}}}Ed}{{{Bb{{CNd{c}}}}}{{CNd{c}}}Ed}{{{Bb{{CMd{c}}}}}{{CMd{c}}}Ed}{{{Bb{{CKd{c}}}}}{{CKd{c}}}Ed}{{{Bb{{CNf{c}}}}}{{CNf{c}}}Ed}{{{Bb{{CLf{c}}}}}{{CLf{c}}}Ed}{{{Bb{{CMf{c}}}}}{{CMf{c}}}Ed}{{{Bb{{CLj{c}}}}}{{CLj{c}}}Ed}{{{Bb{{CKb{c}}}}}{{CKb{c}}}Ed}{{Bb{Bb{B`c}}}Bd{}}00000000{{BbGn}Bd}00000000{{{Bb{{CKd{c}}}}{CEl{cCDf}}}{{CEl{cCDf}}}CLh}{{{Bb{{CMf{c}}}}{CEl{cCDf}}}cCLh}{ce{}{}}00000000{{{Bb{{CLj{c}}}}{CEl{cCDf}}}C`CLh}{{{Bb{{CKd{c}}}}{Bb{{CKd{c}}}}}C`CLh}{CMfCEl}{CMdCEl}0`{{{Bb{{CMd{c}}}}{Bb{{CMd{c}}}}}{{CNh{{CEl{cCDf}}}}}CLh}{{{Bb{{CMd{c}}}}{Bb{{CMd{c}}}}}{{CNh{{j{cc}}}}}CLh}{{}{{CKb{c}}}Dd}{c{{CKb{c}}}CNj}{Id{{Bb{c}}}{}}00000000{Id{{Bb{B`c}}}{}}00000000{{{Bb{{CM`{}{{CLn{c}}}}}}c}{{CK`{cCDf}}}CLh}{{{Bb{{CMb{c}}}}c}{{CK`{cCDf}}}CLh}{{{Bb{{CMd{c}}}}c}{{CK`{cCDf}}}CLh}0{{{Bb{{CKd{c}}}}c}{{CK`{cCDf}}}CLh}{{{Bb{{CMf{c}}}}c}{{CK`{cCDf}}}CLh}0{{{Bb{{CKd{c}}}}{CEl{cCDf}}}cCLh}{{{Bb{{CNf{c}}}}{Bb{{CEl{cCDf}}}}}cCLh}{{{Bb{{CLf{c}}}}{Bb{{CEl{cCDf}}}}}cCLh}{{{Bb{{CMf{c}}}}{CEl{cCDf}}}cCLh}{{{CKb{c}}{CKb{c}}}c{{CNl{}{{Ah{}}}}}}{{{CKb{c}}c}{{CKb{c}}}{{CNl{}{{Ah{}}}}}}{{{Bb{B`{CKb{c}}}}c}BdCNn}{Bb{{Bb{c}}}{}}00000000{{{Bb{{CMd{c}}}}c{CEl{cCDf}}}{{CMd{c}}}CLh}{{{Bb{{CMf{c}}}}c{CEl{cCDf}}}{{CMf{c}}}CLh}{{{Bb{{CMd{c}}}}c{CEl{cCDf}}c}{{CMd{c}}}CLh}{IdBd}00000000{{{Bb{{CM`{}{{CLn{c}}}}}}c}cCLh}{{{Bb{{CMd{c}}}}c}cCLh}0{{{Bb{{CKd{c}}}}c}cCLh}{{{Bb{{CMf{c}}}}c}cCLh}0322100{{{Bb{{CMb{c}}}}}{{CKb{c}}}CLh}{CLhCLh}{{{Bb{{CMb{c}}}}{Bb{{CMb{c}}}}}C`Eh}{{{Bb{{CNd{c}}}}{Bb{{CNd{c}}}}}C`Eh}{{{Bb{{CMd{c}}}}{Bb{{CMd{c}}}}}C`Eh}{{{Bb{{CKd{c}}}}{Bb{{CKd{c}}}}}C`Eh}{{{Bb{{CLf{c}}}}{Bb{{CLf{c}}}}}C`Eh}{{{Bb{{CMf{c}}}}{Bb{{CMf{c}}}}}C`Eh}{{{Bb{{CLj{c}}}}{Bb{{CLj{c}}}}}C`Eh}{{{Bb{{CKb{c}}}}{Bb{{CKb{c}}}}}C`Eh}{{{Bb{{CNf{c}}}}}{{CLf{c}}}CLh}{{Bb{Bb{c}}}C`{}}00000{{{Bb{{CMb{c}}}}}{{CKh{cCDf}}}CLh}{{{Bb{{CMd{c}}}}}{{CKh{cCDf}}}CLh}{{{Bb{{CMf{c}}}}}{{CKh{cCDf}}}CLh}{{{Bb{{CMb{c}}}}}{{j{cc}}}CLh}{{{Bb{{CMd{c}}}}}{{j{cc}}}CLh}{{{Bb{{CMf{c}}}}}{{j{cc}}}CLh}210{{{Bb{{CMd{c}}}}}{{j{{CLf{c}}{CLf{c}}}}}CLh}{{{Bb{{CMf{c}}}}}{{j{{CLf{c}}{CLf{c}}}}}CLh}{CNdCFf}{{{Bb{{CMb{c}}}}c}{{CO`{c}}}CLh}{{{Bb{{CMd{c}}}}c}{{COb{c}}}CLh}{{{Bb{{CMf{c}}}}c}{{COd{c}}}CLh}{{{Bb{{CMf{c}}}}c}{{COf{c}}}CLh}{{{Bb{{CMf{c}}}}c}cCLh}{{{Bb{{CM`{}{{CLn{c}}}}}}}{{CM`{}{{CLn{c}}}}}CLh}{{{Bb{{CMb{c}}}}}{{CMb{c}}}CLh}0{{{Bb{{CMd{c}}}}}{{CMd{c}}}CLh}0{{{Bb{{CKd{c}}}}}{{CKd{c}}}CLh}0{{{Bb{{CMf{c}}}}}{{CMf{c}}}CLh}0{{{Bb{{CMb{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{{CNd{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{{CMd{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{{CKd{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{{CNf{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{{CLf{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{{CMf{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{{CLj{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{{CKb{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{{CMb{c}}}}{Bb{B`e}}}BdCLh{{Ln{{Bb{{CMd{c}}}}}}}}{{{Bb{{CNd{c}}}}{Bb{B`e}}}BdCLh{{Ln{{Bb{{CMd{c}}}}}}}}{{{Bb{{CMb{c}}}}c{Bb{B`e}}}BdCLh{{Ln{{Bb{{CKd{c}}}}}}}}{{{Bb{{CNd{c}}}}c{Bb{B`e}}}BdCLh{{Ln{{Bb{{CKd{c}}}}}}}}{{{Bb{{CMd{c}}}}c{Bb{B`e}}}BdCLh{{Ln{{Bb{{CKd{c}}}}}}}}{{{Bb{{CMf{c}}}}c{Bb{B`e}}}BdCLh{{Ln{{Bb{{CKd{c}}}}}}}}{{{Bb{{CM`{}{{CLn{c}}}}}}c{Bb{B`Ln}}}BdCLh}{{{Bb{{CMb{c}}}}c{Bb{B`e}}}BdCLh{{Ln{{Bb{{CKd{c}}}}{ALl{c}}}}}}{{{Bb{{CMb{c}}}}{Bb{B`Ln}}}BdCLh}{{{Bb{{CNd{c}}}}c{Bb{B`e}}}BdCLh{{Ln{{Bb{{CKd{c}}}}{ALl{c}}}}}}{{{Bb{{CMd{c}}}}{Bb{B`Ln}}}BdCLh}{{{Bb{{CMd{c}}}}c{Bb{B`e}}}BdCLh{{Ln{{Bb{{CKd{c}}}}{ALl{c}}}}}}{{{Bb{{CKd{c}}}}{Bb{B`Ln}}}BdCLh}{{{Bb{{CMf{c}}}}c{Bb{B`e}}}BdCLh{{Ln{{Bb{{CKd{c}}}}{ALl{c}}}}}}{{{Bb{{CMf{c}}}}{Bb{B`Ln}}}BdCLh}{{{Bb{{CMd{c}}}}{Bb{B`e}}}BdCLh{{Ln{c}}}}{{{Bb{{CMb{c}}}}{Bb{B`e}}}BdCLh{{Ln{c}}}}101{{{Bb{{CMd{c}}}}{Bb{B`e}}}BdCLh{{Ln{{Bb{{CMd{c}}}}}}}}{{{Bb{{CMf{c}}}}{Bb{B`e}}}BdCLh{{Ln{{Bb{{CMf{c}}}}}}}}{{{Bb{{CMd{c}}}}{Bb{B`e}}}BdCLh{{Ln{{ALl{c}}}}}}{{{Bb{{CMf{c}}}}{Bb{B`e}}}BdCLh{{Ln{{ALl{c}}}}}}{{{Bb{{CMb{c}}}}{Bb{B`e}}}BdCLh{{Ln{{Bb{{CMf{c}}}}}}}}{{{Bb{{CNd{c}}}}{Bb{B`e}}}BdCLh{{Ln{{Bb{{CMf{c}}}}}}}}{{{Bb{{CMd{c}}}}c{Bb{B`e}}}BdCLh{{Ln{{Bb{{CMf{c}}}}}}}}{{{Bb{{CMb{c}}}}{Bb{B`e}}}BdCLh{{Ln{{Bb{{CMf{c}}}}{ALl{c}}}}}}{{{Bb{{CNd{c}}}}{Bb{B`e}}}BdCLh{{Ln{{Bb{{CMf{c}}}}{ALl{c}}}}}}{{{Bb{{CMd{c}}}}c{Bb{B`e}}}BdCLh{{Ln{{Bb{{CMf{c}}}}{ALl{c}}}}}}98769876{{}{{CKb{c}}}{CMn{Aj{}{{Ah{}}}}}}00{{{Bb{{CM`{}{{CLn{c}}}}}}}{{CEl{cCDf}}}CLh}{{{Bb{{CMb{c}}}}}{{CEl{cCDf}}}CLh}{cc{}}{{{CNd{c}}}{{CMb{c}}}CLh}21{{{Bb{{CMd{c}}}}}{{CEl{cCDf}}}CLh}202{{{Bb{{CKd{c}}}}}{{CEl{cCDf}}}CLh}033{{{Bb{{CMf{c}}}}}{{CEl{cCDf}}}CLh}4044{CNdCEl}{CMdCEl}{CKdCEl}{CMfCEl}888888888{ce{}{}}00000000{{{Bb{{CNd{c}}}}}{{CMb{c}}}CLh}{{{CKb{c}}}c{}}{{{Bb{{CMb{c}}}}c}{{CKb{c}}}CLh}{{{Bb{{CKb{c}}}}{Bb{B`e}}}BdLdLb}{COh}{{{Bb{{CKd{c}}}}c}{{Bf{{CEl{cCDf}}}}}CLh}{{{Bb{{CKd{c}}}}c}{{Bf{c}}}CLh}{{}Id}00000000{{{Bb{{CKd{c}}}}{Bb{{CKd{c}}}}}{{Bf{{CEl{cCDf}}}}}CLh}{{{Bb{{CNf{c}}}}{Bb{{CNf{c}}}}}{{Bf{{CEl{cCDf}}}}}CLh}{{{Bb{{CKd{c}}}}{Bb{{CKd{c}}}}}{{Bf{{j{cc}}}}}CLh}{{{Bb{{CKd{c}}}}{Bb{{CKd{c}}}}}C`CLh}{{{Bb{{CLj{c}}}}{Bb{{CLj{c}}}}}C`CLh}{{{Bb{{CNf{c}}}}{Bb{{CKh{cCDf}}}}}C`CLh}{{{Bb{{CKd{c}}}}{Bb{{CNf{c}}}}}C`CLh}{{{Bb{{CLj{c}}}}{Bb{{CKd{c}}}}}C`CLh}{{}c{}}00000000000000000{{{I`{c}}}{{I`{Dl}}}{}}00000000{{{Lj{c}}}{{Lj{Dl}}}{}}00000000{{{Ll{c}}}{{Ll{Dl}}}{}}00000000{{{Fl{c}}}e{}{}}00000000444444444444444444{{}c{}}00000000{{{Bb{{CLf{c}}}}}{{CLf{c}}}CLh}{{{Bb{{CMf{c}}}}c}C`CLh}{{{CKb{c}}}C`If}{{{Bb{{CLf{c}}}}}C`CLh}{{{Bb{{CMd{c}}}}c}C`CLh}3{{{Bb{{CMd{c}}}}}C`CLh}{{{Bb{{CMf{c}}}}}C`CLh}2{{{Bb{{CNd{c}}}}}C`CLh}42121{CFfC`}{{{Bb{{CKd{c}}}}}cCLh}{{{Bb{{CMf{c}}}}}cCLh}{{{Bb{{CKb{c}}}}{CKb{c}}c}{{CKb{c}}}{{CMj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}CMlCMnEf}}{{{Bb{{CKd{c}}}}{Bb{{CNf{c}}}}}{{Bf{{CEl{cCDf}}}}}CLh}{{{Bb{{CKd{c}}}}{Bb{{CNf{c}}}}}{{Bf{c}}}CLh}{{{Bb{{CMd{c}}}}{Bb{{CNf{c}}}}}{{CNh{{CEl{cCDf}}}}}CLh}{{{Bb{{CMf{c}}}}{Bb{{CNf{c}}}}}{{CNh{{CEl{cCDf}}}}}CLh}{{{Bb{{CMd{c}}}}{Bb{{CNf{c}}}}}{{CNh{c}}}CLh}{{{Bb{{CMf{c}}}}{Bb{{CNf{c}}}}}{{CNh{c}}}CLh}{{{Bb{{CMd{c}}}}{Bb{{CKd{c}}}}}{{CNh{{CEl{cCDf}}}}}CLh}{{{Bb{{CMf{c}}}}{Bb{{CKd{c}}}}}{{CNh{{CEl{cCDf}}}}}CLh}{{{Bb{{CMd{c}}}}{Bb{{CKd{c}}}}}{{CNh{{j{cc}}}}}CLh}{{{Bb{{CMf{c}}}}{Bb{{CKd{c}}}}}{{CNh{{j{cc}}}}}CLh}{{{Bb{{CMf{c}}}}}{{Bf{c}}}CLh}0{COj}00000{COlCEl}{{{Bb{B`{CKd{c}}}}}{{CEl{cCDf}}}CLh}1{{{CKb{c}}c}{{CKb{c}}}{{M`{}{{Ah{}}}}}}{{{Bb{B`{CKb{c}}}}c}BdCOn}{{{CKb{c}}}{{CKb{c}}}{{Mb{}{{Ah{}}}}}}{{ccc}{{CLf{c}}}CLh}{{{Bb{{CLf{c}}}}}{{CK`{cCDf}}}CLh}{{}c{}}{{{Bb{{CMd{c}}}}c}IjCLh}{{{Bb{{CLf{c}}}}c}{{CLf{c}}}CLh}{{{Bb{{CKd{c}}}}{Bb{{CNf{c}}}}}C`CLh}{{{Bb{{CKd{c}}}}{Bb{{CKd{c}}}}}C`CLh}{{{Bb{{CLf{c}}}}{Bb{{CEl{cCDf}}}}}{{CLf{c}}}CLh}{{{Bb{{CKb{c}}}}{Bb{{CKb{c}}}}}{{Bf{Mj}}}BBj}{{}{{CKb{c}}}{CMn{Aj{}{{Ah{}}}}}}{{cc}{{CEl{cCDf}}}{}}{CNfCEl}{{{Bb{{CKb{c}}}}}{{CKb{c}}}{{ABf{}{{Ah{}}}}{CMj{}{{Ah{}}}}{Aj{}{{Ah{}}}}D@`CMnBBjEf}}{{{Bb{{CLf{c}}}}{Bb{{CEl{cCDf}}}}}{{CEl{cCDf}}}CLh}`{{{Bb{{CMd{c}}}}{Bb{{CMf{c}}}}}{{CNh{{CEl{cCDf}}}}}CLh}{{{Bb{{CMd{c}}}}{Bb{{CMf{c}}}}}{{CNh{{j{cc}}}}}CLh}{c{{CKb{c}}}{}}{CKb}{CMbCK`}{CNdCK`}{{{Bb{{CM`{}{{CLn{c}}}}}}c}{{CEl{cCDf}}}CLh}{{{Bb{{CMb{c}}}}c}{{CEl{cCDf}}}CLh}0{{{Bb{{CMd{c}}}}c}{{CEl{cCDf}}}CLh}0{{{Bb{{CKd{c}}}}c}{{CEl{cCDf}}}CLh}0{{{Bb{{CMf{c}}}}c}{{CEl{cCDf}}}CLh}0{{{Bb{{CMb{c}}}}c}{{CK`{cCDf}}}CLh}{{{Bb{B`{CKd{c}}}}c}BdCLh}>{{{Bb{{CNf{c}}}}{Bb{{CEl{cCDf}}}}}cCLh}{{{Bb{{CLf{c}}}}{Bb{{CEl{cCDf}}}}}cCLh}{{{CKb{c}}}{{j{cc}}}D@b}{{cc}{{D@d{cCDf}}}{}}{{{Bb{{CMd{c}}}}c}{{CNh{c}}}CLh}{{{Bb{{CKd{c}}}}c}cCLh}100{{{Bb{{CLf{c}}}}c}{{Bf{c}}}CLh}10{{{Bb{{CM`{}{{CLn{c}}}}}}c}{{j{{CM`{}{{CLn{c}}}}{CM`{}{{CLn{c}}}}}}}CLh}{{{Bb{{CMb{c}}}}c}{{j{{CMb{c}}{CMb{c}}}}}CLh}0{{{Bb{{CMd{c}}}}c}{{j{{CMd{c}}{CMd{c}}}}}CLh}0{{{Bb{{CKd{c}}}}c}{{j{{CKd{c}}{CKd{c}}}}}CLh}0{{{Bb{{CMf{c}}}}c}{{j{{CMf{c}}{CMf{c}}}}}CLh}01{{{Bb{{CM`{}{{CLn{c}}}}}}{ALl{c}}}{{CM`{}{{CLn{c}}}}}CLh}{{{Bb{{CMb{c}}}}{ALl{c}}}{{CMb{c}}}CLh}0{{{Bb{{CMd{c}}}}{ALl{c}}}{{CMd{c}}}CLh}0{{{Bb{{CKd{c}}}}{ALl{c}}}{{CKd{c}}}CLh}0{{{Bb{{CMf{c}}}}{ALl{c}}}{{CMf{c}}}CLh}0{{{Bb{{CKd{c}}}}{CEl{cCDf}}}cCLh}{{{Bb{{CNf{c}}}}{CEl{cCDf}}}cCLh}{{{Bb{{CMf{c}}}}{CEl{cCDf}}}cCLh}{{{Bb{{CKd{c}}}}}cCLh}{CMbCKb}{{{CKb{c}}{CKb{c}}}{}{{ABf{}{{Ah{}}}}}}{{{Bb{B`{CKb{c}}}}{CKb{c}}}BdD@f}{e{{CKb{c}}}{AjEfD@`}{{ALn{}{{F`{{Bb{{CKb{c}}}}}}}}}}{e{{CKb{c}}}{AjD@`}{{ALn{}{{F`{{CKb{c}}}}}}}}{CFfC`}5{{{Bb{{CLf{c}}}}}{{CK`{cCDf}}}CLh}{{{Bb{{CM`{}{{CLn{c}}}}}}}{{CEl{cCDf}}}CLh}{{{Bb{{CMb{c}}}}}{{CEl{cCDf}}}CLh}0{{{Bb{{CMd{c}}}}}{{CEl{cCDf}}}CLh}0{{{Bb{{CKd{c}}}}}{{CEl{cCDf}}}CLh}0{{{Bb{{CMf{c}}}}}{{CEl{cCDf}}}CLh}0{CNdCEl}{CMdCEl}{CKdCEl}{CMfCEl}{{{Bb{{CNd{c}}}}}{{CMb{c}}}CLh}{{{Bb{{CMf{c}}}}}{{CMd{c}}}CLh}{{{CKb{c}}}cCNj}{{{Bb{{CMd{c}}}}}{{CMd{d}}}CLh}{{{Bb{{CKd{c}}}}}{{CKd{d}}}CLh}{{{Bb{{CNf{c}}}}}{{CNf{d}}}CLh}{{{Bb{{CMf{c}}}}}{{CMf{d}}}CLh}{{{Bb{{CKb{c}}}}}{{CKb{d}}}{CNbEf}}{{{Bb{{CMd{c}}}}}{{CMd{Kj}}}CLh}{{{Bb{{CKd{c}}}}}{{CKd{Kj}}}CLh}{{{Bb{{CNf{c}}}}}{{CNf{Kj}}}CLh}{{{Bb{{CMf{c}}}}}{{CMf{Kj}}}CLh}{{{Bb{{CKb{c}}}}}{{CKb{Kj}}}{CNbEf}}{{{Bb{{CKd{c}}}}}{{CNf{c}}}CLh}{Bbc{}}00000000{{{Bb{{CMd{c}}}}}{{CMf{c}}}CLh}{{{Bb{{CMd{c}}}}}cCLh}{{{Bb{{CMb{c}}}}}{{CNd{c}}}CLh}{{{Bb{{CKd{c}}}}}{{CK`{cCDf}}}CLh}`{{{Bb{{CLj{c}}}}{Bb{e}}}{{CLj{c}}}CLh{{CJb{c}}}}{{{Bb{{CMd{c}}}}{Bb{e}}}{{CMd{c}}}CLh{{CJb{c}}}}{{{Bb{{CKd{c}}}}{Bb{e}}}{{CKd{c}}}CLh{{CJb{c}}}}{{{Bb{{CMf{c}}}}{Bb{e}}}{{CMf{c}}}CLh{{CJb{c}}}}{{{Bb{B`{CKd{c}}}}{CK`{cCDf}}}{{CKd{c}}}CLh}{{{Bb{{CKb{c}}}}}{{Bf{{CKb{e}}}}}{CNbEf}CNb}{{}{{Bl{c}}}{}}00000000{c{{Bl{e}}}{}{}}00000000{{}{{Bl{c}}}{}}00000000{{}{{Bl{c{ABj{c}}}}}{}}00000000{{}{{CKb{c}}}{CMn{Aj{}{{Ah{}}}}}}{BbABl}00000000{ce{}{}}00000000{{}c{}}00000000{Bb{{Bf{{Bb{c}}}}}{}}00000000`{dCLh}{{cc}{{CK`{cCDf}}}{}}{CNfCK`}{{{Bb{{CKd{c}}}}c}{{Bf{{CEl{cCDf}}}}}CLh}{{{Bb{{CKd{c}}}}c}{{Bf{c}}}CLh}{{}c{}}00000000{COh}{{{Bb{{CM`{}{{CLn{c}}}}}}c}cCLh}{{{Bb{{CMb{c}}}}c}cCLh}0{{{Bb{{CMd{c}}}}c}cCLh}0{{{Bb{{CKd{c}}}}c}cCLh}0{{{Bb{{CMf{c}}}}c}cCLh}0{D@h}{D@j}{D@l}{{{Bb{{CMd{c}}}}}cCLh}{{{Bb{{CMf{c}}}}}cCLh}10{CMbCKb}{CNdCKb};::9988776543232{{}{{CKb{c}}}D@`}````{eg{}{{l{c}}}{}}{ce{}{}}{{}c{}}{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{CMbCEl}7{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}5{IdBd}{CNdCFf}{cc{}}{CNdCEl}1{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}=33{{}c{}}{{}c{}}{CFfC`}{{{Bb{B`{CO`{c}}}}}{{Bf{{CEl{cCDf}}}}}CLh}{CMbCK`}{CNdCK`}{CMbCKb}40={{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}9{CNdCKb}`````{eg{}{{l{c}}}{}}0000{ce{}{}}000055555{Bb{{Bb{Dl}}}}0000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000{{{Bb{B`{CNh{c}}}}}{{Bb{B`{AFn{c}}}}}{}}{{{Bb{B`{CNh{c}}}}}{}{}}{{{Bb{B`D@n}}}Gn}2{{{Bb{B`{DA`{c}}}}}{{Bb{B`{AFn{c}}}}}{}}{{{Bb{B`D@n}}}{{Bb{B`Mh}}}}{{{Bb{{CNh{c}}}}}{}{}}{{{Bb{D@n}}}Gn}{{{Bb{{CNh{c}}}}}{{Bb{{AFn{c}}}}}{}}{{{Bb{D@n}}}{{Bb{DAb}}}}{{{Bb{D@n}}}{{Bb{Mh}}}}2{{{Bb{{DA`{c}}}}}{{Bb{{AFn{c}}}}}{}}13{Bb{{Bb{c}}}{}}00020{{{Bb{B`}}}{{Bb{B`c}}}{}}<00800{{{Fl{c}}}e{}{}}0000{{{Bb{{CNh{c}}}}}Id{}}{{{Bb{D@n}}}Id}{{{Bb{B`{CNh{c}}}}}Bd{}}{{{Bb{B`D@n}}}Bd}{{{Bb{{CNh{c}}}}}{{CNh{c}}}Ed}{{{Bb{{DA`{c}}}}}{{DA`{c}}}Ed}{{{Bb{D@n}}}D@n}{{{Bb{{DAd{c}}}}}{{DAd{c}}}Ed}{{{Bb{B`{CNh{c}}}}{Bb{{CNh{c}}}}}BdEd}{{{Bb{B`D@n}}{Bb{D@n}}}Bd}{{Bb{Bb{B`c}}}Bd{}}000{{BbGn}Bd}000{{{Bb{{CNh{c}}}}{Bb{{CNh{c}}}}}MjBBb}{{{Bb{D@n}}{Bb{D@n}}}Mj}{{{Bb{{DAd{c}}}}{Bb{{DAd{c}}}}}MjBBb}{{Bb{Bb{c}}}Mj{}}00{ce{}{}}0000{{}{{CNh{c}}}{}}{{}D@n}{{{Bb{{CNh{c}}}}}Bb{}}{Id{{Bb{c}}}{}}000{{{Bb{D@n}}}{{Bb{Mh}}}}1{{{Bb{B`{CNh{c}}}}}{{Bb{B`}}}{}}{Id{{Bb{B`c}}}{}}000{{{Bb{B`D@n}}}{{Bb{B`Mh}}}}1{Bb{{Bb{c}}}{}}0000{{{Bb{B`{CNh{c}}}}e}{{DAf{c}}}{}{{AHh{Id}}}}{IdBd}{{{Bb{B`{CNh{c}}}}}Bd{}}{{{Bb{B`{DA`{c}}}}}Bd{}}22{{{Bb{B`{DAf{c}}}}}Bd{}}33{{{DAd{c}}}c{}}{Bbc{{AGn{AGl}}}}0{{{Bb{{CNh{c}}}}{Bb{{AFn{c}}}}}C`Eh}{{{Bb{{CNh{c}}}}{Bb{{CNh{c}}}}}C`Eh}{{{Bb{D@n}}{Bb{D@n}}}C`}{{{Bb{D@n}}{Bb{Mh}}}C`}{{{Bb{{DAd{c}}}}{Bb{{DAd{c}}}}}C`Eh}{{Bb{Bb{c}}}C`{}}00000000{{{Bb{B`{CNh{c}}}}e}Bd{}{{Fb{}{{F`{c}}}}}}{{{Bb{B`{CNh{Gn}}}}}{{Bl{BdMf}}}}{{{Bb{{CNh{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{{DA`{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{D@n}}{Bb{B`Jd}}}{{Bl{BdJf}}}}0{{{Bb{{DAd{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}{}}0{{{E`{c}}}{{CNh{c}}}{}}{cc{}}00{{{Bb{Mh}}}{{Bl{D@n{DAd{{Bb{Mh}}}}}}}}1111111{{{Bb{{E`{Gn}}}}}{{Bl{D@nDAh}}}}{e{{CNh{c}}}{}{{Fb{}{{F`{c}}}}}}{ce{}{}}0000{{{Bb{Mh}}}{{Bl{D@n}}}}{{{Bb{{CNh{c}}}}{Bb{{CNh{c}}}}}C`BBj}{{{Bb{D@n}}{Bb{Mh}}}C`}{{{Bb{D@n}}{Bb{D@n}}}C`}201{{{Bb{{CNh{c}}}}{Bb{B`e}}}BdLdLb}{{{Bb{D@n}}{Bb{B`c}}}BdLb}{{}Id}0000{{{Bb{B`{CNh{c}}}}Idc}Bd{}}{{}c{}}000000000{{{I`{c}}}{{I`{Dl}}}{}}0000{{{Lj{c}}}{{Lj{Dl}}}{}}0000{{{Ll{c}}}{{Ll{Dl}}}{}}0000{{{Fl{c}}}e{}{}}00004444444444{{{CNh{c}}}{{Bl{{E`{c}}{CNh{c}}}}}{}}{{{CNh{c}}}{{E`{c}}}{}}{{{Bb{{CNh{c}}}}}{}{}}{{{Bb{B`{CNh{c}}}}}{}{}}{{{CNh{c}}}{{DA`{c}}}{}}{{}c{}}0{{}c{}}0000{{{Bb{{CNh{c}}}}}C`{}}{{{Bb{D@n}}}C`}10{{{Bb{{CNh{c}}}}{Bb{{CNh{c}}}}}C`BBj}{{{Bb{D@n}}{Bb{Mh}}}C`}{{{Bb{D@n}}{Bb{D@n}}}C`}{{{Bb{{CNh{c}}}}}Id{}}{BbId}{{{Bb{D@n}}}Id}{BbGn}645{{}{{j{cegikmoAaAcAeAgAi}}}{}{}{}{}{}{}{}{}{}{}{}{}}{{}{{j{cegik}}}{}{}{}{}{}}{{}{{j{cegi}}}{}{}{}{}}{{}{{j{ceg}}}{}{}{}}{{}{{j{ce}}}{}{}}{{}{{j{c}}}{}}{{}{{j{cegikm}}}{}{}{}{}{}{}}{{}{{j{cegikmo}}}{}{}{}{}{}{}{}}{{}{{j{cegikmoAa}}}{}{}{}{}{}{}{}{}}{{}Bd}{{}{{j{cegikmoAaAc}}}{}{}{}{}{}{}{}{}{}}{{}{{j{cegikmoAaAcAe}}}{}{}{}{}{}{}{}{}{}{}}{{}{{j{cegikmoAaAcAeAg}}}{}{}{}{}{}{}{}{}{}{}{}}780<2456;:931{{}{{CNh{c}}}{}}{{}D@n}{c{{DAd{c}}}{}}21{{{Bb{B`{DA`{c}}}}}Bf{}}{{{Bb{B`{DAf{c}}}}}Bf{}}10{{}c{}}0{{{Bb{{CNh{c}}}}{Bb{{CNh{c}}}}}{{Bf{Mj}}}BBj}{{{Bb{D@n}}{Bb{Mh}}}{{Bf{Mj}}}}{{{Bb{D@n}}{Bb{D@n}}}{{Bf{Mj}}}}{{{Bb{{DAd{c}}}}{Bb{{DAd{c}}}}}{{Bf{Mj}}}BBj}{{{Bb{B`{CNh{c}}}}}{{Bf{c}}}{}}{{{Bb{B`D@n}}}{{Bf{AGl}}}}{{{Bb{B`{CNh{c}}}}Id}{{Bf{c}}}{}}{{{Bb{B`{CNh{c}}}}c}Bd{}}{{{Bb{B`D@n}}AGl}Bd}{{{Bb{B`D@n}}{Bb{Mh}}}Bd}2{{{Bb{{CNh{c}}}}}Id{}}{{{Bb{D@n}}}Id}{{{Bb{B`{CNh{c}}}}Id}c{}}{{{Bb{B`D@n}}Id}AGl}{{{Bb{B`{CNh{c}}}}e}Bd{}{{Ln{{Bb{B`c}}}{{Ah{C`}}}}}}{{{Bb{B`{CNh{c}}}}Id}Bd{}}{{{Bb{B`D@n}}Id}Bd}{{{DAd{c}}}DAd{}}{{{Bb{{DA`{c}}}}}{{j{Id{Bf{Id}}}}}{}}{{{Bb{{DAf{c}}}}}{{j{Id{Bf{Id}}}}}{}}{BbGn}>8{{{Bb{B`{CNh{c}}}}}{{CNh{c}}}{}}{Bbc{}}000{BbABh}0{BbHb}098{{}{{Bl{c}}}{}}0000{{{Bb{B`{CNh{c}}}}{Bb{{AFn{c}}}}}{{Bl{BdDAd}}}Ef}{c{{Bl{e}}}{}{}}{{{Bb{{AFn{c}}}}}{{Bl{{CNh{c}}}}}Ed}11{{{Bb{Mh}}}{{Bl{D@n}}}}2{DAj{{Bl{D@n}}}}3{{{Bb{B`{CNh{c}}}}Idc}{{Bl{Bd{DAd{c}}}}}{}}{{}{{Bl{c}}}{}}0000{{}{{Bl{c{ABj{c}}}}}{}}0000{{{Bb{B`{CNh{c}}}}c}{{Bl{Bd{DAd{c}}}}}{}}{{{Bb{B`D@n}}AGl}{{Bl{Bd{DAd{AGl}}}}}}{{{Bb{B`D@n}}{Bb{Mh}}}{{Bl{Bd{DAd{{Bb{Mh}}}}}}}}{BbABl}0000{ce{}{}}0000{{}c{}}0000{Bb{{Bf{{Bb{c}}}}}{}}0000{{}c{}}0000{{{Bb{B`{CNh{Gn}}}}{Bb{{AFn{Gn}}}}}{{Bl{IdMf}}}}{{{Bb{B`}}{Bb{{AFn{BEh}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{DAl}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{Gn}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{Kj}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{Jb}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{BEh}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{Ij}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{Kn}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{CIb}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{Kl}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{DAn}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{DAn}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{CIb}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{ANl}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{ANl}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{Ij}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{Kl}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{Jb}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{DAl}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{Kj}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{Gn}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{d}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{d}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{Kn}}}{{Bl{BdMf}}}}<{{{Bb{B`}}{Bb{Kj}}}{{Bl{BdMf}}}}5{{{Bb{B`}}{Bb{{AFn{Jb}}}}}{{Bl{BdMf}}}}?48{{{Bb{B`}}{Bb{{AFn{Ij}}}}}{{Bl{BdMf}}}}8:{{{Bb{B`}}{Bb{BEh}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{Kl}}}{{Bl{BdMf}}}}={{{Bb{B`}}{Bb{{AFn{Gn}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{CIb}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{Kn}}}}}{{Bl{BdMf}}}};{{{Bb{B`}}{Bb{DAl}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{CIb}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{BEh}}}}}{{Bl{BdMf}}}};{{{Bb{B`}}{Bb{{AFn{ANl}}}}}{{Bl{BdMf}}}}={{{Bb{B`}}{Bb{ANl}}}{{Bl{BdMf}}}}{{{Bb{B`D@n}}AGl}{{Bl{BdJf}}}}{{{Bb{B`}}DB`d}{{Bl{BdMf}}}}{{{Bb{B`}}DB`Kj}{{Bl{BdMf}}}}{{{Bb{B`}}DB`DAl}{{Bl{BdMf}}}}{{{Bb{B`}}DB`CIb}{{Bl{BdMf}}}}{{{Bb{B`}}DB`ANl}{{Bl{BdMf}}}}{{{Bb{B`}}DB`Kl}{{Bl{BdMf}}}}{{{Bb{B`}}DB`DAn}{{Bl{BdMf}}}}{{{Bb{B`D@n}}{Bb{Mh}}}{{Bl{BdJf}}}}{{{Bb{B`}}DB`BEh}{{Bl{BdMf}}}}{{{Bb{B`}}DB`Jb}{{Bl{BdMf}}}}{{{Bb{B`}}DB`Ij}{{Bl{BdMf}}}}{{{Bb{B`}}DB`Kn}{{Bl{BdMf}}}}{{{Bb{B`}}DB`Gn}{{Bl{BdMf}}}}{{}D@n}``{eg{}{{l{c}}}{}}{ce{}{}}{{}c{}}{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}6{CMdCEl}0{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}5{IdBd}{cc{}}40{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}};33{{}c{}}{{}c{}}{{{Bb{B`{COb{c}}}}}{{Bf{{CEl{cCDf}}}}}CLh}{{{Bb{{COb{c}}}}}{{j{Id{Bf{Id}}}}}CLh}>{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}`````````````````````````{{{D@d{ce}}}{{D@d{ce}}}DBb{}}{{{DBd{ce}}}{{DBd{ce}}}DBb{}}{{{CK`{ce}}}{{CK`{ce}}}DBb{}}{{{DBf{ce}}}{{DBf{ce}}}DBb{}}{eg{}{{l{c}}}{}}0000000000000000000000{{{DBh{ce}}{DBh{ce}}}{}Aj{}}{{{DBh{ce}}{Bb{{DBh{ce}}}}}{}{AjEf}{}}{{{CEl{ce}}{CK`{ce}}}{}Aj{}}{{{CEl{ce}}{D@d{ce}}}{}Aj{}}{{{DBj{ce}}{DBd{ce}}}{}Aj{}}{{{DBj{ce}}{DBf{ce}}}{}Aj{}}{{{DBl{ceg}}{DBl{ceg}}}{}Aj{}{}}{{{DBn{ce}}{DBn{ce}}}{{DBn{ce}}}{{Aj{}{{Ah{}}}}}{}}{{{D@d{ce}}{D@d{ce}}}{}Aj{}}{{{D@d{ce}}{Bb{{D@d{ce}}}}}{{D@d{ce}}}{Ef{Aj{}{{Ah{}}}}}{}}{{{DBd{ce}}{Bb{{DBd{ce}}}}}{{DBd{ce}}}{Ef{Aj{}{{Ah{}}}}}{}}{{{DBd{ce}}{DBd{ce}}}{}Aj{}}{{{DC`{ceg}}{DC`{cgi}}}{}Aj{}{}{}}{{{DCb{ceg}}{DCb{cgi}}}{}Aj{}{}{}}{{{CK`{ce}}{CK`{ce}}}{}Aj{}}{{{CK`{ce}}{Bb{{CK`{ce}}}}}{}{AjEf}{}}{{{DBf{ce}}{Bb{{DBf{ce}}}}}{}{AjEf}{}}{{{DBf{ce}}{DBf{ce}}}{}Aj{}}{{{Bb{B`{DBh{ce}}}}{DBh{ce}}}BdCLl{}}{{{Bb{B`{CEl{ce}}}}{CK`{ce}}}Bd{Ef{Aj{}{{Ah{}}}}}{}}{{{Bb{B`{CEl{ce}}}}{D@d{ce}}}BdCLl{}}{{{Bb{B`{DBj{ce}}}}{DBf{ce}}}Bd{Ef{Aj{}{{Ah{}}}}}{}}{{{Bb{B`{DBj{ce}}}}{DBd{ce}}}BdCLl{}}{{{Bb{B`{DBn{ce}}}}{DBn{ce}}}BdCLl{}}{{{Bb{B`{D@d{ce}}}}{D@d{ce}}}BdCLl{}}{{{Bb{B`{DBd{ce}}}}{DBd{ce}}}BdCLl{}}{{{Bb{B`{DC`{ceg}}}}{DC`{cgg}}}BdCLl{}{}}{{{Bb{B`{DCb{ceg}}}}{DCb{cgg}}}BdCLl{}{}}{{{Bb{B`{CK`{ce}}}}{CK`{ce}}}Bd{Ef{Aj{}{{Ah{}}}}}{}}{{{Bb{B`{DBf{ce}}}}{DBf{ce}}}Bd{Ef{Aj{}{{Ah{}}}}}{}}{{{CEl{ce}}{Bb{{D@d{ce}}}}}{{CEl{ce}}}{Ef{Aj{}{{Ah{}}}}}{}}{{{DBj{ce}}{DBd{ce}}}{{DBj{ce}}}{Ef{Aj{}{{Ah{}}}}}{}}{DCdC`}{DCfC`}{{DCdDCd}DCd}{{DCfDCf}DCf}{DCh}{{{CK`{ce}}}{{CKb{c}}}{CNjEf}{}}{{{CK`{ce}}{CK`{ce}}}{{CKb{c}}}{{ABf{}{{Ah{}}}}CNjEf{M`{}{{Ah{}}}}{Aj{}{{Ah{}}}}}{}}{{{DBf{ce}}{DBf{ce}}}{{CKb{c}}}{CNjD@b}{}}76{{}cCN`}{{}{{CEl{ce}}}{}{}}{{}{{DBj{ce}}}{}{}}{{}c{}}0{{}{{CK`{ce}}}{}{}}{{}{{DBf{ce}}}{}{}}55{{{Bb{{CDh{ceg}}}}{Bb{{CDh{ceg}}}}}C`CN`{}{}}{{{Bb{{DCj{ceg}}}}{Bb{{DCj{ceg}}}}}C`CN`{}{}}{{{Bb{{DBh{ce}}}}{Bb{{DBh{ce}}}}{Bb{c}}}C`CN`{}}{{{Bb{{CEl{ce}}}}{Bb{{CEl{ce}}}}{Bb{{CEl{ce}}}}}C`CN`{}}{{{Bb{{DBj{ce}}}}{Bb{{DBj{ce}}}}{Bb{{DBj{ce}}}}}C`CN`{}}{{{Bb{{DCh{ceg}}}}{Bb{{DCh{ceg}}}}{Bb{c}}}C`{Ef{Mb{}{{Ah{}}}}CN`}{}{}}{{{Bb{{DCl{ceg}}}}{Bb{{DCl{ceg}}}}{Bb{c}}}C`{Ef{Mb{}{{Ah{}}}}CN`}{}{}}{{{Bb{{CK`{ce}}}}{Bb{{CK`{ce}}}}{Bb{{CK`{ce}}}}}C`CN`{}}{{{Bb{{DBf{ce}}}}{Bb{{DBf{ce}}}}{Bb{{DBf{ce}}}}}C`CN`{}}{{{Bb{{CDh{ceg}}}}{Bb{{CDh{ceg}}}}{Bb{c}}}C`CN`{}{}}0{{{Bb{{DCj{ceg}}}}{Bb{{DCj{ceg}}}}{Bb{c}}}C`CN`{}{}}0``{{{Bb{{CKh{ce}}}}}c{Ef{M`{}{{Ah{}}}}{ABf{}{{Ah{}}}}}{}}{{{Bb{{DCn{ce}}}}}c{Ef{M`{}{{Ah{}}}}}{}}{{{D@d{ce}}}{}{M`Ef}{}}{{{DBf{ce}}{CKb{c}}}{{DCl{ceg}}}D@b{}{}}{{{CKb{c}}}{{DCl{ceg}}}D@b{}{}}00{ce{}{}}0000000000000000000000{{}c{}}0000000000000000000000{Bb{{Bb{Dl}}}}0000000000000000000000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000000000000000000000{Bb{{Bb{c}}}{}}0000000000000000000000{{{Bb{B`}}}{{Bb{B`c}}}{}}0000000000000000000000{DBn}{{cccccc}{{DD`{ce}}}Ef{}}{{C`C`}DCd}{{C`C`C`}DCf}{{{Fl{c}}}e{}{}}0000000000000000000000{{{Bb{{CKh{ce}}}}}{{CKh{ge}}}{CNbEf}{}CNb}{{{Bb{{DD`{ce}}}}}{{DD`{ge}}}{CNbEf}{}CNb}{{{DBh{ce}}}{{DBh{ge}}}{CNbEd}{}CNb}{{{CEl{ce}}}{{CEl{ge}}}{CNbEf}{}CNb}{{{DBj{ce}}}{{DBj{ge}}}{CNbEf}{}CNb}{{{Bb{{DCn{ce}}}}}{{DCn{ge}}}{CNbEf}{}CNb}{{{DBl{ceg}}}{{DBl{ieg}}}CNb{}{}CNb}{{{D@d{ce}}}{{D@d{ge}}}{CNbEf}{}CNb}{{{DBd{ce}}}{{DBd{ge}}}{CNbEf}{}CNb}{{{DC`{ceg}}}{{DC`{ieg}}}{CNbEf}{}{}CNb}{{{DCb{ceg}}}{{DCb{ieg}}}{CNbEf}{}{}CNb}{{{CK`{ce}}}{{CK`{ge}}}{CNbEf}{}CNb}{{{DBf{ce}}}{{DBf{ge}}}{CNbEf}{}CNb}{{{Bb{{CDh{ceg}}}}}{{CDh{ieg}}}{CNbEf}{}{}CNb}{{{Bb{{DCj{ceg}}}}}{{DCj{ieg}}}{CNbEf}{}{}CNb}{{{Bb{{CKh{ce}}}}}{{CKh{cg}}}Ef{}{}}{{{Bb{{DD`{ce}}}}}{{DD`{cg}}}Ef{}{}}{{{DBh{ce}}}{{DBh{cg}}}Ed{}{}}{{{CEl{ce}}}{{CEl{cg}}}Ef{}{}}{{{DBj{ce}}}{{DBj{cg}}}Ef{}{}}{{{Bb{{DCn{ce}}}}}{{DCn{cg}}}Ef{}{}}{{{Bb{{DDb{ceg}}}}}{{DDb{cik}}}Ef{}{}{}{}}{{{Bb{{DCh{ceg}}}}}{{DCh{cik}}}Ef{}{}{}{}}{{{Bb{{DCl{ceg}}}}}{{DCl{cik}}}Ef{}{}{}{}}{{{D@d{ce}}}{{D@d{cg}}}Ef{}{}}{{{DBd{ce}}}{{DBd{cg}}}Ef{}{}}{{{CK`{ce}}}{{CK`{cg}}}Ef{}{}}{{{DBf{ce}}}{{DBf{cg}}}Ef{}{}}{{{CEl{ce}}}{{CEl{ce}}}{DDdEf}{}}{{{CEl{ce}}}{{CEl{ce}}}DDd{}}{{{DBj{ce}}}{{DBj{ce}}}{DDdEf}{}}{{{DBj{ce}}}{{DBj{ce}}}DDd{}}{{{D@d{ce}}}{{D@d{ce}}}{DDdEf}{}}{{{D@d{ce}}}{{D@d{ce}}}DDd{}}{{{DBd{ce}}}{{DBd{ce}}}{DDdEf}{}}{{{DBd{ce}}}{{DBd{ce}}}DDd{}}{{{CK`{ce}}}{{CK`{ce}}}{DDdEf}{}}{{{CK`{ce}}}{{CK`{ce}}}DDd{}}{{{DBf{ce}}}{{DBf{ce}}}DDd{}}{{{DBf{ce}}}{{DBf{ce}}}{DDdEf}{}}{{{Bb{{CKh{ce}}}}}{{CEl{ce}}}{EfDDf{Aj{}{{Ah{}}}}{CNl{}{{Ah{}}}}}{}}{{{Bb{{DD`{ce}}}}}{{DBj{ce}}}{EfDDf{Aj{}{{Ah{}}}}{CNl{}{{Ah{}}}}}{}}{{{Bb{{DCn{ce}}}}}{{CEl{ce}}}{EfDDf{Aj{}{{Ah{}}}}{CNl{}{{Ah{}}}}}{}}{{{CEl{ce}}{CEl{ce}}{CEl{ce}}}{{CEl{ce}}}{EfBBj}{}}{{{DBj{ce}}{DBj{ce}}{DBj{ce}}}{{DBj{ce}}}{EfBBj}{}}{{{DBl{ceg}}{DBl{ceg}}{DBl{ceg}}}{{DBl{ceg}}}{EfBBj}{}{}}{{{D@d{ce}}{D@d{ce}}{D@d{ce}}}{{D@d{ce}}}{EfBBj}{}}{{{DBd{ce}}{DBd{ce}}{DBd{ce}}}{{DBd{ce}}}{EfBBj}{}}{{{CK`{ce}}{CK`{ce}}{CK`{ce}}}{{CK`{ce}}}{EfBBj}{}}{{{DBf{ce}}{DBf{ce}}{DBf{ce}}}{{DBf{ce}}}{EfBBj}{}}{{{CK`{ce}}cc}{{CK`{ce}}}D@b{}}{{{DBf{ce}}cc}{{DBf{ce}}}D@b{}}{{{Bb{{CKh{ce}}}}}{{CKh{ce}}}Ed{}}{{{Bb{{DD`{ce}}}}}{{DD`{ce}}}Ed{}}{{{Bb{{DDh{ce}}}}}{{DDh{ce}}}Ed{}}{{{Bb{{DBh{ce}}}}}{{DBh{ce}}}Ed{}}{{{Bb{{CEl{ce}}}}}{{CEl{ce}}}Ed{}}{{{Bb{{DBj{ce}}}}}{{DBj{ce}}}Ed{}}{{{Bb{{DCn{ce}}}}}{{DCn{ce}}}Ed{}}{{{Bb{{DDb{ceg}}}}}{{DDb{ceg}}}Ed{}{}}{{{Bb{{DCh{ceg}}}}}{{DCh{ceg}}}Ed{}{}}{{{Bb{{DCl{ceg}}}}}{{DCl{ceg}}}Ed{}{}}{{{Bb{{DBl{ceg}}}}}{{DBl{ceg}}}Ed{}{}}{{{Bb{{DBn{ce}}}}}{{DBn{ce}}}Ed{}}{{{Bb{{D@d{ce}}}}}{{D@d{ce}}}Ed{}}{{{Bb{{DBd{ce}}}}}{{DBd{ce}}}Ed{}}{{{Bb{{DC`{ceg}}}}}{{DC`{ceg}}}Ed{}{}}{{{Bb{{DCb{ceg}}}}}{{DCb{ceg}}}Ed{}{}}{{{Bb{{CK`{ce}}}}}{{CK`{ce}}}Ed{}}{{{Bb{{DBf{ce}}}}}{{DBf{ce}}}Ed{}}{{{Bb{{CDh{ceg}}}}}{{CDh{ceg}}}Ed{}{}}{{{Bb{{DCj{ceg}}}}}{{DCj{ceg}}}Ed{}{}}{{{Bb{DCd}}}DCd}{{{Bb{DCf}}}DCf}{{{Bb{CDf}}}CDf}{{Bb{Bb{B`c}}}Bd{}}0000000000000000000000{{BbGn}Bd}0000000000000000000000{{{Bb{{DBh{ce}}}}{Bb{{DBh{ce}}}}}MjBBb{}}{{{Bb{{DBl{ceg}}}}{Bb{{DBl{ceg}}}}}MjBBb{}{}}{{{Bb{CDf}}{Bb{CDf}}}Mj}{{Bb{Bb{c}}}Mj{}}00{{{CK`{ce}}{CK`{ce}}}{{CK`{ce}}}{{CNl{}{{Ah{}}}}}{}}{{{DBf{ce}}{DBf{ce}}}{{DBf{ce}}}{{CNl{}{{Ah{}}}}Ef}{}}{{{CK`{ce}}{CK`{ce}}}{{CK`{ce}}}{{M`{}{{Ah{}}}}}{}}{{{DBf{ce}}{DBf{ce}}}{{DBf{ce}}}{{M`{}{{Ah{}}}}Ef}{}}{ce{}{}}0000000000000000000000{{{Bb{{CKh{ce}}}}{CEl{ce}}}C`BBj{}}{{{Bb{{DD`{ce}}}}{DBj{ce}}}C`BBj{}}{{{Bb{{DCn{ce}}}}{CEl{ce}}}C`{EfBBj{Aj{}{{Ah{}}}}}{}}{{{D@d{ce}}{D@d{ce}}}C`BBj{}}{{{DBd{ce}}{DBd{ce}}}C`BBj{}}{{{Bb{{CKh{ce}}}}{Bb{{CKh{ce}}}}}C`BBj{}}{{{Bb{{DD`{ce}}}}{Bb{{DD`{ce}}}}}C`BBj{}}65{{{Bb{{DCn{ce}}}}{Bb{{DCn{ce}}}}}C`{EfDDjBBj{Aj{}{{Ah{}}}}}{}}{CNjCNj}{{{CK`{ce}}{CK`{ce}}}c{{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}}{{{DBf{ce}}{DBf{ce}}}{{DBf{ce}}}{{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}Ef}{}}{{{Bb{{DDb{ceg}}}}}{{j{{DBf{ce}}{DCl{ceg}}}}}{D@bCN`}{}{}}`{{}{{CKh{ce}}}Dd{}}{{}{{DD`{ce}}}Dd{}}{{}{{DBh{ce}}}Dd{}}{{}{{CEl{ce}}}Dd{}}{{}{{DBj{ce}}}Dd{}}{{}{{DCn{ce}}}Dd{}}{{}{{DBl{ceg}}}Dd{}{}}{{}{{DBn{ce}}}Dd{}}{{}{{D@d{ce}}}Dd{}}{{}{{DBd{ce}}}Dd{}}{{}{{DC`{ceg}}}DDj{}{}}{{}{{DCb{ceg}}}DDj{}{}}{{}{{CK`{ce}}}Dd{}}{{}{{DBf{ce}}}Dd{}}{{}{{CDh{ceg}}}{DDjDDf}{}{}}{{}{{DCj{ceg}}}{DDjDDf}{}{}}{{}CDf}{CNjCNj}{{{Bb{{DD`{ce}}}}}c{Ef{ABf{}{{Ah{}}}}}{}}{DBd}{Id{{Bb{c}}}{}}0000000000000000000000{Id{{Bb{B`c}}}{}}0000000000000000000000{{{Bb{{CDh{ceg}}}}}c{Ef{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{CNl{}{{Ah{}}}}EhDDjDDf}{}{}}{{{Bb{{DCj{ceg}}}}}c{{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{CNl{}{{Ah{}}}}Ef{Mb{}{{Ah{}}}}{Aj{}{{Ah{}}}}BBjDDfDDj}{}{}}{{{CEl{ce}}{CEl{ce}}}c{{D@b{}{{Ah{}}}}ABf}{}}{{{DBj{ce}}{DBj{ce}}}c{{D@b{}{{Ah{}}}}ABf}{}}{{{CKh{ce}}{DBl{cge}}}{}{EfCNl}{}{}}{{{CKh{ce}}c}{}{EfCNl}{}}{{{DD`{ce}}c}{}{EfCNl}{}}{{{DD`{ce}}{DBl{cge}}}{}{EfCNl}{}{}}{{{DBh{ce}}{DBh{cg}}}{}CNl{}{}}{{{DBh{ce}}{DBl{cge}}}{}CNl{}{}}{{{DBh{ce}}c}{}CNl{}}{{{CEl{ce}}c}{}{EfCNl}{}}{{{CEl{ce}}{DBl{cge}}}{}{EfCNl}{}{}}{{{DBj{ce}}{DBl{cge}}}{}{EfCNl}{}{}}{{{DBj{ce}}c}{}{EfCNl}{}}{{{DCn{ce}}{DBl{cge}}}{}{EfCNl}{}{}}{{{DCn{ce}}c}{}{EfCNl}{}}{{{DBn{ce}}{DBl{cge}}}{}{EfCNl}{}{}}{{{DBn{ce}}c}{}{EfCNl}{}}{{{D@d{ce}}{DBl{cge}}}{}{EfCNl}{}{}}{{{D@d{ce}}c}{}{EfCNl}{}}{{{DBd{ce}}{DBl{cge}}}{}{EfCNl}{}{}}{{{DBd{ce}}c}{}{EfCNl}{}}{{{CK`{ce}}c}{}{EfCNl}{}}{{{CK`{ce}}{DBl{cge}}}{}{EfCNl}{}{}}{{{DBf{ce}}c}{}{EfCNl}{}}{{{DBf{ce}}{DBl{cge}}}{}{EfCNl}{}{}}{{{Bb{B`{CKh{ce}}}}{DBl{cee}}}Bd{EfCNn}{}}{{{Bb{B`{CKh{ce}}}}c}Bd{EfCNn}{}}{{{Bb{B`{DD`{ce}}}}{DBl{cee}}}Bd{EfCNn}{}}{{{Bb{B`{DD`{ce}}}}c}Bd{EfCNn}{}}{{{Bb{B`{DBh{ce}}}}c}Bd{Ef{CNl{}{{Ah{}}}}}{}}{{{Bb{B`{CEl{ce}}}}c}Bd{Ef{CNl{}{{Ah{}}}}}{}}{{{Bb{B`{CEl{ce}}}}{DBl{cee}}}Bd{EfCNn}{}}{{{Bb{B`{DBj{ce}}}}c}Bd{EfCNn}{}}{{{Bb{B`{DBj{ce}}}}{DBl{cee}}}Bd{EfCNn}{}}{{{Bb{B`{DCn{ce}}}}{DBl{cee}}}Bd{EfCNn}{}}{{{Bb{B`{DCn{ce}}}}c}Bd{EfCNn}{}}{{{Bb{B`{DBn{ce}}}}{DBl{cee}}}Bd{EfCNn}{}}{{{Bb{B`{DBn{ce}}}}c}Bd{EfCNn}{}}{{{Bb{B`{D@d{ce}}}}c}Bd{EfCNn}{}}{{{Bb{B`{D@d{ce}}}}{DBl{cee}}}Bd{EfCNn}{}}{{{Bb{B`{DBd{ce}}}}{DBl{cee}}}Bd{EfCNn}{}}{{{Bb{B`{DBd{ce}}}}c}Bd{EfCNn}{}}{{{Bb{B`{CK`{ce}}}}c}Bd{Ef{CNl{}{{Ah{}}}}}{}}{{{Bb{B`{CK`{ce}}}}{DBl{cee}}}Bd{EfCNn}{}}{{{Bb{B`{DBf{ce}}}}c}Bd{Ef{CNl{}{{Ah{}}}}}{}}{{{Bb{B`{DBf{ce}}}}{DBl{cee}}}Bd{EfCNn}{}}{{{Bb{{CEl{ce}}}}{Bb{{D@d{ce}}}}}{{CEl{ce}}}DDl{}}{{{Bb{{DBj{ce}}}}{Bb{{DBd{ce}}}}}{{DBj{ce}}}DDl{}}{{{CK`{ce}}{CK`{ce}}}c{{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}}{{{DBf{ce}}{DBf{ce}}}c{{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}}{Bb{{Bb{c}}}{}}0000000000000000000000{IdBd}0000000000000000000000{{{Bb{{CKh{ce}}}}{Bb{{CKh{ce}}}}}C`Eh{}}{{{Bb{{DD`{ce}}}}{Bb{{DD`{ce}}}}}C`Eh{}}{{{Bb{{DDh{ce}}}}{Bb{{DDh{ce}}}}}C`Eh{}}{{{Bb{{DBh{ce}}}}{Bb{{DBh{ce}}}}}C`Eh{}}{{{Bb{{CEl{ce}}}}{Bb{{CEl{ce}}}}}C`Eh{}}{{{Bb{{DBj{ce}}}}{Bb{{DBj{ce}}}}}C`Eh{}}{{{Bb{{DCn{ce}}}}{Bb{{DCn{ce}}}}}C`Eh{}}{{{Bb{{DDb{ceg}}}}{Bb{{DDb{ceg}}}}}C`Eh{}{}}{{{Bb{{DCh{ceg}}}}{Bb{{DCh{ceg}}}}}C`Eh{}{}}{{{Bb{{DCl{ceg}}}}{Bb{{DCl{ceg}}}}}C`Eh{}{}}{{{Bb{{DBl{ceg}}}}{Bb{{DBl{ceg}}}}}C`Eh{}{}}{{{Bb{{DBn{ce}}}}{Bb{{DBn{ce}}}}}C`Eh{}}{{{Bb{{D@d{ce}}}}{Bb{{D@d{ce}}}}}C`Eh{}}{{{Bb{{DBd{ce}}}}{Bb{{DBd{ce}}}}}C`Eh{}}{{{Bb{{DC`{ceg}}}}{Bb{{DC`{ceg}}}}}C`Eh{}{}}{{{Bb{{DCb{ceg}}}}{Bb{{DCb{ceg}}}}}C`Eh{}{}}{{{Bb{{CK`{ce}}}}{Bb{{CK`{ce}}}}}C`Eh{}}{{{Bb{{DBf{ce}}}}{Bb{{DBf{ce}}}}}C`Eh{}}{{{Bb{{CDh{ceg}}}}{Bb{{CDh{ceg}}}}}C`Eh{}{}}{{{Bb{{DCj{ceg}}}}{Bb{{DCj{ceg}}}}}C`Eh{}{}}{{{Bb{DCd}}{Bb{DCd}}}C`}{{{Bb{DCf}}{Bb{DCf}}}C`}{{{Bb{CDf}}{Bb{CDf}}}C`}{{{D@d{ce}}{D@d{ce}}}DCdEh{}}{{{DBd{ce}}{DBd{ce}}}DCfEh{}}{{{CK`{ce}}{CK`{ce}}}DCdEh{}}{{{DBf{ce}}{DBf{ce}}}DCfEh{}}{{Bb{Bb{c}}}C`{}}00000000000000000000000000000000000000000000000000000000000000000000{{{CKb{c}}{CKb{c}}{CKb{c}}}{{DCl{ceg}}}D@b{}{}}{{{CEl{ce}}c}{{DBj{ce}}}Ef{}}{{{CK`{ce}}c}{{DBf{ce}}}Ef{}}{{CNjCNj}CNj}{{{CEl{ce}}}{{CEl{ce}}}{DDnEf}{}}{{{CEl{ce}}}{{CEl{ce}}}DDn{}}{{{DBj{ce}}}{{DBj{ce}}}DDn{}}{{{DBj{ce}}}{{DBj{ce}}}{DDnEf}{}}{{{D@d{ce}}}{{D@d{ce}}}{DDnEf}{}}{{{D@d{ce}}}{{D@d{ce}}}DDn{}}{{{DBd{ce}}}{{DBd{ce}}}DDn{}}{{{DBd{ce}}}{{DBd{ce}}}{DDnEf}{}}{{{CK`{ce}}}{{CK`{ce}}}DDn{}}{{{CK`{ce}}}{{CK`{ce}}}{DDnEf}{}}{{{DBf{ce}}}{{DBf{ce}}}{DDnEf}{}}{{{DBf{ce}}}{{DBf{ce}}}DDn{}}{{{Bb{{CKh{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}}{{{Bb{{DD`{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}}{{{Bb{{DDh{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}}{{{Bb{{DBh{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}}{{{Bb{{CEl{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}}{{{Bb{{DBj{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}}{{{Bb{{DCn{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}}{{{Bb{{DDb{ceg}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}{}}{{{Bb{{DCh{ceg}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}{}}{{{Bb{{DCl{ceg}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}{}}{{{Bb{{DBl{ceg}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}{}}{{{Bb{{DBn{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}}{{{Bb{{D@d{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}}{{{Bb{{DBd{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}}{{{Bb{{DC`{ceg}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}{}}{{{Bb{{DCb{ceg}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}{}}{{{Bb{{CK`{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}}{{{Bb{{DBf{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}}{{{Bb{{CDh{ceg}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}{EfD`EhDDfDDj}{}{}}{{{Bb{{DCj{ceg}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}{EfD`EhDDfDDj}{}{}}{{{Bb{DCd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{DCf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CDf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}{{{D@d{ce}}}{{CKh{ce}}}{EfDDjBBj}{}}{{{DBd{ce}}}{{DD`{ce}}}{EfDDjBBj}{}}2{{{CK`{ce}}}{{DDh{ce}}}DDj{}}3{{{DBf{ce}}}{{DDh{ce}}}DDj{}}{{{CEl{ce}}}{{DDh{ce}}}{DDjDDf}{}}{{{DBj{ce}}}{{DDh{ce}}}DDf{}}66{{{E`{c}}}{{CEl{ce}}}{}{}}{{{j{cc}}}{{CEl{ce}}}{}{}}{{{E`{c}}}{{DBj{ce}}}{}{}}{{{j{ccc}}}{{DBj{ce}}}{}{}}::{{{D@d{ce}}}{{DCn{ce}}}DDj{}}{{{DCl{ceg}}}{{DDb{ceg}}}{}{}{}}<{{{DBf{ce}}}{{DDb{cge}}}{}{}{}}====={{{j{cc}}}{{D@d{ce}}}{}{}}{{{E`{c}}}{{D@d{ce}}}{}{}}{{{CK`{ce}}}{{D@d{ce}}}{}{}}{cc{}}{{{j{ccc}}}{{DBd{ce}}}{}{}}{{{DBf{ce}}}{{DBd{ce}}}{}{}}{{{E`{c}}}{{DBd{ce}}}{}{}}{{{CK`{ce}}}{{DC`{ceg}}}{}{}{}}44{{{DBf{ce}}}{{DCb{ceg}}}{}{}{}}{{{DC`{ceg}}}{{CK`{ce}}}{}{}{}}{{{D@d{ce}}}{{CK`{ce}}}{}{}}{{{j{cc}}}{{CK`{ce}}}{}{}}{{{E`{c}}}{{CK`{ce}}}{}{}}9{{{j{ccc}}}{{DBf{ce}}}{}{}}{{{DCb{ceg}}}{{DBf{ce}}}{}{}{}}{{{E`{c}}}{{DBf{ce}}}{}{}}<<{{{DC`{ceg}}}{{CDh{ceg}}}{DDjDDf}{}{}}{{{DCb{ceg}}}{{DCj{ceg}}}{DDjDDf}{}{}}>>>>>>>>>>>>>>>>>>>>>>>>>>>{{{CKb{c}}c}{{CK`{ce}}}{CNj{M`{}{{Ah{}}}}Ef}{}}{{{E`{c}}}{{CDh{ceg}}}Ef{}{}}{{{E`{c}}}{{DCj{ceg}}}Ef{}{}}{{{E`{{E`{c}}}}}{{CDh{ceg}}}Ef{}{}}{{{E`{{E`{c}}}}}{{DCj{ceg}}}Ef{}{}}{{{DBh{ce}}}{{DBn{ce}}}Ef{}}{{{DBh{ce}}{DBh{ce}}}{{CEl{ce}}}{}{}}{{{DBh{ce}}{DBh{ce}}{DBh{ce}}}{{DBj{ce}}}{}{}}{{{DBh{ce}}{DBh{ce}}{DBh{ce}}{DBh{ce}}}{{DBn{ce}}}{}{}}{{{DBh{ce}}{DBh{ce}}}{{D@d{ce}}}{}{}}{{{DBh{ce}}{DBh{ce}}{DBh{ce}}}{{DBd{ce}}}{}{}}{{{DBh{ce}}{DBh{ce}}}{{CK`{ce}}}{}{}}{{{DBh{ce}}{DBh{ce}}{DBh{ce}}}{{DBf{ce}}}{}{}}{{{CEl{ce}}{D@d{ce}}}{{CKh{ce}}}{Ef{Aj{}{{Ah{}}}}}{}}{{{DBj{ce}}{DBd{ce}}}{{DD`{ce}}}{Ef{Aj{}{{Ah{}}}}}{}}{c{{CKh{eg}}}Fb{EfDDjBBj}{}}{c{{DD`{eg}}}Fb{EfDDjBBj}{}}{c{{DCn{eg}}}Fb{EfDDjBBj{ABf{}{{Ah{}}}}}{}}{{{DCl{ceg}}}{{DDb{ceg}}}{}{}{}}{{{DBl{ceg}}}{{DCj{ceg}}}{{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{CNl{}{{Ah{}}}}Ef{Mb{}{{Ah{}}}}{Aj{}{{Ah{}}}}BBjDDfDDj}{}{}}{{{D@d{ce}}}{{CKh{ce}}}DDj{}}{{{DBd{ce}}}{{DD`{ce}}}DDj{}}{{{D@d{ce}}}{{DCn{ce}}}DDj{}}{ce{}{}}0000000000000000000000{{{DBf{ce}}}{{DDb{cge}}}{}{}{}}{{{Bb{{CKh{cCDf}}}}}{{CKh{ce}}}Ef{}}{{{Bb{{DD`{cCDf}}}}}{{DD`{ce}}}Ef{}}{{{CEl{cCDf}}}{{CEl{ce}}}{}{}}{{{DBj{cCDf}}}{{DBj{ce}}}{}{}}{{{Bb{{DCn{cCDf}}}}}{{DCn{ce}}}Ef{}}{{{Bb{{DDb{cCDfCDf}}}}}{{DDb{ceg}}}{D@bCN`}{}{}}{{{Bb{{DCh{cCDfCDf}}}}}{{DCh{ceg}}}Ef{}{}}{{{Bb{{DCl{cCDfCDf}}}}}{{DCl{ceg}}}Ef{}{}}{{{D@d{cCDf}}}{{D@d{ce}}}{}{}}{{{DBd{cCDf}}}{{DBd{ce}}}{}{}}{{{Bb{{DC`{cCDfCDf}}}}}{{DC`{ceg}}}Ef{}{}}{{{Bb{{DCb{cCDfCDf}}}}}{{DCb{ceg}}}Ef{}{}}{{{CK`{cCDf}}}{{CK`{ce}}}{}{}}{{{DBf{cCDf}}}{{DBf{ce}}}{}{}}{{{Bb{{CDh{cCDfCDf}}}}}{{CDh{ceg}}}Ef{}{}}{{{Bb{{DCj{cCDfCDf}}}}}{{DCj{ceg}}}Ef{}{}}{{{CK`{ce}}{CK`{ce}}}{{DBn{ce}}}{{Mb{}{{Ah{}}}}}{}}0{{{DBh{ce}}}cEd{}}{{{DBl{ceg}}}c{}{}{}}{{{Bb{{DCh{ceg}}}}}{{CKb{c}}}Ef{}{}}{{{D@d{ce}}{D@d{ce}}}DCdBBj{}}{{{DBd{ce}}{DBd{ce}}}DCfBBj{}}{{{CK`{ce}}{CK`{ce}}}DCdBBj{}}{{{DBf{ce}}{DBf{ce}}}DCfBBj{}}{{{Bb{{CKh{ce}}}}{Bb{B`g}}}BdLd{}Lb}{{{Bb{{DD`{ce}}}}{Bb{B`g}}}BdLd{}Lb}{{{Bb{{DDh{ce}}}}{Bb{B`g}}}BdLd{}Lb}{{{Bb{{DBh{ce}}}}{Bb{B`g}}}BdLd{}Lb}{{{Bb{{CEl{ce}}}}{Bb{B`g}}}BdLd{}Lb}{{{Bb{{DBj{ce}}}}{Bb{B`g}}}BdLd{}Lb}{{{Bb{{DCn{ce}}}}{Bb{B`g}}}BdLd{}Lb}{{{Bb{{DDb{ceg}}}}{Bb{B`i}}}BdLd{}{}Lb}{{{Bb{{DCh{ceg}}}}{Bb{B`i}}}BdLd{}{}Lb}{{{Bb{{DCl{ceg}}}}{Bb{B`i}}}BdLd{}{}Lb}{{{Bb{{DBl{ceg}}}}{Bb{B`i}}}BdLd{}{}Lb}{{{Bb{{DBn{ce}}}}{Bb{B`g}}}BdLd{}Lb}{{{Bb{{D@d{ce}}}}{Bb{B`g}}}BdLd{}Lb}{{{Bb{{DBd{ce}}}}{Bb{B`g}}}BdLd{}Lb}{{{Bb{{DC`{ceg}}}}{Bb{B`i}}}BdLd{}{}Lb}{{{Bb{{DCb{ceg}}}}{Bb{B`i}}}BdLd{}{}Lb}{{{Bb{{CK`{ce}}}}{Bb{B`g}}}BdLd{}Lb}{{{Bb{{DBf{ce}}}}{Bb{B`g}}}BdLd{}Lb}{{{Bb{{CDh{ceg}}}}{Bb{B`i}}}BdLd{}{}Lb}{{{Bb{{DCj{ceg}}}}{Bb{B`i}}}BdLd{}{}Lb}{{{Bb{DCd}}{Bb{B`c}}}BdLb}{{{Bb{DCf}}{Bb{B`c}}}BdLb}{{{Bb{CDf}}{Bb{B`c}}}BdLb}{{{Bb{{CKh{ce}}}}}c{Ef{ABf{}{{Ah{}}}}}{}}{{{Bb{{DD`{ce}}}}}c{Ef{ABf{}{{Ah{}}}}}{}}{{{Bb{{DCn{ce}}}}}c{Ef{Aj{}{{Ah{}}}}}{}}{D@d}{DBd}{{{Bb{{DBn{ce}}}}}c{Ef{Aj{}{{Ah{}}}}}{}}{DCl}{{}{{DDb{ceg}}}{}{}{}}{{}{{DCh{ceg}}}D@`{}{}}{{}{{DCl{ceg}}}{D@`CMl}{}{}}{{}{{DBl{ceg}}}DDf{}{}}{{}{{DC`{ceg}}}DDj{}{}}{{}{{DCb{ceg}}}DDj{}{}}{{}{{CDh{ceg}}}{DDjDDf}{}{}}{{}{{DCj{ceg}}}{DDjDDf}{}{}}{{{Bb{{CKh{ce}}}}cc}{{CKh{ce}}}{Ef{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}}{}}{{{Bb{{DD`{ce}}}}ccc}{{DD`{ce}}}{Ef{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}}{}}{{{Bb{{DCn{ce}}}}cc}{{DCn{ce}}}{Ef{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}}{}}{{}Id}0000000000000000000000{{{Bb{{CKh{ce}}}}{DBn{ce}}}{{CKh{ce}}}{Ef{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}}{}}{{{Bb{{DCn{ce}}}}{DBn{ce}}}{{DCn{ce}}}{EfDDjBBj{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}}{}}{{{Bb{{CKh{ce}}}}{Bb{{CKh{ce}}}}}{{Bf{{CKh{ce}}}}}{EfBBj}{}}{{{Bb{{DD`{ce}}}}{Bb{{DD`{ce}}}}}{{Bf{{DD`{ce}}}}}{EfBBj}{}}{{{Bb{{DCn{ce}}}}{Bb{{DCn{ce}}}}}{{Bf{{DCn{ce}}}}}{EfBBj{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}}{}}{{{Bb{{CKh{ce}}}}{Bb{{CKh{ce}}}}}{{CKh{ce}}}{EfBBj}{}}{{{Bb{{DD`{ce}}}}{Bb{{DD`{ce}}}}}{{DD`{ce}}}{EfBBj}{}}{{{Bb{{CKh{ce}}}}{Bb{{CKh{ce}}}}}C`BBj{}}{{{Bb{{DD`{ce}}}}{Bb{{DD`{ce}}}}}C`BBj{}}{{{Bb{{DCn{ce}}}}{Bb{{DCn{ce}}}}}C`{EfBBj{Aj{}{{Ah{}}}}}{}}{{}c{}}000000000000000000000000000000000000000000000{{{I`{c}}}{{I`{Dl}}}{}}0000000000000000000000{{{Lj{c}}}{{Lj{Dl}}}{}}0000000000000000000000{{{Ll{c}}}{{Ll{Dl}}}{}}0000000000000000000000{{{Fl{c}}}e{}{}}00000000000000000000004444444444444444444444444444444444444444444444{{}c{}}0000000000000000000000{{{Bb{{DDb{ceg}}}}}{{DDb{cge}}}{D@bCN`}{}{}}{{{Bb{{DCh{ceg}}}}}{{DCh{cge}}}D@b{}{}}{{{Bb{{DCl{ceg}}}}}{{DCl{cge}}}D@b{}{}}{{{DBl{ceg}}}{{DBl{ge}}}{DDfCNl}{}{}}{{{Bb{{DC`{ceg}}}}}{{DC`{ge}}}{MbEf}{}{}}{{{Bb{{DCb{ceg}}}}}{{DCb{ge}}}{MbEf}{}{}}{{{Bb{{CDh{ceg}}}}}{{Bf{{CDh{cge}}}}}{Ef{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{CNl{}{{Ah{}}}}EhDDjDDf}{}{}}{{{Bb{{DCj{ceg}}}}}{{Bf{{DCj{cge}}}}}{{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{CNl{}{{Ah{}}}}Ef{Mb{}{{Ah{}}}}{Aj{}{{Ah{}}}}BBjDDfDDj}{}{}}{{{Bb{{DCj{ceg}}}}}C`{DDjDDfEh}{}{}}{{{Bb{{DCj{ceg}}}}}C`{{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{CNl{}{{Ah{}}}}Ef{Mb{}{{Ah{}}}}{Aj{}{{Ah{}}}}BBjDDfDDj}{}{}}{{{Bb{{CKh{ce}}}}}C`BBj{}}{{{Bb{{DD`{ce}}}}}C`BBj{}}{{{Bb{{DCn{ce}}}}}C`{EfDDjBBj}{}}{{{D@d{ce}}}C`{DDjBBj}{}}{{{DBd{ce}}}C`{DDjBBj}{}}{{{CKh{ce}}}C`If{}}{{{DD`{ce}}}C`If{}}{{{CEl{ce}}}C`If{}}{{{DBj{ce}}}C`If{}}{{{DCn{ce}}}C`If{}}{{{D@d{ce}}}C`If{}}{{{DBd{ce}}}C`If{}}{{{CK`{ce}}}C`If{}}{{{DBf{ce}}}C`If{}}{{{DBl{ceg}}}C`{EhDDf}{}{}}{{{Bb{{DC`{ceg}}}}}C`{DDjEh}{}{}}{{{Bb{{DCb{ceg}}}}}C`{DDjEh}{}{}}{{{Bb{{CDh{ceg}}}}}C`{Ef{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{CNl{}{{Ah{}}}}EhDDjDDf}{}{}}{{{Bb{{DCj{ceg}}}}}C`{{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{CNl{}{{Ah{}}}}Ef{Mb{}{{Ah{}}}}{Aj{}{{Ah{}}}}BBjDDfDDj}{}{}}{{{Bb{{CKh{ce}}}}}C`BBj{}}{{{Bb{{DD`{ce}}}}}C`BBj{}}{{{Bb{{DCl{ceg}}}}}C`{CN`D@b}{}{}}{{{D@d{ce}}}C`DBb{}}{{{DBd{ce}}}C`DBb{}}{{{Bb{{DBn{ce}}}}}C`{DDjEh}{}}{DCl}0{DBn}{{{CK`{ce}}}cD@b{}}{{{DBf{ce}}}cD@b{}}{{{Bb{{CKh{ce}}}}{CKh{ce}}c}{{CKh{ce}}}{DDf{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}Ef}{}}{{{Bb{{DD`{ce}}}}{DD`{ce}}c}{{DD`{ce}}}{DDf{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}Ef}{}}{{{DBh{ce}}{DBh{ce}}c}{{DBh{ce}}}{DDf{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{Aj{}{{Ah{}}}}Ed}{}}{{{CEl{ce}}{CEl{ce}}c}{{CEl{ce}}}{DDf{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{Aj{}{{Ah{}}}}Ef}{}}{{{DBj{ce}}{DBj{ce}}c}{{DBj{ce}}}{DDf{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{Aj{}{{Ah{}}}}Ef}{}}{{{Bb{{DCn{ce}}}}{DCn{ce}}c}{{DCn{ce}}}{DDf{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}Ef}{}}{{{Bb{{DCl{ceg}}}}{Bb{{DCl{ceg}}}}c}{{DCl{ceg}}}D@b{}{}}{{{D@d{ce}}{D@d{ce}}c}{{D@d{ce}}}{DDf{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{Aj{}{{Ah{}}}}Ef}{}}{{{DBd{ce}}{DBd{ce}}c}{{DBd{ce}}}{DDf{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{Aj{}{{Ah{}}}}Ef}{}}{{{CK`{ce}}{CK`{ce}}c}{{CK`{ce}}}{DDf{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}Ef}{}}{{{DBf{ce}}{DBf{ce}}c}{{DBf{ce}}}{DDf{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}Ef}{}}{{{D@d{ce}}{D@d{ce}}}DCdBBj{}}{{{DBd{ce}}{DBd{ce}}}DCfBBj{}}{{{CK`{ce}}{CK`{ce}}}DCdBBj{}}{{{DBf{ce}}{DBf{ce}}}DCfBBj{}}{CDh}{DCj}10001010001010000000{{{CEl{ce}}i}{{CEl{ge}}}{}{}{}{{Ln{c}{{Ah{g}}}}}}{{{DBj{ce}}i}{{DBj{ge}}}{}{}{}{{Ln{c}{{Ah{g}}}}}}{{{CK`{ce}}i}{{CK`{ge}}}{}{}{}{{Ln{c}{{Ah{g}}}}}}{{{DBf{ce}}i}{{DBf{ge}}}{}{}{}{{Ln{c}{{Ah{g}}}}}}{{{DBh{ce}}{DBh{ce}}}{{DBh{ce}}}BBj{}}{{{CEl{ce}}{CEl{ce}}}{{CEl{ce}}}BBj{}}{{{DBj{ce}}{DBj{ce}}}{{DBj{ce}}}BBj{}}{{{Bb{{DCn{ce}}}}}{{CEl{ce}}}{Ef{Aj{}{{Ah{}}}}}{}}{{{DBl{ceg}}{DBl{ceg}}}{{DBl{ceg}}}BBj{}{}}{{{D@d{ce}}{D@d{ce}}}{{D@d{ce}}}BBj{}}{{{DBd{ce}}{DBd{ce}}}{{DBd{ce}}}BBj{}}{{{CK`{ce}}{CK`{ce}}}{{CK`{ce}}}BBj{}}{{{DBf{ce}}{DBf{ce}}}{{DBf{ce}}}BBj{}}{CKhCEl}{DD`DBj}{{{Bb{{DCn{ce}}}}}c{Ef{Aj{}{{Ah{}}}}}{}}0;:98765432100{{{CKh{ce}}{DBl{ceg}}}{}{EfM`}{}{}}{{{CKh{ce}}c}{}{EfM`}{}}{{{DD`{ce}}c}{}{EfM`}{}}{{{DD`{ce}}{DBl{ceg}}}{}{EfM`}{}{}}{{{DBh{ce}}c}{}M`{}}{{{DBh{ce}}{DBl{ceg}}}{}M`{}{}}{{{CEl{ce}}{DBl{ceg}}}{}{EfM`}{}{}}{{{CEl{ce}}c}{}{EfM`}{}}{{{DBj{ce}}c}{}{EfM`}{}}{{{DBj{ce}}{DBl{ceg}}}{}{EfM`}{}{}}{{{DCn{ce}}{DBl{ceg}}}{}{EfM`}{}{}}{{{DCn{ce}}c}{}{EfM`}{}}{{{DBl{ceg}}{DBl{cgi}}}{}M`{}{}{}}{{{DBn{ce}}c}{}{EfM`}{}}{{{DBn{ce}}{DBl{ceg}}}{}{EfM`}{}{}}{{{D@d{ce}}{DBl{ceg}}}{}{EfM`}{}{}}{{{D@d{ce}}c}{}{EfM`}{}}{{{DBd{ce}}{DBl{ceg}}}{}{EfM`}{}{}}{{{DBd{ce}}c}{}{EfM`}{}}{{{CK`{ce}}{DBl{ceg}}}{}{EfM`}{}{}}{{{CK`{ce}}c}{}{EfM`}{}}{{{DBf{ce}}c}{}{EfM`}{}}{{{DBf{ce}}{DBl{ceg}}}{}{EfM`}{}{}}{{{Bb{B`{CKh{ce}}}}c}Bd{EfCOn}{}}{{{Bb{B`{CKh{ce}}}}{DBl{cee}}}Bd{EfCOn}{}}{{{Bb{B`{DD`{ce}}}}c}Bd{EfCOn}{}}{{{Bb{B`{DD`{ce}}}}{DBl{cee}}}Bd{EfCOn}{}}{{{Bb{B`{DBh{ce}}}}c}Bd{Ef{M`{}{{Ah{}}}}}{}}{{{Bb{B`{CEl{ce}}}}{DBl{cee}}}Bd{EfCOn}{}}{{{Bb{B`{CEl{ce}}}}c}Bd{Ef{M`{}{{Ah{}}}}}{}}{{{Bb{B`{DBj{ce}}}}{DBl{cee}}}Bd{EfCOn}{}}{{{Bb{B`{DBj{ce}}}}c}Bd{EfCOn}{}}{{{Bb{B`{DCn{ce}}}}c}Bd{EfCOn}{}}{{{Bb{B`{DCn{ce}}}}{DBl{cee}}}Bd{EfCOn}{}}{{{Bb{B`{DBn{ce}}}}{DBl{cee}}}Bd{EfCOn}{}}{{{Bb{B`{DBn{ce}}}}c}Bd{EfCOn}{}}{{{Bb{B`{D@d{ce}}}}{DBl{cee}}}Bd{EfCOn}{}}{{{Bb{B`{D@d{ce}}}}c}Bd{EfCOn}{}}{{{Bb{B`{DBd{ce}}}}c}Bd{EfCOn}{}}{{{Bb{B`{DBd{ce}}}}{DBl{cee}}}Bd{EfCOn}{}}{{{Bb{B`{CK`{ce}}}}c}Bd{Ef{M`{}{{Ah{}}}}}{}}{{{Bb{B`{CK`{ce}}}}{DBl{cee}}}Bd{EfCOn}{}}{{{Bb{B`{DBf{ce}}}}c}Bd{Ef{M`{}{{Ah{}}}}}{}}{{{Bb{B`{DBf{ce}}}}{DBl{cee}}}Bd{EfCOn}{}}{{{Bb{{DCj{ceg}}}}c}{{DCj{ceg}}}{{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{CNl{}{{Ah{}}}}Ef{Mb{}{{Ah{}}}}{Aj{}{{Ah{}}}}BBjDDfDDj}{}{}}{{{DBh{ce}}}{}Mb{}}{{{CEl{ce}}}{}Mb{}}{{{DBj{ce}}}{}Mb{}}{{{DBn{ce}}}{{DBn{ce}}}{{Mb{}{{Ah{}}}}}{}}{{{D@d{ce}}}{}Mb{}}{{{DBd{ce}}}{}Mb{}}{{{CK`{ce}}}{}Mb{}}{{{DBf{ce}}}{}Mb{}}{{{CEl{ce}}{CEl{ce}}}{{CKh{ce}}}{}{}}{{{DBj{ce}}{DBj{ce}}}{{DD`{ce}}}{}{}}{{cccc}{{DDh{ce}}}{}{}}{c{{DBh{ce}}}{}{}}{{cc}{{CEl{ce}}}{}{}}{{ccc}{{DBj{ce}}}{}{}}{{{CEl{ce}}{D@d{ce}}}{{DCn{ce}}}{}{}}{{{DCl{ceg}}{DBf{cg}}}{{DDb{ceg}}}{}{}{}}{{{CKb{c}}}{{DCh{ceg}}}{}{}{}}{c{{DBl{ceg}}}{}{}{}}{{cccc}{{DBn{ce}}}{}{}}{{cc}{{D@d{ce}}}{}{}}{{ccc}{{DBd{ce}}}{}{}}{{cc}{{DC`{ceg}}}{}{}{}}{{ccc}{{DCb{ceg}}}{}{}{}}{{cc}{{CK`{ce}}}{}{}}{{ccc}{{DBf{ce}}}{}{}}{{cccccc}{{CDh{ceg}}}{}{}{}}{{cccccccccccccccc}{{DCj{ceg}}}{}{}{}}{{cccccc}{{DCj{ceg}}}{DDjDDf}{}{}}{c{{DBn{ce}}}Ef{}}{{{DBf{ce}}{DCl{ceg}}}{{DDb{ceg}}}{}{}{}}{DCdC`}{DCfC`}{{{Bb{{DCl{ceg}}}}}cD@b{}{}}{{{Bb{{DCl{ceg}}}}}{{DCl{ceg}}}D@b{}{}}{{{CK`{ce}}}{{CK`{ce}}}D@b{}}{{{DBf{ce}}}{{DBf{ce}}}D@b{}}{DCdDCd}{DCfDCf}{{{D@d{ce}}{D@d{ce}}}DCdEh{}}{{{DBd{ce}}{DBd{ce}}}DCfEh{}}{{{CK`{ce}}{CK`{ce}}}DCdEh{}}{{{DBf{ce}}{DBf{ce}}}DCfEh{}}{{}c{}}0000000000000000`{{}{{DBl{ceg}}}DDf{}{}}{{}{{CK`{ce}}}DDf{}}{{}{{DBf{ce}}}DDf{}}{{DCdDCd}DCd}{{DCfDCf}DCf}{{}{{CEl{ce}}}DDj{}}{{}{{DBj{ce}}}DDj{}}{DCnCEl}{{cccccc}{{DCj{ceg}}}{}{}{}}{{{Bb{{CKh{ce}}}}{DBn{ce}}}{{CKh{ce}}}{Ef{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}}{}}{{{Bb{{DCn{ce}}}}{DBn{ce}}}{{DCn{ce}}}{Ef{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}}{}}{{{Bb{{CDh{ceg}}}}{Bb{{CKh{ce}}}}}{{CKh{cg}}}{{ABf{}{{Ah{}}}}DDjBBjEf{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}}{{{Bb{{DCj{ceg}}}}{Bb{{CKh{ce}}}}}{{Bf{{CKh{cg}}}}}{{ABf{}{{Ah{}}}}{CNl{}{{Ah{}}}}DDjBBjEf{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}}{{{Bb{{DCj{ceg}}}}{Bb{{DD`{ce}}}}}{{Bf{{DD`{cg}}}}}{{ABf{}{{Ah{}}}}{CNl{}{{Ah{}}}}DDjBBjEf{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}}{{{Bb{{CDh{ceg}}}}{Bb{{DCn{ce}}}}}{{DCn{cg}}}{{ABf{}{{Ah{}}}}DDjBBjEf{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}}{{{Bb{{DCj{ceg}}}}{Bb{{DCn{ce}}}}}{{Bf{{DCn{cg}}}}}{{ABf{}{{Ah{}}}}{CNl{}{{Ah{}}}}DDjBBjEf{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}}{{{Bb{{DBh{ce}}}}{Bb{{DBh{ce}}}}}{{Bf{Mj}}}BBj{}}{{{Bb{{DBl{ceg}}}}{Bb{{DBl{ceg}}}}}{{Bf{Mj}}}BBj{}{}}{{{Bb{CDf}}{Bb{CDf}}}{{Bf{Mj}}}}{c{{DCj{ceg}}}{}{}{}}{{cc}{{CEl{ce}}}{}{}}{{ccc}{{DBj{ce}}}{}{}}{{{Bb{{CEl{dc}}}}}{{CEl{dCDf}}}{}}{{{Bb{{CDh{ceg}}}}{CKb{c}}}{{CDh{ceg}}}{Ef{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}DDjCNj}{}{}}{{{Bb{{DCj{ceg}}}}ccc{CKb{c}}}{{DCj{ceg}}}{{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{CNl{}{{Ah{}}}}EfDDjDDfCNj}{}{}}{{{Bb{{CDh{ceg}}}}cc}{{CDh{ceg}}}{Ef{M`{}{{Ah{}}}}}{}{}}{{{Bb{{DCj{ceg}}}}ccc}{{DCj{ceg}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}DDjDDf}{}{}}{{{Bb{{CDh{ceg}}}}{CK`{ce}}}{{CDh{ceg}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}DDjDDf}{}{}}{{{Bb{{DCj{ceg}}}}{DBf{ce}}}{{DCj{ceg}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}DDjDDf}{}{}}{{{CK`{ce}}{CK`{ce}}}{{CK`{ce}}}{{ABf{}{{Ah{}}}}{CNl{}{{Ah{}}}}Ef{M`{}{{Ah{}}}}{Aj{}{{Ah{}}}}}{}}{{{DBf{ce}}{DBf{ce}}}{{DBf{ce}}}{{ABf{}{{Ah{}}}}{CNl{}{{Ah{}}}}Ef{M`{}{{Ah{}}}}{Aj{}{{Ah{}}}}}{}}{{{Bb{{DCj{ceg}}}}}{{DCj{ceg}}}{Ef{M`{}{{Ah{}}}}{CNl{}{{Ah{}}}}DDjDDfEh}{}{}}{{cccc}{{DCl{ceg}}}{}{}{}}{DCl}{c{{DCh{ceg}}}{}{}{}}{CKb}{CNjCNj}{{cccc}{{DCn{ce}}}{}{}}{{{CK`{ce}}{CK`{ce}}}{{CK`{ce}}}{DDf{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}Ef}{}}{{{DBf{ce}}{DBf{ce}}}{{DBf{ce}}}{DDf{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}Ef}{}}{{{Bb{{CEl{ce}}}}{Bb{{D@d{ce}}}}}{{CEl{ce}}}DDl{}}{{{Bb{{DBj{ce}}}}{Bb{{DBd{ce}}}}}{{DBj{ce}}}DDl{}}{DBn}{{{CK`{ce}}}{{CK`{ce}}}If{}}{{{DBf{ce}}}{{DBf{ce}}}If{}}{{{CKb{c}}}{{CDh{ceg}}}{Ef{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}DDjCNj}{}{}}{{ccc{CKb{c}}}{{DCj{ceg}}}{}{}{}}{DDbDCl}{{{Bb{{CKh{ce}}}}}{{CKh{ce}}}DE`{}}{{{Bb{{DD`{ce}}}}}{{DD`{ce}}}DE`{}}{{{CEl{ce}}}{{CEl{ce}}}{DE`Ef}{}}{{{CEl{ce}}}{{CEl{ce}}}DE`{}}{{{DBj{ce}}}{{DBj{ce}}}DE`{}}{{{DBj{ce}}}{{DBj{ce}}}{DE`Ef}{}}{{{Bb{{DCn{ce}}}}}{{DCn{ce}}}{DDnDDdDE`{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}}{}}{{{D@d{ce}}}{{D@d{ce}}}DE`{}}{{{D@d{ce}}}{{D@d{ce}}}{DE`Ef}{}}{{{DBd{ce}}}{{DBd{ce}}}{DE`Ef}{}}{{{DBd{ce}}}{{DBd{ce}}}DE`{}}{{{CK`{ce}}}{{CK`{ce}}}DE`{}}{{{CK`{ce}}}{{CK`{ce}}}{DE`Ef}{}}{{{DBf{ce}}}{{DBf{ce}}}DE`{}}{{{DBf{ce}}}{{DBf{ce}}}{DE`Ef}{}}{{{Bb{{CKh{ce}}}}}{{CKh{ce}}}{DDnDDd}{}}{{{Bb{{DD`{ce}}}}}{{DD`{ce}}}{DDnDDd}{}}:10:{{{DBh{ce}}{DBh{ce}}}{{DBh{ce}}}DEb{}}0{{{Bb{{CKh{eg}}}}cc}{{CKh{eg}}}Ef{{M`{}{{Ah{}}}}Ef}{}}{{{Bb{{DD`{eg}}}}ccc}{{DD`{eg}}}Ef{{M`{}{{Ah{}}}}Ef}{}}{{{Bb{{DCn{eg}}}}cc}{{DCn{eg}}}Ef{Ef{M`{}{{Ah{}}}}}{}}{{cc}{{CDh{ceg}}}DDj{}{}}{{ccc}{{DCj{ceg}}}{DDjDDf}{}{}}{{DCd{CEl{ce}}{CEl{ce}}}{{CEl{ce}}}{}{}}{{DCf{DBj{ce}}{DBj{ce}}}{{DBj{ce}}}{}{}}{{DCd{D@d{ce}}{D@d{ce}}}{{D@d{ce}}}{}{}}{{DCf{DBd{ce}}{DBd{ce}}}{{DBd{ce}}}{}{}}{{DCd{CK`{ce}}{CK`{ce}}}{{CK`{ce}}}{}{}}{{DCf{DBf{ce}}{DBf{ce}}}{{DBf{ce}}}{}{}}{{{Bb{B`{CKh{ce}}}}{D@d{ce}}}Bd{Ef{ABf{}{{Ah{}}}}}{}}{CNjCNj}{{{Bb{{CKh{ce}}}}}{{D@d{ce}}}{Ef{ABf{}{{Ah{}}}}}{}}{{{Bb{{DD`{ce}}}}}{{DBd{ce}}}{Ef{ABf{}{{Ah{}}}}}{}}{DCnD@d}{{cc}{{D@d{ce}}}{}{}}{{ccc}{{DBd{ce}}}{}{}}{{{CKb{c}}{CKb{c}}}{{DCj{ceg}}}{CNjDDjDDf}{}{}}{{{Bb{{DCl{ceg}}}}{Bb{{DCl{ceg}}}}c}{{DCl{ceg}}}{CN`D@b}{}{}}{c{{CEl{ce}}}Ed{}}{c{{DBj{ce}}}Ed{}}{c{{D@d{ce}}}Ed{}}{c{{DBd{ce}}}Ed{}}{c{{DC`{ceg}}}Ed{}{}}{c{{DCb{ceg}}}Ed{}{}}{c{{CK`{ce}}}Ed{}}{c{{DBf{ce}}}Ed{}}{{{CK`{ce}}}c{Ef{M`{}{{Ah{}}}}{Aj{}{{Ah{}}}}}{}}{{{DBf{ce}}}c{Ef{M`{}{{Ah{}}}}{Aj{}{{Ah{}}}}}{}}{{{Bb{{DCl{ceg}}}}}cD@b{}{}}{{{DBh{ce}}{DBh{ce}}}{}ABf{}}{{{CEl{ce}}{CEl{ce}}}{}ABf{}}{{{CEl{ce}}{D@d{ce}}}{}ABf{}}{{{CEl{ce}}{CK`{ce}}}{}ABf{}}{{{DBj{ce}}{DBj{ce}}}{}ABf{}}{{{DBj{ce}}{DBd{ce}}}{}ABf{}}{{{DBj{ce}}{DBf{ce}}}{}ABf{}}{{{DBl{ceg}}{DBl{ceg}}}{}ABf{}{}}{{{DBn{ce}}{DBn{ce}}}{{DBn{ce}}}{{ABf{}{{Ah{}}}}}{}}{{{D@d{ce}}{D@d{ce}}}{}ABf{}}{{{DBd{ce}}{DBd{ce}}}{}ABf{}}{{{DC`{ceg}}{DC`{cig}}}{}ABf{}{}{}}{{{DCb{ceg}}{DCb{cig}}}{}ABf{}{}{}}{{{CK`{ce}}{CK`{ce}}}{}ABf{}}{{{DBf{ce}}{DBf{ce}}}{}ABf{}}{{{Bb{B`{DBh{ce}}}}{DBh{ce}}}BdD@f{}}{{{Bb{B`{CEl{ce}}}}{CK`{ce}}}Bd{Ef{ABf{}{{Ah{}}}}}{}}{{{Bb{B`{CEl{ce}}}}{D@d{ce}}}BdD@f{}}{{{Bb{B`{DBj{ce}}}}{DBd{ce}}}BdD@f{}}{{{Bb{B`{DBj{ce}}}}{DBf{ce}}}Bd{Ef{ABf{}{{Ah{}}}}}{}}{{{Bb{B`{DBn{ce}}}}{DBn{ce}}}BdD@f{}}{{{Bb{B`{D@d{ce}}}}{D@d{ce}}}BdD@f{}}{{{Bb{B`{DBd{ce}}}}{DBd{ce}}}BdD@f{}}{{{Bb{B`{DC`{ceg}}}}{DC`{cgg}}}BdD@f{}{}}{{{Bb{B`{DCb{ceg}}}}{DCb{cgg}}}BdD@f{}{}}{{{Bb{B`{CK`{ce}}}}{CK`{ce}}}Bd{Ef{ABf{}{{Ah{}}}}}{}}{{{Bb{B`{DBf{ce}}}}{DBf{ce}}}Bd{Ef{ABf{}{{Ah{}}}}}{}}{g{{DBh{ce}}}{{Aj{}{{Ah{}}}}EfDDj}{}{{ALn{}{{F`{{Bb{{DBh{ce}}}}}}}}}}{g{{DBh{ce}}}{{Aj{}{{Ah{}}}}DDj}{}{{ALn{}{{F`{{DBh{ce}}}}}}}}{g{{D@d{ce}}}{{Aj{}{{Ah{}}}}DDj}{}{{ALn{}{{F`{{D@d{ce}}}}}}}}{g{{D@d{ce}}}{{Aj{}{{Ah{}}}}EfDDj}{}{{ALn{}{{F`{{Bb{{D@d{ce}}}}}}}}}}{g{{DBd{ce}}}{{Aj{}{{Ah{}}}}DDj}{}{{ALn{}{{F`{{DBd{ce}}}}}}}}{g{{DBd{ce}}}{{Aj{}{{Ah{}}}}EfDDj}{}{{ALn{}{{F`{{Bb{{DBd{ce}}}}}}}}}}{g{{CK`{ce}}}{{Aj{}{{Ah{}}}}DDj}{}{{ALn{}{{F`{{CK`{ce}}}}}}}}{g{{CK`{ce}}}{{Aj{}{{Ah{}}}}EfDDj}{}{{ALn{}{{F`{{Bb{{CK`{ce}}}}}}}}}}{g{{DBf{ce}}}{{Aj{}{{Ah{}}}}EfDDj}{}{{ALn{}{{F`{{Bb{{DBf{ce}}}}}}}}}}{g{{DBf{ce}}}{{Aj{}{{Ah{}}}}DDj}{}{{ALn{}{{F`{{DBf{ce}}}}}}}}{CNjCNj}{{{Bb{{DDb{ceg}}}}{Bb{{DDb{cgi}}}}}{{DDb{cei}}}{D@bCN`}{}{}{}}{{{Bb{{DCh{ceg}}}}{Bb{{DCh{cie}}}}}{{DCh{cig}}}D@b{}{}{}}{{{Bb{{DCl{ceg}}}}{Bb{{DCl{cgi}}}}}{{DCl{cei}}}{CN`D@b}{}{}{}}{{{Bb{{CDh{ceg}}}}{Bb{{CDh{cgi}}}}}{{CDh{cei}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}{}}{{{Bb{{DCj{ceg}}}}{Bb{{DCj{cgi}}}}}{{DCj{cei}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}{}}{{{Bb{{CDh{ceg}}}}{CKb{c}}}{{CDh{ceg}}}{Ef{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}DDjCNj}{}{}}{{{Bb{{DCj{ceg}}}}ccc{CKb{c}}}{{DCj{ceg}}}{{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{CNl{}{{Ah{}}}}EfDDjDDfCNj}{}{}}{{{Bb{{CDh{ceg}}}}cc}{{CDh{ceg}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}DDj}{}{}}{{{Bb{{DCj{ceg}}}}ccc}{{DCj{ceg}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}DDjDDf}{}{}}{{{Bb{{CDh{ceg}}}}{CK`{cg}}}{{CDh{ceg}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}DDjDDf}{}{}}{{{Bb{{DCj{ceg}}}}{DBf{cg}}}{{DCj{ceg}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}DDjDDf}{}{}}{{{DBj{ce}}}{{CEl{ce}}}Ef{}}{{{DBf{ce}}}{{CK`{ce}}}Ef{}}{{{Bb{{DCj{ceg}}}}}{{CDh{ceg}}}Ef{}{}}{{{CEl{ce}}}{{DBj{ce}}}{DDjEf}{}}{{{Bb{{DCh{ceg}}}}}{{DCl{ceg}}}D@b{}{}}{{{CK`{ce}}}{{DBf{ce}}}{DDjEf}{}}{{{Bb{{CDh{ceg}}}}}{{DCj{ceg}}}{DDjDDfEf}{}{}}{{{CEl{ce}}}{{E`{c}}}Ef{}}{{{DBj{ce}}}{{E`{c}}}Ef{}}{{{D@d{ce}}}{{E`{c}}}Ef{}}{{{DBd{ce}}}{{E`{c}}}Ef{}}{{{Bb{{DC`{ceg}}}}}{{E`{c}}}Ef{}{}}{{{Bb{{DCb{ceg}}}}}{{E`{c}}}Ef{}{}}{{{CK`{ce}}}{{E`{c}}}Ef{}}{{{DBf{ce}}}{{E`{c}}}Ef{}}{{{Bb{{CDh{ceg}}}}}{{E`{c}}}Ef{}{}}{{{Bb{{DCj{ceg}}}}}{{E`{c}}}Ef{}{}}{{{DBj{ce}}}{{E`{c}}}{DDfEf}{}}{{{DBf{ce}}}{{E`{c}}}{DDjEf}{}}32{{{Bb{{CDh{ceg}}}}}{{E`{{E`{c}}}}}Ef{}{}}{{{Bb{{DCj{ceg}}}}}{{E`{{E`{c}}}}}Ef{}{}}0{{{Bb{{DCn{ce}}}}}{{CKh{ce}}}{Ef{Aj{}{{Ah{}}}}}{}}{{{Bb{{CKh{ce}}}}}{{CKh{de}}}{CNbEf}{}}{{{Bb{{DD`{ce}}}}}{{DD`{de}}}{CNbEf}{}}{{{CEl{ce}}}{{CEl{de}}}{CNbEf}{}}{{{DBj{ce}}}{{DBj{de}}}{CNbEf}{}}{{{Bb{{DCn{ce}}}}}{{DCn{de}}}{CNbEf}{}}{{{D@d{ce}}}{{D@d{de}}}{CNbEf}{}}{{{DBd{ce}}}{{DBd{de}}}{CNbEf}{}}{{{DC`{ceg}}}{{DC`{deg}}}{CNbEf}{}{}}{{{DCb{ceg}}}{{DCb{deg}}}{CNbEf}{}{}}{{{CK`{ce}}}{{CK`{de}}}{CNbEf}{}}{{{DBf{ce}}}{{DBf{de}}}{CNbEf}{}}{{{Bb{{CKh{ce}}}}}{{CKh{Kje}}}{CNbEf}{}}{{{Bb{{DD`{ce}}}}}{{DD`{Kje}}}{CNbEf}{}}{{{CEl{ce}}}{{CEl{Kje}}}{CNbEf}{}}{{{DBj{ce}}}{{DBj{Kje}}}{CNbEf}{}}{{{Bb{{DCn{ce}}}}}{{DCn{Kje}}}{CNbEf}{}}{{{D@d{ce}}}{{D@d{Kje}}}{CNbEf}{}}{{{DBd{ce}}}{{DBd{Kje}}}{CNbEf}{}}{{{DC`{ceg}}}{{DC`{Kjeg}}}{CNbEf}{}{}}{{{DCb{ceg}}}{{DCb{Kjeg}}}{CNbEf}{}{}}{{{CK`{ce}}}{{CK`{Kje}}}{CNbEf}{}}{{{DBf{ce}}}{{DBf{Kje}}}{CNbEf}{}}{{{Bb{{CKh{ce}}}}}{{CKh{ANle}}}{CNbEf}{}}{{{Bb{{DD`{ce}}}}}{{DD`{ANle}}}{CNbEf}{}}{{{CEl{ce}}}{{CEl{ANle}}}{CNbEf}{}}{{{DBj{ce}}}{{DBj{ANle}}}{CNbEf}{}}{{{Bb{{DCn{ce}}}}}{{DCn{ANle}}}{CNbEf}{}}{{{D@d{ce}}}{{D@d{ANle}}}{CNbEf}{}}{{{DBd{ce}}}{{DBd{ANle}}}{CNbEf}{}}{{{DC`{ceg}}}{{DC`{ANleg}}}{CNbEf}{}{}}{{{DCb{ceg}}}{{DCb{ANleg}}}{CNbEf}{}{}}{{{CK`{ce}}}{{CK`{ANle}}}{CNbEf}{}}{{{DBf{ce}}}{{DBf{ANle}}}{CNbEf}{}}{{{Bb{{CKh{ce}}}}}{{CKh{Kle}}}{CNbEf}{}}{{{Bb{{DD`{ce}}}}}{{DD`{Kle}}}{CNbEf}{}}{{{CEl{ce}}}{{CEl{Kle}}}{CNbEf}{}}{{{DBj{ce}}}{{DBj{Kle}}}{CNbEf}{}}{{{Bb{{DCn{ce}}}}}{{DCn{Kle}}}{CNbEf}{}}{{{D@d{ce}}}{{D@d{Kle}}}{CNbEf}{}}{{{DBd{ce}}}{{DBd{Kle}}}{CNbEf}{}}{{{DC`{ceg}}}{{DC`{Kleg}}}{CNbEf}{}{}}{{{DCb{ceg}}}{{DCb{Kleg}}}{CNbEf}{}{}}{{{CK`{ce}}}{{CK`{Kle}}}{CNbEf}{}}{{{DBf{ce}}}{{DBf{Kle}}}{CNbEf}{}}{{{Bb{{CKh{ce}}}}}{{Bf{{CKh{ce}}}}}{EfBBj}{}}{{{Bb{{DD`{ce}}}}}{{Bf{{DD`{ce}}}}}{EfBBj}{}}{{{Bb{{DCn{ce}}}}}{{Bf{{DCn{ce}}}}}{EfDDjBBj}{}}{Bbc{}}0000000000000000000000{{{CK`{ce}}}{{CEl{ce}}}Ef{}}{{{DBf{ce}}}{{DBj{ce}}}Ef{}}{{{DDh{ce}}}{{Bf{{CEl{ce}}}}}{Ef{CNl{}{{Ah{}}}}DDjBBj}{}}{{{DDh{ce}}}{{Bf{{DBj{ce}}}}}{Ef{CNl{}{{Ah{}}}}DDjBBj}{}}{{{Bb{{CKh{ce}}}}}{{DCn{ce}}}{Ef{ABf{}{{Ah{}}}}}{}}{{{CK`{ce}}}{{D@d{ce}}}Ef{}}{{{Bb{{DDb{ceg}}}}}{{DCj{ceg}}}{CNjD@bCN`}{}{}}{{{Bb{{DCh{ceg}}}}}{{CDh{ceg}}}{Ef{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}D@`CNj}{}{}}{{{Bb{{DCl{ceg}}}}}{{DCj{ceg}}}{CN`D@b}{}{}}{{{Bb{{DC`{ceg}}}}}{{CDh{ceg}}}{DDjDDfEf}{}{}}{{{Bb{{DCb{ceg}}}}}{{DCj{ceg}}}{DDjDDfEf}{}{}}{{{CK`{ce}}}{{CDh{cee}}}{DDjDDfEf}{}}{{{DBf{ce}}}{{DCj{cee}}}{DDjDDfEf}{}}{{{CEl{ce}}}{{j{cc}}}Ef{}}{{{DBj{ce}}}{{j{ccc}}}Ef{}}{{{D@d{ce}}}{{j{cc}}}Ef{}}{{{DBd{ce}}}{{j{ccc}}}Ef{}}{{{Bb{{DC`{ceg}}}}}{{j{cc}}}Ef{}{}}{{{Bb{{DCb{ceg}}}}}{{j{ccc}}}Ef{}{}}{{{CK`{ce}}}{{j{cc}}}Ef{}}{{{DBf{ce}}}{{j{ccc}}}Ef{}}{{{DBj{ce}}}{{j{cccc}}}{DDfEf}{}}{{{DBf{ce}}}{{j{cccc}}}{DDjEf}{}}{{{Bb{{CKh{ce}}}}}{{CKh{Ije}}}{CNbEf}{}}{{{Bb{{DD`{ce}}}}}{{DD`{Ije}}}{CNbEf}{}}{{{CEl{ce}}}{{CEl{Ije}}}{CNbEf}{}}{{{DBj{ce}}}{{DBj{Ije}}}{CNbEf}{}}{{{Bb{{DCn{ce}}}}}{{DCn{Ije}}}{CNbEf}{}}{{{D@d{ce}}}{{D@d{Ije}}}{CNbEf}{}}{{{DBd{ce}}}{{DBd{Ije}}}{CNbEf}{}}{{{DC`{ceg}}}{{DC`{Ijeg}}}{CNbEf}{}{}}{{{DCb{ceg}}}{{DCb{Ijeg}}}{CNbEf}{}{}}{{{CK`{ce}}}{{CK`{Ije}}}{CNbEf}{}}{{{DBf{ce}}}{{DBf{Ije}}}{CNbEf}{}}{{{Bb{{DCn{ce}}}}}{{DCn{Kne}}}{CNbEf}{}}{{{D@d{ce}}}{{D@d{Kne}}}{CNbEf}{}}{{{Bb{{CKh{ce}}}}}{{CKh{cCDf}}}Ef{}}{{{Bb{{DD`{ce}}}}}{{DD`{cCDf}}}Ef{}}{{{CEl{ce}}}{{CEl{cCDf}}}Ef{}}{{{DBj{ce}}}{{DBj{cCDf}}}Ef{}}{{{Bb{{DCn{ce}}}}}{{DCn{cCDf}}}Ef{}}{{{Bb{{DDb{ceg}}}}}{{DDb{cCDfCDf}}}{D@bCN`}{}{}}{{{Bb{{DCh{ceg}}}}}{{DCh{cCDfCDf}}}Ef{}{}}{{{Bb{{DCl{ceg}}}}}{{DCl{cCDfCDf}}}Ef{}{}}{{{D@d{ce}}}{{D@d{cCDf}}}Ef{}}{{{DBd{ce}}}{{DBd{cCDf}}}Ef{}}{{{Bb{{DC`{ceg}}}}}{{DC`{cCDfCDf}}}Ef{}{}}{{{Bb{{DCb{ceg}}}}}{{DCb{cCDfCDf}}}Ef{}{}}{{{CK`{ce}}}{{CK`{cCDf}}}Ef{}}{{{DBf{ce}}}{{DBf{cCDf}}}Ef{}}{{{Bb{{CDh{ceg}}}}}{{CDh{cCDfCDf}}}Ef{}{}}{{{Bb{{DCj{ceg}}}}}{{DCj{cCDfCDf}}}Ef{}{}}{{{Bb{{CKh{ce}}}}}{{CKh{Ide}}}{CNbEf}{}}{{{Bb{{DD`{ce}}}}}{{DD`{Ide}}}{CNbEf}{}}{{{CEl{ce}}}{{CEl{Ide}}}{CNbEf}{}}{{{DBj{ce}}}{{DBj{Ide}}}{CNbEf}{}}{{{Bb{{DCn{ce}}}}}{{DCn{Ide}}}{CNbEf}{}}{{{D@d{ce}}}{{D@d{Ide}}}{CNbEf}{}}{{{DBd{ce}}}{{DBd{Ide}}}{CNbEf}{}}{{{DC`{ceg}}}{{DC`{Ideg}}}{CNbEf}{}{}}{{{DCb{ceg}}}{{DCb{Ideg}}}{CNbEf}{}{}}{{{CK`{ce}}}{{CK`{Ide}}}{CNbEf}{}}{{{DBf{ce}}}{{DBf{Ide}}}{CNbEf}{}}{{{CEl{ce}}}{{CK`{ce}}}Ef{}}{{{DBj{ce}}}{{DBf{ce}}}Ef{}}{{{D@d{ce}}}{{CK`{ce}}}Ef{}}{{{DBd{ce}}}{{DBf{ce}}}Ef{}}{{{Bb{{DC`{ceg}}}}}{{CK`{ce}}}Ef{}{}}{{{Bb{{DCb{ceg}}}}}{{DBf{ce}}}Ef{}{}}{DBn}{{{Bb{{DC`{ceg}}}}{Bb{{CKh{ce}}}}}{{CKh{g}}}{AjEf}{}{}}{{{DBl{ceg}}{Bb{{CKh{ce}}}}}{{CKh{g}}}{EfM`}{}{}}{{{Bb{{DCb{ceg}}}}{Bb{{CKh{ce}}}}}{{CKh{g}}}{AjEf}{}{}}{{{DBl{ceg}}{Bb{{DD`{ce}}}}}{{DD`{g}}}{EfM`}{}{}}{{{Bb{{DCb{ceg}}}}{Bb{{DD`{ce}}}}}{{DD`{g}}}{AjEf}{}{}}{{{Bb{{DCh{ceg}}}}{CEl{ce}}}{{CEl{cg}}}D@b{}{}}{{{Bb{{DCh{cCDfCDf}}}}{CEl{cCDf}}}{{CEl{cCDf}}}CLh}{{{Bb{{DBl{cCDfCDf}}}}{CEl{cCDf}}}{{CEl{cCDf}}}CLh}{{{DBl{ceg}}{CEl{ce}}}{{CEl{g}}}{EfM`}{}{}}{{{Bb{{DC`{cCDfCDf}}}}{CEl{cCDf}}}{{CEl{cCDf}}}CLh}{{{Bb{{DC`{ceg}}}}{CEl{ce}}}{{CEl{g}}}{AjEf}{}{}}{{{Bb{{CDh{cCDfCDf}}}}{CEl{cCDf}}}{{CEl{cCDf}}}CLh}{{{Bb{{CDh{ceg}}}}{CEl{ce}}}{{CEl{cg}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}}{{{Bb{{DCl{ceg}}}}{CEl{ce}}}{{CEl{cg}}}{CN`D@b}{}{}}{{{Bb{{DCb{ceg}}}}{Bb{{CEl{ce}}}}}{{CEl{g}}}{AjEf}{}{}}{{{Bb{{DCj{ceg}}}}{CEl{ce}}}{{Bf{{CEl{cg}}}}}{{CNl{}{{Ah{}}}}DDjBBjEf{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}}{{{Bb{{DCj{ceg}}}}{CEl{ce}}}{{DDh{cg}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}}{{{Bb{{DCl{ceg}}}}{DBj{ce}}}{{DBj{cg}}}{CN`D@b}{}{}}{{{DBl{ceg}}{DBj{ce}}}{{DBj{g}}}{EfM`}{}{}}{{{Bb{{DCb{ceg}}}}{Bb{{DBj{ce}}}}}{{DBj{g}}}{AjEf}{}{}}{{{Bb{{DCj{ceg}}}}{DBj{ce}}}{{Bf{{DBj{cg}}}}}{{CNl{}{{Ah{}}}}DDjBBjEf{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}}{{{Bb{{DCj{ceg}}}}{DBj{ce}}}{{DDh{cg}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}}{{{DBl{ceg}}{Bb{{DCn{ce}}}}}{{DCn{g}}}{EfM`}{}{}}{{{Bb{{DC`{ceg}}}}{Bb{{DCn{ce}}}}}{{DCn{g}}}{{Aj{}{{Ah{}}}}Ef}{}{}}{{{Bb{{DCb{ceg}}}}{Bb{{DCn{ce}}}}}{{DCn{cg}}}{{Aj{}{{Ah{}}}}Ef}{}{}}{{{DBl{ceg}}{D@d{ce}}}{{D@d{g}}}{EfM`}{}{}}{{{Bb{{DC`{ceg}}}}{D@d{ce}}}{{D@d{cg}}}{}{}{}}{{{DCb{ceg}}{D@d{ce}}}{{D@d{cg}}}{}{}{}}{{{Bb{{DCh{cCDfCDf}}}}{CK`{cCDf}}}{{CK`{cCDf}}}CLh}{{{Bb{{DCh{ceg}}}}{CK`{ce}}}{{CK`{cg}}}D@b{}{}}{{{Bb{{DBl{cCDfCDf}}}}{CK`{cCDf}}}{{CK`{cCDf}}}CLh}{{{DBl{ceg}}{CK`{ce}}}{{CK`{g}}}{EfM`}{}{}}{{{Bb{{DC`{cCDfCDf}}}}{CK`{cCDf}}}{{CK`{cCDf}}}CLh}{{{Bb{{CDh{ceg}}}}{CK`{ce}}}{{CK`{cg}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}}{{{Bb{{CDh{cCDfCDf}}}}{CK`{cCDf}}}{{CK`{cCDf}}}CLh}{{{Bb{{DCl{ceg}}}}{CK`{ce}}}{{CK`{cg}}}{CN`D@b}{}{}}{{{Bb{{DCj{ceg}}}}{CK`{ce}}}{{CK`{cg}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}}{{{Bb{{DCl{ceg}}}}{DBf{ce}}}{{DBf{cg}}}{CN`D@b}{}{}}{{{Bb{{DCj{ceg}}}}{DBf{ce}}}{{DBf{cg}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}}{{{Bb{{CKh{ce}}}}{CK`{ce}}}{{CKh{ce}}}{Ef{Aj{}{{Ah{}}}}}{}}{{{Bb{{DD`{ce}}}}{DBf{ce}}}{{DD`{ce}}}{Ef{Aj{}{{Ah{}}}}}{}}{{{Bb{{DCn{ce}}}}{CK`{ce}}}{{DCn{ce}}}{Ef{Aj{}{{Ah{}}}}}{}}{{cc}{{CDh{ceg}}}{DDjDDf}{}{}}{{ccc}{{DCj{ceg}}}{DDjDDf}{}{}}{DDbDBf}{{{Bb{{CKh{ce}}}}}{{Bf{{CKh{ge}}}}}{CNbEf}{}CNb}{{{Bb{{DD`{ce}}}}}{{Bf{{DD`{ge}}}}}{CNbEf}{}CNb}{{{DBh{ce}}}{{Bf{{DBh{ge}}}}}{CNbEd}{}CNb}{{{CEl{ce}}}{{Bf{{CEl{ge}}}}}{CNbEf}{}CNb}{{{DBj{ce}}}{{Bf{{DBj{ge}}}}}{CNbEf}{}CNb}{{{Bb{{DCn{ce}}}}}{{Bf{{DCn{ge}}}}}{CNbEf}{}CNb}{{{DBl{ceg}}}{{Bf{{DBl{ieg}}}}}CNb{}{}CNb}{{{D@d{ce}}}{{Bf{{D@d{ge}}}}}{CNbEf}{}CNb}{{{DBd{ce}}}{{Bf{{DBd{ge}}}}}{CNbEf}{}CNb}{{{DC`{ceg}}}{{Bf{{DC`{ieg}}}}}{CNbEf}{}{}CNb}{{{DCb{ceg}}}{{Bf{{DCb{ieg}}}}}{CNbEf}{}{}CNb}{{{CK`{ce}}}{{Bf{{CK`{ge}}}}}{CNbEf}{}CNb}{{{DBf{ce}}}{{Bf{{DBf{ge}}}}}{CNbEf}{}CNb}{{{Bb{{CDh{ceg}}}}}{{Bf{{CDh{ieg}}}}}{CNbEf}{}{}CNb}{{{Bb{{DCj{ceg}}}}}{{Bf{{DCj{ieg}}}}}{CNbEf}{}{}CNb}{{}{{Bl{c}}}{}}0000000000000000000000{c{{Bl{e}}}{}{}}0000000000000000000000{{}{{Bl{c}}}{}}0000000000000000000000{{}{{Bl{c{ABj{c}}}}}{}}0000000000000000000000{{{CK`{ce}}}{{Bf{{CK`{ce}}}}}D@b{}}{{{DBf{ce}}}{{Bf{{DBf{ce}}}}}D@b{}}{BbABl}0000000000000000000000{ce{}{}}0000000000000000000000{{}c{}}0000000000000000000000{{{Bb{{CKh{ce}}}}{Bb{{CKh{ce}}}}}{{CKh{ce}}}{EfBBj}{}}{{{Bb{{DD`{ce}}}}{Bb{{DD`{ce}}}}}{{DD`{ce}}}{EfBBj}{}}{{{Bb{{DCn{ce}}}}{Bb{{DCn{ce}}}}}{{DCn{ce}}}{EfBBj{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}DDj}{}}{{cccc}{{DCl{ceg}}}D@b{}{}}{Bb{{Bf{{Bb{c}}}}}{}}0000000000000000000000{{cc}{{CK`{ce}}}{}{}}{{ccc}{{DBf{ce}}}{}{}}{{{Bb{{DCl{ceg}}}}}{{DBf{cCDf}}}Ef{}{}}{{{Bb{{DBn{ce}}}}}c{Ef{Aj{}{{Ah{}}}}}{}}{{{Bb{{DD`{ce}}}}}c{Ef{M`{}{{Ah{}}}}{ABf{}{{Ah{}}}}}{}}{{{DBd{ce}}}c{{M`{}{{Ah{}}}}Ef}{}}{{}c{}}0000000000000000000000{DDh}{{{Bb{{CKh{ce}}}}}c{Ef{ABf{}{{Ah{}}}}}{}}{{{Bb{{DD`{ce}}}}}c{Ef{ABf{}{{Ah{}}}}}{}}{{{Bb{{DCn{ce}}}}}c{Ef{Aj{}{{Ah{}}}}}{}}{D@d}{DBd}{{{Bb{{CDh{ceg}}}}}{{CDh{cei}}}Ef{}{}{}}{{{Bb{{DCj{ceg}}}}}{{DCj{cei}}}Ef{}{}{}}{{{CK`{ce}}c}{{CK`{ce}}}D@b{}}0{{{DBf{ce}}c}{{DBf{ce}}}D@b{}}10{{{Bb{{CDh{ceg}}}}}{{CDh{cig}}}Ef{}{}{}}{{{Bb{{DCj{ceg}}}}}{{DCj{cig}}}Ef{}{}{}};{CEl}{DBj}{DC`}{DCb}{CK`}{DBf}{DCdC`}{DCfC`}{{{Bb{{CKh{ce}}}}}{{ALl{c}}}Ef{}}{{{Bb{{DD`{ce}}}}}{{ALl{c}}}Ef{}}{{{Bb{{DCn{ce}}}}}{{ALl{c}}}{Ef{Aj{}{{Ah{}}}}}{}}{{{DBj{ce}}}{{CEl{ce}}}Ef{}}{{{DBf{ce}}}{{CK`{ce}}}Ef{}}{DCfDCd}{{{Bb{{DD`{ce}}}}}c{Ef{M`{}{{Ah{}}}}{ABf{}{{Ah{}}}}}{}}3210{DDh}?>=<;:98765{{{CEl{ce}}}{{CEl{ce}}}Ef{}}{{{CK`{ce}}}{{CK`{ce}}}Ef{}}65432{DBj}?=;9{{}{{CKh{ce}}}DDj{}}{{}{{DD`{ce}}}DDj{}}{{}{{DBh{ce}}}DDj{}}{{}{{CEl{ce}}}DDj{}}0{{}{{DBj{ce}}}DDj{}}0{{}{{DCn{ce}}}DDj{}}{{}{{DBn{ce}}}DDj{}}{{}{{D@d{ce}}}DDj{}}0{{}{{DBd{ce}}}DDj{}}0{{}{{CK`{ce}}}DDj{}}0{{}{{DBf{ce}}}DDj{}}0{{{CEl{ce}}{CEl{ce}}i}{{CK`{ge}}}{}{}{}{{Ln{cc}{{Ah{g}}}}}}{{{DBj{ce}}{DBj{ce}}i}{{DBf{ge}}}{}{}{}{{Ln{cc}{{Ah{g}}}}}}{{{CK`{ce}}{CK`{ce}}i}{{CK`{ge}}}{}{}{}{{Ln{cc}{{Ah{g}}}}}}{{{DBf{ce}}{DBf{ce}}i}{{DBf{ge}}}{}{}{}{{Ln{cc}{{Ah{g}}}}}}`{{}c{}}{{{Bb{CN`}}{Bb{CN`}}}C`}{{{Bb{CN`}}{Bb{CN`}}{Bb{c}}}C`{}}{{cc}cBBj}0````````````````````{DEd}{DEf}{DEh}{COh}1{DEj}003{DEl}{DEn}10001010001010000000{COlCEl}{DF`DBj}10{DFbCEl}58{DFdDCl}{DFbD@d}:{DFdDBf}{DFf}:;{D@j}{DFh}{D@l}{DFj}4{DFl}{DFn}54326104260`````{DDdDDd}{DDnDDn}{{}DDf}{DE`DE`}{{}DDj}````{eg{}{{l{c}}}{}}00{ce{}{}}00{{}c{}}00{Bb{{Bb{Dl}}}}00{{{Bb{B`}}}{{Bb{B`Dl}}}}00{Bb{{Bb{c}}}{}}00{{{Bb{B`}}}{{Bb{B`c}}}{}}00{{{Fl{c}}}e{}{}}00666{CMfCEl}{Id{{Bb{c}}}{}}00{Id{{Bb{B`c}}}{}}00555{IdBd}00{cc{}}004000{ce{}{}}00{{}Id}00{{}c{}}00000{{{I`{c}}}{{I`{Dl}}}{}}00{{{Lj{c}}}{{Lj{Dl}}}{}}00{{{Ll{c}}}{{Ll{Dl}}}{}}00;;;333333{{}c{}}0{{}c{}}00{{{Bb{{CMf{c}}}}c}{{DG`{c}}}CLh}{{{Bb{B`{COd{c}}}}}{{Bf{{CEl{cCDf}}}}}CLh}{{{Bb{B`{COf{c}}}}}{{Bf{c}}}CLh}{{{Bb{{COd{c}}}}}{{j{Id{Bf{Id}}}}}CLh}{{{Bb{{COf{c}}}}}{{j{Id{Bf{Id}}}}}CLh}{CMfCEl}{{}{{Bl{c}}}{}}00{c{{Bl{e}}}{}{}}00{{}{{Bl{c}}}{}}00{{}{{Bl{c{ABj{c}}}}}{}}00{BbABl}00{ce{}{}}00{{}c{}}00{Bb{{Bf{{Bb{c}}}}}{}}00{{}c{}}00```{{{Bb{{CM`{}{{CLn{c}}}}}}c}{{CM`{}{{CLn{c}}}}}CLh}{{{Bb{{CM`{}{{CLn{c}}}}}}c}cCLh}1{{{Bb{{CM`{}{{CLn{c}}}}}}c}{{CK`{cCDf}}}CLh}11{{{Bb{{CM`{}{{CLn{c}}}}}}}{{CM`{}{{CLn{c}}}}}CLh}{{{Bb{{CM`{}{{CLn{c}}}}}}c{Bb{B`Ln}}}BdCLh}{{{Bb{{CM`{}{{CLn{c}}}}}}}{{CEl{cCDf}}}CLh}{{{Bb{{CM`{}{{CLn{c}}}}}}c}{{CEl{cCDf}}}CLh}{{{Bb{{CM`{}{{CLn{c}}}}}}c}{{j{{CM`{}{{CLn{c}}}}{CM`{}{{CLn{c}}}}}}}CLh}{{{Bb{{CM`{}{{CLn{c}}}}}}{ALl{c}}}{{CM`{}{{CLn{c}}}}}CLh}3{{{Bb{CJb}}{CEl{cCDf}}}{{CEl{cCDf}}}{}}{{{Bb{CJb}}{CK`{cCDf}}}{{CK`{cCDf}}}{}}99{{cccc}{{CNh{c}}}CLh}{{{CK`{cCDf}}{CK`{cCDf}}}cCLh}{{{CEl{cCDf}}{CEl{cCDf}}{CEl{cCDf}}}cCLh}{{cc}{{j{cc}}}If}{{{CK`{cCDf}}}{{CK`{cCDf}}}CLh}{{{CK`{cCDf}}}{{CK`{cCDf}}}If}`````{eg{}{{l{c}}}{}}000{ce{}{}}000{{}c{}}000{Bb{{Bb{Dl}}}}000{{{Bb{B`}}}{{Bb{B`Dl}}}}000{Bb{{Bb{c}}}{}}000{{{Bb{B`}}}{{Bb{B`c}}}{}}000{{{Fl{c}}}e{}{}}000{c{{DGb{c}}}{{ALn{}{{F`{{CEl{dCDf}}}}}}}}7777{Id{{Bb{c}}}{}}000{Id{{Bb{B`c}}}{}}0005555{IdBd}000{{DGdd}{{DGf{DGd}}}}0{cc{}}0000000{ce{}{}}000{{}Id}000{{}c{}}0000000{{{I`{c}}}{{I`{Dl}}}{}}000{{{Lj{c}}}{{Lj{Dl}}}{}}000{{{Ll{c}}}{{Ll{Dl}}}{}}000<<<<33333333{{}c{}}000{{}c{}}000{{dc}{{DGf{c}}}{{ALn{}{{F`{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}}}}}}{{{Bb{c}}e}{{DGh{ec}}}{{CJb{d}}}{{ALn{}{{F`{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}}}}}}{{C`c}{{DGb{c}}}{{ALn{}{{F`{{CEl{dCDf}}}}}}}}{{{Bb{B`{CIn{c}}}}}{{Bf{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}}}{{ALn{}{{F`{{CFh{{j{{CEl{dCDf}}{Bb{{AFn{d}}}}}}{CEl{dCDf}}}}}}}}}}{{{Bb{B`{DGf{c}}}}}{{Bf{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}}}{{ALn{}{{F`{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}}}}}}{{{Bb{B`{DGh{ce}}}}}{{Bf{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}}}{{ALn{}{{F`{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}}}}}{{CJb{d}}}}{{{Bb{B`{DGb{c}}}}}{{Bf{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}}}{{ALn{}{{F`{{CEl{dCDf}}}}}}}}{c{{DGb{c}}}{{ALn{}{{F`{{CEl{dCDf}}}}}}}}{{{Bb{{DGf{c}}}}}{{j{Id{Bf{Id}}}}}{{ALn{}{{F`{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}}}}}}{{DGd{Bb{c}}}{{DGh{DGdc}}}{{CJb{d}}}}0{{}{{Bl{c}}}{}}000{c{{Bl{e}}}{}{}}000{{}{{Bl{c}}}{}}000{{}{{Bl{c{ABj{c}}}}}{}}000{BbABl}000{ce{}{}}000{{}c{}}000{Bb{{Bf{{Bb{c}}}}}{}}000{{}c{}}000{{{CIn{c}}}c{{ALn{}{{F`{{CFh{{j{{CEl{dCDf}}{Bb{{AFn{d}}}}}}{CEl{dCDf}}}}}}}}}}`````````{DGjd}{DGld}{DGnd}00000{DH`CEl}0{{dd}{{CEl{dCDf}}}}{DHbd}{{dd}{{D@d{dCDf}}}}{{dd}{{CK`{dCDf}}}}6{DHdd}{DHfd}{DHhd}210``````````````{eg{}{{l{c}}}{}}00{ce{}{}}00{{}c{}}00{Bb{{Bb{Dl}}}}00{{{Bb{B`}}}{{Bb{B`Dl}}}}00{{{Bb{B`CFd}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}{{{Bb{B`CFd}}{CEl{dCDf}}}CEh}{{{Bb{B`DHj}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}0{Bb{{Bb{c}}}{}}00{{{Bb{B`}}}{{Bb{B`c}}}{}}00{CFdId}0{DHjId}0{{{Fl{c}}}e{}{}}00{{{Bb{CId}}}CId}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}>>>{{{Bb{B`CFd}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}}CEh}{{{Bb{B`CFd}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}{{{Bb{B`DHj}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}0{Id{{Bb{c}}}{}}00{Id{{Bb{B`c}}}{}}00<<<{IdBd}00{{{Bb{B`CFd}}C`}Bd}0{{{Bb{B`DHj}}C`}Bd}0{cc{}}00000{ce{}{}}00{{}Id}00{{}c{}}00000{{{I`{c}}}{{I`{Dl}}}{}}00{{{Lj{c}}}{{Lj{Dl}}}{}}00{{{Ll{c}}}{{Ll{Dl}}}{}}00{{{Fl{c}}}e{}{}}00444444{{}c{}}{{}c{}}00{{{Bb{B`CFd}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}{{{Bb{B`CFd}}{CEl{dCDf}}}CEh}{{{Bb{B`DHj}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}0{{{Bb{B`CEd}}Id}DHj}{{{Bb{B`CId}}}{{Bf{CEb}}}}0{{{Bb{CFd}}}Id}{{{Bb{DHj}}}Id}{{{Bb{B`CFd}}{CEl{dCDf}}{CEl{dCDf}}}CEh}{{{Bb{B`CFd}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}{{{Bb{B`DHj}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}0{{{Bb{B`CFd}}IdId}Bd}0{{{Bb{B`DHj}}IdId}Bd}0{{{Bb{CId}}}{{j{Id{Bf{Id}}}}}}{Bbc{}}{{}{{Bl{c}}}{}}00{c{{Bl{e}}}{}{}}00{{}{{Bl{c}}}{}}00{{}{{Bl{c{ABj{c}}}}}{}}00{BbABl}00{ce{}{}}00{{}c{}}00{Bb{{Bf{{Bb{c}}}}}{}}00{{}c{}}00{{CFdId}DHj}``````{eg{}{{l{c}}}{}}000{ce{}{}}0005555{Bb{{Bb{Dl}}}}000{{{Bb{B`}}}{{Bb{B`Dl}}}}000{Bb{{Bb{c}}}{}}000{{{Bb{B`}}}{{Bb{B`c}}}{}}000{{{Fl{c}}}e{}{}}000{{{Bb{CIh}}}CIh}{{{Bb{{CIf{c}}}}}{{CIf{c}}}Ed}{{{Bb{{CIj{c}}}}}{{CIj{c}}}Ed}{{{Bb{CHl}}}CHl}{{Bb{Bb{B`c}}}Bd{}}000{{BbGn}Bd}000{CG`C`}{CGbC`}===={Id{{Bb{c}}}{}}000{Id{{Bb{B`c}}}{}}000<<<<{IdBd}000{cc{}}0000000{ce{}{}}000{{}Id}000{{}c{}}0000000{{{I`{c}}}{{I`{Dl}}}{}}000{{{Lj{c}}}{{Lj{Dl}}}{}}000{{{Ll{c}}}{{Ll{Dl}}}{}}000{{{Fl{c}}}e{}{}}00044444444{{}c{}}000{{}c{}}000{{{ALl{Ij}}C`}CHl}{{{Bb{B`CIh}}}{{Bf{{CFh{CEhCGn}}}}}}{{{Bb{B`{CIf{c}}}}}{{Bf{{CFh{{Bb{c}}Bd}}}}}{}}{{{Bb{B`{CIj{c}}}}}{{Bf{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}}}CHj}{{{Bb{B`CHl}}}{{Bf{{CFh{CEhCGn}}}}}}{{}{{DHl{c}}}{}}{CG`Bb}{CGbBb}{Bbc{}}000{{}{{Bl{c}}}{}}000{c{{Bl{e}}}{}{}}000{{}{{Bl{c}}}{}}000{{}{{Bl{c{ABj{c}}}}}{}}000{BbABl}000{ce{}{}}000{{}c{}}000{Bb{{Bf{{Bb{c}}}}}{}}000{{}c{}}000`````{{{Bb{B`CKf}}{CK`{dCDf}}{CKb{d}}CFf{CEl{dCDf}}}Bd}{{{Bb{B`CJn}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}{{{CLb{}{{CL`{c}}}}}c{}}{{{Bb{B`CKf}}}Bd}{{{Bb{B`CJn}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}{{{Bb{B`CKf}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}}Bd}{{{Bb{B`CJn}}C`}Bd}{{{Bb{B`CKf}}d}Bd}6{{{Bb{B`CKf}}{CEl{dCDf}}}Bd}0{{{Bb{CJn}}}Id}{{{Bb{B`CJn}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}{{{Bb{B`CKf}}{CEl{dCDf}}{CEl{dCDf}}}Bd}{{{Bb{B`CKf}}{CK`{dCDf}}{CKb{d}}CFf{CK`{dCDf}}}Bd}{{{Bb{B`CKf}}{CK`{dCDf}}{CK`{dCDf}}{CK`{dCDf}}}Bd}6{{{Bb{B`CKf}}{CK`{dCDf}}}Bd}0{{{Bb{B`CKf}}{CK`{dCDf}}{CK`{dCDf}}}Bd}847018`````````````{CC`CCb}{CC`CCf}{CC`CCd}{CCfId}{CCfBb}{CC`CCh}{CC`d}``````````{eg{}{{l{c}}}{}}00{ce{}{}}00{{}c{}}00{Bb{{Bb{Dl}}}}00{{{Bb{B`}}}{{Bb{B`Dl}}}}00{OfGh}{OfG`}{Bb{{Bb{c}}}{}}00{{{Bb{B`}}}{{Bb{B`c}}}{}}00{{{Fl{c}}}e{}{}}00{{{Bb{{BOj{c}}}}}{{BOj{c}}}Ed}{{{Bb{Od}}}Od}{{{Bb{Of}}}Of}{{Bb{Bb{B`c}}}Bd{}}00{{BbGn}Bd}00{BOjAGl}>>>{{{Bb{El}}Od}Of}{{}c{}}{Id{{Bb{c}}}{}}00{Id{{Bb{B`c}}}{}}00<<<{IdBd}00{{{Bb{{BOj{c}}}}{Bb{{BOj{c}}}}}C`Eh}{{{Bb{Od}}{Bb{Od}}}C`}{{{Bb{Of}}{Bb{Of}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{{BOj{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{Od}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Of}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{BOj}{cc{}}00000{ce{}{}}00{Ofb}{{}Id}00{{}c{}}00000{{{I`{c}}}{{I`{Dl}}}{}}00{{{Lj{c}}}{{Lj{Dl}}}{}}00{{{Ll{c}}}{{Ll{Dl}}}{}}00{{{Fl{c}}}e{}{}}00444444{{}c{}}00{BOjAEb}{{{Bb{El}}Od}Of}0{BOjAFb}{BOjBf}{{{Bb{{BJ`{}{{BA`{c}}}}}}{Bb{c}}Od}Of{}}3{OfBf}{Bbc{}}00{{}{{Bl{c}}}{}}00{c{{Bl{e}}}{}{}}00{{}{{Bl{c}}}{}}00{{}{{Bl{c{ABj{c}}}}}{}}00{BbABl}00{ce{}{}}00{{}c{}}00{Bb{{Bf{{Bb{c}}}}}{}}00{{}c{}}00{DHnC`}{DI`C`}{DIbC`}```{eg{}{{l{c}}}{}}{ce{}{}}7{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{{BMh{c}}}}}{{BMh{c}}}Ed}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}8{{}{{BMh{c}}}{JlEd}}{{}c{}}0{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}9{IdBd}{{{Bb{{BMh{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}?22{{}c{}}{{{H`{c}}}{{BMh{c}}}{JlEd}}1{{{Bb{{BMh{c}}}}}{{Bb{{AFn{c}}}}}{JlEd}}{Bbc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}{{{H`{c}}{Bf{{Bb{c}}}}}{{BMh{c}}}{JlEd}}``````{eg{}{{l{c}}}{}}0{ce{}{}}055{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{cOb{{Fj{Gh}}}}{{Obc}Ob{{Fj{Gh}}}}{ObBf}{{Obc}Ob{{Fj{G`}}}}{ObG`}{{{Bb{El}}}Ob}{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{B@b}}}B@b}{{{Bb{Ob}}}Ob}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0{{Obc}Ob{{Fj{b}}}}{ce{}{}}099{{}c{}}{{}Ob}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}0<<{{{Bb{B`c}}{Bb{Ob}}Al}BdAD`}{IdBd}0{{{Bb{B@b}}{Bb{B@b}}}C`}{{{Bb{Ob}}{Bb{Ob}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{B@b}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Ob}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Mh}}}B@b}{cc{}}{KdOb}{bOb}2{GfOb}33{ce{}{}}0{{{Bb{B@b}}{Bb{B`c}}}BdLb}{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{{{Bb{AE`}}GlGlddFhK`Kbc}ADn{{Hh{{Bb{AE`}}}{{Ah{ADn}}}}}}{cB@b{{Fj{{AKj{Mh}}}}}}2{{{Bb{El}}}Ob}00{{Obc}Ob{{Fj{Ff}}}}{ObFf}{{{Bb{{BGj{}{{BA`{c}}}}}}{Bb{c}}}Ob{}}3{ObBf}{Bbc{}}0{{{Bb{c}}}Ob{}}{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{{}B@b}{Bb{{Bf{{Bb{c}}}}}{}}0{c{{f{{Bf{Al}}}}}{{Fj{B@b}}}}{{}c{}}0`````````{eg{}{{l{c}}}{}}{ce{}{}}6{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}5{{{DId{c}}Gj}{{DId{c}}}{}}{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}5{{{Bb{B`e}}ACf{Bb{Al}}{Bb{c}}GjAGfDjdd}BdEd{{AGj{}{{AGh{c}}}}}}{{{Bb{{DId{c}}}}{Bb{ACl}}{Bb{B`e}}{Bb{g}}{Bb{ADd}}ACfADf{Bb{Al}}}BdEd{{AGj{}{{AGh{c}}}}}{}}{IdBd}{{{DId{c}}AGf}{{DId{c}}}{}}{cc{}}0{ce{}{}}{{{DId{c}}e}{{DId{c}}}{}{{Fj{Gl}}}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}?33{{}c{}}{{{Bb{e}}{Bb{AE`}}{Bb{c}}GlGlGjDj}ADn{}{{AGj{}{{AGh{c}}}}}}{{{Bb{{DId{c}}}}{Bb{B`ACl}}{Bb{e}}{Bb{AE`}}}ADnEd{{AGj{}{{AGh{c}}}}}}{{{DId{c}}d}{{DId{c}}}{}}0{{{Bb{{DId{c}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{e}}}AEdEd{{AGj{}{{AGh{c}}}}}}{e{{DId{c}}}{}{{Fj{c}}}}{{{DId{c}}e}{{DId{c}}}{}{{Fj{Ab}}}}3{{{Bb{{DId{c}}}}}{{An{Gl}}}Ed}{{{Bb{{DId{c}}}}}AFdEd}{{{Bb{{DId{c}}}}}AFfEd}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{{Bb{B`{DId{c}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{e}}{Bb{B`AEj}}{Bb{B`{ACd{g}}}}{Bb{Al}}}BdEd{{AGj{}{{AGh{c}}}}}{}}`{c{{DId{c}}}{}}{{}c{}}{{{DId{c}}e}{{DId{c}}}{}{{Fj{Gl}}}}{AHjIj}{AHjAGd}{AHjAFl}2``{eg{}{{l{c}}}{}}{ce{}{}}:{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{DIf}}}DIf}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}8{{}DIf}{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}8{IdBd}{{{Bb{DIf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}?33{{}c{}}{{{Bb{DIf}}}C`}=1{{{Bb{c}}Bb{Bb{DIf}}AnGj}AnAGj}{Bbc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}`{eg{}{{l{c}}}{}}{{{C@b{cegi}}Fn}{{C@b{cegi}}}{EfEh}{}{}AD`}{ce{}{}}5{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{{C@b{cegi}}}}}{{H`{ACl}}}{EfEh}{}{}AD`}`6{{}{{C@b{ceg}}}{EfEh}{}AD`}{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}{{{Bb{{C@b{cegi}}}}{Bb{B`ACl}}}Bd{EfEh}{}{}AD`}7{{{Bb{{C@b{cegi}}}}{Bb{ACl}}{Bb{B`i}}{Bb{g}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{EfEh}{}{}AD`}{IdBd}{{{C@b{cegi}}k}{{C@b{cegi}}}{EfEh}{}{}AD`{{Fb{}{{F`{{j{c{AHn{egi}}}}}}}}}}{cc{}}0{ce{}{}}{{{H`{c}}{H`{{AHn{egi}}}}}{{C@b{cegi}}}{EfEh}{}{}AD`}{{{C@b{cegi}}k}{{C@b{cegi}}}{EfEh}{}{}AD`{{Fj{Gl}}}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}33{{}c{}}{{{Bb{{C@b{cegi}}}}{Bb{B`ACl}}{Bb{i}}{Bb{AE`}}}ADn{EfEh}{}{}AD`}{{{C@b{cegi}}k}{{C@b{cegi}}}{EfEh}{}{}AD`{{Fj{Ab}}}}{{{Bb{{C@b{cegi}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{i}}}AEd{EfEh}{}{}AD`}{{}{{C@b{cegi}}}{EfEh}{}{}AD`}4{{{Bb{{C@b{cegi}}}}{Bb{B`ACl}}ACf{Bb{i}}{Bb{B`AEf}}}Bd{EfEh}{}{}AD`}{{{Bb{B`{C@b{cegi}}}}{Bb{B`ACl}}ACf{Bb{i}}Af}{{Bf{{AEh{egi}}}}}{EfEh}{}{}AD`}{{{C@b{cegi}}k}{{C@b{cegi}}}{EfEh}{}{}AD`{{Fj{Fh}}}}{{{C@b{cegi}}ck}{{C@b{cegi}}}{EfEh}{}{}AD`{{Fj{{AHn{egi}}}}}}{{{C@b{cegi}}c{Bf{k}}}{{C@b{cegi}}}{EfEh}{}{}AD`{{Fj{{AHn{egi}}}}}}{{{Bb{{C@b{cegi}}}}}{{An{Gl}}}{EfEh}{}{}AD`}8{{{Bb{{C@b{cegi}}}}}AFd{EfEh}{}{}AD`}{{{Bb{{C@b{cegi}}}}}AFf{EfEh}{}{}AD`}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{{Bb{B`{C@b{cegi}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{i}}{Bb{B`AEj}}{Bb{B`{ACd{e}}}}{Bb{Al}}}Bd{EfEh}{}{}AD`}{{}c{}}{{{C@b{cegi}}k}{{C@b{cegi}}}{EfEh}{}{}AD`{{Fj{Gl}}}}{Id{{C@b{cegi}}}{EfEh}{}{}AD`}{k{{C@b{cegi}}}{EfEh}{}{}AD`{{Fb{}{{F`{{j{c{AHn{egi}}}}}}}}}}``````````````````````{eg{}{{l{c}}}{}}000000{ce{}{}}0000008888888{Bb{{Bb{Dl}}}}000000{{{Bb{B`}}}{{Bb{B`Dl}}}}000000{{{Bb{C@d}}}{{Bb{Mh}}}}00{AKnGh}{AKnG`}{Bb{{Bb{c}}}{}}000000{{{Bb{B`}}}{{Bb{B`c}}}{}}000000{{{Fl{c}}}e{}{}}000000{{{Bb{C@d}}}C`}{{{Bb{C@d}}}C@d}{{{Bb{DIh}}}DIh}{{{Bb{C@f}}}C@f}{{{Bb{DIj}}}DIj}{{{Bb{C@h}}}C@h}{{{Bb{DIl}}}DIl}{{Bb{Bb{B`c}}}Bd{}}00000{{BbGn}Bd}00000{{{Bb{C@d}}{Bb{C@d}}}Mj}{{{Bb{DIh}}{Bb{DIh}}}Mj}{{C@h{Bb{{AFn{DIj}}}}e}{{AHn{cgi}}}{}{{Bj{C@d}{{Ah{c}}}}Ed}C@j{{AMl{}{{AL`{Gd}}}}}}{{}c{}}{{{Bb{DIn}}C@h{Bf{{Bb{Mh}}}}{Bb{Mh}}{Bb{{AFn{DIj}}}}}{{AHn{ceg}}}{}C@j{{AMl{}{{AL`{Gd}}}}}}{C@hAb}{{Bb{Bb{c}}}Mj{}}0{ce{}{}}000000{{}DJ`}{Id{{Bb{c}}}{}}000000{Id{{Bb{B`c}}}{}}000000{c{{Bl{C@d}}}BEj}0{{{Bb{BEl}}}{{Bl{BEn}}}}{{{Bb{C@d}}}{{Bf{{Bb{Mh}}}}}}{Bb{{Bb{c}}}{}}000000{IdBd}000000{{{Bb{C@d}}{Bb{C@d}}}C`}{{{Bb{DIh}}{Bb{DIh}}}C`}{{{Bb{DIl}}{Bb{DIl}}}C`}{{Bb{Bb{c}}}C`{}}00000{{{Bb{C@d}}{Bb{B`Jd}}}{{Bl{BdJf}}}}0{{{Bb{DIh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}0{{{Bb{DJ`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{C@f}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{DIj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{C@h}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{DIl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}={cc{}}00000{ElC@h}{{{Bb{El}}}C@h}{ElDIl}{HdDIl}{{{Bb{El}}}DIl}55555555{c{{Bl{C@dBd}}}{{AF`{DAb}}}}02{ce{}{}}000000{{{Bb{Mh}}}{{Bl{C@dDJb}}}}{C@hAb}00000{{{Bb{C@d}}}C`}0{{{Bb{C@d}}{Bb{B`c}}}BdLb}{{{Bb{DIh}}{Bb{B`c}}}BdLb}{{C@h{Bb{DIh}}{Bb{DIj}}Ide}{{AHn{cgi}}}{}{{Bj{C@d}{{Ah{c}}}}}C@j{{AMl{}{{AL`{Gd}}}}}}{{{Bb{DIn}}C@h{Bb{DIh}}{Bb{DIj}}Id}{{AHn{ceg}}}{}C@j{{AMl{}{{AL`{Gd}}}}}}{{{Bb{C@d}}}{{Bf{{DJd{{Bb{Mh}}}}}}}}{{{Bb{C@d}}}{{Bf{{Bb{Mh}}}}}}{{{Bb{DIn}}C@h{Bb{C@d}}{Bb{Mh}}{Bb{DIj}}}{{AHn{ceg}}}{}C@j{{AMl{}{{AL`{Gd}}}}}}{{{Bb{DJ`}}}{{Bb{{DJf{C@d}}}}}}{{{Bb{C@d}}{DJj{DJh}}}{{Bb{Mh}}}}{{{Bb{C@d}}DJl}{{Bb{Mh}}}}{{{Bb{C@d}}{DJn{DJh}}}{{Bb{Mh}}}}{{{Bb{C@d}}{ALl{DJh}}}{{Bb{Mh}}}}{{}Id}000000{DIlb}{DIlAKn}{DIlFh}{{}c{}}0000000000000{{{I`{c}}}{{I`{Dl}}}{}}000000{{{Lj{c}}}{{Lj{Dl}}}{}}000{{{Ll{c}}}{{Ll{Dl}}}{}}000000{{{Fl{c}}}e{}{}}00000044444444444444{{}c{}}000000{C@dHb}{{{Bb{C@d}}}C`}{{{Bb{i}}C@h{Bb{C@f}}Id}{{AHn{ceg}}}{}C@j{{AMl{}{{AL`{Gd}}}}}{{DIn{ceg}}}}{{{Bb{DJ`}}}{{Bb{{AFn{C@f}}}}}}{{{Bb{C@d}}{Bb{Mh}}}{{Bl{C@dDJb}}}}{BbId}{BbGn}?{{{Bb{C@d}}{Bb{C@d}}}{{Bf{Hb}}}}{{}DJ`}9{C@dc{}}{{}DK`}{{{Bb{i}}C@hKn{Bb{{AFn{{H`{C@f}}}}}}}{{AHn{ceg}}}{}C@j{{AMl{}{{AL`{Gd}}}}}{{DIn{ceg}}}}{{{Bb{DIn}}C@hKn{Bb{{AFn{{H`{C@f}}}}}}}{{AHn{ceg}}}{}C@j{{AMl{}{{AL`{Gd}}}}}}{{{Bb{C@d}}}DKb}{{C@h{Bb{DIj}}e}{{AHn{cgi}}}{}{{Bj{C@d}{{Ah{c}}}}}C@j{{AMl{}{{AL`{Gd}}}}}}{{{Bb{DIn}}C@h{Bb{DIj}}}{{AHn{ceg}}}{}C@j{{AMl{}{{AL`{Gd}}}}}}{{{Bb{Mh}}}{{`{{ALn{}{{F`{C@f}}}}}}}}{{{Bb{Mh}}}{{Bl{C@dDJb}}}}{{{Bb{Mh}}}DJ`}{{{Bb{Mh}}c}{{Bl{C@dDJb}}}Fb}{{{Bb{C@d}}{Bb{C@d}}}{{Bf{Mj}}}}{{{Bb{DIh}}{Bb{DIh}}}{{Bf{Mj}}}}{{{Bb{C@d}}}{{Bf{{Bb{Mh}}}}}}{{{Bb{C@d}}}{{Bb{Mh}}}}{{{Bb{C@d}}}{{Bf{{DKd{AGl}}}}}}{{{Bb{B`C@d}}}{{Bl{DKfBd}}}}{{{Bb{C@d}}}{{Bf{Jb}}}}0{{{Bb{B`DJ`}}{Bb{Mh}}}Bd}5{{{Bb{C@d}}}DKh}{{{Bb{B`C@d}}}{{DKl{DKj}}}}6{{{Bb{C@d}}c}BlBFf}0{{{Bb{B`C@d}}{Bf{{Bb{Mh}}}}}Bd}{{{Bb{B`C@d}}{Bf{{Bb{Mh}}}}}{{Bl{BdDJb}}}}{{{Bb{B`C@d}}DKn}{{Bl{BdBd}}}}{{{Bb{B`C@d}}{Bf{{Bb{Mh}}}}}{{Bl{BdBd}}}}{{{Bb{B`C@d}}{Bb{Mh}}}Bd}{{{Bb{B`C@d}}{Bf{Jb}}}{{Bl{BdBd}}}}5{{{Bb{B`C@d}}{Bb{Mh}}}{{Bl{BdBd}}}}0{BbBEl}{{{Bb{C@d}}c}{{Bl{{H`{DL`}}Mf}}}{{Bj{}{{Ah{{Bf{Jb}}}}}}}}{C@hAb}{{{Bb{DIj}}DIl}{{Lj{{AFn{{AKl{C@d}}}}}}}}{BbGn}{C@hDIl}3{{{Bb{C@d}}}{{Bl{AHfBd}}}}{Bbc{}}00000{BbABh}0{BbHb}0{{}{{Bl{c}}}{}}000000{{{Bb{Mh}}}{{Bl{C@d}}}}{c{{Bl{e}}}{}{}}{Id{{Bl{DIh}}}}111111{{}{{Bl{c}}}{}}000000{{}{{Bl{c{ABj{c}}}}}{}}000000{BbABl}000000{ce{}{}}000000{{}c{}}000000{{{Bb{i}}C@h{Bb{{AFn{{H`{C@f}}}}}}}{{AHn{ceg}}}{}C@j{{AMl{}{{AL`{Gd}}}}}{{DIn{ceg}}}}{{{Bb{DIn}}C@h{Bb{{AFn{{H`{C@f}}}}}}}{{AHn{ceg}}}{}C@j{{AMl{}{{AL`{Gd}}}}}}{Bb{{Bf{{Bb{c}}}}}{}}000000{{{Bb{C@d}}}{{Bb{Mh}}}}{{ce}{{AHn{C@dgi}}}{{Fb{}{{F`{{Bb{C@f}}}}}}}{{Fj{C@h}}}C@j{{AMl{}{{AL`{Gd}}}}}}{{ce{Bb{m}}}{{AHn{gik}}}{{Fb{}{{F`{{Bb{C@f}}}}}}}{{Fj{C@h}}}{}C@j{{AMl{}{{AL`{Gd}}}}}{{DIn{gik}}}}{{}c{}}000000{cC@h{{Fj{DIl}}}}{{ce}C@h{{Fj{Ab}}}{{Fj{DIl}}}}{DLbDIj}{DLdHb}{DLfH`}{DLdBf}{DLdH`}{DLfBf}{DLbHb}{DLbC@d}```````{AAbGh}{AAbG`}{{{Bb{El}}}AAb}{{}c{}}3{AAbb}{{{Bb{{BCn{}{{BA`{c}}}}}}{Bb{c}}}AAb{}}1````````````````````````````````````````````{eg{}{{l{c}}}{}}00000000000000000{{{Bb{{C@l{c}}}}C@nDLh}{{Bf{C@n}}}{}}{{{DLj{ceg}}}{{DLj{ceg}}}{}BGjAD`}{ce{}{}}00000000000000000{{}c{}}00000000000000000{Bb{{Bb{Dl}}}}00000000000000000{{{Bb{B`}}}{{Bb{B`Dl}}}}00000000000000000{DLlGh}{DLlG`}{Bb{{Bb{c}}}{}}00000000000000000{{{Bb{B`}}}{{Bb{B`c}}}{}}00000000000000000{{{Fl{c}}}e{}{}}00000000000000000{{{Bb{DLn}}ACfAd}C`}{{{Bb{{Bb{{CA`{ceg}}}}}}ACfAd}C`{}BGjAD`}{{{CA`{ceg}}i}{{CA`{ceg}}}{}BGjAD`Fj}{{{DLj{ceg}}i}{{DLj{ceg}}}{}BGjAD`Fj}{{{Bb{DM`}}}DM`}{{{Bb{{DMb{c}}}}}{{DMb{c}}}Ed}{{{Bb{DLh}}}DLh}{{{Bb{DMd}}}DMd}{{{Bb{C@n}}}C@n}{{{Bb{DMf}}}DMf}{{{Bb{{C@l{c}}}}}{{C@l{c}}}Ed}{{{Bb{CAl}}}CAl}{{{Bb{DMh}}}DMh}{{{Bb{DMj}}}DMj}{{{Bb{DMl}}}DMl}{{{Bb{CAn}}}CAn}{{{Bb{AA`}}}AA`}{{{Bb{DLl}}}DLl}{{{Bb{DMn}}}DMn}{{Bb{Bb{B`c}}}Bd{}}00000000000000{{BbGn}Bd}00000000000000{{{Bb{B`{C@l{c}}}}C@n}{{Bf{{j{cC@n}}}}}{}}{{{Bb{C@n}}{Bb{C@n}}}Mj}{{{Bb{DMf}}{Bb{DMf}}}Mj}{DMnb}{{Bb{Bb{c}}}Mj{}}0{ce{}{}}00000000000000000{{{DLj{ceg}}i}{{DLj{ceg}}}{}BGjAD`{{Fj{{DN`{ceg}}}}}}{{{Bb{El}}}AA`}{{}c{}}{{}DMj}{Id{{Bb{c}}}{}}00000000000000000{Id{{Bb{B`c}}}{}}00000000000000000{Bb{{Bb{c}}}{}}00000000000000000{{{Bb{{CA`{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}BGjAD`}{{{Bb{{DLj{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}C`}Bd{}BGjAD`}{IdBd}00000000{{{Bb{B`{C@l{c}}}}C@nDMh}Bd{}}111111111{{ik}{{DN`{ceg}}}{}BGjAD`{{Fj{{AHn{ceg}}}}}{{Fj{{AHn{ceg}}}}}}{{{Bb{DM`}}{Bb{DM`}}}C`}{{{Bb{DLh}}{Bb{DLh}}}C`}{{{Bb{C@n}}{Bb{C@n}}}C`}{{{Bb{DMf}}{Bb{DMf}}}C`}{{{Bb{AA`}}{Bb{AA`}}}C`}{{{Bb{DLl}}{Bb{DLl}}}C`}{{{Bb{DMn}}{Bb{DMn}}}C`}{{Bb{Bb{c}}}C`{}}00000000000{{{Bb{DM`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{{DMb{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{DLh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{DMd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{C@n}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{DMf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{{C@l{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{CAl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{DMh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{DMj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{DMl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CAn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AA`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{DLl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{DMn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{i{{CA`{ceg}}}{}BGjAD`{{Fj{{AHn{ceg}}}}}}{cc{}}0{{{AHn{ceg}}}{{DN`{ceg}}}{}BGjAD`}1111111111111111111111111111111111{ce{}{}}00000000000000000{{{Bb{{C@l{c}}}}C@n}{{Bf{{Bb{c}}}}}{}}{{{Bb{B`{C@l{c}}}}C@n}{{Bf{{Bb{B`c}}}}}{}}{{{Bb{DM`}}{Bb{B`c}}}BdLb}{{{Bb{DMd}}{Bb{B`c}}}BdLb}{{{Bb{C@n}}{Bb{B`c}}}BdLb}{{{Bb{DMf}}{Bb{B`c}}}BdLb}{AA`DLl}{AA`DMn}{{}Id}00000000000000000{C@lDNb}{{}c{}}00000000000000000000000000000000000{{{I`{c}}}{{I`{Dl}}}{}}00000000000000000{{{Lj{c}}}{{Lj{Dl}}}{}}00000000000000{{{Ll{c}}}{{Ll{Dl}}}{}}00000000000000000{{{Fl{c}}}e{}{}}00000000000000000444444444444444444444444444444444444{{}c{}}00000000000000000{{{Bb{{C@l{c}}}}}C`{}}{{{Bb{{DLj{ceg}}}}ACfAd}C`{}BGjAD`}{{{Bb{{C@l{c}}}}}{{`{{ALn{}{{F`{{j{{Bb{C@n}}{Bb{c}}}}}}}}}}}{}}{{{Bb{B`{C@l{c}}}}}{{`{{ALn{}{{F`{{j{{Bb{C@n}}{Bb{B`c}}}}}}}}}}}{}}{{{Bb{{C@l{c}}}}}{{Bb{DMd}}}{}}{{{Bb{{C@l{c}}}}}Id{}}{{{Bb{B`{C@l{c}}}}C@n}Bd{}}{{{Bb{{C@l{c}}}}}{{Bf{C@n}}}{}}{{{Bb{B`{C@l{c}}}}C@nDMl}Bd{}}{i{{CA`{ceg}}}{}BGjAD`{{Fj{{AHn{ceg}}}}}}{i{{DN`{ceg}}}{}BGjAD`{{Fj{{AHn{ceg}}}}}}{i{{DLj{ceg}}}{}BGjAD`{{Fj{{AHn{ceg}}}}}}{c{{j{{C@l{c}}C@n}}}{}}={{{DLj{ceg}}i}{{DLj{ceg}}}{}BGjAD`{{Fj{Fh}}}}{{{Bb{DMd}}dAn}{{DNd{C@nAl}}}}{C@lDNd}{{{Bb{C@n}}{Bb{C@n}}}{{Bf{Mj}}}}{{{Bb{DMf}}{Bb{DMf}}}{{Bf{Mj}}}}{AA`DMn}{CAnd}{{{Bb{B`{C@l{c}}}}DMfd}Bd{}}{{{Bb{B`{C@l{c}}}}}Bd{}}{{{Bb{DM`}}{Bb{Al}}dd}{{j{AlAl}}}}{{{Bb{B`{C@l{c}}}}DM`C@nc}{{Bf{{j{C@nDMf}}}}}{}}{CAnDMf}{{{Bb{DM`}}Aldd}Al}{{{Bb{DMd}}dAn}{{DNd{DMf{j{DM`Ald}}}}}}{{{Bb{B`{C@l{c}}}}C@nC@nDMj}Bd{}}{{{Bb{DMd}}}{{`{{ALn{}{{F`{{Bb{DMf}}}}}}}}}}`{{{Bb{{BJn{}{{BA`{c}}}}}}{Bb{c}}}AA`{}}{{{CA`{ceg}}i}{{CA`{ceg}}}{}BGjAD`{{Bj{{Bb{e}}}{{Ah{Ob}}}}}}{{{DLj{ceg}}i}{{DLj{ceg}}}{}BGjAD`{{Bj{{Bb{e}}}{{Ah{Ob}}}}}}{{{Bb{B`{C@l{c}}}}C@nC@n}Bd{}}{{{CA`{ceg}}{DLj{ceg}}}{{CA`{ceg}}}{}BGjAD`}{Bbc{}}00000000000000{{}{{Bl{c}}}{}}00000000000000000{c{{Bl{e}}}{}{}}00000000000000000{{}{{Bl{c}}}{}}00000000000000000{{}{{Bl{c{ABj{c}}}}}{}}00000000000000000{BbABl}00000000000000000{ce{}{}}00000000000000000{{}c{}}00000000000000000{Bb{{Bf{{Bb{c}}}}}{}}00000000000000000{{}c{}}00000000000000000{DMnd}{e{{C@l{c}}}{}{{Fj{{DMb{c}}}}}}{DNfI`}{DNfDM`}1{DNfd}{DNhC@n}{DNjC@n}{DNlC@n}{DNjDMh}{DNnI`}{DNnDM`}1{DNnDMf}{DNnd}``````{eg{}{{l{c}}}{}}0{ce{}{}}0{{}c{}}0{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{DNb}}}DNb}{{{Bb{DO`}}}DO`}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0::{{}DO`}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}099{IdBd}0{{{Bb{DO`}}{Bb{DO`}}}C`}{{{Bb{DNb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{DO`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{{{Bb{B`{DNd{C@nc}}}}{DMb{c}}Id}DNb{}}{ce{}{}}0{{}Id}0{C@lDNb}{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}00{C@lDNd}{{{Bb{DO`}}}{{Bf{{j{C@nAd}}}}}}{{{Bb{DO`}}}{{Bf{{j{DMfDM`}}}}}}{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0{DObDM`}{DOdAd}{DOdC@n}{DObDMf}```````````````{eg{}{{l{c}}}{}}000{ce{}{}}0008888{Bb{{Bb{Dl}}}}000{{{Bb{B`}}}{{Bb{B`Dl}}}}000{OnGh}{OnG`}{Bb{{Bb{c}}}{}}000{{{Bb{B`}}}{{Bb{B`c}}}{}}000{{{Fl{c}}}e{}{}}000{{{Bb{{BOd{c}}}}}{{BOd{c}}}Ed}{{{Bb{{DOf{c}}}}}{{DOf{c}}}Ed}{{{Bb{Ol}}}Ol}{{{Bb{On}}}On}{{Bb{Bb{B`c}}}Bd{}}000{{BbGn}Bd}000{DOfAGl}>>>>{{{Bb{El}}Ol}On}{{}c{}}{{}{{BOd{c}}}{}}1{Id{{Bb{c}}}{}}000{Id{{Bb{B`c}}}{}}000>>>>{IdBd}000{{{Bb{{BOd{c}}}}{Bb{{BOd{c}}}}}C`Eh}{{{Bb{{DOf{c}}}}{Bb{{DOf{c}}}}}C`Eh}{{{Bb{Ol}}{Bb{Ol}}}C`}{{{Bb{On}}{Bb{On}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{{BOd{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{{DOf{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{Ol}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{On}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{DOf}{cc{}}0000000{ce{}{}}000{Onb}{{}Id}000{{}c{}}0000000{{{I`{c}}}{{I`{Dl}}}{}}000{{{Lj{c}}}{{Lj{Dl}}}{}}000{{{Ll{c}}}{{Ll{Dl}}}{}}000{{{Fl{c}}}e{}{}}00044444444{{}c{}}000{DOfAEb}18{DOfAFb}{DOfBf}{{{Bb{{BKf{}{{BA`{c}}}}}}{Bb{c}}Ol}On{}};{Bbc{}}000{{}{{Bl{c}}}{}}000{c{{Bl{e}}}{}{}}000{{}{{Bl{c}}}{}}000{{}{{Bl{c{ABj{c}}}}}{}}000{BbABl}000{ce{}{}}000{{}c{}}000{Bb{{Bf{{Bb{c}}}}}{}}000{{}c{}}000{DOhDOf}0{DOjBf}{DOlC`}``````{eg{}{{l{c}}}{}}{ce{}{}}7{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{A@fGh}0{A@fG`}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{A@f}}}A@f}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}:{{{Bb{El}}}A@f}{{}c{}}{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}9{IdBd}{{{Bb{A@f}}{Bb{A@f}}}C`}{{{Bb{A@f}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}44{{}c{}}??{{{Bb{{BKj{}{{BA`{c}}}}}}{Bb{c}}}A@f{}}{{{Bb{El}}}A@f}{Bbc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}:````````````````````{eg{}{{l{c}}}{}}0000{ce{}{}}000044444{Bb{{Bb{Dl}}}}0000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000{AAhb}{Bb{{Bb{c}}}{}}0000{{{Bb{B`}}}{{Bb{B`c}}}{}}0000{{{Fl{c}}}e{}{}}00003{{{Bb{DOn}}}DOn}{{{Bb{E@`}}}E@`}{{{Bb{E@b}}}E@b}{{{Bb{AAh}}}AAh}{{Bb{Bb{B`c}}}Bd{}}000{{BbGn}Bd}000<<<<<{{{Bb{El}}}AAh}{{}c{}}{Id{{Bb{c}}}{}}0000{Id{{Bb{B`c}}}{}}0000<<<<<{IdBd}0000{{{Bb{DOn}}{Bb{DOn}}}C`}{{{Bb{E@`}}{Bb{E@`}}}C`}{{{Bb{E@b}}{Bb{E@b}}}C`}{{{Bb{AAh}}{Bb{AAh}}}C`}{{Bb{Bb{c}}}C`{}}00000000{{{Bb{CAj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{DOn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{E@`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{E@b}}{Bb{B`Jd}}}{{Bl{BdJf}}}}0{{{Bb{AAh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{E@dE@b}111111{ce{}{}}0000{{}Id}0000{{}c{}}000000000{{{I`{c}}}{{I`{Dl}}}{}}0000{{{Lj{c}}}{{Lj{Dl}}}{}}000{{{Ll{c}}}{{Ll{Dl}}}{}}0000{{{Fl{c}}}e{}{}}00004444444444{{}c{}}0000{c{{Bl{CAjE@b}}}{{AF`{{AFn{Gn}}}}}}{{{Bb{{BIl{}{{BA`{c}}}}}}{Bb{c}}}AAh{}}{Bbc{}}000{BbABh}{BbHb}{{}{{Bl{c}}}{}}0000{c{{Bl{e}}}{}{}}0000{{}{{Bl{c}}}{}}0000{{}{{Bl{c{ABj{c}}}}}{}}0000{BbABl}0000{ce{}{}}0000{{}c{}}0000{Bb{{Bf{{Bb{c}}}}}{}}0000{{}c{}}0000{{cE@`}{{Bl{CAjE@b}}}{{AF`{{AFn{Gn}}}}}}{{cDOnE@`}{{Bl{CAjE@b}}}{{AF`{{AFn{Gn}}}}}}````````{eg{}{{l{c}}}{}}0{ce{}{}}066{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{OjGh}{Ojb}{Ojd}{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{Oh}}}Oh}{{{Bb{Oj}}}Oj}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0<<{{{Bb{El}}Oh}Oj}{{}c{}}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}0<::{IdBd}0{{{Bb{Oh}}{Bb{Oh}}}C`}{{{Bb{Oj}}{Bb{Oj}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{Oh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Oj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{ce{}{}}0{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{{{Bb{{BKn{}{{BA`{c}}}}}}{Bb{c}}Oh}Oj{}}{OjBf}{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0{E@fC`}{E@hC`}``````````{eg{}{{l{c}}}{}}0{ce{}{}}066{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{A@`}}}A@`}{{{Bb{E@j}}}E@j}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0{A@`b}::{{{Bb{El}}}A@`}{{}c{}}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}0;;{IdBd}0{{{Bb{A@`}}{Bb{A@`}}}C`}{{{Bb{E@j}}{Bb{E@j}}}C`}{{{Bb{E@j}}d}{{j{dd}}}}{A@`E@j}{{{Bb{A@`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{E@j}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{ce{}{}}0{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{A@`Ml}{{{Bb{{BLb{}{{BA`{c}}}}}}{Bb{c}}}A@`{}}{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0{A@`Jb}`````````````````````````{{{Bb{CB`}}}B@h}0{eg{}{{l{c}}}{}}0000000000{{E@lBHh}E@l}{ce{}{}}000000000077777777777{Bb{{Bb{Dl}}}}0000000000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000000000{E@nBf}{E@nG`}{EA`G`}{Bb{{Bb{c}}}{}}0000000000{{{Bb{B`}}}{{Bb{B`c}}}{}}0000000000{{{Bb{CB`}}}Al}{{{Fl{c}}}e{}{}}0000000000{{{Bb{B@h}}}B@h}{{{Bb{B@j}}}B@j}{{{Bb{BMn}}}BMn}{{{Bb{E@l}}}E@l}{{{Bb{BHh}}}BHh}{{{Bb{B@`}}}B@`}{{{Bb{CB`}}}CB`}{{{Bb{A@h}}}A@h}{{{Bb{A@j}}}A@j}{{{Bb{E@n}}}E@n}{{{Bb{EA`}}}EA`}{{Bb{Bb{B`c}}}Bd{}}0000000000{{BbGn}Bd}0000000000{EA`b}{ce{}{}}0000000000{A@jOb}{{{Bb{CB`}}}Al}{{{Bb{El}}A@h}A@j}{{}c{}}{{}B@h}{{}B@j}{{}BMn}{{}E@l}{{}BHh}{Id{{Bb{c}}}{}}0000000000{Id{{Bb{B`c}}}{}}0000000000{Bb{{Bb{c}}}{}}0000000000{IdBd}0000000000{{{Bb{B@h}}{Bb{B@h}}}C`}{{{Bb{B@j}}{Bb{B@j}}}C`}{{{Bb{BMn}}{Bb{BMn}}}C`}{{{Bb{E@l}}{Bb{E@l}}}C`}{{{Bb{BHh}}{Bb{BHh}}}C`}{{{Bb{B@`}}{Bb{B@`}}}C`}{{{Bb{A@h}}{Bb{A@h}}}C`}{{{Bb{A@j}}{Bb{A@j}}}C`}{{{Bb{E@n}}{Bb{E@n}}}C`}{{{Bb{EA`}}{Bb{EA`}}}C`}{{Bb{Bb{c}}}C`{}}00000000{{{Bb{B@h}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{B@j}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BMn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{E@l}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BHh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{B@`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CB`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{A@h}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{A@j}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{E@n}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EA`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0000{{{Bb{Mh}}}B@`}11111111111111111{ce{}{}}0000000000{A@jBf}{{{Bb{B@`}}{Bb{B`c}}}BdLb}{{{Bb{BMn}}}{{Bf{{Bb{E@l}}}}}}{A@jE@n}{{}Id}0000000000{{}c{}}000000000000000000000{{{I`{c}}}{{I`{Dl}}}{}}0000000000{{{Lj{c}}}{{Lj{Dl}}}{}}0000000000{{{Ll{c}}}{{Ll{Dl}}}{}}0000000000{{{Fl{c}}}e{}{}}00000000004444444444444444444444{{}c{}}0000000000{{E@lc}E@l{{Fj{Ab}}}}{{}E@l}{cB@`{{Fj{{AKj{Mh}}}}}}33333{{{Bb{CB`}}}B@j}{{cB@h}{{f{e}}}{{Fj{B@`}}}{}}0{E@nEA`}5{{cB@j}{{f{e}}}{{Fj{B@`}}}{}}6{{{Bb{{BHf{}{{BA`{c}}}}}}{Bb{c}}A@h}A@j{}}{Bbc{}}0000000000{{}{{Bl{c}}}{}}0000000000{c{{Bl{e}}}{}{}}0000000000{{}{{Bl{c}}}{}}0000000000{{}{{Bl{c{ABj{c}}}}}{}}0000000000{BbABl}0000000000{ce{}{}}0000000000{{}c{}}0000000000{{}B@`}{Bb{{Bf{{Bb{c}}}}}{}}0000000000{{{Bb{BMn}}}{{Bf{{Bb{E@l}}}}}}{A@jE@n}{{}c{}}0000000000{{E@lc}E@l{{Fj{Ab}}}}{B@hd}{B@jd}10{EAbE@l}0{EAdC`}{EAfC`}{EAhC`}0121001````````{eg{}{{l{c}}}{}}0{ce{}{}}0>>{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{EAj}}}EAj}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}88{{}EAl}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}088{{{Bb{{BNh{}{{Cb{c}}{EAn{e}}}}}}{Bb{c}}ADfAl}eDdEB`}{IdBd}0{{{Bb{EAj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EAl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{ce{}{}}0{{{Bb{EAl}}}{{Bf{{Bb{c}}}}}{}}{{{Bb{B`EAl}}}{{Bf{{Bb{B`c}}}}}{}}{{{Bb{EAl}}}C`}{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{{{Bb{EAj}}}An}{{{Bb{{BNh{}{{Cb{c}}{EAn{e}}}}}}{Bb{c}}AlADf}AEdDdEB`}2{{{Bb{EAj}}}Ij}{{{Bb{EAj}}}{{An{Ij}}}}1{{{Bb{EB`}}{Bb{EBb}}{Bb{EBd}}EBf{Bb{B`EAl}}{Bb{Al}}{Bb{EAj}}}Bd}{{{Bb{EAj}}}Dn}{{{Bb{EB`}}{Bb{B`EBh}}{Bb{EAl}}{Bb{EBj}}{Bb{{Al{Ij}}}}}Bd}{{{Bb{EAj}}}Kj}{{{Bb{B`EAl}}c}BdCn}{Bbc{}}{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{{Bb{{BNh{}{{Cb{c}}{EAn{e}}}}}}{Bb{B`c}}{Bb{Gb}}AlADf}{{Bf{{BHj{g}}}}}DdEB`{}}{{}c{}}0{{{An{Ij}}Kj}EAj}``````````````{eg{}{{l{c}}}{}}0000{ce{}{}}000066666{Bb{{Bb{Dl}}}}0000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000{EBlGh}{EBnj}{EBnG`}{EBlb}{EBld}{Bb{{Bb{c}}}{}}0000{{{Bb{B`}}}{{Bb{B`c}}}{}}0000{{{Fl{c}}}e{}{}}0000{{{Bb{AAd}}}AAd}{{{Bb{AAf}}}AAf}{{{Bb{EBn}}}EBn}{{{Bb{EBl}}}EBl}{{{Bb{EC`}}}EC`}{{Bb{Bb{B`c}}}Bd{}}0000{{BbGn}Bd}0000{ce{}{}}0000{{{Bb{El}}AAd}AAf}{{}c{}}{Id{{Bb{c}}}{}}0000{Id{{Bb{B`c}}}{}}0000>>>>>{IdBd}0000{{{Bb{AAd}}{Bb{AAd}}}C`}{{{Bb{AAf}}{Bb{AAf}}}C`}{{{Bb{EBn}}{Bb{EBn}}}C`}{{{Bb{EBl}}{Bb{EBl}}}C`}{{{Bb{EC`}}{Bb{EC`}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{AAd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AAf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EBn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EBl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EC`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000000000{ce{}{}}0000{AAfEBl}{{}Id}0000{{}c{}}000000000{{{I`{c}}}{{I`{Dl}}}{}}0000{{{Lj{c}}}{{Lj{Dl}}}{}}0000{{{Ll{c}}}{{Ll{Dl}}}{}}0000{{{Fl{c}}}e{}{}}00004444444444{{}c{}}0000{AAfEBn}{EBlEC`}{{{Bb{{BLh{}{{BA`{c}}}}}}{Bb{c}}AAd}AAf{}}{Bbc{}}0000{{}{{Bl{c}}}{}}0000{c{{Bl{e}}}{}{}}0000{{}{{Bl{c}}}{}}0000{{}{{Bl{c{ABj{c}}}}}{}}0000{BbABl}0000{ce{}{}}0000{{}c{}}0000{Bb{{Bf{{Bb{c}}}}}{}}0000{{}c{}}0000{EBnd}{{AAfc}AAf{{Fj{Ab}}}}{ECbMl}{ECdd}{ECbJb}`````````{eg{}{{l{c}}}{}}0{ce{}{}}099{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{A@b}}}A@b}{{{Bb{A@d}}}A@d}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0{A@dBf}::{{}c{}}{{}A@d}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}0;;{IdBd}0{{{Bb{A@b}}{Bb{A@b}}}C`}{{{Bb{A@d}}{Bb{A@d}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{A@b}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{A@d}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{ce{}{}}0{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}00{{{Bb{{BMf{}{{BA`{c}}}}}}{Bb{c}}A@b}A@d{}}{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0```````````````````````````{eg{}{{l{c}}}{}}00{{{CBd{cegi}}k}{{CBd{cegi}}}Ed{}AOdAMl{{Fj{K`}}}}{{{CBd{cegi}}k}{{CBd{cegi}}}Ed{}AOdAMl{{Fj{Kb}}}}{ce{}{}}00666{Bb{{Bb{Dl}}}}00{{{Bb{B`}}}{{Bb{B`Dl}}}}00{{{Bb{El}}}AAj}{Bb{{Bb{c}}}{}}00{{{Bb{B`}}}{{Bb{B`c}}}{}}00{{{Fl{c}}}e{}{}}00{{{CBd{cegi}}}{{CBd{cegi}}}Ed{}AOdAMl}{{{Bb{B`{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}}Id}Bd{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}{{{CBd{cegi}}k}{{CBd{cegi}}}Ed{}AOdAMlFj}{{{Bb{AAj}}}AAj}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}{{{CBd{cegi}}k}{{CBd{cegi}}}Ed{}AOdAMl{{Fj{b}}}}{AKlBf}{AAjBf}{{{CBd{cegi}}{Bf{k}}}{{CBd{cegi}}}Ed{}AOdAMl{{Fj{b}}}}{ce{}{}}00{{{Bb{{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}}}Id{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}??{{}c{}}{{}{{CBd{cegi}}}Ed{}AOdAMl}{{}{{B@n{c}}}{DdAMd}}{{}AAj}{Id{{Bb{c}}}{}}00{Id{{Bb{B`c}}}{}}00{Bb{{Bb{c}}}{}}00{{{Bb{B`c}}{Bb{ADd}}ACfBbAAj{Bb{Al}}}BdAMl}{{{Bb{{CBd{cegi}}}}{Bb{ACl}}{Bb{B`i}}{Bb{g}}{Bb{ADd}}ACfADf{Bb{Al}}}BdEd{}AOdAMl}{IdBd}00{{{Bb{AAj}}{Bb{AAj}}}C`}{{{Bb{{B@n{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}{D`AMd}}{{{Bb{AAj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{CBd{cegi}}k}{{CBd{cegi}}}Ed{}AOdAMlFj}{AKlBf}{cc{}}00000{e{{CBd{cgik}}}Ed{{Fb{}{{F`{{AKl{c}}}}}}}{}AOdAMl}{ce{}{}}00{{{CBd{cegi}}k}{{CBd{cegi}}}Ed{}AOdAMl{{Fj{Gl}}}}4{{{Bb{B`{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}}{Bb{Mh}}}g{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}{{}Id}00{{}c{}}00000{{{I`{c}}}{{I`{Dl}}}{}}00{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}00{{{Fl{c}}}e{}{}}00444444{AN`{{AKj{Mh}}}}{{}c{}}00{{{Bb{B`B@n}}{Bb{c}}{Bb{AE`}}GlGl{Bb{Mh}}AEb{Bf{Ab}}BfK`KbAFbAFh}ADnAMl}{{{Bb{{CBd{cegi}}}}{Bb{B`ACl}}{Bb{i}}{Bb{AE`}}}ADnEd{}AOdAMl}{{{CBd{cegi}}k}{{CBd{cegi}}}Ed{}AOdAMl{{Fj{AEb}}}}{AKlBf}0{{{Bb{{CBd{cegi}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{i}}}AEdEd{}AOdAMl}{{{Bb{c}}}{{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}{{}{{CBd{cegi}}}Ed{}AOdAMl}777{{{CBd{cegi}}k}{{CBd{cegi}}}Ed{}AOdAMl{{Bj{c}{{Ah{e}}}}}}{AKlFh}{{{Bb{El}}}AAj}0{{{CBd{cegi}}k}{{CBd{cegi}}}Ed{}AOdAMl{{Fj{Ab}}}}{{{Bb{{CBd{cegi}}}}}{{An{Gl}}}Ed{}AOdAMl}8{{{Bb{{CBd{cegi}}}}}AFdEd{}AOdAMl}{AKlC`}{{{Bb{{AOd{}{{BA`{c}}}}}}{Bb{c}}}AAj{}}{{{CBd{cegi}}k}{{CBd{cegi}}}Ed{}AOdAMl{{Bj{{Bb{g}}}{{Ah{AAj}}}}}}6{{{Bb{{CBd{cegi}}}}}AFfEd{}AOdAMl}{AKlAKj}{Bbc{}}{{}{{Bl{c}}}{}}00{c{{Bl{e}}}{}{}}00{{}{{Bl{c}}}{}}00{{}{{Bl{c{ABj{c}}}}}{}}00{BbABl}00{ce{}{}}00{{}c{}}00<{Bb{{Bf{{Bb{c}}}}}{}}00{{{Bb{B`{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}}{Bb{c}}}Bd{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}{{{Bb{B`{CBd{cegi}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{i}}{Bb{B`AEj}}{Bb{B`{ACd{e}}}}{Bb{Al}}}BdEd{}AOdAMl}{{}c{}}00{{{CBd{cegi}}k}{{CBd{cegi}}}Ed{}AOdAMl{{Fj{Gl}}}}{e{{CBd{cgik}}}Ed{{AF`{{AFn{{AKl{c}}}}}}}{}AOdAMl}{{{CBd{cegi}}AFh}{{CBd{cegi}}}Ed{}AOdAMl}`````````````````````````````````````````````````````````````````{eg{}{{l{c}}}{}}0000000000{ce{}{}}000000000099999999999{Bb{{Bb{Dl}}}}0000000000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000000000{ANh{{Bb{Mh}}}}{A@nGh}{A@nG`}{Bb{{Bb{c}}}{}}0000000000{{{Bb{B`}}}{{Bb{B`c}}}{}}0000000000{{{Fl{c}}}e{}{}}0000000000{{{Bb{ANd}}}ANd}{{{Bb{ECf}}}ECf}{{{Bb{ECh}}}ECh}{{{Bb{ANb}}}ANb}{{{Bb{ANh}}}ANh}{{{Bb{{C@`{c}}}}}{{C@`{c}}}Ed}{{{Bb{BOn}}}BOn}{{{Bb{A@l}}}A@l}{{{Bb{A@n}}}A@n}{{Bb{Bb{B`c}}}Bd{}}00000000{{BbGn}Bd}00000000{ce{}{}}0000000000{{{Bb{{CAf{c}}}}}{{j{IdId}}}AMl}{{{Bb{El}}A@l}A@n}{{}c{}}{{}{{CAf{c}}}AMl}{{}ANb}{{}ANh}{Id{{Bb{c}}}{}}0000000000{Id{{Bb{B`c}}}{}}0000000000{{{Bb{ECh}}}ANf}{Bb{{Bb{c}}}{}}0000000000{IdBd}0000000000{ANbANh}{{{Bb{ANd}}{Bb{ANd}}}C`}{{{Bb{ECf}}{Bb{ECf}}}C`}{{{Bb{ECh}}{Bb{ECh}}}C`}{{{Bb{ANb}}{Bb{ANb}}}C`}{{{Bb{ANh}}{Bb{ANh}}}C`}{{{Bb{{C@`{c}}}}{Bb{{C@`{c}}}}}C`Eh}{{{Bb{BOn}}{Bb{BOn}}}C`}{{{Bb{A@l}}{Bb{A@l}}}C`}{{{Bb{A@n}}{Bb{A@n}}}C`}{{Bb{Bb{c}}}C`{}}00000000000{{{Bb{{CAf{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}AMl}{{{Bb{ANd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{ECf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{ECh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{ANb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{ANh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{{ECj{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}{D`ALj}}{{{Bb{{C@`{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{BOn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{A@l}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{A@n}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{B`{ECj{c}}}}}BdALj}{cc{}}000000000000000000000{BOn{{Bf{{C@`{c}}}}}{}}{ce{}{}}0000000000{A@nb}{{}Id}0000000000{{}c{}}000000000000000000000{{{I`{c}}}{{I`{Dl}}}{}}0000000000{{{Lj{c}}}{{Lj{Dl}}}{}}00000000{{{Ll{c}}}{{Ll{Dl}}}{}}0000000000{{{Fl{c}}}e{}{}}00000000004444444444444444444444{{}c{}}0000000000{{{Bb{ANd}}}C`}{{{Bb{{ECj{c}}}}}C`ALj}0{BOnBAl}{{{Bb{{CAf{c}}}}Id}{{Bf{ANb}}}AMl}{{{Bb{{CAf{c}}}}}IdAMl}{{{Bb{{CAf{c}}}}}{{Bf{ANh}}}AMl}{{{Bb{{CAf{c}}}}}{{`{{ALn{}{{F`{ANb}}}}}}}AMl}{BOnBAj}{{}{{CAf{c}}}AMl}999{{{Bb{B`{CAf{c}}}}ANd}BdAMl}{A@nb}{{{Bb{{CAf{c}}}}}{{Bf{Hb}}}AMl}1{BOnA@l}{{{Bb{{BLl{}{{BA`{c}}}}}}{Bb{c}}A@l}A@n{}}{{{Bb{{CAf{c}}}}}HbAMl}{ANbAKj}{BOnBf}{Bbc{}}00000000{{}{{Bl{c}}}{}}0000000000{c{{Bl{e}}}{}{}}0000000000{{}{{Bl{c}}}{}}0000000000{{}{{Bl{c{ABj{c}}}}}{}}0000000000{BbABl}0000000000{ce{}{}}0000000000{{}c{}}0000000000{{{Bb{B`{ECj{c}}}}}BdALj}{Bb{{Bf{{Bb{c}}}}}{}}0000000000{A@nb}{{}c{}}0000000000{EChECh}{{{Bb{Mh}}}{{CAf{c}}}AMl}{ANjANl}{EClC`}````{{}Fh}``````````````{eg{}{{l{c}}}{}}0000000{ce{}{}}0000000;;;;;;;;{Bb{{Bb{Dl}}}}0000000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000000{ABbGh}{ABbG`}{Bb{{Bb{c}}}{}}0000000{{{Bb{B`}}}{{Bb{B`c}}}{}}0000000{{{Fl{c}}}e{}{}}0000000{{{Bb{BNb}}}BNb}{{{Bb{ECn}}}ECn}{{{Bb{{BOl{c}}}}}{{BOl{c}}}Ed}{{{Bb{ED`}}}ED`}{{{Bb{AOn}}}AOn}{{{Bb{{EDb{c}}}}}{{EDb{c}}}{EdAMd}}{{{Bb{AB`}}}AB`}{{{Bb{ABb}}}ABb}{{Bb{Bb{B`c}}}Bd{}}0000000{{BbGn}Bd}0000000{BOlAGl}{ce{}{}}0000000`{{{Bb{{EDb{c}}}}}ECnAMd}{{{Bb{El}}AB`}ABb}{{}c{}}{{}ECn}{{}{{EDb{c}}}{DdAMd}}{Id{{Bb{c}}}{}}0000000{Id{{Bb{B`c}}}{}}0000000{Bb{{Bb{c}}}{}}0000000{IdBd}0000000{{{Bb{ECn}}{Bb{ECn}}}C`}{{{Bb{AOn}}{Bb{AOn}}}C`}{{{Bb{AB`}}{Bb{AB`}}}C`}{{{Bb{ABb}}{Bb{ABb}}}C`}{{Bb{Bb{c}}}C`{}}00000000{{{Bb{BNb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}0{{{Bb{ECn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{{BOl{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{ED`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AOn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{{EDb{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}{D`AMd}}{{{Bb{AB`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{ABb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{c{{f{e}}}{{Fj{AOn}}}{}}{{{Bb{B`{EDb{c}}}}}BdAMd}0{BOl}{cc{}}0000{{{Bb{Mh}}}AOn}{HbAOn}22222222222{ce{}{}}0000000{{{Bb{AOn}}{Bb{B`c}}}BdLb}{ABbb}{{}Id}0000000{{{Bb{B`BNb}}IdAGl}Bd}{{{Bb{B`BNb}}IdBNb}Bd}{{}c{}}000000000000000{{{I`{c}}}{{I`{Dl}}}{}}0000000{{{Lj{c}}}{{Lj{Dl}}}{}}0000000{{{Ll{c}}}{{Ll{Dl}}}{}}0000000{{{Fl{c}}}e{}{}}00000004444444444444444{{}c{}}0000000{{{Bb{BNb}}}C`}{{{Bb{{EDb{c}}}}}C`AMd}0{{{Bb{BNb}}}Id}{{cId}{{f{e}}}{{Fj{AOn}}}{}}{{{Bb{B`{EDb{c}}}}Id}BdAMd}0{c{{f{e}}}{{Fj{AOn}}}{}}{{{Bb{B`{EDb{c}}}}}BdAMd}0100{{{Bb{Mh}}}BNb}{cAOn{{Fj{{AKj{Mh}}}}}}{{}{{EDb{c}}}AMd}{{{Bb{BNb}}Id}Id};;{ABbb}1{{{Bb{B`BNb}}Id}Bd}{{{Bb{B`BNb}}IdId}Bd}{{{Bb{BNb}}}BNb}{{{Bb{BNb}}IdId}BNb}:99{{{Bb{ECn}}{Bb{BNb}}}{{Bf{{j{IdId}}}}}}5{BOlED`}{BOlBf}{BOld}{{{Bb{ECn}}{Bb{BNb}}}EDd}{{{Bb{{BH`{}{{BA`{c}}}}}}{Bb{c}}AB`}ABb{}}{Bbc{}}0000000{BbABh}{BbHb}{{}{{Bl{c}}}{}}0000000{c{{Bl{e}}}{}{}}0000000{{}{{Bl{c}}}{}}0000000{{}{{Bl{c{ABj{c}}}}}{}}0000000{BbABl}0000000{ce{}{}}0000000{{}c{}}0000000{{{Bb{B`{EDb{c}}}}}BdAMd}0{{}AOn}{{{Bb{BNb}}Id}BNb}{Bb{{Bf{{Bb{c}}}}}{}}0000000{ABbb}{{}c{}}0000000{EDfC`}````{eg{}{{l{c}}}{}}{ce{}{}}9{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{EDd}}}EDd}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}8{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}7{IdBd}{{{Bb{EDd}}{Bb{EDd}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{EDd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}44{{}c{}}{Bbc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}{EDhId}0````````````````````````````{Hdb}{Enb}{{{Bb{Df}}}En}2{{{Bb{El}}}En}`33323``{{}BDf}000000000000000000000```````4{HfBDh}{BDhBDj}{BDlBDj}{BDnBDj}{BE`BDj}{BEbBDj}{BEdBDj}{BDjb}<{HfBEd}{HfC`}>{HfBDl}{HfBDn}:98765{Hdb}{HfBE`}161{HfBEb}=<;:98`````````{eg{}{{l{c}}}{}}0{ce{}{}}0{{}c{}}0{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{O`b}0{O`d}{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{Nn}}}Nn}{{{Bb{O`}}}O`}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0<<{{{Bb{El}}Nn}O`}{{}c{}}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}0::{IdBd}0{{{Bb{Nn}}{Bb{Nn}}}C`}{{{Bb{O`}}{Bb{O`}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{Nn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{O`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{O`b}0{O`d}{cc{}}000{ce{}{}}0{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{{{Bb{{BM`{}{{BA`{c}}}}}}{Bb{c}}Nn}O`{}}{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0{EDjC`}{EDlC`}```````{eg{}{{l{c}}}{}}{ce{}{}}6{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{CAh}}}CAh}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}8{{}CAh}{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}8{IdBd}{{{Bb{CAh}}{Bb{CAh}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{CAh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}44{{}c{}}0{Bbc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}`````````````{EBlGh}{EBlb}{EBld}{{{Bb{El}}AAd}AAf}{{}c{}}{AAfEBl}{AAfEBn}{EBlEC`}{{{Bb{{BLh{}{{BA`{c}}}}}}{Bb{c}}AAd}AAf{}}{ECbMl}{ECdd}{ECbJb}````````````````````````````````````````````````````````````````````````````````{eg{}{{l{c}}}{}}00000000000{ce{}{}}00000000000{{}c{}}00000000000{Bb{{Bb{Dl}}}}00000000000{{{Bb{B`}}}{{Bb{B`Dl}}}}00000000000{{{Bb{AHd}}}{{Bb{{AFn{Gn}}}}}}{Bb{{Bb{c}}}{}}00000000000{{{Bb{B`}}}{{Bb{B`c}}}{}}00000000000{AHdAFl}{{{Fl{c}}}e{}{}}00000000000{{{Bb{EDn}}}EDn}{{{Bb{AHd}}}AHd}{{{Bb{Nd}}}Nd}{{{Bb{EE`}}}EE`}{{{Bb{EEb}}}EEb}{{{Bb{Nj}}}Nj}{{{Bb{BAb}}}BAb}{{{Bb{EEd}}}EEd}{{{Bb{BAd}}}BAd}{{{Bb{AEn}}}AEn}{{{Bb{EEf}}}EEf}{{Bb{Bb{B`c}}}Bd{}}0000000000{{BbGn}Bd}0000000000{Nj{{f{c}}}{}}{{}{{Fd{Nj}}}}0{{{Bb{Nj}}{Bb{Nj}}}Mj}{{{Bb{AEn}}{Bb{AEn}}}Mj}{{Bb{Bb{c}}}Mj{}}0{ce{}{}}00000000000{{{Bb{AHd}}{Al{Ij}}}{{Bl{AHdEEh}}}}{NdC`}{{}Nd}{{}BAb}{{}BAd}{Id{{Bb{c}}}{}}00000000000{Id{{Bb{B`c}}}{}}00000000000{Nj{{f{c}}}{}}{Bb{{Bb{c}}}{}}00000000000>{{NjEE`}{{f{c}}}{}}{IdBd}000000000003{Bbc{{AGn{AGl}}}}0{{{Bb{EEb}}{Bb{EEb}}}C`}{{{Bb{Nj}}{Bb{Nj}}}C`}{{{Bb{BAb}}{Bb{BAb}}}C`}{{{Bb{EEd}}{Bb{EEd}}}C`}{{{Bb{BAd}}{Bb{BAd}}}C`}{{{Bb{AEn}}{Bb{AEn}}}C`}{{Bb{Bb{c}}}C`{}}00000000000{{}{{Fd{{j{NjEEb}}}}}}{NdC`}{{{Bb{EDn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AHd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Nd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EE`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EEb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Nj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}0{{{Bb{BAb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EEd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BAd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AEn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EEf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{}{{Fd{Lf}}}}{cc{}}000000000{LfAEn}11111111111111{ce{}{}}00000000000?{Nj{{f{c}}}{}}{{}{{f{{Bf{Nj}}}}}}{Nj{{f{C`}}}}{Nj{{f{{Bf{C`}}}}}}{Nj{{f{EEd}}}}3{Nj{{f{{Bf{Ad}}}}}}{Nj{{f{Kn}}}}{Nj{{f{d}}}}{Nj{{f{An}}}}{{{Bb{Nj}}{Bb{B`c}}}BdLb}`{NdBf}{{}Id}00000000000{{}c{}}00000000000000000000000{{{I`{c}}}{{I`{Dl}}}{}}00000000000{{{Lj{c}}}{{Lj{Dl}}}{}}0000000000{{{Ll{c}}}{{Ll{Dl}}}{}}00000000000{{{Fl{c}}}e{}{}}00000000000444444444444444444444444{EDn{{j{{H`{Gn}}{An{Ij}}}}}}{{}c{}}00000000000{NdBAb}9{{NjC`}{{f{c}}}{}}{NdC`};1{{NjAd}{{f{c}}}{}}{{c{An{Ij}}Kj}AHd{{Fj{AFl}}}}555{Nd{{j{Nj{f{Nj}}}}}}{{}{{Fd{Nj}}}}{{{Bb{Nj}}{Bb{Nj}}}{{Bf{Mj}}}}{{{Bb{AEn}}{Bb{AEn}}}{{Bf{Mj}}}}{NdEEj}{NdBAd}{{Nj{Bf{EEf}}}{{f{c}}}{}}9{{NjAn}{{f{c}}}{}}{{}{{Fd{{j{NjAn}}}}}}{{Nje}{{f{c}}}Cn{{Hh{EEl}{{Ah{c}}}}Cn}}{AHdKj}`{Nj{{f{AHd}}}}{{NjEDn}{{f{c}}}{}}{{NjBAb}{{f{c}}}{}}{{Nj{Bf{An}}}{{f{c}}}{}}0{{NjEEd}{{f{c}}}{}}{{NjC`}{{f{c}}}{}}2`{Nj{{f{c}}}{}}{AHdAn}{NdAn}{Bbc{}}0000000000{BbABh}{BbHb}55{NdC`}{{}{{Bl{c}}}{}}00000000000{c{{Bl{e}}}{}{}}00000000000{{}{{Bl{c}}}{}}00000000000{{}{{Bl{c{ABj{c}}}}}{}}00000000000{BbABl}00000000000{ce{}{}}00000000000{{}c{}}00000000000{{}Nj}{Bb{{Bf{{Bb{c}}}}}{}}000000000009{{}c{}}00000000000{EEnBf}{EEnAn}`````{eg{}{{l{c}}}{}}{ce{}{}}7{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}5{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}4{IdBd}{{{Bb{EF`}}{Bb{B`Jd}}}Jj}0{cc{}}{EFbEF`}{EFdEF`}{MfEF`}3{c{{Bl{EDnEF`}}}{{AF`{DAb}}}}{{{Bb{{AFn{Gn}}}}{Bf{EFf}}}{{Bl{EDnEF`}}}}{{{H`{Gn}}IjIj}{{Bl{EDnEFd}}}}{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}44{{}c{}}{{{Bb{EF`}}}{{Bf{{Bb{EFh}}}}}}{BbABh}{BbHb}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}`````````````````````````````````````````````````````````````````````{EFjEFl}{eg{}{{l{c}}}{}}000000000000000000000000000000000{{}EFn}0{ce{}{}}0000000000000000000000000000000006666666666666666666666666666666666{Bb{{Bb{Dl}}}}000000000000000000000000000000000{{{Bb{B`}}}{{Bb{B`Dl}}}}000000000000000000000000000000000{{{Bb{EFn}}}EG`}{{{Bb{EEl}}}EGb}{{{Bb{EFn}}}{{Bb{EG`}}}}{{{Bb{EEl}}}{{Bb{EGb}}}}{EGdBf}{EGdEFl}{Bb{{Bb{c}}}{}}00040030000000000000000000000000000{{{Bb{B`}}}{{Bb{B`c}}}{}}000000000000000000000000000000000{EG`EFn}{EGbEEl}{{{Fl{c}}}e{}{}}000000000000000000000000000000000{{{Bb{EGf}}}EGf}{{{Bb{EFj}}}EFj}{{{Bb{EGh}}}EGh}{{{Bb{EGj}}}EGj}{{{Bb{EFn}}}EFn}{{{Bb{EEl}}}EEl}{{{Bb{EGl}}}EGl}{{{Bb{EGd}}}EGd}{{{Bb{EGn}}}EGn}{{{Bb{EH`}}}EH`}{{{Bb{EHb}}}EHb}{{{Bb{EHd}}}EHd}{{{Bb{EHf}}}EHf}{{{Bb{EHh}}}EHh}{{{Bb{EHj}}}EHj}{{{Bb{EHl}}}EHl}{{{Bb{EHn}}}EHn}{{{Bb{EI`}}}EI`}{{{Bb{EIb}}}EIb}{{{Bb{EId}}}EId}{{{Bb{EIf}}}EIf}{{{Bb{EIh}}}EIh}{{{Bb{EIj}}}EIj}{{{Bb{EIl}}}EIl}{{{Bb{EIn}}}EIn}{{{Bb{EJ`}}}EJ`}{{{Bb{EJb}}}EJb}{{{Bb{EJd}}}EJd}{{{Bb{EJf}}}EJf}{{{Bb{EJh}}}EJh}{{{Bb{EJj}}}EJj}{{{Bb{EGb}}}EGb}{{{Bb{EG`}}}EG`}{{{Bb{EJl}}}EJl}{{Bb{Bb{B`c}}}Bd{}}000000000000000000000000000000000{{BbGn}Bd}000000000000000000000000000000000{ce{}{}}000000000000000000000000000000000{EHnBf}{EJjEFl}{Id{{Bb{c}}}{}}000000000000000000000000000000000{Id{{Bb{B`c}}}{}}000000000000000000000000000000000{EHjBf}{EIbEFl}{{{Bb{EJn}}}{{Bl{EFnEJl}}}}{{{Bb{EFn}}}{{Bl{EFnEJl}}}}{Bb{{Bb{c}}}{}}000000000000000000000000000000000{IdBd}000000000000000000000000000000000{{{Bb{EGf}}{Bb{EGf}}}C`}{{{Bb{EFj}}{Bb{EFj}}}C`}{{{Bb{EGh}}{Bb{EGh}}}C`}{{{Bb{EGj}}{Bb{EGj}}}C`}{{{Bb{EFn}}{Bb{EFn}}}C`}{{{Bb{EEl}}{Bb{EEl}}}C`}{{{Bb{EGl}}{Bb{EGl}}}C`}{{{Bb{EGd}}{Bb{EGd}}}C`}{{{Bb{EGn}}{Bb{EGn}}}C`}{{{Bb{EH`}}{Bb{EH`}}}C`}{{{Bb{EHb}}{Bb{EHb}}}C`}{{{Bb{EHd}}{Bb{EHd}}}C`}{{{Bb{EHf}}{Bb{EHf}}}C`}{{{Bb{EHh}}{Bb{EHh}}}C`}{{{Bb{EHj}}{Bb{EHj}}}C`}{{{Bb{EHl}}{Bb{EHl}}}C`}{{{Bb{EHn}}{Bb{EHn}}}C`}{{{Bb{EI`}}{Bb{EI`}}}C`}{{{Bb{EIb}}{Bb{EIb}}}C`}{{{Bb{EId}}{Bb{EId}}}C`}{{{Bb{EIf}}{Bb{EIf}}}C`}{{{Bb{EIh}}{Bb{EIh}}}C`}{{{Bb{EIj}}{Bb{EIj}}}C`}{{{Bb{EIl}}{Bb{EIl}}}C`}{{{Bb{EIn}}{Bb{EIn}}}C`}{{{Bb{EJ`}}{Bb{EJ`}}}C`}{{{Bb{EJb}}{Bb{EJb}}}C`}{{{Bb{EJd}}{Bb{EJd}}}C`}{{{Bb{EJf}}{Bb{EJf}}}C`}{{{Bb{EJh}}{Bb{EJh}}}C`}{{{Bb{EJj}}{Bb{EJj}}}C`}{{{Bb{EGb}}{Bb{EGb}}}C`}{{{Bb{EG`}}{Bb{EG`}}}C`}{{Bb{Bb{c}}}C`{}}00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000{EIfANl}{{{Bb{EGf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EFj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EGh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EGj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EFn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EEl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EGl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EGd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EGn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EH`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EHb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EHd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EHf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EHh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EHj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EHl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EHn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EI`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EIb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EId}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EIf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EIh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EIj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EIl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EIn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EJ`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EJb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EJd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EJf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EJh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EJj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EGb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EG`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EJl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}0{cc{}}000000000000000000000000000000{EIhEGb}{EIlEGb}2{EJbEGb}{EJ`EGb}{EElEGb}{EJdEGb}{EFjEGb}{EHhEGb}{EJhEGb}{EHlEGb}{EJjEGb}{EGjEGb}{EIdEGb}{EHdEGb}{EH`EGb}{EI`EGb}{EGdEGb}{EGfEG`}{EHfEG`}{EJfEG`}{EIjEG`}{EInEG`}{cc{}}{EGnEG`}{EIfEG`}{EIbEG`}{EGhEG`}{EHnEG`}{EHjEG`}{EFnEG`}{EGlEG`}{EHbEG`}99999999999999999999999999999999999{ce{}{}}000000000000000000000000000000000{EIjEFl}{EIlEFl}{{}EFn}{{{Bb{EGf}}{Bb{B`c}}}BdLb}{{{Bb{EFj}}{Bb{B`c}}}BdLb}{{{Bb{EGh}}{Bb{B`c}}}BdLb}{{{Bb{EGj}}{Bb{B`c}}}BdLb}{{{Bb{EFn}}{Bb{B`c}}}BdLb}{{{Bb{EEl}}{Bb{B`c}}}BdLb}{{{Bb{EGl}}{Bb{B`c}}}BdLb}{{{Bb{EGd}}{Bb{B`c}}}BdLb}{{{Bb{EGn}}{Bb{B`c}}}BdLb}{{{Bb{EH`}}{Bb{B`c}}}BdLb}{{{Bb{EHb}}{Bb{B`c}}}BdLb}{{{Bb{EHd}}{Bb{B`c}}}BdLb}{{{Bb{EHf}}{Bb{B`c}}}BdLb}{{{Bb{EHh}}{Bb{B`c}}}BdLb}{{{Bb{EHj}}{Bb{B`c}}}BdLb}{{{Bb{EHl}}{Bb{B`c}}}BdLb}{{{Bb{EHn}}{Bb{B`c}}}BdLb}{{{Bb{EI`}}{Bb{B`c}}}BdLb}{{{Bb{EIb}}{Bb{B`c}}}BdLb}{{{Bb{EId}}{Bb{B`c}}}BdLb}{{{Bb{EIf}}{Bb{B`c}}}BdLb}{{{Bb{EIh}}{Bb{B`c}}}BdLb}{{{Bb{EIj}}{Bb{B`c}}}BdLb}{{{Bb{EIl}}{Bb{B`c}}}BdLb}{{{Bb{EIn}}{Bb{B`c}}}BdLb}{{{Bb{EJ`}}{Bb{B`c}}}BdLb}{{{Bb{EJb}}{Bb{B`c}}}BdLb}{{{Bb{EJd}}{Bb{B`c}}}BdLb}{{{Bb{EJf}}{Bb{B`c}}}BdLb}{{{Bb{EJh}}{Bb{B`c}}}BdLb}{{{Bb{EJj}}{Bb{B`c}}}BdLb}{{{Bb{EGb}}{Bb{B`c}}}BdLb}{{{Bb{EG`}}{Bb{B`c}}}BdLb}{EJhBf}{EJhEK`}{EJ`Ij}{{}Id}000000000000000000000000000000000{{}c{}}0000000000000000000000000000000000000000000000000000000000000000000{{{I`{c}}}{{I`{Dl}}}{}}000000000000000000000000000000000{{{Lj{c}}}{{Lj{Dl}}}{}}00000000000000{{{Ll{c}}}{{Ll{Dl}}}{}}000000000000000000000000000000000{{{Fl{c}}}e{}{}}00000000000000000000000000000000044444444444444444444444444444444444444444444444444444444444444444444{{}c{}}000000000000000000000000000000000{EH`EFl}{{}EGf}{{{EFl{EKb}}}EFj}{{}EGh}{{{EFl{EKb}}}EGj}{{}EGl}{{{EFl{EKb}}}EGd}{{}EGn}{{{EFl{EKb}}}EH`}{{}EHb}{{{EFl{EKb}}}EHd}{{}EHf}{{{EFl{EKb}}}EHh}{{{Bf{{EFl{EKb}}}}ANl}EHj}{KnEHl}{{{Bf{{EFl{EKb}}}}ANl}EHn}{{{EK`{Ij}}}EI`}{{{EFl{EKb}}}EIb}{{{EFl{EKb}}}EId}{ANlEIf}{IjEIh}{{{EFl{EKb}}}EIj}{{{EFl{EKb}}}EIl}{{}EIn}{IjEJ`}{{{EFl{EKb}}}EJb}{{{EFl{EKb}}}EJd}{{}EJf}{{{EK`{EKd}}}EJh}{{{EFl{EKb}}}EJj}{EGjEFl}{EJbEFl}{EJdEFl}{{}EFn}0{EIhIj}{{{Bb{EKf}}}{{Bl{EG`EJl}}}}{Bb{{Bl{EG`EJl}}}}{{{Bb{EKh}}}{{Bl{EGbEJl}}}}{Bb{{Bl{EGbEJl}}}}{EHjANl}{EHnANl}{EIdEFl}{Bbc{}}000000000000000000000000000000000{BbABh}{BbHb}{{}{{Bl{c}}}{}}000000000000000000000000000000000{c{{Bl{e}}}{}{}}000000000000000000000000000000000{{}{{Bl{c}}}{}}000000000000000000000000000000000{{}{{Bl{c{ABj{c}}}}}{}}000000000000000000000000000000000{BbABl}000000000000000000000000000000000{EHhEFl}{EHhBf}{{}EFn}{ce{}{}}000000000000000000000000000000000{{}c{}}000000000000000000000000000000000{Bb{{Bf{{Bb{c}}}}}{}}000000000000000000000000000000000{EHlKn}{EI`Bf}{{}c{}}0000000000000000000000000000000006{EHdEFl}3{EI`EK`}{{{Bb{EKj}}}{{Bl{EElEJl}}}}{{{Bb{EEl}}}{{Bl{EElEJl}}}}:````{eg{}{{l{c}}}{}}{ce{}{}}:{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{AHdAFl}{{{Fl{c}}}e{}{}}6{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}5{IdBd}{{{Bb{EEh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}0{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}};33{{}c{}}{AHdKj}{AHdAn}{BbABh}{BbHb}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}``{eg{}{{l{c}}}{}}{EEjHb}{ce{}{}}5{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{EEj}}}EEj}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}8{NdC`}{{}EEj}{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}9{IdBd}{{{Bb{EEj}}{Bb{EEj}}}C`}{{Bb{Bb{c}}}C`{}}006{{{Bb{EEj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0{ce{}{}}9{NdBf}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}44{{}c{}}{NdBAb}8{NdC`}92{EEjC`}{NdEEj}{NdBAd}3{NdAn}{Bbc{}}5{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}={{}c{}}","D":"ADMfAEE`DBj","p":[[5,"Color",21032,23801],[1,"f32"],[5,"Task",21032,23802],[5,"Handle",6419,23802],[1,"tuple",null,null,1],[10,"TransformMatrix",23803],[5,"Radians",21032,23804],[5,"Degrees",21032,23804],[5,"Pixels",21032,23805],[5,"Point",21032,23806],[5,"Vector",21032,23807],[17,"Output"],[10,"Add",23808],[5,"Rectangle",21032,23809],[5,"Size",21032,23810],[0,"mut"],[1,"reference",null,null,1],[1,"unit"],[6,"Option",23811,null,1],[10,"MaybeSend",23812],[10,"Fn",23813],[6,"Result",23814,null,1],[5,"Settings",21032,23815],[1,"bool"],[17,"State"],[17,"Message"],[17,"Theme"],[10,"Program",21032,23816],[5,"Application",4335],[10,"Title",4335],[10,"Send",23817],[10,"Debug",23818],[10,"Update",4335],[10,"Default",23819],[10,"Base",21102,23820],[10,"View",4335],[6,"Rotation",21032,23821],[10,"Any",23822],[5,"Transformation",21032,23823],[1,"array"],[5,"Animation",21032,23824],[10,"Clone",23825],[10,"Copy",23817],[10,"PartialEq",23826],[10,"Float",4253],[6,"Theme",21032,23820],[5,"Style",21102,23820],[17,"Item"],[10,"IntoIterator",23827],[5,"Subscription",21032,23828],[5,"Shadow",21032,23829],[5,"Padding",21032,23830],[10,"Into",23831,null,1],[5,"BakedParameters",23832],[6,"Alignment",21032,23833],[5,"Border",21032,23834],[6,"Event",21032,23835],[5,"Font",21032,23836],[6,"Gradient",21032,23837],[6,"Background",21032,23838],[6,"ContentFit",21032,23839],[6,"Length",21032,23840],[1,"u8"],[5,"Vec",23841],[5,"String",23842],[5,"Palette",21102,23843],[5,"Extended",21103,23843],[10,"FnOnce",23813],[5,"Daemon",4480],[10,"Title",4480],[10,"View",4480],[5,"Box",23844,null,1],[5,"Duration",7054,23845],[1,"usize"],[10,"Float",23846],[10,"Num",23847],[1,"u32"],[6,"Easing",4253,23848],[10,"Executor",21032,23849],[6,"Family",4815,23836],[1,"u16"],[5,"Formatter",23818],[5,"Error",23818],[6,"Error",21032,23850],[8,"Result",23818],[10,"Display",23818],[6,"Error",23851],[6,"Horizontal",4159,23833],[6,"Vertical",4159,23833],[5,"Linear",4870,23837],[5,"Rgb",23852],[5,"Alpha",23853],[1,"f64"],[1,"i64"],[1,"u64"],[10,"Future",23854,null,1],[10,"Hasher",23855],[10,"Hash",23855],[5,"Instant",7054,23856],[10,"Interpolable",4253,23857],[5,"Arc",23858,null,1],[5,"Rc",23859,null,1],[10,"FnMut",23813],[10,"Mul",23808],[10,"Neg",23808],[6,"Infallible",23831],[5,"Error",23860],[1,"str"],[6,"Ordering",23826],[5,"Radius",4453,23834],[8,"Result",21032],[17,"Renderer"],[17,"Executor"],[5,"Settings",23799,23861],[10,"Stream",23862],[1,"fn"],[5,"Id",23799,23863],[6,"Stretch",4815,23836],[6,"Status",21110,23864],[5,"Style",21110,23864],[5,"Style",16413,23865],[6,"Status",16210,23866],[5,"Style",16210,23866],[6,"Status",18606,23867],[5,"Style",18606,23867],[6,"Status",18107,23868],[5,"Style",18107,23868],[5,"Style",18709,23869],[6,"Status",19690,23870],[5,"Style",19690,23870],[5,"Style",18310,23871],[6,"Status",18809,23872],[5,"Style",18809,23872],[6,"Status",19984,23873],[5,"Style",19984,23873],[5,"Style",18080,23874],[5,"Style",17155,23875],[6,"Status",21285,23876],[5,"Style",21285,23876],[5,"Style",18366,23877],[5,"Style",19977,23878],[6,"Status",9178,23879],[5,"Style",9178,23879],[6,"Status",20542,23880],[5,"Style",20542,23880],[6,"Style",4815,23836],[10,"Sub",23808],[5,"SmolStr",23881],[5,"OutOfBounds",23882],[5,"TypeId",23822],[8,"Element",21032],[6,"Weight",4815,23836],[10,"Sync",23817],[5,"Shell",3871,23883],[5,"Layout",3871,23884],[5,"Text",3871,23885],[10,"Widget",3871,23886],[5,"Tree",4129,23887],[10,"DoubleEndedIterator",23888],[10,"Renderer",3871,23889],[10,"Overlay",3871,23890],[5,"Style",2637,23889],[6,"Cursor",5941,23891],[6,"Status",4542,23835],[5,"Quad",2637,23889],[6,"InputMethod",23892],[5,"Node",2154,23893],[5,"Limits",2154,23894],[6,"LineHeight",19976,23885],[6,"Interaction",5941,23895],[10,"Operation",4129,23896],[5,"Element",2553,23897],[10,"Clipboard",3871,23898],[6,"Kind",1841,23898],[6,"RedrawRequest",23799,23899],[10,"AsRef",23831],[6,"Shaping",19976,23885],[6,"State",4130,23887],[5,"Tag",4130,23887],[6,"Wrapping",19976,23885],[5,"Null",1841,23898],[5,"Bytes",16539,23900],[1,"slice"],[5,"Image",16539,23901],[6,"Handle",16539,23901],[5,"Id",16539,23901],[6,"FilterMethod",16539,23901],[17,"Handle"],[10,"Renderer",16539,23901],[1,"char"],[10,"FromIterator",23827],[10,"Sized",23817],[5,"BytesMut",23902],[5,"Screenshot",23799,23903],[5,"PathBuf",23904],[10,"RangeBounds",23905],[15,"Rgba",16599],[6,"Axis",2272,23906],[5,"Element",23907],[5,"Click",2354,23908],[6,"Kind",2405,23908],[6,"Button",5941,23909],[15,"WheelScrolled",6210],[6,"ScrollDelta",5941,23910],[15,"CursorMoved",6210],[15,"Lines",6212],[15,"Pixels",6212],[5,"Group",2553,23911],[10,"Headless",2637,23889],[6,"Event",2661,23828],[6,"PlatformSpecific",2661,23828],[6,"MacOS",2661,23828],[10,"Recipe",2661,23828],[5,"FxHasher",23912],[5,"Pin",23913],[15,"Interaction",2805],[5,"Svg",2808,23914],[5,"Handle",2808,23914],[6,"Data",2808,23914],[10,"Renderer",2808,23914],[6,"Cow",23915],[5,"Span",19976,23885],[5,"Highlight",19976,23885],[17,"Font"],[10,"Editor",19976,23916],[17,"Settings"],[17,"Highlight"],[17,"Iterator"],[10,"Highlighter",19976,23917],[5,"Range",23905],[10,"Iterator",23918],[6,"Hit",19976,23885],[6,"Difference",19976,23885],[10,"Paragraph",19976,23919],[6,"Cursor",3528,23916],[17,"Paragraph"],[17,"Editor"],[10,"Renderer",19976,23885],[5,"Format",3630,23917],[10,"IntoFragment",19976,23885],[5,"Line",19984,23916],[6,"Action",19984,23916],[6,"Direction",3528,23916],[6,"LineEnding",19984,23916],[15,"Scroll",20540],[1,"i32"],[5,"PlainText",3630,23917],[5,"Plain",3695,23919],[5,"Text",4129,23878],[10,"Catalog",19977,23878],[5,"Id",4129,23920],[10,"Borrow",23921],[6,"Outcome",4023,23896],[10,"Focusable",4023,23922],[5,"Id",20542,23880],[5,"Id",18809,23872],[5,"Id",16413,23865],[10,"Scrollable",4023,23923],[10,"TextInput",4023,23924],[5,"AbsoluteOffset",18809,23923],[5,"RelativeOffset",18809,23923],[5,"Count",4000,23922],[5,"State",19977,23878],[17,"Class"],[6,"Level",23799,23925],[6,"Position",23799,23926],[6,"Error",4815,23927],[5,"ColorStop",4870,23837],[5,"Modifiers",5730,23928],[6,"Key",5730,23929],[6,"Event",5730,23930],[6,"Location",5730,23931],[10,"Ord",23826],[6,"Named",5731,23929],[5,"Iter",23932],[5,"IterNames",23932],[10,"PartialOrd",23826],[15,"KeyPressed",5219],[15,"KeyReleased",5219],[6,"Physical",5731,23929],[6,"Code",5731,23929],[6,"NativeCode",5731,23929],[6,"Event",5941,23910],[5,"State",17155,23875],[5,"Menu",17155,23875],[10,"ToString",23842],[10,"Catalog",17155,23875],[5,"Sender",23933],[5,"Information",6367,23934],[5,"Custom",21102,23820],[5,"LazyLock",23935],[5,"Background",21103,23843],[5,"Pair",21103,23843],[5,"Primary",21103,23843],[5,"Secondary",21103,23843],[5,"Success",21103,23843],[5,"Warning",21103,23843],[5,"Danger",21103,23843],[5,"Duration",23936],[1,"u128"],[10,"Deserializer",23937],[6,"Signature",23938],[6,"Error",23939],[5,"Instant",23940],[5,"Delay",23941],[5,"TimeSpec",23942],[10,"Serializer",23943],[5,"ConversionRange",23944],[5,"TryFromFloatSecsError",23845],[6,"Event",7252,23945],[5,"Finger",7252,23945],[15,"FingerPressed",7344],[15,"FingerMoved",7344],[15,"FingerLifted",7344],[15,"FingerLost",7344],[5,"Container",7419,23865],[10,"Catalog",16413,23865],[5,"Column",7419,23946],[5,"TextInput",7419,23880],[10,"Catalog",20542,23880],[5,"Row",7419,23947],[5,"Scrollable",7419,23872],[10,"Catalog",18809,23872],[6,"Anchor",18809,23872],[5,"Action",7419,23948],[5,"Pop",7419,23949],[5,"Themer",7419,23950],[5,"Button",7419,23879],[10,"Catalog",9178,23879],[5,"Canvas",7419,23951],[10,"Renderer",23952],[10,"Program",16203,23953],[5,"QRCode",7419,23877],[10,"Catalog",18366,23877],[5,"Checkbox",7419,23866],[10,"Catalog",16210,23866],[5,"MouseArea",7419,23954],[5,"Pin",7419,23955],[5,"Stack",7419,23956],[5,"ComboBox",7419,23957],[10,"Catalog",16364,23957],[5,"PaneGrid",7419,23874],[10,"Catalog",18080,23874],[5,"Tooltip",7419,23958],[5,"Lazy",7419,23959],[5,"PickList",7419,23868],[10,"Catalog",18107,23868],[5,"ProgressBar",7419,23871],[10,"Catalog",18310,23871],[5,"Radio",7419,23867],[10,"Catalog",18606,23867],[5,"Rule",7419,23869],[10,"Catalog",18709,23869],[5,"Slider",7419,23876],[10,"From",23831,null,1],[10,"Catalog",21285,23876],[5,"TextEditor",7419,23873],[10,"Catalog",19984,23873],[5,"Toggler",7419,23864],[10,"Catalog",21110,23864],[5,"VerticalSlider",7419,23960],[5,"Svg",7419,23870],[10,"Catalog",19690,23870],[5,"State",16364,23957],[10,"Component",7419,23961],[5,"Image",7419,23962],[6,"Direction",18809,23872],[10,"FromPrimitive",23963],[5,"Value",20542,23964],[5,"Responsive",7419,23965],[5,"Shader",7419,23966],[10,"Program",19351,23967],[10,"Renderer",23968],[5,"Renderer",23969],[5,"Renderer",23970],[6,"Renderer",23971],[5,"Space",7419,23972],[6,"Handle",18107,23868],[6,"Theme",23973],[5,"Highlighter",23973],[5,"Icon",16210,23866],[5,"Icon",20542,23880],[5,"KeyPress",19984,23873],[6,"Binding",19984,23873],[5,"Column",16650,23974],[5,"Url",16774,23975],[6,"Item",16774,23976],[5,"Settings",16774,23976],[10,"Catalog",16774,23976],[5,"State",18080,23977],[5,"Pane",18080,23978],[5,"Content",18080,23979],[5,"RangeInclusive",23905],[10,"Eq",23826],[5,"Content",19984,23873],[6,"Position",21215,23958],[5,"Data",18366,23877],[6,"DragEvent",18080,23874],[5,"ResizeEvent",18080,23874],[5,"Viewport",18809,23872],[17,"Event"],[5,"Rich",19977,23980],[5,"Wrapping",23947],[5,"Path",16203,23981],[5,"Group",16203,23982],[6,"Gradient",16203,23983],[5,"Fill",16203,23984],[5,"Stroke",16203,23985],[6,"LineCap",16203,23985],[6,"LineJoin",16203,23985],[5,"LineDash",16203,23985],[6,"Style",16203,23986],[5,"Text",16203,23987],[5,"Linear",9852,23983],[5,"Builder",10082,23988],[5,"Packed",9852,23983],[5,"Path",16117,23989],[6,"Rule",9839,23984],[5,"UnknownUnit",14747,23990],[5,"Transform2D",14747,23991],[5,"Arc",10082,23992],[5,"Elliptical",10083,23992],[5,"PathCommands",16117,23993],[5,"PathCommandsSlice",16117,23993],[5,"PathSlice",16117,23989],[5,"PathBuffer",16117,23994],[5,"PathBufferSlice",16117,23994],[5,"EndpointId",16117,23995],[5,"BuilderImpl",16117,23989],[5,"Point2D",14747,23996],[5,"BuilderWithAttributes",16117,23989],[5,"PathCommandsBuilder",11735,23993],[5,"NoAttributes",16164,23997],[5,"Builder",15833,23994],[5,"ArcFlags",16117,23998],[6,"Event",16117,23999],[5,"Iter",16117,23989],[5,"IterWithAttributes",16117,23989],[5,"IdIter",16117,23989],[5,"Polygon",16117,24000],[5,"IdPolygon",16117,24000],[6,"LineCap",16117,23995],[6,"LineJoin",16117,23995],[6,"Side",16117,23995],[6,"FillRule",16117,23995],[6,"Winding",16117,23995],[5,"ControlPointId",16117,23995],[5,"EventId",16117,23995],[5,"Events",11735,23993],[10,"AttributeStore",16117,23995],[5,"AttributeSlice",16117,23995],[10,"PositionStore",16117,23995],[10,"Position",16117,23995],[5,"PolygonIdIter",16119,24000],[5,"Iter",11735,23993],[5,"Reversed",16117,23989],[1,"i16"],[5,"Iter",15833,23994],[5,"PolygonIter",16119,24000],[5,"IdPolygonIter",16119,24000],[5,"PathEvents",16119,24000],[5,"CommandsPathSlice",11735,23993],[5,"NoAttributes",15630,24001],[5,"WithSvg",16164,23997],[10,"Transformation",15620,24002],[15,"Begin",11339],[15,"End",11339],[15,"Quadratic",11339],[15,"Cubic",11339],[15,"Line",11339],[10,"PathBuilder",16164,23997],[5,"Vector2D",14747,24003],[5,"Angle",15622,24004],[5,"LineSegment",15622,24005],[10,"SvgPathBuilder",16164,23997],[5,"Box2D",14747,24006],[5,"BorderRadii",16164,23997],[5,"Flattened",16164,23997],[5,"Transformed",16164,23997],[17,"PathType"],[10,"Build",16164,23997],[5,"PointEvents",11735,23993],[5,"LineEquation",15622,24005],[10,"Scalar",15622,24007],[5,"Triangle",15622,24008],[10,"AddAssign",23808],[17,"Scalar"],[10,"Segment",15622,24009],[5,"Arc",15622,23998],[5,"CubicBezierSegment",15622,24010],[5,"QuadraticBezierSegment",15622,24011],[8,"Rotation",15622,24012],[10,"Rem",23808],[10,"One",24013],[10,"FloatConst",23846],[10,"ApproxEq",15386,24014],[10,"NumCast",23963],[5,"SvgArc",15622,23998],[5,"Line",15622,24005],[5,"ArrayVec",12832,24015],[10,"Trig",14747,24016],[10,"Div",23808],[10,"DivAssign",23808],[5,"Flattened",12821,23998],[5,"Flattened",13303,24010],[5,"Flattened",15577,24011],[5,"FlattenedT",15577,24011],[8,"Size",15622],[8,"Transform",15622,24012],[8,"Box2D",15622,24017],[10,"MulAssign",23808],[10,"Zero",24013],[10,"Real",24018],[5,"Size2D",14747,24019],[10,"SubAssign",23808],[8,"Translation",15622,24012],[8,"Point",15622],[8,"Vector",15622],[5,"ArrayString",12832,24020],[5,"IntoIter",12832,24015],[5,"Path",23904],[5,"CapacityError",12832,24021],[5,"Drain",12832,24015],[5,"Utf8Error",24022],[5,"Arguments",23818],[1,"i128"],[1,"i8"],[6,"Endian",24023],[10,"Signed",24024],[5,"Size3D",14747,24019],[5,"Vector3D",14747,24003],[5,"Length",14747,24025],[5,"Point3D",14747,23996],[5,"Scale",14747,24026],[5,"SideOffsets2D",14747,24027],[5,"Translation2D",14747,24028],[5,"Translation3D",14747,24028],[5,"BoolVector2D",14747,24003],[5,"BoolVector3D",14747,24003],[5,"Rotation2D",14747,24029],[5,"Transform3D",14747,24030],[5,"Rotation3D",14747,24029],[5,"Rect",14747,24031],[5,"Box3D",14747,24032],[5,"RigidTransform3D",14747,24033],[10,"Ceil",15475,24034],[10,"One",15475,24034],[5,"HomogeneousVector",14747,24035],[10,"Zero",15475,24034],[10,"Euclid",24036],[10,"Floor",15475,24034],[10,"Round",15475,24034],[10,"Saturating",24037],[8,"Rotation2D",15467,24017],[8,"SideOffsets2D",15467,24017],[8,"Size3D",15467,24017],[8,"Rotation3D",15467,24017],[8,"Transform2D",15467,24017],[8,"Transform3D",15467,24017],[8,"Box3D",15467,24017],[8,"Rect",15467,24017],[8,"RigidTransform3D",15467,24017],[8,"HomogeneousVector",15467,24017],[8,"Point3D",15467,24017],[8,"Vector3D",15467,24017],[8,"Translation2D",15467,24017],[8,"Translation3D",15467,24017],[5,"FlatteningParameters",15577,24011],[5,"FromPolyline",15630,24001],[10,"PathIterator",15630,24001],[5,"Flattened",15630,24001],[5,"Transformed",15630,24001],[8,"Rotation",15794,24038],[8,"Size",15794,24038],[8,"Transform",15794,24038],[8,"Box2D",15794,24038],[8,"Angle",15794,24038],[8,"Point",15794,24038],[8,"Vector",15794,24038],[8,"Translation",15794,24038],[5,"BuilderWithAttributes",15833,23994],[5,"IterBridge",24039],[15,"Active",16361],[15,"Hovered",16361],[15,"Disabled",16361],[5,"Viewer",16543,24040],[5,"State",16603,24040],[6,"HeadingLevel",16774,24041],[5,"Text",16774,23976],[5,"Style",16774,23976],[10,"Viewer",16774,23976],[5,"Content",16774,23976],[6,"ParseError",24042],[6,"Host",24043],[5,"HashSet",24044],[6,"Position",24045],[5,"RangeTo",23905],[5,"RangeFull",23905],[5,"RangeFrom",23905],[5,"ParseOptions",23975],[6,"Origin",24046],[5,"Split",24047],[5,"PathSegmentsMut",24048],[5,"Parse",24049],[5,"UrlQuery",23975],[5,"Serializer",24049],[6,"IpAddr",24050],[6,"SocketAddr",24051],[15,"Image",17137],[15,"CodeBlock",17137],[15,"List",17137],[6,"Direction",18080,24052],[5,"TitleBar",18080,24053],[5,"Highlight",18080,23874],[10,"Draggable",18080,24054],[6,"Axis",18080,24055],[6,"Configuration",18080,24056],[6,"Node",18080,24057],[5,"Split",18080,24058],[6,"Target",18080,23874],[6,"Region",18080,23874],[6,"Edge",18080,23874],[5,"Line",18080,23874],[5,"Controls",18080,24059],[5,"Internal",18081,23977],[5,"BTreeMap",24060],[15,"Split",17996],[15,"Picked",18000],[15,"Dropped",18000],[15,"Canceled",18000],[15,"Split",18004],[6,"Action",18081,23977],[15,"Resizing",18103],[15,"Dragging",18103],[5,"Icon",18107,23868],[15,"Dynamic",18305],[15,"Arrow",18305],[15,"Opened",18308],[6,"Version",18366,23877],[6,"ErrorCorrection",18366,23877],[6,"Error",18366,23877],[6,"QrError",24061],[15,"Active",18707],[15,"Hovered",18707],[6,"FillMode",18709,23869],[5,"Scrollbar",18809,23872],[5,"Rail",18809,23872],[5,"Scroller",18809,23872],[15,"Both",19339],[15,"Active",19341],[15,"Hovered",19341],[15,"Dragged",19341],[5,"Viewport",19351,24062],[5,"Storage",19351,23968],[17,"Primitive"],[10,"Primitive",19351,23968],[5,"Device",24063],[5,"Queue",24064],[6,"TextureFormat",24065],[5,"CommandEncoder",24066],[5,"TextureView",24067],[5,"Handle",21285,23876],[5,"Rail",21285,23876],[6,"HandleShape",21285,23876],[15,"Rectangle",21290],[15,"Circle",21290],[6,"Edit",19984,23916],[6,"Motion",19984,23916],[5,"State",19984,23873],[15,"Focused",20541],[5,"Cursor",20542,24068],[6,"Side",20542,23880],[5,"State",20542,23880],[6,"State",20957,24068],[15,"Focused",20956],[15,"Selection",21005],[15,"Active",21213],[15,"Hovered",21213],[5,"Icon",23799,24069],[6,"Direction",23799,24070],[6,"Event",23799,24071],[6,"Mode",23799,24072],[6,"UserAttention",23799,24073],[6,"CropError",23726,23903],[5,"PlatformSpecific",23800,24074],[5,"WindowHandle",22001,24075],[15,"Opened",21948],[6,"Error",21950],[6,"ImageError",24076],[6,"Error",24069],[6,"ImageFormat",24077],[10,"Error",24078],[5,"AndroidNdkWindowHandle",22001,24079],[5,"NonNull",24080],[5,"DisplayHandle",22001,24075],[6,"RawDisplayHandle",22001,24081],[6,"RawWindowHandle",22001,24081],[5,"HaikuWindowHandle",22001,24082],[5,"AndroidDisplayHandle",22001,24079],[5,"AppKitDisplayHandle",22001,24083],[5,"AppKitWindowHandle",22001,24083],[5,"HaikuDisplayHandle",22001,24082],[5,"OhosDisplayHandle",22001,24084],[5,"OhosNdkWindowHandle",22001,24084],[5,"OrbitalDisplayHandle",22001,24085],[5,"OrbitalWindowHandle",22001,24085],[5,"UiKitDisplayHandle",22001,24086],[5,"UiKitWindowHandle",22001,24086],[5,"XlibDisplayHandle",22001,24087],[5,"XlibWindowHandle",22001,24087],[5,"XcbDisplayHandle",22001,24087],[5,"XcbWindowHandle",22001,24087],[5,"WaylandDisplayHandle",22001,24087],[5,"WaylandWindowHandle",22001,24087],[5,"DrmDisplayHandle",22001,24087],[5,"DrmWindowHandle",22001,24087],[5,"GbmDisplayHandle",22001,24087],[5,"GbmWindowHandle",22001,24087],[5,"WebDisplayHandle",22001,24088],[5,"WebWindowHandle",22001,24088],[5,"WebCanvasWindowHandle",22001,24088],[5,"WebOffscreenCanvasWindowHandle",22001,24088],[5,"WindowsDisplayHandle",22001,24089],[5,"Win32WindowHandle",22001,24089],[5,"WinRtWindowHandle",22001,24089],[6,"HandleError",22001,24081],[10,"HasDisplayHandle",22001,24075],[5,"NonZero",24090],[6,"c_void",24091],[1,"isize"],[10,"HasRawDisplayHandle",22001,24081],[10,"HasRawWindowHandle",22001,24081],[10,"HasWindowHandle",22001,24075],[8,"Renderer",21032],[8,"Fragment",19976],[8,"PathEvent",16117],[8,"IdEvent",16117],[6,"Action",23799]],"r":[[0,23820],[1,23833],[2,23824],[3,4335],[4,23801],[5,23838],[6,23834],[7,24092],[8,23820],[9,23820],[10,23820],[11,23820],[12,24093],[13,23833],[14,23801],[15,23838],[16,23839],[17,23839],[18,23839],[19,23820],[20,23836],[21,4480],[22,23820],[23,23804],[24,23820],[26,23833],[28,23850],[29,23835],[30,23849],[31,23816],[32,23850],[33,23820],[34,24094],[35,23839],[36,23840],[37,24094],[38,23840],[39,23840],[40,23821],[41,23836],[42,23837],[43,23838],[44,23850],[45,23820],[46,23820],[47,23823],[48,23809],[49,23810],[50,23835],[51,23820],[52,23820],[53,23820],[54,23835],[55,24095],[56,23840],[57,23820],[58,23837],[59,23836],[60,23816],[61,23820],[62,23835],[63,23820],[64,23839],[65,23820],[66,23806],[68,23820],[69,23804],[70,23830],[71,23805],[72,23806],[74,23816],[75,23804],[76,23804],[77,23804],[78,23809],[79,24096],[80,23816],[82,24095],[83,23821],[84,23839],[86,23815],[87,23829],[88,24094],[89,23840],[90,23810],[91,23820],[92,23820],[93,23821],[94,23833],[95,23816],[96,23828],[97,23801],[98,23802],[99,23820],[100,23816],[101,23820],[102,23820],[103,23820],[104,24092],[105,23835],[106,23823],[107,23810],[108,23807],[109,23801],[110,23835],[111,23850],[112,23830],[113,23805],[114,23810],[115,23807],[116,23801],[117,23802],[118,23802],[119,23828],[120,23850],[121,23833],[122,23824],[123,23834],[124,23835],[125,23836],[126,23837],[127,23830],[128,23820],[129,23804],[130,23804],[131,23838],[132,23801],[133,23839],[134,23840],[135,23805],[136,23806],[137,23809],[138,23821],[139,23815],[140,23829],[141,23810],[142,23823],[143,23807],[144,23804],[145,23804],[146,23805],[147,23805],[148,23806],[149,23809],[150,23810],[151,23807],[152,23804],[154,24097],[155,23802],[156,23802],[157,24097],[158,23815],[160,4335],[161,23821],[162,23809],[163,23802],[164,23828],[165,23850],[166,23833],[167,23824],[168,23834],[169,23835],[170,23836],[171,23837],[172,23830],[173,23820],[174,23804],[175,23804],[176,23838],[177,23801],[178,23839],[179,23840],[180,23805],[181,23806],[182,23809],[183,23821],[184,23815],[185,23829],[186,23810],[187,23823],[188,23807],[189,23802],[190,23828],[191,23850],[192,23833],[193,23824],[194,23834],[195,23835],[196,23836],[197,23837],[198,23830],[199,23820],[200,23804],[201,23804],[202,23838],[203,23801],[204,23839],[205,23840],[206,23805],[207,23806],[208,23809],[209,23821],[210,23815],[211,23829],[212,23810],[213,23823],[214,23807],[215,23802],[216,23828],[217,23850],[218,23833],[219,23824],[220,23834],[221,23835],[222,23836],[223,23837],[224,23830],[225,23820],[226,23804],[227,23804],[228,23838],[229,23801],[230,23839],[231,23840],[232,23805],[233,23806],[234,23809],[235,23821],[236,23815],[237,23829],[238,23810],[239,23823],[240,23807],[241,23802],[242,23828],[243,23850],[244,23833],[245,23824],[246,23834],[247,23835],[248,23836],[249,23837],[250,23830],[251,23820],[252,23804],[253,23804],[254,23838],[255,23801],[256,23839],[257,23840],[258,23805],[259,23806],[260,23809],[261,23821],[262,23815],[263,23829],[264,23810],[265,23823],[266,23807],[267,23823],[268,23824],[269,23801],[270,23820],[271,23802],[272,23828],[273,23829],[274,24097],[275,23802],[276,23828],[277,23850],[278,23833],[279,23824],[280,23834],[281,23835],[282,23836],[283,23837],[284,23830],[285,23820],[286,23804],[287,23804],[288,23838],[289,23801],[290,23839],[291,23840],[292,23805],[293,23806],[294,23809],[295,23821],[296,23815],[297,23829],[298,23810],[299,23823],[300,23807],[301,23802],[302,23828],[303,23850],[304,23833],[305,23824],[306,23834],[307,23835],[308,23836],[309,23837],[310,23830],[311,23820],[312,23804],[313,23804],[314,23838],[315,23801],[316,23839],[317,23840],[318,23805],[319,23806],[320,23809],[321,23821],[322,23815],[323,23829],[324,23810],[325,23823],[326,23807],[327,23830],[328,23830],[329,23802],[330,23828],[331,23850],[332,23833],[333,23824],[334,23834],[335,23835],[336,23836],[337,23837],[338,23830],[339,23820],[340,23804],[341,23804],[342,23838],[343,23801],[344,23839],[345,23840],[346,23805],[347,23806],[348,23809],[349,23821],[350,23815],[351,23829],[352,23810],[353,23823],[354,23807],[355,23809],[356,23809],[357,23809],[358,23802],[360,23833],[361,23824],[362,23834],[363,23835],[364,23836],[365,23837],[366,23830],[367,23820],[368,23804],[369,23804],[370,23838],[371,23801],[372,23839],[373,23840],[374,23805],[375,23806],[376,23809],[377,23821],[378,23815],[379,23829],[380,23810],[381,23823],[382,23807],[383,23833],[384,23824],[385,23834],[386,23835],[387,23836],[388,23837],[389,23830],[390,23820],[391,23804],[392,23804],[393,23838],[394,23801],[395,23839],[396,23840],[397,23805],[398,23806],[399,23809],[400,23821],[401,23815],[402,23829],[403,23810],[404,23823],[405,23807],[406,23833],[407,23824],[408,23834],[409,23835],[410,23836],[411,23837],[412,23830],[413,23820],[414,23804],[415,23804],[416,23838],[417,23801],[418,23839],[419,23840],[420,23805],[421,23806],[422,23809],[423,23821],[424,23815],[425,23829],[426,23810],[427,23823],[428,23807],[429,23820],[430,23802],[431,23834],[432,23834],[433,23829],[434,24097],[435,23802],[436,23828],[437,23850],[438,23833],[439,23824],[440,23834],[441,23835],[442,23836],[443,23837],[444,23830],[445,23820],[446,23804],[447,23804],[448,23838],[449,23801],[450,23839],[451,23840],[452,23805],[453,23806],[454,23809],[455,23821],[456,23815],[457,23829],[458,23810],[459,23823],[460,23807],[461,23809],[462,23820],[463,23820],[465,4480],[466,23834],[467,23836],[468,23830],[469,23820],[470,23820],[471,23820],[472,23820],[473,23820],[474,23820],[475,23820],[476,23820],[477,23820],[478,23820],[479,23820],[480,23820],[481,23820],[482,23820],[483,23820],[484,23820],[485,23820],[486,23820],[487,23801],[488,23839],[489,23805],[490,23806],[491,23809],[492,23821],[493,23815],[494,23829],[495,23810],[496,23823],[497,23807],[498,23815],[499,23815],[500,23821],[501,23824],[502,23802],[503,23828],[504,23850],[505,23833],[506,23824],[507,23834],[508,23835],[509,23836],[510,23837],[511,23830],[512,23820],[513,23804],[514,23804],[515,23838],[516,23801],[517,23839],[518,23840],[519,23805],[520,23806],[521,23809],[522,23821],[523,23815],[524,23829],[525,23810],[526,23823],[527,23807],[528,23802],[529,23828],[530,23850],[531,23833],[532,23824],[533,23834],[534,23835],[535,23836],[536,23837],[537,23830],[538,23820],[539,23804],[540,23804],[541,23838],[542,23801],[543,23839],[544,23840],[545,23805],[546,23806],[547,23809],[548,23821],[549,23815],[550,23829],[551,23810],[552,23823],[553,23807],[554,23802],[555,23806],[556,23809],[557,23804],[558,23804],[559,23805],[560,23805],[561,23805],[562,23802],[563,23802],[564,23828],[565,23850],[566,23833],[567,23824],[568,23834],[569,23835],[570,23836],[571,23837],[572,23830],[573,23820],[574,23804],[575,23804],[576,23838],[577,23801],[578,23839],[579,23840],[580,23805],[581,23806],[582,23809],[583,23821],[584,23815],[585,23829],[586,23810],[587,23823],[588,23807],[589,23802],[590,23828],[591,23850],[592,23833],[593,23824],[594,23834],[595,23835],[596,23836],[597,23837],[598,23830],[599,23820],[600,23804],[601,23804],[602,23838],[603,23801],[604,23839],[605,23840],[606,23805],[607,23806],[608,23809],[609,23821],[610,23815],[611,23829],[612,23810],[613,23823],[614,23807],[615,23824],[616,23824],[617,23840],[618,23849],[619,23833],[620,23834],[621,23835],[622,23836],[623,23837],[624,23830],[625,23820],[626,23804],[627,23804],[628,23804],[629,23804],[630,23838],[631,23801],[632,23839],[633,23840],[634,23805],[635,23806],[636,23809],[637,23821],[638,23829],[639,23810],[640,23823],[641,23807],[642,23833],[643,23833],[644,23833],[645,23836],[646,23836],[647,23836],[648,23839],[649,23839],[650,23839],[651,23806],[652,23806],[653,23806],[654,23809],[655,23809],[656,23809],[657,23810],[658,23810],[659,23810],[660,23807],[661,23807],[662,23807],[665,24098],[666,23809],[667,23810],[668,23820],[669,23836],[670,23840],[671,23830],[672,23839],[673,23840],[674,23828],[675,23850],[676,23850],[677,23833],[678,23824],[679,23834],[680,23835],[681,23836],[682,23837],[683,23830],[684,23820],[685,23820],[686,23804],[687,23804],[688,23804],[689,23838],[690,23801],[691,23839],[692,23839],[693,23840],[694,23805],[695,23806],[696,23806],[697,23809],[698,23821],[699,23815],[700,23829],[701,23810],[702,23823],[703,23807],[705,23815],[706,23802],[707,23802],[708,23828],[709,23850],[710,23850],[711,23833],[712,23833],[713,23833],[714,23824],[715,23834],[716,23835],[717,23836],[718,23837],[719,23837],[720,23830],[721,23830],[722,23830],[723,23830],[724,23830],[725,23830],[726,23820],[727,23804],[728,23804],[729,23804],[730,23804],[731,23804],[732,23804],[733,23804],[734,23838],[735,23838],[736,23838],[737,23838],[738,23801],[739,23801],[740,23801],[741,23801],[742,23801],[743,23839],[744,23840],[745,23840],[746,23840],[747,23840],[748,23805],[749,23805],[750,23805],[751,23806],[752,23806],[753,23806],[754,23809],[755,23809],[756,23821],[757,23821],[758,23821],[759,23815],[760,23829],[761,23810],[762,23810],[763,23810],[764,23810],[765,23810],[766,23823],[767,23807],[768,23807],[769,23807],[770,23802],[771,23828],[772,23850],[773,23833],[774,23824],[775,23834],[776,23835],[777,23836],[778,23837],[779,23830],[780,23820],[781,23804],[782,23804],[783,23838],[784,23801],[785,23839],[786,23840],[787,23805],[788,23806],[789,23809],[790,23821],[791,23815],[792,23829],[793,23810],[794,23823],[795,23807],[796,23804],[797,23804],[798,23804],[799,23804],[800,23801],[801,23801],[802,23801],[803,23801],[804,23801],[805,23802],[806,23828],[807,23850],[808,23833],[809,23824],[810,23834],[811,23835],[812,23836],[813,23837],[814,23830],[815,23820],[816,23804],[817,23804],[818,23838],[819,23801],[820,23839],[821,23840],[822,23805],[823,23806],[824,23809],[825,23821],[826,23815],[827,23829],[828,23810],[829,23823],[830,23807],[831,23804],[832,23804],[833,23802],[835,23801],[836,23824],[837,23824],[838,24097],[839,23833],[840,23836],[841,23839],[842,23810],[843,23809],[844,23810],[846,23830],[847,23815],[848,23802],[849,23828],[850,23850],[851,23833],[852,23824],[853,23834],[854,23835],[855,23836],[856,23837],[857,23830],[858,23820],[859,23804],[860,23804],[861,23838],[862,23801],[863,23839],[864,23840],[865,23805],[866,23806],[867,23809],[868,23821],[869,23815],[870,23829],[871,23810],[872,23823],[873,23807],[874,23824],[875,23824],[876,23809],[877,23809],[878,23802],[879,23828],[880,23850],[881,23833],[882,23824],[883,23834],[884,23835],[885,23836],[886,23837],[887,23830],[888,23820],[889,23804],[890,23804],[891,23838],[892,23801],[893,23839],[894,23840],[895,23805],[896,23806],[897,23809],[898,23821],[899,23815],[900,23829],[901,23810],[902,23823],[903,23807],[904,23802],[905,23828],[906,23850],[907,23833],[908,23824],[909,23834],[910,23835],[911,23836],[912,23837],[913,23830],[914,23820],[915,23804],[916,23804],[917,23838],[918,23801],[919,23839],[920,23840],[921,23805],[922,23806],[923,23809],[924,23821],[925,23815],[926,23829],[927,23810],[928,23823],[929,23807],[930,23802],[931,23828],[932,23850],[933,23833],[934,23824],[935,23834],[936,23835],[937,23836],[938,23837],[939,23830],[940,23820],[941,23804],[942,23804],[943,23838],[944,23801],[945,23839],[946,23840],[947,23805],[948,23806],[949,23809],[950,23821],[951,23815],[952,23829],[953,23810],[954,23823],[955,23807],[956,23850],[957,23833],[958,23824],[959,23834],[960,23835],[961,23836],[962,23837],[963,23830],[964,23820],[965,23804],[966,23804],[967,23838],[968,23801],[969,23839],[970,23840],[971,23805],[972,23806],[973,23809],[974,23821],[975,23815],[976,23829],[977,23810],[978,23823],[979,23807],[980,23802],[981,23828],[982,23850],[983,23833],[984,23824],[985,23834],[986,23835],[987,23836],[988,23837],[989,23830],[990,23820],[991,23804],[992,23804],[993,23838],[994,23801],[995,23839],[996,23840],[997,23805],[998,23806],[999,23809],[1000,23821],[1001,23815],[1002,23829],[1003,23810],[1004,23823],[1005,23807],[1006,23802],[1007,23828],[1008,23850],[1009,23833],[1010,23824],[1011,23834],[1012,23835],[1013,23836],[1014,23837],[1015,23830],[1016,23820],[1017,23804],[1018,23804],[1019,23838],[1020,23801],[1021,23839],[1022,23840],[1023,23805],[1024,23806],[1025,23809],[1026,23821],[1027,23815],[1028,23829],[1029,23810],[1030,23823],[1031,23807],[1032,23802],[1033,23828],[1034,23850],[1035,23833],[1036,23824],[1037,23834],[1038,23835],[1039,23836],[1040,23837],[1041,23830],[1042,23820],[1043,23804],[1044,23804],[1045,23838],[1046,23801],[1047,23839],[1048,23840],[1049,23805],[1050,23806],[1051,23809],[1052,23821],[1053,23815],[1054,23829],[1055,23810],[1056,23823],[1057,23807],[1058,23802],[1059,23828],[1060,23850],[1061,23833],[1062,23824],[1063,23834],[1064,23835],[1065,23836],[1066,23837],[1067,23830],[1068,23820],[1069,23804],[1070,23804],[1071,23838],[1072,23801],[1073,23839],[1074,23840],[1075,23805],[1076,23806],[1077,23809],[1078,23821],[1079,23815],[1080,23829],[1081,23810],[1082,23823],[1083,23807],[1084,23801],[1085,23801],[1086,23802],[1087,23828],[1088,23850],[1089,23833],[1090,23824],[1091,23834],[1092,23835],[1093,23836],[1094,23837],[1095,23830],[1096,23820],[1097,23804],[1098,23804],[1099,23838],[1100,23801],[1101,23839],[1102,23840],[1103,23805],[1104,23806],[1105,23809],[1106,23821],[1107,23815],[1108,23829],[1109,23810],[1110,23823],[1111,23807],[1112,23801],[1113,23801],[1114,23824],[1115,23840],[1116,23809],[1118,23830],[1119,23830],[1120,23802],[1121,23828],[1122,23810],[1123,23810],[1125,23804],[1126,23804],[1127,23804],[1128,23805],[1129,23805],[1130,23806],[1131,23809],[1132,23809],[1133,23809],[1134,23810],[1135,23810],[1136,23810],[1137,23823],[1138,23807],[1139,23807],[1140,23807],[1141,24097],[1142,23849],[1143,23824],[1144,23830],[1145,23806],[1146,23809],[1147,23810],[1148,23807],[1149,23802],[1150,23828],[1151,23834],[1152,23836],[1153,23830],[1154,23820],[1155,23801],[1156,23839],[1157,23805],[1158,23806],[1159,23809],[1160,23821],[1161,23815],[1162,23829],[1163,23810],[1164,23823],[1165,23807],[1166,23829],[1167,23823],[1169,24097],[1170,23820],[1171,23801],[1172,23804],[1173,23804],[1174,23804],[1175,23804],[1176,23805],[1177,23802],[1178,23809],[1179,23824],[1180,23801],[1181,23821],[1182,23821],[1183,23834],[1184,23804],[1185,23824],[1186,23824],[1187,23830],[1188,23830],[1189,23809],[1190,23810],[1191,23834],[1193,23816],[1194,23816],[1195,23802],[1196,23828],[1197,23816],[1198,23816],[1199,23828],[1200,23823],[1201,23837],[1202,23838],[1203,23801],[1204,23816],[1205,23816],[1206,23823],[1207,23809],[1208,23809],[1209,23824],[1210,23809],[1211,23849],[1212,24099],[1213,23802],[1214,23836],[1215,23816],[1216,23816],[1217,23820],[1218,23820],[1219,23820],[1220,23820],[1221,23820],[1222,23820],[1223,23820],[1224,23820],[1225,23820],[1226,23820],[1227,23820],[1228,23820],[1229,23820],[1230,23820],[1231,23820],[1232,23820],[1233,23820],[1234,23836],[1235,23804],[1236,23806],[1237,23806],[1238,23809],[1239,23810],[1240,23807],[1241,23804],[1242,23816],[1243,23816],[1246,24097],[1247,23816],[1248,23816],[1249,23802],[1251,23816],[1252,23816],[1253,23804],[1254,23833],[1255,23824],[1256,23834],[1257,23835],[1258,23836],[1259,23837],[1260,23830],[1261,23820],[1262,23804],[1263,23804],[1264,23838],[1265,23801],[1266,23839],[1267,23840],[1268,23805],[1269,23806],[1270,23809],[1271,23821],[1272,23815],[1273,23829],[1274,23810],[1275,23823],[1276,23807],[1277,23850],[1278,23820],[1279,23804],[1280,23839],[1281,23806],[1282,23850],[1283,23820],[1284,23804],[1285,23839],[1286,23806],[1287,23830],[1288,23830],[1290,23823],[1291,23823],[1292,23802],[1293,23828],[1294,23850],[1295,23833],[1296,23824],[1297,23834],[1298,23835],[1299,23836],[1300,23837],[1301,23830],[1302,23820],[1303,23804],[1304,23804],[1305,23838],[1306,23801],[1307,23839],[1308,23840],[1309,23805],[1310,23806],[1311,23809],[1312,23821],[1313,23815],[1314,23829],[1315,23810],[1316,23823],[1317,23807],[1318,23802],[1319,23828],[1320,23850],[1321,23833],[1322,23824],[1323,23834],[1324,23835],[1325,23836],[1326,23837],[1327,23830],[1328,23820],[1329,23804],[1330,23804],[1331,23838],[1332,23801],[1333,23839],[1334,23840],[1335,23805],[1336,23806],[1337,23809],[1338,23821],[1339,23815],[1340,23829],[1341,23810],[1342,23823],[1343,23807],[1344,23802],[1345,23828],[1346,23850],[1347,23833],[1348,23824],[1349,23834],[1350,23835],[1351,23836],[1352,23837],[1353,23830],[1354,23820],[1355,23804],[1356,23804],[1357,23838],[1358,23801],[1359,23839],[1360,23840],[1361,23805],[1362,23806],[1363,23809],[1364,23821],[1365,23815],[1366,23829],[1367,23810],[1368,23823],[1369,23807],[1370,23802],[1371,23828],[1372,23850],[1373,23833],[1374,23824],[1375,23834],[1376,23835],[1377,23836],[1378,23837],[1379,23830],[1380,23820],[1381,23804],[1382,23804],[1383,23838],[1384,23801],[1385,23839],[1386,23840],[1387,23805],[1388,23806],[1389,23809],[1390,23821],[1391,23815],[1392,23829],[1393,23810],[1394,23823],[1395,23807],[1396,23802],[1397,23828],[1398,23850],[1399,23833],[1400,23824],[1401,23834],[1402,23835],[1403,23836],[1404,23837],[1405,23830],[1406,23820],[1407,23804],[1408,23804],[1409,23838],[1410,23801],[1411,23839],[1412,23840],[1413,23805],[1414,23806],[1415,23809],[1416,23821],[1417,23815],[1418,23829],[1419,23810],[1420,23823],[1421,23807],[1422,23802],[1423,23828],[1424,23850],[1425,23833],[1426,23824],[1427,23834],[1428,23835],[1429,23836],[1430,23837],[1431,23830],[1432,23820],[1433,23804],[1434,23804],[1435,23838],[1436,23801],[1437,23839],[1438,23840],[1439,23805],[1440,23806],[1441,23809],[1442,23821],[1443,23815],[1444,23829],[1445,23810],[1446,23823],[1447,23807],[1448,23802],[1449,23828],[1450,23850],[1451,23833],[1452,23824],[1453,23834],[1454,23835],[1455,23836],[1456,23837],[1457,23830],[1458,23820],[1459,23804],[1460,23804],[1461,23838],[1462,23801],[1463,23839],[1464,23840],[1465,23805],[1466,23806],[1467,23809],[1468,23821],[1469,23815],[1470,23829],[1471,23810],[1472,23823],[1473,23807],[1474,23809],[1475,23802],[1476,23828],[1477,23850],[1478,23833],[1479,23824],[1480,23834],[1481,23835],[1482,23836],[1483,23837],[1484,23830],[1485,23820],[1486,23804],[1487,23804],[1488,23838],[1489,23801],[1490,23839],[1491,23840],[1492,23805],[1493,23806],[1494,23809],[1495,23821],[1496,23815],[1497,23829],[1498,23810],[1499,23823],[1500,23807],[1501,23816],[1502,23824],[1503,23830],[1504,23824],[1505,23824],[1506,23816],[1507,23802],[1508,23828],[1509,23850],[1510,23833],[1511,23824],[1512,23834],[1513,23835],[1514,23836],[1515,23837],[1516,23830],[1517,23820],[1518,23804],[1519,23804],[1520,23838],[1521,23801],[1522,23839],[1523,23840],[1524,23805],[1525,23806],[1526,23809],[1527,23821],[1528,23815],[1529,23829],[1530,23810],[1531,23823],[1532,23807],[1533,23836],[1536,23834],[1537,23834],[1538,23809],[1539,23810],[1541,23828],[1542,23836],[1543,23809],[1544,23809],[1545,23809],[1546,23806],[1547,23809],[1548,23807],[1549,23806],[1550,23809],[1551,23807],[1552,23898],[1553,23884],[1554,23890],[1555,23889],[1556,23883],[1557,23885],[1558,23886],[1559,23884],[1560,23885],[1561,23883],[1562,23883],[1563,23884],[1564,23885],[1565,23883],[1566,23884],[1567,23885],[1568,23883],[1569,23884],[1570,23885],[1571,23883],[1572,23884],[1573,23885],[1574,23883],[1575,23884],[1576,23885],[1577,23883],[1578,23884],[1579,23885],[1580,23883],[1581,23884],[1582,23885],[1583,23884],[1584,23885],[1585,23883],[1586,23883],[1587,23886],[1588,23884],[1589,23889],[1590,24097],[1591,23884],[1592,23885],[1593,23884],[1594,23885],[1595,23884],[1596,23885],[1597,23884],[1598,23885],[1599,23883],[1600,23885],[1601,23884],[1602,23885],[1603,23883],[1604,23884],[1605,23885],[1606,23883],[1607,23886],[1608,23884],[1609,23885],[1610,23883],[1611,23890],[1612,23886],[1613,23884],[1614,23885],[1615,23883],[1616,23889],[1617,23889],[1618,23883],[1619,23889],[1620,23884],[1621,23885],[1622,23883],[1623,23885],[1624,23884],[1625,23885],[1626,23883],[1627,23884],[1628,23885],[1629,23883],[1630,23884],[1631,23885],[1632,23883],[1634,23885],[1635,24097],[1636,23884],[1637,23885],[1638,23883],[1639,23883],[1640,23883],[1641,23884],[1642,23885],[1643,23883],[1644,23884],[1645,23885],[1646,23883],[1647,23884],[1648,23885],[1649,23883],[1650,23884],[1651,23885],[1652,23883],[1653,23884],[1654,23885],[1655,23883],[1656,23884],[1657,23885],[1658,23883],[1659,23884],[1660,23885],[1661,23883],[1662,23884],[1663,23885],[1664,23883],[1665,23884],[1666,23885],[1667,23883],[1668,23883],[1669,23883],[1670,23883],[1671,23883],[1672,23883],[1673,23890],[1674,24097],[1675,23890],[1676,23886],[1677,23885],[1678,23883],[1679,24097],[1680,23890],[1681,23886],[1682,23884],[1683,23883],[1684,23890],[1685,23886],[1686,24097],[1687,23890],[1688,23886],[1689,23884],[1690,23883],[1691,23898],[1692,23883],[1693,24097],[1694,23883],[1695,23883],[1696,23883],[1697,23883],[1698,23883],[1699,23885],[1700,23886],[1701,23885],[1702,23886],[1703,23889],[1704,23889],[1705,23886],[1707,24097],[1708,23886],[1709,24097],[1710,23884],[1711,23885],[1712,23884],[1713,23885],[1714,23883],[1715,23884],[1716,23885],[1717,23883],[1718,23884],[1719,23885],[1720,23883],[1721,23884],[1722,23885],[1723,23883],[1724,23884],[1725,23885],[1726,23883],[1727,23884],[1728,23885],[1729,23883],[1730,23884],[1731,23885],[1732,23883],[1733,23884],[1734,23885],[1735,23883],[1736,23890],[1737,23886],[1738,23885],[1739,23884],[1740,23885],[1741,23883],[1743,23889],[1744,23884],[1745,23889],[1746,23889],[1747,23885],[1748,23898],[1749,23898],[1750,23898],[1751,23898],[1752,23898],[1753,23898],[1754,23898],[1755,23898],[1756,23898],[1757,23898],[1758,23898],[1759,23898],[1760,23898],[1761,23898],[1762,23898],[1763,23898],[1764,23898],[1765,23898],[1766,23898],[1767,23898],[1768,23898],[1769,23898],[1770,23898],[1771,23898],[1772,23898],[1773,23898],[1774,23898],[1775,23898],[1776,23898],[1777,23898],[1778,23898],[1779,23898],[1780,23898],[1781,23898],[1782,23898],[1783,23898],[1784,23898],[1785,23898],[1786,23898],[1787,23898],[1788,23898],[1789,23898],[1790,23898],[1791,23898],[1792,23898],[1793,23898],[1794,23898],[1795,23898],[1796,23898],[1797,23898],[1798,23898],[1799,23898],[1800,23898],[1801,23898],[1802,23898],[1803,23898],[1804,23898],[1805,23898],[1806,23898],[1807,23898],[1808,23898],[1809,23898],[1810,23898],[1811,23898],[1812,23898],[1813,23898],[1814,23898],[1815,23898],[1816,23898],[1817,23898],[1818,23898],[1819,23898],[1820,23898],[1821,23898],[1822,23898],[1823,23898],[1824,23898],[1825,23898],[1826,23898],[1827,23898],[1828,23898],[1829,23898],[1830,23898],[1831,23898],[1832,23898],[1833,23898],[1834,23898],[1835,23898],[1836,23898],[1837,23898],[1838,23898],[1839,23898],[1840,23898],[1841,23898],[1842,23900],[1843,23901],[1844,23901],[1845,23901],[1846,23901],[1847,23901],[1848,23901],[1849,23901],[1850,23901],[1851,23901],[1852,23901],[1853,23901],[1854,23900],[1855,23901],[1856,23901],[1857,23901],[1858,23901],[1859,23900],[1860,23900],[1861,23901],[1862,23901],[1863,23901],[1864,23901],[1865,23900],[1866,23901],[1867,23901],[1868,23901],[1869,23901],[1870,23900],[1871,23901],[1872,23901],[1873,23901],[1874,23901],[1875,23900],[1876,23901],[1877,23901],[1878,23901],[1879,23901],[1880,23900],[1881,23900],[1882,23900],[1883,23901],[1884,23901],[1885,23901],[1886,23901],[1887,23900],[1888,23901],[1889,23901],[1890,23901],[1891,23901],[1892,23900],[1893,23901],[1894,23901],[1895,23901],[1896,23901],[1897,23900],[1898,23900],[1899,23900],[1900,23901],[1901,23901],[1902,23901],[1903,23901],[1904,23900],[1905,23901],[1906,23901],[1907,23901],[1908,23901],[1909,23900],[1910,23901],[1911,23901],[1912,23901],[1913,23901],[1914,23900],[1915,23901],[1916,23900],[1917,23901],[1918,23900],[1919,23901],[1920,23901],[1921,23901],[1922,23901],[1923,23900],[1924,23900],[1925,23900],[1926,23901],[1927,23900],[1928,23900],[1929,23901],[1930,23901],[1931,23901],[1932,23901],[1933,23900],[1934,23901],[1935,23901],[1936,23901],[1937,23901],[1938,23900],[1939,23901],[1940,23901],[1941,23901],[1942,23901],[1943,23901],[1944,23900],[1945,23900],[1946,23901],[1947,23901],[1948,23901],[1949,23901],[1950,23900],[1951,23900],[1952,23900],[1953,23900],[1954,23900],[1955,23900],[1956,23900],[1957,23900],[1958,23900],[1959,23901],[1960,23901],[1961,23901],[1962,23901],[1963,23900],[1964,23900],[1965,23900],[1966,23901],[1967,23901],[1968,23901],[1969,23901],[1970,23901],[1971,23901],[1972,23901],[1973,23901],[1974,23901],[1975,23901],[1976,23901],[1977,23900],[1978,23900],[1979,23900],[1980,23901],[1981,23901],[1982,23901],[1983,23901],[1984,23900],[1985,23900],[1986,23900],[1987,23900],[1988,23900],[1989,23900],[1990,23900],[1991,23900],[1992,23901],[1993,23901],[1994,23901],[1995,23901],[1996,23901],[1997,23901],[1998,23901],[1999,23900],[2000,23901],[2001,23901],[2002,23901],[2003,23901],[2004,23901],[2005,23900],[2006,23900],[2007,23901],[2008,23901],[2009,23900],[2010,23900],[2011,23901],[2012,23901],[2013,23901],[2014,23901],[2015,23901],[2016,23900],[2017,23901],[2018,23901],[2019,23901],[2020,23900],[2021,23901],[2022,23901],[2023,23901],[2024,23901],[2025,23900],[2026,23901],[2027,23901],[2028,23901],[2029,23901],[2030,23900],[2031,23901],[2032,23901],[2033,23901],[2034,23901],[2035,23900],[2036,23901],[2037,23901],[2038,23901],[2039,23901],[2040,23900],[2041,23901],[2042,23901],[2043,23901],[2044,23901],[2045,23900],[2046,23901],[2047,23901],[2048,23901],[2049,23901],[2050,23900],[2051,23901],[2052,23901],[2053,23901],[2054,23901],[2055,23900],[2056,23901],[2057,23901],[2058,23901],[2059,23901],[2060,23900],[2061,23901],[2062,23901],[2063,23901],[2064,23901],[2065,23900],[2066,23900],[2067,23900],[2068,23901],[2069,23901],[2070,23901],[2071,23901],[2072,23900],[2073,23900],[2074,23900],[2075,23901],[2076,23900],[2077,23901],[2078,23900],[2079,23901],[2080,23901],[2081,23901],[2082,23900],[2083,23900],[2084,23900],[2085,23900],[2086,23900],[2087,23900],[2088,23901],[2089,23900],[2090,23901],[2091,23901],[2092,23900],[2093,23900],[2094,23901],[2095,23901],[2096,23900],[2097,23900],[2098,23900],[2099,23901],[2100,23901],[2101,23901],[2102,23901],[2103,23900],[2104,23900],[2105,23901],[2106,23901],[2107,23901],[2108,23901],[2109,23900],[2110,23901],[2111,23901],[2112,23901],[2113,23901],[2114,23900],[2115,23901],[2116,23901],[2117,23901],[2118,23901],[2119,23900],[2120,23901],[2121,23901],[2122,23901],[2123,23901],[2124,23900],[2125,23900],[2126,23901],[2127,23901],[2128,23901],[2129,23901],[2130,23900],[2131,23901],[2132,23901],[2133,23901],[2134,23901],[2135,23900],[2136,23901],[2137,23901],[2138,23901],[2139,23901],[2140,23900],[2141,23901],[2142,23901],[2143,23901],[2144,23901],[2145,23900],[2146,23901],[2147,23901],[2148,23901],[2149,23901],[2154,23884],[2155,23894],[2156,23894],[2157,23893],[2158,23894],[2159,23893],[2160,23893],[2161,23893],[2162,23894],[2163,23893],[2164,23894],[2165,23893],[2166,23894],[2167,23893],[2168,23894],[2169,23893],[2170,23884],[2171,23894],[2172,23893],[2173,23894],[2174,23893],[2175,23893],[2176,23894],[2177,23893],[2178,23893],[2179,23894],[2180,23893],[2181,23894],[2182,23893],[2183,23894],[2184,23893],[2185,23894],[2186,23893],[2187,23884],[2188,23893],[2189,23893],[2190,23894],[2191,23893],[2192,23894],[2193,23893],[2194,23894],[2195,23893],[2196,23894],[2197,23893],[2198,23894],[2199,23884],[2200,23894],[2201,23893],[2202,23894],[2203,23893],[2204,23894],[2205,23893],[2206,23894],[2207,23893],[2208,23894],[2209,23894],[2210,23893],[2211,23894],[2212,23893],[2213,23894],[2214,23893],[2215,23894],[2216,23893],[2217,23894],[2218,23893],[2219,23894],[2220,23893],[2221,23894],[2222,23893],[2223,23894],[2224,23893],[2225,23894],[2226,23893],[2227,23894],[2228,23893],[2229,23894],[2230,23894],[2231,23894],[2232,23894],[2233,23894],[2234,23894],[2235,23894],[2236,23893],[2237,23893],[2238,23894],[2239,23893],[2240,23884],[2241,23893],[2242,23884],[2243,23884],[2244,23894],[2245,23894],[2246,23893],[2247,23884],[2248,23894],[2249,23893],[2250,23893],[2251,23893],[2252,23894],[2253,23893],[2254,23894],[2255,23893],[2256,23894],[2257,23893],[2258,23894],[2259,23893],[2260,23894],[2261,23893],[2262,23894],[2263,23893],[2264,23894],[2265,23893],[2266,23894],[2267,23893],[2268,23894],[2269,23893],[2270,23894],[2271,23893],[2272,23906],[2273,23906],[2274,23906],[2275,23906],[2276,23906],[2277,23906],[2278,23906],[2279,23906],[2280,23906],[2281,23906],[2282,23906],[2283,23906],[2284,23906],[2285,23906],[2286,23906],[2287,23906],[2288,23906],[2289,23906],[2290,23906],[2291,23906],[2292,23906],[2293,23906],[2294,23906],[2295,23906],[2296,23906],[2297,23906],[2298,23906],[2299,23906],[2300,23906],[2301,23906],[2302,23906],[2303,23906],[2304,23906],[2305,23906],[2306,23906],[2307,23906],[2308,23906],[2309,23906],[2310,23906],[2311,23906],[2312,23891],[2313,23909],[2314,23909],[2315,23910],[2316,23910],[2317,23895],[2318,23908],[2319,23895],[2320,23895],[2321,23891],[2322,23910],[2323,23910],[2324,23910],[2325,23910],[2326,23909],[2327,23895],[2328,23895],[2329,23895],[2330,23895],[2331,23895],[2332,23909],[2333,23891],[2334,23910],[2335,23909],[2336,23895],[2337,23895],[2338,23895],[2339,23909],[2340,23910],[2341,23895],[2342,23895],[2343,23895],[2344,23895],[2345,23895],[2346,23909],[2347,23910],[2348,23895],[2349,23891],[2350,23910],[2351,23895],[2352,23895],[2353,23895],[2354,23908],[2355,23908],[2356,23908],[2357,23908],[2358,23908],[2359,23908],[2360,23908],[2361,23908],[2362,24100],[2363,23908],[2364,23908],[2365,23908],[2366,23908],[2367,23908],[2368,23908],[2369,23908],[2370,23908],[2371,23908],[2372,23908],[2373,23908],[2374,23908],[2375,23908],[2376,23908],[2377,23908],[2378,23908],[2379,23908],[2380,23908],[2381,23908],[2382,23908],[2383,23908],[2384,23908],[2385,23908],[2386,23908],[2387,23908],[2388,23908],[2389,23908],[2390,23908],[2391,23908],[2392,23908],[2393,23908],[2394,23908],[2395,23908],[2396,23908],[2397,23908],[2398,23908],[2405,23908],[2406,23908],[2407,23908],[2408,23908],[2409,23908],[2410,23908],[2411,23908],[2412,23908],[2413,23908],[2414,23908],[2415,23908],[2416,23908],[2417,23908],[2418,23908],[2419,23908],[2420,23908],[2421,23908],[2422,23908],[2423,23908],[2424,23908],[2425,23908],[2426,23908],[2427,23908],[2428,23908],[2429,23908],[2430,23908],[2431,23908],[2432,23908],[2433,23908],[2434,23908],[2435,23908],[2436,23908],[2437,23908],[2438,23908],[2439,23908],[2440,23908],[2441,23908],[2442,23908],[2443,23908],[2444,23908],[2445,23908],[2446,23908],[2447,23908],[2448,23908],[2449,23908],[2450,23908],[2451,23908],[2452,23908],[2453,23908],[2454,23897],[2455,23911],[2456,23890],[2457,23897],[2458,23911],[2459,23897],[2460,23911],[2461,23897],[2462,23911],[2463,23897],[2464,23911],[2465,23897],[2466,23911],[2467,23897],[2468,23911],[2469,23897],[2470,23911],[2471,23897],[2472,23911],[2473,23897],[2474,23911],[2475,23911],[2476,23897],[2477,23911],[2478,23897],[2479,23911],[2480,23897],[2481,23911],[2482,23890],[2483,23897],[2484,23911],[2485,23897],[2486,23911],[2487,23897],[2488,23897],[2489,23911],[2490,23897],[2491,23911],[2492,23890],[2493,23897],[2494,23911],[2495,23897],[2496,23911],[2497,23897],[2498,23911],[2499,23897],[2500,23911],[2501,23897],[2502,23911],[2503,23897],[2504,23911],[2505,23897],[2506,23911],[2507,23897],[2508,23911],[2509,23897],[2510,23911],[2511,23897],[2512,23911],[2513,23897],[2514,23911],[2515,23890],[2516,23890],[2517,23897],[2518,23911],[2519,23897],[2520,23897],[2521,23911],[2522,23890],[2523,23897],[2524,23911],[2525,23911],[2526,23897],[2527,23911],[2528,23890],[2529,23897],[2530,23911],[2531,23911],[2532,23890],[2533,23911],[2534,23897],[2535,23911],[2536,23897],[2537,23911],[2538,23897],[2539,23911],[2540,23897],[2541,23911],[2542,23897],[2543,23911],[2544,23897],[2545,23911],[2546,23897],[2547,23911],[2548,23897],[2549,23911],[2550,23897],[2551,23911],[2552,23890],[2553,23897],[2554,23911],[2555,23911],[2556,23889],[2557,23889],[2558,23889],[2559,23889],[2560,23889],[2561,23889],[2562,23889],[2563,23889],[2564,23889],[2565,23889],[2566,23889],[2567,23889],[2568,23889],[2569,23889],[2570,23889],[2571,23889],[2572,23889],[2573,23889],[2574,23889],[2575,23889],[2576,23889],[2577,23889],[2578,23889],[2579,23889],[2580,23889],[2581,23889],[2582,23889],[2583,23889],[2584,23889],[2585,23889],[2586,23889],[2587,23889],[2588,23889],[2589,23889],[2590,23889],[2591,23889],[2592,23889],[2593,23889],[2594,23889],[2595,23889],[2596,23889],[2597,23889],[2598,23889],[2599,23889],[2600,23889],[2601,23889],[2602,23889],[2603,23889],[2604,23889],[2605,23889],[2606,23889],[2607,23889],[2608,23889],[2609,23889],[2610,23889],[2611,23889],[2612,23889],[2613,23889],[2614,23889],[2615,23889],[2616,23889],[2617,23889],[2618,23889],[2619,23889],[2620,23889],[2621,23889],[2622,23889],[2623,23889],[2624,23889],[2625,23889],[2626,23889],[2627,23889],[2628,23889],[2629,23889],[2630,23889],[2631,23889],[2632,23889],[2633,23889],[2634,23889],[2635,23889],[2636,23889],[2637,23889],[2638,23889],[2639,23889],[2640,23889],[2641,23889],[2642,23889],[2643,23889],[2644,23889],[2645,23889],[2646,23889],[2647,23889],[2648,23889],[2649,23889],[2650,23889],[2651,23889],[2652,23889],[2653,23889],[2654,23889],[2655,23889],[2656,23889],[2657,23889],[2658,23889],[2659,23889],[2660,23889],[2661,23828],[2662,23828],[2663,23828],[2664,23828],[2665,23828],[2666,23828],[2667,23828],[2668,23828],[2669,23828],[2670,23828],[2671,23828],[2672,23828],[2673,23828],[2674,23828],[2675,23828],[2676,23828],[2677,23828],[2678,23828],[2679,23828],[2680,23828],[2681,23828],[2682,23828],[2683,23828],[2684,23828],[2685,23828],[2686,23828],[2687,23828],[2688,23828],[2689,23828],[2690,23828],[2691,23828],[2692,23828],[2693,23828],[2694,23828],[2695,23828],[2696,23828],[2697,23828],[2698,23828],[2699,23828],[2700,23828],[2701,23828],[2702,23828],[2703,23828],[2704,23828],[2705,23828],[2706,23828],[2707,23828],[2708,23828],[2709,23828],[2710,23828],[2711,23828],[2712,23828],[2713,23828],[2714,23828],[2715,23828],[2716,23828],[2717,23828],[2718,23828],[2719,23828],[2720,23828],[2721,23828],[2722,23828],[2723,23828],[2724,23828],[2725,23828],[2726,23828],[2727,23828],[2728,23828],[2729,23828],[2730,23828],[2731,23828],[2732,23828],[2733,23828],[2734,23828],[2735,23828],[2736,23828],[2737,23828],[2738,23828],[2739,23828],[2740,23828],[2741,23828],[2742,23828],[2743,23828],[2744,23828],[2745,23828],[2746,23828],[2747,23828],[2748,23828],[2749,23828],[2750,23828],[2751,23828],[2752,23828],[2753,23828],[2754,23828],[2755,23828],[2756,23828],[2757,23828],[2758,23828],[2759,23828],[2760,23828],[2761,23828],[2762,23828],[2763,23828],[2764,23828],[2765,23828],[2766,23828],[2767,23828],[2768,23828],[2769,23828],[2770,23828],[2771,23828],[2772,23828],[2773,23828],[2774,23828],[2775,23828],[2776,23828],[2777,23828],[2778,23828],[2779,23828],[2780,23828],[2781,23828],[2782,23828],[2783,23828],[2784,23828],[2785,23828],[2786,23828],[2787,23828],[2788,23828],[2789,23828],[2790,23828],[2791,23828],[2792,23828],[2793,23828],[2794,23828],[2795,23828],[2796,23828],[2797,23828],[2798,23828],[2799,23828],[2800,23828],[2801,23828],[2802,23828],[2803,23828],[2804,23828],[2808,23914],[2809,23914],[2810,23914],[2811,23914],[2812,23914],[2813,23914],[2814,23914],[2815,23914],[2816,23914],[2817,23914],[2818,23914],[2819,23914],[2820,23914],[2821,23914],[2822,23914],[2823,23914],[2824,23914],[2825,23914],[2826,23914],[2827,23914],[2828,23914],[2829,23914],[2830,23914],[2831,23914],[2832,23914],[2833,23914],[2834,23914],[2835,23914],[2836,23914],[2837,23914],[2838,23914],[2839,23914],[2840,23914],[2841,23914],[2842,23914],[2843,23914],[2844,23914],[2845,23914],[2846,23914],[2847,23914],[2848,23914],[2849,23914],[2850,23914],[2851,23914],[2852,23914],[2853,23914],[2854,23914],[2855,23914],[2856,23914],[2857,23914],[2858,23914],[2859,23914],[2860,23914],[2861,23914],[2862,23914],[2863,23914],[2864,23914],[2865,23914],[2866,23914],[2867,23914],[2868,23914],[2869,23914],[2870,23914],[2871,23914],[2872,23914],[2873,23914],[2874,23914],[2875,23914],[2876,23914],[2877,23914],[2878,23914],[2879,23914],[2880,23914],[2881,23914],[2882,23914],[2883,23914],[2884,23914],[2885,23914],[2886,23914],[2887,23914],[2888,23914],[2889,23914],[2890,23914],[2891,23914],[2892,23914],[2893,23914],[2894,23914],[2895,23914],[2896,23914],[2897,23914],[2898,23914],[2899,23914],[2900,23914],[2901,23914],[2902,23914],[2903,23914],[2904,23914],[2905,23914],[2906,23914],[2907,23914],[2908,23914],[2909,23914],[2910,23914],[2911,23914],[2912,23914],[2913,23914],[2914,23914],[2915,23914],[2916,23914],[2917,23914],[2918,23914],[2919,23914],[2920,23914],[2921,23914],[2922,23914],[2923,23914],[2924,23914],[2925,23914],[2926,23914],[2927,23914],[2928,23914],[2929,23914],[2930,23914],[2931,23914],[2932,23914],[2933,23914],[2934,23914],[2935,23914],[2936,23914],[2937,23914],[2938,23914],[2939,23914],[2940,23914],[2941,23914],[2942,23914],[2943,23914],[2944,23914],[2945,23914],[2946,23914],[2947,23914],[2948,23914],[2949,23914],[2950,23914],[2951,23914],[2952,23914],[2953,23914],[2954,23914],[2955,23914],[2956,23914],[2957,23914],[2958,23914],[2959,23914],[2960,23914],[2961,23885],[2962,23885],[2963,23885],[2964,23885],[2966,23885],[2967,23885],[2968,23885],[2969,23885],[2970,23916],[2971,23885],[2972,23916],[2973,23919],[2974,23885],[2975,23885],[2976,23885],[2977,23885],[2978,23917],[2979,23917],[2980,23885],[2981,23885],[2982,23885],[2983,23917],[2984,23885],[2985,23885],[2986,23885],[2988,23919],[2989,23885],[2990,23885],[2991,23885],[2992,23917],[2993,23885],[2994,23885],[2995,23885],[2996,23885],[2997,23885],[2998,23885],[2999,23885],[3000,23885],[3001,23885],[3002,23885],[3003,23885],[3004,23885],[3005,23885],[3006,23885],[3007,23885],[3008,23885],[3009,23885],[3010,23885],[3011,23885],[3012,23885],[3013,23885],[3014,23885],[3015,23885],[3016,23885],[3017,23885],[3018,23885],[3019,23885],[3020,23885],[3021,23885],[3022,23885],[3023,23885],[3024,23885],[3025,23885],[3026,23885],[3027,23885],[3028,23885],[3029,23885],[3030,23885],[3031,23885],[3032,23885],[3033,23885],[3034,23885],[3035,23885],[3036,23885],[3037,23885],[3038,23885],[3039,23885],[3040,23885],[3041,23885],[3042,23885],[3043,23885],[3044,23885],[3045,23885],[3046,23885],[3047,23885],[3048,23885],[3049,23885],[3050,23885],[3051,23885],[3052,23885],[3053,23885],[3054,23885],[3055,23916],[3056,23885],[3057,23885],[3058,23885],[3059,23885],[3060,23885],[3061,23885],[3062,23885],[3063,23885],[3064,23917],[3065,23885],[3066,23885],[3067,23885],[3068,23885],[3069,23885],[3070,23885],[3071,23885],[3072,23885],[3073,23885],[3074,23885],[3075,23885],[3076,23885],[3077,23885],[3078,23885],[3079,23885],[3080,23885],[3081,23885],[3082,23885],[3083,23885],[3084,23885],[3085,23885],[3086,23885],[3087,23885],[3088,23885],[3089,23919],[3090,23885],[3091,23885],[3092,23885],[3093,23885],[3094,23885],[3095,23885],[3096,23885],[3097,23885],[3098,23917],[3099,23916],[3100,23885],[3101,23916],[3102,23885],[3103,23885],[3104,23885],[3105,23885],[3106,23885],[3107,23885],[3108,23885],[3109,23885],[3110,23885],[3111,23885],[3112,23885],[3113,23885],[3114,23885],[3115,23885],[3116,23885],[3117,23885],[3118,23885],[3119,23885],[3120,23885],[3121,23885],[3122,23885],[3123,23885],[3124,23885],[3125,23885],[3126,23885],[3127,23885],[3128,23885],[3129,23885],[3130,23885],[3131,23885],[3132,23885],[3133,23885],[3134,23885],[3135,23885],[3136,23885],[3137,23885],[3138,23885],[3139,23885],[3140,23885],[3141,23885],[3142,23885],[3143,23885],[3144,23885],[3145,23885],[3146,23885],[3147,23885],[3148,23885],[3149,23885],[3150,23885],[3151,23885],[3152,23885],[3153,23885],[3154,23885],[3155,23885],[3156,23885],[3157,23885],[3158,23885],[3159,23885],[3160,23885],[3161,23885],[3162,23885],[3163,23885],[3164,23885],[3165,23885],[3166,23885],[3167,23885],[3168,23885],[3169,23885],[3170,23885],[3171,23885],[3172,23885],[3173,23885],[3174,23885],[3175,23885],[3176,23885],[3177,23885],[3178,23885],[3179,23885],[3180,23885],[3181,23885],[3182,23885],[3183,23885],[3184,23885],[3185,23885],[3186,23885],[3187,23885],[3188,23885],[3189,23885],[3190,23885],[3191,23919],[3192,23885],[3193,23885],[3194,23885],[3195,23916],[3196,23885],[3197,23917],[3198,23885],[3199,23919],[3200,23919],[3201,23919],[3202,23885],[3203,23885],[3204,23885],[3205,23885],[3206,23885],[3207,23885],[3208,23885],[3209,23885],[3210,23885],[3211,23885],[3212,23885],[3213,23885],[3214,23885],[3215,23885],[3216,23885],[3217,23885],[3218,23885],[3219,23885],[3220,23885],[3221,23885],[3222,23885],[3223,23885],[3224,23885],[3225,23885],[3226,23885],[3227,23885],[3228,23885],[3229,23885],[3230,23885],[3231,23885],[3232,23885],[3233,23885],[3234,23885],[3235,23885],[3236,23885],[3237,23885],[3238,23885],[3239,23885],[3240,23885],[3241,23885],[3242,23885],[3243,23885],[3244,23885],[3245,23885],[3246,23885],[3247,23885],[3248,23885],[3249,23885],[3250,23885],[3251,23885],[3252,23885],[3253,23885],[3254,23885],[3255,23885],[3256,23885],[3257,23885],[3258,23885],[3259,23885],[3260,23885],[3261,23885],[3262,23885],[3263,23885],[3264,23885],[3265,23885],[3266,23885],[3267,23885],[3268,23885],[3269,23885],[3270,23885],[3271,23885],[3272,23885],[3273,23885],[3274,23916],[3275,23916],[3276,23916],[3277,23885],[3278,23885],[3279,23885],[3280,23885],[3281,23885],[3282,23885],[3283,23916],[3284,23919],[3285,23919],[3286,23919],[3287,23917],[3288,23885],[3289,23885],[3290,23885],[3291,23885],[3292,23885],[3293,23885],[3294,23885],[3295,23885],[3296,23916],[3297,23919],[3298,23916],[3299,23885],[3300,23885],[3301,23885],[3302,23885],[3303,23919],[3304,23885],[3305,23885],[3306,23885],[3307,23885],[3308,23885],[3309,23885],[3310,23885],[3311,23885],[3312,23885],[3313,23885],[3314,23885],[3315,23885],[3316,23885],[3317,23885],[3318,23885],[3319,23885],[3320,23885],[3321,23885],[3322,23885],[3323,23885],[3324,23885],[3325,23885],[3326,23885],[3327,23885],[3328,23885],[3329,23885],[3330,23885],[3331,23885],[3332,23885],[3333,23885],[3334,23885],[3335,23885],[3336,23885],[3337,23885],[3338,23885],[3339,23885],[3340,23885],[3341,23885],[3342,23885],[3343,23885],[3344,23885],[3345,23885],[3346,23885],[3347,23885],[3348,23885],[3349,23885],[3350,23885],[3351,23885],[3352,23885],[3353,23885],[3354,23885],[3355,23885],[3356,23885],[3357,23885],[3358,23885],[3359,23885],[3360,23885],[3361,23885],[3362,23885],[3363,23885],[3364,23885],[3365,23885],[3366,23885],[3367,23885],[3368,23885],[3369,23885],[3370,23885],[3371,23885],[3372,23885],[3373,23885],[3374,23916],[3375,23917],[3376,23919],[3377,23885],[3378,23885],[3379,23885],[3380,23885],[3381,23885],[3382,23885],[3383,23885],[3384,23885],[3385,23919],[3386,23916],[3387,23919],[3388,23885],[3389,23916],[3390,23916],[3391,23916],[3392,23916],[3393,23916],[3394,23916],[3395,23916],[3396,23916],[3397,23916],[3398,23916],[3399,23916],[3400,23916],[3401,23916],[3402,23916],[3403,23916],[3404,23916],[3405,23916],[3406,23916],[3407,23916],[3408,23916],[3409,23916],[3410,23916],[3411,23916],[3412,23916],[3413,23916],[3414,23916],[3415,23916],[3416,23916],[3417,23916],[3418,23916],[3419,23916],[3420,23916],[3421,23916],[3422,23916],[3423,23916],[3424,23916],[3425,23916],[3426,23916],[3427,23916],[3428,23916],[3429,23916],[3430,23916],[3431,23916],[3432,23916],[3433,23916],[3434,23916],[3435,23916],[3436,23916],[3437,23916],[3438,23916],[3439,23916],[3440,23916],[3441,23916],[3442,23916],[3443,23916],[3444,23916],[3445,23916],[3446,23916],[3447,23916],[3448,23916],[3449,23916],[3450,23916],[3451,23916],[3452,23916],[3453,23916],[3454,23916],[3455,23916],[3456,23916],[3457,23916],[3458,23916],[3459,23916],[3460,23916],[3461,23916],[3462,23916],[3463,23916],[3464,23916],[3465,23916],[3466,23916],[3467,23916],[3468,23916],[3469,23916],[3470,23916],[3471,23916],[3472,23916],[3473,23916],[3474,23916],[3475,23916],[3476,23916],[3477,23916],[3478,23916],[3479,23916],[3480,23916],[3481,23916],[3482,23916],[3483,23916],[3484,23916],[3485,23916],[3486,23916],[3487,23916],[3488,23916],[3489,23916],[3490,23916],[3491,23916],[3492,23916],[3493,23916],[3494,23916],[3495,23916],[3496,23916],[3497,23916],[3498,23916],[3499,23916],[3500,23916],[3501,23916],[3502,23916],[3503,23916],[3504,23916],[3505,23916],[3506,23916],[3507,23916],[3508,23916],[3509,23916],[3510,23916],[3511,23916],[3512,23916],[3513,23916],[3514,23916],[3515,23916],[3516,23916],[3517,23916],[3518,23916],[3519,23916],[3520,23916],[3521,23916],[3522,23916],[3523,23916],[3524,23916],[3525,23916],[3526,23916],[3527,23916],[3528,23916],[3529,23916],[3530,23916],[3532,23917],[3533,23917],[3534,23917],[3535,23917],[3536,23917],[3537,23917],[3538,23917],[3539,23917],[3540,23917],[3541,23917],[3542,23917],[3543,23917],[3544,23917],[3545,23917],[3546,23917],[3547,23917],[3548,23917],[3549,23917],[3550,23917],[3551,23917],[3552,23917],[3553,23917],[3554,23917],[3555,23917],[3556,23917],[3557,23917],[3558,23917],[3559,23917],[3560,23917],[3561,23917],[3562,23917],[3563,23917],[3564,23917],[3565,23917],[3566,23917],[3567,23917],[3568,23917],[3569,23917],[3570,23917],[3571,23917],[3572,23917],[3573,23917],[3574,23917],[3575,23917],[3576,23917],[3577,23917],[3578,23917],[3579,23917],[3580,23917],[3581,23917],[3582,23917],[3583,23917],[3584,23917],[3585,23917],[3586,23917],[3587,23917],[3588,23917],[3589,23917],[3590,23917],[3591,23917],[3592,23917],[3593,23917],[3594,23917],[3595,23917],[3596,23917],[3597,23917],[3598,23917],[3599,23917],[3600,23917],[3601,23917],[3602,23917],[3603,23917],[3604,23917],[3605,23917],[3606,23917],[3607,23917],[3608,23917],[3609,23917],[3610,23917],[3611,23917],[3612,23917],[3613,23917],[3614,23917],[3615,23917],[3616,23917],[3617,23917],[3618,23917],[3619,23917],[3620,23917],[3621,23917],[3622,23917],[3623,23917],[3624,23917],[3625,23917],[3626,23917],[3627,23917],[3628,23917],[3629,23917],[3630,23917],[3631,23917],[3632,23917],[3633,23919],[3634,23919],[3635,23919],[3636,23919],[3637,23919],[3638,23919],[3639,23919],[3640,23919],[3641,23919],[3642,23919],[3643,23919],[3644,23919],[3645,23919],[3646,23919],[3647,23919],[3648,23919],[3649,23919],[3650,23919],[3651,23919],[3652,23919],[3653,23919],[3654,23919],[3655,23919],[3656,23919],[3657,23919],[3658,23919],[3659,23919],[3660,23919],[3661,23919],[3662,23919],[3663,23919],[3664,23919],[3665,23919],[3666,23919],[3667,23919],[3668,23919],[3669,23919],[3670,23919],[3671,23919],[3672,23919],[3673,23919],[3674,23919],[3675,23919],[3676,23919],[3677,23919],[3678,23919],[3679,23919],[3680,23919],[3681,23919],[3682,23919],[3683,23919],[3684,23919],[3685,23919],[3686,23919],[3687,23919],[3688,23919],[3689,23919],[3690,23919],[3691,23919],[3692,23919],[3693,23919],[3694,23919],[3695,23919],[3696,23919],[3697,23919],[3698,23919],[3699,23920],[3700,23896],[3701,23878],[3702,23887],[3703,23886],[3704,23878],[3705,23887],[3706,23920],[3707,23878],[3708,23878],[3709,23878],[3710,23887],[3711,23920],[3712,23878],[3713,23887],[3714,23920],[3715,23878],[3716,23887],[3717,23920],[3718,23878],[3719,23887],[3720,23920],[3721,23878],[3722,23887],[3723,23920],[3724,23878],[3725,23887],[3726,23920],[3727,23878],[3728,23887],[3729,23920],[3730,23878],[3731,23886],[3732,23887],[3733,23878],[3734,23920],[3735,23920],[3736,23920],[3737,23878],[3738,23878],[3739,23878],[3740,23887],[3741,23920],[3742,23896],[3743,23896],[3744,23878],[3745,23887],[3746,23920],[3747,23878],[3748,23887],[3749,23920],[3750,23886],[3751,23887],[3752,23887],[3753,23887],[3754,23878],[3755,23887],[3756,23920],[3757,23886],[3758,23878],[3759,23878],[3760,23887],[3761,23920],[3762,23887],[3763,23920],[3764,23920],[3765,23920],[3766,23920],[3767,23896],[3768,23887],[3769,23920],[3770,23896],[3771,23878],[3772,23878],[3773,23878],[3774,23887],[3775,23920],[3776,23920],[3777,23920],[3778,23920],[3779,23878],[3780,23887],[3781,23920],[3782,23878],[3783,23887],[3784,23920],[3785,23920],[3786,23878],[3787,23878],[3788,23887],[3789,23920],[3790,23878],[3791,23887],[3792,23920],[3793,23878],[3794,23887],[3795,23920],[3796,23878],[3797,23887],[3798,23920],[3799,23878],[3800,23920],[3801,23878],[3802,23887],[3803,23920],[3804,23878],[3805,23887],[3806,23920],[3807,23878],[3808,23887],[3809,23920],[3810,23878],[3811,23887],[3812,23920],[3813,23878],[3814,23887],[3815,23920],[3816,23886],[3817,23878],[3818,23878],[3819,23886],[3820,23878],[3821,23887],[3822,23920],[3824,23878],[3825,23886],[3826,23886],[3827,23886],[3828,23896],[3829,23878],[3830,23886],[3831,23878],[3832,23878],[3833,23886],[3834,23878],[3835,23886],[3836,23887],[3837,23878],[3838,23878],[3839,23886],[3840,23887],[3841,23886],[3842,23896],[3843,23896],[3844,23920],[3845,23886],[3846,23878],[3847,23887],[3848,23920],[3849,23878],[3850,23887],[3851,23920],[3852,23878],[3853,23887],[3854,23920],[3855,23878],[3856,23887],[3857,23920],[3858,23878],[3859,23887],[3860,23920],[3861,23878],[3862,23887],[3863,23920],[3864,23878],[3865,23887],[3866,23920],[3867,23920],[3868,23878],[3869,23887],[3870,23920],[3871,23886],[3872,23878],[3873,23887],[3874,23920],[3875,23878],[3876,23878],[3877,23896],[3878,23922],[3879,23896],[3880,23896],[3881,23896],[3882,23923],[3883,23896],[3884,23924],[3885,23896],[3886,23896],[3887,23896],[3888,23896],[3889,23896],[3890,23896],[3891,23896],[3892,23896],[3893,23896],[3894,23896],[3895,23896],[3896,23896],[3897,23896],[3898,23896],[3899,23896],[3900,23896],[3901,23896],[3902,23896],[3903,23922],[3904,23896],[3905,23896],[3906,23896],[3907,23896],[3908,23896],[3909,23896],[3910,23896],[3911,23896],[3912,23896],[3913,23896],[3914,23896],[3915,23896],[3916,23896],[3917,23896],[3918,23922],[3919,23896],[3920,23924],[3921,23924],[3922,23924],[3923,23896],[3924,23923],[3925,23923],[3926,23896],[3927,23896],[3928,23924],[3929,23923],[3930,23896],[3931,23896],[3932,23896],[3933,23896],[3934,23896],[3935,23896],[3936,23896],[3937,23896],[3938,23896],[3939,23896],[3940,23896],[3941,23922],[3942,23896],[3943,23896],[3944,23922],[3945,23922],[3946,23922],[3947,23922],[3948,23922],[3949,23922],[3950,23922],[3951,23922],[3952,23922],[3953,23922],[3954,23922],[3955,23922],[3956,23922],[3957,23922],[3958,23922],[3959,23922],[3960,23922],[3961,23922],[3962,23922],[3963,23922],[3964,23922],[3965,23922],[3966,23922],[3967,23922],[3968,23922],[3969,23922],[3970,23922],[3971,23922],[3972,23922],[3973,23922],[3974,23922],[3975,23922],[3976,23922],[3977,23922],[3978,23922],[3979,23922],[3980,23922],[3981,23922],[3982,23922],[3983,23922],[3984,23922],[3985,23922],[3986,23922],[3987,23922],[3988,23922],[3989,23922],[3990,23922],[3991,23922],[3992,23922],[3993,23922],[3994,23922],[3995,23922],[3996,23922],[3997,23922],[3998,23922],[3999,23922],[4000,23922],[4001,23922],[4002,23923],[4003,23923],[4004,23923],[4005,23923],[4006,23923],[4007,23923],[4008,23923],[4009,23923],[4010,23923],[4011,23923],[4012,23923],[4013,23923],[4014,23923],[4015,23924],[4016,23924],[4017,23924],[4018,23924],[4019,23924],[4020,23924],[4021,23924],[4022,23924],[4023,23924],[4024,23885],[4025,23885],[4026,23885],[4027,23878],[4028,23878],[4029,23885],[4030,23885],[4031,23885],[4032,23885],[4033,23885],[4034,23878],[4035,23878],[4036,23878],[4037,23878],[4038,23885],[4039,23885],[4040,23885],[4041,23878],[4042,23878],[4043,23878],[4044,23878],[4045,23878],[4046,23878],[4047,23878],[4048,23878],[4049,23878],[4050,23878],[4051,23878],[4052,23887],[4053,23887],[4054,23887],[4055,23887],[4056,23887],[4057,23887],[4058,23887],[4059,23887],[4060,23887],[4061,23887],[4062,23887],[4063,23887],[4064,23887],[4065,23887],[4066,23887],[4067,23887],[4068,23887],[4069,23887],[4070,23887],[4071,23887],[4072,23887],[4073,23887],[4074,23887],[4075,23887],[4076,23887],[4077,23887],[4078,23887],[4079,23887],[4080,23887],[4081,23887],[4082,23887],[4083,23887],[4084,23887],[4085,23887],[4086,23887],[4087,23887],[4088,23887],[4089,23887],[4090,23887],[4091,23887],[4092,23887],[4093,23887],[4094,23887],[4095,23887],[4096,23887],[4097,23887],[4098,23887],[4099,23887],[4100,23887],[4101,23887],[4102,23887],[4103,23887],[4104,23887],[4105,23887],[4106,23887],[4107,23887],[4108,23887],[4109,23887],[4110,23887],[4111,23887],[4112,23887],[4113,23887],[4114,23887],[4115,23887],[4116,23887],[4117,23887],[4118,23887],[4119,23887],[4120,23887],[4121,23887],[4122,23887],[4123,23887],[4124,23887],[4125,23887],[4126,23887],[4127,23887],[4128,23887],[4129,23887],[4130,23887],[4131,23887],[4132,23887],[4133,23887],[4134,23887],[4135,23887],[4136,23887],[4137,23887],[4138,23887],[4139,23887],[4140,23887],[4141,23887],[4142,23887],[4143,23887],[4144,23887],[4145,23887],[4146,23887],[4147,23887],[4148,23887],[4149,23833],[4150,23833],[4151,23833],[4152,23833],[4153,23833],[4154,23833],[4155,23833],[4156,23833],[4157,23833],[4158,23833],[4159,23833],[4160,23833],[4161,23833],[4162,23833],[4163,23833],[4164,23833],[4165,23833],[4166,23833],[4167,23833],[4168,23833],[4169,23833],[4170,23833],[4171,23833],[4172,23833],[4173,23833],[4174,23833],[4175,23833],[4176,23833],[4177,23833],[4178,23833],[4179,23833],[4180,23833],[4181,23833],[4182,23833],[4183,23833],[4184,23833],[4185,23833],[4186,23833],[4187,23833],[4188,23833],[4189,23833],[4190,23833],[4191,23833],[4192,23833],[4193,23833],[4194,23833],[4195,23833],[4196,23833],[4197,23833],[4198,23833],[4199,23833],[4200,23833],[4201,23833],[4202,23833],[4203,23833],[4204,23833],[4205,23833],[4206,23833],[4207,23833],[4208,23833],[4209,23833],[4210,23833],[4211,23833],[4212,23833],[4213,23833],[4214,23833],[4215,23833],[4216,23833],[4217,23833],[4218,23833],[4219,23833],[4220,23833],[4221,23833],[4222,23833],[4223,23833],[4224,23833],[4225,23833],[4226,23833],[4227,23833],[4228,23833],[4229,23833],[4230,23833],[4231,23833],[4232,23833],[4233,23833],[4234,23833],[4235,23833],[4236,23833],[4237,23833],[4238,23833],[4239,23833],[4240,23833],[4241,23833],[4242,23833],[4243,23833],[4244,23833],[4245,23833],[4246,23833],[4247,23833],[4248,23833],[4249,23833],[4250,23833],[4251,23833],[4252,23833],[4253,23824],[4254,23848],[4255,23848],[4256,23848],[4257,23848],[4258,23848],[4259,23848],[4260,23848],[4261,23848],[4262,23848],[4263,23848],[4264,23848],[4265,23848],[4266,23848],[4267,23848],[4268,23848],[4269,23848],[4270,23848],[4271,23848],[4272,23848],[4273,23848],[4274,23848],[4275,23848],[4276,23848],[4277,23848],[4278,23848],[4279,23848],[4280,23848],[4281,23848],[4282,23848],[4283,23848],[4284,23848],[4285,23848],[4287,23857],[4288,23848],[4289,23848],[4290,23848],[4291,23848],[4292,23848],[4293,23848],[4294,23848],[4295,23848],[4296,23848],[4297,23848],[4298,23848],[4299,23848],[4300,23848],[4301,23848],[4302,23848],[4303,23848],[4304,23848],[4305,23848],[4306,23848],[4308,23848],[4309,23848],[4310,23848],[4311,23848],[4312,23848],[4313,23857],[4314,23848],[4315,23848],[4316,23848],[4317,23848],[4318,23848],[4319,23848],[4320,23848],[4321,23848],[4322,23848],[4323,23848],[4324,23848],[4325,23848],[4326,23848],[4327,23848],[4328,23848],[4329,23848],[4330,23848],[4331,23848],[4332,23848],[4333,23848],[4334,23848],[4399,23834],[4400,23834],[4401,23834],[4402,23834],[4403,23834],[4404,23834],[4405,23834],[4406,23834],[4407,23834],[4408,23834],[4409,23834],[4410,23834],[4411,23834],[4412,23834],[4413,23834],[4414,23834],[4415,23834],[4416,23834],[4417,23834],[4418,23834],[4419,23834],[4420,23834],[4421,23834],[4422,23834],[4423,23834],[4424,23834],[4425,23834],[4426,23834],[4427,23834],[4428,23834],[4429,23834],[4430,23834],[4431,23834],[4432,23834],[4433,23834],[4434,23834],[4435,23834],[4436,23834],[4437,23834],[4438,23834],[4439,23834],[4440,23834],[4441,23834],[4442,23834],[4443,23834],[4444,23834],[4445,23834],[4446,23834],[4447,23834],[4448,23834],[4449,23834],[4450,23834],[4451,23834],[4452,23834],[4453,23834],[4454,23834],[4455,23834],[4456,23834],[4457,23834],[4458,23834],[4459,23834],[4460,23834],[4461,23834],[4462,23834],[4463,23834],[4464,23834],[4465,23834],[4466,23834],[4467,23834],[4468,23834],[4469,23834],[4470,23834],[4471,23834],[4472,23834],[4473,23834],[4474,23834],[4475,23834],[4476,24101],[4477,24101],[4478,24101],[4479,24101],[4533,23835],[4534,23835],[4535,23835],[4536,23835],[4537,23835],[4538,23835],[4539,23835],[4540,23835],[4541,23835],[4542,23835],[4543,23835],[4544,23835],[4545,23835],[4546,23835],[4547,23835],[4548,23835],[4549,23835],[4550,23835],[4551,23835],[4552,23835],[4553,23835],[4554,23835],[4555,23835],[4556,23835],[4557,23835],[4558,23835],[4559,23835],[4560,23835],[4561,23835],[4562,23835],[4563,23835],[4564,23835],[4565,23835],[4566,23835],[4567,23835],[4568,23835],[4569,23835],[4570,23835],[4571,23835],[4572,23835],[4573,23835],[4574,23835],[4575,23835],[4576,24102],[4577,24102],[4578,24102],[4579,24102],[4580,23835],[4581,23835],[4582,23835],[4583,23835],[4584,23835],[4585,23835],[4586,23835],[4587,23835],[4588,23835],[4589,23835],[4590,23835],[4592,23849],[4593,23849],[4594,23849],[4595,23849],[4596,23836],[4597,23836],[4598,23836],[4599,23836],[4600,23927],[4601,23836],[4602,23836],[4603,23836],[4604,23836],[4605,23836],[4606,23836],[4607,23836],[4608,23836],[4609,23836],[4610,23836],[4611,23836],[4612,23836],[4613,23836],[4614,23836],[4615,23836],[4616,23836],[4617,23836],[4618,23836],[4619,23836],[4620,23836],[4621,23836],[4622,23836],[4623,23836],[4624,23836],[4625,23836],[4626,23836],[4627,23836],[4628,23836],[4629,23927],[4630,23836],[4631,23836],[4632,23836],[4633,23836],[4634,23927],[4635,23836],[4636,23836],[4637,23836],[4638,23836],[4639,23927],[4640,23836],[4641,23836],[4642,23836],[4643,23836],[4644,23927],[4645,23836],[4646,23836],[4647,23836],[4648,23836],[4649,23927],[4650,23836],[4651,23836],[4652,23836],[4653,23836],[4654,23927],[4655,23836],[4656,23836],[4657,23836],[4658,23836],[4659,23927],[4660,23836],[4661,23836],[4662,23836],[4663,23836],[4664,23927],[4665,23836],[4666,23836],[4667,23836],[4668,23836],[4669,23927],[4670,23836],[4671,23836],[4672,23836],[4673,23836],[4674,23927],[4675,23836],[4676,23836],[4677,23836],[4678,23836],[4679,23927],[4680,23836],[4681,23836],[4682,23836],[4683,23836],[4684,23927],[4685,23836],[4686,23836],[4687,23836],[4688,23836],[4689,23836],[4690,23836],[4691,23836],[4692,23836],[4693,23927],[4694,23836],[4695,23836],[4696,23836],[4697,23836],[4698,23927],[4699,23836],[4700,23836],[4701,23836],[4702,23836],[4703,23927],[4704,23836],[4705,23836],[4706,23836],[4707,23836],[4708,23927],[4709,23836],[4710,23836],[4711,23836],[4712,23836],[4713,23927],[4714,23836],[4715,23836],[4716,23836],[4717,23836],[4718,23927],[4719,23927],[4720,23927],[4721,23836],[4722,23836],[4723,23836],[4724,23836],[4725,23836],[4726,23836],[4727,23836],[4728,23836],[4729,23836],[4730,23836],[4731,23836],[4732,23836],[4733,23836],[4734,23927],[4735,23836],[4736,23836],[4737,23836],[4738,23836],[4739,23927],[4740,23836],[4741,23836],[4742,23836],[4743,23836],[4744,23927],[4745,23836],[4746,23836],[4747,23836],[4748,23836],[4749,23927],[4750,23836],[4751,23836],[4752,23836],[4753,23836],[4754,23836],[4755,23836],[4756,23836],[4757,23836],[4758,23927],[4759,23836],[4760,23836],[4761,23836],[4762,23836],[4763,23927],[4764,23836],[4765,23836],[4766,23836],[4767,23836],[4768,23927],[4769,23836],[4770,23836],[4771,23836],[4772,23836],[4773,23927],[4774,23836],[4775,23836],[4776,23836],[4777,23836],[4778,23927],[4779,23836],[4780,23836],[4781,23836],[4782,23836],[4783,23927],[4784,23836],[4785,23836],[4786,23836],[4787,23836],[4788,23927],[4789,23836],[4790,23836],[4791,23836],[4792,23836],[4793,23927],[4794,23836],[4795,23836],[4796,23836],[4797,23836],[4798,23927],[4799,23836],[4800,23836],[4801,23836],[4802,23836],[4803,23927],[4804,23836],[4805,23836],[4806,23836],[4807,23836],[4808,23927],[4809,23836],[4810,23836],[4811,23836],[4812,23836],[4813,23836],[4814,23836],[4815,23927],[4816,23836],[4817,23836],[4818,23836],[4819,23836],[4820,23927],[4821,23836],[4822,23836],[4823,23836],[4824,23836],[4825,23927],[4826,23836],[4827,23836],[4828,23836],[4829,23836],[4830,23927],[4831,23836],[4832,23836],[4833,23836],[4834,23836],[4835,23927],[4836,23836],[4837,23836],[4838,23836],[4839,23836],[4840,23927],[4841,23836],[4842,23836],[4843,23836],[4844,23836],[4845,23927],[4846,23836],[4847,23836],[4848,23836],[4849,23836],[4850,23927],[4851,23836],[4852,23836],[4853,23836],[4854,23836],[4855,23927],[4856,23836],[4857,23836],[4858,23836],[4859,23836],[4860,23927],[4861,23836],[4862,23836],[4863,23836],[4864,23836],[4865,23836],[4866,23837],[4867,23837],[4868,23837],[4869,23837],[4870,23837],[4871,23837],[4872,23837],[4873,23837],[4874,23837],[4875,23837],[4876,23837],[4877,23837],[4878,23837],[4879,23837],[4880,23837],[4881,23837],[4882,23837],[4883,23837],[4884,23837],[4885,23837],[4886,23837],[4887,23837],[4888,23837],[4889,23837],[4890,23837],[4891,23837],[4892,23837],[4893,23837],[4894,23837],[4895,23837],[4896,23837],[4897,23837],[4898,23837],[4899,23837],[4900,23837],[4901,23837],[4902,23837],[4903,23837],[4904,23837],[4905,23837],[4906,23837],[4907,23837],[4908,23837],[4909,23837],[4910,23837],[4911,23837],[4912,23837],[4913,23837],[4914,23837],[4915,23837],[4916,23837],[4917,23837],[4918,23837],[4919,23837],[4920,23837],[4921,23837],[4922,23837],[4923,23837],[4924,23837],[4925,23837],[4926,23837],[4927,23837],[4928,23837],[4929,23837],[4930,23837],[4931,23837],[4932,23837],[4933,23837],[4934,23837],[4935,23837],[4936,23837],[4937,23837],[4938,23837],[4939,23837],[4940,23837],[4941,23837],[4942,23837],[4943,23837],[4944,23837],[4945,23837],[4946,23837],[4947,23837],[4948,23837],[4949,23837],[4950,23837],[4951,23837],[4952,23837],[4953,23837],[4954,23837],[4955,23837],[4956,23837],[4957,23837],[4958,23837],[4959,23837],[4960,23837],[4961,23837],[4962,23928],[4963,23928],[4964,23928],[4965,23929],[4966,23930],[4967,23929],[4968,23930],[4969,23930],[4970,23928],[4971,23931],[4972,23931],[4973,23928],[4974,23930],[4975,23929],[4976,23931],[4977,23931],[4978,23928],[4979,23931],[4980,23929],[4981,23929],[4982,23930],[4983,23931],[4984,23928],[4985,23928],[4986,23928],[4987,23929],[4988,23930],[4989,23931],[4990,23928],[4991,23929],[4992,23930],[4993,23931],[4994,23928],[4995,23929],[4996,23930],[4997,23931],[4998,23928],[4999,23929],[5000,23930],[5001,23931],[5002,23928],[5003,23929],[5004,23928],[5005,23928],[5006,23928],[5007,23928],[5008,23928],[5009,23928],[5010,23928],[5011,23928],[5012,23929],[5013,23930],[5014,23931],[5015,23928],[5016,23929],[5017,23930],[5018,23931],[5019,23928],[5020,23929],[5021,23930],[5022,23931],[5023,23928],[5024,23929],[5025,23930],[5026,23931],[5027,23928],[5028,23929],[5029,23930],[5030,23931],[5031,23928],[5032,23929],[5033,23930],[5034,23931],[5035,23928],[5036,23929],[5037,23928],[5038,23928],[5039,23929],[5040,23928],[5041,23928],[5042,23929],[5043,23930],[5044,23931],[5045,23928],[5046,23928],[5047,23928],[5048,23928],[5049,23929],[5050,23930],[5051,23931],[5052,23928],[5053,23929],[5054,23930],[5055,23931],[5056,23928],[5057,23928],[5058,23929],[5059,23930],[5060,23931],[5061,23928],[5062,23929],[5063,23930],[5064,23931],[5065,23928],[5066,23928],[5067,23929],[5068,23930],[5069,23931],[5070,23928],[5071,23929],[5072,23929],[5073,23929],[5074,23930],[5075,23930],[5076,23930],[5077,23931],[5078,23931],[5079,23931],[5080,23928],[5081,23928],[5082,23928],[5083,23928],[5084,23929],[5085,23930],[5086,23931],[5087,23928],[5088,23928],[5089,23928],[5090,23928],[5091,23928],[5092,23929],[5093,23929],[5094,23930],[5095,23931],[5096,23928],[5097,23929],[5098,23930],[5099,23931],[5100,23928],[5101,23928],[5102,23928],[5103,23928],[5104,23928],[5105,23928],[5106,23928],[5107,23929],[5108,23930],[5109,23931],[5110,23928],[5111,23929],[5112,23928],[5113,23929],[5114,23930],[5115,23931],[5116,23928],[5117,23928],[5118,23928],[5119,23928],[5120,23929],[5121,23930],[5122,23931],[5123,23928],[5124,23929],[5125,23930],[5126,23931],[5127,23928],[5128,23929],[5129,23930],[5130,23931],[5131,23928],[5132,23929],[5133,23930],[5134,23931],[5135,23928],[5136,23929],[5137,23930],[5138,23931],[5139,23928],[5140,23929],[5141,23930],[5142,23931],[5143,23928],[5144,23929],[5145,23930],[5146,23931],[5147,23928],[5148,23929],[5149,23930],[5150,23931],[5151,23928],[5152,23928],[5153,23929],[5154,23930],[5155,23931],[5156,23928],[5157,23928],[5158,23928],[5159,23928],[5160,23928],[5161,23928],[5162,24103],[5163,23928],[5164,23928],[5165,23928],[5166,23928],[5167,24104],[5168,24104],[5169,23929],[5170,23928],[5171,23928],[5172,23928],[5173,23928],[5174,23928],[5175,23928],[5176,23928],[5177,23929],[5178,23930],[5179,23931],[5180,23928],[5181,23928],[5182,23929],[5183,23930],[5184,23931],[5185,23928],[5186,23929],[5187,23930],[5188,23931],[5189,23928],[5190,23929],[5191,23930],[5192,23931],[5193,23928],[5194,23929],[5195,23930],[5196,23931],[5197,23928],[5198,23929],[5199,23930],[5200,23931],[5201,23928],[5202,23929],[5203,23930],[5204,23931],[5205,23928],[5206,23929],[5207,23930],[5208,23931],[5209,23928],[5210,23928],[5211,23929],[5212,23930],[5213,23931],[5214,23928],[5215,23929],[5216,23930],[5217,23931],[5218,23928],[5230,23929],[5231,23929],[5232,23929],[5233,23929],[5234,23929],[5235,23929],[5236,23929],[5237,23929],[5238,23929],[5239,23929],[5240,23929],[5241,23929],[5242,23929],[5243,23929],[5244,23929],[5245,23929],[5246,23929],[5247,23929],[5248,23929],[5249,23929],[5250,23929],[5251,23929],[5252,23929],[5253,23929],[5254,23929],[5255,23929],[5256,23929],[5257,23929],[5258,23929],[5259,23929],[5260,23929],[5261,23929],[5262,23929],[5263,23929],[5264,23929],[5265,23929],[5266,23929],[5267,23929],[5268,23929],[5269,23929],[5270,23929],[5271,23929],[5272,23929],[5273,23929],[5274,23929],[5275,23929],[5276,23929],[5277,23929],[5278,23929],[5279,23929],[5280,23929],[5281,23929],[5282,23929],[5283,23929],[5284,23929],[5285,23929],[5286,23929],[5287,23929],[5288,23929],[5289,23929],[5290,23929],[5291,23929],[5292,23929],[5293,23929],[5294,23929],[5295,23929],[5296,23929],[5297,23929],[5298,23929],[5299,23929],[5300,23929],[5301,23929],[5302,23929],[5303,23929],[5304,23929],[5305,23929],[5306,23929],[5307,23929],[5308,23929],[5309,23929],[5310,23929],[5311,23929],[5312,23929],[5313,23929],[5314,23929],[5315,23929],[5316,23929],[5317,23929],[5318,23929],[5319,23929],[5320,23929],[5321,23929],[5322,23929],[5323,23929],[5324,23929],[5325,23929],[5326,23929],[5327,23929],[5328,23929],[5329,23929],[5330,23929],[5331,23929],[5332,23929],[5333,23929],[5334,23929],[5335,23929],[5336,23929],[5337,23929],[5338,23929],[5339,23929],[5340,23929],[5341,23929],[5342,23929],[5343,23929],[5344,23929],[5345,23929],[5346,23929],[5347,23929],[5348,23929],[5349,23929],[5350,23929],[5351,23929],[5352,23929],[5353,23929],[5354,23929],[5355,23929],[5356,23929],[5357,23929],[5358,23929],[5359,23929],[5360,23929],[5361,23929],[5362,23929],[5363,23929],[5364,23929],[5365,23929],[5366,23929],[5367,23929],[5368,23929],[5369,23929],[5370,23929],[5371,23929],[5372,23929],[5373,23929],[5374,23929],[5375,23929],[5376,23929],[5377,23929],[5378,23929],[5379,23929],[5380,23929],[5381,23929],[5382,23929],[5383,23929],[5384,23929],[5385,23929],[5386,23929],[5387,23929],[5388,23929],[5389,23929],[5390,23929],[5391,23929],[5392,23929],[5393,23929],[5394,23929],[5395,23929],[5396,23929],[5397,23929],[5398,23929],[5399,23929],[5400,23929],[5401,23929],[5402,23929],[5403,23929],[5404,23929],[5405,23929],[5406,23929],[5407,23929],[5408,23929],[5409,23929],[5410,23929],[5411,23929],[5412,23929],[5413,23929],[5414,23929],[5415,23929],[5416,23929],[5417,23929],[5418,23929],[5419,23929],[5420,23929],[5421,23929],[5422,23929],[5423,23929],[5424,23929],[5425,23929],[5426,23929],[5427,23929],[5428,23929],[5429,23929],[5430,23929],[5431,23929],[5432,23929],[5433,23929],[5434,23929],[5435,23929],[5436,23929],[5437,23929],[5438,23929],[5439,23929],[5440,23929],[5441,23929],[5442,23929],[5443,23929],[5444,23929],[5445,23929],[5446,23929],[5447,23929],[5448,23929],[5449,23929],[5450,23929],[5451,23929],[5452,23929],[5453,23929],[5454,23929],[5455,23929],[5456,23929],[5457,23929],[5458,23929],[5459,23929],[5460,23929],[5461,23929],[5462,23929],[5463,23929],[5464,23929],[5465,23929],[5466,23929],[5467,23929],[5468,23929],[5469,23929],[5470,23929],[5471,23929],[5472,23929],[5473,23929],[5474,23929],[5475,23929],[5476,23929],[5477,23929],[5478,23929],[5479,23929],[5480,23929],[5481,23929],[5482,23929],[5483,23929],[5484,23929],[5485,23929],[5486,23929],[5487,23929],[5488,23929],[5489,23929],[5490,23929],[5491,23929],[5492,23929],[5493,23929],[5494,23929],[5495,23929],[5496,23929],[5497,23929],[5498,23929],[5499,23929],[5500,23929],[5501,23929],[5502,23929],[5503,23929],[5504,23929],[5505,23929],[5506,23929],[5507,23929],[5508,23929],[5509,23929],[5510,23929],[5511,23929],[5512,23929],[5513,23929],[5514,23929],[5515,23929],[5516,23929],[5517,23929],[5518,23929],[5519,23929],[5520,23929],[5521,23929],[5522,23929],[5523,23929],[5524,23929],[5525,23929],[5526,23929],[5527,23929],[5528,23929],[5529,23929],[5530,23929],[5531,23929],[5532,23929],[5533,23929],[5534,23929],[5535,23929],[5536,23929],[5537,23929],[5538,23929],[5539,23929],[5540,23929],[5541,23929],[5542,23929],[5543,23929],[5544,23929],[5545,23929],[5546,23929],[5547,23929],[5548,23929],[5549,23929],[5550,23929],[5551,23929],[5552,23929],[5553,23929],[5554,23929],[5555,23929],[5556,23929],[5557,23929],[5558,23929],[5559,23929],[5560,23929],[5561,23929],[5562,23929],[5563,23929],[5564,23929],[5565,23929],[5566,23929],[5567,23929],[5568,23929],[5569,23929],[5570,23929],[5571,23929],[5572,23929],[5573,23929],[5574,23929],[5575,23929],[5576,23929],[5577,23929],[5578,23929],[5579,23929],[5580,23929],[5581,23929],[5582,23929],[5583,23929],[5584,23929],[5585,23929],[5586,23929],[5587,23929],[5588,23929],[5589,23929],[5590,23929],[5591,23929],[5592,23929],[5593,23929],[5594,23929],[5595,23929],[5596,23929],[5597,23929],[5598,23929],[5599,23929],[5600,23929],[5601,23929],[5602,23929],[5603,23929],[5604,23929],[5605,23929],[5606,23929],[5607,23929],[5608,23929],[5609,23929],[5610,23929],[5611,23929],[5612,23929],[5613,23929],[5614,23929],[5615,23929],[5616,23929],[5617,23929],[5618,23929],[5619,23929],[5620,23929],[5621,23929],[5622,23929],[5623,23929],[5624,23929],[5625,23929],[5626,23929],[5627,23929],[5628,23929],[5629,23929],[5630,23929],[5631,23929],[5632,23929],[5633,23929],[5634,23929],[5635,23929],[5636,23929],[5637,23929],[5638,23929],[5639,23929],[5640,23929],[5641,23929],[5642,23929],[5643,23929],[5644,23929],[5645,23929],[5646,23929],[5647,23929],[5648,23929],[5649,23929],[5650,23929],[5651,23929],[5652,23929],[5653,23929],[5654,23929],[5655,23929],[5656,23929],[5657,23929],[5658,23929],[5659,23929],[5660,23929],[5661,23929],[5662,23929],[5663,23929],[5664,23929],[5665,23929],[5666,23929],[5667,23929],[5668,23929],[5669,23929],[5670,23929],[5671,23929],[5672,23929],[5673,23929],[5674,23929],[5675,23929],[5676,23929],[5677,23929],[5678,23929],[5679,23929],[5680,23929],[5681,23929],[5682,23929],[5683,23929],[5684,23929],[5685,23929],[5686,23929],[5687,23929],[5688,23929],[5689,23929],[5690,23929],[5691,23929],[5692,23929],[5693,23929],[5694,23929],[5695,23929],[5696,23929],[5697,23929],[5698,23929],[5699,23929],[5700,23929],[5701,23929],[5702,23929],[5703,23929],[5704,23929],[5705,23929],[5706,23929],[5707,23929],[5708,23929],[5709,23929],[5710,23929],[5711,23929],[5712,23929],[5713,23929],[5714,23929],[5715,23929],[5716,23929],[5717,23929],[5718,23929],[5719,23929],[5720,23929],[5721,23929],[5722,23929],[5723,23929],[5724,23929],[5725,23929],[5726,23929],[5727,23929],[5728,23929],[5729,23929],[5730,23929],[5731,23929],[5732,23929],[5733,23929],[5734,23929],[5735,23929],[5736,23929],[5737,23929],[5738,23929],[5739,23929],[5740,23929],[5741,23929],[5742,23929],[5743,23929],[5744,23929],[5745,23929],[5746,23929],[5747,23929],[5748,23929],[5749,23929],[5750,23929],[5751,23929],[5752,23929],[5753,23929],[5754,23929],[5755,23929],[5756,23929],[5757,23929],[5758,23929],[5759,23929],[5760,23929],[5761,23929],[5762,23929],[5763,23929],[5764,23929],[5765,23929],[5766,23929],[5767,23929],[5768,23929],[5769,23929],[5770,23929],[5771,23929],[5772,23929],[5773,23929],[5774,23929],[5775,23929],[5776,23929],[5777,23929],[5778,23929],[5779,23929],[5780,23929],[5781,23929],[5782,23929],[5783,23929],[5784,23929],[5785,23929],[5786,23929],[5787,23929],[5788,23929],[5789,23929],[5790,23929],[5791,23929],[5792,23929],[5793,23929],[5794,23929],[5795,23929],[5796,23929],[5797,23929],[5798,23929],[5799,23929],[5800,23929],[5801,23929],[5802,23929],[5803,23929],[5804,23929],[5805,23929],[5806,23929],[5807,23929],[5808,23929],[5809,23929],[5810,23929],[5811,23929],[5812,23929],[5813,23929],[5814,23929],[5815,23929],[5816,23929],[5817,23929],[5818,23929],[5819,23929],[5820,23929],[5821,23929],[5822,23929],[5823,23929],[5824,23929],[5825,23929],[5826,23929],[5827,23929],[5828,23929],[5829,23929],[5830,23929],[5831,23929],[5832,23929],[5833,23929],[5834,23929],[5835,23929],[5836,23929],[5837,23929],[5838,23929],[5839,23929],[5840,23929],[5841,23929],[5842,23929],[5843,23929],[5844,23929],[5845,23929],[5846,23929],[5847,23929],[5848,23929],[5849,23929],[5850,23929],[5851,23929],[5852,23929],[5853,23929],[5854,23929],[5855,23929],[5856,23929],[5857,23929],[5858,23929],[5859,23929],[5860,23929],[5861,23929],[5862,23929],[5863,23929],[5864,23929],[5865,23929],[5866,23929],[5867,23929],[5868,23929],[5869,23929],[5870,23929],[5871,23929],[5872,23929],[5873,23929],[5874,23929],[5875,23929],[5876,23929],[5877,23929],[5878,23929],[5879,23929],[5880,23929],[5881,23929],[5882,23929],[5883,23929],[5884,23929],[5885,23929],[5886,23929],[5887,23929],[5888,23929],[5889,23929],[5890,23929],[5891,23929],[5892,23929],[5893,23929],[5894,23929],[5895,23929],[5896,23929],[5897,23929],[5898,23929],[5899,23929],[5900,23929],[5901,23929],[5902,23929],[5903,23929],[5904,23929],[5905,23929],[5906,23929],[5907,23929],[5908,23929],[5909,23929],[5910,23929],[5911,23929],[5912,23929],[5913,23929],[5914,23929],[5915,23929],[5916,23929],[5917,23929],[5918,23929],[5919,23929],[5920,23929],[5921,23929],[5922,23929],[5923,23929],[5924,23929],[5925,23929],[5926,23929],[5927,23929],[5928,23929],[5929,23929],[5930,23929],[5931,23929],[5932,23929],[5933,23929],[5934,23929],[5935,23929],[5936,23929],[5937,23929],[5938,23929],[5939,23929],[5940,23929],[5941,23891],[5942,23909],[5943,23909],[5944,23910],[5945,23910],[5946,23895],[5947,23895],[5948,23895],[5949,23891],[5950,23910],[5951,23910],[5952,23910],[5953,23910],[5954,23909],[5955,23895],[5956,23895],[5957,23895],[5958,23895],[5959,23895],[5960,23909],[5961,23891],[5962,23910],[5963,23909],[5964,23895],[5965,23895],[5966,23895],[5967,23909],[5968,23910],[5969,23895],[5970,23895],[5971,23895],[5972,23895],[5973,23895],[5974,23909],[5975,23910],[5976,23895],[5977,23891],[5978,23910],[5979,23895],[5980,23895],[5981,23895],[5982,23909],[5983,23891],[5984,23910],[5985,23910],[5986,23895],[5987,23909],[5988,23891],[5989,23910],[5990,23910],[5991,23895],[5992,23909],[5993,23891],[5994,23910],[5995,23910],[5996,23895],[5997,23909],[5998,23891],[5999,23910],[6000,23910],[6001,23895],[6002,23909],[6003,23891],[6004,23910],[6005,23910],[6006,23895],[6007,23909],[6008,23891],[6009,23910],[6010,23910],[6011,23895],[6012,23909],[6013,23891],[6014,23910],[6015,23910],[6016,23895],[6017,23909],[6018,23891],[6019,23910],[6020,23910],[6021,23895],[6022,23909],[6023,23891],[6024,23910],[6025,23910],[6026,23895],[6027,23909],[6028,23891],[6029,23910],[6030,23910],[6031,23895],[6032,23909],[6033,23891],[6034,23910],[6035,23910],[6036,23895],[6037,23895],[6038,23895],[6039,23909],[6040,23891],[6041,23910],[6042,23910],[6043,23895],[6044,23891],[6045,23895],[6046,23909],[6047,23891],[6048,23910],[6049,23910],[6050,23895],[6051,23909],[6052,23891],[6053,23910],[6054,23910],[6055,23895],[6056,23909],[6057,23891],[6058,23910],[6059,23910],[6060,23895],[6061,23909],[6062,23891],[6063,23910],[6064,23910],[6065,23895],[6066,23909],[6067,23891],[6068,23910],[6069,23910],[6070,23895],[6071,23909],[6072,23909],[6073,23909],[6074,23895],[6075,23895],[6076,23895],[6077,23909],[6078,23891],[6079,23910],[6080,23910],[6081,23895],[6082,23909],[6083,23891],[6084,23910],[6085,23910],[6086,23895],[6087,23909],[6088,23891],[6089,23910],[6090,23910],[6091,23895],[6092,23909],[6093,23891],[6094,23910],[6095,23910],[6096,23895],[6097,23909],[6098,23909],[6099,23891],[6100,23910],[6101,23910],[6102,23895],[6103,23909],[6104,23891],[6105,23910],[6106,23910],[6107,23895],[6108,23909],[6109,23891],[6110,23910],[6111,23910],[6112,23895],[6113,23909],[6114,23891],[6115,23910],[6116,23910],[6117,23895],[6118,23909],[6119,23891],[6120,23910],[6121,23910],[6122,23895],[6123,23909],[6124,23891],[6125,23910],[6126,23910],[6127,23895],[6128,23909],[6129,23891],[6130,23910],[6131,23910],[6132,23895],[6133,23909],[6134,23891],[6135,23910],[6136,23910],[6137,23895],[6138,23909],[6139,23891],[6140,23910],[6141,23910],[6142,23895],[6143,23909],[6144,23891],[6145,23910],[6146,23910],[6147,23895],[6148,23891],[6149,23891],[6150,23891],[6151,23891],[6152,23891],[6153,23891],[6154,23895],[6155,23895],[6156,23891],[6157,23891],[6158,23891],[6159,23891],[6160,23909],[6161,23891],[6162,23910],[6163,23910],[6164,23895],[6165,23909],[6166,23891],[6167,23910],[6168,23910],[6169,23895],[6170,23909],[6171,23891],[6172,23910],[6173,23910],[6174,23895],[6175,23909],[6176,23891],[6177,23910],[6178,23910],[6179,23895],[6180,23909],[6181,23891],[6182,23910],[6183,23910],[6184,23895],[6185,23909],[6186,23891],[6187,23910],[6188,23910],[6189,23895],[6190,23909],[6191,23891],[6192,23910],[6193,23910],[6194,23895],[6195,23909],[6196,23891],[6197,23910],[6198,23910],[6199,23895],[6200,23909],[6201,23891],[6202,23910],[6203,23910],[6204,23895],[6205,23909],[6206,23891],[6207,23910],[6208,23910],[6209,23895],[6217,24105],[6218,23875],[6219,23875],[6220,23875],[6221,23875],[6222,23875],[6223,23875],[6224,23875],[6225,23875],[6226,23875],[6227,23875],[6228,23875],[6229,23875],[6230,23875],[6231,23875],[6232,23875],[6233,23875],[6234,23875],[6235,23875],[6236,23875],[6237,23875],[6238,23875],[6239,23875],[6240,23875],[6241,23875],[6242,23875],[6243,23875],[6244,23875],[6245,23875],[6246,23875],[6247,23875],[6248,23875],[6249,23875],[6250,23875],[6251,23875],[6252,23875],[6253,23875],[6254,23875],[6255,23875],[6256,23875],[6257,23875],[6258,23875],[6259,23875],[6260,23875],[6261,23875],[6262,23875],[6263,23875],[6264,23875],[6265,23875],[6266,23875],[6267,23875],[6268,23875],[6269,23875],[6270,23875],[6271,23875],[6272,23875],[6273,23875],[6274,23875],[6275,23875],[6276,23875],[6277,23875],[6278,23875],[6279,23875],[6280,23875],[6281,23875],[6282,23875],[6283,23875],[6284,23875],[6285,23875],[6286,23875],[6287,23875],[6288,23875],[6289,23875],[6290,23875],[6291,23875],[6292,23875],[6293,23875],[6294,23875],[6295,23875],[6296,23875],[6297,23875],[6298,23875],[6299,23875],[6300,23875],[6301,23875],[6302,23875],[6303,23875],[6304,23875],[6305,23875],[6306,23875],[6307,23875],[6308,23875],[6309,23875],[6310,23875],[6311,23875],[6312,23875],[6313,23875],[6314,23875],[6315,23875],[6316,23875],[6317,23875],[6318,23875],[6319,23875],[6320,23875],[6321,23875],[6322,23875],[6323,23875],[6324,23875],[6325,23875],[6326,23875],[6327,23875],[6328,23875],[6329,23875],[6330,23875],[6331,23875],[6332,23875],[6333,23875],[6334,23875],[6335,23875],[6336,23875],[6337,23875],[6338,23875],[6339,23875],[6340,23875],[6341,23875],[6342,23875],[6343,23875],[6344,23875],[6345,23875],[6346,23875],[6347,23875],[6348,23875],[6349,23875],[6350,23875],[6351,23875],[6352,23875],[6353,23875],[6354,23875],[6355,23830],[6356,23830],[6357,23830],[6358,23830],[6359,23830],[6360,23830],[6361,23830],[6362,23830],[6363,23830],[6364,23830],[6365,24106],[6366,24106],[6367,23934],[6368,23934],[6369,23934],[6370,23934],[6371,23934],[6372,23934],[6373,23934],[6374,23934],[6375,23934],[6376,23934],[6377,23934],[6378,23934],[6379,23934],[6380,23934],[6381,23934],[6382,23934],[6383,23934],[6384,23934],[6385,23934],[6386,24107],[6387,23934],[6388,23934],[6389,23934],[6390,23934],[6391,23934],[6392,23934],[6393,23934],[6394,23934],[6395,23934],[6396,23934],[6397,23934],[6398,23934],[6399,23934],[6400,23934],[6401,23934],[6402,23934],[6403,23934],[6404,23934],[6405,23934],[6406,23934],[6407,23934],[6408,23934],[6409,23934],[6410,23934],[6411,23934],[6412,23934],[6413,23934],[6414,23934],[6415,23934],[6416,23934],[6417,23934],[6418,23934],[6419,23802],[6420,23802],[6421,23802],[6422,23802],[6423,23802],[6424,23802],[6425,23802],[6426,23802],[6427,23802],[6428,23802],[6429,23802],[6430,23802],[6431,23802],[6432,23802],[6433,23802],[6434,23802],[6435,23802],[6436,23802],[6437,23802],[6438,23802],[6439,23802],[6440,23802],[6441,23802],[6442,23802],[6443,23802],[6444,23802],[6445,23802],[6446,23802],[6447,23802],[6448,23802],[6449,23802],[6450,23802],[6451,23802],[6452,23802],[6453,23802],[6454,23802],[6455,23802],[6456,23802],[6457,23802],[6458,23802],[6459,23802],[6460,23802],[6461,23802],[6462,23802],[6463,23802],[6464,23802],[6465,23820],[6466,23843],[6467,23843],[6468,23843],[6469,23843],[6470,23820],[6471,23820],[6472,23820],[6473,23820],[6474,23820],[6475,23820],[6476,23843],[6477,23843],[6478,23820],[6479,23820],[6480,23843],[6481,23820],[6482,23843],[6483,23843],[6484,23820],[6485,23820],[6486,23843],[6487,23843],[6488,23843],[6489,23820],[6490,23820],[6491,23820],[6492,23843],[6493,23820],[6494,23843],[6495,23820],[6496,23843],[6497,23843],[6498,23820],[6499,23820],[6500,23843],[6501,23820],[6502,23843],[6503,23843],[6504,23843],[6505,23820],[6506,23820],[6507,23820],[6508,23843],[6509,23843],[6510,23843],[6511,23820],[6512,23820],[6513,23820],[6514,23820],[6515,23843],[6516,23820],[6517,23820],[6518,23843],[6519,23820],[6520,23820],[6521,23843],[6522,23820],[6523,23820],[6524,23843],[6525,23820],[6526,23820],[6527,23843],[6528,23820],[6529,23820],[6530,23843],[6531,23820],[6532,23820],[6533,23843],[6534,23820],[6535,23820],[6536,23843],[6537,23820],[6538,23820],[6539,23843],[6540,23820],[6541,23820],[6542,23843],[6543,23820],[6544,23820],[6545,23843],[6546,23820],[6547,23820],[6548,23843],[6549,23820],[6550,23820],[6551,23843],[6552,23820],[6553,23820],[6554,23843],[6555,23820],[6556,23843],[6557,23820],[6558,23820],[6559,23843],[6560,23820],[6561,23820],[6562,23843],[6563,23820],[6564,23820],[6565,23843],[6566,23820],[6567,23820],[6568,23843],[6569,23820],[6570,23820],[6571,23843],[6572,23820],[6573,23820],[6574,23820],[6575,23843],[6576,23820],[6577,23820],[6578,23843],[6579,23820],[6580,23820],[6581,23843],[6582,23820],[6583,23820],[6584,23843],[6585,23820],[6586,23820],[6587,23843],[6588,23820],[6589,23820],[6590,23843],[6591,23820],[6592,23820],[6593,23843],[6594,23820],[6595,23820],[6596,23843],[6597,23820],[6598,23820],[6599,23843],[6600,23820],[6601,23820],[6602,23843],[6603,23820],[6604,23820],[6605,23843],[6606,23820],[6607,23820],[6608,23843],[6609,23820],[6610,23820],[6611,23843],[6612,23820],[6613,23820],[6614,23820],[6615,23820],[6616,23843],[6617,23843],[6618,23843],[6619,23820],[6620,23843],[6621,23820],[6622,23820],[6623,23820],[6624,23820],[6625,23843],[6626,23820],[6627,23820],[6628,23843],[6629,23820],[6630,23820],[6631,23843],[6632,23820],[6633,23820],[6634,23843],[6635,23820],[6636,23820],[6637,23843],[6638,23820],[6639,23820],[6640,23843],[6641,23820],[6642,23820],[6643,23843],[6644,23820],[6645,23820],[6646,23843],[6647,23820],[6648,23820],[6649,23843],[6650,23820],[6651,23820],[6652,23843],[6653,23820],[6654,23843],[6655,23843],[6656,23843],[6657,23843],[6658,23843],[6659,23843],[6660,23843],[6661,23843],[6662,23843],[6663,23843],[6664,23843],[6665,23843],[6666,23843],[6667,23843],[6668,23843],[6669,23843],[6670,23843],[6671,23843],[6672,23843],[6673,23843],[6674,23843],[6675,23843],[6676,23843],[6677,23843],[6678,23843],[6679,23843],[6680,23843],[6681,23843],[6682,23843],[6683,23843],[6684,23843],[6685,23843],[6686,23843],[6687,23843],[6688,23843],[6689,23843],[6690,23843],[6691,23843],[6692,23843],[6693,23843],[6694,23843],[6695,23843],[6696,23843],[6697,23843],[6698,23843],[6699,23843],[6700,23843],[6701,23843],[6702,23843],[6703,23843],[6704,23843],[6705,23843],[6706,23843],[6707,23843],[6708,23843],[6709,23843],[6710,23843],[6711,23843],[6712,23843],[6713,23843],[6714,23843],[6715,23843],[6716,23843],[6717,23843],[6718,23843],[6719,23843],[6720,23843],[6721,23843],[6722,23843],[6723,23843],[6724,23843],[6725,23843],[6726,23843],[6727,23843],[6728,23843],[6729,23843],[6730,23843],[6731,23843],[6732,23843],[6733,23843],[6734,23843],[6735,23843],[6736,23843],[6737,23843],[6738,23843],[6739,23843],[6740,23843],[6741,23843],[6742,23843],[6743,23843],[6744,23843],[6745,23843],[6746,23843],[6747,23843],[6748,23843],[6749,23843],[6750,23843],[6751,23843],[6752,23843],[6753,23843],[6754,23843],[6755,23843],[6756,23843],[6757,23843],[6758,23843],[6759,23843],[6760,23843],[6761,23843],[6762,23843],[6763,23843],[6764,23843],[6765,23843],[6766,23843],[6767,23843],[6768,23843],[6769,23843],[6770,23843],[6771,23843],[6772,23843],[6773,23843],[6774,23843],[6775,23843],[6776,23843],[6777,23843],[6778,23843],[6779,23843],[6780,23843],[6781,23843],[6782,23843],[6783,23843],[6784,23843],[6785,23843],[6786,23843],[6787,23843],[6788,23843],[6789,23843],[6790,23843],[6791,23843],[6792,23843],[6793,23843],[6794,23843],[6795,23843],[6796,23843],[6797,23843],[6798,23843],[6799,23843],[6800,23843],[6801,23843],[6802,23843],[6803,23843],[6804,23843],[6805,23843],[6806,23843],[6807,23843],[6808,23843],[6809,23843],[6810,23843],[6811,23843],[6812,23843],[6813,23843],[6814,23843],[6815,23843],[6816,23843],[6817,23843],[6818,23843],[6819,23843],[6820,23843],[6821,23843],[6822,23843],[6823,23843],[6824,23843],[6825,23843],[6826,23843],[6827,23843],[6828,23843],[6829,23843],[6830,23843],[6831,23843],[6832,23843],[6833,23843],[6834,23843],[6835,23843],[6836,23843],[6837,23843],[6838,23843],[6839,23843],[6840,23843],[6841,23843],[6842,23843],[6843,23843],[6844,23843],[6845,23843],[6846,23843],[6847,23843],[6848,23843],[6849,23843],[6850,23843],[6851,23843],[6852,23843],[6853,23843],[6854,23843],[6855,23843],[6856,23843],[6857,23843],[6858,23843],[6859,23843],[6860,23843],[6861,23843],[6862,23843],[6863,23843],[6864,23843],[6865,23843],[6866,23843],[6867,23843],[6868,23843],[6869,23843],[6870,23843],[6871,23843],[6872,23843],[6873,23843],[6874,23843],[6875,23843],[6876,23843],[6877,23843],[6878,23843],[6879,23843],[6880,23843],[6881,23843],[6882,23843],[6883,23843],[6884,23843],[6885,23843],[6886,23843],[6887,23843],[6888,23843],[6889,23843],[6890,23843],[6891,23843],[6892,23843],[6893,23843],[6894,23843],[6895,23843],[6896,23843],[6897,23843],[6898,23843],[6899,23843],[6900,23843],[6901,23843],[6902,23843],[6903,23843],[6904,23843],[6905,23843],[6906,23843],[6907,23843],[6908,23843],[6909,23843],[6910,23843],[6911,23843],[6912,23843],[6913,23843],[6914,23843],[6915,23843],[6916,23843],[6917,23843],[6918,23843],[6919,23843],[6920,23843],[6921,23843],[6922,23843],[6923,23843],[6924,23843],[6925,23843],[6926,23843],[6927,23843],[6928,23843],[6929,23843],[6930,23843],[6931,23843],[6932,23843],[6933,23843],[6934,23843],[6935,23843],[6936,23843],[6937,23843],[6938,23843],[6939,23843],[6940,23843],[6941,23843],[6942,23843],[6943,23843],[6944,23843],[6945,23843],[6946,23843],[6947,23843],[6948,23843],[6949,23843],[6950,23843],[6951,23843],[6952,23843],[6953,23843],[6954,23843],[6955,23843],[6956,23843],[6957,23843],[6958,23843],[6959,23843],[6960,23843],[6961,23843],[6962,23843],[6963,23843],[6964,23843],[6965,23843],[6966,23843],[6967,23843],[6968,23843],[6969,23843],[6970,23843],[6971,23843],[6972,23843],[6973,23843],[6974,23843],[6975,23843],[6976,23843],[6977,23843],[6978,23843],[6979,23843],[6980,23843],[6981,23843],[6982,23843],[6983,23843],[6984,23843],[6985,23843],[6986,23843],[6987,23843],[6988,23843],[6989,23843],[6990,23843],[6991,23843],[6992,23843],[6993,23843],[6994,23843],[6995,23843],[6996,23843],[6997,23843],[6998,23843],[6999,23843],[7000,23843],[7001,23843],[7002,23843],[7003,23843],[7004,23843],[7005,23843],[7006,23843],[7007,23843],[7008,23843],[7009,23843],[7010,23843],[7011,23843],[7012,23843],[7013,23843],[7014,23843],[7015,23843],[7016,23843],[7017,23843],[7018,23843],[7019,23843],[7020,23843],[7021,23843],[7022,23843],[7023,23843],[7024,23843],[7025,23843],[7026,23843],[7027,23843],[7028,23843],[7029,23843],[7030,23843],[7031,23843],[7032,23843],[7033,23843],[7034,23843],[7035,23843],[7036,23843],[7037,23843],[7038,23843],[7039,23843],[7040,23843],[7041,23843],[7042,23843],[7043,23843],[7044,23843],[7045,23843],[7046,23843],[7047,23843],[7048,23843],[7049,23843],[7050,23843],[7051,23843],[7052,23843],[7053,23843],[7054,23845],[7055,23856],[7056,23845],[7057,23845],[7058,23845],[7059,23845],[7060,23845],[7061,23845],[7062,23845],[7063,23856],[7064,23845],[7065,23856],[7066,23856],[7067,23845],[7068,23845],[7069,23856],[7070,23856],[7071,23845],[7072,23845],[7073,23856],[7074,23845],[7075,23856],[7076,23845],[7077,23856],[7078,23845],[7079,23856],[7080,23845],[7081,23845],[7082,23845],[7083,23845],[7084,23845],[7085,23845],[7086,23845],[7087,23845],[7088,23845],[7089,23856],[7090,23845],[7091,23845],[7092,23856],[7093,23845],[7094,23856],[7095,23845],[7096,23856],[7097,23845],[7098,23856],[7099,23845],[7100,23856],[7101,23845],[7102,23856],[7103,23845],[7104,23856],[7105,23856],[7106,23845],[7107,23856],[7108,23845],[7109,23856],[7110,23845],[7111,23856],[7112,23845],[7113,23856],[7114,23845],[7115,23856],[7116,23845],[7117,24108],[7118,23845],[7119,23856],[7120,23845],[7121,23856],[7122,23845],[7123,23845],[7124,23845],[7125,23845],[7126,23845],[7127,23845],[7128,23845],[7129,23845],[7130,23845],[7131,23845],[7132,23856],[7133,23845],[7134,23856],[7135,23845],[7136,23856],[7137,23856],[7138,23856],[7139,23856],[7140,23845],[7141,23845],[7142,23856],[7143,23856],[7144,23856],[7145,23845],[7146,23845],[7147,23845],[7148,24109],[7149,23856],[7150,23845],[7151,23856],[7152,23856],[7153,23845],[7154,23845],[7155,23845],[7156,23856],[7157,23845],[7158,23845],[7159,23845],[7160,23845],[7161,23845],[7162,23845],[7163,23845],[7164,23845],[7165,23845],[7166,23845],[7167,23856],[7168,23845],[7169,23845],[7170,23856],[7171,23845],[7172,24108],[7173,23856],[7174,23845],[7175,23856],[7176,23845],[7177,23856],[7178,23845],[7179,23856],[7180,23845],[7181,23856],[7182,23845],[7183,23856],[7184,23845],[7185,23856],[7186,23845],[7187,23856],[7188,23845],[7189,23856],[7190,23845],[7191,23856],[7192,23845],[7193,23845],[7194,24108],[7195,24108],[7196,23845],[7197,23845],[7198,23845],[7199,23845],[7200,23845],[7201,23856],[7202,23845],[7203,23856],[7204,23845],[7205,23845],[7206,24109],[7207,23845],[7208,23856],[7209,23845],[7210,23845],[7211,24108],[7212,23845],[7213,23845],[7214,23856],[7215,23856],[7216,23856],[7217,23856],[7218,23845],[7219,23845],[7220,23856],[7221,23856],[7222,23845],[7223,23845],[7224,23845],[7225,23845],[7226,23845],[7227,23845],[7228,23845],[7229,23856],[7230,23845],[7231,23856],[7232,23845],[7233,23856],[7234,23845],[7235,23845],[7236,23845],[7237,23845],[7238,23856],[7239,23845],[7240,23856],[7241,23845],[7242,23856],[7243,23845],[7244,23856],[7245,23845],[7246,23856],[7247,23845],[7248,23856],[7249,23845],[7250,23856],[7251,23845],[7252,23945],[7253,23945],[7254,23945],[7255,23945],[7256,23945],[7257,23945],[7258,23945],[7259,23945],[7260,23945],[7261,23945],[7262,23945],[7263,23945],[7264,23945],[7265,23945],[7266,23945],[7267,23945],[7268,23945],[7269,23945],[7270,23945],[7271,23945],[7272,23945],[7273,23945],[7274,23945],[7275,23945],[7276,23945],[7277,23945],[7278,23945],[7279,23945],[7280,23945],[7281,23945],[7282,23945],[7283,23945],[7284,23945],[7285,23945],[7286,23945],[7287,23945],[7288,23945],[7289,23945],[7290,23945],[7291,23945],[7292,23945],[7293,23945],[7294,23945],[7295,23945],[7296,23945],[7297,23945],[7298,23945],[7299,23945],[7300,23945],[7301,23945],[7302,23945],[7303,23945],[7304,23945],[7305,23945],[7306,23945],[7307,23945],[7308,23945],[7309,23945],[7310,23945],[7311,23945],[7312,23945],[7313,23945],[7314,23945],[7315,23945],[7316,23945],[7317,23945],[7318,23945],[7319,23945],[7320,23945],[7321,23945],[7322,23945],[7323,23945],[7324,23945],[7325,23945],[7326,23945],[7327,23945],[7328,23945],[7329,23945],[7330,23945],[7331,23945],[7332,23945],[7333,23945],[7334,23945],[7335,23945],[7336,23945],[7337,23945],[7338,23945],[7339,23945],[7340,23945],[7341,23945],[7342,23945],[7343,23945],[7352,23948],[7353,23879],[7354,23951],[7355,23820],[7356,23820],[7357,23820],[7358,23820],[7359,23866],[7360,23946],[7361,23957],[7362,23961],[7363,23865],[7364,23820],[7365,23871],[7366,23876],[7367,23867],[7368,23864],[7369,23867],[7370,23960],[7371,23820],[7372,23820],[7373,23961],[7374,23820],[7375,23820],[7376,23820],[7377,23962],[7378,23820],[7379,23820],[7380,23820],[7381,23959],[7382,23820],[7383,23820],[7384,23954],[7385,23820],[7386,23820],[7387,23820],[7388,23874],[7389,23868],[7390,23955],[7391,23949],[7393,23871],[7394,23877],[7395,23867],[7396,24096],[7397,23965],[7398,23947],[7399,23869],[7400,23872],[7402,23966],[7403,23876],[7404,23820],[7405,23820],[7406,23972],[7407,23956],[7408,23961],[7409,23870],[7410,24110],[7411,23873],[7412,23880],[7413,23820],[7414,23950],[7415,23864],[7416,23820],[7417,23820],[7418,23820],[7419,23958],[7420,23960],[7421,23946],[7422,23954],[7423,23955],[7424,23947],[7425,23956],[7426,23950],[7427,23879],[7428,23866],[7429,23957],[7430,23865],[7431,23874],[7432,23868],[7433,23949],[7434,23871],[7435,23867],[7436,23869],[7437,23872],[7438,23876],[7439,23873],[7440,23880],[7441,23864],[7442,23958],[7443,23960],[7444,23965],[7445,23959],[7446,23966],[7447,23870],[7448,23877],[7449,23948],[7450,23972],[7451,23962],[7452,23951],[7453,23865],[7454,23865],[7455,23865],[7456,23865],[7457,23946],[7458,23865],[7459,23880],[7460,23947],[7461,23865],[7462,23872],[7463,23872],[7464,23872],[7465,23872],[7466,23872],[7467,23872],[7468,23948],[7469,23949],[7470,23946],[7471,23954],[7472,23955],[7473,23947],[7474,23956],[7475,23950],[7476,23879],[7477,23866],[7478,23957],[7479,23865],[7480,23874],[7481,23868],[7482,23949],[7483,23871],[7484,23867],[7485,23869],[7486,23872],[7487,23876],[7488,23873],[7489,23880],[7490,23864],[7491,23958],[7492,23960],[7493,23965],[7494,23959],[7495,23966],[7496,23870],[7497,23877],[7498,23948],[7499,23972],[7500,23962],[7501,23951],[7502,23946],[7503,23954],[7504,23955],[7505,23947],[7506,23956],[7507,23950],[7508,23879],[7509,23866],[7510,23957],[7511,23865],[7512,23874],[7513,23868],[7514,23949],[7515,23871],[7516,23867],[7517,23869],[7518,23872],[7519,23876],[7520,23873],[7521,23880],[7522,23864],[7523,23958],[7524,23960],[7525,23965],[7526,23959],[7527,23966],[7528,23870],[7529,23877],[7530,23948],[7531,23972],[7532,23962],[7533,23951],[7534,23946],[7535,23954],[7536,23955],[7537,23947],[7538,23956],[7539,23950],[7540,23879],[7541,23866],[7542,23957],[7543,23865],[7544,23874],[7545,23868],[7546,23949],[7547,23871],[7548,23867],[7549,23869],[7550,23872],[7551,23876],[7552,23873],[7553,23880],[7554,23864],[7555,23958],[7556,23960],[7557,23965],[7558,23959],[7559,23966],[7560,23870],[7561,23877],[7562,23948],[7563,23972],[7564,23962],[7565,23951],[7566,23946],[7567,23954],[7568,23955],[7569,23947],[7570,23956],[7571,23950],[7572,23879],[7573,23866],[7574,23957],[7575,23865],[7576,23874],[7577,23868],[7578,23949],[7579,23871],[7580,23867],[7581,23869],[7582,23872],[7583,23876],[7584,23873],[7585,23880],[7586,23864],[7587,23958],[7588,23960],[7589,23965],[7590,23959],[7591,23966],[7592,23870],[7593,23877],[7594,23948],[7595,23972],[7596,23962],[7597,23951],[7598,23950],[7599,23946],[7600,23954],[7601,23955],[7602,23947],[7603,23956],[7604,23950],[7605,23879],[7606,23866],[7607,23957],[7608,23865],[7609,23874],[7610,23868],[7611,23949],[7612,23871],[7613,23867],[7614,23869],[7615,23872],[7616,23876],[7617,23873],[7618,23880],[7619,23864],[7620,23958],[7621,23960],[7622,23965],[7623,23959],[7624,23966],[7625,23870],[7626,23877],[7627,23948],[7628,23972],[7629,23962],[7630,23951],[7631,23946],[7632,23954],[7633,23955],[7634,23947],[7635,23956],[7636,23950],[7637,23879],[7638,23866],[7639,23957],[7640,23865],[7641,23874],[7642,23868],[7643,23949],[7644,23871],[7645,23867],[7646,23869],[7647,23872],[7648,23876],[7649,23873],[7650,23880],[7651,23864],[7652,23958],[7653,23960],[7654,23965],[7655,23959],[7656,23966],[7657,23870],[7658,23877],[7659,23948],[7660,23972],[7661,23962],[7662,23951],[7663,24111],[7664,24111],[7665,24111],[7666,24112],[7667,24111],[7668,23946],[7669,23954],[7670,23955],[7671,23947],[7672,23956],[7673,23950],[7674,23879],[7675,23866],[7676,23957],[7677,23865],[7678,23874],[7679,23868],[7680,23949],[7681,23871],[7682,23867],[7683,23869],[7684,23872],[7685,23876],[7686,23873],[7687,23880],[7688,23864],[7689,23958],[7690,23960],[7691,23965],[7692,23959],[7693,23966],[7694,23870],[7695,23877],[7696,23948],[7697,23972],[7698,23962],[7699,23951],[7700,24112],[7701,24111],[7702,23948],[7703,23877],[7704,24111],[7705,23865],[7706,24111],[7707,23865],[7708,24111],[7709,23865],[7710,24112],[7711,24111],[7712,23946],[7713,23954],[7714,23955],[7715,23947],[7716,23956],[7717,23950],[7718,23879],[7719,23957],[7720,23865],[7721,23874],[7722,23949],[7723,23872],[7724,23958],[7725,23959],[7726,23879],[7727,23866],[7728,23865],[7729,23874],[7730,23868],[7731,23871],[7732,23867],[7733,23869],[7734,23872],[7735,23876],[7736,23873],[7737,23880],[7738,23864],[7739,23958],[7740,23960],[7741,23870],[7742,23877],[7743,23946],[7744,23947],[7745,23879],[7746,23865],[7747,23948],[7748,23948],[7749,23948],[7750,24111],[7751,24112],[7752,24112],[7753,24111],[7754,24113],[7755,23946],[7756,23954],[7757,23955],[7758,23947],[7759,23956],[7760,23950],[7761,23879],[7762,23866],[7763,23957],[7764,23865],[7765,23874],[7766,23868],[7767,23949],[7768,23871],[7769,23867],[7770,23869],[7771,23872],[7772,23876],[7773,23873],[7774,23880],[7775,23864],[7776,23958],[7777,23960],[7778,23965],[7779,23959],[7780,23966],[7781,23870],[7782,23877],[7783,23948],[7784,23972],[7785,23962],[7786,23951],[7787,24112],[7788,24111],[7789,23870],[7790,23962],[7791,23946],[7792,23947],[7793,23956],[7794,23876],[7795,23960],[7796,23946],[7797,23954],[7798,23955],[7799,23947],[7800,23956],[7801,23950],[7802,23879],[7803,23866],[7804,23957],[7805,23865],[7806,23874],[7807,23868],[7808,23949],[7809,23871],[7810,23867],[7811,23869],[7812,23872],[7813,23876],[7814,23873],[7815,23880],[7816,23864],[7817,23958],[7818,23960],[7819,23965],[7820,23959],[7821,23966],[7822,23870],[7823,23877],[7824,23948],[7825,23972],[7826,23962],[7827,23951],[7828,23946],[7829,23954],[7830,23955],[7831,23947],[7832,23956],[7833,23950],[7834,23879],[7835,23866],[7836,23957],[7837,23865],[7838,23874],[7839,23868],[7840,23949],[7841,23871],[7842,23867],[7843,23869],[7844,23872],[7845,23876],[7846,23873],[7847,23880],[7848,23864],[7849,23958],[7850,23960],[7851,23965],[7852,23959],[7853,23966],[7854,23870],[7855,23877],[7856,23948],[7857,23972],[7858,23962],[7859,23951],[7860,23946],[7861,23954],[7862,23955],[7863,23947],[7864,23956],[7865,23950],[7866,23879],[7867,23865],[7868,23874],[7869,23949],[7870,23872],[7871,23880],[7872,23958],[7873,23959],[7874,23872],[7875,23946],[7876,23954],[7877,23955],[7878,23947],[7879,23956],[7880,23950],[7881,23879],[7882,23866],[7883,23957],[7884,23865],[7885,23874],[7886,23868],[7887,23949],[7888,23871],[7889,23867],[7890,23869],[7891,23872],[7892,23876],[7893,23873],[7894,23880],[7895,23864],[7896,23958],[7897,23960],[7898,23965],[7899,23959],[7900,23966],[7901,23870],[7902,23877],[7903,23948],[7904,23972],[7905,23962],[7906,23951],[7907,23946],[7908,23954],[7909,23955],[7910,23947],[7911,23956],[7912,23950],[7913,23879],[7914,23866],[7915,23957],[7916,23865],[7917,23874],[7918,23868],[7919,23949],[7920,23871],[7921,23867],[7922,23869],[7923,23872],[7924,23876],[7925,23873],[7926,23880],[7927,23880],[7928,23864],[7929,23958],[7930,23960],[7931,23965],[7932,23959],[7933,23966],[7934,23870],[7935,23877],[7936,23972],[7937,23962],[7938,23951],[7939,23946],[7940,23954],[7941,23955],[7942,23947],[7943,23956],[7944,23950],[7945,23879],[7946,23866],[7947,23957],[7948,23865],[7949,23874],[7950,23868],[7951,23949],[7952,23871],[7953,23867],[7954,23869],[7955,23872],[7956,23876],[7957,23873],[7958,23880],[7959,23864],[7960,23958],[7961,23960],[7962,23965],[7963,23959],[7964,23966],[7965,23870],[7966,23877],[7967,23948],[7968,23972],[7969,23962],[7970,23951],[7971,23946],[7972,23947],[7973,23956],[7974,23962],[7975,23948],[7976,23972],[7977,23962],[7978,23951],[7979,24111],[7980,24111],[7981,23866],[7982,23957],[7983,23868],[7984,23867],[7985,23873],[7986,23880],[7987,23864],[7988,23946],[7989,23954],[7990,23955],[7991,23947],[7992,23956],[7993,23950],[7994,23879],[7995,23866],[7996,23957],[7997,23865],[7998,23874],[7999,23868],[8000,23949],[8001,23871],[8002,23867],[8003,23869],[8004,23872],[8005,23876],[8006,23873],[8007,23880],[8008,23864],[8009,23958],[8010,23960],[8011,23965],[8012,23959],[8013,23966],[8014,23870],[8015,23877],[8016,23948],[8017,23972],[8018,23962],[8019,23951],[8020,23946],[8021,23954],[8022,23955],[8023,23947],[8024,23956],[8025,23950],[8026,23879],[8027,23866],[8028,23957],[8029,23865],[8030,23874],[8031,23868],[8032,23949],[8033,23871],[8034,23867],[8035,23869],[8036,23872],[8037,23876],[8038,23873],[8039,23880],[8040,23864],[8041,23958],[8042,23960],[8043,23965],[8044,23959],[8045,23966],[8046,23870],[8047,23877],[8048,23948],[8049,23972],[8050,23962],[8051,23951],[8052,23946],[8053,23947],[8054,23870],[8055,23946],[8056,23954],[8057,23955],[8058,23947],[8059,23956],[8060,23950],[8061,23879],[8062,23866],[8063,23957],[8064,23865],[8065,23874],[8066,23868],[8067,23949],[8068,23871],[8069,23867],[8070,23869],[8071,23872],[8072,23876],[8073,23873],[8074,23880],[8075,23864],[8076,23958],[8077,23960],[8078,23965],[8079,23959],[8080,23966],[8081,23870],[8082,23877],[8083,23948],[8084,23972],[8085,23962],[8086,23951],[8087,23946],[8088,23947],[8089,23956],[8090,23958],[8091,23871],[8092,23868],[8093,23946],[8094,23955],[8095,23947],[8096,23956],[8097,23879],[8098,23865],[8099,23874],[8100,23872],[8101,23876],[8102,23873],[8103,23960],[8104,23966],[8105,23870],[8106,23972],[8107,23962],[8108,23951],[8109,23873],[8110,23873],[8111,23869],[8112,23872],[8113,24111],[8114,24111],[8115,24111],[8116,24111],[8117,23866],[8118,23957],[8119,23880],[8120,23865],[8121,23872],[8122,23880],[8123,24112],[8124,24111],[8125,23946],[8126,23954],[8127,23955],[8128,23947],[8129,23956],[8130,23950],[8131,23879],[8132,23866],[8133,23957],[8134,23865],[8135,23874],[8136,23868],[8137,23949],[8138,23871],[8139,23867],[8140,23869],[8141,23872],[8142,23876],[8143,23873],[8144,23880],[8145,23864],[8146,23958],[8147,23960],[8148,23965],[8149,23959],[8150,23966],[8151,23870],[8152,23877],[8153,23948],[8154,23972],[8155,23962],[8156,23951],[8157,23957],[8158,23957],[8159,23954],[8160,23946],[8161,23954],[8162,23955],[8163,23947],[8164,23956],[8165,23950],[8166,23879],[8167,23866],[8168,23957],[8169,23865],[8170,23874],[8171,23868],[8172,23949],[8173,23871],[8174,23867],[8175,23869],[8176,23872],[8177,23876],[8178,23873],[8179,23880],[8180,23864],[8181,23958],[8182,23960],[8183,23965],[8184,23959],[8185,23966],[8186,23870],[8187,23877],[8188,23948],[8189,23972],[8190,23962],[8191,23951],[8192,23946],[8193,23954],[8194,23955],[8195,23947],[8196,23956],[8197,23950],[8198,23879],[8199,23866],[8200,23957],[8201,23865],[8202,23874],[8203,23868],[8204,23949],[8205,23871],[8206,23867],[8207,23869],[8208,23872],[8209,23876],[8210,23873],[8211,23880],[8212,23864],[8213,23958],[8214,23960],[8215,23965],[8216,23959],[8217,23966],[8218,23870],[8219,23877],[8220,23948],[8221,23972],[8222,23962],[8223,23951],[8224,23946],[8225,23954],[8226,23955],[8227,23947],[8228,23956],[8229,23950],[8230,23879],[8231,23866],[8232,23957],[8233,23865],[8234,23874],[8235,23868],[8236,23949],[8237,23871],[8238,23867],[8239,23869],[8240,23872],[8241,23876],[8242,23873],[8243,23880],[8244,23864],[8245,23958],[8246,23960],[8247,23965],[8248,23959],[8249,23966],[8250,23870],[8251,23877],[8252,23948],[8253,23972],[8254,23962],[8255,23951],[8256,23871],[8257,23867],[8258,23869],[8259,23966],[8260,23870],[8261,23948],[8262,23972],[8263,23962],[8264,23951],[8265,23946],[8266,23954],[8267,23955],[8268,23947],[8269,23956],[8270,23950],[8271,23879],[8272,23866],[8273,23957],[8274,23865],[8275,23874],[8276,23868],[8277,23949],[8278,23871],[8279,23867],[8280,23869],[8281,23872],[8282,23876],[8283,23873],[8284,23880],[8285,23864],[8286,23958],[8287,23960],[8288,23965],[8289,23959],[8290,23966],[8291,23870],[8292,23877],[8293,23948],[8294,23972],[8295,23962],[8296,23951],[8297,23946],[8298,23954],[8299,23955],[8300,23947],[8301,23956],[8302,23950],[8303,23879],[8304,23866],[8305,23957],[8306,23865],[8307,23874],[8308,23868],[8309,23949],[8310,23871],[8311,23867],[8312,23869],[8313,23872],[8314,23876],[8315,23873],[8316,23880],[8317,23864],[8318,23958],[8319,23960],[8320,23965],[8321,23959],[8322,23966],[8323,23870],[8324,23877],[8325,23948],[8326,23972],[8327,23962],[8328,23951],[8329,23946],[8330,23954],[8331,23955],[8332,23947],[8333,23956],[8334,23950],[8335,23879],[8336,23866],[8337,23957],[8338,23865],[8339,23874],[8340,23868],[8341,23949],[8342,23871],[8343,23867],[8344,23869],[8345,23872],[8346,23876],[8347,23873],[8348,23880],[8349,23864],[8350,23958],[8351,23960],[8352,23965],[8353,23959],[8354,23966],[8355,23870],[8356,23877],[8357,23948],[8358,23972],[8359,23962],[8360,23951],[8361,23946],[8362,23954],[8363,23955],[8364,23947],[8365,23956],[8366,23950],[8367,23879],[8368,23866],[8369,23957],[8370,23865],[8371,23874],[8372,23868],[8373,23949],[8374,23871],[8375,23867],[8376,23869],[8377,23872],[8378,23876],[8379,23873],[8380,23880],[8381,23864],[8382,23958],[8383,23960],[8384,23965],[8385,23959],[8386,23966],[8387,23870],[8388,23877],[8389,23948],[8390,23972],[8391,23962],[8392,23951],[8393,23948],[8394,23946],[8395,23954],[8396,23955],[8397,23947],[8398,23956],[8399,23950],[8400,23879],[8401,23866],[8402,23957],[8403,23865],[8404,23874],[8405,23868],[8406,23949],[8407,23871],[8408,23867],[8409,23869],[8410,23872],[8411,23876],[8412,23873],[8413,23880],[8414,23864],[8415,23958],[8416,23960],[8417,23965],[8418,23959],[8419,23966],[8420,23870],[8421,23877],[8422,23948],[8423,23972],[8424,23962],[8425,23951],[8426,23949],[8427,23873],[8428,24112],[8429,24111],[8430,24112],[8431,23864],[8432,23946],[8433,23954],[8434,23955],[8435,23947],[8436,23956],[8437,23950],[8438,23879],[8439,23866],[8440,23957],[8441,23865],[8442,23874],[8443,23868],[8444,23949],[8445,23871],[8446,23867],[8447,23869],[8448,23872],[8449,23876],[8450,23873],[8451,23880],[8452,23880],[8453,23864],[8454,23958],[8455,23960],[8456,23965],[8457,23959],[8458,23966],[8459,23870],[8460,23877],[8461,23972],[8462,23962],[8463,23951],[8464,24113],[8465,23871],[8466,23957],[8467,23873],[8468,23880],[8469,24112],[8471,23865],[8472,23873],[8473,23946],[8474,23865],[8475,23957],[8476,23868],[8477,23957],[8478,23868],[8479,23873],[8480,24111],[8481,23946],[8482,23954],[8483,23955],[8484,23947],[8485,23956],[8486,23950],[8487,23879],[8488,23866],[8489,23957],[8490,23865],[8491,23874],[8492,23868],[8493,23949],[8494,23867],[8495,23872],[8496,23876],[8497,23873],[8498,23880],[8499,23864],[8500,23958],[8501,23960],[8502,23965],[8503,23959],[8504,23966],[8505,23951],[8506,23946],[8507,23954],[8508,23955],[8509,23947],[8510,23956],[8511,23950],[8512,23879],[8513,23866],[8514,23957],[8515,23865],[8516,23874],[8517,23868],[8518,23949],[8519,23871],[8520,23867],[8521,23872],[8522,23876],[8523,23873],[8524,23880],[8525,23864],[8526,23958],[8527,23960],[8528,23965],[8529,23959],[8530,23966],[8531,23870],[8532,23877],[8533,23972],[8534,23962],[8535,23951],[8536,23946],[8537,23947],[8538,23956],[8539,23873],[8540,23874],[8541,23957],[8542,23868],[8543,23954],[8544,23874],[8545,23954],[8546,23954],[8547,23949],[8548,23957],[8549,23880],[8550,23880],[8551,23954],[8552,23954],[8553,23954],[8554,23957],[8555,23868],[8556,23957],[8557,23880],[8558,23880],[8559,23954],[8560,23879],[8561,23879],[8562,23879],[8563,23954],[8564,23876],[8565,23960],[8566,23874],[8567,23949],[8568,23954],[8569,23954],[8570,23954],[8571,23872],[8572,23949],[8573,23880],[8574,23880],[8575,23866],[8576,23864],[8577,23866],[8578,23864],[8579,23870],[8580,23962],[8581,24111],[8582,23946],[8583,23954],[8584,23955],[8585,23947],[8586,23956],[8587,23950],[8588,23879],[8589,23866],[8590,23865],[8591,23874],[8592,23949],[8593,23872],[8594,23873],[8595,23880],[8596,23961],[8597,23965],[8598,23959],[8599,24112],[8600,23946],[8601,23954],[8602,23955],[8603,23947],[8604,23956],[8605,23950],[8606,23879],[8607,23957],[8608,23865],[8609,23874],[8610,23868],[8611,23949],[8612,23872],[8613,23958],[8614,23965],[8615,23959],[8616,23946],[8617,23947],[8618,23879],[8619,23957],[8620,23865],[8621,23868],[8622,23873],[8623,23880],[8624,23958],[8625,24112],[8626,24111],[8627,24112],[8628,24111],[8629,24111],[8630,23868],[8631,23873],[8632,24112],[8633,24111],[8634,23955],[8635,24112],[8636,24111],[8637,23948],[8638,23946],[8639,23947],[8640,23956],[8641,23946],[8642,23947],[8643,23956],[8644,24112],[8645,24111],[8646,24112],[8647,24111],[8648,23948],[8649,23948],[8650,24113],[8651,24111],[8652,24112],[8653,24111],[8654,24111],[8655,23870],[8656,23962],[8657,24111],[8658,24112],[8659,24112],[8660,23962],[8661,24112],[8662,24111],[8663,23880],[8664,24112],[8665,24111],[8666,23876],[8667,23960],[8668,23946],[8669,23954],[8670,23955],[8671,23947],[8672,23956],[8673,23950],[8674,23879],[8675,23866],[8676,23866],[8677,23957],[8678,23957],[8679,23865],[8680,23874],[8681,23868],[8682,23949],[8683,23871],[8684,23867],[8685,23867],[8686,23869],[8687,23872],[8688,23876],[8689,23873],[8690,23873],[8691,23880],[8692,23880],[8693,23864],[8694,23864],[8695,23958],[8696,23960],[8697,23965],[8698,23959],[8699,23966],[8700,23870],[8701,23877],[8702,23972],[8703,23962],[8704,23951],[8705,23949],[8706,23958],[8707,23961],[8708,23959],[8709,24112],[8710,24111],[8711,23958],[8712,23946],[8713,23947],[8714,23866],[8715,23874],[8716,23867],[8717,23872],[8718,23864],[8719,24111],[8720,24111],[8721,24112],[8722,23954],[8723,23955],[8724,23950],[8725,23879],[8726,23866],[8727,23957],[8728,23865],[8729,23874],[8730,23868],[8731,23949],[8732,23867],[8733,23872],[8734,23876],[8735,23873],[8736,23880],[8737,23864],[8738,23958],[8739,23960],[8740,23965],[8741,23959],[8742,23966],[8743,23877],[8744,23951],[8745,23876],[8746,23960],[8747,23879],[8748,23866],[8749,23865],[8750,23874],[8751,23868],[8752,23871],[8753,23867],[8754,23869],[8755,23872],[8756,23876],[8757,23873],[8758,23880],[8759,23864],[8760,23958],[8761,23960],[8762,23870],[8763,23877],[8764,24112],[8765,24111],[8766,23954],[8767,23955],[8768,23950],[8769,23879],[8770,23866],[8771,23957],[8772,23865],[8773,23874],[8774,23868],[8775,23949],[8776,23867],[8777,23872],[8778,23876],[8779,23873],[8780,23880],[8781,23864],[8782,23958],[8783,23960],[8784,23965],[8785,23959],[8786,23966],[8787,23877],[8788,23951],[8789,24112],[8790,24111],[8791,24112],[8792,23864],[8793,23950],[8794,24112],[8795,24111],[8796,24112],[8797,24111],[8798,23866],[8799,23868],[8800,23867],[8801,23864],[8802,23866],[8803,23868],[8804,23867],[8805,23864],[8806,23866],[8807,23868],[8808,23867],[8809,23864],[8810,23866],[8811,23867],[8812,23864],[8813,24097],[8814,24111],[8815,23948],[8816,24112],[8817,24111],[8818,24112],[8819,24111],[8820,23877],[8821,23946],[8822,23954],[8823,23955],[8824,23947],[8825,23956],[8826,23950],[8827,23879],[8828,23866],[8829,23957],[8830,23865],[8831,23874],[8832,23868],[8833,23949],[8834,23871],[8835,23867],[8836,23869],[8837,23872],[8838,23876],[8839,23873],[8840,23880],[8841,23864],[8842,23958],[8843,23960],[8844,23965],[8845,23959],[8846,23966],[8847,23870],[8848,23877],[8849,23948],[8850,23972],[8851,23962],[8852,23951],[8853,23946],[8854,23954],[8855,23955],[8856,23947],[8857,23956],[8858,23950],[8859,23879],[8860,23866],[8861,23957],[8862,23865],[8863,23874],[8864,23868],[8865,23949],[8866,23871],[8867,23867],[8868,23869],[8869,23872],[8870,23876],[8871,23873],[8872,23880],[8873,23864],[8874,23958],[8875,23960],[8876,23965],[8877,23959],[8878,23966],[8879,23870],[8880,23877],[8881,23948],[8882,23972],[8883,23962],[8884,23951],[8885,23946],[8886,23954],[8887,23955],[8888,23947],[8889,23956],[8890,23950],[8891,23879],[8892,23866],[8893,23957],[8894,23865],[8895,23874],[8896,23868],[8897,23949],[8898,23871],[8899,23867],[8900,23869],[8901,23872],[8902,23876],[8903,23873],[8904,23880],[8905,23864],[8906,23958],[8907,23960],[8908,23965],[8909,23959],[8910,23966],[8911,23870],[8912,23877],[8913,23948],[8914,23972],[8915,23962],[8916,23951],[8917,23946],[8918,23954],[8919,23955],[8920,23947],[8921,23956],[8922,23950],[8923,23879],[8924,23866],[8925,23957],[8926,23865],[8927,23874],[8928,23868],[8929,23949],[8930,23871],[8931,23867],[8932,23869],[8933,23872],[8934,23876],[8935,23873],[8936,23880],[8937,23864],[8938,23958],[8939,23960],[8940,23965],[8941,23959],[8942,23966],[8943,23870],[8944,23877],[8945,23948],[8946,23972],[8947,23962],[8948,23951],[8949,23946],[8950,23954],[8951,23955],[8952,23947],[8953,23956],[8954,23950],[8955,23879],[8956,23866],[8957,23957],[8958,23865],[8959,23874],[8960,23868],[8961,23949],[8962,23871],[8963,23867],[8964,23869],[8965,23872],[8966,23876],[8967,23873],[8968,23880],[8969,23864],[8970,23958],[8971,23960],[8972,23965],[8973,23959],[8974,23966],[8975,23870],[8976,23877],[8977,23948],[8978,23972],[8979,23962],[8980,23951],[8981,23946],[8982,23954],[8983,23955],[8984,23947],[8985,23956],[8986,23950],[8987,23879],[8988,23866],[8989,23957],[8990,23865],[8991,23874],[8992,23868],[8993,23949],[8994,23871],[8995,23867],[8996,23869],[8997,23872],[8998,23876],[8999,23873],[9000,23880],[9001,23864],[9002,23958],[9003,23960],[9004,23965],[9005,23959],[9006,23966],[9007,23870],[9008,23877],[9009,23948],[9010,23972],[9011,23962],[9012,23951],[9013,23946],[9014,23954],[9015,23955],[9016,23947],[9017,23956],[9018,23950],[9019,23879],[9020,23866],[9021,23957],[9022,23865],[9023,23874],[9024,23868],[9025,23949],[9026,23871],[9027,23867],[9028,23869],[9029,23872],[9030,23876],[9031,23873],[9032,23880],[9033,23864],[9034,23958],[9035,23960],[9036,23965],[9037,23959],[9038,23966],[9039,23870],[9040,23877],[9041,23948],[9042,23972],[9043,23962],[9044,23951],[9045,23946],[9046,23954],[9047,23955],[9048,23947],[9049,23956],[9050,23950],[9051,23879],[9052,23866],[9053,23957],[9054,23865],[9055,23874],[9056,23868],[9057,23949],[9058,23871],[9059,23867],[9060,23869],[9061,23872],[9062,23876],[9063,23873],[9064,23880],[9065,23864],[9066,23958],[9067,23960],[9068,23965],[9069,23959],[9070,23966],[9071,23870],[9072,23877],[9073,23948],[9074,23972],[9075,23962],[9076,23951],[9077,23961],[9078,23946],[9079,23954],[9080,23955],[9081,23947],[9082,23956],[9083,23950],[9084,23879],[9085,23866],[9086,23957],[9087,23865],[9088,23874],[9089,23868],[9090,23949],[9091,23867],[9092,23872],[9093,23876],[9094,23873],[9095,23880],[9096,23864],[9097,23958],[9098,23960],[9099,23965],[9100,23959],[9101,23966],[9102,23951],[9103,24111],[9104,23871],[9105,23869],[9106,24111],[9107,24112],[9108,24111],[9109,24111],[9110,23961],[9111,23946],[9112,23954],[9113,23955],[9114,23947],[9115,23956],[9116,23950],[9117,23879],[9118,23866],[9119,23957],[9120,23865],[9121,23874],[9122,23868],[9123,23949],[9124,23871],[9125,23867],[9126,23869],[9127,23872],[9128,23876],[9129,23873],[9130,23880],[9131,23864],[9132,23958],[9133,23960],[9134,23965],[9135,23959],[9136,23966],[9137,23870],[9138,23877],[9139,23948],[9140,23972],[9141,23962],[9142,23951],[9143,23946],[9144,23955],[9145,23947],[9146,23956],[9147,23879],[9148,23866],[9149,23957],[9150,23865],[9151,23874],[9152,23868],[9153,23867],[9154,23872],[9155,23876],[9156,23873],[9157,23880],[9158,23864],[9159,23960],[9160,23966],[9161,23870],[9162,23972],[9163,23962],[9164,23951],[9165,23946],[9166,23947],[9167,23956],[9168,23946],[9169,23947],[9170,23956],[9171,23872],[9172,23972],[9173,23972],[9174,23947],[9175,23873],[9176,23955],[9177,23955],[9178,23879],[9179,23879],[9180,23879],[9181,23879],[9182,23879],[9183,23879],[9184,23879],[9185,23879],[9186,23879],[9187,23879],[9188,23879],[9189,23879],[9190,23879],[9191,23879],[9192,23879],[9193,23879],[9194,23879],[9195,23879],[9196,23879],[9197,23879],[9198,23879],[9199,23879],[9200,23879],[9201,23879],[9202,23879],[9203,23879],[9204,23879],[9205,23879],[9206,23879],[9207,23879],[9208,23879],[9209,23879],[9210,23879],[9211,23879],[9212,23879],[9213,23879],[9214,23879],[9215,23879],[9216,23879],[9217,23879],[9218,23879],[9219,23879],[9220,23879],[9221,23879],[9222,23879],[9223,23879],[9224,23879],[9225,23879],[9226,23879],[9227,23879],[9228,23879],[9229,23879],[9230,23879],[9231,23879],[9232,23879],[9233,23879],[9234,23879],[9235,23879],[9236,23879],[9237,23879],[9238,23879],[9239,23879],[9240,23879],[9241,23879],[9242,23879],[9243,23879],[9244,23879],[9245,23879],[9246,23879],[9247,23879],[9248,23879],[9249,23879],[9250,23879],[9251,23879],[9252,23879],[9253,23879],[9254,23879],[9255,23879],[9256,23879],[9257,23879],[9258,23879],[9259,23879],[9260,23879],[9261,23879],[9262,23879],[9263,23879],[9264,23879],[9265,23879],[9266,23879],[9267,23879],[9268,23879],[9269,23879],[9270,23879],[9271,23879],[9272,23879],[9273,23879],[9274,23879],[9275,23879],[9276,23879],[9277,23879],[9278,23879],[9279,23879],[9280,23879],[9281,23879],[9282,23879],[9283,23879],[9284,23879],[9285,23879],[9286,23879],[9287,23879],[9288,23948],[9289,23985],[9290,23985],[9291,23951],[9292,23951],[9293,23835],[9294,23984],[9295,23951],[9296,23951],[9297,23983],[9298,23986],[9299,23982],[9300,23901],[9301,23835],[9302,23835],[9303,23985],[9304,23985],[9305,23985],[9306,23983],[9307,23985],[9308,23835],[9309,23981],[9310,23953],[9311,23985],[9312,23985],[9313,23986],[9314,23985],[9315,23953],[9316,23985],[9317,23986],[9318,23987],[9319,23835],[9320,23835],[9321,23982],[9322,23983],[9323,23984],[9324,23981],[9325,23985],[9326,23985],[9327,23985],[9328,23985],[9329,23986],[9330,23987],[9331,23982],[9332,23983],[9333,23984],[9334,23981],[9335,23985],[9336,23985],[9337,23985],[9338,23985],[9339,23986],[9340,23987],[9341,23982],[9342,23983],[9343,23984],[9344,23981],[9345,23985],[9346,23985],[9347,23985],[9348,23985],[9349,23986],[9350,23987],[9351,23982],[9352,23983],[9353,23984],[9354,23981],[9355,23985],[9356,23985],[9357,23985],[9358,23985],[9359,23986],[9360,23987],[9361,23982],[9362,23983],[9363,23984],[9364,23981],[9365,23985],[9366,23985],[9367,23985],[9368,23985],[9369,23986],[9370,23987],[9371,23982],[9372,23983],[9373,23984],[9374,23981],[9375,23985],[9376,23985],[9377,23985],[9378,23985],[9379,23986],[9380,23987],[9381,23982],[9382,23983],[9383,23984],[9384,23981],[9385,23985],[9386,23985],[9387,23985],[9388,23985],[9389,23986],[9390,23987],[9391,23982],[9392,23983],[9393,23984],[9394,23981],[9395,23985],[9396,23985],[9397,23985],[9398,23985],[9399,23986],[9400,23987],[9401,23981],[9402,23982],[9403,23983],[9404,23984],[9405,23981],[9406,23985],[9407,23985],[9408,23985],[9409,23985],[9410,23986],[9411,23987],[9412,23982],[9413,23983],[9414,23984],[9415,23981],[9416,23985],[9417,23985],[9418,23985],[9419,23985],[9420,23986],[9421,23987],[9422,23982],[9423,23983],[9424,23984],[9425,23981],[9426,23985],[9427,23985],[9428,23985],[9429,23985],[9430,23986],[9431,23987],[9432,23982],[9433,23987],[9434,23982],[9435,23982],[9436,23983],[9437,23984],[9438,23981],[9439,23985],[9440,23985],[9441,23985],[9442,23985],[9443,23986],[9444,23987],[9445,23987],[9446,23984],[9447,23985],[9448,23985],[9449,23985],[9450,23985],[9451,23987],[9452,23982],[9453,23983],[9454,23984],[9455,23981],[9456,23985],[9457,23985],[9458,23985],[9459,23985],[9460,23986],[9461,23987],[9462,23982],[9463,23983],[9464,23984],[9465,23981],[9466,23985],[9467,23985],[9468,23985],[9469,23985],[9470,23986],[9471,23987],[9472,23982],[9473,23983],[9474,23984],[9475,23981],[9476,23985],[9477,23985],[9478,23985],[9479,23985],[9480,23986],[9481,23987],[9482,23953],[9483,23987],[9484,23982],[9485,23983],[9486,23984],[9487,23981],[9488,23985],[9489,23985],[9490,23985],[9491,23985],[9492,23986],[9493,23987],[9494,23982],[9495,23983],[9496,23986],[9497,23982],[9498,23982],[9499,23982],[9500,23952],[9501,23901],[9502,23982],[9503,23983],[9504,23984],[9505,23981],[9506,23985],[9507,23985],[9508,23985],[9509,23985],[9510,23986],[9511,23987],[9512,23987],[9513,23982],[9514,23983],[9515,23983],[9516,23984],[9517,23984],[9518,23984],[9519,23984],[9520,23981],[9521,23985],[9522,23985],[9523,23985],[9524,23985],[9525,23986],[9526,23986],[9527,23986],[9528,23987],[9529,23987],[9530,23987],[9531,23982],[9532,23983],[9533,23984],[9534,23981],[9535,23985],[9536,23985],[9537,23985],[9538,23985],[9539,23986],[9540,23987],[9541,23982],[9542,23983],[9543,23984],[9544,23981],[9545,23985],[9546,23985],[9547,23985],[9548,23985],[9549,23986],[9550,23987],[9551,24114],[9552,23901],[9553,23982],[9554,23987],[9555,23982],[9556,23983],[9557,23984],[9558,23981],[9559,23985],[9560,23985],[9561,23985],[9562,23985],[9563,23986],[9564,23987],[9565,23982],[9566,23983],[9567,23984],[9568,23981],[9569,23985],[9570,23985],[9571,23985],[9572,23985],[9573,23986],[9574,23987],[9575,23982],[9576,23983],[9577,23984],[9578,23981],[9579,23985],[9580,23985],[9581,23985],[9582,23985],[9583,23986],[9584,23987],[9585,23982],[9586,23983],[9587,23984],[9588,23981],[9589,23985],[9590,23985],[9591,23985],[9592,23985],[9593,23986],[9594,23987],[9595,23982],[9596,23983],[9597,23984],[9598,23981],[9599,23985],[9600,23985],[9601,23985],[9602,23985],[9603,23986],[9604,23987],[9605,23982],[9606,23983],[9607,23984],[9608,23981],[9609,23985],[9610,23985],[9611,23985],[9612,23985],[9613,23986],[9614,23987],[9615,23982],[9616,23983],[9617,23984],[9618,23981],[9619,23985],[9620,23985],[9621,23985],[9622,23985],[9623,23986],[9624,23987],[9625,23982],[9626,23983],[9627,23984],[9628,23981],[9629,23985],[9630,23985],[9631,23985],[9632,23985],[9633,23986],[9634,23987],[9635,23982],[9636,23983],[9637,23984],[9638,23981],[9639,23985],[9640,23985],[9641,23985],[9642,23985],[9643,23986],[9644,23987],[9645,23982],[9646,23983],[9647,23984],[9648,23981],[9649,23985],[9650,23985],[9651,23985],[9652,23985],[9653,23986],[9654,23987],[9655,23982],[9656,23981],[9657,23985],[9658,23985],[9659,23987],[9660,23985],[9661,23953],[9662,23981],[9663,23984],[9664,23985],[9665,23985],[9666,23985],[9667,23985],[9668,23987],[9669,23985],[9670,23901],[9671,23983],[9672,23982],[9673,23952],[9674,23987],[9675,23981],[9676,23981],[9677,23901],[9678,23981],[9679,23984],[9680,23985],[9681,23987],[9682,23987],[9683,23901],[9684,23952],[9685,23984],[9686,23985],[9687,23982],[9688,23983],[9689,23984],[9690,23981],[9691,23985],[9692,23985],[9693,23985],[9694,23985],[9695,23986],[9696,23987],[9697,23981],[9698,23982],[9699,23983],[9700,23984],[9701,23981],[9702,23985],[9703,23985],[9704,23985],[9705,23985],[9706,23986],[9707,23987],[9708,23982],[9709,23983],[9710,23984],[9711,23981],[9712,23985],[9713,23985],[9714,23985],[9715,23985],[9716,23986],[9717,23987],[9718,23982],[9719,23983],[9720,23984],[9721,23981],[9722,23985],[9723,23985],[9724,23985],[9725,23985],[9726,23986],[9727,23987],[9728,23982],[9729,23983],[9730,23984],[9731,23981],[9732,23985],[9733,23985],[9734,23985],[9735,23985],[9736,23986],[9737,23987],[9738,23982],[9739,23983],[9740,23984],[9741,23981],[9742,23985],[9743,23985],[9744,23985],[9745,23985],[9746,23986],[9747,23987],[9748,23982],[9749,23983],[9750,23984],[9751,23981],[9752,23985],[9753,23985],[9754,23985],[9755,23985],[9756,23986],[9757,23987],[9758,23982],[9759,23983],[9760,23984],[9761,23981],[9762,23985],[9763,23985],[9764,23985],[9765,23985],[9766,23986],[9767,23987],[9768,23982],[9769,23982],[9770,23983],[9771,23984],[9772,23981],[9773,23985],[9774,23985],[9775,23985],[9776,23985],[9777,23986],[9778,23987],[9779,23953],[9780,23987],[9781,23982],[9782,23983],[9783,23984],[9784,23981],[9785,23985],[9786,23985],[9787,23985],[9788,23985],[9789,23986],[9790,23987],[9791,23985],[9792,23985],[9793,23985],[9794,23985],[9795,23985],[9796,23984],[9797,23984],[9798,23986],[9799,23984],[9800,23984],[9801,23986],[9802,23986],[9803,23984],[9804,23984],[9805,23984],[9806,23984],[9807,23984],[9808,23984],[9809,23984],[9810,23984],[9811,23984],[9812,23984],[9813,23984],[9814,23984],[9815,23984],[9816,23984],[9817,23984],[9818,23984],[9819,23984],[9820,23984],[9821,23984],[9822,23984],[9823,23984],[9824,23984],[9825,23984],[9826,23984],[9827,23984],[9828,23984],[9829,23984],[9830,23984],[9831,23984],[9832,23984],[9833,23984],[9834,23984],[9835,23984],[9836,23984],[9837,23984],[9838,23984],[9839,23984],[9840,23984],[9841,23984],[9842,23984],[9843,23984],[9844,23984],[9845,23984],[9846,23984],[9847,23984],[9848,23984],[9849,23983],[9850,23983],[9851,23983],[9852,23983],[9853,23983],[9854,23983],[9855,23983],[9856,23983],[9857,23983],[9858,23983],[9859,23983],[9860,23983],[9861,23983],[9862,23983],[9863,23983],[9864,23983],[9865,23983],[9866,23983],[9867,23983],[9868,23983],[9869,23983],[9870,23983],[9871,23983],[9872,23983],[9873,23983],[9874,23983],[9875,23983],[9876,23983],[9877,23983],[9878,23983],[9879,23983],[9880,23983],[9881,23983],[9882,23983],[9883,23983],[9884,23983],[9885,23983],[9886,23983],[9887,23983],[9888,23983],[9889,23983],[9890,23983],[9891,23983],[9892,23983],[9893,23983],[9894,23983],[9895,23983],[9896,23983],[9897,23983],[9898,23983],[9899,23983],[9900,23983],[9901,23983],[9902,23983],[9903,23983],[9904,23983],[9905,23983],[9906,23983],[9907,23983],[9908,23983],[9909,23983],[9910,23983],[9911,23983],[9912,23983],[9913,23983],[9914,23983],[9915,23983],[9916,23983],[9917,23983],[9918,23983],[9919,23983],[9920,23983],[9921,23983],[9922,23983],[9923,23983],[9924,23983],[9925,23983],[9926,23983],[9927,23983],[9928,23983],[9929,23983],[9930,23983],[9931,23983],[9932,23983],[9933,23983],[9934,23983],[9935,23983],[9936,23983],[9937,23983],[9938,23983],[9939,23983],[9940,23983],[9941,23983],[9942,23983],[9943,23983],[9944,23992],[9945,23988],[9946,23981],[9947,23988],[9948,23992],[9949,23981],[9950,23988],[9951,23988],[9952,23988],[9953,23992],[9954,23988],[9955,23992],[9956,23988],[9957,23992],[9958,23988],[9959,23992],[9960,23988],[9961,23988],[9962,23992],[9963,23988],[9964,23992],[9965,23988],[9966,23988],[9967,23992],[9968,23992],[9969,23988],[9970,23992],[9971,23992],[9972,23992],[9973,23988],[9974,23988],[9975,23992],[9976,23988],[9977,23988],[9978,23992],[9979,23988],[9980,23992],[9981,23988],[9982,23992],[9983,23988],[9984,23992],[9985,23988],[9986,23992],[9987,23992],[9988,23988],[9989,23992],[9990,23988],[9991,23992],[9992,23988],[9993,23992],[9994,23988],[9995,23992],[9996,23988],[9997,23992],[9998,23988],[9999,23992],[10000,23988],[10001,23992],[10002,23988],[10003,23992],[10004,23988],[10005,23992],[10006,23988],[10007,23992],[10008,23988],[10009,23992],[10010,23988],[10011,23992],[10012,23988],[10013,23992],[10014,23988],[10015,23988],[10016,23988],[10017,23988],[10018,23988],[10019,23992],[10020,23988],[10021,23988],[10022,23992],[10023,23992],[10024,23988],[10025,23992],[10026,23988],[10027,23992],[10028,23988],[10029,23992],[10030,23988],[10031,23992],[10032,23988],[10033,23992],[10034,23988],[10035,23992],[10036,23988],[10037,23992],[10038,23988],[10039,23992],[10040,23988],[10041,23992],[10042,23992],[10043,23992],[10044,23992],[10045,23992],[10046,23992],[10047,23992],[10048,23992],[10049,23992],[10050,23992],[10051,23992],[10052,23992],[10053,23992],[10054,23992],[10055,23992],[10056,23992],[10057,23992],[10058,23992],[10059,23992],[10060,23992],[10061,23992],[10062,23992],[10063,23992],[10064,23992],[10065,23992],[10066,23992],[10067,23992],[10068,23992],[10069,23992],[10070,23992],[10071,23992],[10072,23992],[10073,23992],[10074,23992],[10075,23992],[10076,23992],[10077,23992],[10078,23992],[10079,23992],[10080,23992],[10081,23992],[10082,23992],[10083,23992],[10084,23992],[10085,23992],[10086,23992],[10087,23992],[10088,23992],[10089,23992],[10090,23992],[10091,23992],[10092,23992],[10093,23992],[10094,23998],[10095,23995],[10096,23995],[10097,23995],[10098,23995],[10101,23999],[10102,23995],[10103,23989],[10104,23989],[10105,23989],[10106,23995],[10107,23995],[10110,23999],[10113,23999],[10114,23995],[10115,23995],[10116,23999],[10117,23995],[10118,23995],[10119,23995],[10120,23995],[10121,23995],[10122,23999],[10123,23989],[10124,24000],[10125,23989],[10126,23989],[10129,23999],[10130,23995],[10131,23995],[10132,23995],[10133,23995],[10134,23995],[10135,23995],[10136,23995],[10137,23995],[10138,23989],[10139,23994],[10140,23994],[10141,23993],[10142,23993],[10143,23999],[10144,23989],[10145,24000],[10146,23995],[10147,23995],[10148,23995],[10149,23995],[10152,23999],[10153,23989],[10154,23995],[10155,23995],[10156,23995],[10157,23995],[10158,23995],[10159,23989],[10160,23998],[10161,23995],[10162,23993],[10163,23993],[10164,23999],[10165,23989],[10166,23989],[10167,23989],[10168,23989],[10169,23989],[10170,23989],[10171,23989],[10172,23994],[10173,23994],[10174,24000],[10175,24000],[10176,23995],[10177,23995],[10178,23995],[10179,23995],[10180,23995],[10181,23995],[10182,23995],[10183,23995],[10184,23989],[10185,23998],[10186,23995],[10187,23993],[10188,23993],[10189,23999],[10190,23989],[10191,23989],[10192,23989],[10193,23989],[10194,23989],[10195,23989],[10196,23989],[10197,23994],[10198,23994],[10199,24000],[10200,24000],[10201,23995],[10202,23995],[10203,23995],[10204,23995],[10205,23995],[10206,23995],[10207,23995],[10208,23995],[10209,23989],[10210,23998],[10211,23995],[10212,23993],[10213,23993],[10214,23999],[10215,23989],[10216,23989],[10217,23989],[10218,23989],[10219,23989],[10220,23989],[10221,23989],[10222,23994],[10223,23994],[10224,24000],[10225,24000],[10226,23995],[10227,23995],[10228,23995],[10229,23995],[10230,23995],[10231,23995],[10232,23995],[10233,23995],[10234,23989],[10235,23998],[10236,23995],[10237,23993],[10238,23993],[10239,23999],[10240,23989],[10241,23989],[10242,23989],[10243,23989],[10244,23989],[10245,23989],[10246,23989],[10247,23994],[10248,23994],[10249,24000],[10250,24000],[10251,23995],[10252,23995],[10253,23995],[10254,23995],[10255,23995],[10256,23995],[10257,23995],[10258,23995],[10259,23989],[10260,23998],[10261,23995],[10262,23993],[10263,23993],[10264,23999],[10265,23989],[10266,23989],[10267,23989],[10268,23989],[10269,23989],[10270,23989],[10271,23989],[10272,23994],[10273,23994],[10274,24000],[10275,24000],[10276,23995],[10277,23995],[10278,23995],[10279,23995],[10280,23995],[10281,23995],[10282,23995],[10283,23995],[10284,23993],[10285,23989],[10286,23994],[10287,23989],[10288,23989],[10289,23989],[10290,23989],[10291,23989],[10292,23989],[10293,23998],[10294,23995],[10295,23993],[10296,23993],[10297,23999],[10298,23989],[10299,23989],[10300,23989],[10301,23989],[10302,23989],[10303,23989],[10304,23989],[10305,23994],[10306,23994],[10307,24000],[10308,24000],[10309,23995],[10310,23995],[10311,23995],[10312,23995],[10313,23995],[10314,23995],[10315,23995],[10316,23995],[10317,23989],[10318,23998],[10319,23995],[10320,23993],[10321,23993],[10322,23999],[10323,23989],[10324,23989],[10325,23989],[10326,23989],[10327,23989],[10328,23989],[10329,23989],[10330,23994],[10331,23994],[10332,24000],[10333,24000],[10334,23995],[10335,23995],[10336,23995],[10337,23995],[10338,23995],[10339,23995],[10340,23995],[10341,23995],[10342,23989],[10343,23989],[10344,23989],[10345,23995],[10346,23993],[10347,23989],[10348,23994],[10349,23989],[10350,23989],[10351,23998],[10352,23995],[10353,23993],[10354,23993],[10355,23999],[10356,23989],[10357,23989],[10358,23989],[10359,23989],[10360,23989],[10361,23989],[10362,23989],[10363,23994],[10364,23994],[10365,24000],[10366,24000],[10367,23995],[10368,23995],[10369,23995],[10370,23995],[10371,23995],[10372,23995],[10373,23995],[10374,23995],[10375,23994],[10376,23998],[10377,23993],[10378,23993],[10379,23999],[10380,23989],[10381,23989],[10382,23989],[10383,23989],[10384,23989],[10385,23989],[10386,23989],[10387,23994],[10388,23994],[10389,24000],[10390,24000],[10391,23995],[10392,23995],[10393,23995],[10394,23995],[10395,23995],[10396,23995],[10397,23995],[10398,23995],[10399,23998],[10400,23993],[10401,23993],[10402,23999],[10403,23989],[10404,23989],[10405,23989],[10406,23989],[10407,23989],[10408,23989],[10409,23989],[10410,23994],[10411,23994],[10412,24000],[10413,24000],[10414,23995],[10415,23995],[10416,23995],[10417,23995],[10418,23995],[10419,23995],[10420,23995],[10421,23995],[10422,23998],[10423,23993],[10424,23993],[10425,23999],[10426,23989],[10427,23989],[10428,23989],[10429,23989],[10430,23989],[10431,23989],[10432,23989],[10433,23994],[10434,23994],[10435,24000],[10436,24000],[10437,23995],[10438,23995],[10439,23995],[10440,23995],[10441,23995],[10442,23995],[10443,23995],[10444,23995],[10445,24000],[10446,24000],[10447,23995],[10448,23989],[10449,23998],[10450,23995],[10451,23993],[10452,23993],[10453,23999],[10454,23989],[10455,23989],[10456,23989],[10457,23989],[10458,23989],[10459,23989],[10460,23989],[10461,23994],[10462,23994],[10463,24000],[10464,24000],[10465,23995],[10466,23995],[10467,23995],[10468,23995],[10469,23995],[10470,23995],[10471,23995],[10472,23995],[10473,23989],[10474,23989],[10475,23989],[10476,23998],[10477,23989],[10478,23989],[10479,23994],[10480,23989],[10481,23998],[10482,23995],[10483,23993],[10484,23993],[10485,23999],[10486,23989],[10487,23989],[10488,23989],[10489,23989],[10490,23989],[10491,23989],[10492,23989],[10493,23994],[10494,23994],[10495,24000],[10496,24000],[10497,23995],[10498,23995],[10499,23995],[10500,23995],[10501,23995],[10502,23995],[10503,23995],[10504,23995],[10505,23989],[10506,23998],[10507,23995],[10508,23993],[10509,23993],[10510,23999],[10511,23989],[10512,23989],[10513,23989],[10514,23989],[10515,23989],[10516,23989],[10517,23989],[10518,23994],[10519,23994],[10520,24000],[10521,24000],[10522,23995],[10523,23995],[10524,23995],[10525,23995],[10526,23995],[10527,23995],[10528,23995],[10529,23995],[10530,23989],[10531,23998],[10532,23995],[10533,23993],[10534,23993],[10535,23999],[10536,23989],[10537,23989],[10538,23989],[10539,23989],[10540,23989],[10541,23989],[10542,23989],[10543,23994],[10544,23994],[10545,24000],[10546,24000],[10547,23995],[10548,23995],[10549,23995],[10550,23995],[10551,23995],[10552,23995],[10553,23995],[10554,23995],[10555,23989],[10556,23998],[10557,23995],[10558,23993],[10559,23993],[10560,23999],[10561,23989],[10562,23989],[10563,23989],[10564,23989],[10565,23989],[10566,23989],[10567,23989],[10568,23994],[10569,23994],[10570,24000],[10571,24000],[10572,23995],[10573,23995],[10574,23995],[10575,23995],[10576,23995],[10577,23995],[10578,23995],[10579,23995],[10580,23989],[10581,23989],[10582,23989],[10583,23998],[10584,23999],[10585,23995],[10586,23995],[10587,23995],[10588,23995],[10589,23995],[10590,23995],[10591,23995],[10592,23995],[10593,23999],[10594,23999],[10595,23999],[10596,23995],[10597,23995],[10598,23995],[10599,23995],[10600,23995],[10601,23995],[10602,23995],[10603,23995],[10604,23995],[10605,23995],[10606,23995],[10607,23995],[10608,23993],[10609,23993],[10610,24000],[10611,24000],[10612,23993],[10613,23989],[10614,23989],[10615,23989],[10616,23989],[10617,23998],[10618,23993],[10619,23993],[10620,23999],[10621,23989],[10622,23989],[10623,23989],[10624,23994],[10625,23994],[10626,23995],[10627,23995],[10628,23995],[10629,23995],[10630,23995],[10631,23995],[10632,23995],[10633,23995],[10634,23989],[10635,23989],[10636,23998],[10637,23995],[10638,23993],[10639,23993],[10640,23993],[10641,23999],[10642,23999],[10643,23989],[10644,23989],[10645,23989],[10646,23989],[10647,23989],[10648,23989],[10649,23989],[10650,23989],[10651,23994],[10652,23994],[10653,24000],[10654,24000],[10655,23995],[10656,23995],[10657,23995],[10658,23995],[10659,23995],[10660,23995],[10661,23995],[10662,23995],[10663,23989],[10664,23998],[10665,23995],[10666,23993],[10667,23993],[10668,23999],[10669,23989],[10670,23989],[10671,23989],[10672,23989],[10673,23989],[10674,23989],[10675,23989],[10676,23994],[10677,23994],[10678,24000],[10679,24000],[10680,23995],[10681,23995],[10682,23995],[10683,23995],[10684,23995],[10685,23995],[10686,23995],[10687,23995],[10688,23989],[10689,23994],[10690,23989],[10691,23998],[10692,23995],[10693,23993],[10694,23993],[10695,23999],[10696,23989],[10697,23989],[10698,23989],[10699,23989],[10700,23989],[10701,23989],[10702,23989],[10703,23994],[10704,23994],[10705,24000],[10706,24000],[10707,23995],[10708,23995],[10709,23995],[10710,23995],[10711,23995],[10712,23995],[10713,23995],[10714,23995],[10715,23995],[10716,23995],[10717,23995],[10718,23995],[10719,23989],[10720,23989],[10721,23994],[10722,23994],[10723,23995],[10724,23989],[10725,23989],[10726,24000],[10727,23995],[10728,23989],[10729,23989],[10730,24000],[10731,23999],[10732,23995],[10733,23995],[10734,23995],[10735,23995],[10736,23989],[10737,23989],[10738,24000],[10739,23989],[10740,23989],[10741,23989],[10742,23989],[10743,24000],[10744,23994],[10745,23994],[10746,23989],[10747,23998],[10748,23995],[10749,23993],[10750,23993],[10751,23999],[10752,23989],[10753,23989],[10754,23989],[10755,23989],[10756,23989],[10757,23989],[10758,23989],[10759,23994],[10760,23994],[10761,24000],[10762,24000],[10763,23995],[10764,23995],[10765,23995],[10766,23995],[10767,23995],[10768,23995],[10769,23995],[10770,23995],[10771,23989],[10772,23998],[10773,23995],[10774,23993],[10775,23993],[10776,23999],[10777,23989],[10778,23989],[10779,23989],[10780,23989],[10781,23989],[10782,23989],[10783,23989],[10784,23994],[10785,23994],[10786,24000],[10787,24000],[10788,23995],[10789,23995],[10790,23995],[10791,23995],[10792,23995],[10793,23995],[10794,23995],[10795,23995],[10796,23989],[10797,23998],[10798,23995],[10799,23993],[10800,23993],[10801,23999],[10802,23989],[10803,23989],[10804,23989],[10805,23989],[10806,23989],[10807,23989],[10808,23989],[10809,23994],[10810,23994],[10811,24000],[10812,24000],[10813,23995],[10814,23995],[10815,23995],[10816,23995],[10817,23995],[10818,23995],[10819,23995],[10820,23995],[10821,23989],[10822,23998],[10823,23995],[10824,23993],[10825,23993],[10826,23999],[10827,23989],[10828,23989],[10829,23989],[10830,23989],[10831,23989],[10832,23989],[10833,23989],[10834,23994],[10835,23994],[10836,24000],[10837,24000],[10838,23995],[10839,23995],[10840,23995],[10841,23995],[10842,23995],[10843,23995],[10844,23995],[10845,23995],[10846,23989],[10847,23998],[10848,23995],[10849,23993],[10850,23993],[10851,23999],[10852,23989],[10853,23989],[10854,23989],[10855,23989],[10856,23989],[10857,23994],[10858,23994],[10859,24000],[10860,24000],[10861,23995],[10862,23995],[10863,23995],[10864,23995],[10865,23995],[10866,23995],[10867,23995],[10868,23995],[10869,23989],[10870,23998],[10871,23995],[10872,23993],[10873,23993],[10874,23999],[10875,23989],[10876,23989],[10877,23989],[10878,23989],[10879,23989],[10880,23989],[10881,23989],[10882,23994],[10883,23994],[10884,24000],[10885,24000],[10886,23995],[10887,23995],[10888,23995],[10889,23995],[10890,23995],[10891,23995],[10892,23995],[10893,23995],[10894,23989],[10895,23998],[10896,23995],[10897,23993],[10898,23993],[10899,23999],[10900,23989],[10901,23989],[10902,23989],[10903,23989],[10904,23989],[10905,23989],[10906,23989],[10907,23994],[10908,23994],[10909,24000],[10910,24000],[10911,23995],[10912,23995],[10913,23995],[10914,23995],[10915,23995],[10916,23995],[10917,23995],[10918,23995],[10919,23989],[10920,23998],[10921,23995],[10922,23993],[10923,23993],[10924,23999],[10925,23989],[10926,23989],[10927,23989],[10928,23989],[10929,23989],[10930,23989],[10931,23989],[10932,23994],[10933,23994],[10934,24000],[10935,24000],[10936,23995],[10937,23995],[10938,23995],[10939,23995],[10940,23995],[10941,23995],[10942,23995],[10943,23995],[10944,23989],[10945,23998],[10946,23995],[10947,23993],[10948,23993],[10949,23999],[10950,23989],[10951,23989],[10952,23989],[10953,23989],[10954,23989],[10955,23989],[10956,23989],[10957,23994],[10958,23994],[10959,24000],[10960,24000],[10961,23995],[10962,23995],[10963,23995],[10964,23995],[10965,23995],[10966,23995],[10967,23995],[10968,23995],[10969,23989],[10970,23993],[10971,23989],[10972,23989],[10973,23989],[10974,23989],[10975,23989],[10976,23989],[10977,23989],[10978,23989],[10979,23998],[10980,23995],[10981,23993],[10982,23993],[10983,23999],[10984,23989],[10985,23989],[10986,23989],[10987,23989],[10988,23989],[10989,23989],[10990,23989],[10991,23994],[10992,23994],[10993,24000],[10994,24000],[10995,23995],[10996,23995],[10997,23995],[10998,23995],[10999,23995],[11000,23995],[11001,23995],[11002,23995],[11003,23999],[11004,23989],[11005,23994],[11006,23994],[11007,23995],[11008,23995],[11009,23995],[11010,23995],[11011,23993],[11012,23993],[11013,23989],[11014,23989],[11015,23994],[11016,23994],[11017,24000],[11018,24000],[11019,23989],[11020,23989],[11021,23995],[11022,23998],[11023,23989],[11024,23989],[11025,23994],[11026,23994],[11027,23989],[11028,23989],[11029,23989],[11030,23995],[11031,23995],[11032,23989],[11033,23989],[11034,23989],[11035,23994],[11036,23989],[11037,23989],[11038,23989],[11039,23989],[11040,23993],[11041,23993],[11042,23993],[11043,23993],[11044,23998],[11045,23989],[11046,23989],[11047,23994],[11048,23995],[11049,23995],[11050,23989],[11051,23989],[11052,23989],[11053,23989],[11054,23989],[11055,23995],[11056,23995],[11057,23995],[11058,23995],[11059,23995],[11060,24000],[11061,23993],[11062,23989],[11063,24000],[11064,24000],[11065,23995],[11066,23995],[11067,23989],[11068,23989],[11069,23989],[11070,23989],[11071,23989],[11072,23989],[11073,23994],[11074,23989],[11075,23989],[11076,23989],[11077,23998],[11078,23999],[11079,23995],[11080,23998],[11081,23993],[11082,23993],[11083,23999],[11084,23989],[11085,23989],[11086,23989],[11087,23989],[11088,23989],[11089,23989],[11090,23989],[11091,23994],[11092,23994],[11093,24000],[11094,24000],[11095,23995],[11096,23995],[11097,23995],[11098,23995],[11099,23995],[11100,23995],[11101,23995],[11102,23995],[11103,23995],[11104,23995],[11105,23995],[11106,23995],[11107,23999],[11108,23989],[11109,23989],[11110,23998],[11111,23995],[11112,23993],[11113,23993],[11114,23999],[11115,23989],[11116,23989],[11117,23989],[11118,23989],[11119,23989],[11120,23989],[11121,23989],[11122,23994],[11123,23994],[11124,24000],[11125,24000],[11126,23995],[11127,23995],[11128,23995],[11129,23995],[11130,23995],[11131,23995],[11132,23995],[11133,23995],[11134,23989],[11135,23998],[11136,23995],[11137,23993],[11138,23993],[11139,23999],[11140,23989],[11141,23989],[11142,23989],[11143,23989],[11144,23989],[11145,23989],[11146,23989],[11147,23994],[11148,23994],[11149,24000],[11150,24000],[11151,23995],[11152,23995],[11153,23995],[11154,23995],[11155,23995],[11156,23995],[11157,23995],[11158,23995],[11159,23989],[11160,23998],[11161,23995],[11162,23993],[11163,23993],[11164,23999],[11165,23989],[11166,23989],[11167,23989],[11168,23989],[11169,23989],[11170,23989],[11171,23989],[11172,23994],[11173,23994],[11174,24000],[11175,24000],[11176,23995],[11177,23995],[11178,23995],[11179,23995],[11180,23995],[11181,23995],[11182,23995],[11183,23995],[11184,23989],[11185,23998],[11186,23995],[11187,23993],[11188,23993],[11189,23999],[11190,23989],[11191,23989],[11192,23989],[11193,23989],[11194,23989],[11195,23989],[11196,23989],[11197,23994],[11198,23994],[11199,24000],[11200,24000],[11201,23995],[11202,23995],[11203,23995],[11204,23995],[11205,23995],[11206,23995],[11207,23995],[11208,23995],[11209,23989],[11210,23998],[11211,23995],[11212,23993],[11213,23993],[11214,23999],[11215,23989],[11216,23989],[11217,23989],[11218,23989],[11219,23989],[11220,23989],[11221,23989],[11222,23994],[11223,23994],[11224,24000],[11225,24000],[11226,23995],[11227,23995],[11228,23995],[11229,23995],[11230,23995],[11231,23995],[11232,23995],[11233,23995],[11234,23989],[11235,23998],[11236,23995],[11237,23993],[11238,23993],[11239,23999],[11240,23989],[11241,23989],[11242,23989],[11243,23989],[11244,23989],[11245,23989],[11246,23989],[11247,23994],[11248,23994],[11249,24000],[11250,24000],[11251,23995],[11252,23995],[11253,23995],[11254,23995],[11255,23995],[11256,23995],[11257,23995],[11258,23995],[11259,23989],[11260,23998],[11261,23995],[11262,23993],[11263,23993],[11264,23999],[11265,23989],[11266,23989],[11267,23989],[11268,23989],[11269,23989],[11270,23989],[11271,23989],[11272,23994],[11273,23994],[11274,24000],[11275,24000],[11276,23995],[11277,23995],[11278,23995],[11279,23995],[11280,23995],[11281,23995],[11282,23995],[11283,23995],[11284,23989],[11285,23998],[11286,23995],[11287,23993],[11288,23993],[11289,23999],[11290,23989],[11291,23989],[11292,23989],[11293,23989],[11294,23989],[11295,23989],[11296,23989],[11297,23994],[11298,23994],[11299,24000],[11300,24000],[11301,23995],[11302,23995],[11303,23995],[11304,23995],[11305,23995],[11306,23995],[11307,23995],[11308,23995],[11309,23989],[11310,23998],[11311,23995],[11312,23993],[11313,23993],[11314,23999],[11315,23989],[11316,23989],[11317,23989],[11318,23989],[11319,23989],[11320,23989],[11321,23989],[11322,23994],[11323,23994],[11324,24000],[11325,24000],[11326,23995],[11327,23995],[11328,23995],[11329,23995],[11330,23995],[11331,23995],[11332,23995],[11333,23995],[11334,23989],[11335,23989],[11336,23994],[11337,23999],[11338,23989],[11378,23997],[11379,23997],[11380,23997],[11381,23997],[11382,23997],[11383,23997],[11384,23997],[11385,23997],[11386,23997],[11387,23997],[11388,23997],[11389,23997],[11390,23997],[11391,23997],[11392,23997],[11393,23997],[11394,23997],[11395,23997],[11396,23997],[11397,23997],[11398,23997],[11399,23997],[11400,23997],[11401,23997],[11402,23997],[11403,23997],[11404,23997],[11405,23997],[11406,23997],[11407,23997],[11408,23997],[11409,23997],[11410,23997],[11411,23997],[11412,23997],[11413,23997],[11414,23997],[11415,23997],[11416,23997],[11417,23997],[11418,23997],[11419,23997],[11420,23997],[11421,23997],[11422,23997],[11423,23997],[11424,23997],[11425,23997],[11426,23997],[11427,23997],[11428,23997],[11429,23997],[11430,23997],[11431,23997],[11432,23997],[11433,23997],[11434,23997],[11435,23997],[11436,23997],[11437,23997],[11438,23997],[11439,23997],[11440,23997],[11441,23997],[11442,23997],[11443,23997],[11444,23997],[11445,23997],[11446,23997],[11447,23997],[11448,23997],[11449,23997],[11450,23997],[11451,23997],[11452,23997],[11453,23997],[11454,23997],[11455,23997],[11456,23997],[11457,23997],[11458,23997],[11459,23997],[11460,23997],[11461,23997],[11462,23997],[11463,23997],[11464,23997],[11465,23997],[11466,23997],[11467,23997],[11468,23997],[11469,23997],[11470,23997],[11471,23997],[11472,23997],[11473,23997],[11474,23997],[11475,23997],[11476,23997],[11477,23997],[11478,23997],[11479,23997],[11480,23997],[11481,23997],[11482,23997],[11483,23997],[11484,23997],[11485,23997],[11486,23997],[11487,23997],[11488,23997],[11489,23997],[11490,23997],[11491,23997],[11492,23997],[11493,23997],[11494,23997],[11495,23997],[11496,23997],[11497,23997],[11498,23997],[11499,23997],[11500,23997],[11501,23997],[11502,23997],[11503,23997],[11504,23997],[11505,23997],[11506,23997],[11507,23997],[11508,23997],[11509,23997],[11510,23997],[11511,23997],[11512,23997],[11513,23997],[11514,23997],[11515,23997],[11516,23997],[11517,23997],[11518,23997],[11519,23997],[11520,23997],[11521,23997],[11522,23997],[11523,23997],[11524,23997],[11525,23997],[11526,23997],[11527,23997],[11528,23997],[11529,23997],[11530,23997],[11531,23997],[11532,23997],[11533,23997],[11534,23997],[11535,23997],[11536,23997],[11537,23997],[11538,23997],[11539,23997],[11540,23997],[11541,23997],[11542,23997],[11543,23997],[11544,23997],[11545,23997],[11546,23997],[11547,23997],[11548,23997],[11549,23997],[11550,23997],[11551,23997],[11552,23997],[11553,23997],[11554,23997],[11555,23997],[11556,23997],[11557,23997],[11558,23997],[11559,23997],[11560,23997],[11561,23997],[11562,23997],[11563,23997],[11564,23997],[11565,23997],[11566,23997],[11567,23997],[11568,23997],[11569,23997],[11570,23997],[11571,23997],[11572,23997],[11573,23997],[11574,23997],[11575,23997],[11576,23997],[11577,23997],[11578,23997],[11579,23997],[11580,23997],[11581,23997],[11582,23997],[11583,23997],[11584,23997],[11585,23997],[11586,23997],[11587,23997],[11588,23997],[11589,23997],[11590,23997],[11591,23997],[11592,23997],[11593,23997],[11594,23997],[11595,23997],[11596,23997],[11597,23997],[11598,23997],[11599,23997],[11600,23997],[11601,23997],[11602,23997],[11603,23997],[11604,23997],[11605,23997],[11606,23997],[11607,23997],[11608,23997],[11609,23997],[11610,23997],[11611,23997],[11612,23997],[11613,23997],[11614,23997],[11615,23997],[11616,23997],[11617,23997],[11618,23997],[11619,23997],[11620,23997],[11621,23997],[11622,23997],[11623,23997],[11624,23997],[11625,23997],[11626,23997],[11627,23997],[11628,23997],[11629,23997],[11630,23997],[11631,23997],[11632,23997],[11633,23997],[11634,23997],[11635,23997],[11636,23997],[11637,23997],[11638,23997],[11639,23997],[11640,23997],[11641,23997],[11642,23997],[11643,23997],[11644,23997],[11645,23997],[11646,23997],[11647,23997],[11648,23997],[11649,23997],[11650,23997],[11651,23997],[11652,23997],[11653,23997],[11654,23997],[11655,23997],[11656,23997],[11657,23997],[11658,23997],[11659,23997],[11660,23997],[11661,23997],[11662,23997],[11663,23997],[11664,23997],[11665,23997],[11666,23997],[11667,23997],[11668,23997],[11669,23997],[11670,23997],[11671,23997],[11672,23997],[11673,23997],[11674,23997],[11675,23997],[11676,23997],[11677,23997],[11678,23997],[11679,23997],[11680,23997],[11681,23997],[11682,23997],[11683,23997],[11684,23997],[11685,23997],[11686,23997],[11687,23997],[11688,23997],[11689,23997],[11690,23997],[11691,23997],[11692,23997],[11693,23997],[11694,23997],[11695,23997],[11696,23997],[11697,23997],[11698,23997],[11699,23997],[11700,23997],[11701,23997],[11702,23997],[11703,23997],[11704,23997],[11705,23997],[11706,23997],[11707,23997],[11708,23997],[11709,23997],[11710,23997],[11711,23997],[11712,23997],[11713,23997],[11714,23997],[11715,23997],[11716,23997],[11717,23997],[11718,23997],[11719,23997],[11720,23997],[11721,23997],[11722,23997],[11723,23997],[11724,23997],[11725,23997],[11726,23997],[11727,23997],[11728,23997],[11729,23997],[11730,23997],[11731,23997],[11732,23997],[11733,23997],[11734,23997],[11735,23993],[11736,23993],[11737,23993],[11738,23993],[11739,23993],[11740,23993],[11741,23993],[11742,23993],[11743,23993],[11744,23993],[11745,23993],[11746,23993],[11747,23993],[11748,23993],[11749,23993],[11750,23993],[11751,23993],[11752,23993],[11753,23993],[11754,23993],[11755,23993],[11756,23993],[11757,23993],[11758,23993],[11759,23993],[11760,23993],[11761,23993],[11762,23993],[11763,23993],[11764,23993],[11765,23993],[11766,23993],[11767,23993],[11768,23993],[11769,23993],[11770,23993],[11771,23993],[11772,23993],[11773,23993],[11774,23993],[11775,23993],[11776,23993],[11777,23993],[11778,23993],[11779,23993],[11780,23993],[11781,23993],[11782,23993],[11783,23993],[11784,23993],[11785,23993],[11786,23993],[11787,23993],[11788,23993],[11789,23993],[11790,23993],[11791,23993],[11792,23993],[11793,23993],[11794,23993],[11795,23993],[11796,23993],[11797,23993],[11798,23993],[11799,23993],[11800,23993],[11801,23993],[11802,23993],[11803,23993],[11804,23993],[11805,23993],[11806,23993],[11807,23993],[11808,23993],[11809,23993],[11810,23993],[11811,23993],[11812,23993],[11813,23993],[11814,23993],[11815,23993],[11816,23993],[11817,23993],[11818,23993],[11819,23993],[11820,23993],[11821,23993],[11822,23993],[11823,23993],[11824,23993],[11825,23993],[11826,23993],[11827,23993],[11828,23993],[11829,23993],[11830,23993],[11831,23993],[11832,23993],[11833,23993],[11834,23993],[11835,23993],[11836,23993],[11837,23993],[11838,23993],[11839,23993],[11840,23993],[11841,23993],[11842,23993],[11843,23993],[11844,23993],[11845,23993],[11846,23993],[11847,23993],[11848,23993],[11849,23993],[11850,23993],[11851,23993],[11852,23993],[11853,23993],[11854,23993],[11855,23993],[11856,23993],[11857,23993],[11858,23993],[11859,23993],[11860,23993],[11861,23993],[11862,23993],[11863,23993],[11864,23993],[11865,23993],[11866,23993],[11867,23993],[11868,23993],[11869,23993],[11870,23993],[11871,23993],[11872,23993],[11873,23993],[11874,23993],[11875,23993],[11876,23993],[11877,23993],[11878,23993],[11879,23993],[11880,23993],[11881,23993],[11882,23993],[11883,23993],[11884,23993],[11885,23993],[11886,23993],[11887,23993],[11888,23993],[11889,23993],[11890,23993],[11891,23993],[11892,23993],[11893,23993],[11894,23993],[11895,23993],[11896,23993],[11897,23993],[11898,23993],[11899,23993],[11900,23993],[11901,23993],[11902,23993],[11903,23993],[11904,23993],[11905,23993],[11906,23993],[11907,23993],[11908,23993],[11909,23993],[11910,23993],[11911,23993],[11912,23993],[11913,23993],[11914,23993],[11915,23993],[11916,23993],[11917,23993],[11918,23993],[11919,23993],[11920,23993],[11921,23993],[11922,23993],[11923,23993],[11924,23993],[11925,23993],[11926,23993],[11927,23993],[11928,23993],[11929,23993],[11930,23993],[11931,23993],[11932,23993],[11933,23993],[11934,23993],[11935,23993],[11936,23993],[11937,23993],[11938,23993],[11939,23993],[11940,23993],[11941,23993],[11942,23993],[11943,23993],[11944,23993],[11945,23993],[11946,23993],[11947,23993],[11948,23993],[11949,23993],[11950,23993],[11951,23993],[11952,23993],[11953,23993],[11954,23993],[11955,23993],[11956,23993],[11957,23993],[11958,23993],[11959,24004],[11960,23998],[11961,23998],[11962,24017],[11963,24010],[11964,24007],[11965,24007],[11966,24007],[11967,24007],[11968,24007],[11969,24007],[11970,24005],[11971,24005],[11972,24005],[11973,24007],[11974,24007],[11975,24007],[11976,24007],[11978,24011],[11979,24012],[11980,24007],[11981,24007],[11982,24007],[11983,24009],[11984,24017],[11985,24009],[11987,23998],[11988,24007],[11989,24007],[11990,24007],[11991,24012],[11992,24012],[11993,24008],[11995,24007],[11996,24005],[11997,24008],[11998,24008],[11999,24008],[12000,23998],[12001,23998],[12002,24010],[12003,24005],[12004,24005],[12005,24005],[12006,24011],[12007,24008],[12008,24004],[12009,24004],[12010,24004],[12011,24004],[12012,24009],[12013,23998],[12014,23998],[12015,24010],[12016,24010],[12017,24005],[12018,24005],[12019,24011],[12020,24011],[12021,24012],[12022,24004],[12023,24004],[12024,24004],[12025,24009],[12026,23998],[12027,23998],[12028,24010],[12029,24010],[12030,24005],[12031,24011],[12032,24012],[12033,23998],[12034,23998],[12035,24010],[12036,24005],[12037,24005],[12038,24005],[12039,24011],[12040,24008],[12041,24004],[12042,23998],[12043,23998],[12044,24010],[12045,24005],[12046,24005],[12047,24005],[12048,24011],[12049,24008],[12050,24004],[12051,23998],[12052,23998],[12053,24010],[12054,24005],[12055,24005],[12056,24005],[12057,24011],[12058,24008],[12059,24004],[12060,23998],[12061,23998],[12062,24010],[12063,24005],[12064,24005],[12065,24005],[12066,24011],[12067,24008],[12068,24004],[12069,24005],[12070,24008],[12071,24008],[12072,24010],[12073,24011],[12074,24008],[12075,24009],[12076,23998],[12077,23998],[12078,24010],[12079,24010],[12080,24005],[12081,24005],[12082,24011],[12083,24011],[12084,23998],[12085,23998],[12086,24010],[12087,24005],[12088,24005],[12089,24005],[12090,24011],[12091,24008],[12092,24004],[12093,23998],[12094,23998],[12095,24010],[12096,24005],[12097,24005],[12098,24005],[12099,24011],[12100,24008],[12101,24004],[12102,23998],[12103,24010],[12104,24005],[12105,24011],[12106,24008],[12107,23998],[12108,24010],[12109,24011],[12110,24008],[12111,23998],[12112,24010],[12113,24011],[12114,24008],[12115,24011],[12116,24005],[12117,24008],[12118,24008],[12119,23998],[12120,23998],[12121,24010],[12122,24005],[12123,24005],[12124,24005],[12125,24011],[12126,24008],[12127,24004],[12128,23998],[12129,24011],[12130,24004],[12131,24008],[12132,23998],[12133,23998],[12134,24005],[12135,24005],[12136,24005],[12137,23998],[12138,23998],[12139,24010],[12140,24005],[12141,24005],[12142,24005],[12143,24011],[12144,24008],[12145,24004],[12146,23998],[12147,23998],[12148,24010],[12149,24005],[12150,24005],[12151,24005],[12152,24011],[12153,24008],[12154,24004],[12155,23998],[12156,23998],[12157,24010],[12158,24005],[12159,24005],[12160,24005],[12161,24011],[12162,24008],[12163,24004],[12164,24005],[12165,24011],[12166,23998],[12167,23998],[12168,24010],[12169,24005],[12170,24005],[12171,24005],[12172,24011],[12173,24008],[12174,24004],[12175,24008],[12176,24005],[12177,24011],[12178,24010],[12179,24010],[12180,24012],[12181,24010],[12182,24010],[12183,24004],[12184,24004],[12185,23998],[12186,23998],[12187,24010],[12188,24005],[12189,24005],[12190,24005],[12191,24011],[12192,24008],[12193,24004],[12194,23998],[12195,23998],[12196,24010],[12197,24005],[12198,24005],[12199,24005],[12200,24011],[12201,24008],[12202,24004],[12203,24009],[12204,23998],[12205,24010],[12206,24010],[12207,24005],[12208,24011],[12209,24011],[12210,24005],[12211,24005],[12212,24005],[12213,24011],[12214,24004],[12215,24004],[12216,24004],[12217,23998],[12218,23998],[12219,24010],[12220,24005],[12221,24005],[12222,24005],[12223,24011],[12224,24008],[12225,24004],[12226,24010],[12227,24011],[12228,24010],[12229,23998],[12230,23998],[12231,24010],[12232,24005],[12233,24005],[12234,24005],[12235,24011],[12236,24008],[12237,24004],[12238,24009],[12239,24010],[12240,24010],[12241,24005],[12242,24011],[12243,24011],[12244,24009],[12245,24010],[12246,24010],[12247,24005],[12248,24011],[12249,24011],[12250,23998],[12251,24007],[12252,23998],[12253,23998],[12254,24010],[12255,24005],[12256,24005],[12257,24011],[12258,24008],[12259,24004],[12260,24005],[12261,24005],[12262,24005],[12263,24005],[12264,24004],[12265,24004],[12266,24004],[12267,23998],[12268,24010],[12269,24011],[12270,23998],[12271,24010],[12272,24011],[12273,23998],[12274,24010],[12275,24011],[12276,24010],[12277,24011],[12278,23998],[12279,23998],[12280,24010],[12281,24011],[12282,24011],[12283,24011],[12284,24009],[12285,23998],[12286,23998],[12287,24010],[12288,24010],[12289,24005],[12290,24005],[12291,24011],[12292,24011],[12293,23998],[12294,23998],[12295,24010],[12296,24005],[12297,24005],[12298,24005],[12299,24011],[12300,24008],[12301,24004],[12302,23998],[12303,23998],[12304,23998],[12305,23998],[12306,24010],[12307,24011],[12308,24009],[12309,23998],[12310,23998],[12311,23998],[12312,24010],[12313,24010],[12314,24005],[12315,24011],[12316,24011],[12317,24010],[12318,23998],[12319,24010],[12320,23998],[12321,24010],[12322,24010],[12323,24011],[12324,24010],[12325,24011],[12326,23998],[12327,23998],[12328,24010],[12329,23998],[12330,23998],[12331,24010],[12332,24010],[12333,24011],[12334,24010],[12335,24011],[12336,24010],[12337,24011],[12338,24010],[12339,24011],[12340,24004],[12341,24004],[12342,24004],[12343,24009],[12344,23998],[12345,23998],[12346,23998],[12347,23998],[12348,23998],[12349,24010],[12350,24010],[12351,24010],[12352,24005],[12353,24005],[12354,24005],[12355,24005],[12356,24005],[12357,24011],[12358,24011],[12359,24011],[12360,24008],[12361,24004],[12362,23998],[12363,24010],[12364,24005],[12365,24011],[12366,23998],[12367,23998],[12368,24010],[12369,24005],[12370,24005],[12371,24005],[12372,24011],[12373,24008],[12374,24004],[12375,23998],[12376,23998],[12377,24010],[12378,24005],[12379,24005],[12380,24005],[12381,24011],[12382,24008],[12383,24004],[12384,23998],[12385,24004],[12386,23998],[12387,24004],[12389,24005],[12390,24005],[12391,23998],[12392,23998],[12393,24010],[12394,24005],[12395,24005],[12396,24005],[12397,24011],[12398,24008],[12399,24004],[12400,24005],[12401,24005],[12402,24005],[12403,24005],[12404,24008],[12405,24005],[12406,24005],[12407,24008],[12408,23998],[12409,23998],[12410,24010],[12411,24005],[12412,24005],[12413,24005],[12414,24011],[12415,24008],[12416,24004],[12417,23998],[12418,23998],[12419,24010],[12420,24005],[12421,24005],[12422,24005],[12423,24011],[12424,24008],[12425,24004],[12426,23998],[12427,23998],[12428,24010],[12429,24005],[12430,24005],[12431,24005],[12432,24011],[12433,24008],[12434,24004],[12435,23998],[12436,23998],[12437,24010],[12438,24005],[12439,24005],[12440,24005],[12441,24011],[12442,24008],[12443,24004],[12444,23998],[12445,23998],[12446,24010],[12447,24005],[12448,24005],[12449,24005],[12450,24011],[12451,24008],[12452,24004],[12453,23998],[12454,23998],[12455,24010],[12456,24005],[12457,24005],[12458,24005],[12459,24011],[12460,24008],[12461,24004],[12462,23998],[12463,23998],[12464,24010],[12465,24005],[12466,24005],[12467,24005],[12468,24011],[12469,24008],[12470,24004],[12471,23998],[12472,23998],[12473,24010],[12474,24005],[12475,24005],[12476,24005],[12477,24011],[12478,24008],[12479,24004],[12480,23998],[12481,23998],[12482,24010],[12483,24005],[12484,24005],[12485,24005],[12486,24011],[12487,24008],[12488,24004],[12489,24005],[12490,24011],[12491,24004],[12492,24005],[12493,24010],[12494,24011],[12495,24010],[12496,24011],[12497,24010],[12498,23998],[12499,24005],[12500,24010],[12501,24011],[12502,24010],[12503,24011],[12504,23998],[12505,24005],[12506,24011],[12507,24004],[12508,24005],[12509,24005],[12510,24010],[12511,24011],[12512,24010],[12513,24011],[12514,24010],[12515,24011],[12516,24010],[12517,24011],[12518,24011],[12519,24011],[12520,24012],[12521,24012],[12522,24012],[12523,24012],[12524,24012],[12525,24012],[12526,24017],[12527,24005],[12528,24017],[12529,24004],[12530,24004],[12531,24004],[12532,24005],[12533,24005],[12534,24004],[12535,24010],[12536,24005],[12537,24005],[12538,24005],[12539,24005],[12540,24004],[12541,24004],[12542,24012],[12543,24005],[12544,24004],[12545,24005],[12546,24012],[12547,24010],[12548,24010],[12549,24004],[12550,24004],[12551,23998],[12552,23998],[12553,24009],[12554,23998],[12555,23998],[12556,24010],[12557,24010],[12558,24005],[12559,24005],[12560,24011],[12561,24011],[12562,23998],[12563,24005],[12564,24004],[12565,24005],[12566,24005],[12567,24004],[12568,24012],[12569,24010],[12570,24005],[12571,24010],[12572,24005],[12573,24005],[12574,24005],[12575,24005],[12576,24005],[12577,24009],[12578,23998],[12579,23998],[12580,24010],[12581,24010],[12582,24005],[12583,24005],[12584,24011],[12585,24011],[12586,24005],[12587,24009],[12588,23998],[12589,23998],[12590,24010],[12591,24010],[12592,24005],[12593,24005],[12594,24011],[12595,24011],[12596,24005],[12597,24005],[12598,24011],[12599,24005],[12600,23998],[12601,24004],[12602,24004],[12603,24004],[12604,24004],[12605,23998],[12606,23998],[12607,24005],[12608,24009],[12609,23998],[12610,23998],[12611,24010],[12612,24010],[12613,24005],[12614,24005],[12615,24011],[12616,24011],[12617,23998],[12618,24010],[12619,24005],[12620,24011],[12621,23998],[12622,24011],[12623,24004],[12624,24010],[12625,24005],[12626,24005],[12627,24011],[12628,24004],[12629,24010],[12630,24005],[12631,24005],[12632,24011],[12633,24004],[12634,24005],[12635,23998],[12636,23998],[12637,24010],[12638,24005],[12639,24005],[12640,24005],[12641,24011],[12642,24008],[12643,24004],[12644,24010],[12645,24010],[12646,23998],[12647,24005],[12648,24012],[12649,24008],[12650,24010],[12651,24005],[12652,24011],[12653,24005],[12654,24004],[12655,23998],[12656,23998],[12657,24010],[12658,24005],[12659,24005],[12660,24005],[12661,24011],[12662,24008],[12663,24004],[12664,23998],[12665,23998],[12666,24010],[12667,24005],[12668,24005],[12669,24005],[12670,24011],[12671,24008],[12672,24004],[12673,23998],[12674,23998],[12675,24010],[12676,24005],[12677,24005],[12678,24005],[12679,24011],[12680,24008],[12681,24004],[12682,23998],[12683,23998],[12684,24010],[12685,24005],[12686,24005],[12687,24005],[12688,24011],[12689,24008],[12690,24004],[12691,24004],[12692,23998],[12693,23998],[12694,24010],[12695,24005],[12696,24005],[12697,24005],[12698,24011],[12699,24008],[12700,24004],[12701,23998],[12702,23998],[12703,24010],[12704,24005],[12705,24005],[12706,24005],[12707,24011],[12708,24008],[12709,24004],[12710,23998],[12711,23998],[12712,24010],[12713,24005],[12714,24005],[12715,24005],[12716,24011],[12717,24008],[12718,24004],[12719,23998],[12720,23998],[12721,24010],[12722,24005],[12723,24005],[12724,24005],[12725,24011],[12726,24008],[12727,24004],[12728,24012],[12729,24007],[12730,24012],[12731,24005],[12732,24005],[12733,24005],[12734,23998],[12735,23998],[12736,24010],[12737,24005],[12738,24005],[12739,24005],[12740,24011],[12741,24008],[12742,24004],[12744,24009],[12745,23998],[12746,23998],[12747,24010],[12748,24010],[12749,24005],[12750,24005],[12751,24011],[12752,24011],[12753,24012],[12756,24010],[12757,24011],[12758,24010],[12759,24011],[12760,23998],[12761,23998],[12762,24009],[12763,23998],[12764,23998],[12765,24010],[12766,24010],[12767,24005],[12768,24005],[12769,24011],[12770,24011],[12771,24012],[12774,24010],[12775,24011],[12776,24010],[12777,24011],[12778,24004],[12779,23998],[12780,23998],[12781,23998],[12782,23998],[12783,23998],[12784,23998],[12785,23998],[12786,23998],[12787,23998],[12788,23998],[12789,23998],[12790,23998],[12791,23998],[12792,23998],[12793,23998],[12794,23998],[12795,23998],[12796,23998],[12797,23998],[12798,23998],[12799,23998],[12800,23998],[12801,23998],[12802,23998],[12803,23998],[12804,23998],[12805,23998],[12806,23998],[12807,23998],[12808,23998],[12809,23998],[12810,23998],[12811,23998],[12812,23998],[12813,23998],[12814,23998],[12815,23998],[12816,23998],[12817,23998],[12818,23998],[12819,23998],[12820,23998],[12821,23998],[12822,23998],[12823,23998],[12824,23998],[12825,23998],[12826,23998],[12827,23998],[12828,23998],[12829,23998],[12830,23998],[12831,23998],[12832,24020],[12833,24015],[12834,24021],[12835,24015],[12836,24015],[12837,24015],[12838,24015],[12839,24015],[12840,24020],[12841,24021],[12842,24015],[12843,24015],[12844,24015],[12845,24020],[12846,24021],[12847,24015],[12848,24015],[12849,24015],[12850,24020],[12851,24021],[12852,24015],[12853,24015],[12854,24015],[12855,24020],[12856,24021],[12857,24015],[12858,24015],[12859,24015],[12860,24020],[12861,24021],[12862,24015],[12863,24015],[12864,24020],[12865,24015],[12866,24015],[12867,24020],[12868,24015],[12869,24020],[12870,24015],[12871,24020],[12872,24020],[12873,24015],[12874,24015],[12875,24020],[12876,24015],[12877,24015],[12878,24015],[12879,24015],[12880,24020],[12881,24020],[12882,24021],[12883,24015],[12884,24015],[12885,24015],[12886,24015],[12887,24020],[12888,24020],[12889,24021],[12890,24015],[12891,24015],[12892,24015],[12893,24020],[12894,24021],[12895,24015],[12896,24020],[12897,24015],[12898,24020],[12899,24015],[12900,24015],[12901,24020],[12902,24021],[12903,24015],[12904,24020],[12905,24015],[12906,24015],[12907,24020],[12908,24021],[12909,24015],[12910,24015],[12911,24020],[12912,24021],[12913,24015],[12914,24020],[12915,24021],[12916,24015],[12917,24020],[12918,24021],[12919,24015],[12920,24015],[12921,24015],[12922,24020],[12923,24021],[12924,24015],[12925,24020],[12926,24015],[12927,24015],[12928,24015],[12929,24015],[12930,24020],[12931,24020],[12932,24021],[12933,24015],[12934,24015],[12935,24015],[12936,24015],[12937,24020],[12938,24020],[12939,24021],[12940,24015],[12941,24015],[12942,24015],[12943,24020],[12944,24021],[12945,24015],[12946,24015],[12947,24015],[12948,24015],[12949,24015],[12950,24015],[12951,24015],[12952,24020],[12953,24021],[12954,24021],[12955,24015],[12956,24015],[12957,24015],[12958,24015],[12959,24020],[12960,24020],[12961,24021],[12962,24015],[12963,24015],[12964,24015],[12965,24020],[12966,24020],[12967,24020],[12968,24021],[12969,24021],[12970,24021],[12971,24015],[12972,24015],[12973,24015],[12974,24015],[12975,24020],[12976,24020],[12977,24021],[12978,24021],[12979,24015],[12980,24015],[12981,24015],[12982,24015],[12983,24020],[12984,24020],[12985,24021],[12986,24015],[12987,24015],[12988,24015],[12989,24020],[12990,24021],[12991,24020],[12992,24015],[12993,24015],[12994,24015],[12995,24015],[12996,24020],[12997,24021],[12998,24020],[12999,24015],[13000,24020],[13001,24020],[13002,24015],[13003,24020],[13004,24020],[13005,24015],[13006,24020],[13007,24015],[13008,24015],[13009,24015],[13010,24020],[13011,24021],[13012,24015],[13013,24015],[13014,24015],[13015,24015],[13016,24020],[13017,24021],[13018,24015],[13019,24015],[13020,24015],[13021,24020],[13022,24021],[13023,24015],[13024,24015],[13025,24015],[13026,24020],[13027,24021],[13028,24015],[13029,24015],[13030,24015],[13031,24020],[13032,24021],[13033,24015],[13034,24015],[13035,24015],[13036,24020],[13037,24021],[13038,24015],[13039,24015],[13040,24015],[13041,24020],[13042,24021],[13043,24015],[13044,24015],[13045,24015],[13046,24020],[13047,24021],[13048,24015],[13049,24015],[13050,24015],[13051,24020],[13052,24021],[13053,24015],[13054,24015],[13055,24015],[13056,24015],[13057,24015],[13058,24015],[13059,24015],[13060,24015],[13061,24015],[13062,24015],[13063,24020],[13064,24021],[13065,24015],[13066,24020],[13067,24015],[13068,24020],[13069,24015],[13070,24020],[13071,24020],[13072,24015],[13073,24020],[13074,24020],[13075,24020],[13076,24015],[13077,24020],[13078,24020],[13079,24015],[13080,24015],[13081,24015],[13082,24015],[13083,24015],[13084,24015],[13085,24015],[13086,24015],[13087,24015],[13088,24015],[13089,24015],[13090,24015],[13091,24015],[13092,24015],[13093,24015],[13094,24015],[13095,24015],[13096,24015],[13097,24015],[13098,24015],[13099,24015],[13100,24015],[13101,24015],[13102,24015],[13103,24015],[13104,24015],[13105,24015],[13106,24020],[13107,24021],[13108,24015],[13109,24020],[13110,24015],[13111,24015],[13112,24015],[13113,24015],[13114,24015],[13115,24020],[13116,24015],[13117,24020],[13118,24020],[13119,24021],[13120,24015],[13121,24020],[13122,24015],[13123,24015],[13124,24020],[13125,24020],[13126,24015],[13127,24015],[13128,24020],[13129,24015],[13130,24020],[13131,24015],[13132,24015],[13133,24020],[13134,24021],[13135,24015],[13136,24015],[13137,24020],[13138,24015],[13139,24015],[13140,24015],[13141,24015],[13142,24015],[13143,24020],[13144,24021],[13145,24020],[13146,24021],[13147,24020],[13148,24021],[13149,24015],[13150,24020],[13151,24015],[13152,24015],[13153,24015],[13154,24020],[13155,24021],[13156,24015],[13157,24015],[13158,24015],[13159,24015],[13160,24015],[13161,24020],[13162,24020],[13163,24020],[13164,24021],[13165,24015],[13166,24015],[13167,24015],[13168,24015],[13169,24020],[13170,24021],[13171,24015],[13172,24015],[13173,24015],[13174,24020],[13175,24021],[13176,24015],[13177,24020],[13178,24020],[13179,24015],[13180,24015],[13181,24015],[13182,24020],[13183,24021],[13184,24015],[13185,24015],[13186,24015],[13187,24020],[13188,24021],[13189,24015],[13190,24015],[13191,24015],[13192,24020],[13193,24021],[13194,24015],[13195,24015],[13196,24015],[13197,24020],[13198,24021],[13199,24015],[13200,24015],[13201,24015],[13202,24020],[13203,24021],[13204,24015],[13205,24015],[13206,24015],[13207,24015],[13208,24015],[13209,24015],[13210,24015],[13211,24015],[13212,24015],[13213,24015],[13214,24015],[13215,24015],[13216,24015],[13217,24015],[13218,24015],[13219,24015],[13220,24015],[13221,24015],[13222,24015],[13223,24015],[13224,24015],[13225,24015],[13226,24015],[13227,24015],[13228,24015],[13229,24015],[13230,24015],[13231,24015],[13232,24015],[13233,24015],[13234,24015],[13235,24015],[13236,24015],[13237,24015],[13238,24015],[13239,24015],[13240,24015],[13241,24015],[13242,24015],[13243,24015],[13244,24015],[13245,24015],[13246,24015],[13247,24015],[13248,24015],[13249,24015],[13250,24015],[13251,24015],[13252,24015],[13253,24020],[13254,24015],[13255,24015],[13256,24015],[13257,24015],[13258,24015],[13259,24015],[13260,24015],[13261,24020],[13262,24015],[13263,24015],[13264,24015],[13265,24015],[13266,24015],[13267,24020],[13268,24010],[13269,24010],[13270,24010],[13271,24010],[13272,24010],[13273,24010],[13274,24010],[13275,24010],[13276,24010],[13277,24010],[13278,24010],[13279,24010],[13280,24010],[13281,24010],[13282,24010],[13283,24010],[13284,24010],[13285,24010],[13286,24010],[13287,24010],[13288,24010],[13289,24010],[13290,24010],[13291,24010],[13292,24010],[13293,24010],[13294,24010],[13295,24010],[13296,24010],[13297,24010],[13298,24010],[13299,24010],[13300,24010],[13301,24010],[13302,24010],[13303,24010],[13304,24010],[13305,24010],[13306,24010],[13307,24010],[13308,24010],[13309,24010],[13310,24010],[13311,24010],[13312,24004],[13313,24003],[13314,24003],[13315,24006],[13316,24032],[13317,24035],[13318,24025],[13319,23996],[13320,23996],[13321,24031],[13322,24033],[13323,24029],[13324,24029],[13325,24026],[13326,24027],[13327,24019],[13328,24019],[13329,23991],[13330,24030],[13331,24028],[13332,24028],[13333,24016],[13334,23990],[13335,24003],[13336,24003],[13337,24019],[13338,24019],[13339,24003],[13340,24003],[13341,24006],[13342,24032],[13343,24035],[13344,24025],[13345,23996],[13346,23996],[13347,24031],[13348,24033],[13349,24029],[13350,24029],[13351,24026],[13352,24027],[13353,24019],[13354,24019],[13355,24028],[13356,24028],[13357,24003],[13358,24003],[13359,23991],[13360,24030],[13361,24003],[13362,24003],[13363,23990],[13364,24025],[13365,24025],[13366,23996],[13367,23996],[13368,23996],[13369,23996],[13370,24026],[13371,24027],[13372,24019],[13373,24019],[13374,24019],[13375,24019],[13376,24028],[13377,24028],[13378,24003],[13379,24003],[13380,24003],[13381,24003],[13382,24025],[13383,23996],[13384,23996],[13385,23996],[13386,23996],[13387,24027],[13388,24019],[13389,24019],[13390,24028],[13391,24028],[13392,24003],[13393,24003],[13394,23996],[13395,23996],[13396,24003],[13397,24003],[13398,24003],[13399,24003],[13400,24029],[13401,24003],[13402,24003],[13403,24003],[13404,24003],[13405,24003],[13406,24025],[13407,23996],[13408,23996],[13409,24029],[13410,24029],[13411,24003],[13412,24003],[13413,23991],[13414,24030],[13415,23991],[13416,24030],[13417,24025],[13418,23996],[13419,23996],[13420,24029],[13421,24029],[13422,24003],[13423,24003],[13424,23991],[13425,23991],[13426,24030],[13427,24030],[13428,23990],[13429,23990],[13430,24006],[13431,24031],[13432,24019],[13433,24029],[13434,24029],[13435,24029],[13436,24029],[13437,24006],[13438,24032],[13439,24035],[13440,24025],[13441,23996],[13442,23996],[13443,24031],[13444,24033],[13445,24029],[13446,24029],[13447,24026],[13448,24027],[13449,24019],[13450,24019],[13451,24028],[13452,24028],[13453,24003],[13454,24003],[13455,23991],[13456,24030],[13457,24003],[13458,24003],[13459,23990],[13460,24006],[13461,24032],[13462,24035],[13463,24025],[13464,23996],[13465,23996],[13466,24031],[13467,24033],[13468,24029],[13469,24029],[13470,24026],[13471,24027],[13472,24019],[13473,24019],[13474,24028],[13475,24028],[13476,24003],[13477,24003],[13478,23991],[13479,24030],[13480,24003],[13481,24003],[13482,23990],[13483,24006],[13484,24032],[13485,24035],[13486,24025],[13487,23996],[13488,23996],[13489,24031],[13490,24033],[13491,24029],[13492,24029],[13493,24026],[13494,24027],[13495,24019],[13496,24019],[13497,24028],[13498,24028],[13499,24003],[13500,24003],[13501,23991],[13502,24030],[13503,24003],[13504,24003],[13505,23990],[13506,24006],[13507,24032],[13508,24035],[13509,24025],[13510,23996],[13511,23996],[13512,24031],[13513,24033],[13514,24029],[13515,24029],[13516,24026],[13517,24027],[13518,24019],[13519,24019],[13520,24028],[13521,24028],[13522,24003],[13523,24003],[13524,23991],[13525,24030],[13526,24003],[13527,24003],[13528,23990],[13529,24006],[13530,24032],[13531,24035],[13532,24025],[13533,23996],[13534,23996],[13535,24031],[13536,24033],[13537,24029],[13538,24029],[13539,24026],[13540,24027],[13541,24019],[13542,24019],[13543,24028],[13544,24028],[13545,24003],[13546,24003],[13547,23991],[13548,24030],[13549,24003],[13550,24003],[13551,23990],[13552,24006],[13553,24032],[13554,24035],[13555,24025],[13556,23996],[13557,23996],[13558,24031],[13559,24033],[13560,24029],[13561,24029],[13562,24026],[13563,24027],[13564,24019],[13565,24019],[13566,24028],[13567,24028],[13568,24003],[13569,24003],[13570,23991],[13571,24030],[13572,24003],[13573,24003],[13574,23990],[13575,24027],[13576,24032],[13577,24003],[13578,24003],[13579,24006],[13580,24032],[13581,24035],[13582,24025],[13583,23996],[13584,23996],[13585,24031],[13586,24033],[13587,24029],[13588,24029],[13589,24026],[13590,24027],[13591,24019],[13592,24019],[13593,24028],[13594,24028],[13595,24003],[13596,24003],[13597,23991],[13598,24030],[13599,24003],[13600,24003],[13601,23990],[13602,24006],[13603,24032],[13604,24025],[13605,23996],[13606,23996],[13607,24031],[13608,24026],[13609,24019],[13610,24019],[13611,24028],[13612,24028],[13613,24003],[13614,24003],[13615,23991],[13616,24030],[13617,24006],[13618,24032],[13619,24025],[13620,23996],[13621,23996],[13622,24031],[13623,24033],[13624,24029],[13625,24029],[13626,24019],[13627,24019],[13628,24003],[13629,24003],[13630,23996],[13631,23996],[13632,23996],[13633,23996],[13634,24019],[13635,24019],[13636,24019],[13637,24019],[13638,24003],[13639,24003],[13640,24003],[13641,24003],[13642,24006],[13643,24032],[13644,24031],[13645,23996],[13646,23996],[13647,24026],[13648,24019],[13649,24019],[13650,24003],[13651,24003],[13652,24003],[13653,24003],[13654,24006],[13655,24032],[13656,24035],[13657,24025],[13658,23996],[13659,23996],[13660,24031],[13661,24033],[13662,24029],[13663,24029],[13664,24026],[13665,24027],[13666,24019],[13667,24019],[13668,24028],[13669,24028],[13670,24003],[13671,24003],[13672,23991],[13673,24030],[13674,24003],[13675,24003],[13676,23990],[13677,24006],[13678,24032],[13679,24035],[13680,24025],[13681,23996],[13682,23996],[13683,24031],[13684,24033],[13685,24029],[13686,24029],[13687,24026],[13688,24027],[13689,24019],[13690,24019],[13691,24028],[13692,24028],[13693,24003],[13694,24003],[13695,23991],[13696,24030],[13697,24003],[13698,24003],[13699,23990],[13700,24006],[13701,24032],[13702,24035],[13703,24025],[13704,23996],[13705,23996],[13706,24031],[13707,24033],[13708,24029],[13709,24029],[13710,24026],[13711,24027],[13712,24019],[13713,24019],[13714,24028],[13715,24028],[13716,24003],[13717,24003],[13718,23991],[13719,24030],[13720,24003],[13721,24003],[13722,23990],[13723,24025],[13724,24026],[13725,23990],[13726,24025],[13727,24026],[13728,23990],[13729,24003],[13730,24003],[13731,24003],[13732,24003],[13733,24006],[13734,24032],[13735,24035],[13736,24025],[13737,23996],[13738,23996],[13739,24031],[13740,24033],[13741,24029],[13742,24029],[13743,24026],[13744,24027],[13745,24019],[13746,24019],[13747,24028],[13748,24028],[13749,24003],[13750,24003],[13751,23991],[13752,24030],[13753,24003],[13754,24003],[13755,23990],[13756,24006],[13757,24032],[13758,24031],[13759,24019],[13760,24019],[13761,24006],[13762,24032],[13763,24006],[13764,24032],[13765,24031],[13766,24016],[13767,24003],[13768,24003],[13769,24033],[13770,23990],[13771,24006],[13772,24032],[13773,24025],[13774,23996],[13775,23996],[13776,24031],[13777,24026],[13778,24027],[13779,24019],[13780,24019],[13781,24028],[13782,24028],[13783,24003],[13784,24003],[13785,23991],[13786,24030],[13787,23990],[13788,24016],[13789,24032],[13790,24019],[13791,24006],[13792,24032],[13793,24035],[13794,24025],[13795,23996],[13796,23996],[13797,24031],[13798,24033],[13799,24029],[13800,24029],[13801,24026],[13802,24027],[13803,24019],[13804,24019],[13805,24028],[13806,24028],[13807,24003],[13808,24003],[13809,23991],[13810,24030],[13811,24003],[13812,24003],[13813,23990],[13814,24006],[13815,24032],[13816,24035],[13817,24025],[13818,23996],[13819,23996],[13820,24031],[13821,24033],[13822,24029],[13823,24029],[13824,24026],[13825,24027],[13826,24019],[13827,24019],[13828,24028],[13829,24028],[13830,24003],[13831,24003],[13832,23991],[13833,24030],[13834,24003],[13835,24003],[13836,23990],[13837,23991],[13838,24030],[13839,23996],[13840,23996],[13841,24006],[13842,24006],[13843,24032],[13844,24032],[13845,24025],[13846,24025],[13847,24025],[13848,23996],[13849,23996],[13850,23996],[13851,23996],[13852,24031],[13853,24031],[13854,24027],[13855,24027],[13856,24019],[13857,24019],[13858,24019],[13859,24019],[13860,24003],[13861,24003],[13862,24003],[13863,24003],[13864,24006],[13865,24006],[13866,24032],[13867,24032],[13868,24025],[13869,23996],[13870,23996],[13871,23996],[13872,23996],[13873,24031],[13874,24031],[13875,24027],[13876,24027],[13877,24019],[13878,24019],[13879,24019],[13880,24019],[13881,24003],[13882,24003],[13883,24003],[13884,24003],[13885,23996],[13886,23996],[13887,24003],[13888,24003],[13889,24006],[13890,24032],[13891,24035],[13892,24025],[13893,23996],[13894,23996],[13895,24031],[13896,24033],[13897,24029],[13898,24029],[13899,24026],[13900,24027],[13901,24019],[13902,24019],[13903,24028],[13904,24028],[13905,24003],[13906,24003],[13907,23991],[13908,24030],[13909,24003],[13910,24003],[13911,23990],[13912,24006],[13913,24032],[13914,24035],[13915,24025],[13916,23996],[13917,23996],[13918,24031],[13919,24033],[13920,24029],[13921,24029],[13922,24026],[13923,24027],[13924,24019],[13925,24019],[13926,24028],[13927,24028],[13928,24003],[13929,24003],[13930,23991],[13931,24030],[13932,24003],[13933,24003],[13934,23990],[13935,24006],[13936,24032],[13937,24035],[13938,24025],[13939,23996],[13940,23996],[13941,24031],[13942,24033],[13943,24029],[13944,24029],[13945,24026],[13946,24027],[13947,24019],[13948,24019],[13949,24028],[13950,24028],[13951,24003],[13952,24003],[13953,23991],[13954,24030],[13955,24003],[13956,24003],[13957,23990],[13958,24019],[13959,24019],[13960,24003],[13961,24003],[13962,24006],[13963,24006],[13964,24006],[13965,24032],[13966,24032],[13967,24032],[13968,24035],[13969,24035],[13970,24035],[13971,24025],[13972,24025],[13973,24025],[13974,23996],[13975,23996],[13976,23996],[13977,23996],[13978,23996],[13979,23996],[13980,24031],[13981,24031],[13982,24031],[13983,24033],[13984,24033],[13985,24033],[13986,24029],[13987,24029],[13988,24029],[13989,24029],[13990,24029],[13991,24029],[13992,24026],[13993,24026],[13994,24026],[13995,24027],[13996,24027],[13997,24027],[13998,24019],[13999,24019],[14000,24019],[14001,24019],[14002,24019],[14003,24019],[14004,24028],[14005,24028],[14006,24028],[14007,24028],[14008,24028],[14009,24028],[14010,24003],[14011,24003],[14012,24003],[14013,24003],[14014,24003],[14015,24003],[14016,23991],[14017,23991],[14018,23991],[14019,24030],[14020,24030],[14021,24030],[14022,24003],[14023,24003],[14024,24003],[14025,24003],[14026,24003],[14027,24003],[14028,23990],[14029,23990],[14030,23990],[14031,24029],[14032,23996],[14033,24003],[14034,24016],[14035,23996],[14036,23996],[14037,23996],[14038,23996],[14039,24019],[14040,24019],[14041,24019],[14042,24019],[14043,24003],[14044,24003],[14045,24003],[14046,24003],[14047,24006],[14048,24032],[14049,24035],[14050,24025],[14051,23996],[14052,23996],[14053,24031],[14054,24033],[14055,24029],[14056,24029],[14057,24026],[14058,24027],[14059,24019],[14060,24019],[14061,24028],[14062,24028],[14063,24003],[14064,24003],[14065,23991],[14066,24030],[14067,24003],[14068,24003],[14069,23990],[14070,24006],[14071,24006],[14072,24032],[14073,24032],[14074,24035],[14075,24035],[14076,24035],[14077,24035],[14078,24035],[14079,24025],[14080,23996],[14081,23996],[14082,23996],[14083,23996],[14084,23996],[14085,23996],[14086,24031],[14087,24031],[14088,24033],[14089,24033],[14090,24033],[14091,24029],[14092,24029],[14093,24026],[14094,24027],[14095,24019],[14096,24019],[14097,24019],[14098,24019],[14099,24019],[14100,24019],[14101,24019],[14102,24019],[14103,24028],[14104,24028],[14105,24028],[14106,24028],[14107,24003],[14108,24003],[14109,24003],[14110,24003],[14111,24003],[14112,24003],[14113,24003],[14114,24003],[14115,24003],[14116,23991],[14117,23991],[14118,24030],[14119,24030],[14120,24003],[14121,24003],[14122,23990],[14123,24006],[14124,24032],[14125,24035],[14126,24025],[14127,23996],[14128,23996],[14129,24031],[14130,24033],[14131,24029],[14132,24029],[14133,24026],[14134,24027],[14135,24019],[14136,24019],[14137,24028],[14138,24028],[14139,24003],[14140,24003],[14141,23991],[14142,24030],[14143,24003],[14144,24003],[14145,23990],[14146,24003],[14147,23991],[14148,24030],[14149,23991],[14150,24030],[14151,24027],[14152,23996],[14153,23996],[14154,24027],[14155,24019],[14156,24019],[14157,24003],[14158,24003],[14159,24006],[14160,24032],[14161,24006],[14162,24032],[14163,24031],[14164,24033],[14165,24030],[14166,24006],[14167,24032],[14168,24031],[14169,24006],[14170,24032],[14171,24035],[14172,24025],[14173,23996],[14174,23996],[14175,24031],[14176,24033],[14177,24029],[14178,24029],[14179,24026],[14180,24027],[14181,24019],[14182,24019],[14183,24028],[14184,24028],[14185,24003],[14186,24003],[14187,23991],[14188,24030],[14189,24003],[14190,24003],[14191,23990],[14192,24033],[14193,24006],[14194,24032],[14195,23996],[14196,23996],[14197,24031],[14198,24033],[14199,24029],[14200,24029],[14201,24019],[14202,24019],[14203,24028],[14204,24028],[14205,24003],[14206,24003],[14207,23991],[14208,24030],[14209,24027],[14210,24027],[14211,24025],[14212,24026],[14213,24029],[14214,24019],[14215,24019],[14216,24003],[14217,24003],[14218,24006],[14219,24032],[14220,24035],[14221,24025],[14222,23996],[14223,23996],[14224,24031],[14225,24033],[14226,24029],[14227,24029],[14228,24026],[14229,24027],[14230,24019],[14231,24019],[14232,24028],[14233,24028],[14234,24003],[14235,24003],[14236,23991],[14237,24030],[14238,24003],[14239,24003],[14240,23990],[14241,24006],[14242,24032],[14243,24031],[14244,24019],[14245,24019],[14246,24027],[14247,24029],[14248,24033],[14249,24029],[14250,24029],[14251,24026],[14252,24028],[14253,24028],[14254,23991],[14255,24030],[14256,24006],[14257,24032],[14258,24031],[14259,24006],[14260,24032],[14261,24035],[14262,24025],[14263,23996],[14264,23996],[14265,24031],[14266,24033],[14267,24029],[14268,24029],[14269,24026],[14270,24027],[14271,24019],[14272,24019],[14273,24028],[14274,24028],[14275,24003],[14276,24003],[14277,23991],[14278,24030],[14279,24003],[14280,24003],[14281,23990],[14282,24006],[14283,24031],[14284,24006],[14285,24032],[14286,24031],[14287,24006],[14288,24032],[14289,24006],[14290,24032],[14291,24031],[14292,24006],[14293,24032],[14294,24035],[14295,24025],[14296,23996],[14297,23996],[14298,24031],[14299,24033],[14300,24029],[14301,24029],[14302,24026],[14303,24027],[14304,24019],[14305,24019],[14306,24028],[14307,24028],[14308,24003],[14309,24003],[14310,23991],[14311,24030],[14312,24003],[14313,24003],[14314,23990],[14315,24006],[14316,24032],[14317,24035],[14318,24025],[14319,23996],[14320,23996],[14321,24031],[14322,24033],[14323,24029],[14324,24029],[14325,24026],[14326,24027],[14327,24019],[14328,24019],[14329,24028],[14330,24028],[14331,24003],[14332,24003],[14333,23991],[14334,24030],[14335,24003],[14336,24003],[14337,23990],[14338,24006],[14339,24032],[14340,24035],[14341,24025],[14342,23996],[14343,23996],[14344,24031],[14345,24033],[14346,24029],[14347,24029],[14348,24026],[14349,24027],[14350,24019],[14351,24019],[14352,24028],[14353,24028],[14354,24003],[14355,24003],[14356,23991],[14357,24030],[14358,24003],[14359,24003],[14360,23990],[14361,24006],[14362,24032],[14363,24035],[14364,24025],[14365,23996],[14366,23996],[14367,24031],[14368,24033],[14369,24029],[14370,24029],[14371,24026],[14372,24027],[14373,24019],[14374,24019],[14375,24028],[14376,24028],[14377,24003],[14378,24003],[14379,23991],[14380,24030],[14381,24003],[14382,24003],[14383,23990],[14384,24006],[14385,24032],[14386,24035],[14387,24025],[14388,23996],[14389,23996],[14390,24031],[14391,24033],[14392,24029],[14393,24029],[14394,24026],[14395,24027],[14396,24019],[14397,24019],[14398,24028],[14399,24028],[14400,24003],[14401,24003],[14402,23991],[14403,24030],[14404,24003],[14405,24003],[14406,23990],[14407,24006],[14408,24032],[14409,24035],[14410,24025],[14411,23996],[14412,23996],[14413,24031],[14414,24033],[14415,24029],[14416,24029],[14417,24026],[14418,24027],[14419,24019],[14420,24019],[14421,24028],[14422,24028],[14423,24003],[14424,24003],[14425,23991],[14426,24030],[14427,24003],[14428,24003],[14429,23990],[14430,24006],[14431,24032],[14432,24035],[14433,24025],[14434,23996],[14435,23996],[14436,24031],[14437,24033],[14438,24029],[14439,24029],[14440,24026],[14441,24027],[14442,24019],[14443,24019],[14444,24028],[14445,24028],[14446,24003],[14447,24003],[14448,23991],[14449,24030],[14450,24003],[14451,24003],[14452,23990],[14453,24006],[14454,24032],[14455,24035],[14456,24025],[14457,23996],[14458,23996],[14459,24031],[14460,24033],[14461,24029],[14462,24029],[14463,24026],[14464,24027],[14465,24019],[14466,24019],[14467,24028],[14468,24028],[14469,24003],[14470,24003],[14471,23991],[14472,24030],[14473,24003],[14474,24003],[14475,23990],[14476,24006],[14477,24032],[14478,24035],[14479,24025],[14480,23996],[14481,23996],[14482,24031],[14483,24033],[14484,24029],[14485,24029],[14486,24026],[14487,24027],[14488,24019],[14489,24019],[14490,24028],[14491,24028],[14492,24003],[14493,24003],[14494,23991],[14495,24030],[14496,24003],[14497,24003],[14498,23990],[14499,24033],[14500,24029],[14501,24029],[14502,24026],[14503,24028],[14504,24028],[14505,23991],[14506,24030],[14507,24030],[14508,24030],[14509,24006],[14510,24032],[14511,24031],[14512,24019],[14513,24019],[14514,24006],[14515,24032],[14516,23996],[14517,23996],[14518,24031],[14519,24019],[14520,24019],[14521,24003],[14522,24003],[14523,24026],[14524,24028],[14525,24028],[14526,23991],[14527,24030],[14528,24006],[14529,24032],[14530,24029],[14531,24019],[14532,24019],[14533,24027],[14534,24029],[14535,24029],[14536,24027],[14537,24003],[14538,24003],[14539,24006],[14540,24032],[14541,24025],[14542,23996],[14543,23996],[14544,24031],[14545,24029],[14546,24019],[14547,24019],[14548,24003],[14549,24003],[14550,24019],[14551,24019],[14552,24003],[14553,24003],[14554,23991],[14555,24030],[14556,23991],[14557,24030],[14558,24030],[14559,24030],[14560,23991],[14561,24030],[14562,23991],[14563,24030],[14564,24030],[14565,24030],[14566,23991],[14567,24030],[14568,23991],[14569,24030],[14570,24030],[14571,24030],[14572,24030],[14573,24030],[14574,24030],[14575,24030],[14576,23996],[14577,23996],[14578,24003],[14579,24003],[14580,24025],[14581,23996],[14582,23996],[14583,24031],[14584,24026],[14585,24019],[14586,24019],[14587,24003],[14588,24003],[14589,24006],[14590,24032],[14591,24031],[14592,24031],[14593,24025],[14594,23996],[14595,23996],[14596,24031],[14597,24026],[14598,24019],[14599,24019],[14600,24003],[14601,24003],[14602,24006],[14603,24032],[14604,24031],[14605,24031],[14606,24006],[14607,24006],[14608,24032],[14609,24032],[14610,24025],[14611,24025],[14612,23996],[14613,23996],[14614,23996],[14615,23996],[14616,24031],[14617,24031],[14618,24026],[14619,24027],[14620,24027],[14621,24019],[14622,24019],[14623,24019],[14624,24019],[14625,24003],[14626,24003],[14627,24003],[14628,24003],[14629,24006],[14630,24006],[14631,24032],[14632,24032],[14633,24025],[14634,23996],[14635,23996],[14636,23996],[14637,23996],[14638,24031],[14639,24031],[14640,24027],[14641,24027],[14642,24019],[14643,24019],[14644,24019],[14645,24019],[14646,24003],[14647,24003],[14648,24003],[14649,24003],[14650,24030],[14651,24025],[14652,23996],[14653,23996],[14654,24027],[14655,24019],[14656,24019],[14657,24003],[14658,24003],[14659,24006],[14660,24032],[14661,24035],[14662,24025],[14663,23996],[14664,23996],[14665,24031],[14666,24033],[14667,24029],[14668,24026],[14669,24027],[14670,24019],[14671,24019],[14672,24028],[14673,24028],[14674,24003],[14675,24003],[14676,23991],[14677,24030],[14678,24030],[14679,24027],[14680,24033],[14681,24003],[14682,24003],[14683,24029],[14684,24029],[14685,24003],[14686,24003],[14687,24003],[14688,24003],[14689,24019],[14690,24019],[14691,24003],[14692,24003],[14693,24006],[14694,24032],[14695,24025],[14696,23996],[14697,23996],[14698,24031],[14699,24026],[14700,24027],[14701,24019],[14702,24019],[14703,24028],[14704,24028],[14705,24003],[14706,24003],[14707,23991],[14708,24030],[14709,23990],[14710,23990],[14711,24026],[14712,24003],[14713,24003],[14714,24003],[14715,24003],[14716,23996],[14717,23996],[14718,24031],[14719,24030],[14720,24006],[14721,24031],[14722,23991],[14723,24030],[14724,24030],[14725,23991],[14726,24030],[14727,24025],[14728,24026],[14729,23990],[14730,24030],[14731,23996],[14732,23996],[14733,23996],[14734,23991],[14735,24030],[14736,23991],[14737,24030],[14738,23991],[14739,24030],[14740,24003],[14741,24003],[14742,24030],[14743,24029],[14744,24029],[14745,24029],[14746,24004],[14747,24016],[14748,24031],[14749,24003],[14750,24003],[14751,23996],[14752,23996],[14753,24027],[14754,24003],[14755,24003],[14756,23991],[14757,24030],[14758,24033],[14759,24006],[14760,24032],[14761,23996],[14762,23996],[14763,23996],[14764,23996],[14765,24031],[14766,24019],[14767,24019],[14768,24019],[14769,24019],[14770,24003],[14771,24003],[14772,24003],[14773,24003],[14774,24006],[14775,24032],[14776,24031],[14777,24006],[14778,24032],[14779,24031],[14780,24025],[14781,24025],[14782,24006],[14783,24032],[14784,24031],[14785,23991],[14786,24030],[14787,24003],[14788,24003],[14789,24003],[14790,24003],[14791,24003],[14792,24003],[14793,24006],[14794,24016],[14795,24006],[14796,24032],[14797,24031],[14798,24019],[14799,24019],[14800,24030],[14801,24029],[14802,23996],[14803,23996],[14804,24019],[14805,24019],[14806,24028],[14807,24028],[14808,24003],[14809,24003],[14810,24003],[14811,24003],[14812,24029],[14813,24025],[14814,23996],[14815,23996],[14816,23996],[14817,23996],[14818,23996],[14819,23996],[14820,24026],[14821,24027],[14822,24019],[14823,24019],[14824,24028],[14825,24028],[14826,24003],[14827,24003],[14828,24025],[14829,23996],[14830,23996],[14831,23996],[14832,23996],[14833,24027],[14834,24019],[14835,24019],[14836,24028],[14837,24028],[14838,24003],[14839,24003],[14840,24025],[14841,24025],[14842,24019],[14843,24019],[14844,24019],[14845,24019],[14846,24003],[14847,24003],[14848,24003],[14849,24003],[14850,24016],[14851,24033],[14852,24029],[14853,24029],[14854,23991],[14855,24030],[14856,23991],[14857,24030],[14858,23991],[14859,24030],[14860,23991],[14861,24030],[14862,23996],[14863,24003],[14864,24030],[14865,23996],[14866,24029],[14867,24003],[14868,23991],[14869,23996],[14870,23996],[14871,24019],[14872,24019],[14873,24028],[14874,24028],[14875,24003],[14876,24003],[14877,23991],[14878,24030],[14879,23996],[14880,24003],[14881,23991],[14882,24030],[14883,23991],[14884,24030],[14885,24030],[14886,24031],[14887,24006],[14888,24032],[14889,23996],[14890,23996],[14891,24031],[14892,24019],[14893,24019],[14894,24028],[14895,24028],[14896,24003],[14897,24003],[14898,24006],[14899,24032],[14900,23996],[14901,23996],[14902,24031],[14903,24019],[14904,24019],[14905,24028],[14906,24028],[14907,24003],[14908,24003],[14909,24006],[14910,24032],[14911,23996],[14912,23996],[14913,24031],[14914,24019],[14915,24019],[14916,24028],[14917,24028],[14918,24003],[14919,24003],[14920,24006],[14921,24032],[14922,23996],[14923,23996],[14924,24031],[14925,24019],[14926,24019],[14927,24028],[14928,24028],[14929,24003],[14930,24003],[14931,24006],[14932,24032],[14933,24031],[14934,24006],[14935,24032],[14936,24035],[14937,24025],[14938,23996],[14939,23996],[14940,24031],[14941,24033],[14942,24029],[14943,24029],[14944,24026],[14945,24027],[14946,24019],[14947,24019],[14948,24028],[14949,24028],[14950,24003],[14951,24003],[14952,23991],[14953,24030],[14954,24003],[14955,24003],[14956,23990],[14957,24003],[14958,24003],[14959,24035],[14960,24035],[14961,24006],[14962,24003],[14963,24033],[14964,24029],[14965,24029],[14966,24028],[14967,24028],[14968,24003],[14969,24003],[14970,23996],[14971,23996],[14972,24019],[14973,24019],[14974,24028],[14975,24028],[14976,24003],[14977,24003],[14978,23996],[14979,24003],[14980,24006],[14981,24032],[14982,23996],[14983,23996],[14984,24031],[14985,24019],[14986,24019],[14987,24028],[14988,24028],[14989,24003],[14990,24003],[14991,24031],[14992,24019],[14993,24006],[14994,24032],[14995,23996],[14996,23996],[14997,24031],[14998,24033],[14999,24029],[15000,24029],[15001,24019],[15002,24019],[15003,24028],[15004,24028],[15005,24003],[15006,24003],[15007,23991],[15008,24030],[15009,24006],[15010,24032],[15011,23996],[15012,23996],[15013,24031],[15014,24019],[15015,24019],[15016,24028],[15017,24028],[15018,24003],[15019,24003],[15020,23996],[15021,23996],[15022,24019],[15023,24019],[15024,24028],[15025,24028],[15026,24027],[15027,24028],[15028,24026],[15029,24028],[15030,24026],[15031,24028],[15032,24029],[15033,24029],[15034,24026],[15035,24026],[15036,24028],[15037,24028],[15038,23991],[15039,23991],[15040,24029],[15041,24028],[15042,24030],[15043,24030],[15044,24029],[15045,24026],[15046,24028],[15047,24030],[15048,24030],[15049,24026],[15050,24028],[15051,24028],[15052,24026],[15053,24028],[15054,24028],[15055,24029],[15056,24029],[15057,24026],[15058,24026],[15059,24028],[15060,23991],[15061,23991],[15062,24029],[15063,24030],[15064,24029],[15065,24030],[15066,24006],[15067,24032],[15068,24031],[15069,23991],[15070,24030],[15071,24033],[15072,24006],[15073,24032],[15074,24025],[15075,23996],[15076,23996],[15077,24031],[15078,24026],[15079,24019],[15080,24019],[15081,24028],[15082,24028],[15083,24003],[15084,24003],[15085,23991],[15086,24030],[15087,24006],[15088,24032],[15089,24035],[15090,24025],[15091,23996],[15092,23996],[15093,24031],[15094,24033],[15095,24029],[15096,24029],[15097,24026],[15098,24027],[15099,24019],[15100,24019],[15101,24028],[15102,24028],[15103,24003],[15104,24003],[15105,23991],[15106,24030],[15107,24003],[15108,24003],[15109,23990],[15110,24006],[15111,24032],[15112,24035],[15113,24025],[15114,23996],[15115,23996],[15116,24031],[15117,24033],[15118,24029],[15119,24029],[15120,24026],[15121,24027],[15122,24019],[15123,24019],[15124,24028],[15125,24028],[15126,24003],[15127,24003],[15128,23991],[15129,24030],[15130,24003],[15131,24003],[15132,23990],[15133,24006],[15134,24032],[15135,24035],[15136,24025],[15137,23996],[15138,23996],[15139,24031],[15140,24033],[15141,24029],[15142,24029],[15143,24026],[15144,24027],[15145,24019],[15146,24019],[15147,24028],[15148,24028],[15149,24003],[15150,24003],[15151,23991],[15152,24030],[15153,24003],[15154,24003],[15155,23990],[15156,24006],[15157,24032],[15158,24035],[15159,24025],[15160,23996],[15161,23996],[15162,24031],[15163,24033],[15164,24029],[15165,24029],[15166,24026],[15167,24027],[15168,24019],[15169,24019],[15170,24028],[15171,24028],[15172,24003],[15173,24003],[15174,23991],[15175,24030],[15176,24003],[15177,24003],[15178,23990],[15179,24003],[15180,24003],[15181,24006],[15182,24032],[15183,24035],[15184,24025],[15185,23996],[15186,23996],[15187,24031],[15188,24033],[15189,24029],[15190,24029],[15191,24026],[15192,24027],[15193,24019],[15194,24019],[15195,24028],[15196,24028],[15197,24003],[15198,24003],[15199,23991],[15200,24030],[15201,24003],[15202,24003],[15203,23990],[15204,24006],[15205,24032],[15206,24035],[15207,24025],[15208,23996],[15209,23996],[15210,24031],[15211,24033],[15212,24029],[15213,24029],[15214,24026],[15215,24027],[15216,24019],[15217,24019],[15218,24028],[15219,24028],[15220,24003],[15221,24003],[15222,23991],[15223,24030],[15224,24003],[15225,24003],[15226,23990],[15227,24006],[15228,24032],[15229,24035],[15230,24025],[15231,23996],[15232,23996],[15233,24031],[15234,24033],[15235,24029],[15236,24029],[15237,24026],[15238,24027],[15239,24019],[15240,24019],[15241,24028],[15242,24028],[15243,24003],[15244,24003],[15245,23991],[15246,24030],[15247,24003],[15248,24003],[15249,23990],[15250,24006],[15251,24032],[15252,24031],[15253,24029],[15254,24006],[15255,24032],[15256,24035],[15257,24025],[15258,23996],[15259,23996],[15260,24031],[15261,24033],[15262,24029],[15263,24029],[15264,24026],[15265,24027],[15266,24019],[15267,24019],[15268,24028],[15269,24028],[15270,24003],[15271,24003],[15272,23991],[15273,24030],[15274,24003],[15275,24003],[15276,23990],[15277,24003],[15278,24003],[15279,24029],[15280,24027],[15281,24032],[15282,24019],[15283,24006],[15284,24032],[15285,24035],[15286,24025],[15287,23996],[15288,23996],[15289,24031],[15290,24033],[15291,24029],[15292,24029],[15293,24026],[15294,24027],[15295,24019],[15296,24019],[15297,24028],[15298,24028],[15299,24003],[15300,24003],[15301,23991],[15302,24030],[15303,24003],[15304,24003],[15305,23990],[15306,24035],[15307,24006],[15308,24032],[15309,24031],[15310,24019],[15311,24019],[15312,23991],[15313,24030],[15314,24003],[15315,24003],[15316,24003],[15317,24003],[15318,24003],[15319,23991],[15320,24030],[15321,24035],[15322,23996],[15323,23996],[15324,24028],[15325,24028],[15326,24003],[15327,24003],[15328,24003],[15329,24003],[15330,24006],[15331,24032],[15332,24031],[15333,23996],[15334,24003],[15335,24003],[15336,24032],[15337,23996],[15338,24003],[15339,24003],[15340,24032],[15341,24035],[15342,23996],[15343,23996],[15344,24028],[15345,24028],[15346,24003],[15347,24003],[15348,24003],[15349,24003],[15350,24006],[15351,24032],[15352,24031],[15353,23996],[15354,24003],[15355,23996],[15356,24003],[15357,24003],[15358,24032],[15359,24035],[15360,23996],[15361,24028],[15362,24003],[15363,24003],[15364,24032],[15365,24006],[15366,24032],[15367,24025],[15368,23996],[15369,23996],[15370,23996],[15371,23996],[15372,24031],[15373,24027],[15374,24019],[15375,24019],[15376,24019],[15377,24019],[15378,24003],[15379,24003],[15380,24003],[15381,24003],[15382,23996],[15383,23996],[15384,24003],[15385,24003],[15386,24014],[15387,24014],[15388,24014],[15389,24014],[15390,24115],[15391,24115],[15392,24017],[15393,24017],[15394,24017],[15395,24017],[15396,24017],[15397,24017],[15398,24017],[15399,24017],[15400,24017],[15401,24017],[15402,24017],[15403,24017],[15404,24017],[15405,24017],[15406,24017],[15407,24017],[15408,24017],[15409,24017],[15410,24017],[15411,24017],[15412,24017],[15413,24017],[15414,24017],[15416,24017],[15417,24017],[15418,24017],[15419,24017],[15420,24017],[15421,24017],[15422,24017],[15423,24017],[15424,24017],[15425,24017],[15426,24017],[15427,24017],[15428,24017],[15429,24017],[15430,24017],[15431,24017],[15432,24017],[15433,24017],[15434,24017],[15435,24017],[15436,24017],[15437,24017],[15438,24017],[15439,24017],[15440,24017],[15441,24017],[15442,24017],[15443,24017],[15444,24017],[15445,24017],[15446,24017],[15447,24017],[15448,24017],[15449,24017],[15450,24017],[15451,24017],[15452,24017],[15453,24017],[15454,24017],[15456,24017],[15458,24017],[15460,24017],[15461,24017],[15462,24017],[15463,24017],[15465,24017],[15467,24017],[15468,24017],[15469,24017],[15470,24017],[15471,24017],[15472,24017],[15473,24017],[15474,24017],[15475,24034],[15476,24034],[15477,24034],[15478,24034],[15479,24034],[15480,24034],[15481,24034],[15482,24034],[15483,24034],[15484,24034],[15485,24011],[15486,24011],[15487,24011],[15488,24011],[15489,24011],[15490,24011],[15491,24011],[15492,24011],[15493,24011],[15494,24011],[15495,24011],[15496,24011],[15497,24011],[15498,24011],[15499,24011],[15500,24011],[15501,24011],[15502,24011],[15503,24011],[15504,24011],[15505,24011],[15506,24011],[15507,24011],[15508,24011],[15509,24011],[15510,24011],[15511,24011],[15512,24011],[15513,24011],[15514,24011],[15515,24011],[15516,24011],[15517,24011],[15518,24011],[15519,24011],[15520,24011],[15521,24011],[15522,24011],[15523,24011],[15524,24011],[15525,24011],[15526,24011],[15527,24011],[15528,24011],[15529,24011],[15530,24011],[15531,24011],[15532,24011],[15533,24011],[15534,24011],[15535,24011],[15536,24011],[15537,24011],[15538,24011],[15539,24011],[15540,24011],[15541,24011],[15542,24011],[15543,24011],[15544,24011],[15545,24011],[15546,24011],[15547,24011],[15548,24011],[15549,24011],[15550,24011],[15551,24011],[15552,24011],[15553,24011],[15554,24011],[15555,24011],[15556,24011],[15557,24011],[15558,24011],[15559,24011],[15560,24011],[15561,24011],[15562,24011],[15563,24011],[15564,24011],[15565,24011],[15566,24011],[15567,24011],[15568,24011],[15569,24011],[15570,24011],[15571,24011],[15572,24011],[15573,24011],[15574,24011],[15575,24011],[15576,24011],[15577,24011],[15578,24011],[15579,24011],[15580,24011],[15581,24011],[15582,24011],[15583,24011],[15584,24011],[15585,24011],[15586,24011],[15587,24011],[15588,24011],[15589,24011],[15590,24011],[15591,24011],[15592,24011],[15593,24011],[15594,24011],[15595,24011],[15596,24011],[15597,24011],[15598,24011],[15599,24011],[15600,24011],[15601,24011],[15602,24011],[15603,24011],[15604,24009],[15605,24009],[15606,24002],[15607,24009],[15608,24009],[15609,24009],[15610,24009],[15611,24009],[15612,24009],[15613,24009],[15614,24009],[15615,24009],[15616,24009],[15617,24009],[15618,24009],[15619,24009],[15620,24002],[15621,24002],[15622,24009],[15623,24009],[15624,24116],[15625,24116],[15626,24116],[15627,24116],[15628,24116],[15629,24116],[15630,24001],[15631,24001],[15632,24001],[15633,24001],[15634,24001],[15635,24001],[15636,24001],[15637,24001],[15638,24001],[15639,24001],[15640,24001],[15641,24001],[15642,24001],[15643,24001],[15644,24001],[15645,24001],[15646,24001],[15647,24001],[15648,24001],[15649,24001],[15650,24001],[15651,24001],[15652,24001],[15653,24001],[15654,24001],[15655,24001],[15656,24001],[15657,24001],[15658,24001],[15659,24001],[15660,24001],[15661,24001],[15662,24001],[15663,24001],[15664,24001],[15665,24001],[15666,24001],[15667,24001],[15668,24001],[15669,24001],[15670,24001],[15671,24001],[15672,24001],[15673,24001],[15674,24001],[15675,24001],[15676,24001],[15677,24001],[15678,24001],[15679,24001],[15680,24001],[15681,24001],[15682,24001],[15683,24001],[15684,24001],[15685,24001],[15686,24001],[15687,24001],[15688,24001],[15689,24001],[15690,24001],[15691,24001],[15692,24001],[15693,24001],[15694,24001],[15695,24001],[15696,24001],[15697,24001],[15698,24001],[15699,24001],[15700,24001],[15701,24001],[15702,24001],[15703,24001],[15704,24001],[15705,24001],[15706,24001],[15707,24001],[15708,24001],[15709,24001],[15710,24001],[15711,24001],[15712,24001],[15713,24001],[15714,24001],[15715,24001],[15716,24001],[15717,24001],[15718,24001],[15719,24001],[15720,24001],[15721,24001],[15722,24001],[15723,24001],[15724,24001],[15725,24001],[15726,24001],[15727,24001],[15728,24001],[15729,24001],[15730,24001],[15731,24001],[15732,24001],[15733,24001],[15734,24001],[15735,24001],[15736,24001],[15737,24001],[15738,24001],[15739,24001],[15740,24001],[15741,24001],[15742,24001],[15743,24001],[15744,24001],[15745,24001],[15746,24001],[15747,24001],[15748,24001],[15749,24001],[15750,24001],[15751,24001],[15752,24001],[15753,24001],[15754,24001],[15755,24001],[15756,24001],[15757,24001],[15758,24001],[15759,24001],[15760,24001],[15761,24001],[15762,24001],[15763,24001],[15764,24001],[15765,24001],[15766,24001],[15767,24001],[15768,24001],[15769,24001],[15770,24001],[15771,24001],[15772,24001],[15773,24001],[15774,24001],[15775,24001],[15776,24001],[15777,24001],[15778,24001],[15779,24001],[15780,24001],[15781,24001],[15782,24001],[15783,24001],[15784,24001],[15785,24001],[15786,24001],[15787,24001],[15788,24001],[15789,24001],[15790,24001],[15791,24001],[15792,24001],[15793,24001],[15794,24038],[15795,24038],[15796,24038],[15797,24038],[15798,24038],[15799,24038],[15800,24038],[15801,24038],[15802,24038],[15803,24038],[15804,24038],[15805,24038],[15806,24038],[15807,24038],[15808,24038],[15809,24038],[15810,24038],[15811,24038],[15812,24038],[15813,24038],[15814,24038],[15815,24038],[15816,24038],[15817,24038],[15818,24038],[15819,24038],[15820,24038],[15821,24038],[15822,24038],[15823,24038],[15824,23989],[15825,23989],[15826,23989],[15827,23989],[15828,23989],[15829,23989],[15830,23989],[15831,23989],[15832,23989],[15833,23994],[15834,23994],[15835,23994],[15836,23994],[15837,23994],[15838,23994],[15839,23994],[15840,23994],[15841,23994],[15842,23994],[15843,23994],[15844,23994],[15845,23994],[15846,23994],[15847,23994],[15848,23994],[15849,23994],[15850,23994],[15851,23994],[15852,23994],[15853,23994],[15854,23994],[15855,23994],[15856,23994],[15857,23994],[15858,23994],[15859,23994],[15860,23994],[15861,23994],[15862,23994],[15863,23994],[15864,23994],[15865,23994],[15866,23994],[15867,23994],[15868,23994],[15869,23994],[15870,23994],[15871,23994],[15872,23994],[15873,23994],[15874,23994],[15875,23994],[15876,23994],[15877,23994],[15878,23994],[15879,23994],[15880,23994],[15881,23994],[15882,23994],[15883,23994],[15884,23994],[15885,23994],[15886,23994],[15887,23994],[15888,23994],[15889,23994],[15890,23994],[15891,23994],[15892,23994],[15893,23994],[15894,23994],[15895,23994],[15896,23994],[15897,23994],[15898,23994],[15899,23994],[15900,23994],[15901,23994],[15902,23994],[15903,23994],[15904,23994],[15905,23994],[15906,23994],[15907,23994],[15908,23994],[15909,23994],[15910,23994],[15911,23994],[15912,23994],[15913,23994],[15914,23994],[15915,23994],[15916,23994],[15917,23994],[15918,23994],[15919,23994],[15920,23994],[15921,23994],[15922,23994],[15923,23994],[15924,23994],[15925,23994],[15926,23994],[15927,23994],[15928,23994],[15929,23994],[15930,23994],[15931,23994],[15932,23994],[15933,23994],[15934,23994],[15935,23994],[15936,23994],[15937,23994],[15938,23994],[15939,23994],[15940,23994],[15941,23994],[15942,23994],[15943,23994],[15944,23994],[15945,23994],[15946,23994],[15947,23994],[15948,23994],[15949,23994],[15950,23994],[15951,23994],[15952,23994],[15953,23994],[15954,23994],[15955,23994],[15956,23994],[15957,23994],[15958,23994],[15959,23994],[15960,23994],[15961,23994],[15962,23994],[15963,23994],[15964,23994],[15965,23994],[15966,23994],[15967,23994],[15968,23994],[15969,23994],[15970,23994],[15971,23994],[15972,23994],[15973,23994],[15974,23994],[15975,23994],[15976,23994],[15977,23994],[15978,23994],[15979,23994],[15980,23994],[15981,23994],[15982,23994],[15983,24000],[15984,24000],[15985,24000],[15986,24000],[15987,24000],[15988,24000],[15989,24000],[15990,24000],[15991,24000],[15992,24000],[15993,24000],[15994,24000],[15995,24000],[15996,24000],[15997,24000],[15998,24000],[15999,24000],[16000,24000],[16001,24000],[16002,24000],[16003,24000],[16004,24000],[16005,24000],[16006,24000],[16007,24000],[16008,24000],[16009,24000],[16010,24000],[16011,24000],[16012,24000],[16013,24000],[16014,24000],[16015,24000],[16016,24000],[16017,24000],[16018,24000],[16019,24000],[16020,24000],[16021,24000],[16022,24000],[16023,24000],[16024,24000],[16025,24000],[16026,24000],[16027,24000],[16028,24000],[16029,24000],[16030,24000],[16031,24000],[16032,24000],[16033,24000],[16034,24000],[16035,24000],[16036,24000],[16037,24000],[16038,24000],[16039,24000],[16040,24000],[16041,24000],[16042,24000],[16043,24000],[16044,24000],[16045,24000],[16046,24000],[16047,24000],[16048,24000],[16049,24000],[16050,24000],[16051,24000],[16052,24000],[16053,24000],[16054,24000],[16055,24000],[16056,24000],[16057,24000],[16058,24000],[16059,24000],[16060,24000],[16061,24000],[16062,24000],[16063,24000],[16064,24000],[16065,24000],[16066,24000],[16067,24000],[16068,24000],[16069,24000],[16070,24000],[16071,24000],[16072,24000],[16073,24000],[16074,24000],[16075,24000],[16076,24000],[16077,24000],[16078,24000],[16079,24000],[16080,24000],[16081,24000],[16082,24000],[16083,24000],[16084,24000],[16085,24000],[16086,24000],[16087,24000],[16088,24000],[16089,24000],[16090,24000],[16091,24000],[16092,24000],[16093,24000],[16094,24000],[16095,24000],[16096,24000],[16097,24000],[16098,24000],[16099,24000],[16100,24000],[16101,24000],[16102,24000],[16103,24000],[16104,24000],[16105,24000],[16106,24000],[16107,24000],[16108,24000],[16109,24000],[16110,24000],[16111,24000],[16112,24000],[16113,24000],[16114,24000],[16115,24000],[16116,24000],[16117,24000],[16118,24000],[16119,24000],[16120,24000],[16121,24000],[16122,24000],[16123,24000],[16124,24000],[16125,24000],[16126,24000],[16127,24000],[16128,24000],[16129,24000],[16130,24000],[16131,24000],[16132,24000],[16133,24000],[16134,24000],[16135,24000],[16136,24000],[16137,24000],[16138,24000],[16139,24000],[16140,24000],[16141,24000],[16142,24000],[16143,24000],[16144,24000],[16145,24000],[16146,24000],[16147,24000],[16148,24000],[16149,24000],[16150,24000],[16151,24000],[16152,24000],[16153,24000],[16154,24000],[16155,24000],[16156,24000],[16157,24000],[16158,24000],[16159,23997],[16160,23997],[16161,24001],[16162,23997],[16163,23997],[16164,23997],[16165,23997],[16166,23997],[16167,23997],[16168,23997],[16169,23997],[16170,23997],[16171,23997],[16172,23997],[16173,23997],[16174,23997],[16175,23997],[16176,23997],[16177,23997],[16178,23997],[16179,23997],[16180,23997],[16181,23997],[16182,23997],[16183,23997],[16184,23997],[16185,23997],[16186,23997],[16187,23997],[16188,23997],[16189,23997],[16190,23985],[16191,23985],[16192,23986],[16193,23985],[16194,23985],[16195,23985],[16196,23985],[16197,23985],[16198,23985],[16199,23986],[16200,23985],[16201,23985],[16202,23986],[16203,23985],[16204,23985],[16205,23985],[16206,23985],[16207,23985],[16208,23985],[16209,23985],[16210,23866],[16211,23866],[16212,23866],[16213,23866],[16214,23866],[16215,23866],[16216,23866],[16217,23866],[16218,23866],[16219,23866],[16220,23866],[16221,23866],[16222,23866],[16223,23866],[16224,23866],[16225,23866],[16226,23866],[16227,23866],[16228,23866],[16229,23866],[16230,23866],[16231,23866],[16232,23866],[16233,23866],[16234,23866],[16235,23866],[16236,23866],[16237,23866],[16238,23866],[16239,23866],[16240,23866],[16241,23866],[16242,23866],[16243,23866],[16244,23866],[16245,23866],[16246,23866],[16247,23866],[16248,23866],[16249,23866],[16250,23866],[16251,23866],[16252,23866],[16253,23866],[16254,23866],[16255,23866],[16256,23866],[16257,23866],[16258,23866],[16259,23866],[16260,23866],[16261,23866],[16262,23866],[16263,23866],[16264,23866],[16265,23866],[16266,23866],[16267,23866],[16268,23866],[16269,23866],[16270,23866],[16271,23866],[16272,23866],[16273,23866],[16274,23866],[16275,23866],[16276,23866],[16277,23866],[16278,23866],[16279,23866],[16280,23866],[16281,23866],[16282,23866],[16283,23866],[16284,23866],[16285,23866],[16286,23866],[16287,23866],[16288,23866],[16289,23866],[16290,23866],[16291,23866],[16292,23866],[16293,23866],[16294,23866],[16295,23866],[16296,23866],[16297,23866],[16298,23866],[16299,23866],[16300,23866],[16301,23866],[16302,23866],[16303,23866],[16304,23866],[16305,23866],[16306,23866],[16307,23866],[16308,23866],[16309,23866],[16310,23866],[16311,23866],[16312,23866],[16313,23866],[16314,23866],[16315,23866],[16316,23866],[16317,23866],[16318,23866],[16319,23866],[16320,23866],[16321,23866],[16322,23866],[16323,23866],[16324,23866],[16325,23866],[16326,23866],[16327,23866],[16328,23866],[16329,23866],[16330,23866],[16331,23866],[16332,23866],[16333,23866],[16334,23866],[16335,23866],[16336,23866],[16337,23866],[16338,23866],[16339,23866],[16340,23866],[16341,23866],[16342,23866],[16343,23866],[16344,23866],[16345,23866],[16346,23866],[16347,23866],[16348,23866],[16349,23866],[16350,23866],[16351,23866],[16352,23866],[16353,23866],[16354,23866],[16355,23866],[16356,23866],[16357,23866],[16358,23866],[16359,23866],[16360,23866],[16364,23957],[16365,23957],[16366,23957],[16367,23957],[16368,23957],[16369,23957],[16370,23957],[16371,23957],[16372,23957],[16373,23957],[16374,23957],[16375,23957],[16376,23957],[16377,23957],[16378,23957],[16379,23957],[16380,23957],[16381,23957],[16382,23957],[16383,23957],[16384,23957],[16385,23957],[16386,23957],[16387,23957],[16388,23957],[16389,23957],[16390,23957],[16391,23957],[16392,23957],[16393,23957],[16394,23957],[16395,23957],[16396,23957],[16397,23957],[16398,23957],[16399,23957],[16400,23957],[16401,23957],[16402,23957],[16403,23957],[16404,23957],[16405,23957],[16406,23957],[16407,23957],[16408,23957],[16409,23957],[16410,23957],[16411,23957],[16412,23957],[16413,23865],[16414,23865],[16415,23865],[16416,23865],[16417,23865],[16418,23865],[16419,23865],[16420,23865],[16421,23865],[16422,23865],[16423,23865],[16424,23865],[16425,23865],[16426,23865],[16427,23865],[16428,23865],[16429,23865],[16430,23865],[16431,23865],[16432,23865],[16433,23865],[16434,23865],[16435,23865],[16436,23865],[16437,23865],[16438,23865],[16439,23865],[16440,23865],[16441,23865],[16442,23865],[16443,23865],[16444,23865],[16445,23865],[16446,23865],[16447,23865],[16448,23865],[16449,23865],[16450,23865],[16451,23865],[16452,23865],[16453,23865],[16454,23865],[16455,23865],[16456,23865],[16457,23865],[16458,23865],[16459,23865],[16460,23865],[16461,23865],[16462,23865],[16463,23865],[16464,23865],[16465,23865],[16466,23865],[16467,23865],[16468,23865],[16469,23865],[16470,23865],[16471,23865],[16472,23865],[16473,23865],[16474,23865],[16475,23865],[16476,23865],[16477,23865],[16478,23865],[16479,23865],[16480,23865],[16481,23865],[16482,23865],[16483,23865],[16484,23865],[16485,23865],[16486,23865],[16487,23865],[16488,23865],[16489,23865],[16490,23865],[16491,23865],[16492,23865],[16493,23865],[16494,23865],[16495,23865],[16496,23865],[16497,23865],[16498,23865],[16499,23865],[16500,23865],[16501,23865],[16502,23865],[16503,23865],[16504,23865],[16505,23865],[16506,23865],[16507,23865],[16508,23865],[16509,23865],[16510,23865],[16511,23865],[16512,23865],[16513,23865],[16514,23865],[16515,23865],[16516,23865],[16517,23865],[16518,23865],[16519,23865],[16520,23865],[16521,23865],[16522,23865],[16523,23865],[16524,23865],[16525,23865],[16526,23865],[16527,23865],[16528,23865],[16529,23865],[16530,23865],[16531,23865],[16532,23865],[16533,23865],[16534,23865],[16535,23901],[16536,23901],[16537,23901],[16538,23962],[16539,23901],[16540,23901],[16541,23901],[16542,23901],[16543,24040],[16544,24040],[16545,24040],[16546,24040],[16547,24040],[16548,24040],[16549,24040],[16550,24040],[16551,24040],[16552,24040],[16553,24040],[16554,24040],[16555,24040],[16556,24040],[16557,23962],[16558,24040],[16559,24040],[16560,24040],[16561,24040],[16562,24040],[16563,24040],[16564,24040],[16565,24040],[16566,24040],[16567,24040],[16568,24040],[16569,24040],[16570,24040],[16571,24040],[16572,24040],[16573,24040],[16574,24040],[16575,23962],[16576,24040],[16577,24040],[16578,24040],[16579,24040],[16580,24040],[16581,24040],[16582,24040],[16583,24040],[16584,24040],[16585,24040],[16586,24040],[16587,24040],[16588,24040],[16589,24040],[16590,24040],[16591,24040],[16592,24040],[16593,24040],[16594,24040],[16595,23962],[16596,23962],[16597,24040],[16598,24040],[16603,24040],[16604,24040],[16605,24040],[16606,24040],[16607,24040],[16608,24040],[16609,24040],[16610,24040],[16611,24040],[16612,24040],[16613,24040],[16614,24040],[16615,24040],[16616,24040],[16617,24040],[16618,24040],[16619,24040],[16620,24040],[16621,24040],[16622,24040],[16623,24040],[16624,24040],[16625,24040],[16626,24040],[16627,24040],[16628,24040],[16629,24040],[16630,24040],[16631,24040],[16632,24040],[16633,24040],[16634,24040],[16635,24040],[16636,24040],[16637,24040],[16638,24040],[16639,24040],[16640,24040],[16641,24040],[16642,24040],[16643,24040],[16644,24040],[16645,24040],[16646,24040],[16647,24040],[16648,24040],[16649,24040],[16650,23974],[16651,23974],[16652,23974],[16653,23974],[16654,23974],[16655,23974],[16656,23974],[16657,23974],[16658,23974],[16659,23974],[16660,23974],[16661,24117],[16662,23974],[16663,23974],[16664,23974],[16665,23974],[16666,23974],[16667,23974],[16668,23974],[16669,23974],[16670,23974],[16671,23974],[16672,23974],[16673,23974],[16674,23974],[16675,23974],[16676,23974],[16677,23974],[16678,23974],[16679,23974],[16680,23974],[16681,23974],[16682,23974],[16683,23974],[16684,23974],[16685,23974],[16686,23974],[16687,23974],[16688,23974],[16689,23974],[16690,23974],[16691,23974],[16692,23974],[16693,23974],[16694,23974],[16695,23974],[16696,23974],[16697,23974],[16698,23974],[16699,23974],[16700,23974],[16701,23974],[16702,23974],[16703,23974],[16704,23974],[16705,23974],[16706,23974],[16707,23974],[16708,23974],[16709,23974],[16710,23974],[16711,23974],[16712,23974],[16713,23976],[16714,23976],[16715,23976],[16716,24041],[16717,24041],[16718,24041],[16719,24041],[16720,24041],[16721,24041],[16722,23976],[16723,24041],[16724,23885],[16725,23976],[16726,23976],[16727,23976],[16728,23976],[16729,23976],[16730,23976],[16731,23976],[16732,23975],[16733,23976],[16734,23975],[16735,24041],[16736,23976],[16737,23976],[16738,23976],[16739,23976],[16740,23976],[16741,23975],[16742,24041],[16743,23976],[16744,23976],[16745,23976],[16746,23976],[16747,23976],[16748,23975],[16749,24041],[16750,23976],[16751,23976],[16752,23976],[16753,23976],[16754,23976],[16755,23975],[16756,24041],[16757,23976],[16758,23976],[16759,23976],[16760,23976],[16761,23976],[16762,23975],[16763,24041],[16764,23976],[16765,23976],[16766,23976],[16767,23976],[16768,23976],[16769,23975],[16770,23975],[16771,23975],[16772,23885],[16773,23885],[16774,23975],[16775,24041],[16776,23976],[16777,23976],[16778,23976],[16779,23976],[16780,23976],[16781,23975],[16782,24041],[16783,23976],[16784,23976],[16785,23976],[16786,23976],[16787,23976],[16788,23975],[16789,24041],[16790,23976],[16791,23976],[16792,23976],[16793,23976],[16794,23976],[16795,23975],[16796,23975],[16797,24041],[16798,23976],[16799,23976],[16800,23976],[16801,23976],[16802,23975],[16803,24041],[16804,23976],[16805,23976],[16806,23976],[16807,23976],[16808,23975],[16809,24041],[16810,23976],[16811,23976],[16812,23976],[16813,23976],[16814,23975],[16815,24041],[16816,23976],[16817,23976],[16818,23976],[16819,23976],[16820,23975],[16821,24041],[16822,23975],[16823,24041],[16824,23976],[16825,23976],[16826,23976],[16827,23976],[16828,23976],[16829,23976],[16830,23975],[16831,24041],[16832,23976],[16833,23976],[16834,23976],[16835,23976],[16836,23976],[16837,23975],[16838,24041],[16839,23976],[16840,23976],[16841,23976],[16842,23976],[16843,23976],[16844,23975],[16845,23975],[16846,23975],[16847,23975],[16848,23975],[16849,24041],[16850,23976],[16851,23976],[16852,23976],[16853,23976],[16854,23976],[16855,23975],[16856,24041],[16857,23976],[16858,23976],[16859,23976],[16860,23976],[16861,23976],[16862,23975],[16863,24041],[16864,23976],[16865,23975],[16866,23975],[16867,23975],[16868,24041],[16869,24041],[16870,24041],[16871,23975],[16872,23975],[16873,24041],[16874,24041],[16875,23976],[16876,23976],[16877,23976],[16878,23976],[16879,23976],[16880,23975],[16881,23975],[16882,24041],[16883,23976],[16884,23976],[16885,23976],[16886,23976],[16887,23976],[16888,23976],[16889,23976],[16890,23976],[16891,23976],[16892,23976],[16893,23975],[16894,24041],[16895,23976],[16896,23976],[16897,23976],[16898,23976],[16899,23976],[16900,23975],[16901,23975],[16902,23976],[16903,23975],[16904,24041],[16905,23976],[16906,23976],[16907,23976],[16908,23976],[16909,23976],[16910,23975],[16911,23976],[16912,23976],[16913,23976],[16914,23976],[16915,23976],[16916,23976],[16917,23975],[16918,23975],[16919,23975],[16920,24041],[16921,23976],[16922,23976],[16923,23975],[16924,23975],[16925,23976],[16926,23976],[16927,23975],[16928,23975],[16929,23975],[16930,23975],[16931,23975],[16932,24041],[16933,23976],[16934,23976],[16935,23976],[16936,23976],[16937,23976],[16938,23976],[16939,23976],[16940,23976],[16941,23975],[16942,24041],[16943,23976],[16944,23976],[16945,23976],[16946,23976],[16947,23976],[16948,23975],[16949,24041],[16950,23976],[16951,23976],[16952,23976],[16953,23976],[16954,23976],[16955,23975],[16956,24041],[16957,23976],[16958,23976],[16959,23976],[16960,23976],[16961,23976],[16962,23975],[16963,24041],[16964,23976],[16965,23976],[16966,23975],[16967,24041],[16968,23976],[16969,23976],[16970,23976],[16971,23976],[16972,23976],[16973,23975],[16974,24041],[16975,23976],[16976,23976],[16977,23976],[16978,23976],[16979,23976],[16980,23975],[16981,24041],[16982,23976],[16983,23976],[16984,23976],[16985,23976],[16986,23976],[16987,23975],[16988,24041],[16989,23976],[16990,23976],[16991,23976],[16992,23976],[16993,23976],[16994,23975],[16995,24041],[16996,23976],[16997,23976],[16998,23976],[16999,23976],[17000,23976],[17001,23975],[17002,23975],[17003,23976],[17004,23976],[17005,23975],[17006,23975],[17007,23975],[17008,23976],[17009,23975],[17010,23976],[17011,23976],[17012,23976],[17013,23975],[17014,23976],[17015,23976],[17016,23975],[17017,23976],[17018,23976],[17019,23976],[17020,23975],[17021,23976],[17022,23975],[17023,23975],[17024,24041],[17025,23975],[17026,23975],[17027,23975],[17028,23975],[17029,23975],[17030,23975],[17031,23976],[17032,23975],[17033,23975],[17034,23975],[17035,23975],[17036,23975],[17037,23975],[17038,23975],[17039,23975],[17040,23975],[17041,23975],[17042,23975],[17043,23975],[17044,23975],[17045,23975],[17046,23975],[17047,23975],[17048,23975],[17049,23976],[17050,23976],[17051,23975],[17052,23976],[17053,23976],[17054,23975],[17055,23975],[17056,24041],[17057,23976],[17058,23976],[17059,23976],[17060,23976],[17061,23975],[17062,24041],[17063,23975],[17064,24041],[17065,23975],[17066,24041],[17067,23976],[17068,23976],[17069,23976],[17070,23976],[17071,23976],[17072,23975],[17073,23975],[17074,24041],[17075,24041],[17076,23976],[17077,23976],[17078,23976],[17079,23976],[17080,23976],[17081,23975],[17082,24041],[17083,23976],[17084,23976],[17085,23976],[17086,23976],[17087,23976],[17088,23975],[17089,24041],[17090,23976],[17091,23976],[17092,23976],[17093,23976],[17094,23976],[17095,23975],[17096,24041],[17097,23976],[17098,23976],[17099,23976],[17100,23976],[17101,23976],[17102,23975],[17103,24041],[17104,23976],[17105,23976],[17106,23976],[17107,23976],[17108,23976],[17109,23975],[17110,24041],[17111,23976],[17112,23976],[17113,23976],[17114,23976],[17115,23976],[17116,23976],[17117,23976],[17118,23975],[17119,24041],[17120,23976],[17121,23976],[17122,23976],[17123,23976],[17124,23976],[17125,23975],[17126,23976],[17127,23976],[17128,23975],[17129,24041],[17130,23976],[17131,23976],[17132,23976],[17133,23976],[17134,23976],[17135,23976],[17136,23976],[17145,24105],[17146,23875],[17147,23875],[17148,23875],[17149,23875],[17150,23875],[17151,23875],[17152,23875],[17153,23875],[17154,23875],[17155,23875],[17156,23875],[17157,23875],[17158,23875],[17159,23875],[17160,24055],[17161,23874],[17162,23874],[17163,23874],[17164,23874],[17165,23874],[17166,24056],[17167,23979],[17168,24059],[17169,24052],[17170,24052],[17171,23874],[17172,24054],[17173,23874],[17174,23874],[17175,23874],[17176,23874],[17177,23874],[17178,24055],[17179,24052],[17180,23874],[17181,23874],[17182,24057],[17183,23978],[17184,24056],[17185,24057],[17186,23874],[17187,23874],[17188,23874],[17189,23874],[17190,23874],[17191,24052],[17192,23874],[17193,24058],[17194,24056],[17195,24057],[17196,23977],[17197,23874],[17198,23874],[17199,23874],[17200,24053],[17201,23874],[17202,24052],[17203,24055],[17204,23979],[17205,24059],[17206,24053],[17207,24055],[17208,24056],[17209,24052],[17210,24057],[17211,23978],[17212,24058],[17213,23977],[17214,23874],[17215,23874],[17216,23874],[17217,23874],[17218,23874],[17219,23874],[17220,23874],[17221,23874],[17222,23977],[17223,24053],[17224,23979],[17225,24059],[17226,24053],[17227,24055],[17228,24056],[17229,24052],[17230,24057],[17231,23978],[17232,24058],[17233,23977],[17234,23874],[17235,23874],[17236,23874],[17237,23874],[17238,23874],[17239,23874],[17240,23874],[17241,23874],[17242,23979],[17243,24059],[17244,24053],[17245,24055],[17246,24056],[17247,24052],[17248,24057],[17249,23978],[17250,24058],[17251,23977],[17252,23874],[17253,23874],[17254,23874],[17255,23874],[17256,23874],[17257,23874],[17258,23874],[17259,23874],[17260,23979],[17261,24059],[17262,24053],[17263,24055],[17264,24056],[17265,24052],[17266,24057],[17267,23978],[17268,24058],[17269,23977],[17270,23874],[17271,23874],[17272,23874],[17273,23874],[17274,23874],[17275,23874],[17276,23874],[17277,23874],[17278,23979],[17279,24059],[17280,24053],[17281,24055],[17282,24056],[17283,24052],[17284,24057],[17285,23978],[17286,24058],[17287,23977],[17288,23874],[17289,23874],[17290,23874],[17291,23874],[17292,23874],[17293,23874],[17294,23874],[17295,23874],[17296,23874],[17297,23874],[17298,23979],[17299,24059],[17300,24053],[17301,24055],[17302,24056],[17303,24052],[17304,24057],[17305,23978],[17306,24058],[17307,23977],[17308,23874],[17309,23874],[17310,23874],[17311,23874],[17312,23874],[17313,23874],[17314,23874],[17315,23874],[17316,23979],[17317,24059],[17318,24053],[17319,24055],[17320,24056],[17321,24052],[17322,24057],[17323,23978],[17324,24058],[17325,23977],[17326,23874],[17327,23874],[17328,23874],[17329,23874],[17330,23874],[17331,23874],[17332,23874],[17333,23874],[17334,23979],[17335,24059],[17336,24053],[17337,24055],[17338,24056],[17339,24052],[17340,24057],[17341,23978],[17342,24058],[17343,23977],[17344,23874],[17345,23874],[17346,23874],[17347,23874],[17348,23874],[17349,23874],[17350,23874],[17351,23874],[17352,24054],[17353,23979],[17354,23979],[17355,24053],[17356,24055],[17357,24056],[17358,24052],[17359,24057],[17360,23978],[17361,24058],[17362,23977],[17363,23874],[17364,23874],[17365,23874],[17366,23874],[17367,23874],[17368,23874],[17369,23874],[17370,23874],[17371,24055],[17372,24056],[17373,24052],[17374,24057],[17375,23978],[17376,24058],[17377,23977],[17378,23874],[17379,23874],[17380,23874],[17381,23874],[17382,23874],[17383,23874],[17384,23874],[17385,23874],[17386,24055],[17387,24056],[17388,24052],[17389,24057],[17390,23978],[17391,24058],[17392,23977],[17393,23874],[17394,23874],[17395,23874],[17396,23874],[17397,23874],[17398,23874],[17399,23874],[17400,23874],[17401,23977],[17402,23978],[17403,24058],[17404,23874],[17405,23978],[17406,24058],[17407,23979],[17408,24059],[17409,24053],[17410,24055],[17411,24056],[17412,24052],[17413,24057],[17414,23978],[17415,24058],[17416,23977],[17417,23874],[17418,23874],[17419,23874],[17420,23874],[17421,23874],[17422,23874],[17423,23874],[17424,23874],[17425,24053],[17426,23874],[17427,23874],[17428,23874],[17429,23979],[17430,24059],[17431,24053],[17432,24055],[17433,24056],[17434,24052],[17435,24057],[17436,23978],[17437,24058],[17438,23977],[17439,23874],[17440,23874],[17441,23874],[17442,23874],[17443,23874],[17444,23874],[17445,23874],[17446,23874],[17447,23979],[17448,24059],[17449,24053],[17450,24055],[17451,24056],[17452,24052],[17453,24057],[17454,23978],[17455,24058],[17456,23977],[17457,23874],[17458,23874],[17459,23874],[17460,23874],[17461,23874],[17462,23874],[17463,23874],[17464,23874],[17465,23979],[17466,24059],[17467,24053],[17468,24055],[17469,24056],[17470,24052],[17471,24057],[17472,23978],[17473,24058],[17474,23977],[17475,23874],[17476,23874],[17477,23874],[17478,23874],[17479,23874],[17480,23874],[17481,23874],[17482,23874],[17483,23979],[17484,24053],[17485,23979],[17486,24059],[17487,24053],[17488,24055],[17489,24056],[17490,24052],[17491,24057],[17492,23978],[17493,24058],[17494,23977],[17495,23977],[17496,23874],[17497,23874],[17498,23874],[17499,23874],[17500,23874],[17501,23874],[17502,23874],[17503,23874],[17504,24059],[17505,24055],[17506,24052],[17507,23978],[17508,24058],[17509,23874],[17510,23874],[17511,23874],[17512,24055],[17513,24055],[17514,24055],[17515,24052],[17516,24052],[17517,24052],[17518,23978],[17519,23978],[17520,23978],[17521,24058],[17522,24058],[17523,24058],[17524,24055],[17525,24056],[17526,24052],[17527,24057],[17528,23978],[17529,24058],[17530,23977],[17531,23874],[17532,23874],[17533,23874],[17534,23874],[17535,23874],[17536,23874],[17537,23874],[17538,23874],[17539,23979],[17540,23979],[17541,24059],[17542,24059],[17543,24053],[17544,24055],[17545,24056],[17546,24052],[17547,24057],[17548,23978],[17549,24058],[17550,23977],[17551,23874],[17552,23874],[17553,23874],[17554,23874],[17555,23874],[17556,23874],[17557,23874],[17558,23874],[17559,23979],[17560,24059],[17561,24053],[17562,24055],[17563,24056],[17564,24052],[17565,24057],[17566,23978],[17567,24058],[17568,23977],[17569,23874],[17570,23874],[17571,23874],[17572,23874],[17573,23874],[17574,23874],[17575,23874],[17576,23874],[17577,23979],[17578,24059],[17579,24053],[17580,24055],[17581,24056],[17582,24052],[17583,24057],[17584,23978],[17585,24058],[17586,23977],[17587,23874],[17588,23874],[17589,23874],[17590,23874],[17591,23874],[17592,23874],[17593,23874],[17594,23874],[17595,23977],[17596,23977],[17597,24055],[17598,24057],[17599,23978],[17600,24058],[17601,23874],[17602,23874],[17603,23979],[17604,24059],[17605,24053],[17606,24055],[17607,24056],[17608,24052],[17609,24057],[17610,23978],[17611,24058],[17612,23977],[17613,23874],[17614,23874],[17615,23874],[17616,23874],[17617,23874],[17618,23874],[17619,23874],[17620,23874],[17621,23977],[17622,23979],[17623,24059],[17624,24053],[17625,24055],[17626,24056],[17627,24052],[17628,24057],[17629,23978],[17630,24058],[17631,23977],[17632,23874],[17633,23874],[17634,23874],[17635,23874],[17636,23874],[17637,23874],[17638,23874],[17639,23874],[17640,23979],[17641,24059],[17642,24053],[17643,24055],[17644,24056],[17645,24052],[17646,24057],[17647,23978],[17648,24058],[17649,23977],[17650,23874],[17651,23874],[17652,23874],[17653,23874],[17654,23874],[17655,23874],[17656,23874],[17657,23874],[17658,23979],[17659,24059],[17660,24053],[17661,24055],[17662,24056],[17663,24052],[17664,24057],[17665,23978],[17666,24058],[17667,23977],[17668,23874],[17669,23874],[17670,23874],[17671,23874],[17672,23874],[17673,23874],[17674,23874],[17675,23874],[17676,24055],[17677,24056],[17678,24052],[17679,24057],[17680,23978],[17681,24058],[17682,23977],[17683,23874],[17684,23874],[17685,23874],[17686,23874],[17687,23874],[17688,23874],[17689,23874],[17690,23874],[17691,23979],[17692,24059],[17693,24053],[17694,24055],[17695,24056],[17696,24052],[17697,24057],[17698,23978],[17699,24058],[17700,23977],[17701,23874],[17702,23874],[17703,23874],[17704,23874],[17705,23874],[17706,23874],[17707,23874],[17708,23874],[17709,23979],[17710,24059],[17711,24053],[17712,24055],[17713,24056],[17714,24052],[17715,24057],[17716,23978],[17717,24058],[17718,23977],[17719,23874],[17720,23874],[17721,23874],[17722,23874],[17723,23874],[17724,23874],[17725,23874],[17726,23874],[17727,23979],[17728,24059],[17729,24053],[17730,24055],[17731,24056],[17732,24052],[17733,24057],[17734,23978],[17735,24058],[17736,23977],[17737,23874],[17738,23874],[17739,23874],[17740,23874],[17741,23874],[17742,23874],[17743,23874],[17744,23874],[17745,23979],[17746,24059],[17747,24053],[17748,24055],[17749,24056],[17750,24052],[17751,24057],[17752,23978],[17753,24058],[17754,23977],[17755,23874],[17756,23874],[17757,23874],[17758,23874],[17759,23874],[17760,23874],[17761,23874],[17762,23874],[17763,23979],[17764,24059],[17765,24053],[17766,24055],[17767,24056],[17768,24052],[17769,24057],[17770,23978],[17771,24058],[17772,23977],[17773,23874],[17774,23874],[17775,23874],[17776,23874],[17777,23874],[17778,23874],[17779,23874],[17780,23874],[17781,23977],[17782,24053],[17783,23977],[17784,23977],[17785,23977],[17786,23977],[17787,23977],[17788,23977],[17789,23977],[17790,23979],[17791,24059],[17792,24053],[17793,23977],[17794,23874],[17795,24053],[17796,24057],[17797,23977],[17798,23978],[17799,24058],[17800,23874],[17801,23874],[17802,23977],[17803,23977],[17804,24055],[17805,23977],[17806,23874],[17807,24055],[17808,24057],[17809,23977],[17810,24057],[17811,23874],[17812,23874],[17813,23979],[17814,24053],[17815,23977],[17816,23979],[17817,24055],[17818,24056],[17819,24052],[17820,24057],[17821,23978],[17822,24058],[17823,23977],[17824,23874],[17825,23874],[17826,23874],[17827,23874],[17828,23874],[17829,23874],[17830,23874],[17831,23874],[17832,23979],[17833,24059],[17834,24053],[17835,24055],[17836,24056],[17837,24052],[17838,24057],[17839,23978],[17840,24058],[17841,23977],[17842,23874],[17843,23874],[17844,23874],[17845,23874],[17846,23874],[17847,23874],[17848,23874],[17849,23874],[17850,23979],[17851,24059],[17852,24053],[17853,24055],[17854,24056],[17855,24052],[17856,24057],[17857,23978],[17858,24058],[17859,23977],[17860,23874],[17861,23874],[17862,23874],[17863,23874],[17864,23874],[17865,23874],[17866,23874],[17867,23874],[17868,23979],[17869,24059],[17870,24053],[17871,24055],[17872,24056],[17873,24052],[17874,24057],[17875,23978],[17876,24058],[17877,23977],[17878,23874],[17879,23874],[17880,23874],[17881,23874],[17882,23874],[17883,23874],[17884,23874],[17885,23874],[17886,23979],[17887,24059],[17888,24053],[17889,24055],[17890,24056],[17891,24052],[17892,24057],[17893,23978],[17894,24058],[17895,23977],[17896,23874],[17897,23874],[17898,23874],[17899,23874],[17900,23874],[17901,23874],[17902,23874],[17903,23874],[17904,23979],[17905,24059],[17906,24053],[17907,24055],[17908,24056],[17909,24052],[17910,24057],[17911,23978],[17912,24058],[17913,23977],[17914,23874],[17915,23874],[17916,23874],[17917,23874],[17918,23874],[17919,23874],[17920,23874],[17921,23874],[17922,23979],[17923,24059],[17924,24053],[17925,24055],[17926,24056],[17927,24052],[17928,24057],[17929,23978],[17930,24058],[17931,23977],[17932,23874],[17933,23874],[17934,23874],[17935,23874],[17936,23874],[17937,23874],[17938,23874],[17939,23874],[17940,23979],[17941,24059],[17942,24053],[17943,24055],[17944,24056],[17945,24052],[17946,24057],[17947,23978],[17948,24058],[17949,23977],[17950,23874],[17951,23874],[17952,23874],[17953,23874],[17954,23874],[17955,23874],[17956,23874],[17957,23874],[17958,23979],[17959,24059],[17960,24053],[17961,24055],[17962,24056],[17963,24052],[17964,24057],[17965,23978],[17966,24058],[17967,23977],[17968,23874],[17969,23874],[17970,23874],[17971,23874],[17972,23874],[17973,23874],[17974,23874],[17975,23874],[17976,23979],[17977,24059],[17978,24053],[17979,24055],[17980,24056],[17981,24052],[17982,24057],[17983,23978],[17984,24058],[17985,23977],[17986,23874],[17987,23874],[17988,23874],[17989,23874],[17990,23874],[17991,23874],[17992,23874],[17993,23874],[17994,23874],[17995,23977],[18009,23977],[18010,23977],[18011,23977],[18012,23977],[18013,23977],[18014,23977],[18015,23977],[18016,23977],[18017,23977],[18018,23977],[18019,23977],[18020,23977],[18021,23977],[18022,23977],[18023,23977],[18024,23977],[18025,23977],[18026,23977],[18027,23977],[18028,23977],[18029,23977],[18030,23977],[18031,23977],[18032,23977],[18033,23977],[18034,23977],[18035,23977],[18036,23977],[18037,23977],[18038,23977],[18039,23977],[18040,23977],[18041,23977],[18042,23977],[18043,23977],[18044,23977],[18045,23977],[18046,23977],[18047,23977],[18048,23977],[18049,23977],[18050,23977],[18051,23977],[18052,23977],[18053,23977],[18054,23977],[18055,23977],[18056,23977],[18057,23977],[18058,23977],[18059,23977],[18060,23977],[18061,23977],[18062,23977],[18063,23977],[18064,23977],[18065,23977],[18066,23977],[18067,23977],[18068,23977],[18069,23977],[18070,23977],[18071,23977],[18072,23977],[18073,23977],[18074,23977],[18075,23977],[18076,23977],[18077,23977],[18078,23977],[18079,23977],[18080,23977],[18081,23977],[18082,23977],[18083,23977],[18084,23977],[18085,23977],[18086,23977],[18087,23977],[18088,23977],[18089,23977],[18090,23977],[18091,23977],[18092,23977],[18093,23977],[18094,23977],[18095,23977],[18096,23977],[18097,23977],[18098,23977],[18099,23977],[18100,23977],[18101,23977],[18102,23977],[18107,23868],[18108,23868],[18109,23868],[18110,23868],[18111,23868],[18112,23868],[18113,23868],[18114,23868],[18115,23868],[18116,23868],[18117,23868],[18118,23868],[18119,23868],[18120,23868],[18121,23868],[18122,23868],[18123,23868],[18124,23868],[18125,23868],[18126,23868],[18127,23868],[18128,23868],[18129,23868],[18130,23868],[18131,23868],[18132,23868],[18133,23868],[18134,23868],[18135,23868],[18136,23868],[18137,23868],[18138,23868],[18139,23868],[18140,23868],[18141,23868],[18142,23868],[18143,23868],[18144,23868],[18145,23868],[18146,23868],[18147,23868],[18148,23868],[18149,23868],[18150,23868],[18151,23868],[18152,23868],[18153,23868],[18154,23868],[18155,23868],[18156,23868],[18157,23868],[18158,23868],[18159,23868],[18160,23868],[18161,23868],[18162,23868],[18163,23868],[18164,23868],[18165,23868],[18166,23868],[18167,23868],[18168,23868],[18169,23868],[18170,23868],[18171,23868],[18172,23868],[18173,23868],[18174,23868],[18175,23868],[18176,23868],[18177,23868],[18178,23868],[18179,23868],[18180,23868],[18181,23868],[18182,23868],[18183,23868],[18184,23868],[18185,23868],[18186,23868],[18187,23868],[18188,23868],[18189,23868],[18190,23868],[18191,23868],[18192,23868],[18193,23868],[18194,23868],[18195,23868],[18196,23868],[18197,23868],[18198,23868],[18199,23868],[18200,23868],[18201,23868],[18202,23868],[18203,23868],[18204,23868],[18205,23868],[18206,23868],[18207,23868],[18208,23868],[18209,23868],[18210,23868],[18211,23868],[18212,23868],[18213,23868],[18214,23868],[18215,23868],[18216,23868],[18217,23868],[18218,23868],[18219,23868],[18220,23868],[18221,23868],[18222,23868],[18223,23868],[18224,23868],[18225,23868],[18226,23868],[18227,23868],[18228,23868],[18229,23868],[18230,23868],[18231,23868],[18232,23868],[18233,23868],[18234,23868],[18235,23868],[18236,23868],[18237,23868],[18238,23868],[18239,23868],[18240,23868],[18241,23868],[18242,23868],[18243,23868],[18244,23868],[18245,23868],[18246,23868],[18247,23868],[18248,23868],[18249,23868],[18250,23868],[18251,23868],[18252,23868],[18253,23868],[18254,23868],[18255,23868],[18256,23868],[18257,23868],[18258,23868],[18259,23868],[18260,23868],[18261,23868],[18262,23868],[18263,23868],[18264,23868],[18265,23868],[18266,23868],[18267,23868],[18268,23868],[18269,23868],[18270,23868],[18271,23868],[18272,23868],[18273,23868],[18274,23868],[18275,23868],[18276,23868],[18277,23868],[18278,23868],[18279,23868],[18280,23868],[18281,23868],[18282,23868],[18283,23868],[18284,23868],[18285,23868],[18286,23868],[18287,23868],[18288,23868],[18289,23868],[18290,23868],[18291,23868],[18292,23868],[18293,23868],[18294,23868],[18295,23868],[18296,23868],[18297,23868],[18298,23868],[18299,23868],[18300,23868],[18301,23868],[18302,23868],[18303,23868],[18304,23868],[18309,23949],[18310,23871],[18311,23871],[18312,23871],[18313,23871],[18314,23871],[18315,23871],[18316,23871],[18317,23871],[18318,23871],[18319,23871],[18320,23871],[18321,23871],[18322,23871],[18323,23871],[18324,23871],[18325,23871],[18326,23871],[18327,23871],[18328,23871],[18329,23871],[18330,23871],[18331,23871],[18332,23871],[18333,23871],[18334,23871],[18335,23871],[18336,23871],[18337,23871],[18338,23871],[18339,23871],[18340,23871],[18341,23871],[18342,23871],[18343,23871],[18344,23871],[18345,23871],[18346,23871],[18347,23871],[18348,23871],[18349,23871],[18350,23871],[18351,23871],[18352,23871],[18353,23871],[18354,23871],[18355,23871],[18356,23871],[18357,23871],[18358,23871],[18359,23871],[18360,23871],[18361,23871],[18362,23871],[18363,23871],[18364,23871],[18365,23871],[18366,23877],[18367,23877],[18368,23877],[18369,23877],[18370,23877],[18371,23877],[18372,23877],[18373,23877],[18374,23877],[18375,23877],[18376,23877],[18377,23877],[18378,23877],[18379,23877],[18380,23877],[18381,23877],[18382,23877],[18383,23877],[18384,23877],[18385,23877],[18386,23877],[18387,23877],[18388,23877],[18389,23877],[18390,23877],[18391,23877],[18392,23877],[18393,23877],[18394,23877],[18395,23877],[18396,23877],[18397,23877],[18398,23877],[18399,23877],[18400,23877],[18401,23877],[18402,23877],[18403,23877],[18404,23877],[18405,23877],[18406,23877],[18407,23877],[18408,23877],[18409,23877],[18410,23877],[18411,23877],[18412,23877],[18413,23877],[18414,23877],[18415,23877],[18416,23877],[18417,23877],[18418,23877],[18419,23877],[18420,23877],[18421,23877],[18422,23877],[18423,23877],[18424,23877],[18425,23877],[18426,23877],[18427,23877],[18428,23877],[18429,23877],[18430,23877],[18431,23877],[18432,23877],[18433,23877],[18434,23877],[18435,23877],[18436,23877],[18437,23877],[18438,23877],[18439,23877],[18440,23877],[18441,23877],[18442,23877],[18443,23877],[18444,23877],[18445,23877],[18446,23877],[18447,23877],[18448,23877],[18449,23877],[18450,23877],[18451,23877],[18452,23877],[18453,23877],[18454,23877],[18455,23877],[18456,23877],[18457,23877],[18458,23877],[18459,23877],[18460,23877],[18461,23877],[18462,23877],[18463,23877],[18464,23877],[18465,23877],[18466,23877],[18467,23877],[18468,23877],[18469,23877],[18470,23877],[18471,23877],[18472,23877],[18473,23877],[18474,23877],[18475,23877],[18476,23877],[18477,23877],[18478,23877],[18479,23877],[18480,23877],[18481,23877],[18482,23877],[18483,23877],[18484,23877],[18485,23877],[18486,23877],[18487,23877],[18488,23877],[18489,23877],[18490,23877],[18491,23877],[18492,23877],[18493,23877],[18494,23877],[18495,23877],[18496,23877],[18497,23877],[18498,23877],[18499,23877],[18500,23877],[18501,23877],[18502,23877],[18503,23877],[18504,23877],[18505,23877],[18506,23877],[18507,23877],[18508,23877],[18509,23877],[18510,23877],[18511,23877],[18512,23877],[18513,23877],[18514,23877],[18515,23877],[18516,23877],[18517,23877],[18518,23877],[18519,23877],[18520,23877],[18521,23877],[18522,23877],[18523,23877],[18524,23877],[18525,23877],[18526,23877],[18527,23877],[18528,23877],[18529,23877],[18530,23877],[18531,23877],[18532,23877],[18533,23877],[18534,23877],[18535,23877],[18536,23877],[18537,23877],[18538,23877],[18539,23877],[18540,23877],[18541,23877],[18542,23877],[18543,23877],[18544,23877],[18545,23877],[18546,23877],[18547,23877],[18548,23877],[18549,23877],[18550,23877],[18551,23877],[18552,23877],[18553,23877],[18554,23877],[18555,23877],[18556,23877],[18557,23877],[18558,23877],[18559,23877],[18560,23877],[18561,23877],[18562,23877],[18563,23877],[18564,23877],[18565,23877],[18566,23877],[18567,23877],[18568,23877],[18569,23877],[18570,23877],[18571,23877],[18572,23877],[18573,23877],[18574,23877],[18575,23877],[18576,23877],[18577,23877],[18578,23877],[18579,23877],[18580,23877],[18581,23877],[18582,23877],[18583,23877],[18584,23877],[18585,23877],[18586,23877],[18587,23877],[18588,23877],[18589,23877],[18590,23877],[18591,23877],[18592,23877],[18593,23877],[18594,23877],[18595,23877],[18596,23877],[18597,23877],[18598,23877],[18599,23877],[18600,23877],[18601,23877],[18602,23877],[18603,23877],[18604,23877],[18605,23877],[18606,23867],[18607,23867],[18608,23867],[18609,23867],[18610,23867],[18611,23867],[18612,23867],[18613,23867],[18614,23867],[18615,23867],[18616,23867],[18617,23867],[18618,23867],[18619,23867],[18620,23867],[18621,23867],[18622,23867],[18623,23867],[18624,23867],[18625,23867],[18626,23867],[18627,23867],[18628,23867],[18629,23867],[18630,23867],[18631,23867],[18632,23867],[18633,23867],[18634,23867],[18635,23867],[18636,23867],[18637,23867],[18638,23867],[18639,23867],[18640,23867],[18641,23867],[18642,23867],[18643,23867],[18644,23867],[18645,23867],[18646,23867],[18647,23867],[18648,23867],[18649,23867],[18650,23867],[18651,23867],[18652,23867],[18653,23867],[18654,23867],[18655,23867],[18656,23867],[18657,23867],[18658,23867],[18659,23867],[18660,23867],[18661,23867],[18662,23867],[18663,23867],[18664,23867],[18665,23867],[18666,23867],[18667,23867],[18668,23867],[18669,23867],[18670,23867],[18671,23867],[18672,23867],[18673,23867],[18674,23867],[18675,23867],[18676,23867],[18677,23867],[18678,23867],[18679,23867],[18680,23867],[18681,23867],[18682,23867],[18683,23867],[18684,23867],[18685,23867],[18686,23867],[18687,23867],[18688,23867],[18689,23867],[18690,23867],[18691,23867],[18692,23867],[18693,23867],[18694,23867],[18695,23867],[18696,23867],[18697,23867],[18698,23867],[18699,23867],[18700,23867],[18701,23867],[18702,23867],[18703,23867],[18704,23867],[18705,23867],[18706,23867],[18709,23869],[18710,23869],[18711,23869],[18712,23869],[18713,23869],[18714,23869],[18715,23869],[18716,23869],[18717,23869],[18718,23869],[18719,23869],[18720,23869],[18721,23869],[18722,23869],[18723,23869],[18724,23869],[18725,23869],[18726,23869],[18727,23869],[18728,23869],[18729,23869],[18730,23869],[18731,23869],[18732,23869],[18733,23869],[18734,23869],[18735,23869],[18736,23869],[18737,23869],[18738,23869],[18739,23869],[18740,23869],[18741,23869],[18742,23869],[18743,23869],[18744,23869],[18745,23869],[18746,23869],[18747,23869],[18748,23869],[18749,23869],[18750,23869],[18751,23869],[18752,23869],[18753,23869],[18754,23869],[18755,23869],[18756,23869],[18757,23869],[18758,23869],[18759,23869],[18760,23869],[18761,23869],[18762,23869],[18763,23869],[18764,23869],[18765,23869],[18766,23869],[18767,23869],[18768,23869],[18769,23869],[18770,23869],[18771,23869],[18772,23869],[18773,23869],[18774,23869],[18775,23869],[18776,23869],[18777,23869],[18778,23869],[18779,23869],[18780,23869],[18781,23869],[18782,23869],[18783,23869],[18784,23869],[18785,23869],[18786,23869],[18787,23869],[18788,23869],[18789,23869],[18790,23869],[18791,23869],[18792,23869],[18793,23869],[18794,23869],[18795,23869],[18796,23869],[18797,23869],[18798,23869],[18799,23869],[18800,23869],[18801,23869],[18802,23869],[18803,23869],[18804,23869],[18805,23869],[18806,23869],[18807,23869],[18808,23869],[18809,23923],[18810,23872],[18811,23872],[18812,23872],[18813,23872],[18814,23872],[18815,23872],[18816,23872],[18817,23923],[18818,23872],[18819,23872],[18820,23872],[18821,23872],[18822,23872],[18823,23923],[18824,23923],[18825,23872],[18826,23872],[18827,23872],[18828,23872],[18829,23872],[18830,23872],[18831,23872],[18832,23872],[18833,23872],[18834,23872],[18835,23872],[18836,23923],[18837,23923],[18838,23872],[18839,23872],[18840,23872],[18841,23872],[18842,23872],[18843,23872],[18844,23872],[18845,23872],[18846,23872],[18847,23872],[18848,23923],[18849,23923],[18850,23872],[18851,23872],[18852,23872],[18853,23872],[18854,23872],[18855,23872],[18856,23872],[18857,23872],[18858,23872],[18859,23923],[18860,23923],[18861,23872],[18862,23872],[18863,23872],[18864,23872],[18865,23872],[18866,23872],[18867,23872],[18868,23872],[18869,23872],[18870,23923],[18871,23923],[18872,23872],[18873,23872],[18874,23872],[18875,23872],[18876,23872],[18877,23872],[18878,23872],[18879,23872],[18880,23872],[18881,23923],[18882,23923],[18883,23872],[18884,23872],[18885,23872],[18886,23872],[18887,23872],[18888,23872],[18889,23872],[18890,23872],[18891,23872],[18892,23872],[18893,23872],[18894,23872],[18895,23923],[18896,23923],[18897,23872],[18898,23872],[18899,23872],[18900,23872],[18901,23872],[18902,23872],[18903,23872],[18904,23872],[18905,23872],[18906,23923],[18907,23923],[18908,23872],[18909,23872],[18910,23872],[18911,23872],[18912,23872],[18913,23872],[18914,23872],[18915,23872],[18916,23872],[18917,23872],[18918,23923],[18919,23923],[18920,23872],[18921,23872],[18922,23872],[18923,23872],[18924,23872],[18925,23872],[18926,23872],[18927,23872],[18928,23872],[18929,23923],[18930,23923],[18931,23872],[18932,23872],[18933,23872],[18934,23872],[18935,23872],[18936,23872],[18937,23872],[18938,23872],[18939,23872],[18940,23923],[18941,23923],[18942,23872],[18943,23872],[18944,23872],[18945,23872],[18946,23872],[18947,23872],[18948,23872],[18949,23872],[18950,23872],[18951,23923],[18952,23923],[18953,23872],[18954,23872],[18955,23872],[18956,23872],[18957,23872],[18958,23872],[18959,23872],[18960,23872],[18961,23872],[18962,23872],[18963,23923],[18964,23923],[18965,23872],[18966,23872],[18967,23872],[18968,23872],[18969,23872],[18970,23872],[18971,23872],[18972,23872],[18973,23872],[18974,23872],[18975,23872],[18976,23872],[18977,23872],[18978,23923],[18979,23923],[18980,23872],[18981,23872],[18982,23872],[18983,23923],[18984,23923],[18985,23872],[18986,23872],[18987,23872],[18988,23872],[18989,23872],[18990,23872],[18991,23872],[18992,23872],[18993,23872],[18994,23923],[18995,23923],[18996,23872],[18997,23872],[18998,23872],[18999,23872],[19000,23872],[19001,23872],[19002,23872],[19003,23872],[19004,23872],[19005,23923],[19006,23923],[19007,23872],[19008,23872],[19009,23872],[19010,23872],[19011,23872],[19012,23872],[19013,23872],[19014,23872],[19015,23872],[19016,23923],[19017,23923],[19018,23872],[19019,23872],[19020,23872],[19021,23872],[19022,23872],[19023,23872],[19024,23872],[19025,23872],[19026,23872],[19027,23923],[19028,23923],[19029,23872],[19030,23872],[19031,23872],[19032,23872],[19033,23872],[19034,23872],[19035,23872],[19036,23872],[19037,23872],[19038,23872],[19039,23872],[19040,23872],[19041,23872],[19042,23872],[19043,23872],[19044,23872],[19045,23872],[19046,23923],[19047,23923],[19048,23872],[19049,23872],[19050,23872],[19051,23872],[19052,23872],[19053,23872],[19054,23872],[19055,23872],[19056,23872],[19057,23923],[19058,23923],[19059,23872],[19060,23872],[19061,23872],[19062,23872],[19063,23872],[19064,23872],[19065,23872],[19066,23872],[19067,23872],[19068,23872],[19069,23923],[19070,23923],[19071,23872],[19072,23872],[19073,23872],[19074,23872],[19075,23872],[19076,23872],[19077,23872],[19078,23872],[19079,23872],[19080,23923],[19081,23923],[19082,23872],[19083,23872],[19084,23872],[19085,23872],[19086,23872],[19087,23872],[19088,23872],[19089,23872],[19090,23872],[19091,23872],[19092,23872],[19093,23872],[19094,23872],[19095,23923],[19096,23923],[19097,23872],[19098,23872],[19099,23872],[19100,23872],[19101,23872],[19102,23872],[19103,23872],[19104,23872],[19105,23872],[19106,23923],[19107,23923],[19108,23872],[19109,23872],[19110,23872],[19111,23872],[19112,23872],[19113,23872],[19114,23872],[19115,23872],[19116,23872],[19117,23923],[19118,23923],[19119,23872],[19120,23872],[19121,23872],[19122,23872],[19123,23872],[19124,23872],[19125,23872],[19126,23872],[19127,23872],[19128,23923],[19129,23923],[19130,23872],[19131,23872],[19132,23872],[19133,23872],[19134,23872],[19135,23872],[19136,23872],[19137,23872],[19138,23872],[19139,23923],[19140,23923],[19141,23872],[19142,23872],[19143,23872],[19144,23872],[19145,23872],[19146,23872],[19147,23872],[19148,23872],[19149,23872],[19150,23923],[19151,23923],[19152,23872],[19153,23872],[19154,23872],[19155,23872],[19156,23872],[19157,23872],[19158,23872],[19159,23872],[19160,23872],[19161,23923],[19162,23923],[19163,23872],[19164,23872],[19165,23872],[19166,23872],[19167,23872],[19168,23872],[19169,23872],[19170,23872],[19171,23872],[19172,23923],[19173,23923],[19174,23872],[19175,23872],[19176,23872],[19177,23872],[19178,23872],[19179,23872],[19180,23872],[19181,23872],[19182,23872],[19183,23923],[19184,23923],[19185,23872],[19186,23872],[19187,23872],[19188,23872],[19189,23872],[19190,23872],[19191,23872],[19192,23872],[19193,23872],[19194,23923],[19195,23923],[19196,23872],[19197,23872],[19198,23872],[19199,23872],[19200,23872],[19201,23872],[19202,23872],[19203,23872],[19204,23872],[19205,23872],[19206,23872],[19207,23872],[19208,23923],[19209,23923],[19210,23872],[19211,23872],[19212,23872],[19213,23872],[19214,23872],[19215,23872],[19216,23872],[19217,23872],[19218,23872],[19219,23872],[19220,23872],[19221,23923],[19222,23923],[19223,23872],[19224,23872],[19225,23872],[19226,23872],[19227,23872],[19228,23872],[19229,23872],[19230,23872],[19231,23872],[19232,23923],[19233,23923],[19234,23872],[19235,23872],[19236,23872],[19237,23872],[19238,23872],[19239,23872],[19240,23872],[19241,23872],[19242,23872],[19243,23923],[19244,23923],[19245,23872],[19246,23872],[19247,23872],[19248,23872],[19249,23872],[19250,23872],[19251,23872],[19252,23872],[19253,23872],[19254,23923],[19255,23923],[19256,23872],[19257,23872],[19258,23872],[19259,23872],[19260,23872],[19261,23872],[19262,23872],[19263,23872],[19264,23872],[19265,23923],[19266,23923],[19267,23872],[19268,23872],[19269,23872],[19270,23872],[19271,23872],[19272,23872],[19273,23872],[19274,23872],[19275,23872],[19276,23923],[19277,23923],[19278,23872],[19279,23872],[19280,23872],[19281,23872],[19282,23872],[19283,23872],[19284,23872],[19285,23872],[19286,23872],[19287,23923],[19288,23923],[19289,23872],[19290,23872],[19291,23872],[19292,23872],[19293,23872],[19294,23872],[19295,23872],[19296,23872],[19297,23872],[19298,23923],[19299,23923],[19300,23872],[19301,23872],[19302,23872],[19303,23872],[19304,23872],[19305,23872],[19306,23872],[19307,23872],[19308,23872],[19309,23872],[19310,23923],[19311,23923],[19312,23872],[19313,23872],[19314,23872],[19315,23872],[19316,23872],[19317,23872],[19318,23872],[19319,23872],[19320,23872],[19321,23872],[19322,23872],[19323,23923],[19324,23923],[19325,23872],[19326,23872],[19327,23872],[19328,23872],[19329,23872],[19330,23872],[19331,23872],[19332,23872],[19333,23872],[19334,23872],[19335,23923],[19336,23923],[19337,23923],[19338,23923],[19351,23948],[19352,23968],[19353,23967],[19354,23967],[19355,23966],[19356,23967],[19357,23968],[19358,24062],[19359,24062],[19360,23968],[19361,24062],[19362,23968],[19363,24062],[19364,23968],[19365,24062],[19366,23968],[19367,24062],[19368,23968],[19369,24062],[19370,23968],[19371,24062],[19372,23968],[19373,24062],[19374,23968],[19375,24062],[19376,24062],[19377,24062],[19378,24062],[19379,23968],[19380,23968],[19381,24062],[19382,23968],[19383,24062],[19384,23968],[19385,24062],[19386,23968],[19387,23967],[19388,24062],[19389,23968],[19390,24062],[19391,23968],[19392,24062],[19393,23968],[19394,24062],[19395,23968],[19396,24062],[19397,23968],[19398,23968],[19399,23968],[19400,23968],[19401,24062],[19402,23968],[19403,24062],[19404,23968],[19405,24062],[19406,23968],[19407,24062],[19408,23968],[19409,24062],[19410,24062],[19411,23968],[19412,24062],[19413,23968],[19414,24062],[19415,23968],[19416,24062],[19417,23968],[19418,24062],[19419,23968],[19420,24062],[19421,23967],[19422,23968],[19423,24062],[19424,24062],[19425,24062],[19426,23968],[19427,24062],[19428,23968],[19429,24062],[19430,23968],[19431,24062],[19432,24062],[19433,23968],[19434,24062],[19435,23968],[19436,24062],[19437,23968],[19438,24062],[19439,23968],[19440,24062],[19441,23968],[19442,24062],[19443,23968],[19444,24062],[19445,23968],[19446,24062],[19447,23968],[19448,23967],[19449,24062],[19450,23968],[19451,24062],[19452,23876],[19453,23876],[19454,23876],[19455,23876],[19456,23876],[19457,23876],[19458,23876],[19459,23876],[19460,23876],[19461,23876],[19462,23876],[19463,23876],[19464,23876],[19465,23876],[19466,23876],[19467,23876],[19468,23876],[19469,23876],[19470,23876],[19471,23876],[19472,23876],[19473,23876],[19474,23876],[19475,23876],[19476,23876],[19477,23876],[19478,23876],[19479,23876],[19480,23876],[19481,23876],[19482,23876],[19483,23876],[19484,23876],[19485,23876],[19486,23876],[19487,23876],[19488,23876],[19489,23876],[19490,23876],[19491,23876],[19492,23876],[19493,23876],[19494,23876],[19495,23876],[19496,23876],[19497,23876],[19498,23876],[19499,23876],[19500,23876],[19501,23876],[19502,23876],[19503,23876],[19504,23876],[19505,23876],[19506,23876],[19507,23876],[19508,23876],[19509,23876],[19510,23876],[19511,23876],[19512,23876],[19513,23876],[19514,23876],[19515,23876],[19516,23876],[19517,23876],[19518,23876],[19519,23876],[19520,23876],[19521,23876],[19522,23876],[19523,23876],[19524,23876],[19525,23876],[19526,23876],[19527,23876],[19528,23876],[19529,23876],[19530,23876],[19531,23876],[19532,23876],[19533,23876],[19534,23876],[19535,23876],[19536,23876],[19537,23876],[19538,23876],[19539,23876],[19540,23876],[19541,23876],[19542,23876],[19543,23876],[19544,23876],[19545,23876],[19546,23876],[19547,23876],[19548,23876],[19549,23876],[19550,23876],[19551,23876],[19552,23876],[19553,23876],[19554,23876],[19555,23876],[19556,23876],[19557,23876],[19558,23876],[19559,23876],[19560,23876],[19561,23876],[19562,23876],[19563,23876],[19564,23876],[19565,23876],[19566,23876],[19567,23876],[19568,23876],[19569,23876],[19570,23876],[19571,23876],[19572,23876],[19573,23876],[19574,23876],[19575,23876],[19576,23876],[19577,23876],[19578,23876],[19579,23876],[19580,23876],[19581,23876],[19582,23876],[19583,23876],[19584,23876],[19585,23876],[19586,23876],[19587,23876],[19588,23876],[19589,23876],[19590,23876],[19591,23876],[19592,23876],[19593,23876],[19594,23876],[19595,23876],[19596,23876],[19597,23876],[19598,23876],[19599,23876],[19600,23876],[19601,23876],[19602,23876],[19603,23876],[19604,23876],[19605,23876],[19606,23876],[19607,23876],[19608,23876],[19609,23876],[19610,23876],[19611,23876],[19612,23876],[19613,23876],[19614,23876],[19615,23876],[19616,23876],[19617,23876],[19618,23876],[19619,23876],[19620,23876],[19621,23876],[19622,23876],[19623,23876],[19624,23876],[19625,23876],[19626,23876],[19627,23876],[19628,23876],[19629,23876],[19630,23876],[19631,23876],[19632,23876],[19633,23876],[19634,23876],[19635,23876],[19636,23876],[19637,23876],[19638,23876],[19639,23876],[19640,23876],[19641,23876],[19642,23876],[19643,23876],[19644,23876],[19645,23876],[19646,23876],[19647,23876],[19648,23876],[19649,23876],[19650,23876],[19651,23876],[19652,23876],[19653,23876],[19654,23876],[19655,23876],[19656,23876],[19657,23876],[19658,23876],[19659,23876],[19660,23876],[19661,23876],[19662,23876],[19663,23876],[19664,23876],[19665,23876],[19666,23876],[19667,23876],[19668,23876],[19669,23876],[19670,23876],[19671,23876],[19672,23876],[19673,23876],[19674,23876],[19675,23876],[19676,23876],[19677,23876],[19678,23876],[19679,23876],[19680,23876],[19681,23876],[19682,23876],[19683,23876],[19684,23876],[19685,23876],[19686,23876],[19690,23870],[19691,23870],[19692,23914],[19693,23870],[19694,23870],[19695,23870],[19696,23870],[19697,23870],[19698,23870],[19699,23870],[19700,23870],[19701,23870],[19702,23870],[19703,23870],[19704,23870],[19705,23870],[19706,23870],[19707,23870],[19708,23870],[19709,23870],[19710,23870],[19711,23870],[19712,23870],[19713,23870],[19714,23870],[19715,23870],[19716,23870],[19717,23870],[19718,23870],[19719,23870],[19720,23870],[19721,23870],[19722,23870],[19723,23870],[19724,23870],[19725,23870],[19726,23870],[19727,23870],[19728,23870],[19729,23870],[19730,23870],[19731,23870],[19732,23870],[19733,23870],[19734,23870],[19735,23870],[19736,23870],[19737,23870],[19738,23870],[19739,23870],[19740,23870],[19741,23870],[19742,23870],[19743,23870],[19744,23870],[19745,23870],[19746,23870],[19747,23870],[19748,23870],[19749,23870],[19750,23870],[19751,23870],[19752,23870],[19753,23870],[19754,23870],[19755,23870],[19756,23870],[19757,23870],[19758,23870],[19759,23870],[19760,23870],[19761,23870],[19762,23870],[19763,23870],[19764,23870],[19765,23870],[19766,23870],[19767,23870],[19768,23870],[19769,23870],[19770,23870],[19771,23870],[19772,23870],[19773,23870],[19774,23870],[19775,23870],[19776,23870],[19777,23870],[19778,23870],[19779,23870],[19780,23870],[19781,23870],[19782,23870],[19783,23870],[19784,23870],[19785,23870],[19786,23870],[19787,23870],[19788,23870],[19789,23885],[19790,23885],[19791,23885],[19793,23878],[19794,23878],[19795,23885],[19796,23885],[19797,23917],[19798,23917],[19799,23885],[19800,23917],[19801,23885],[19802,23885],[19804,23885],[19805,23980],[19806,23917],[19807,23885],[19808,23885],[19809,23878],[19810,23878],[19811,23878],[19812,24110],[19813,23885],[19814,23885],[19815,23885],[19816,23980],[19817,23878],[19818,23878],[19819,23980],[19820,23980],[19821,23980],[19822,23878],[19823,23878],[19824,23980],[19825,23878],[19826,23878],[19827,23980],[19828,23878],[19829,23878],[19830,23980],[19831,23878],[19832,23878],[19833,23878],[19834,23980],[19835,23878],[19836,23878],[19837,23980],[19838,23878],[19839,23878],[19840,23980],[19841,23878],[19842,23878],[19843,23980],[19844,23917],[19845,23980],[19846,23878],[19847,23878],[19848,23878],[19849,23980],[19850,23885],[19851,23878],[19852,23980],[19853,23980],[19854,23878],[19855,23878],[19856,23917],[19857,23878],[19858,23878],[19859,23878],[19860,23980],[19861,23878],[19862,23878],[19863,23980],[19864,23878],[19865,23878],[19866,23980],[19867,23878],[19868,23878],[19869,23980],[19870,23878],[19871,23878],[19872,23878],[19873,23980],[19874,23980],[19875,23878],[19876,23878],[19877,23878],[19878,23878],[19879,23878],[19880,23980],[19881,23885],[19882,23980],[19883,23878],[19884,23878],[19885,23980],[19886,23878],[19887,23878],[19888,23980],[19889,23980],[19890,23878],[19891,23878],[19892,23980],[19893,23885],[19894,23917],[19895,23980],[19896,23878],[19897,23878],[19898,23980],[19899,23878],[19900,23878],[19901,23980],[19902,23878],[19903,23878],[19904,23980],[19905,23878],[19906,23878],[19907,23878],[19908,23878],[19909,23980],[19910,23878],[19911,23878],[19912,23980],[19913,23878],[19914,23878],[19915,23980],[19916,23878],[19917,23878],[19918,23980],[19919,23878],[19920,23878],[19921,23885],[19922,23980],[19923,23878],[19924,23878],[19925,23878],[19926,23980],[19927,23980],[19928,23885],[19929,23885],[19930,23980],[19931,23917],[19932,23980],[19933,23980],[19934,23878],[19935,23878],[19936,23980],[19937,23885],[19938,23878],[19939,23878],[19940,23980],[19941,23980],[19942,23885],[19943,23980],[19944,23885],[19945,23878],[19946,23980],[19947,23878],[19948,23980],[19949,23885],[19950,23878],[19951,23980],[19952,23878],[19953,23878],[19954,23980],[19955,23878],[19956,23878],[19957,23980],[19958,23878],[19959,23878],[19960,23980],[19961,23878],[19962,23878],[19963,23980],[19964,23878],[19965,23878],[19966,23980],[19967,23878],[19968,23878],[19969,23980],[19970,23878],[19971,23878],[19972,23885],[19973,23980],[19974,23878],[19975,23878],[19976,23917],[19977,23980],[19978,23980],[19979,23878],[19980,23878],[19981,23980],[19982,23980],[19983,23980],[19984,23916],[19985,23873],[19986,23916],[19987,23873],[19988,23873],[19989,23873],[19990,23873],[19991,23916],[19992,23873],[19993,23873],[19994,23916],[19995,23916],[19996,23873],[19997,23873],[19998,23916],[19999,23873],[20000,23873],[20001,23916],[20002,23916],[20003,23916],[20004,23916],[20005,23916],[20006,23916],[20007,23916],[20008,23916],[20009,23873],[20010,23873],[20011,23916],[20012,23873],[20013,23916],[20014,23873],[20015,23873],[20016,23916],[20017,23916],[20018,23916],[20019,23916],[20020,23916],[20021,23916],[20022,23916],[20023,23873],[20024,23916],[20025,23916],[20026,23916],[20027,23916],[20028,23873],[20029,23916],[20030,23916],[20031,23916],[20032,23873],[20033,23916],[20034,23873],[20035,23916],[20036,23873],[20037,23916],[20038,23873],[20039,23873],[20040,23873],[20041,23873],[20042,23873],[20043,23873],[20044,23873],[20045,23873],[20046,23916],[20047,23916],[20048,23916],[20049,23873],[20050,23916],[20051,23916],[20052,23916],[20053,23916],[20054,23916],[20055,23873],[20056,23873],[20057,23873],[20058,23873],[20059,23873],[20060,23873],[20061,23916],[20062,23916],[20063,23916],[20064,23916],[20065,23916],[20066,23873],[20067,23873],[20068,23873],[20069,23873],[20070,23873],[20071,23873],[20072,23916],[20073,23916],[20074,23916],[20075,23916],[20076,23916],[20077,23873],[20078,23873],[20079,23873],[20080,23873],[20081,23873],[20082,23873],[20083,23916],[20084,23916],[20085,23916],[20086,23916],[20087,23916],[20088,23873],[20089,23873],[20090,23873],[20091,23873],[20092,23873],[20093,23873],[20094,23916],[20095,23916],[20096,23916],[20097,23916],[20098,23916],[20099,23873],[20100,23873],[20101,23873],[20102,23873],[20103,23873],[20104,23916],[20105,23873],[20106,23873],[20107,23873],[20108,23916],[20109,23916],[20110,23916],[20111,23916],[20112,23916],[20113,23873],[20114,23873],[20115,23873],[20116,23873],[20117,23873],[20118,23873],[20119,23916],[20120,23916],[20121,23916],[20122,23916],[20123,23916],[20124,23873],[20125,23873],[20126,23873],[20127,23873],[20128,23873],[20129,23873],[20130,23916],[20131,23916],[20132,23916],[20133,23916],[20134,23916],[20135,23873],[20136,23873],[20137,23873],[20138,23873],[20139,23873],[20140,23916],[20141,23916],[20142,23916],[20143,23916],[20144,23916],[20145,23873],[20146,23873],[20147,23873],[20148,23873],[20149,23916],[20150,23916],[20151,23916],[20152,23916],[20153,23916],[20154,23873],[20155,23873],[20156,23873],[20157,23873],[20158,23916],[20159,23916],[20160,23916],[20161,23916],[20162,23916],[20163,23873],[20164,23873],[20165,23873],[20166,23873],[20167,23873],[20168,23916],[20169,23916],[20170,23916],[20171,23916],[20172,23916],[20173,23873],[20174,23873],[20175,23873],[20176,23873],[20177,23873],[20178,23873],[20179,23873],[20180,23873],[20181,23873],[20182,23916],[20183,23916],[20184,23873],[20185,23916],[20186,23916],[20187,23916],[20188,23916],[20189,23916],[20190,23873],[20191,23873],[20192,23873],[20193,23873],[20194,23873],[20195,23873],[20196,23916],[20197,23916],[20198,23916],[20199,23916],[20200,23916],[20201,23873],[20202,23873],[20203,23873],[20204,23873],[20205,23873],[20206,23916],[20207,23873],[20208,23916],[20209,23916],[20210,23916],[20211,23916],[20212,23916],[20213,23873],[20214,23873],[20215,23873],[20216,23873],[20217,23873],[20218,23873],[20219,23916],[20220,23916],[20221,23916],[20222,23916],[20223,23916],[20224,23873],[20225,23873],[20226,23873],[20227,23873],[20228,23873],[20229,23916],[20230,23916],[20231,23916],[20232,23916],[20233,23916],[20234,23916],[20235,23873],[20236,23873],[20237,23873],[20238,23873],[20239,23916],[20240,23916],[20241,23916],[20242,23916],[20243,23916],[20244,23916],[20245,23873],[20246,23873],[20247,23873],[20248,23873],[20249,23873],[20250,23873],[20251,23873],[20252,23916],[20253,23916],[20254,23916],[20255,23916],[20256,23916],[20257,23873],[20258,23873],[20259,23873],[20260,23873],[20261,23873],[20262,23873],[20263,23873],[20264,23916],[20265,23916],[20266,23916],[20267,23916],[20268,23916],[20269,23873],[20270,23873],[20271,23873],[20272,23873],[20273,23873],[20274,23873],[20275,23916],[20276,23916],[20277,23916],[20278,23916],[20279,23916],[20280,23873],[20281,23873],[20282,23873],[20283,23873],[20284,23873],[20285,23873],[20286,23873],[20287,23916],[20288,23916],[20289,23916],[20290,23916],[20291,23916],[20292,23873],[20293,23873],[20294,23873],[20295,23873],[20296,23873],[20297,23873],[20298,23873],[20299,23916],[20300,23916],[20301,23916],[20302,23916],[20303,23916],[20304,23873],[20305,23873],[20306,23873],[20307,23873],[20308,23873],[20309,23873],[20310,23916],[20311,23916],[20312,23916],[20313,23916],[20314,23916],[20315,23873],[20316,23873],[20317,23873],[20318,23873],[20319,23873],[20320,23873],[20321,23916],[20322,23916],[20323,23916],[20324,23916],[20325,23916],[20326,23873],[20327,23873],[20328,23873],[20329,23873],[20330,23873],[20331,23873],[20332,23916],[20333,23916],[20334,23916],[20335,23916],[20336,23916],[20337,23873],[20338,23873],[20339,23873],[20340,23873],[20341,23873],[20342,23916],[20343,23916],[20344,23916],[20345,23916],[20346,23916],[20347,23873],[20348,23873],[20349,23873],[20350,23873],[20351,23873],[20352,23916],[20353,23916],[20354,23916],[20355,23916],[20356,23916],[20357,23873],[20358,23873],[20359,23873],[20360,23873],[20361,23873],[20362,23873],[20363,23916],[20364,23916],[20365,23916],[20366,23916],[20367,23916],[20368,23873],[20369,23873],[20370,23873],[20371,23873],[20372,23873],[20373,23873],[20374,23916],[20375,23916],[20376,23916],[20377,23916],[20378,23916],[20379,23873],[20380,23873],[20381,23873],[20382,23873],[20383,23873],[20384,23873],[20385,23916],[20386,23916],[20387,23916],[20388,23916],[20389,23916],[20390,23873],[20391,23873],[20392,23873],[20393,23873],[20394,23873],[20395,23873],[20396,23916],[20397,23916],[20398,23916],[20399,23916],[20400,23916],[20401,23873],[20402,23873],[20403,23873],[20404,23873],[20405,23873],[20406,23916],[20407,23873],[20408,23873],[20409,23873],[20410,23873],[20411,23873],[20412,23873],[20413,23873],[20414,23873],[20415,23873],[20416,23873],[20417,23916],[20418,23916],[20419,23873],[20420,23873],[20421,23873],[20422,23873],[20423,23873],[20424,23873],[20425,23873],[20426,23916],[20427,23873],[20428,23916],[20429,23916],[20430,23916],[20431,23916],[20432,23916],[20433,23873],[20434,23873],[20435,23873],[20436,23873],[20437,23873],[20438,23916],[20439,23916],[20440,23916],[20441,23916],[20442,23916],[20443,23873],[20444,23873],[20445,23873],[20446,23873],[20447,23873],[20448,23873],[20449,23916],[20450,23916],[20451,23916],[20452,23916],[20453,23916],[20454,23873],[20455,23873],[20456,23873],[20457,23873],[20458,23873],[20459,23873],[20460,23916],[20461,23916],[20462,23916],[20463,23916],[20464,23916],[20465,23873],[20466,23873],[20467,23873],[20468,23873],[20469,23873],[20470,23873],[20471,23916],[20472,23916],[20473,23916],[20474,23916],[20475,23916],[20476,23873],[20477,23873],[20478,23873],[20479,23873],[20480,23873],[20481,23873],[20482,23916],[20483,23916],[20484,23916],[20485,23916],[20486,23916],[20487,23873],[20488,23873],[20489,23873],[20490,23873],[20491,23873],[20492,23873],[20493,23916],[20494,23916],[20495,23916],[20496,23916],[20497,23916],[20498,23873],[20499,23873],[20500,23873],[20501,23873],[20502,23873],[20503,23873],[20504,23916],[20505,23916],[20506,23916],[20507,23916],[20508,23916],[20509,23873],[20510,23873],[20511,23873],[20512,23873],[20513,23873],[20514,23873],[20515,23873],[20516,23916],[20517,23916],[20518,23916],[20519,23916],[20520,23916],[20521,23873],[20522,23873],[20523,23873],[20524,23873],[20525,23873],[20526,23873],[20527,23873],[20528,23916],[20529,23916],[20530,23916],[20531,23916],[20532,23916],[20533,23873],[20534,23873],[20535,23873],[20536,23873],[20537,23873],[20538,23916],[20539,23873],[20542,23880],[20543,23880],[20544,23880],[20545,24068],[20546,23880],[20547,23880],[20548,23880],[20549,23880],[20550,23880],[20551,23880],[20552,23880],[20553,23880],[20554,23880],[20555,23880],[20556,23880],[20557,23880],[20558,23880],[20559,23880],[20560,23964],[20561,23964],[20562,24068],[20563,23880],[20564,23880],[20565,23880],[20566,23880],[20567,23880],[20568,23880],[20569,23964],[20570,24068],[20571,23880],[20572,23880],[20573,23880],[20574,23880],[20575,23880],[20576,23880],[20577,23964],[20578,24068],[20579,23880],[20580,23880],[20581,23880],[20582,23880],[20583,23880],[20584,23880],[20585,23964],[20586,24068],[20587,23880],[20588,23880],[20589,23880],[20590,23880],[20591,23880],[20592,23880],[20593,23964],[20594,24068],[20595,23880],[20596,23880],[20597,23880],[20598,23880],[20599,23880],[20600,23880],[20601,23880],[20602,23880],[20603,23964],[20604,24068],[20605,23880],[20606,23880],[20607,23880],[20608,23880],[20609,23880],[20610,23880],[20611,23964],[20612,24068],[20613,23880],[20614,23880],[20615,23880],[20616,23880],[20617,23880],[20618,23880],[20619,23964],[20620,24068],[20621,23880],[20622,23880],[20623,23880],[20624,23880],[20625,23880],[20626,23880],[20627,23964],[20628,24068],[20629,23880],[20630,23880],[20631,23880],[20632,23880],[20633,23880],[20634,23880],[20635,23964],[20636,24068],[20637,23880],[20638,23880],[20639,23880],[20640,23880],[20641,23880],[20642,23880],[20643,23964],[20644,24068],[20645,23880],[20646,23880],[20647,23880],[20648,23880],[20649,23880],[20650,23880],[20651,23880],[20652,23964],[20653,24068],[20654,23880],[20655,23880],[20656,23880],[20657,23880],[20658,23880],[20659,23880],[20660,23880],[20661,23880],[20662,23880],[20663,23880],[20664,24068],[20665,23880],[20666,23964],[20667,24068],[20668,23880],[20669,23880],[20670,23880],[20671,23880],[20672,23880],[20673,23880],[20674,23964],[20675,24068],[20676,23880],[20677,23880],[20678,23880],[20679,23880],[20680,23880],[20681,23880],[20682,23964],[20683,24068],[20684,23880],[20685,23880],[20686,23880],[20687,23880],[20688,23880],[20689,23880],[20690,23964],[20691,24068],[20692,23880],[20693,23880],[20694,23880],[20695,23880],[20696,23880],[20697,23880],[20698,24068],[20699,23880],[20700,23880],[20701,23880],[20702,24068],[20703,24068],[20704,24068],[20705,23880],[20706,23880],[20707,23880],[20708,23880],[20709,23880],[20710,23880],[20711,23964],[20712,23964],[20713,24068],[20714,23880],[20715,23880],[20716,23880],[20717,23880],[20718,23880],[20719,23880],[20720,23880],[20721,23880],[20722,23880],[20723,23880],[20724,23964],[20725,24068],[20726,23880],[20727,23880],[20728,23880],[20729,23880],[20730,23880],[20731,23880],[20732,23880],[20733,23880],[20734,23964],[20735,24068],[20736,23880],[20737,23880],[20738,23880],[20739,23880],[20740,23880],[20741,23880],[20742,23964],[20743,24068],[20744,23880],[20745,23880],[20746,23880],[20747,23880],[20748,23880],[20749,23880],[20750,23880],[20751,23880],[20752,23964],[20753,24068],[20754,23880],[20755,23880],[20756,23880],[20757,23880],[20758,23880],[20759,23880],[20760,23964],[20761,23964],[20762,23964],[20763,24068],[20764,23880],[20765,23880],[20766,23880],[20767,23880],[20768,23880],[20769,23880],[20770,23964],[20771,24068],[20772,23880],[20773,23880],[20774,23880],[20775,23880],[20776,23880],[20777,23880],[20778,23964],[20779,24068],[20780,23880],[20781,23880],[20782,23880],[20783,23880],[20784,23880],[20785,23880],[20786,23964],[20787,24068],[20788,23880],[20789,23880],[20790,23880],[20791,23880],[20792,23880],[20793,23880],[20794,23964],[20795,24068],[20796,23880],[20797,23880],[20798,23880],[20799,23880],[20800,23880],[20801,23880],[20802,23964],[20803,24068],[20804,23880],[20805,23880],[20806,23880],[20807,23880],[20808,23880],[20809,23880],[20810,23964],[20811,24068],[20812,23880],[20813,23880],[20814,23880],[20815,23880],[20816,23880],[20817,23880],[20818,23964],[20819,24068],[20820,23880],[20821,23880],[20822,23880],[20823,23880],[20824,23880],[20825,23880],[20826,23964],[20827,24068],[20828,23880],[20829,23880],[20830,23880],[20831,23880],[20832,23880],[20833,23880],[20834,23964],[20835,23880],[20836,23880],[20837,23964],[20838,23880],[20839,23880],[20840,23880],[20841,23880],[20842,23880],[20843,23880],[20844,23880],[20845,23880],[20846,23880],[20847,23964],[20848,23880],[20849,23880],[20850,23964],[20851,24068],[20852,23880],[20853,23880],[20854,23964],[20855,23964],[20856,23964],[20857,23964],[20858,23964],[20859,23880],[20860,23880],[20861,23880],[20862,24068],[20863,23880],[20864,23880],[20865,23880],[20866,23880],[20867,24068],[20868,23880],[20869,23964],[20870,24068],[20871,23880],[20872,23880],[20873,23880],[20874,23880],[20875,23880],[20876,23880],[20877,23964],[20878,23964],[20879,23964],[20880,24068],[20881,23880],[20882,23880],[20883,23880],[20884,23880],[20885,23880],[20886,23880],[20887,23964],[20888,24068],[20889,23880],[20890,23880],[20891,23880],[20892,23880],[20893,23880],[20894,23880],[20895,23964],[20896,24068],[20897,23880],[20898,23880],[20899,23880],[20900,23880],[20901,23880],[20902,23880],[20903,23964],[20904,24068],[20905,23880],[20906,23880],[20907,23880],[20908,23880],[20909,23880],[20910,23880],[20911,23964],[20912,24068],[20913,23880],[20914,23880],[20915,23880],[20916,23880],[20917,23880],[20918,23880],[20919,23964],[20920,24068],[20921,23880],[20922,23880],[20923,23880],[20924,23880],[20925,23880],[20926,23880],[20927,23964],[20928,24068],[20929,23880],[20930,23880],[20931,23880],[20932,23880],[20933,23880],[20934,23880],[20935,23880],[20936,23880],[20937,23880],[20938,23964],[20939,23964],[20940,24068],[20941,23880],[20942,23880],[20943,23880],[20944,23880],[20945,23880],[20946,23880],[20947,23880],[20948,23964],[20949,24068],[20950,23880],[20951,23880],[20952,23880],[20953,23880],[20954,23880],[20955,23880],[20957,24068],[20958,24068],[20959,24068],[20960,24068],[20961,24068],[20962,24068],[20963,24068],[20964,24068],[20965,24068],[20966,24068],[20967,24068],[20968,24068],[20969,24068],[20970,24068],[20971,24068],[20972,24068],[20973,24068],[20974,24068],[20975,24068],[20976,24068],[20977,24068],[20978,24068],[20979,24068],[20980,24068],[20981,24068],[20982,24068],[20983,24068],[20984,24068],[20985,24068],[20986,24068],[20987,24068],[20988,24068],[20989,24068],[20990,24068],[20991,24068],[20992,24068],[20993,24068],[20994,24068],[20995,24068],[20996,24068],[20997,24068],[20998,24068],[20999,24068],[21000,24068],[21001,24068],[21002,24068],[21003,24068],[21004,24068],[21007,23820],[21008,23820],[21009,23820],[21010,23820],[21011,23820],[21012,23820],[21013,23820],[21014,23820],[21015,23820],[21016,23820],[21017,23820],[21018,23820],[21019,23820],[21020,23820],[21021,23820],[21022,23820],[21023,23820],[21024,23820],[21025,23820],[21026,23820],[21027,23843],[21028,23820],[21029,23820],[21030,23820],[21031,23820],[21032,23820],[21033,23820],[21034,23820],[21035,23843],[21036,23820],[21037,23820],[21038,23843],[21039,23820],[21040,23820],[21041,23843],[21042,23843],[21043,23843],[21044,23820],[21045,23843],[21046,23843],[21047,23843],[21048,23843],[21049,23843],[21050,23843],[21051,23843],[21052,23843],[21053,23843],[21054,23843],[21055,23843],[21056,23843],[21057,23843],[21058,23843],[21059,23843],[21060,23843],[21061,23843],[21062,23843],[21063,23843],[21064,23843],[21065,23843],[21066,23843],[21067,23843],[21068,23843],[21069,23843],[21070,23843],[21071,23843],[21072,23843],[21073,23843],[21074,23843],[21075,23843],[21076,23843],[21077,23843],[21078,23843],[21079,23843],[21080,23843],[21081,23843],[21082,23843],[21083,23843],[21084,23843],[21085,23843],[21086,23843],[21087,23843],[21088,23843],[21089,23843],[21090,23843],[21091,23843],[21092,23843],[21093,23843],[21094,23843],[21095,23843],[21096,23843],[21097,23843],[21098,23843],[21099,23843],[21100,23843],[21101,23843],[21102,23843],[21103,23843],[21104,23843],[21105,23843],[21106,23843],[21107,23843],[21108,23843],[21109,23843],[21110,23864],[21111,23864],[21112,23864],[21113,23864],[21114,23864],[21115,23864],[21116,23864],[21117,23864],[21118,23864],[21119,23864],[21120,23864],[21121,23864],[21122,23864],[21123,23864],[21124,23864],[21125,23864],[21126,23864],[21127,23864],[21128,23864],[21129,23864],[21130,23864],[21131,23864],[21132,23864],[21133,23864],[21134,23864],[21135,23864],[21136,23864],[21137,23864],[21138,23864],[21139,23864],[21140,23864],[21141,23864],[21142,23864],[21143,23864],[21144,23864],[21145,23864],[21146,23864],[21147,23864],[21148,23864],[21149,23864],[21150,23864],[21151,23864],[21152,23864],[21153,23864],[21154,23864],[21155,23864],[21156,23864],[21157,23864],[21158,23864],[21159,23864],[21160,23864],[21161,23864],[21162,23864],[21163,23864],[21164,23864],[21165,23864],[21166,23864],[21167,23864],[21168,23864],[21169,23864],[21170,23864],[21171,23864],[21172,23864],[21173,23864],[21174,23864],[21175,23864],[21176,23864],[21177,23864],[21178,23864],[21179,23864],[21180,23864],[21181,23864],[21182,23864],[21183,23864],[21184,23864],[21185,23864],[21186,23864],[21187,23864],[21188,23864],[21189,23864],[21190,23864],[21191,23864],[21192,23864],[21193,23864],[21194,23864],[21195,23864],[21196,23864],[21197,23864],[21198,23864],[21199,23864],[21200,23864],[21201,23864],[21202,23864],[21203,23864],[21204,23864],[21205,23864],[21206,23864],[21207,23864],[21208,23864],[21209,23864],[21210,23864],[21211,23864],[21212,23864],[21215,23958],[21216,23958],[21217,23958],[21218,23958],[21219,23958],[21220,23958],[21221,23958],[21222,23958],[21223,23958],[21224,23958],[21225,23958],[21226,23958],[21227,23958],[21228,23958],[21229,23958],[21230,23958],[21231,23958],[21232,23958],[21233,23958],[21234,23958],[21235,23958],[21236,23958],[21237,23958],[21238,23958],[21239,23958],[21240,23958],[21241,23958],[21242,23958],[21243,23958],[21244,23958],[21245,23958],[21246,23958],[21247,23958],[21248,23958],[21249,23958],[21250,23958],[21251,23958],[21252,23958],[21253,23958],[21254,23958],[21255,23958],[21256,23958],[21257,23958],[21258,23958],[21259,23958],[21260,23958],[21261,23958],[21262,23958],[21263,23958],[21264,23958],[21265,23958],[21266,23958],[21267,23958],[21268,23876],[21269,23876],[21270,23876],[21271,23876],[21272,23876],[21273,23876],[21274,23876],[21275,23876],[21276,23876],[21277,23876],[21278,23876],[21279,23876],[21280,23960],[21281,23876],[21282,23876],[21283,23876],[21284,23876],[21285,23876],[21286,23876],[21287,23876],[21288,23876],[21289,23876],[21293,24118],[21294,23925],[21295,23925],[21296,23899],[21297,23926],[21299,24071],[21300,24071],[21301,24073],[21302,23926],[21303,24070],[21307,24070],[21309,24071],[21310,24071],[21311,24071],[21312,24071],[21313,24071],[21314,24072],[21325,24072],[21326,24069],[21327,24069],[21328,23863],[21329,24073],[21330,23925],[21333,24072],[21335,24071],[21336,23899],[21337,23925],[21338,24070],[21339,24070],[21340,24070],[21342,24071],[21343,23926],[21344,23899],[21345,24071],[21348,24071],[21350,23903],[21359,23861],[21361,24070],[21362,24070],[21363,24070],[21364,23926],[21365,23926],[21368,24071],[21369,24073],[21370,23899],[21371,24070],[21372,24072],[21374,24069],[21375,23903],[21376,23861],[21377,24070],[21378,24071],[21379,23863],[21380,23925],[21381,24072],[21382,23926],[21383,23899],[21384,24073],[21386,24069],[21387,23903],[21388,23861],[21389,24070],[21390,24071],[21391,23863],[21392,23925],[21393,24072],[21394,23926],[21395,23899],[21396,24073],[21398,24069],[21399,23903],[21400,23861],[21401,24070],[21402,24071],[21403,23863],[21404,23925],[21405,24072],[21406,23926],[21407,23899],[21408,24073],[21410,24069],[21411,23903],[21412,23861],[21413,24070],[21414,24071],[21415,23863],[21416,23925],[21417,24072],[21418,23926],[21419,23899],[21420,24073],[21422,24069],[21423,23903],[21424,23861],[21425,24070],[21426,24071],[21427,23863],[21428,23925],[21429,24072],[21430,23926],[21431,23899],[21432,24073],[21433,23903],[21435,24069],[21436,23903],[21437,23861],[21438,24070],[21439,24071],[21440,23863],[21441,23925],[21442,24072],[21443,23926],[21444,23899],[21445,24073],[21447,24069],[21448,23903],[21449,23861],[21450,24070],[21451,24071],[21452,23863],[21453,23925],[21454,24072],[21455,23926],[21456,23899],[21457,24073],[21458,23903],[21460,24069],[21461,23903],[21462,23861],[21463,24070],[21464,24071],[21465,23863],[21466,23925],[21467,24072],[21468,23926],[21469,23899],[21470,24073],[21471,24069],[21472,23903],[21473,23861],[21474,24070],[21475,24071],[21476,23863],[21477,23925],[21478,24072],[21479,23926],[21480,23899],[21481,24073],[21482,24069],[21483,23903],[21484,23861],[21485,24070],[21486,24071],[21487,23863],[21488,23925],[21489,24072],[21490,23926],[21491,23899],[21492,24073],[21493,24069],[21494,23903],[21495,23861],[21496,24070],[21497,24071],[21498,23863],[21499,23925],[21500,24072],[21501,23926],[21502,23899],[21503,24073],[21504,24118],[21505,24118],[21506,24118],[21507,23863],[21508,23899],[21509,23863],[21510,23899],[21512,24069],[21513,23903],[21514,23861],[21515,24070],[21516,24071],[21517,23863],[21518,23925],[21519,24072],[21520,23926],[21521,23899],[21522,24073],[21523,23903],[21524,23861],[21525,23861],[21526,23925],[21527,23926],[21529,24069],[21530,23903],[21531,23861],[21532,24070],[21533,24071],[21534,23863],[21535,23925],[21536,24072],[21537,23926],[21538,23899],[21539,24073],[21541,24069],[21542,23903],[21543,23861],[21544,24070],[21545,24071],[21546,23863],[21547,23925],[21548,24072],[21549,23926],[21550,23899],[21551,24073],[21552,24118],[21554,24069],[21555,23903],[21556,23861],[21557,24070],[21558,24071],[21559,23863],[21560,23925],[21561,24072],[21562,23926],[21563,23899],[21564,24073],[21565,24118],[21566,24118],[21568,24069],[21569,23903],[21570,23861],[21571,24070],[21572,24071],[21573,23863],[21574,23925],[21575,24072],[21576,23926],[21577,23899],[21578,24073],[21579,24118],[21580,23903],[21581,23903],[21582,24071],[21583,23863],[21584,23925],[21585,24072],[21586,23926],[21587,23899],[21588,23863],[21589,23863],[21590,23863],[21591,23925],[21592,23925],[21593,23925],[21594,24072],[21595,24072],[21596,24072],[21597,23899],[21598,23899],[21599,23899],[21600,24118],[21601,23861],[21602,24069],[21603,23903],[21604,23861],[21605,24070],[21606,24071],[21607,23863],[21608,23863],[21609,23925],[21610,24072],[21611,23926],[21612,23899],[21613,24073],[21614,24118],[21616,24069],[21617,23903],[21618,23861],[21619,24070],[21620,24071],[21621,23863],[21622,23925],[21623,24072],[21624,23926],[21625,23899],[21626,23899],[21627,24073],[21629,24069],[21630,23903],[21631,23861],[21632,24070],[21633,24071],[21634,23863],[21635,23925],[21636,24072],[21637,23926],[21638,23899],[21639,24073],[21641,24069],[21642,23903],[21643,23861],[21644,24070],[21645,24071],[21646,23863],[21647,23925],[21648,24072],[21649,23926],[21650,23899],[21651,24073],[21652,23861],[21653,24118],[21654,24118],[21655,24118],[21656,24118],[21657,24118],[21658,24118],[21659,24118],[21660,24118],[21661,24118],[21662,24118],[21663,23863],[21665,23861],[21667,24069],[21668,23903],[21669,23861],[21670,24070],[21671,24071],[21672,23863],[21673,23925],[21674,24072],[21675,23926],[21676,23899],[21677,24073],[21679,24069],[21680,23903],[21681,23861],[21682,24070],[21683,24071],[21684,23863],[21685,23925],[21686,24072],[21687,23926],[21688,23899],[21689,24073],[21691,24069],[21692,23903],[21693,23861],[21694,24070],[21695,24071],[21696,23863],[21697,23925],[21698,24072],[21699,23926],[21700,23899],[21701,24073],[21703,24069],[21704,23903],[21705,23861],[21706,24070],[21707,24071],[21708,23863],[21709,23925],[21710,24072],[21711,23926],[21712,23899],[21713,24073],[21714,24069],[21715,23903],[21716,23861],[21717,24070],[21718,24071],[21719,23863],[21720,23925],[21721,24072],[21722,23926],[21723,23899],[21724,24073],[21726,24069],[21727,23903],[21728,23861],[21729,24070],[21730,24071],[21731,23863],[21732,23925],[21733,24072],[21734,23926],[21735,23899],[21736,24073],[21738,24069],[21739,23903],[21740,23861],[21741,24070],[21742,24071],[21743,23863],[21744,23925],[21745,24072],[21746,23926],[21747,23899],[21748,24073],[21750,24069],[21751,23903],[21752,23861],[21753,24070],[21754,24071],[21755,23863],[21756,23925],[21757,24072],[21758,23926],[21759,23899],[21760,24073],[21762,24069],[21763,23903],[21764,23861],[21765,24070],[21766,24071],[21767,23863],[21768,23925],[21769,24072],[21770,23926],[21771,23899],[21772,24073],[21773,24069],[21775,24069],[21776,23903],[21777,23861],[21778,24070],[21779,24071],[21780,23863],[21781,23925],[21782,24072],[21783,23926],[21784,23899],[21785,24073],[21786,23861],[21787,23861],[21788,24118],[21789,23861],[21790,23861],[21791,24118],[21792,24118],[21793,23903],[21794,23861],[21795,23925],[21796,23926],[21797,24118],[21798,24118],[21799,23863],[21800,23899],[21801,23861],[21802,23861],[21803,24118],[21804,23861],[21805,24118],[21806,24118],[21807,24118],[21808,23903],[21809,24119],[21810,24118],[21811,24118],[21812,24118],[21813,24118],[21814,24118],[21815,24118],[21816,24118],[21817,24118],[21818,24119],[21819,24118],[21820,23903],[21821,23861],[21822,24069],[21823,23903],[21824,23861],[21825,24070],[21826,24071],[21827,23863],[21828,23925],[21829,24072],[21830,23926],[21831,23899],[21832,24073],[21833,23863],[21834,23863],[21835,24118],[21836,24118],[21837,23861],[21839,24069],[21840,23903],[21841,23861],[21842,24070],[21843,24071],[21844,23863],[21845,23925],[21846,24072],[21847,23926],[21848,23899],[21849,24073],[21851,24069],[21852,23903],[21853,23861],[21854,24070],[21855,24071],[21856,23863],[21857,23925],[21858,24072],[21859,23926],[21860,23899],[21861,24073],[21863,24069],[21864,23903],[21865,23861],[21866,24070],[21867,24071],[21868,23863],[21869,23925],[21870,24072],[21871,23926],[21872,23899],[21873,24073],[21875,24069],[21876,23903],[21877,23861],[21878,24070],[21879,24071],[21880,23863],[21881,23925],[21882,24072],[21883,23926],[21884,23899],[21885,24073],[21887,24069],[21888,23903],[21889,23861],[21890,24070],[21891,24071],[21892,23863],[21893,23925],[21894,24072],[21895,23926],[21896,23899],[21897,24073],[21899,24069],[21900,23903],[21901,23861],[21902,24070],[21903,24071],[21904,23863],[21905,23925],[21906,24072],[21907,23926],[21908,23899],[21909,24073],[21911,24069],[21912,23903],[21913,23861],[21914,24070],[21915,24071],[21916,23863],[21917,23925],[21918,24072],[21919,23926],[21920,23899],[21921,24073],[21922,23863],[21924,24069],[21925,23903],[21926,23861],[21927,24070],[21928,24071],[21929,23863],[21930,23925],[21931,24072],[21932,23926],[21933,23899],[21934,24073],[21935,23861],[21937,24069],[21938,23903],[21939,23861],[21940,24070],[21941,24071],[21942,23863],[21943,23925],[21944,24072],[21945,23926],[21946,23899],[21947,24073],[21951,24069],[21977,24069],[22001,24081],[22002,24079],[22003,24081],[22004,24079],[22005,24081],[22006,24081],[22007,24083],[22008,24083],[22009,24075],[22010,24081],[22011,24081],[22012,24087],[22013,24087],[22014,24081],[22015,24081],[22016,24087],[22017,24087],[22018,24081],[22019,24081],[22020,24082],[22021,24082],[22022,24081],[22023,24075],[22024,24081],[22025,24081],[22026,24075],[22027,24081],[22028,24081],[22029,24084],[22030,24081],[22031,24084],[22032,24081],[22033,24081],[22034,24085],[22035,24085],[22036,24081],[22037,24081],[22038,24081],[22039,24081],[22040,24086],[22041,24086],[22042,24081],[22043,24081],[22044,24081],[22045,24087],[22046,24087],[22047,24081],[22048,24081],[22049,24081],[22050,24088],[22051,24088],[22052,24081],[22053,24088],[22054,24088],[22055,24081],[22056,24089],[22057,24081],[22058,24089],[22059,24075],[22060,24081],[22061,24089],[22062,24081],[22063,24081],[22064,24087],[22065,24087],[22066,24081],[22067,24081],[22068,24087],[22069,24087],[22070,24079],[22071,24079],[22072,24079],[22073,24083],[22074,24083],[22075,24075],[22076,24075],[22077,24082],[22078,24082],[22079,24084],[22080,24084],[22081,24085],[22082,24085],[22083,24086],[22084,24086],[22085,24087],[22086,24087],[22087,24087],[22088,24087],[22089,24087],[22090,24087],[22091,24087],[22092,24087],[22093,24087],[22094,24087],[22095,24088],[22096,24088],[22097,24088],[22098,24088],[22099,24089],[22100,24089],[22101,24089],[22102,24081],[22103,24081],[22104,24081],[22105,24075],[22106,24075],[22107,24079],[22108,24079],[22109,24083],[22110,24083],[22111,24075],[22112,24075],[22113,24082],[22114,24082],[22115,24084],[22116,24084],[22117,24085],[22118,24085],[22119,24086],[22120,24086],[22121,24087],[22122,24087],[22123,24087],[22124,24087],[22125,24087],[22126,24087],[22127,24087],[22128,24087],[22129,24087],[22130,24087],[22131,24088],[22132,24088],[22133,24088],[22134,24088],[22135,24089],[22136,24089],[22137,24089],[22138,24081],[22139,24081],[22140,24081],[22141,24079],[22142,24079],[22143,24083],[22144,24083],[22145,24075],[22146,24075],[22147,24082],[22148,24082],[22149,24084],[22150,24084],[22151,24085],[22152,24085],[22153,24086],[22154,24086],[22155,24087],[22156,24087],[22157,24087],[22158,24087],[22159,24087],[22160,24087],[22161,24087],[22162,24087],[22163,24087],[22164,24087],[22165,24088],[22166,24088],[22167,24088],[22168,24088],[22169,24089],[22170,24089],[22171,24089],[22172,24081],[22173,24081],[22174,24081],[22175,24079],[22176,24079],[22177,24083],[22178,24083],[22179,24075],[22180,24075],[22181,24082],[22182,24082],[22183,24084],[22184,24084],[22185,24085],[22186,24085],[22187,24086],[22188,24086],[22189,24087],[22190,24087],[22191,24087],[22192,24087],[22193,24087],[22194,24087],[22195,24087],[22196,24087],[22197,24087],[22198,24087],[22199,24088],[22200,24088],[22201,24088],[22202,24088],[22203,24089],[22204,24089],[22205,24089],[22206,24081],[22207,24081],[22208,24081],[22209,24079],[22210,24079],[22211,24083],[22212,24083],[22213,24075],[22214,24075],[22215,24082],[22216,24082],[22217,24084],[22218,24084],[22219,24085],[22220,24085],[22221,24086],[22222,24086],[22223,24087],[22224,24087],[22225,24087],[22226,24087],[22227,24087],[22228,24087],[22229,24087],[22230,24087],[22231,24087],[22232,24087],[22233,24088],[22234,24088],[22235,24088],[22236,24088],[22237,24089],[22238,24089],[22239,24089],[22240,24081],[22241,24081],[22242,24081],[22243,24075],[22244,24075],[22245,24075],[22246,24075],[22247,24082],[22248,24082],[22249,24079],[22250,24079],[22251,24083],[22252,24083],[22253,24075],[22254,24075],[22255,24075],[22256,24075],[22257,24082],[22258,24082],[22259,24084],[22260,24084],[22261,24085],[22262,24085],[22263,24086],[22264,24086],[22265,24087],[22266,24087],[22267,24087],[22268,24087],[22269,24087],[22270,24087],[22271,24087],[22272,24087],[22273,24087],[22274,24087],[22275,24088],[22276,24088],[22277,24088],[22278,24088],[22279,24089],[22280,24089],[22281,24089],[22282,24081],[22283,24081],[22284,24081],[22285,24079],[22286,24079],[22287,24083],[22288,24083],[22289,24075],[22290,24075],[22291,24082],[22292,24082],[22293,24084],[22294,24084],[22295,24085],[22296,24085],[22297,24086],[22298,24086],[22299,24087],[22300,24087],[22301,24087],[22302,24087],[22303,24087],[22304,24087],[22305,24087],[22306,24087],[22307,24087],[22308,24087],[22309,24088],[22310,24088],[22311,24088],[22312,24088],[22313,24089],[22314,24089],[22315,24089],[22316,24081],[22317,24081],[22318,24081],[22319,24075],[22320,24075],[22321,24079],[22322,24079],[22323,24083],[22324,24083],[22325,24075],[22326,24075],[22327,24082],[22328,24082],[22329,24084],[22330,24084],[22331,24085],[22332,24085],[22333,24086],[22334,24086],[22335,24087],[22336,24087],[22337,24087],[22338,24087],[22339,24087],[22340,24087],[22341,24087],[22342,24087],[22343,24087],[22344,24087],[22345,24088],[22346,24088],[22347,24088],[22348,24088],[22349,24089],[22350,24089],[22351,24089],[22352,24081],[22353,24081],[22354,24081],[22355,24079],[22356,24079],[22357,24083],[22358,24083],[22359,24075],[22360,24075],[22361,24082],[22362,24082],[22363,24084],[22364,24084],[22365,24085],[22366,24085],[22367,24086],[22368,24086],[22369,24087],[22370,24087],[22371,24087],[22372,24087],[22373,24087],[22374,24087],[22375,24087],[22376,24087],[22377,24087],[22378,24087],[22379,24088],[22380,24088],[22381,24088],[22382,24088],[22383,24089],[22384,24089],[22385,24089],[22386,24081],[22387,24081],[22388,24081],[22389,24079],[22390,24079],[22391,24083],[22392,24083],[22393,24075],[22394,24075],[22395,24082],[22396,24082],[22397,24084],[22398,24084],[22399,24085],[22400,24085],[22401,24086],[22402,24086],[22403,24087],[22404,24087],[22405,24087],[22406,24087],[22407,24087],[22408,24087],[22409,24087],[22410,24087],[22411,24087],[22412,24087],[22413,24088],[22414,24088],[22415,24088],[22416,24088],[22417,24089],[22418,24089],[22419,24089],[22420,24081],[22421,24081],[22422,24081],[22423,24079],[22424,24079],[22425,24083],[22426,24083],[22427,24075],[22428,24075],[22429,24082],[22430,24082],[22431,24084],[22432,24084],[22433,24085],[22434,24085],[22435,24086],[22436,24086],[22437,24087],[22438,24087],[22439,24087],[22440,24087],[22441,24087],[22442,24087],[22443,24087],[22444,24087],[22445,24087],[22446,24087],[22447,24088],[22448,24088],[22449,24088],[22450,24088],[22451,24089],[22452,24089],[22453,24089],[22454,24081],[22455,24081],[22456,24081],[22457,24079],[22458,24079],[22459,24083],[22460,24083],[22461,24075],[22462,24075],[22463,24082],[22464,24082],[22465,24084],[22466,24084],[22467,24085],[22468,24085],[22469,24086],[22470,24086],[22471,24087],[22472,24087],[22473,24087],[22474,24087],[22475,24087],[22476,24087],[22477,24087],[22478,24087],[22479,24087],[22480,24087],[22481,24088],[22482,24088],[22483,24088],[22484,24088],[22485,24089],[22486,24089],[22487,24089],[22488,24081],[22489,24081],[22490,24081],[22491,24087],[22492,24089],[22493,24079],[22494,24079],[22495,24083],[22496,24083],[22497,24075],[22498,24075],[22499,24082],[22500,24082],[22501,24084],[22502,24084],[22503,24085],[22504,24085],[22505,24086],[22506,24086],[22507,24087],[22508,24087],[22509,24087],[22510,24087],[22511,24087],[22512,24087],[22513,24087],[22514,24087],[22515,24087],[22516,24087],[22517,24088],[22518,24088],[22519,24088],[22520,24088],[22521,24089],[22522,24089],[22523,24089],[22524,24081],[22525,24081],[22526,24081],[22527,24079],[22528,24079],[22529,24083],[22530,24083],[22531,24075],[22532,24075],[22533,24082],[22534,24082],[22535,24084],[22536,24084],[22537,24085],[22538,24085],[22539,24086],[22540,24086],[22541,24087],[22542,24087],[22543,24087],[22544,24087],[22545,24087],[22546,24087],[22547,24087],[22548,24087],[22549,24087],[22550,24087],[22551,24088],[22552,24088],[22553,24088],[22554,24088],[22555,24089],[22556,24089],[22557,24089],[22558,24081],[22559,24081],[22560,24081],[22561,24087],[22562,24087],[22563,24075],[22564,24075],[22565,24079],[22566,24079],[22567,24083],[22568,24083],[22569,24075],[22570,24075],[22571,24082],[22572,24082],[22573,24084],[22574,24084],[22575,24085],[22576,24085],[22577,24086],[22578,24086],[22579,24087],[22580,24087],[22581,24087],[22582,24087],[22583,24087],[22584,24087],[22585,24087],[22586,24087],[22587,24087],[22588,24087],[22589,24088],[22590,24088],[22591,24088],[22592,24088],[22593,24089],[22594,24089],[22595,24089],[22596,24081],[22597,24081],[22598,24081],[22599,24079],[22600,24079],[22601,24083],[22602,24083],[22603,24075],[22604,24075],[22605,24082],[22606,24082],[22607,24084],[22608,24084],[22609,24085],[22610,24085],[22611,24086],[22612,24086],[22613,24087],[22614,24087],[22615,24087],[22616,24087],[22617,24087],[22618,24087],[22619,24087],[22620,24087],[22621,24087],[22622,24087],[22623,24088],[22624,24088],[22625,24088],[22626,24088],[22627,24089],[22628,24089],[22629,24089],[22630,24081],[22631,24081],[22632,24081],[22633,24079],[22634,24079],[22635,24083],[22636,24083],[22637,24075],[22638,24075],[22639,24082],[22640,24082],[22641,24084],[22642,24084],[22643,24085],[22644,24085],[22645,24086],[22646,24086],[22647,24087],[22648,24087],[22649,24087],[22650,24087],[22651,24087],[22652,24087],[22653,24087],[22654,24087],[22655,24087],[22656,24087],[22657,24088],[22658,24088],[22659,24088],[22660,24088],[22661,24089],[22662,24089],[22663,24089],[22664,24081],[22665,24081],[22666,24079],[22667,24079],[22668,24079],[22669,24079],[22670,24079],[22671,24079],[22672,24083],[22673,24083],[22674,24083],[22675,24083],[22676,24083],[22677,24083],[22678,24075],[22679,24075],[22680,24075],[22681,24075],[22682,24075],[22683,24075],[22684,24082],[22685,24082],[22686,24082],[22687,24082],[22688,24082],[22689,24082],[22690,24084],[22691,24084],[22692,24084],[22693,24084],[22694,24084],[22695,24084],[22696,24085],[22697,24085],[22698,24085],[22699,24085],[22700,24085],[22701,24085],[22702,24086],[22703,24086],[22704,24086],[22705,24086],[22706,24086],[22707,24086],[22708,24087],[22709,24087],[22710,24087],[22711,24087],[22712,24087],[22713,24087],[22714,24087],[22715,24087],[22716,24087],[22717,24087],[22718,24087],[22719,24087],[22720,24087],[22721,24087],[22722,24087],[22723,24087],[22724,24087],[22725,24087],[22726,24087],[22727,24087],[22728,24087],[22729,24087],[22730,24087],[22731,24087],[22732,24087],[22733,24087],[22734,24087],[22735,24087],[22736,24087],[22737,24087],[22738,24088],[22739,24088],[22740,24088],[22741,24088],[22742,24088],[22743,24088],[22744,24088],[22745,24088],[22746,24088],[22747,24088],[22748,24088],[22749,24088],[22750,24089],[22751,24089],[22752,24089],[22753,24089],[22754,24089],[22755,24089],[22756,24089],[22757,24089],[22758,24089],[22759,24081],[22760,24081],[22761,24081],[22762,24081],[22763,24081],[22764,24081],[22765,24087],[22766,24079],[22767,24079],[22768,24083],[22769,24083],[22770,24075],[22771,24075],[22772,24082],[22773,24082],[22774,24084],[22775,24084],[22776,24085],[22777,24085],[22778,24086],[22779,24086],[22780,24087],[22781,24087],[22782,24087],[22783,24087],[22784,24087],[22785,24087],[22786,24087],[22787,24087],[22788,24087],[22789,24087],[22790,24088],[22791,24088],[22792,24088],[22793,24088],[22794,24089],[22795,24089],[22796,24089],[22797,24081],[22798,24081],[22799,24081],[22800,24081],[22801,24079],[22802,24079],[22803,24083],[22804,24083],[22805,24075],[22806,24075],[22807,24082],[22808,24082],[22809,24084],[22810,24084],[22811,24085],[22812,24085],[22813,24086],[22814,24086],[22815,24087],[22816,24087],[22817,24087],[22818,24087],[22819,24087],[22820,24087],[22821,24087],[22822,24087],[22823,24087],[22824,24087],[22825,24088],[22826,24088],[22827,24088],[22828,24088],[22829,24089],[22830,24089],[22831,24089],[22832,24081],[22833,24081],[22834,24081],[22835,24081],[22836,24081],[22837,24081],[22838,24081],[22839,24081],[22840,24081],[22841,24081],[22842,24081],[22843,24081],[22844,24081],[22845,24081],[22846,24081],[22847,24081],[22848,24081],[22849,24081],[22850,24081],[22851,24081],[22852,24081],[22853,24081],[22854,24081],[22855,24081],[22856,24081],[22857,24081],[22858,24081],[22859,24081],[22860,24081],[22861,24081],[22862,24081],[22863,24081],[22864,24081],[22865,24081],[22866,24079],[22867,24079],[22868,24083],[22869,24083],[22870,24075],[22871,24075],[22872,24082],[22873,24082],[22874,24084],[22875,24084],[22876,24085],[22877,24085],[22878,24086],[22879,24086],[22880,24087],[22881,24087],[22882,24087],[22883,24087],[22884,24087],[22885,24087],[22886,24087],[22887,24087],[22888,24087],[22889,24087],[22890,24088],[22891,24088],[22892,24088],[22893,24088],[22894,24089],[22895,24089],[22896,24089],[22897,24081],[22898,24081],[22899,24081],[22900,24079],[22901,24079],[22902,24083],[22903,24083],[22904,24075],[22905,24075],[22906,24082],[22907,24082],[22908,24084],[22909,24084],[22910,24085],[22911,24085],[22912,24086],[22913,24086],[22914,24087],[22915,24087],[22916,24087],[22917,24087],[22918,24087],[22919,24087],[22920,24087],[22921,24087],[22922,24087],[22923,24087],[22924,24088],[22925,24088],[22926,24088],[22927,24088],[22928,24089],[22929,24089],[22930,24089],[22931,24081],[22932,24081],[22933,24081],[22934,24087],[22935,24087],[22936,24075],[22937,24079],[22938,24079],[22939,24083],[22940,24083],[22941,24075],[22942,24075],[22943,24082],[22944,24082],[22945,24084],[22946,24084],[22947,24085],[22948,24085],[22949,24086],[22950,24086],[22951,24087],[22952,24087],[22953,24087],[22954,24087],[22955,24087],[22956,24087],[22957,24087],[22958,24087],[22959,24087],[22960,24087],[22961,24088],[22962,24088],[22963,24088],[22964,24088],[22965,24089],[22966,24089],[22967,24089],[22968,24081],[22969,24081],[22970,24089],[22971,24089],[22972,24088],[22973,24079],[22974,24079],[22975,24083],[22976,24083],[22977,24075],[22978,24075],[22979,24082],[22980,24082],[22981,24084],[22982,24084],[22983,24085],[22984,24085],[22985,24086],[22986,24086],[22987,24087],[22988,24087],[22989,24087],[22990,24087],[22991,24087],[22992,24087],[22993,24087],[22994,24087],[22995,24087],[22996,24087],[22997,24088],[22998,24088],[22999,24088],[23000,24088],[23001,24089],[23002,24089],[23003,24089],[23004,24081],[23005,24081],[23006,24081],[23007,24079],[23008,24079],[23009,24083],[23010,24083],[23011,24075],[23012,24075],[23013,24082],[23014,24082],[23015,24084],[23016,24084],[23017,24085],[23018,24085],[23019,24086],[23020,24086],[23021,24087],[23022,24087],[23023,24087],[23024,24087],[23025,24087],[23026,24087],[23027,24087],[23028,24087],[23029,24087],[23030,24087],[23031,24088],[23032,24088],[23033,24088],[23034,24088],[23035,24089],[23036,24089],[23037,24089],[23038,24081],[23039,24081],[23040,24081],[23041,24079],[23042,24079],[23043,24083],[23044,24083],[23045,24075],[23046,24075],[23047,24082],[23048,24082],[23049,24084],[23050,24084],[23051,24085],[23052,24085],[23053,24086],[23054,24086],[23055,24087],[23056,24087],[23057,24087],[23058,24087],[23059,24087],[23060,24087],[23061,24087],[23062,24087],[23063,24087],[23064,24087],[23065,24088],[23066,24088],[23067,24088],[23068,24088],[23069,24089],[23070,24089],[23071,24089],[23072,24081],[23073,24081],[23074,24081],[23075,24079],[23076,24079],[23077,24083],[23078,24083],[23079,24075],[23080,24075],[23081,24082],[23082,24082],[23083,24084],[23084,24084],[23085,24085],[23086,24085],[23087,24086],[23088,24086],[23089,24087],[23090,24087],[23091,24087],[23092,24087],[23093,24087],[23094,24087],[23095,24087],[23096,24087],[23097,24087],[23098,24087],[23099,24088],[23100,24088],[23101,24088],[23102,24088],[23103,24089],[23104,24089],[23105,24089],[23106,24081],[23107,24081],[23108,24081],[23109,24079],[23110,24083],[23111,24082],[23112,24084],[23113,24085],[23114,24086],[23115,24087],[23116,24087],[23117,24087],[23118,24087],[23119,24088],[23120,24088],[23121,24089],[23122,24089],[23123,24081],[23124,24079],[23125,24079],[23126,24083],[23127,24083],[23128,24075],[23129,24075],[23130,24082],[23131,24082],[23132,24084],[23133,24084],[23134,24085],[23135,24085],[23136,24086],[23137,24086],[23138,24087],[23139,24087],[23140,24087],[23141,24087],[23142,24087],[23143,24087],[23144,24087],[23145,24087],[23146,24087],[23147,24087],[23148,24088],[23149,24088],[23150,24088],[23151,24088],[23152,24089],[23153,24089],[23154,24089],[23155,24081],[23156,24081],[23157,24081],[23158,24079],[23159,24079],[23160,24083],[23161,24083],[23162,24075],[23163,24075],[23164,24082],[23165,24082],[23166,24084],[23167,24084],[23168,24085],[23169,24085],[23170,24086],[23171,24086],[23172,24087],[23173,24087],[23174,24087],[23175,24087],[23176,24087],[23177,24087],[23178,24087],[23179,24087],[23180,24087],[23181,24087],[23182,24088],[23183,24088],[23184,24088],[23185,24088],[23186,24089],[23187,24089],[23188,24089],[23189,24081],[23190,24081],[23191,24081],[23192,24079],[23193,24079],[23194,24083],[23195,24083],[23196,24075],[23197,24075],[23198,24082],[23199,24082],[23200,24084],[23201,24084],[23202,24085],[23203,24085],[23204,24086],[23205,24086],[23206,24087],[23207,24087],[23208,24087],[23209,24087],[23210,24087],[23211,24087],[23212,24087],[23213,24087],[23214,24087],[23215,24087],[23216,24088],[23217,24088],[23218,24088],[23219,24088],[23220,24089],[23221,24089],[23222,24089],[23223,24081],[23224,24081],[23225,24081],[23226,24079],[23227,24079],[23228,24083],[23229,24083],[23230,24075],[23231,24075],[23232,24082],[23233,24082],[23234,24084],[23235,24084],[23236,24085],[23237,24085],[23238,24086],[23239,24086],[23240,24087],[23241,24087],[23242,24087],[23243,24087],[23244,24087],[23245,24087],[23246,24087],[23247,24087],[23248,24087],[23249,24087],[23250,24088],[23251,24088],[23252,24088],[23253,24088],[23254,24089],[23255,24089],[23256,24089],[23257,24081],[23258,24081],[23259,24081],[23260,24079],[23261,24079],[23262,24083],[23263,24083],[23264,24075],[23265,24075],[23266,24082],[23267,24082],[23268,24084],[23269,24084],[23270,24085],[23271,24085],[23272,24086],[23273,24086],[23274,24087],[23275,24087],[23276,24087],[23277,24087],[23278,24087],[23279,24087],[23280,24087],[23281,24087],[23282,24087],[23283,24087],[23284,24088],[23285,24088],[23286,24088],[23287,24088],[23288,24089],[23289,24089],[23290,24089],[23291,24081],[23292,24081],[23293,24081],[23294,24084],[23295,24079],[23296,24079],[23297,24083],[23298,24083],[23299,24082],[23300,24082],[23301,24084],[23302,24084],[23303,24085],[23304,24085],[23305,24086],[23306,24086],[23307,24087],[23308,24087],[23309,24087],[23310,24087],[23311,24087],[23312,24087],[23313,24087],[23314,24087],[23315,24087],[23316,24087],[23317,24088],[23318,24088],[23319,24088],[23320,24088],[23321,24089],[23322,24089],[23323,24089],[23324,24083],[23325,24088],[23326,24088],[23327,24075],[23328,24075],[23329,24087],[23330,24081],[23331,24075],[23332,24081],[23333,24075],[23334,24087],[23335,24087],[23336,24087],[23337,24079],[23338,24079],[23339,24083],[23340,24083],[23341,24075],[23342,24075],[23343,24082],[23344,24082],[23345,24084],[23346,24084],[23347,24085],[23348,24085],[23349,24086],[23350,24086],[23351,24087],[23352,24087],[23353,24087],[23354,24087],[23355,24087],[23356,24087],[23357,24087],[23358,24087],[23359,24087],[23360,24087],[23361,24088],[23362,24088],[23363,24088],[23364,24088],[23365,24089],[23366,24089],[23367,24089],[23368,24081],[23369,24081],[23370,24081],[23371,24081],[23372,24081],[23373,24079],[23374,24079],[23375,24083],[23376,24083],[23377,24075],[23378,24075],[23379,24082],[23380,24082],[23381,24084],[23382,24084],[23383,24085],[23384,24085],[23385,24086],[23386,24086],[23387,24087],[23388,24087],[23389,24087],[23390,24087],[23391,24087],[23392,24087],[23393,24087],[23394,24087],[23395,24087],[23396,24087],[23397,24088],[23398,24088],[23399,24088],[23400,24088],[23401,24089],[23402,24089],[23403,24089],[23404,24081],[23405,24081],[23406,24081],[23407,24079],[23408,24079],[23409,24083],[23410,24083],[23411,24075],[23412,24075],[23413,24082],[23414,24082],[23415,24084],[23416,24084],[23417,24085],[23418,24085],[23419,24086],[23420,24086],[23421,24087],[23422,24087],[23423,24087],[23424,24087],[23425,24087],[23426,24087],[23427,24087],[23428,24087],[23429,24087],[23430,24087],[23431,24088],[23432,24088],[23433,24088],[23434,24088],[23435,24089],[23436,24089],[23437,24089],[23438,24081],[23439,24081],[23440,24081],[23441,24079],[23442,24079],[23443,24083],[23444,24083],[23445,24075],[23446,24075],[23447,24082],[23448,24082],[23449,24084],[23450,24084],[23451,24085],[23452,24085],[23453,24086],[23454,24086],[23455,24087],[23456,24087],[23457,24087],[23458,24087],[23459,24087],[23460,24087],[23461,24087],[23462,24087],[23463,24087],[23464,24087],[23465,24088],[23466,24088],[23467,24088],[23468,24088],[23469,24089],[23470,24089],[23471,24089],[23472,24081],[23473,24081],[23474,24081],[23475,24079],[23476,24079],[23477,24083],[23478,24083],[23479,24075],[23480,24075],[23481,24082],[23482,24082],[23483,24084],[23484,24084],[23485,24085],[23486,24085],[23487,24086],[23488,24086],[23489,24087],[23490,24087],[23491,24087],[23492,24087],[23493,24087],[23494,24087],[23495,24087],[23496,24087],[23497,24087],[23498,24087],[23499,24088],[23500,24088],[23501,24088],[23502,24088],[23503,24089],[23504,24089],[23505,24089],[23506,24081],[23507,24081],[23508,24081],[23509,24079],[23510,24079],[23511,24083],[23512,24083],[23513,24075],[23514,24075],[23515,24082],[23516,24082],[23517,24084],[23518,24084],[23519,24085],[23520,24085],[23521,24086],[23522,24086],[23523,24087],[23524,24087],[23525,24087],[23526,24087],[23527,24087],[23528,24087],[23529,24087],[23530,24087],[23531,24087],[23532,24087],[23533,24088],[23534,24088],[23535,24088],[23536,24088],[23537,24089],[23538,24089],[23539,24089],[23540,24081],[23541,24081],[23542,24081],[23543,24086],[23544,24086],[23545,24075],[23546,24079],[23547,24079],[23548,24083],[23549,24083],[23550,24075],[23551,24075],[23552,24082],[23553,24082],[23554,24084],[23555,24084],[23556,24085],[23557,24085],[23558,24086],[23559,24086],[23560,24087],[23561,24087],[23562,24087],[23563,24087],[23564,24087],[23565,24087],[23566,24087],[23567,24087],[23568,24087],[23569,24087],[23570,24088],[23571,24088],[23572,24088],[23573,24088],[23574,24089],[23575,24089],[23576,24089],[23577,24081],[23578,24081],[23579,24081],[23580,24079],[23581,24079],[23582,24083],[23583,24083],[23584,24075],[23585,24075],[23586,24082],[23587,24082],[23588,24084],[23589,24084],[23590,24085],[23591,24085],[23592,24086],[23593,24086],[23594,24087],[23595,24087],[23596,24087],[23597,24087],[23598,24087],[23599,24087],[23600,24087],[23601,24087],[23602,24087],[23603,24087],[23604,24088],[23605,24088],[23606,24088],[23607,24088],[23608,24089],[23609,24089],[23610,24089],[23611,24081],[23612,24081],[23613,24081],[23614,24079],[23615,24079],[23616,24083],[23617,24083],[23618,24075],[23619,24075],[23620,24082],[23621,24082],[23622,24084],[23623,24084],[23624,24085],[23625,24085],[23626,24086],[23627,24086],[23628,24087],[23629,24087],[23630,24087],[23631,24087],[23632,24087],[23633,24087],[23634,24087],[23635,24087],[23636,24087],[23637,24087],[23638,24088],[23639,24088],[23640,24088],[23641,24088],[23642,24089],[23643,24089],[23644,24089],[23645,24081],[23646,24081],[23647,24081],[23648,24087],[23649,24087],[23650,24079],[23651,24079],[23652,24083],[23653,24083],[23654,24075],[23655,24075],[23656,24082],[23657,24082],[23658,24084],[23659,24084],[23660,24085],[23661,24085],[23662,24086],[23663,24086],[23664,24087],[23665,24087],[23666,24087],[23667,24087],[23668,24087],[23669,24087],[23670,24087],[23671,24087],[23672,24087],[23673,24087],[23674,24088],[23675,24088],[23676,24088],[23677,24088],[23678,24089],[23679,24089],[23680,24089],[23681,24081],[23682,24081],[23683,24081],[23684,24075],[23685,24085],[23686,24087],[23687,24087],[23688,24075],[23689,24075],[23690,24075],[23691,23903],[23692,23903],[23693,23903],[23694,23903],[23695,23903],[23696,23903],[23697,23903],[23698,23903],[23699,23903],[23700,23903],[23701,23903],[23702,23903],[23703,23903],[23704,23903],[23705,23903],[23706,23903],[23707,23903],[23708,23903],[23709,23903],[23710,23903],[23711,23903],[23712,23903],[23713,23903],[23714,23903],[23715,23903],[23716,23903],[23717,23903],[23718,23903],[23719,23903],[23720,23903],[23721,23903],[23722,23903],[23723,23903],[23724,23903],[23725,23903],[23726,23903],[23727,23903],[23728,23903],[23729,23903],[23730,23903],[23731,23903],[23732,23903],[23733,23903],[23734,23903],[23735,23903],[23736,23903],[23737,24074],[23738,23861],[23739,24074],[23740,24074],[23741,24074],[23742,24074],[23743,24074],[23744,24074],[23745,24074],[23746,24074],[23747,24074],[23748,24074],[23749,24074],[23750,24074],[23751,24074],[23752,23861],[23753,24074],[23754,24074],[23755,24074],[23756,24074],[23757,24074],[23758,24074],[23759,24074],[23760,24074],[23761,24074],[23762,23861],[23763,24074],[23764,24074],[23765,24074],[23766,24074],[23767,23861],[23768,23861],[23769,24074],[23770,24074],[23771,24074],[23772,24074],[23773,24074],[23774,24074],[23775,24074],[23776,24074],[23777,24074],[23778,24074],[23779,23861],[23780,23861],[23781,23861],[23782,23861],[23783,24074],[23784,24074],[23785,23861],[23786,23861],[23787,23861],[23788,23861],[23789,24074],[23790,23861],[23791,24074],[23792,24074],[23793,24074],[23794,24074],[23795,24074],[23796,24074],[23797,24074],[23798,24074],[23799,23861],[23800,24074]],"b":[[144,"impl-Add-for-Radians"],[145,"impl-Add%3CDegrees%3E-for-Radians"],[146,"impl-Add-for-Pixels"],[147,"impl-Add%3Cf32%3E-for-Pixels"],[155,"impl-Task%3COption%3CT%3E%3E"],[156,"impl-Task%3CResult%3CT,+E%3E%3E"],[469,"impl-Catalog-for-Theme"],[470,"impl-Catalog-for-Theme"],[471,"impl-Catalog-for-Theme"],[472,"impl-Catalog-for-Theme"],[473,"impl-Catalog-for-Theme"],[474,"impl-Catalog-for-Theme"],[475,"impl-Catalog-for-Theme"],[476,"impl-Catalog-for-Theme"],[477,"impl-Catalog-for-Theme"],[478,"impl-Catalog-for-Theme"],[479,"impl-Catalog-for-Theme"],[480,"impl-Default-for-Theme"],[481,"impl-Catalog-for-Theme"],[482,"impl-Catalog-for-Theme"],[483,"impl-Catalog-for-Theme"],[484,"impl-Catalog-for-Theme"],[485,"impl-Catalog-for-Theme"],[486,"impl-Catalog-for-Theme"],[557,"impl-Div%3Cf32%3E-for-Radians"],[558,"impl-Div-for-Radians"],[559,"impl-Div-for-Pixels"],[560,"impl-Div%3Cf32%3E-for-Pixels"],[561,"impl-Div%3Cu32%3E-for-Pixels"],[626,"impl-PartialEq-for-Degrees"],[627,"impl-PartialEq%3Cf32%3E-for-Degrees"],[628,"impl-PartialEq%3Cf32%3E-for-Radians"],[629,"impl-PartialEq-for-Radians"],[675,"impl-Display-for-Error"],[676,"impl-Debug-for-Error"],[684,"impl-Display-for-Theme"],[685,"impl-Debug-for-Theme"],[687,"impl-Debug-for-Radians"],[688,"impl-Display-for-Radians"],[691,"impl-Debug-for-ContentFit"],[692,"impl-Display-for-ContentFit"],[695,"impl-Debug-for-Point%3CT%3E"],[696,"impl-Display-for-Point%3CT%3E"],[711,"impl-From%3CHorizontal%3E-for-Alignment"],[712,"impl-From%3CVertical%3E-for-Alignment"],[720,"impl-From%3CPixels%3E-for-Padding"],[721,"impl-From%3Cu16%3E-for-Padding"],[722,"impl-From%3C%5Bf32;+2%5D%3E-for-Padding"],[723,"impl-From%3C%5Bu16;+2%5D%3E-for-Padding"],[724,"impl-From%3Cf32%3E-for-Padding"],[728,"impl-From%3Cf32%3E-for-Degrees"],[729,"impl-From%3Cu8%3E-for-Degrees"],[730,"impl-From%3CDegrees%3E-for-Radians"],[731,"impl-From%3Cu8%3E-for-Radians"],[733,"impl-From%3Cf32%3E-for-Radians"],[735,"impl-From%3CGradient%3E-for-Background"],[736,"impl-From%3CLinear%3E-for-Background"],[737,"impl-From%3CColor%3E-for-Background"],[738,"impl-From%3C%5Bf32;+4%5D%3E-for-Color"],[739,"impl-From%3CAlpha%3CRgb,+f32%3E%3E-for-Color"],[740,"impl-From%3CRgb%3E-for-Color"],[741,"impl-From%3C%5Bf32;+3%5D%3E-for-Color"],[745,"impl-From%3CPixels%3E-for-Length"],[746,"impl-From%3Cf32%3E-for-Length"],[747,"impl-From%3Cu16%3E-for-Length"],[749,"impl-From%3Cf32%3E-for-Pixels"],[750,"impl-From%3Cu16%3E-for-Pixels"],[751,"impl-From%3C(T,+T)%3E-for-Point%3CT%3E"],[753,"impl-From%3C%5BT;+2%5D%3E-for-Point%3CT%3E"],[756,"impl-From%3Cf32%3E-for-Rotation"],[757,"impl-From%3CRadians%3E-for-Rotation"],[761,"impl-From%3C(T,+T)%3E-for-Size%3CT%3E"],[762,"impl-From%3C%5BT;+2%5D%3E-for-Size%3CT%3E"],[763,"impl-From%3CPadding%3E-for-Size"],[765,"impl-From%3CVector%3CT%3E%3E-for-Size%3CT%3E"],[767,"impl-From%3C%5BT;+2%5D%3E-for-Vector%3CT%3E"],[768,"impl-From%3CSize%3CT%3E%3E-for-Vector%3CT%3E"],[1126,"impl-Mul-for-Radians"],[1127,"impl-Mul%3Cf32%3E-for-Radians"],[1128,"impl-Mul%3Cf32%3E-for-Pixels"],[1129,"impl-Mul-for-Pixels"],[1131,"impl-Mul%3Cf32%3E-for-Rectangle"],[1132,"impl-Mul%3CVector%3CT%3E%3E-for-Rectangle%3CT%3E"],[1133,"impl-Mul%3CTransformation%3E-for-Rectangle"],[1134,"impl-Mul%3CT%3E-for-Size%3CT%3E"],[1135,"impl-Mul%3CVector%3CT%3E%3E-for-Size%3CT%3E"],[1136,"impl-Mul%3CTransformation%3E-for-Size"],[1138,"impl-Mul%3CT%3E-for-Vector%3CT%3E"],[1139,"impl-Mul%3CTransformation%3E-for-Vector"],[1172,"impl-PartialOrd-for-Degrees"],[1173,"impl-PartialOrd%3Cf32%3E-for-Degrees"],[1174,"impl-PartialOrd%3Cf32%3E-for-Radians"],[1175,"impl-PartialOrd-for-Radians"],[1217,"impl-Catalog-for-Theme"],[1218,"impl-Catalog-for-Theme"],[1219,"impl-Catalog-for-Theme"],[1220,"impl-Catalog-for-Theme"],[1221,"impl-Catalog-for-Theme"],[1222,"impl-Catalog-for-Theme"],[1223,"impl-Catalog-for-Theme"],[1224,"impl-Catalog-for-Theme"],[1225,"impl-Catalog-for-Theme"],[1226,"impl-Catalog-for-Theme"],[1227,"impl-Catalog-for-Theme"],[1228,"impl-Catalog-for-Theme"],[1229,"impl-Catalog-for-Theme"],[1230,"impl-Catalog-for-Theme"],[1231,"impl-Catalog-for-Theme"],[1232,"impl-Catalog-for-Theme"],[1233,"impl-Catalog-for-Theme"],[1236,"impl-Sub%3CVector%3CT%3E%3E-for-Point%3CT%3E"],[1237,"impl-Sub-for-Point%3CT%3E"],[1952,"impl-PartialEq-for-Bytes"],[1953,"impl-PartialEq%3C%26T%3E-for-Bytes"],[1954,"impl-PartialEq%3C%5Bu8%5D%3E-for-Bytes"],[1955,"impl-PartialEq%3Cstr%3E-for-Bytes"],[1956,"impl-PartialEq%3CVec%3Cu8%3E%3E-for-Bytes"],[1957,"impl-PartialEq%3CString%3E-for-Bytes"],[1958,"impl-PartialEq%3CBytesMut%3E-for-Bytes"],[1977,"impl-UpperHex-for-Bytes"],[1978,"impl-Debug-for-Bytes"],[1979,"impl-LowerHex-for-Bytes"],[1984,"impl-From%3CBox%3C%5Bu8%5D%3E%3E-for-Bytes"],[1985,"impl-From%3CScreenshot%3E-for-Bytes"],[1986,"impl-From%3C%26%5Bu8%5D%3E-for-Bytes"],[1987,"impl-From%3C%26str%3E-for-Bytes"],[1988,"impl-From%3CVec%3Cu8%3E%3E-for-Bytes"],[1990,"impl-From%3CBytesMut%3E-for-Bytes"],[1991,"impl-From%3CString%3E-for-Bytes"],[1995,"impl-From%3CT%3E-for-Handle"],[1996,"impl-From%3C%26Handle%3E-for-Handle"],[2065,"impl-IntoIterator-for-%26Bytes"],[2066,"impl-IntoIterator-for-Bytes"],[2082,"impl-PartialOrd%3C%5Bu8%5D%3E-for-Bytes"],[2083,"impl-PartialOrd-for-Bytes"],[2084,"impl-PartialOrd%3Cstr%3E-for-Bytes"],[2085,"impl-PartialOrd%3C%26T%3E-for-Bytes"],[2086,"impl-PartialOrd%3CString%3E-for-Bytes"],[2087,"impl-PartialOrd%3CVec%3Cu8%3E%3E-for-Bytes"],[2530,"impl-Group%3C\'a,+Message,+Theme,+Renderer%3E"],[2531,"impl-Overlay%3CMessage,+Theme,+Renderer%3E-for-Group%3C\'_,+Message,+Theme,+Renderer%3E"],[3170,"impl-From%3CPixels%3E-for-LineHeight"],[3171,"impl-From%3Cf32%3E-for-LineHeight"],[3776,"impl-From%3CId%3E-for-Id"],[3777,"impl-From%3CId%3E-for-Id"],[3778,"impl-From%3CId%3E-for-Id"],[3831,"impl-Text%3C\'a,+Theme,+Renderer%3E"],[3832,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-Text%3C\'_,+Theme,+Renderer%3E"],[4431,"impl-From%3Cu8%3E-for-Radius"],[4432,"impl-From%3Cu16%3E-for-Radius"],[4433,"impl-From%3Ci32%3E-for-Radius"],[4434,"impl-From%3Cf32%3E-for-Radius"],[5008,"impl-Flags-for-Modifiers"],[5009,"impl-Modifiers"],[5087,"impl-Binary-for-Modifiers"],[5088,"impl-Debug-for-Modifiers"],[5089,"impl-UpperHex-for-Modifiers"],[5090,"impl-LowerHex-for-Modifiers"],[5091,"impl-Octal-for-Modifiers"],[5102,"impl-Flags-for-Modifiers"],[5103,"impl-Modifiers"],[5818,"impl-PartialEq%3CPhysical%3E-for-Code"],[5819,"impl-PartialEq-for-Code"],[5820,"impl-PartialEq%3CPhysical%3E-for-NativeCode"],[5821,"impl-PartialEq-for-NativeCode"],[5822,"impl-PartialEq%3CNativeCode%3E-for-Physical"],[5823,"impl-PartialEq%3CCode%3E-for-Physical"],[5824,"impl-PartialEq-for-Physical"],[6572,"impl-Debug-for-Custom"],[6573,"impl-Display-for-Custom"],[7065,"impl-Add%3CDuration%3E-for-Instant"],[7066,"impl-Add%3CDuration%3E-for-Instant"],[7067,"impl-Add-for-Duration"],[7068,"impl-Add%3CDuration%3E-for-Duration"],[7069,"impl-AddAssign%3CDuration%3E-for-Instant"],[7070,"impl-AddAssign%3CDuration%3E-for-Instant"],[7071,"impl-AddAssign-for-Duration"],[7072,"impl-AddAssign%3CDuration%3E-for-Duration"],[7125,"impl-Div%3CDuration%3E-for-Duration"],[7126,"impl-Div%3Cu32%3E-for-Duration"],[7140,"impl-PartialEq-for-Duration"],[7141,"impl-PartialEq%3CDuration%3E-for-Duration"],[7153,"impl-From%3CDelay%3E-for-Duration"],[7154,"impl-From%3CTimeSpec%3E-for-Duration"],[7204,"impl-PartialOrd%3CDuration%3E-for-Duration"],[7205,"impl-PartialOrd-for-Duration"],[7215,"impl-Sub%3CDuration%3E-for-Instant"],[7216,"impl-Sub%3CDuration%3E-for-Instant"],[7217,"impl-Sub-for-Instant"],[7218,"impl-Sub-for-Duration"],[7219,"impl-Sub%3CDuration%3E-for-Duration"],[7220,"impl-SubAssign%3CDuration%3E-for-Instant"],[7221,"impl-SubAssign%3CDuration%3E-for-Instant"],[7222,"impl-SubAssign%3CDuration%3E-for-Duration"],[7223,"impl-SubAssign-for-Duration"],[7227,"impl-Sum-for-Duration"],[7228,"impl-Sum%3C%26Duration%3E-for-Duration"],[7926,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-TextInput%3C\'_,+Message,+Theme,+Renderer%3E"],[7927,"impl-TextInput%3C\'a,+Message,+Theme,+Renderer%3E"],[8451,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-TextInput%3C\'_,+Message,+Theme,+Renderer%3E"],[8452,"impl-TextInput%3C\'a,+Message,+Theme,+Renderer%3E"],[8675,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-Checkbox%3C\'_,+Message,+Theme,+Renderer%3E"],[8676,"impl-Checkbox%3C\'a,+Message,+Theme,+Renderer%3E"],[8677,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-ComboBox%3C\'_,+T,+Message,+Theme,+Renderer%3E"],[8678,"impl-ComboBox%3C\'a,+T,+Message,+Theme,+Renderer%3E"],[8684,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-Radio%3C\'_,+Message,+Theme,+Renderer%3E"],[8685,"impl-Radio%3C\'a,+Message,+Theme,+Renderer%3E"],[8689,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-TextEditor%3C\'_,+Highlighter,+Message,+Theme,+Renderer%3E"],[8690,"impl-TextEditor%3C\'a,+Highlighter,+Message,+Theme,+Renderer%3E"],[8691,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-TextInput%3C\'_,+Message,+Theme,+Renderer%3E"],[8692,"impl-TextInput%3C\'a,+Message,+Theme,+Renderer%3E"],[8693,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-Toggler%3C\'_,+Message,+Theme,+Renderer%3E"],[8694,"impl-Toggler%3C\'a,+Message,+Theme,+Renderer%3E"],[9516,"impl-From%3CGradient%3E-for-Fill"],[9517,"impl-From%3CColor%3E-for-Fill"],[9519,"impl-From%3CLinear%3E-for-Fill"],[9525,"impl-From%3CColor%3E-for-Style"],[9527,"impl-From%3CGradient%3E-for-Style"],[9529,"impl-From%3CString%3E-for-Text"],[9530,"impl-From%3C%26str%3E-for-Text"],[10290,"impl-BuilderWithAttributes"],[10291,"impl-PathBuilder-for-BuilderWithAttributes"],[10343,"impl-BuilderWithAttributes"],[10344,"impl-Build-for-BuilderWithAttributes"],[10474,"impl-BuilderWithAttributes"],[10475,"impl-PathBuilder-for-BuilderWithAttributes"],[10581,"impl-PathBuilder-for-BuilderWithAttributes"],[10582,"impl-BuilderWithAttributes"],[10739,"impl-Index%3CControlPointId%3E-for-Path"],[10740,"impl-Index%3CEndpointId%3E-for-Path"],[10741,"impl-Index%3CControlPointId%3E-for-PathSlice%3C\'l%3E"],[10742,"impl-Index%3CEndpointId%3E-for-PathSlice%3C\'l%3E"],[10972,"impl-IntoIterator-for-%26PathSlice%3C\'l%3E"],[10973,"impl-IntoIterator-for-PathSlice%3C\'l%3E"],[11028,"impl-BuilderWithAttributes"],[11029,"impl-PathBuilder-for-BuilderWithAttributes"],[11053,"impl-BuilderWithAttributes"],[11054,"impl-PathBuilder-for-BuilderWithAttributes"],[11068,"impl-PathBuilder-for-BuilderWithAttributes"],[11069,"impl-BuilderWithAttributes"],[11071,"impl-PathBuilder-for-BuilderWithAttributes"],[11072,"impl-BuilderWithAttributes"],[11441,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[11442,"impl-NoAttributes%3CB%3E"],[11456,"impl-Flattened%3CBuilder%3E"],[11457,"impl-Build-for-Flattened%3CBuilder%3E"],[11459,"impl-Build-for-WithSvg%3CBuilder%3E"],[11460,"impl-WithSvg%3CBuilder%3E"],[11461,"impl-Build-for-NoAttributes%3CB%3E"],[11462,"impl-NoAttributes%3CB%3E"],[11477,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[11478,"impl-WithSvg%3CBuilder%3E"],[11489,"impl-WithSvg%3CBuilder%3E"],[11490,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[11491,"impl-NoAttributes%3CB%3E"],[11492,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[11519,"impl-NoAttributes%3CB%3E"],[11520,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[11530,"impl-Display-for-BorderRadii"],[11531,"impl-Debug-for-BorderRadii"],[11608,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[11609,"impl-WithSvg%3CBuilder%3E"],[11610,"impl-NoAttributes%3CB%3E"],[11611,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[11613,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[11614,"impl-WithSvg%3CBuilder%3E"],[11634,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[11635,"impl-WithSvg%3CBuilder%3E"],[11636,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[11637,"impl-NoAttributes%3CB%3E"],[11658,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[11659,"impl-WithSvg%3CBuilder%3E"],[11660,"impl-NoAttributes%3CB%3E"],[11661,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[11847,"impl-Index%3CControlPointId%3E-for-CommandsPathSlice%3C\'l,+Endpoint,+ControlPoint%3E"],[11848,"impl-Index%3CEndpointId%3E-for-CommandsPathSlice%3C\'l,+Endpoint,+ControlPoint%3E"],[12009,"impl-Add%3C%26Angle%3CT%3E%3E-for-Angle%3CT%3E"],[12010,"impl-Add-for-Angle%3CT%3E"],[12013,"impl-Segment-for-Arc%3CS%3E"],[12014,"impl-Arc%3CS%3E"],[12015,"impl-CubicBezierSegment%3CS%3E"],[12016,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12017,"impl-Segment-for-LineSegment%3CS%3E"],[12018,"impl-LineSegment%3CS%3E"],[12019,"impl-QuadraticBezierSegment%3CS%3E"],[12020,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[12026,"impl-Arc%3CS%3E"],[12027,"impl-Segment-for-Arc%3CS%3E"],[12028,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12029,"impl-CubicBezierSegment%3CS%3E"],[12076,"impl-Arc%3CS%3E"],[12077,"impl-Segment-for-Arc%3CS%3E"],[12078,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12079,"impl-CubicBezierSegment%3CS%3E"],[12080,"impl-Segment-for-LineSegment%3CS%3E"],[12081,"impl-LineSegment%3CS%3E"],[12082,"impl-QuadraticBezierSegment%3CS%3E"],[12083,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[12205,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12206,"impl-CubicBezierSegment%3CS%3E"],[12208,"impl-QuadraticBezierSegment%3CS%3E"],[12209,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[12214,"impl-Div-for-Angle%3CT%3E"],[12215,"impl-Div%3CT%3E-for-Angle%3CT%3E"],[12239,"impl-CubicBezierSegment%3CS%3E"],[12240,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12242,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[12243,"impl-QuadraticBezierSegment%3CS%3E"],[12245,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12246,"impl-CubicBezierSegment%3CS%3E"],[12248,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[12249,"impl-QuadraticBezierSegment%3CS%3E"],[12285,"impl-Arc%3CS%3E"],[12286,"impl-Segment-for-Arc%3CS%3E"],[12287,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12288,"impl-CubicBezierSegment%3CS%3E"],[12289,"impl-LineSegment%3CS%3E"],[12290,"impl-Segment-for-LineSegment%3CS%3E"],[12291,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[12292,"impl-QuadraticBezierSegment%3CS%3E"],[12309,"impl-Arc%3CS%3E"],[12310,"impl-Segment-for-Arc%3CS%3E"],[12312,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12313,"impl-CubicBezierSegment%3CS%3E"],[12315,"impl-QuadraticBezierSegment%3CS%3E"],[12316,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[12344,"impl-Arc%3CS%3E"],[12346,"impl-From%3CSvgArc%3CS%3E%3E-for-Arc%3CS%3E"],[12347,"impl-Segment-for-Arc%3CS%3E"],[12349,"impl-CubicBezierSegment%3CS%3E"],[12351,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12353,"impl-Segment-for-LineSegment%3CS%3E"],[12354,"impl-LineSegment%3CS%3E"],[12357,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[12359,"impl-QuadraticBezierSegment%3CS%3E"],[12554,"impl-Segment-for-Arc%3CS%3E"],[12555,"impl-Arc%3CS%3E"],[12556,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12557,"impl-CubicBezierSegment%3CS%3E"],[12558,"impl-Segment-for-LineSegment%3CS%3E"],[12559,"impl-LineSegment%3CS%3E"],[12560,"impl-QuadraticBezierSegment%3CS%3E"],[12561,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[12578,"impl-Arc%3CS%3E"],[12579,"impl-Segment-for-Arc%3CS%3E"],[12580,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12581,"impl-CubicBezierSegment%3CS%3E"],[12582,"impl-LineSegment%3CS%3E"],[12583,"impl-Segment-for-LineSegment%3CS%3E"],[12584,"impl-QuadraticBezierSegment%3CS%3E"],[12585,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[12588,"impl-Arc%3CS%3E"],[12589,"impl-Segment-for-Arc%3CS%3E"],[12590,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12591,"impl-CubicBezierSegment%3CS%3E"],[12592,"impl-Segment-for-LineSegment%3CS%3E"],[12593,"impl-LineSegment%3CS%3E"],[12594,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[12595,"impl-QuadraticBezierSegment%3CS%3E"],[12603,"impl-Sum%3C%26Angle%3CT%3E%3E-for-Angle%3CT%3E"],[12604,"impl-Sum-for-Angle%3CT%3E"],[12609,"impl-Arc%3CS%3E"],[12610,"impl-Segment-for-Arc%3CS%3E"],[12611,"impl-CubicBezierSegment%3CS%3E"],[12612,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12613,"impl-Segment-for-LineSegment%3CS%3E"],[12614,"impl-LineSegment%3CS%3E"],[12615,"impl-QuadraticBezierSegment%3CS%3E"],[12616,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[12745,"impl-Arc%3CS%3E"],[12746,"impl-Segment-for-Arc%3CS%3E"],[12747,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12748,"impl-CubicBezierSegment%3CS%3E"],[12749,"impl-LineSegment%3CS%3E"],[12750,"impl-Segment-for-LineSegment%3CS%3E"],[12751,"impl-QuadraticBezierSegment%3CS%3E"],[12752,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[12763,"impl-Arc%3CS%3E"],[12764,"impl-Segment-for-Arc%3CS%3E"],[12765,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12766,"impl-CubicBezierSegment%3CS%3E"],[12767,"impl-LineSegment%3CS%3E"],[12768,"impl-Segment-for-LineSegment%3CS%3E"],[12769,"impl-QuadraticBezierSegment%3CS%3E"],[12770,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[12871,"impl-AsRef%3CPath%3E-for-ArrayString%3CCAP%3E"],[12872,"impl-AsRef%3Cstr%3E-for-ArrayString%3CCAP%3E"],[12957,"impl-PartialEq%3C%5BT%5D%3E-for-ArrayVec%3CT,+CAP%3E"],[12958,"impl-PartialEq-for-ArrayVec%3CT,+CAP%3E"],[12959,"impl-PartialEq-for-ArrayString%3CCAP%3E"],[12960,"impl-PartialEq%3Cstr%3E-for-ArrayString%3CCAP%3E"],[12975,"impl-Display-for-ArrayString%3CCAP%3E"],[12976,"impl-Debug-for-ArrayString%3CCAP%3E"],[12977,"impl-Display-for-CapacityError%3CT%3E"],[12978,"impl-Debug-for-CapacityError%3CT%3E"],[13000,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[13001,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[13003,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[13004,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[13055,"impl-IntoIterator-for-%26ArrayVec%3CT,+CAP%3E"],[13056,"impl-IntoIterator-for-%26mut+ArrayVec%3CT,+CAP%3E"],[13057,"impl-IntoIterator-for-ArrayVec%3CT,+CAP%3E"],[13070,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[13071,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[13077,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[13078,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[13117,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[13118,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[13161,"impl-TryFrom%3C%26str%3E-for-ArrayString%3CCAP%3E"],[13163,"impl-TryFrom%3CArguments%3C\'a%3E%3E-for-ArrayString%3CCAP%3E"],[13364,"impl-Add-for-Length%3CT,+U%3E"],[13365,"impl-Add%3C%26Length%3CT,+U%3E%3E-for-Length%3CT,+U%3E"],[13366,"impl-Add%3CVector2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[13367,"impl-Add%3CSize2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[13368,"impl-Add%3CSize3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[13369,"impl-Add%3CVector3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[13372,"impl-Add-for-Size2D%3CT,+U%3E"],[13373,"impl-Add%3C%26Size2D%3CT,+U%3E%3E-for-Size2D%3CT,+U%3E"],[13374,"impl-Add%3C%26Size3D%3CT,+U%3E%3E-for-Size3D%3CT,+U%3E"],[13375,"impl-Add-for-Size3D%3CT,+U%3E"],[13378,"impl-Add-for-Vector2D%3CT,+U%3E"],[13379,"impl-Add%3C%26Vector2D%3CT,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[13380,"impl-Add%3C%26Vector3D%3CT,+U%3E%3E-for-Vector3D%3CT,+U%3E"],[13381,"impl-Add-for-Vector3D%3CT,+U%3E"],[13383,"impl-AddAssign%3CVector2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[13384,"impl-AddAssign%3CSize2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[13385,"impl-AddAssign%3CVector3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[13386,"impl-AddAssign%3CSize3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[13424,"impl-Transform2D%3CT,+Src,+Dst%3E"],[13425,"impl-ApproxEq%3CT%3E-for-Transform2D%3CT,+Src,+Dst%3E"],[13426,"impl-Transform3D%3CT,+Src,+Dst%3E"],[13427,"impl-ApproxEq%3CT%3E-for-Transform3D%3CT,+Src,+Dst%3E"],[13630,"impl-Point2D%3CT,+U%3E"],[13631,"impl-Ceil-for-Point2D%3CT,+U%3E"],[13632,"impl-Point3D%3CT,+U%3E"],[13633,"impl-Ceil-for-Point3D%3CT,+U%3E"],[13634,"impl-Size2D%3CT,+U%3E"],[13635,"impl-Ceil-for-Size2D%3CT,+U%3E"],[13636,"impl-Size3D%3CT,+U%3E"],[13637,"impl-Ceil-for-Size3D%3CT,+U%3E"],[13638,"impl-Vector2D%3CT,+U%3E"],[13639,"impl-Ceil-for-Vector2D%3CT,+U%3E"],[13640,"impl-Ceil-for-Vector3D%3CT,+U%3E"],[13641,"impl-Vector3D%3CT,+U%3E"],[13841,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Box2D%3CT,+U2%3E"],[13842,"impl-Div%3CT%3E-for-Box2D%3CT,+U%3E"],[13843,"impl-Div%3CT%3E-for-Box3D%3CT,+U%3E"],[13844,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Box3D%3CT,+U2%3E"],[13845,"impl-Div%3CLength%3CT,+Src%3E%3E-for-Length%3CT,+Dst%3E"],[13846,"impl-Div%3CScale%3CT,+Src,+Dst%3E%3E-for-Length%3CT,+Dst%3E"],[13847,"impl-Div%3CT%3E-for-Length%3CT,+U%3E"],[13848,"impl-Div%3CT%3E-for-Point2D%3CT,+U%3E"],[13849,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Point2D%3CT,+U2%3E"],[13850,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Point3D%3CT,+U2%3E"],[13851,"impl-Div%3CT%3E-for-Point3D%3CT,+U%3E"],[13852,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Rect%3CT,+U2%3E"],[13853,"impl-Div%3CT%3E-for-Rect%3CT,+U%3E"],[13854,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-SideOffsets2D%3CT,+U2%3E"],[13855,"impl-Div%3CT%3E-for-SideOffsets2D%3CT,+U%3E"],[13856,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Size2D%3CT,+U2%3E"],[13857,"impl-Div%3CT%3E-for-Size2D%3CT,+U%3E"],[13858,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Size3D%3CT,+U2%3E"],[13859,"impl-Div%3CT%3E-for-Size3D%3CT,+U%3E"],[13860,"impl-Div%3CT%3E-for-Vector2D%3CT,+U%3E"],[13861,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Vector2D%3CT,+U2%3E"],[13862,"impl-Div%3CT%3E-for-Vector3D%3CT,+U%3E"],[13863,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Vector3D%3CT,+U2%3E"],[13864,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Box2D%3CT,+U%3E"],[13865,"impl-DivAssign%3CT%3E-for-Box2D%3CT,+U%3E"],[13866,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Box3D%3CT,+U%3E"],[13867,"impl-DivAssign%3CT%3E-for-Box3D%3CT,+U%3E"],[13869,"impl-DivAssign%3CT%3E-for-Point2D%3CT,+U%3E"],[13870,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Point2D%3CT,+U%3E"],[13871,"impl-DivAssign%3CT%3E-for-Point3D%3CT,+U%3E"],[13872,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Point3D%3CT,+U%3E"],[13873,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Rect%3CT,+U%3E"],[13874,"impl-DivAssign%3CT%3E-for-Rect%3CT,+U%3E"],[13875,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-SideOffsets2D%3CT,+U%3E"],[13876,"impl-DivAssign%3CT%3E-for-SideOffsets2D%3CT,+U%3E"],[13877,"impl-DivAssign%3CT%3E-for-Size2D%3CT,+U%3E"],[13878,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Size2D%3CT,+U%3E"],[13879,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Size3D%3CT,+U%3E"],[13880,"impl-DivAssign%3CT%3E-for-Size3D%3CT,+U%3E"],[13881,"impl-DivAssign%3CT%3E-for-Vector2D%3CT,+U%3E"],[13882,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[13883,"impl-DivAssign%3CT%3E-for-Vector3D%3CT,+U%3E"],[13884,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Vector3D%3CT,+U%3E"],[14035,"impl-Point2D%3CT,+U%3E"],[14036,"impl-Floor-for-Point2D%3CT,+U%3E"],[14037,"impl-Floor-for-Point3D%3CT,+U%3E"],[14038,"impl-Point3D%3CT,+U%3E"],[14039,"impl-Size2D%3CT,+U%3E"],[14040,"impl-Floor-for-Size2D%3CT,+U%3E"],[14041,"impl-Floor-for-Size3D%3CT,+U%3E"],[14042,"impl-Size3D%3CT,+U%3E"],[14043,"impl-Floor-for-Vector2D%3CT,+U%3E"],[14044,"impl-Vector2D%3CT,+U%3E"],[14045,"impl-Vector3D%3CT,+U%3E"],[14046,"impl-Floor-for-Vector3D%3CT,+U%3E"],[14074,"impl-From%3CVector2D%3CT,+U%3E%3E-for-HomogeneousVector%3CT,+U%3E"],[14076,"impl-From%3CVector3D%3CT,+U%3E%3E-for-HomogeneousVector%3CT,+U%3E"],[14077,"impl-From%3CPoint2D%3CT,+U%3E%3E-for-HomogeneousVector%3CT,+U%3E"],[14078,"impl-From%3CPoint3D%3CT,+U%3E%3E-for-HomogeneousVector%3CT,+U%3E"],[14081,"impl-From%3C%5BT;+2%5D%3E-for-Point2D%3CT,+U%3E"],[14082,"impl-From%3C(T,+T)%3E-for-Point2D%3CT,+U%3E"],[14083,"impl-From%3C%5BT;+3%5D%3E-for-Point3D%3CT,+U%3E"],[14084,"impl-From%3C(T,+T,+T)%3E-for-Point3D%3CT,+U%3E"],[14088,"impl-From%3CRotation3D%3CT,+Src,+Dst%3E%3E-for-RigidTransform3D%3CT,+Src,+Dst%3E"],[14090,"impl-From%3CVector3D%3CT,+Dst%3E%3E-for-RigidTransform3D%3CT,+Src,+Dst%3E"],[14096,"impl-From%3C(T,+T)%3E-for-Size2D%3CT,+U%3E"],[14097,"impl-From%3C%5BT;+2%5D%3E-for-Size2D%3CT,+U%3E"],[14098,"impl-From%3CVector2D%3CT,+U%3E%3E-for-Size2D%3CT,+U%3E"],[14100,"impl-From%3C(T,+T,+T)%3E-for-Size3D%3CT,+U%3E"],[14101,"impl-From%3CVector3D%3CT,+U%3E%3E-for-Size3D%3CT,+U%3E"],[14102,"impl-From%3C%5BT;+3%5D%3E-for-Size3D%3CT,+U%3E"],[14107,"impl-From%3CTranslation2D%3CT,+Src,+Dst%3E%3E-for-Vector2D%3CT,+Src%3E"],[14108,"impl-From%3CSize2D%3CT,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[14109,"impl-From%3C(T,+T)%3E-for-Vector2D%3CT,+U%3E"],[14110,"impl-From%3C%5BT;+2%5D%3E-for-Vector2D%3CT,+U%3E"],[14112,"impl-From%3C(T,+T,+T)%3E-for-Vector3D%3CT,+U%3E"],[14113,"impl-From%3CTranslation3D%3CT,+Src,+Dst%3E%3E-for-Vector3D%3CT,+Src%3E"],[14114,"impl-From%3C%5BT;+3%5D%3E-for-Vector3D%3CT,+U%3E"],[14606,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Box2D%3CT,+U1%3E"],[14607,"impl-Mul%3CT%3E-for-Box2D%3CT,+U%3E"],[14608,"impl-Mul%3CT%3E-for-Box3D%3CT,+U%3E"],[14609,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Box3D%3CT,+U1%3E"],[14610,"impl-Mul%3CT%3E-for-Length%3CT,+U%3E"],[14611,"impl-Mul%3CScale%3CT,+Src,+Dst%3E%3E-for-Length%3CT,+Src%3E"],[14612,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Point2D%3CT,+U1%3E"],[14613,"impl-Mul%3CT%3E-for-Point2D%3CT,+U%3E"],[14614,"impl-Mul%3CT%3E-for-Point3D%3CT,+U%3E"],[14615,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Point3D%3CT,+U1%3E"],[14616,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Rect%3CT,+U1%3E"],[14617,"impl-Mul%3CT%3E-for-Rect%3CT,+U%3E"],[14619,"impl-Mul%3CT%3E-for-SideOffsets2D%3CT,+U%3E"],[14620,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-SideOffsets2D%3CT,+U1%3E"],[14621,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Size2D%3CT,+U1%3E"],[14622,"impl-Mul%3CT%3E-for-Size2D%3CT,+U%3E"],[14623,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Size3D%3CT,+U1%3E"],[14624,"impl-Mul%3CT%3E-for-Size3D%3CT,+U%3E"],[14625,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Vector2D%3CT,+U1%3E"],[14626,"impl-Mul%3CT%3E-for-Vector2D%3CT,+U%3E"],[14627,"impl-Mul%3CT%3E-for-Vector3D%3CT,+U%3E"],[14628,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Vector3D%3CT,+U1%3E"],[14629,"impl-MulAssign%3CT%3E-for-Box2D%3CT,+U%3E"],[14630,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Box2D%3CT,+U%3E"],[14631,"impl-MulAssign%3CT%3E-for-Box3D%3CT,+U%3E"],[14632,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Box3D%3CT,+U%3E"],[14634,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Point2D%3CT,+U%3E"],[14635,"impl-MulAssign%3CT%3E-for-Point2D%3CT,+U%3E"],[14636,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Point3D%3CT,+U%3E"],[14637,"impl-MulAssign%3CT%3E-for-Point3D%3CT,+U%3E"],[14638,"impl-MulAssign%3CT%3E-for-Rect%3CT,+U%3E"],[14639,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Rect%3CT,+U%3E"],[14640,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-SideOffsets2D%3CT,+U%3E"],[14641,"impl-MulAssign%3CT%3E-for-SideOffsets2D%3CT,+U%3E"],[14642,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Size2D%3CT,+U%3E"],[14643,"impl-MulAssign%3CT%3E-for-Size2D%3CT,+U%3E"],[14644,"impl-MulAssign%3CT%3E-for-Size3D%3CT,+U%3E"],[14645,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Size3D%3CT,+U%3E"],[14646,"impl-MulAssign%3CT%3E-for-Vector2D%3CT,+U%3E"],[14647,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[14648,"impl-MulAssign%3CT%3E-for-Vector3D%3CT,+U%3E"],[14649,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Vector3D%3CT,+U%3E"],[14761,"impl-Point2D%3CT,+U%3E"],[14762,"impl-Round-for-Point2D%3CT,+U%3E"],[14763,"impl-Round-for-Point3D%3CT,+U%3E"],[14764,"impl-Point3D%3CT,+U%3E"],[14766,"impl-Round-for-Size2D%3CT,+U%3E"],[14767,"impl-Size2D%3CT,+U%3E"],[14768,"impl-Size3D%3CT,+U%3E"],[14769,"impl-Round-for-Size3D%3CT,+U%3E"],[14770,"impl-Round-for-Vector2D%3CT,+U%3E"],[14771,"impl-Vector2D%3CT,+U%3E"],[14772,"impl-Round-for-Vector3D%3CT,+U%3E"],[14773,"impl-Vector3D%3CT,+U%3E"],[14814,"impl-Sub-for-Point2D%3CT,+U%3E"],[14815,"impl-Sub%3CSize2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[14816,"impl-Sub%3CVector2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[14817,"impl-Sub-for-Point3D%3CT,+U%3E"],[14818,"impl-Sub%3CSize3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[14819,"impl-Sub%3CVector3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[14829,"impl-SubAssign%3CVector2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[14830,"impl-SubAssign%3CSize2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[14831,"impl-SubAssign%3CSize3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[14832,"impl-SubAssign%3CVector3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[14840,"impl-Sum%3C%26Length%3CT,+U%3E%3E-for-Length%3CT,+U%3E"],[14841,"impl-Sum-for-Length%3CT,+U%3E"],[14842,"impl-Sum-for-Size2D%3CT,+U%3E"],[14843,"impl-Sum%3C%26Size2D%3CT,+U%3E%3E-for-Size2D%3CT,+U%3E"],[14844,"impl-Sum-for-Size3D%3CT,+U%3E"],[14845,"impl-Sum%3C%26Size3D%3CT,+U%3E%3E-for-Size3D%3CT,+U%3E"],[14846,"impl-Sum-for-Vector2D%3CT,+U%3E"],[14847,"impl-Sum%3C%26Vector2D%3CT,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[14848,"impl-Sum%3C%26Vector3D%3CT,+U%3E%3E-for-Vector3D%3CT,+U%3E"],[14849,"impl-Sum-for-Vector3D%3CT,+U%3E"],[15032,"impl-Rotation2D%3CT,+Src,+Dst%3E"],[15033,"impl-Transformation%3CS%3E-for-Rotation2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[15034,"impl-Transformation%3CS%3E-for-Scale%3CS,+UnknownUnit,+UnknownUnit%3E"],[15035,"impl-Scale%3CT,+Src,+Dst%3E"],[15036,"impl-Transformation%3CS%3E-for-Translation2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[15037,"impl-Translation2D%3CT,+Src,+Dst%3E"],[15038,"impl-Transformation%3CS%3E-for-Transform2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[15039,"impl-Transform2D%3CT,+Src,+Dst%3E"],[15055,"impl-Transformation%3CS%3E-for-Rotation2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[15056,"impl-Rotation2D%3CT,+Src,+Dst%3E"],[15057,"impl-Transformation%3CS%3E-for-Scale%3CS,+UnknownUnit,+UnknownUnit%3E"],[15058,"impl-Scale%3CT,+Src,+Dst%3E"],[15060,"impl-Transform2D%3CT,+Src,+Dst%3E"],[15061,"impl-Transformation%3CS%3E-for-Transform2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[15368,"impl-Zero-for-Point2D%3CT,+U%3E"],[15369,"impl-Point2D%3CT,+U%3E"],[15370,"impl-Point3D%3CT,+U%3E"],[15371,"impl-Zero-for-Point3D%3CT,+U%3E"],[15374,"impl-Size2D%3CT,+U%3E"],[15375,"impl-Zero-for-Size2D%3CT,+U%3E"],[15376,"impl-Zero-for-Size3D%3CT,+U%3E"],[15377,"impl-Size3D%3CT,+U%3E"],[15378,"impl-Zero-for-Vector2D%3CT,+U%3E"],[15379,"impl-Vector2D%3CT,+U%3E"],[15380,"impl-Zero-for-Vector3D%3CT,+U%3E"],[15381,"impl-Vector3D%3CT,+U%3E"],[15853,"impl-PathBuilder-for-Builder%3C\'l%3E"],[15854,"impl-Builder%3C\'l%3E"],[15855,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[15856,"impl-BuilderWithAttributes%3C\'l%3E"],[15863,"impl-Build-for-Builder%3C\'l%3E"],[15864,"impl-Builder%3C\'l%3E"],[15865,"impl-BuilderWithAttributes%3C\'l%3E"],[15866,"impl-Build-for-BuilderWithAttributes%3C\'l%3E"],[15876,"impl-Builder%3C\'l%3E"],[15877,"impl-PathBuilder-for-Builder%3C\'l%3E"],[15878,"impl-BuilderWithAttributes%3C\'l%3E"],[15879,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[15892,"impl-PathBuilder-for-Builder%3C\'l%3E"],[15893,"impl-Builder%3C\'l%3E"],[15894,"impl-BuilderWithAttributes%3C\'l%3E"],[15895,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[15936,"impl-PathBuilder-for-Builder%3C\'l%3E"],[15937,"impl-Builder%3C\'l%3E"],[15938,"impl-BuilderWithAttributes%3C\'l%3E"],[15939,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[15945,"impl-Builder%3C\'l%3E"],[15946,"impl-PathBuilder-for-Builder%3C\'l%3E"],[15947,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[15948,"impl-BuilderWithAttributes%3C\'l%3E"],[15949,"impl-Builder%3C\'l%3E"],[15950,"impl-PathBuilder-for-Builder%3C\'l%3E"],[15951,"impl-BuilderWithAttributes%3C\'l%3E"],[15952,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[16472,"impl-From%3CLinear%3E-for-Style"],[16473,"impl-From%3CColor%3E-for-Style"],[16475,"impl-From%3CGradient%3E-for-Style"],[16871,"impl-Display-for-Url"],[16872,"impl-Debug-for-Url"],[16873,"impl-Debug-for-HeadingLevel"],[16874,"impl-Display-for-HeadingLevel"],[16887,"impl-From%3CTheme%3E-for-Settings"],[16888,"impl-From%3C%26Theme%3E-for-Settings"],[16889,"impl-From%3CTheme%3E-for-Style"],[16890,"impl-From%3CPalette%3E-for-Style"],[16891,"impl-From%3C%26Theme%3E-for-Style"],[16927,"impl-Index%3CRangeTo%3CPosition%3E%3E-for-Url"],[16928,"impl-Index%3CRangeFull%3E-for-Url"],[16929,"impl-Index%3CRangeFrom%3CPosition%3E%3E-for-Url"],[16930,"impl-Index%3CRange%3CPosition%3E%3E-for-Url"],[18483,"impl-Debug-for-Error"],[18484,"impl-Display-for-Error"],[19940,"impl-Rich%3C\'a,+Link,+Message,+Theme,+Renderer%3E"],[19941,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-Rich%3C\'_,+Link,+Message,+Theme,+Renderer%3E"],[20407,"impl-State%3CHighlighter%3E"],[20408,"impl-Focusable-for-State%3CHighlighter%3E"],[20711,"impl-Debug-for-Value"],[20712,"impl-Display-for-Value"],[20721,"impl-Focusable-for-State%3CP%3E"],[20722,"impl-State%3CP%3E"],[20729,"impl-From%3C%26str%3E-for-Id"],[20730,"impl-From%3CString%3E-for-Id"],[20835,"impl-State%3CP%3E"],[20836,"impl-Focusable-for-State%3CP%3E"],[20839,"impl-State%3CP%3E"],[20840,"impl-TextInput-for-State%3CP%3E"],[20842,"impl-TextInput-for-State%3CP%3E"],[20843,"impl-State%3CP%3E"],[20845,"impl-TextInput-for-State%3CP%3E"],[20846,"impl-State%3CP%3E"],[20860,"impl-State%3CP%3E"],[20861,"impl-TextInput-for-State%3CP%3E"],[20935,"impl-Focusable-for-State%3CP%3E"],[20936,"impl-State%3CP%3E"],[21607,"impl-Display-for-Id"],[21608,"impl-Debug-for-Id"],[21968,"impl-Display-for-Error"],[21969,"impl-Debug-for-Error"],[21971,"impl-From%3CImageError%3E-for-Error"],[21972,"impl-From%3CError%3E-for-Error"],[21973,"impl-From%3CError%3E-for-Error"],[22799,"impl-Display-for-HandleError"],[22800,"impl-Debug-for-HandleError"],[22832,"impl-From%3CDrmWindowHandle%3E-for-RawWindowHandle"],[22833,"impl-From%3CGbmWindowHandle%3E-for-RawWindowHandle"],[22835,"impl-From%3CWebCanvasWindowHandle%3E-for-RawWindowHandle"],[22836,"impl-From%3CWebWindowHandle%3E-for-RawWindowHandle"],[22837,"impl-From%3CWindowHandle%3C\'_%3E%3E-for-RawWindowHandle"],[22838,"impl-From%3CWebOffscreenCanvasWindowHandle%3E-for-RawWindowHandle"],[22839,"impl-From%3CAndroidNdkWindowHandle%3E-for-RawWindowHandle"],[22840,"impl-From%3CUiKitWindowHandle%3E-for-RawWindowHandle"],[22841,"impl-From%3CWin32WindowHandle%3E-for-RawWindowHandle"],[22842,"impl-From%3CXlibWindowHandle%3E-for-RawWindowHandle"],[22843,"impl-From%3CWinRtWindowHandle%3E-for-RawWindowHandle"],[22844,"impl-From%3CAppKitWindowHandle%3E-for-RawWindowHandle"],[22845,"impl-From%3CWaylandWindowHandle%3E-for-RawWindowHandle"],[22846,"impl-From%3COrbitalWindowHandle%3E-for-RawWindowHandle"],[22847,"impl-From%3COhosNdkWindowHandle%3E-for-RawWindowHandle"],[22848,"impl-From%3CXcbWindowHandle%3E-for-RawWindowHandle"],[22849,"impl-From%3CHaikuWindowHandle%3E-for-RawWindowHandle"],[22850,"impl-From%3CAndroidDisplayHandle%3E-for-RawDisplayHandle"],[22851,"impl-From%3CUiKitDisplayHandle%3E-for-RawDisplayHandle"],[22852,"impl-From%3CWindowsDisplayHandle%3E-for-RawDisplayHandle"],[22853,"impl-From%3CGbmDisplayHandle%3E-for-RawDisplayHandle"],[22854,"impl-From%3CWebDisplayHandle%3E-for-RawDisplayHandle"],[22856,"impl-From%3COhosDisplayHandle%3E-for-RawDisplayHandle"],[22857,"impl-From%3CDrmDisplayHandle%3E-for-RawDisplayHandle"],[22858,"impl-From%3CWaylandDisplayHandle%3E-for-RawDisplayHandle"],[22859,"impl-From%3CAppKitDisplayHandle%3E-for-RawDisplayHandle"],[22860,"impl-From%3CXcbDisplayHandle%3E-for-RawDisplayHandle"],[22861,"impl-From%3CXlibDisplayHandle%3E-for-RawDisplayHandle"],[22862,"impl-From%3CDisplayHandle%3C\'_%3E%3E-for-RawDisplayHandle"],[22863,"impl-From%3CHaikuDisplayHandle%3E-for-RawDisplayHandle"],[22864,"impl-From%3COrbitalDisplayHandle%3E-for-RawDisplayHandle"],[23709,"impl-Debug-for-CropError"],[23710,"impl-Display-for-CropError"]],"c":"OjAAAAEAAAAAAAwAEAAAAMMczhzxHEselSEEInYjlyNqQglWClYjWyVb","e":"OjAAAAEAAAAAANFFEAAAABAhQABIAAABAAAIAgACgP////8D8P///////////////5/w/////////P//D/7/////////f/D//z/4////h////////8f3////////8P//////APj///+Jgz5ef9x1XPv////B////C0/+//8HAAAA/v///////////////////////////5////8BwP8/AP9/4AMCAGAA///3H7P/////4P/////////////////////////////3//9/+P//vwAAAPf/Pwf//c7h8Ofg//8fAAAAAID///9xAPj/////+fn/9///BYD///////f//+////7////8vzVf+O6D//////+B+Qf4/v/f//9/gPn39s//5s3/PwAE5v9/8P+7f/9BAw/OJ//33/3L/wD4///u/3/8///n2vP/i0SR/38N/vf2/z+bn/9/g///BwD+////////H3fH//93////P4D/////3H///3Jux///P/D///8DAAAAAP7///8P/P/8/f9/+IPn/////f/jDxj9/w7wB/z///////cHADwA4O///////z9/+AMAAAAAAPz//uffz5v/f8D//wb4//e3/493/v/9/7/j//4G/QPiPwLO//+Hc36490b+d/z//wUCiqD//+8OwPe8cH8AgL/5f/8F7t/+BgAAAAAAAPz/+7/558//n/j/PwD8/////1///P///7////9//v+/9///kL88uX8A+Cf8AZ5/f/8IAvwH0D8v9w/wL4D//+/+wf/gfJx33P///////////////78P/v8P/v////89////////g/H///7//Pz/i///BwDA8/8P4v//f3v++/f/71+88D/g////P4AMvP////cPAEIAAAAqAIKKAAAAAAAAAAgAAAAAAAAAAAAAAAABGBAAAAAAENAfAoAE6QBAAACAAAAAACACAggUAFAAAAAAgQL8///////////////D/z/8//////////8/OPDgfPL///////////////8H///g/////x8e/v//////BwD+//z/yf8f/uP//yeA////BwD+n9f0D/wP//+7f/8DAAAAAADw/8f//+f///iP//9/4P///x8AAADA/////z/A//////+/f/7//////wH+/4F/gP////////9/AID///////////9/AAD3/QP8Cf6//+H5320A2/z/Y3jga/Gf/x/4//////Pn//////8BAAAAAAAAAMD///8/AID///////////////////9////////////g////HwD+fwAAcPD///8P5/////////////f////////+/////w8PAAAAAOD///9//////wAAAADA////PwAAAAD+////////////////////////////////+////wf+/9//AQD8//8HAAAADgAAAACA/9/+/wEAAAAAAOBfv1f/LwD4//8DAID//z8AAADB/////////////////////////////////////////7////8A/////wAAAAAA4H/+f/7/+fn/D/j/fwAAAAD8////////////+/////u//////+f/n/9xQf3///Q/AP////////////8APwIA//v///////////3P/yDx///dP//D/P///56f///g//8x/r25/5Of/38E///nn392/+B/cOEXBwcH4AP///////////////////+f/P///////6P////////////////+/////////////////////////8H+/wdFAAD///////+////x////DwAA4P/////////////////////////////7//8/Dwty/eH9h/uH////1////////////////////////////////////////////wfwAQAA/f9/9/9+/8c+7///3346+L9/8P////+f1/8PPlUV3qv+9P/////vj4D/////9///////b/D/f/D/////r////////3/ox+fr+P9fJrv9/////8/y/38Q4f83/P//n/8///9vtf//f07r/4+EgNl/gKoCAOBaTfn//9X/1wD8//////////8nEGAI/v5+zavE6DPNCr79P9/zH0L////////////3/5wOdjoI/3/vv/f/wf///4Dj///w//+f///79//vH/j8/x/4////P//D9f///4P/AQDHP9+///H/////////////z/+/9///AQAAwP///////x+A//yxwf//////////////////////8f//BwAAAQA4gP///////////8P//x+D8P9z//////8///////8//P////////9/+P//////////CAD//3/rPAvu+c7w//8HACD8//8DAAD4//+fAPj//8caAADw/////////////////////////////w8AAQAAAgD4///Bw3v4///////3DyAGAMD/f4EARwAYhAAA4AN4gMH/////DwAAAIEAAAAAAPD//z8UAAgAAAAAAAisAABVAAEA///////////////P//////////+n//8/9v//fwB8PuLngzcTA4D//1/g/////cznTSn9/////+N//P///////78AYHry////////gf+H/////+fP/////wfAv2gDgP/////////xH////////////8D///////////D/8P////////////8AAAEAAAAA4P/P///O//+H3/H//w/w////A/+f7/76H/A/8P/G3//2z/8/Afb/2wD+u1n/Ev9PwP//7p/+179/pn8d/T/gF4D/////h///7///4f//v/7///8B3x//AAP/B+D///////+DEQADIAAR/////////58//gAAAAAAAAAA4P9//v//////////+f///////+X//////9v//+P////////Pf//9////nwAA/////8/z/z8AAP7/////////////////////PwCIAQD8////////////////////////////BwAA/////88e///x//8AAPj/f/7//z39//8f/Hv4////F/z/////A/Dx53f/8D8AAPj//+//7/8//////3/o/w/+//////z//////x+A//H/8/7Pz/8///8PAP//v/mf+fn/5///AQAA4P/+/////x///7////////d/+P///////////4PA//8v/wfA/////////////z8+wP////////////+///N/AAAA////73nM/58A//8NAPj//w/+////z////3/wvw/+//////H//////z8A8P//2/8/P////f8/AAAAzv/7j8Ph//3BH8f//7vIQaH//989AAAAAAAAAAD8////////8f//////////x///f///v/////8A+L//+z8A/v///////////38CDuD//////////////3//BwAA/P/////z///////vH/7///////8FjP///gH4/////////ydKMEDA///////////x7x/8/3/3/z8AAAAAAAAAAAAAAAAAAP/j/+f/D37+//3/P4D//9/9/x8AAAAAAAAAAAAAAADA//////////////f///////H/z/////0//+////l/AOT//x8A+X8A+P///////////7//BzgDAID/j//////////////3//4f8P/32P//AwAAAAAAAAAA//////P/////////////////////z/z///////////z//////////////////////////8///////////+P///////////////////////////////+//////wMAAAD2///++/////////9//P///8f/////AAAAAPz/////////////////////////////////////////AAAAAHj8//////////////////////////////////j////////////////5////HwR//+6f/9P//df0D0H/AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA","P":[[117,"T"],[118,"T,M,D"],[144,""],[148,"T"],[152,""],[155,"T,A,"],[156,"T,E,A,"],[158,""],[160,"State,,Message,,Theme,Renderer,"],[161,""],[163,"C,T"],[189,"C"],[215,""],[268,"T"],[269,""],[271,"T,"],[273,""],[275,"T"],[327,""],[328,""],[329,"WpParam,T"],[355,""],[358,"T"],[360,""],[361,"T"],[362,""],[375,"T"],[377,""],[380,"T"],[381,""],[382,"T"],[406,""],[430,"T"],[431,""],[432,""],[435,"C,T"],[461,""],[463,""],[465,"State,,Message,,Theme,Renderer,"],[466,""],[490,"T"],[492,""],[495,"T"],[496,""],[497,"T"],[498,""],[501,"T"],[554,"T,O"],[555,"T"],[556,""],[562,"T"],[589,""],[615,"T"],[617,""],[618,"R,"],[619,""],[635,"T"],[637,""],[639,"T"],[640,""],[641,"T"],[642,"K"],[665,"T"],[666,""],[668,""],[674,"T"],[675,""],[678,"T"],[679,""],[695,"T"],[698,""],[701,"T"],[702,""],[703,"T"],[705,""],[706,"T"],[710,""],[713,"T"],[718,""],[719,"T"],[720,""],[725,"T"],[728,""],[732,"T"],[733,""],[734,"T"],[735,""],[742,"T"],[745,""],[748,"T"],[749,""],[751,"T"],[755,""],[758,"T"],[763,""],[764,"T"],[796,""],[805,"U,T"],[831,""],[833,"T,"],[835,""],[836,"T"],[839,"__H"],[842,"T,__H"],[843,""],[874,"I"],[875,"T,I,"],[876,""],[878,"U"],[930,"T"],[1006,"WpParam,T"],[1032,"U"],[1084,""],[1086,"T"],[1112,""],[1114,"T"],[1115,""],[1118,""],[1119,""],[1120,"T,O,"],[1121,"T,A,F"],[1122,""],[1132,"T"],[1133,""],[1134,"T"],[1136,""],[1138,"T"],[1139,""],[1140,"T"],[1142,""],[1143,"T"],[1144,""],[1145,"T"],[1146,""],[1147,"T"],[1166,""],[1177,"A,,T,"],[1178,""],[1179,"T"],[1180,""],[1185,"T"],[1187,""],[1188,""],[1191,""],[1192,"State,,Message,,Theme,Renderer,"],[1193,"Program::State,Program::Message,Program::Theme,Program::Renderer,Program::Executor"],[1195,"A,,T,"],[1196,"T,S"],[1197,"Program::State,Program::Message,Program::Theme,Program::Renderer,Program::Executor,I"],[1199,"D,T,S"],[1200,""],[1204,"Program::State,Program::Message,Program::Theme,Program::Renderer,Program::Executor"],[1206,""],[1207,""],[1208,""],[1209,"T"],[1210,""],[1211,""],[1213,"T,"],[1214,""],[1215,"Program::State,Program::Message,Program::Theme,Program::Renderer,Program::Executor"],[1217,""],[1236,"T"],[1241,""],[1242,"Program::State,Program::Message,Program::Theme,Program::Renderer,Program::Executor"],[1249,"T,O,"],[1251,"Program::State,Program::Message,Program::Theme,Program::Renderer,Program::Executor"],[1253,""],[1254,"T"],[1277,""],[1287,""],[1288,""],[1292,"C"],[1318,"U,T"],[1344,"U"],[1396,""],[1422,"C,U"],[1448,"C"],[1474,""],[1475,"T"],[1501,"Program::State,Program::Message,Program::Theme,Program::Renderer,Program::Executor"],[1502,"T"],[1503,""],[1504,"T"],[1506,"Program::State,Program::Message,Program::Theme,Program::Renderer,Program::Executor"],[1507,"V"],[1533,""],[1536,""],[1537,""],[1541,"T,A"],[1542,""],[1544,"T"],[1545,""],[1559,"T,M,D"],[1562,"Message"],[1563,"C,T"],[1566,"C"],[1569,""],[1575,"T"],[1581,""],[1583,"WpParam,T"],[1586,"Message"],[1587,""],[1592,"Content,Font"],[1593,"T"],[1595,""],[1597,"C,T"],[1600,""],[1601,"T"],[1607,""],[1608,"T"],[1611,"Renderer,Theme"],[1613,""],[1618,"Message"],[1619,""],[1620,""],[1621,"Content,Font"],[1622,"Message"],[1623,""],[1624,"T"],[1630,"U,T"],[1634,""],[1639,"Message"],[1641,"U"],[1647,"T"],[1656,"WpParam,T"],[1659,"U"],[1665,"T"],[1668,"Message"],[1673,"Renderer"],[1677,""],[1678,"Message,B,"],[1680,"Renderer"],[1682,""],[1683,"Message"],[1684,"Renderer"],[1687,"Renderer,Message,Theme"],[1689,""],[1690,"Message"],[1691,""],[1692,"Message"],[1695,"Message,T"],[1696,"Message"],[1697,"Message,"],[1699,""],[1710,"T"],[1712,"C"],[1715,"U,T"],[1718,"U"],[1724,""],[1727,"C,U"],[1730,"C"],[1733,"T"],[1736,"Renderer,Message"],[1738,""],[1739,"V"],[1743,""],[1744,""],[1745,""],[1747,""],[1754,"T,M,D"],[1756,"C,T"],[1758,"C"],[1760,""],[1764,"T"],[1768,"WpParam,T"],[1770,""],[1772,"T"],[1774,""],[1776,"C,T"],[1778,"T"],[1784,""],[1787,"K"],[1790,""],[1792,"T"],[1796,"U,T"],[1798,""],[1800,"U"],[1804,"T"],[1810,"WpParam,T"],[1812,"U"],[1816,"T"],[1818,""],[1820,"T"],[1822,"C"],[1824,"U,T"],[1826,"U"],[1830,""],[1832,"C,U"],[1834,"C"],[1836,"T"],[1838,"V"],[1840,""],[1854,"T,M,D"],[1859,""],[1860,"C,T"],[1865,"C"],[1870,""],[1882,"T"],[1892,"WpParam,T"],[1897,""],[1900,"H"],[1901,""],[1904,"T"],[1909,""],[1916,"K"],[1918,"C,T"],[1923,""],[1928,"T"],[1943,"Renderer::Handle"],[1944,""],[1950,"U"],[1952,""],[1953,"T"],[1954,""],[1959,"H"],[1960,""],[1963,"K"],[1975,""],[1980,"H"],[1981,""],[1989,"T"],[1990,""],[1992,"T"],[1993,""],[1994,"T"],[1996,""],[1997,"T"],[2004,""],[2005,"T"],[2008,""],[2009,""],[2010,"U,T"],[2015,""],[2016,"H"],[2017,"__H"],[2019,""],[2025,"U"],[2035,"T"],[2050,"WpParam,T"],[2055,"U"],[2065,""],[2067,"T"],[2072,""],[2075,"Renderer::Handle"],[2076,""],[2077,""],[2078,"T"],[2080,""],[2081,""],[2085,"T"],[2086,""],[2090,""],[2091,""],[2092,""],[2093,""],[2098,"T"],[2103,""],[2104,"C"],[2109,"U,T"],[2114,"U"],[2124,""],[2130,"C,U"],[2135,"C"],[2140,"T"],[2145,"V"],[2150,""],[2158,"T,M,D"],[2160,""],[2162,"C,T"],[2164,"C"],[2166,""],[2170,","],[2171,"T"],[2175,""],[2176,"WpParam,T"],[2178,""],[2181,"T"],[2183,""],[2185,"C,T"],[2187,",,"],[2188,""],[2190,"T"],[2196,""],[2202,"T"],[2206,"U,T"],[2208,""],[2209,""],[2211,"U"],[2215,"T"],[2221,"WpParam,T"],[2223,"U"],[2227,"T"],[2229,""],[2236,""],[2238,""],[2240,","],[2241,"T"],[2242,",,,"],[2243,",,,,"],[2244,","],[2245,""],[2246,""],[2247,",,"],[2248,"T"],[2250,""],[2252,"C"],[2254,"U,T"],[2256,"U"],[2260,""],[2262,"C,U"],[2264,"C"],[2266,"T"],[2268,"V"],[2270,""],[2271,""],[2275,"T,M,D"],[2276,"C,T"],[2277,"C"],[2278,""],[2280,"T"],[2282,"WpParam,T"],[2283,"C,T"],[2284,"T"],[2287,""],[2289,"T"],[2291,"U,T"],[2292,""],[2293,"U"],[2295,"T"],[2298,"WpParam,T"],[2299,"U"],[2301,"T"],[2302,"Renderer,Message,Theme"],[2303,"C"],[2304,"U,T"],[2305,"U"],[2307,""],[2308,"C,U"],[2309,"C"],[2310,"T"],[2311,"V"],[2354,"T,M,D"],[2355,"C,T"],[2356,"C"],[2357,""],[2359,"T"],[2361,"WpParam,T"],[2363,""],[2364,"T"],[2365,""],[2366,"C,T"],[2367,"T"],[2370,""],[2372,"T"],[2374,"U,T"],[2375,""],[2376,"U"],[2378,"T"],[2381,"WpParam,T"],[2382,"U"],[2384,"T"],[2385,""],[2389,"T"],[2390,"C"],[2391,"U,T"],[2392,"U"],[2394,""],[2395,"C,U"],[2396,"C"],[2397,"T"],[2398,"V"],[2399,""],[2410,"T,M,D"],[2411,"C,T"],[2412,"C"],[2413,""],[2415,"T"],[2417,"WpParam,T"],[2418,""],[2419,"T"],[2420,""],[2421,"C,T"],[2422,"T"],[2425,""],[2427,"K"],[2430,""],[2431,"T"],[2433,"U,T"],[2434,""],[2435,"U"],[2437,"T"],[2440,"WpParam,T"],[2441,"U"],[2443,"T"],[2445,"C"],[2446,"U,T"],[2447,"U"],[2449,""],[2450,"C,U"],[2451,"C"],[2452,"T"],[2453,"V"],[2457,"T,M,D"],[2459,"C,T"],[2461,"C"],[2463,""],[2467,"T"],[2471,"WpParam,T"],[2473,"C,T"],[2475,"Message,Theme,Renderer"],[2476,"T"],[2482,"Renderer,Theme"],[2483,"Message,Theme,Renderer"],[2485,""],[2487,"T"],[2488,"Message,Theme,Renderer"],[2489,"T"],[2492,"Message,Theme,Renderer"],[2493,"U,T"],[2495,""],[2497,"U"],[2501,"T"],[2505,"WpParam,T"],[2507,"U"],[2511,"T"],[2513,"Message,Theme,Renderer"],[2515,"Renderer"],[2517,"Message,Theme,Renderer"],[2519,"Message,Theme,Renderer,B"],[2520,"Message,Theme,Renderer"],[2522,"Renderer"],[2523,"Message,Theme,Renderer"],[2525,"T"],[2526,"Message,Theme,Renderer"],[2528,"Renderer"],[2529,"Message,Theme,Renderer"],[2532,"Renderer,Message,Theme"],[2533,"Message,Theme,Renderer,"],[2534,"C"],[2536,"U,T"],[2538,"U"],[2542,""],[2544,"C,U"],[2546,"C"],[2548,"T"],[2550,"Message,Theme,Renderer"],[2552,"Renderer,Message"],[2553,"V"],[2555,"Message,Theme,Renderer"],[2560,"T,M,D"],[2562,"C,T"],[2564,"C"],[2566,""],[2571,"T"],[2575,""],[2576,"WpParam,T"],[2578,""],[2581,"T"],[2583,""],[2585,"C,T"],[2587,""],[2589,"T"],[2595,""],[2601,""],[2602,""],[2604,"T"],[2608,"U,T"],[2610,""],[2612,"U"],[2616,"T"],[2622,"WpParam,T"],[2624,"U"],[2628,"T"],[2630,""],[2631,"T"],[2633,""],[2638,"T"],[2640,"C"],[2642,"U,T"],[2644,"U"],[2648,""],[2650,"C,U"],[2652,"C"],[2654,"T"],[2656,"V"],[2658,""],[2672,"T,M,D"],[2675,"C,T"],[2678,"C"],[2681,""],[2687,"T"],[2693,"WpParam,T"],[2696,""],[2699,"T"],[2702,""],[2705,"C,T"],[2708,"T"],[2717,""],[2723,"K"],[2729,""],[2732,"T"],[2738,"T,"],[2739,"U,T"],[2742,"Recipe::Output"],[2743,""],[2746,"U"],[2752,"T"],[2761,"WpParam,T"],[2764,"U"],[2770,"T"],[2774,"Recipe::Output"],[2775,"T"],[2778,"C"],[2781,"U,T"],[2784,"U"],[2790,""],[2793,"C,U"],[2796,"C"],[2799,"T"],[2802,"V"],[2805,""],[2814,"T,M,D"],[2817,"C,T"],[2820,"C"],[2823,""],[2829,"T"],[2835,"WpParam,T"],[2838,"H"],[2839,""],[2841,"T"],[2844,""],[2847,""],[2848,""],[2849,"C,T"],[2852,""],[2853,"T"],[2862,""],[2866,"H"],[2867,""],[2869,"K"],[2875,"H"],[2876,""],[2879,"T"],[2886,""],[2888,"U,T"],[2891,""],[2892,"H"],[2893,"__H"],[2894,""],[2898,"U"],[2904,"T"],[2913,"WpParam,T"],[2916,"U"],[2922,"T"],[2925,""],[2926,""],[2928,""],[2929,""],[2930,""],[2931,"T"],[2934,"C"],[2937,"U,T"],[2940,"U"],[2946,""],[2949,"C,U"],[2952,"C"],[2955,"T"],[2958,"V"],[3000,"T,M,D"],[3007,"C,T"],[3014,"C"],[3021,""],[3035,"Link,Font,"],[3036,""],[3037,"Link,Font,"],[3039,""],[3040,"Link,Font,"],[3041,"T"],[3055,"Editor::Font"],[3056,""],[3057,"WpParam,T"],[3064,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[3065,""],[3070,"Link,Font"],[3071,""],[3072,"T"],[3079,""],[3086,"Link,Font,"],[3087,""],[3088,"Link,Font,"],[3089,"Paragraph::Font"],[3090,"C,T"],[3097,""],[3098,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[3099,"Editor::Font"],[3100,""],[3101,"Editor::Font"],[3102,""],[3105,"Link,Font"],[3106,"Renderer::Font,Renderer::Paragraph,Renderer::Editor"],[3108,"T"],[3129,""],[3142,"Link,Font"],[3143,""],[3144,"K"],[3153,"Renderer::Font,Renderer::Paragraph,Renderer::Editor"],[3156,""],[3161,"Link,Font"],[3162,""],[3163,"Link,Font,"],[3164,""],[3166,"Link,Font,"],[3167,"T"],[3170,""],[3172,"T"],[3175,"Link,Font"],[3176,"T"],[3184,"U,T"],[3191,"Paragraph::Font"],[3192,"__H"],[3194,"H"],[3195,"Editor::Font,H,"],[3196,""],[3197,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[3199,"Paragraph::Font"],[3202,""],[3210,"U"],[3224,"T"],[3245,"WpParam,T"],[3252,"U"],[3266,""],[3267,"T"],[3274,"Editor::Font"],[3277,"Link,Font,"],[3278,""],[3280,"Link,Font,"],[3281,""],[3282,"Link,Font,"],[3283,"Editor::Font"],[3284,"Paragraph::Font"],[3287,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[3288,",Link,Font"],[3289,"T"],[3293,"Link,Font,"],[3294,""],[3296,"Editor::Font"],[3297,"Paragraph::Font"],[3298,"Editor::Font"],[3299,""],[3300,"Link,Font,"],[3301,""],[3303,"Paragraph::Font"],[3304,"Link,Font"],[3305,""],[3308,"T"],[3315,"Link,Font"],[3316,"C"],[3323,"U,T"],[3330,"U"],[3344,""],[3351,"C,U"],[3358,"C"],[3365,"Link,Font"],[3366,""],[3367,"T"],[3374,"Editor::Font,"],[3375,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[3376,"Paragraph::Font"],[3377,""],[3378,"V"],[3385,"Link,Paragraph::Font"],[3386,"Editor::Font"],[3387,"Paragraph::Font"],[3388,""],[3433,"T,M,D"],[3435,"C,T"],[3437,"C"],[3439,""],[3443,"T"],[3447,"Editor::Font"],[3448,"WpParam,T"],[3450,""],[3452,"T"],[3454,""],[3456,"C,T"],[3458,"Editor::Font"],[3460,"T"],[3466,""],[3470,"K"],[3473,""],[3475,"T"],[3479,"U,T"],[3481,"Editor::Font,H,"],[3482,""],[3484,"U"],[3488,"T"],[3494,"WpParam,T"],[3496,"U"],[3500,"T"],[3502,"Editor::Font"],[3508,""],[3509,"T"],[3511,"C"],[3513,"U,T"],[3515,"U"],[3519,""],[3521,"C,U"],[3523,"C"],[3525,"T"],[3527,"Editor::Font,"],[3528,"V"],[3530,"Editor::Font"],[3531,""],[3538,"T,M,D"],[3540,"C,T"],[3542,"C"],[3544,""],[3548,"T"],[3552,"WpParam,T"],[3554,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[3555,""],[3557,"Font"],[3558,"T"],[3560,""],[3563,"C,T"],[3565,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[3566,""],[3567,"Font"],[3568,"T"],[3574,""],[3576,"Font"],[3577,""],[3578,"Font"],[3579,""],[3580,"T"],[3584,"U,T"],[3586,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[3587,""],[3590,"U"],[3594,"T"],[3600,"WpParam,T"],[3602,"U"],[3606,"T"],[3608,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[3609,""],[3610,"T"],[3613,"C"],[3615,"U,T"],[3617,"U"],[3621,""],[3623,"C,U"],[3625,"C"],[3627,"T"],[3629,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[3630,""],[3631,"V"],[3636,"T,M,D"],[3637,"C,T"],[3638,"C"],[3639,""],[3641,"T"],[3643,"WpParam,T"],[3644,"P"],[3645,"T"],[3646,""],[3647,"Paragraph::Font"],[3648,"C,T"],[3649,"P"],[3650,"T"],[3653,""],[3654,"P"],[3655,"T"],[3657,"U,T"],[3658,"Paragraph::Font"],[3662,"P"],[3663,""],[3664,"U"],[3666,"T"],[3669,"WpParam,T"],[3670,"U"],[3672,"T"],[3673,"Paragraph::Font"],[3674,"P"],[3675,"Paragraph::Font"],[3676,"P"],[3677,"Paragraph::Font"],[3678,"P"],[3680,"T"],[3681,"P"],[3682,"Paragraph::Font"],[3684,"T"],[3685,"C"],[3686,"U,T"],[3687,"U"],[3689,""],[3690,"C,U"],[3691,"C"],[3692,"T"],[3693,"P"],[3694,"Paragraph::Font"],[3695,"P"],[3696,"V"],[3697,"Link,Paragraph::Font"],[3698,"Paragraph::Font"],[3704,"T,M,D"],[3707,"Theme,Renderer,"],[3709,"C,T"],[3712,"C"],[3715,""],[3721,"T"],[3727,"WpParam,T"],[3730,"Theme,Renderer"],[3731,""],[3733,"Theme,Renderer,"],[3734,""],[3735,"T"],[3736,""],[3737,"Theme,Renderer,"],[3739,"C,T"],[3742,""],[3744,"T"],[3750,""],[3751,""],[3753,"T,,"],[3754,"T"],[3757,"Renderer,Theme"],[3758,"Theme,Renderer"],[3759,""],[3764,"K"],[3767,"T"],[3768,""],[3771,"Theme,Renderer,"],[3772,"T"],[3773,"Theme,Renderer"],[3774,"T"],[3776,""],[3779,"T"],[3782,"U,T"],[3785,"__H"],[3786,"Theme,Renderer,"],[3787,""],[3790,"U"],[3796,"T"],[3804,"WpParam,T"],[3807,"U"],[3813,"T"],[3816,"Renderer"],[3817,"Theme,Renderer"],[3818,"Theme,Renderer,"],[3819,"Renderer"],[3820,",Theme,Renderer"],[3821,""],[3823,"T,"],[3824,"Theme,Renderer"],[3825,"Renderer"],[3827,"Renderer,Message,Theme"],[3828,""],[3829,"Theme,Renderer"],[3830,""],[3831,"Theme,Renderer,"],[3832,"Theme,Renderer"],[3833,""],[3834,"Theme,Renderer"],[3835,""],[3837,"Theme,Renderer,"],[3838,"Theme,Renderer"],[3839,""],[3844,"T"],[3846,"C"],[3849,"U,T"],[3852,"U"],[3858,""],[3861,"C,U"],[3864,"C"],[3867,""],[3868,"T"],[3871,"Renderer,Message"],[3872,"V"],[3875,"Theme,Renderer,"],[3876,"Theme,Renderer"],[3885,"T,M,D"],[3886,"C,T"],[3887,"C"],[3888,""],[3890,"O"],[3891,"T"],[3893,"WpParam,T"],[3894,"C,T"],[3895,""],[3897,"T"],[3900,""],[3901,"T"],[3903,""],[3906,"T"],[3908,"U,T"],[3909,""],[3910,"U"],[3912,"T"],[3914,"WpParam,T"],[3915,"U"],[3917,"T"],[3918,""],[3919,"A,,B,"],[3920,""],[3923,"T,"],[3924,""],[3933,"A,,B,O"],[3934,"C"],[3935,"U,T"],[3936,"U"],[3938,""],[3939,"C,U"],[3940,"C"],[3941,""],[3942,"T"],[3943,"V"],[3946,"T,M,D"],[3947,"C,T"],[3948,"C"],[3949,""],[3951,"T"],[3953,"WpParam,T"],[3954,""],[3955,"T"],[3956,""],[3957,"C,T"],[3958,""],[3960,"T"],[3963,""],[3965,"K"],[3968,""],[3970,"T"],[3971,""],[3972,"T"],[3974,""],[3975,"T"],[3977,"U,T"],[3978,""],[3979,"U"],[3981,"T"],[3984,"WpParam,T"],[3985,"U"],[3987,"T"],[3988,""],[3989,"T"],[3991,""],[3992,"C"],[3993,"U,T"],[3994,"U"],[3996,""],[3997,"C,U"],[3998,"C"],[3999,""],[4000,"T"],[4001,"V"],[4005,"T"],[4006,""],[4007,"T"],[4008,""],[4009,"T"],[4010,""],[4016,"T"],[4017,""],[4018,"T"],[4019,""],[4020,"T"],[4021,""],[4022,"T"],[4023,""],[4045,"Catalog::Class"],[4046,"Renderer"],[4048,""],[4050,"Catalog::Class"],[4051,""],[4057,"T,M,D"],[4059,"C,T"],[4061,"C"],[4063,""],[4067,"T"],[4071,"WpParam,T"],[4073,""],[4075,"T"],[4076,""],[4078,"K"],[4079,"C,T"],[4081,"T"],[4085,"T,,,"],[4086,"T"],[4090,""],[4093,"K"],[4096,""],[4098,"T"],[4102,"U,T"],[4104,"__H"],[4105,""],[4107,"U"],[4111,"T"],[4116,"WpParam,T"],[4118,"U"],[4122,"T"],[4125,""],[4130,"T"],[4131,"C"],[4133,"U,T"],[4135,"U"],[4139,""],[4141,"C,U"],[4143,"C"],[4145,"T"],[4147,"V"],[4161,"T,M,D"],[4163,"C,T"],[4165,"C"],[4167,""],[4171,"T"],[4175,"WpParam,T"],[4177,""],[4179,"T"],[4181,""],[4183,"C,T"],[4185,"T"],[4191,""],[4195,"K"],[4201,""],[4204,"T"],[4205,""],[4206,"T"],[4209,"U,T"],[4211,"__H"],[4213,""],[4215,"U"],[4219,"T"],[4225,"WpParam,T"],[4227,"U"],[4231,"T"],[4235,"C"],[4237,"U,T"],[4239,"U"],[4243,""],[4245,"C,U"],[4247,"C"],[4249,"T"],[4251,"V"],[4289,"T,M,D"],[4290,"C,T"],[4291,"C"],[4292,""],[4294,"T"],[4296,"WpParam,T"],[4297,""],[4298,"T"],[4299,""],[4300,"C,T"],[4301,""],[4302,"T"],[4305,""],[4309,"T"],[4311,"U,T"],[4312,""],[4314,"U"],[4316,"T"],[4319,"WpParam,T"],[4320,"U"],[4322,"T"],[4325,"C"],[4326,"U,T"],[4327,"U"],[4329,""],[4330,"C,U"],[4331,"C"],[4332,"T"],[4333,""],[4334,"V"],[4339,"T,M,D"],[4340,"P"],[4341,"State,,Message,,Theme,Renderer,"],[4342,"C,T"],[4343,"C"],[4344,""],[4346,"T"],[4348,"WpParam,T"],[4349,"P"],[4350,"C,T"],[4351,"P"],[4353,"T"],[4356,""],[4357,"P"],[4360,"P,"],[4361,"T"],[4363,"U,T"],[4364,""],[4365,"U"],[4367,"T"],[4370,"WpParam,T"],[4371,"U"],[4373,"T"],[4374,"P"],[4378,"P,I"],[4379,"P,"],[4380,"P"],[4381,"P,"],[4384,"State"],[4385,"P"],[4386,"C"],[4387,"U,T"],[4388,"U"],[4390,""],[4391,"C,U"],[4392,"C"],[4393,"T"],[4394,"State,Message"],[4395,"State,Message,Theme,Renderer"],[4396,"V"],[4397,"P"],[4398,"P,"],[4401,"T,M,D"],[4402,"C,T"],[4403,"C"],[4404,""],[4406,"T"],[4408,""],[4412,""],[4413,""],[4415,""],[4416,"WpParam,T"],[4417,""],[4418,"T"],[4419,""],[4420,""],[4421,""],[4422,"C,T"],[4423,""],[4424,"T"],[4427,""],[4430,"T"],[4431,""],[4435,"T"],[4436,"U,T"],[4437,""],[4438,"U"],[4440,"T"],[4443,"WpParam,T"],[4444,"U"],[4446,"T"],[4447,""],[4450,"T"],[4451,""],[4452,""],[4453,""],[4456,"T"],[4457,""],[4461,""],[4462,""],[4464,""],[4465,"C"],[4466,"U,T"],[4467,"U"],[4469,""],[4470,"C,U"],[4471,"C"],[4472,"T"],[4473,"V"],[4474,""],[4475,""],[4478,"T"],[4479,"Message"],[4483,"T,M,D"],[4484,"P"],[4485,"C,T"],[4486,"C"],[4487,""],[4489,"T"],[4491,"WpParam,T"],[4492,"C,T"],[4493,"State,,Message,,Theme,Renderer,"],[4494,"P"],[4495,"T"],[4498,""],[4499,"P"],[4501,"P,"],[4502,"T"],[4504,"U,T"],[4505,""],[4506,"U"],[4508,"T"],[4511,"WpParam,T"],[4512,"U"],[4514,"T"],[4515,"P"],[4516,"P,I"],[4517,"P,"],[4518,"P"],[4519,"P,"],[4522,"State"],[4523,"C"],[4524,"U,T"],[4525,"U"],[4527,""],[4528,"C,U"],[4529,"C"],[4530,"T"],[4531,"State,Message,Theme,Renderer"],[4532,"V"],[4542,"T,M,D"],[4543,"C,T"],[4544,"C"],[4545,""],[4547,"T"],[4549,"WpParam,T"],[4550,""],[4551,"T"],[4552,""],[4553,"C,T"],[4554,"T"],[4557,""],[4559,"K"],[4562,""],[4563,"T"],[4565,"U,T"],[4566,""],[4567,"U"],[4569,"T"],[4572,"WpParam,T"],[4573,"U"],[4575,"T"],[4576,""],[4577,"Message"],[4578,""],[4579,"Message"],[4580,""],[4581,"T"],[4582,"C"],[4583,"U,T"],[4584,"U"],[4586,""],[4587,"C,U"],[4588,"C"],[4589,"T"],[4590,"V"],[4593,"R,"],[4594,""],[4595,""],[4629,"T,M,D"],[4634,"C,T"],[4639,"C"],[4644,""],[4654,"T"],[4664,"WpParam,T"],[4669,""],[4674,"T"],[4679,""],[4684,"C,T"],[4689,""],[4693,"T"],[4708,""],[4718,"K"],[4733,""],[4739,"T"],[4749,"U,T"],[4754,"__H"],[4758,""],[4763,"U"],[4773,"T"],[4788,"WpParam,T"],[4793,"U"],[4803,"T"],[4808,""],[4809,"T"],[4813,""],[4815,"T"],[4820,"C"],[4825,"U,T"],[4830,"U"],[4840,""],[4845,"C,U"],[4850,"C"],[4855,"T"],[4860,"V"],[4865,""],[4870,"T,M,D"],[4872,""],[4873,""],[4874,""],[4875,"C,T"],[4877,"C"],[4879,""],[4883,"T"],[4887,"WpParam,T"],[4889,""],[4891,"T"],[4893,""],[4896,"C,T"],[4898,""],[4899,"T"],[4905,""],[4911,"T"],[4915,"U,T"],[4917,""],[4919,"U"],[4923,"T"],[4929,"WpParam,T"],[4931,"U"],[4935,"T"],[4937,""],[4938,"T"],[4939,""],[4942,"T"],[4944,"C"],[4946,"U,T"],[4948,"U"],[4952,""],[4954,"C,U"],[4956,"C"],[4958,"T"],[4960,"V"],[4981,"T,M,D"],[4985,""],[4987,"C,T"],[4991,"C"],[4995,""],[5012,"T"],[5020,"WpParam,T"],[5024,"C"],[5025,""],[5028,"T"],[5032,""],[5036,"C"],[5037,""],[5039,"K"],[5041,""],[5042,"C,T"],[5046,""],[5049,"T"],[5057,""],[5058,"T"],[5062,""],[5067,"C"],[5068,""],[5071,"K"],[5083,"T"],[5084,"C"],[5085,""],[5092,"T"],[5093,""],[5094,"T"],[5101,""],[5105,"T"],[5106,""],[5107,"U,T"],[5111,"C,__H"],[5112,"__H"],[5113,""],[5120,"U"],[5128,"T"],[5140,"WpParam,T"],[5144,"U"],[5152,""],[5153,"T"],[5157,""],[5166,"T"],[5167,"Message"],[5169,"C"],[5170,""],[5177,"T"],[5181,""],[5182,"C"],[5186,"U,T"],[5190,"U"],[5198,""],[5202,"C,U"],[5206,"C"],[5210,""],[5211,"T"],[5215,"V"],[5219,""],[5745,"T,M,D"],[5749,"C,T"],[5753,"C"],[5757,""],[5765,"T"],[5773,"WpParam,T"],[5777,""],[5781,"T"],[5785,""],[5793,"K"],[5797,"C,T"],[5801,"T"],[5813,""],[5825,"K"],[5837,""],[5841,"T"],[5849,"U,T"],[5853,"__H"],[5857,""],[5861,"U"],[5869,"T"],[5881,"WpParam,T"],[5885,"U"],[5893,"T"],[5897,""],[5901,"T"],[5905,"C"],[5909,"U,T"],[5913,"U"],[5921,""],[5925,"C,U"],[5929,"C"],[5933,"T"],[5937,"V"],[5982,"T,M,D"],[5987,"C,T"],[5992,"C"],[5997,""],[6007,"T"],[6017,"WpParam,T"],[6022,""],[6027,"T"],[6032,""],[6038,"K"],[6039,"C,T"],[6044,""],[6046,"T"],[6061,""],[6071,"K"],[6077,""],[6082,"T"],[6092,"U,T"],[6097,"__H"],[6098,""],[6103,"U"],[6113,"T"],[6128,"WpParam,T"],[6133,"U"],[6143,"T"],[6148,""],[6153,"T"],[6155,""],[6160,"T"],[6165,"C"],[6170,"U,T"],[6175,"U"],[6185,""],[6190,"C,U"],[6195,"C"],[6200,"T"],[6205,"V"],[6210,""],[6224,"T,M,D"],[6227,"C,T"],[6230,"C"],[6233,""],[6241,"T"],[6247,"WpParam,T"],[6250,""],[6251,"T"],[6252,""],[6253,"C,T"],[6256,""],[6257,"Catalog::Class"],[6258,""],[6259,"Catalog::Class"],[6261,"T"],[6270,""],[6276,"T,Message,Theme,Renderer,"],[6277,"T"],[6283,"U,T"],[6286,""],[6289,"U"],[6295,"T"],[6302,"WpParam,T"],[6305,"U"],[6311,"T"],[6314,"T,Message,,Theme,Renderer"],[6315,""],[6316,"T"],[6317,"T,Message,Theme,Renderer"],[6318,"T,Message,Theme,Renderer,P"],[6319,""],[6321,"Catalog::Class"],[6322,""],[6323,"T,Message,Theme,Renderer,"],[6324,"T,Message,Theme,Renderer"],[6325,"T,Message,Theme,Renderer,"],[6326,"T"],[6327,"C"],[6330,"U,T"],[6333,"U"],[6339,""],[6342,"C,U"],[6345,"C"],[6348,"T"],[6351,"V"],[6354,"T,Message,Theme,Renderer"],[6356,""],[6358,""],[6359,""],[6360,""],[6361,""],[6362,""],[6363,""],[6364,""],[6365,"T,F,"],[6366,"T,E,F,"],[6368,"T,M,D"],[6369,"C,T"],[6370,"C"],[6371,""],[6373,"T"],[6375,"WpParam,T"],[6376,""],[6377,"T"],[6378,""],[6379,"C,T"],[6380,""],[6382,"T"],[6385,""],[6388,"T"],[6390,"U,T"],[6391,""],[6394,"U"],[6396,"T"],[6399,"WpParam,T"],[6400,"U"],[6402,"T"],[6403,""],[6409,"T"],[6410,"C"],[6411,"U,T"],[6412,"U"],[6414,""],[6415,"C,U"],[6416,"C"],[6417,"T"],[6418,"V"],[6421,""],[6423,"T,M,D"],[6424,"C,T"],[6425,"C"],[6426,""],[6428,"T"],[6430,"WpParam,T"],[6431,""],[6432,"T"],[6433,""],[6434,"C,T"],[6435,"T"],[6438,""],[6441,"T"],[6443,"U,T"],[6444,""],[6445,"U"],[6447,"T"],[6450,"WpParam,T"],[6451,"U"],[6453,"T"],[6454,""],[6455,"T"],[6456,"C"],[6457,"U,T"],[6458,"U"],[6460,""],[6461,"C,U"],[6462,"C"],[6463,"T"],[6464,"V"],[6515,"T,M,D"],[6518,"C,T"],[6521,"C"],[6524,""],[6533,"T"],[6539,"WpParam,T"],[6542,""],[6545,"T"],[6548,""],[6551,"C,T"],[6554,""],[6556,"T"],[6565,""],[6575,"T"],[6581,"U,T"],[6584,""],[6587,"U"],[6593,"T"],[6602,"WpParam,T"],[6605,"U"],[6611,"T"],[6614,""],[6620,"T"],[6623,""],[6625,"C"],[6628,"U,T"],[6631,"U"],[6637,""],[6640,"C,U"],[6643,"C"],[6646,"T"],[6649,"V"],[6652,""],[6653,""],[6656,""],[6685,"T,M,D"],[6693,"C,T"],[6701,"C"],[6709,""],[6733,"T"],[6749,"WpParam,T"],[6757,""],[6765,"T"],[6773,""],[6782,"C,T"],[6790,""],[6792,"T"],[6816,""],[6840,"T"],[6856,"U,T"],[6864,""],[6878,"U"],[6894,"T"],[6918,"WpParam,T"],[6926,"U"],[6942,"T"],[6950,""],[6966,"T"],[6974,"C"],[6982,"U,T"],[6990,"U"],[7006,""],[7014,"C,U"],[7022,"C"],[7030,"T"],[7038,"V"],[7046,""],[7063,"T,M,D"],[7065,""],[7073,"C,T"],[7075,"C"],[7077,""],[7089,"T"],[7091,"Borrowed"],[7092,"T"],[7094,"WpParam,T"],[7096,""],[7107,"T"],[7109,""],[7113,"K"],[7115,"C,T"],[7117,""],[7119,"T"],[7123,"D"],[7124,""],[7132,"T"],[7134,""],[7142,"K"],[7148,""],[7152,"T"],[7153,""],[7155,"T"],[7158,""],[7167,"U,T"],[7169,""],[7170,"__H"],[7172,""],[7175,"U"],[7179,"T"],[7185,"WpParam,T"],[7187,"U"],[7191,"T"],[7193,""],[7202,"T"],[7203,""],[7206,"T,F"],[7207,""],[7212,"S"],[7213,""],[7227,"I"],[7229,"T"],[7231,"C"],[7233,"U,T"],[7235,""],[7238,"U"],[7242,""],[7244,"C,U"],[7246,"C"],[7248,"T"],[7250,"V"],[7258,"T,M,D"],[7260,"C,T"],[7262,"C"],[7264,""],[7268,"T"],[7272,"WpParam,T"],[7274,""],[7276,"T"],[7278,""],[7280,"C,T"],[7282,"T"],[7288,""],[7292,"K"],[7295,""],[7297,"T"],[7301,"U,T"],[7303,"__H"],[7304,""],[7306,"U"],[7310,"T"],[7316,"WpParam,T"],[7318,"U"],[7322,"T"],[7326,"C"],[7328,"U,T"],[7330,"U"],[7334,""],[7336,"C,U"],[7338,"C"],[7340,"T"],[7342,"V"],[7344,""],[7421,"T,M,D"],[7453,"Message,Theme,Renderer,"],[7462,"Message,Theme,Renderer"],[7468,"Message"],[7469,"Message,Theme,Renderer,"],[7470,"C,T"],[7502,"C"],[7534,""],[7598,"Message,Theme,NewTheme,F,Renderer"],[7599,"T"],[7663,"Message,Theme,Renderer,"],[7668,"WpParam,T"],[7701,"Message,Theme,Renderer,P"],[7702,"Message"],[7703,"Theme,"],[7704,"Message,Theme,Renderer,"],[7711,",Message,Theme,Renderer"],[7712,"Message,Theme,Renderer"],[7717,"Message,Theme,NewTheme,F,Renderer"],[7718,"Message,Theme,Renderer"],[7719,"T,Message,Theme,Renderer"],[7720,"Message,Theme,Renderer"],[7725,"Message,Theme,Renderer,Dependency,View"],[7726,"Message,Theme,Renderer,"],[7730,"T,L,V,Message,Theme,Renderer,"],[7731,"Theme,"],[7732,"Message,Theme,Renderer,"],[7733,"Theme,"],[7734,"Message,Theme,Renderer,"],[7735,"T,Message,Theme,"],[7736,"Highlighter,Message,Theme,Renderer,"],[7737,"Message,Theme,Renderer,"],[7740,"T,Message,Theme,"],[7741,"Theme,"],[7743,"Message,Theme,Renderer"],[7747,"Message"],[7748,"T"],[7749,""],[7750,"Message,Theme,Renderer,"],[7753,"T,Message,,Theme,Renderer"],[7754,"Message,Theme,Renderer,C"],[7755,"C,T"],[7788,"Message,Theme,Renderer,"],[7789,"Theme"],[7790,"Handle"],[7791,"Message,Renderer"],[7794,"T,Message,Theme,"],[7796,"T"],[7860,"Message,Theme,Renderer"],[7865,"Message,Theme,NewTheme,F,Renderer"],[7866,"Message,Theme,Renderer"],[7873,"Message,Theme,Renderer,Dependency,View"],[7874,"Message,Theme,Renderer,"],[7875,"T"],[7907,"Message,Theme,Renderer"],[7912,"Message,Theme,NewTheme,F,Renderer"],[7913,"Message,Theme,Renderer"],[7915,"T,Message,Theme,Renderer"],[7916,"Message,Theme,Renderer"],[7918,"T,L,V,Message,Theme,Renderer"],[7919,"Message,Theme,Renderer"],[7920,"Theme,Renderer"],[7921,"Message,Theme,Renderer"],[7922,"Theme,Renderer"],[7923,"Message,Theme,Renderer"],[7924,"T,Message,Theme,Renderer"],[7925,"Highlighter,Message,Theme,Renderer"],[7926,"Message,Theme,Renderer"],[7930,"T,Message,Theme,Renderer"],[7931,"Message,Theme,Renderer"],[7932,"Message,Theme,Renderer,Dependency,View"],[7933,"Message,P,Renderer,Theme"],[7934,"Theme,Renderer"],[7935,"Theme"],[7936,"Renderer,Theme"],[7937,"Handle,Renderer,Theme"],[7938,"Message,Theme,Renderer,P"],[7939,""],[7971,"Message,Theme,Renderer,"],[7974,"Handle"],[7975,"Message"],[7976,""],[7977,"Handle"],[7978,"Message,Theme,Renderer,P"],[7979,"T"],[7981,"Message,Theme,Renderer,"],[7982,"T,Message,Theme,Renderer"],[7983,"T,L,V,Message,Theme,Renderer,"],[7984,"Message,Theme,Renderer,"],[7985,"Highlighter,Message,Theme,Renderer,"],[7986,"Message,Theme,Renderer"],[7987,"Message,Theme,Renderer,"],[7988,"T"],[8052,"Message,Theme,Renderer,T"],[8054,",Theme"],[8055,"U,T"],[8087,"Message,Theme,Renderer"],[8090,"Message,Theme,Renderer,"],[8091,"Theme,"],[8092,"T,L,V,Message,Theme,Renderer"],[8093,"Message,Theme,Renderer,"],[8101,"T,Message,Theme,"],[8102,"Highlighter,Message,Theme,Renderer,"],[8103,"T,Message,Theme,"],[8104,"Message,P,"],[8105,"Theme,"],[8106,""],[8107,"Handle,"],[8108,"Message,Theme,Renderer,P,"],[8109,"Highlighter,Message,Theme,Renderer"],[8110,"Highlighter,Message,Theme,Renderer,H"],[8111,",Theme"],[8112,"Message,Theme,Renderer"],[8113,",Theme"],[8114,""],[8115,"Message,Theme,Renderer,,"],[8116,",Message,Theme,Renderer"],[8117,"Message,Theme,Renderer"],[8118,"T,Message,Theme,Renderer"],[8119,"Message,Theme,Renderer"],[8120,"Message,Theme,Renderer,"],[8124,"Handle,"],[8125,""],[8157,"T,Message,Theme,Renderer,"],[8159,"Message,Theme,Renderer"],[8160,"U"],[8224,"T"],[8297,"WpParam,T"],[8329,"U"],[8393,"Message"],[8394,"T"],[8426,"Message,Theme,Renderer,"],[8427,"Highlighter,Message,Theme,Renderer,"],[8429,"Key,Message,Theme,Renderer,"],[8431,"Message,Theme,Renderer,"],[8432,"Message,Theme,Renderer"],[8437,"Message,Theme,NewTheme,F,Renderer"],[8438,"Message,Theme,Renderer"],[8440,"T,Message,Theme,Renderer"],[8441,"Message,Theme,Renderer"],[8443,"T,L,V,Message,Theme,Renderer"],[8444,"Message,Theme,Renderer"],[8445,"Theme,Renderer"],[8446,"Message,Theme,Renderer"],[8447,"Theme,Renderer"],[8448,"Message,Theme,Renderer"],[8449,"T,Message,Theme,Renderer"],[8450,"Highlighter,Message,Theme,Renderer"],[8451,"Message,Theme,Renderer"],[8455,"T,Message,Theme,Renderer"],[8456,"Message,Theme,Renderer"],[8457,"Message,Theme,Renderer,Dependency,View"],[8458,"Message,P,Renderer"],[8459,"Theme,Renderer"],[8460,"Theme"],[8461,"Renderer"],[8462,"Handle,Renderer"],[8463,"Message,Theme,Renderer,P"],[8464,"Dependency,Message,Theme,Renderer,View,"],[8465,"Theme,"],[8466,"T,Message,Theme,Renderer,"],[8467,"Highlighter,Message,Theme,Renderer,"],[8468,"Message,Theme,Renderer,"],[8470,",,Theme,Renderer"],[8471,"Message,Theme,Renderer,"],[8472,"Highlighter,Message,Theme,Renderer,"],[8473,"Message,Theme,Renderer,"],[8475,"T,Message,Theme,Renderer,"],[8476,"T,L,V,Message,Theme,Renderer,"],[8477,"T,Message,Theme,Renderer,"],[8478,"T,L,V,Message,Theme,Renderer,"],[8479,"Highlighter,Message,Theme,Renderer,"],[8480,"Message,Theme,Renderer,"],[8481,"Message,Theme,Renderer"],[8486,"Message,Theme,NewTheme,F,Renderer"],[8487,"Message,Theme,Renderer"],[8489,"T,Message,Theme,Renderer"],[8490,"Message,Theme,Renderer"],[8492,"T,L,V,Message,Theme,Renderer"],[8493,"Message,Theme,Renderer"],[8496,"T,Message,Theme,Renderer"],[8497,"Highlighter,Message,Theme,Renderer"],[8498,"Message,Theme,Renderer"],[8501,"T,Message,Theme,Renderer"],[8502,"Message,Theme,Renderer"],[8503,"Message,Theme,Renderer,Dependency,View"],[8504,"Message,P,Renderer"],[8505,"Message,Theme,Renderer,P"],[8506,"Message,Theme,Renderer"],[8507,"Message,Theme,Renderer,"],[8509,"Message,Theme,Renderer"],[8511,"Theme,NewTheme,F,Message,Renderer,T"],[8512,"Message,Theme,Renderer,"],[8513,",Message,Theme,Renderer"],[8514,"T,Message,,Theme,Renderer"],[8515,"Message,Theme,Renderer,"],[8516,"T,Message,Theme,Renderer,"],[8517,"T,L,V,Message,,Theme,Renderer"],[8518,"Message,Theme,Renderer,"],[8519,"Theme"],[8520,",V,Message,F,Theme,Renderer"],[8521,"Message,Theme,Renderer,"],[8522,"T,Message,F,Theme"],[8523,"Renderer,Message,Theme"],[8524,"Message,Theme,Renderer"],[8526,"Message,Theme,Renderer,,"],[8527,"T,Message,F,Theme"],[8528,"Message,Theme,Renderer,"],[8529,"Dependency,Message,Theme,Renderer,View,"],[8530,"Message,P"],[8531,",Theme"],[8532,"Theme"],[8533,","],[8534,"Handle,"],[8535,"Message,Theme,Renderer,P"],[8536,"T"],[8539,"Highlighter,Message,Theme,Renderer,"],[8540,"Message,Theme,Renderer,F"],[8541,"T,Message,Theme,Renderer"],[8542,"T,L,V,Message,Theme,Renderer"],[8543,"Message,Theme,Renderer"],[8544,"Message,Theme,Renderer,F"],[8545,"Message,Theme,Renderer"],[8548,"T,Message,Theme,Renderer,"],[8549,"Message,Theme,Renderer,"],[8551,"Message,Theme,Renderer"],[8553,"Message,Theme,Renderer,"],[8554,"T,Message,Theme,Renderer"],[8555,"T,L,V,Message,Theme,Renderer"],[8556,"T,Message,Theme,Renderer,"],[8557,"Message,Theme,Renderer,"],[8559,"Message,Theme,Renderer"],[8562,"Message,Theme,Renderer,"],[8563,"Message,Theme,Renderer"],[8564,"T,Message,Theme"],[8566,"Message,Theme,Renderer,,F"],[8567,"Message,Theme,Renderer,"],[8568,"Message,Theme,Renderer"],[8570,"Message,Theme,Renderer,"],[8573,"Message,Theme,Renderer"],[8575,"Message,Theme,Renderer,F"],[8576,"Message,Theme,Renderer,"],[8577,"Message,Theme,Renderer,F"],[8578,"Message,Theme,Renderer,"],[8579,"Theme,"],[8580,"Handle,"],[8581,"Message,Theme,Renderer,"],[8582,"Message,Theme,Renderer"],[8587,"Message,Theme,NewTheme,F,Renderer"],[8588,"Message,Theme,Renderer"],[8594,"Highlighter,Message,Theme,Renderer"],[8595,"Message,Theme,Renderer"],[8596,"Component::State,Component::Event"],[8597,"Message,Theme,Renderer"],[8598,"Message,Theme,Renderer,Dependency,View"],[8600,"Message,Theme,Renderer"],[8605,"Message,Theme,NewTheme,F,Renderer"],[8606,"Message,Theme,Renderer"],[8607,"T,Message,Theme,Renderer"],[8608,"Message,Theme,Renderer"],[8610,"T,L,V,Message,Theme,Renderer"],[8611,"Message,Theme,Renderer"],[8615,"Message,Theme,Renderer,Dependency,View"],[8616,"Message,Theme,Renderer,P"],[8619,"T,Message,Theme,Renderer,"],[8620,"Message,Theme,Renderer,P"],[8621,"T,L,V,Message,Theme,Renderer,P"],[8622,"Highlighter,Message,Theme,Renderer,"],[8623,"Message,Theme,Renderer,P"],[8624,"Message,Theme,Renderer,"],[8626,"T,Message,Theme,Renderer,"],[8628,"T,L,V,Message,,Theme,Renderer"],[8629,"Message,Theme,Renderer,"],[8630,"T,L,V,Message,Theme,Renderer,"],[8631,"Highlighter,Message,Theme,Renderer,"],[8633,"Message,Theme,Renderer,"],[8636,"Theme"],[8637,"Message"],[8638,"Message,Theme,Renderer,"],[8645,"Theme"],[8647,",V,Message,,Theme,Renderer"],[8648,"Message"],[8650,"Message,Theme,Renderer,"],[8651,"Link,,Message,Theme,Renderer"],[8653,"Message,Theme,Renderer,"],[8655,"Theme,"],[8656,"Handle,"],[8657,"Message,Theme,Renderer,"],[8660,"Handle,"],[8662,"Message,Theme,Renderer,"],[8663,"Message,Theme,Renderer"],[8665,"Message,P"],[8666,"T,Message,Theme,"],[8668,"Message,Theme,Renderer"],[8673,"Message,Theme,NewTheme,F,Renderer"],[8674,"Message,Theme,Renderer"],[8676,"Message,Theme,Renderer,"],[8677,"T,Message,Theme,Renderer"],[8679,"Message,Theme,Renderer"],[8681,"T,L,V,Message,Theme,Renderer"],[8682,"Message,Theme,Renderer"],[8683,"Theme"],[8684,"Message,Theme,Renderer"],[8685,"Message,Theme,Renderer,"],[8686,"Theme"],[8687,"Message,Theme,Renderer"],[8688,"T,Message,Theme"],[8689,"Highlighter,Message,Theme,Renderer"],[8690,"Highlighter,Message,Theme,Renderer,"],[8691,"Message,Theme,Renderer"],[8692,"Message,Theme,Renderer,"],[8693,"Message,Theme,Renderer"],[8694,"Message,Theme,Renderer,"],[8695,"Message,Theme,Renderer"],[8696,"T,Message,Theme"],[8697,"Message,Theme,Renderer"],[8698,"Message,Theme,Renderer,Dependency,View"],[8699,"Message,P"],[8700,"Theme"],[8702,""],[8703,"Handle"],[8704,"Message,Theme,Renderer,P"],[8705,"Message,Theme,Renderer"],[8707,"Component::State,Component::Event"],[8708,"Message,Theme,Renderer,Dependency,View"],[8710,"T,Message,,Theme"],[8711,"Message,Theme,Renderer"],[8712,"Message,Theme,Renderer,"],[8719,",Link,Font"],[8720,"Message,Theme,Renderer,"],[8722,"Message,Theme,Renderer"],[8724,"Message,Theme,NewTheme,F,Renderer"],[8725,"Message,Theme,Renderer"],[8727,"T,Message,Theme,Renderer"],[8728,"Message,Theme,Renderer"],[8730,"T,L,V,Message,Theme,Renderer"],[8731,"Message,Theme,Renderer"],[8734,"T,Message,Theme"],[8735,"Highlighter,Message,Theme,Renderer"],[8736,"Message,Theme,Renderer"],[8739,"T,Message,Theme"],[8740,"Message,Theme,Renderer"],[8741,"Message,Theme,Renderer,Dependency,View"],[8742,"Message,P"],[8743,"Theme"],[8744,"Message,Theme,Renderer,P"],[8745,"T,Message,Theme,"],[8746,"T,Message,Theme"],[8747,"Message,Theme,Renderer,"],[8751,"T,L,V,Message,Theme,Renderer,"],[8752,"Theme,"],[8753,"Message,Theme,Renderer,"],[8754,"Theme,"],[8755,"Message,Theme,Renderer,"],[8756,"T,Message,Theme,"],[8757,"Highlighter,Message,Theme,Renderer,"],[8758,"Message,Theme,Renderer,"],[8761,"T,Message,Theme,"],[8762,"Theme,"],[8765,",Theme"],[8766,"Message,Theme,Renderer"],[8768,"Message,Theme,NewTheme,F,Renderer"],[8769,"Message,Theme,Renderer"],[8771,"T,Message,Theme,Renderer"],[8772,"Message,Theme,Renderer"],[8774,"T,L,V,Message,Theme,Renderer"],[8775,"Message,Theme,Renderer"],[8778,"T,Message,Theme"],[8779,"Highlighter,Message,Theme,Renderer"],[8780,"Message,Theme,Renderer"],[8783,"T,Message,Theme"],[8784,"Message,Theme,Renderer"],[8785,"Message,Theme,Renderer,Dependency,View"],[8786,"Message,P"],[8787,"Theme"],[8788,"Message,Theme,Renderer,P"],[8790,",Theme,Renderer"],[8792,"Message,Theme,Renderer"],[8793,"Message,Theme,NewTheme,F,Renderer"],[8795,"Renderer,Message,Theme"],[8797,"Message,Theme,Renderer"],[8798,"Message,Theme,Renderer,"],[8799,"T,L,V,Message,Theme,Renderer,"],[8800,"Message,Theme,Renderer,"],[8802,"Message,Theme,Renderer"],[8803,"T,L,V,Message,Theme,Renderer"],[8804,"Message,Theme,Renderer"],[8806,"Message,Theme,Renderer,"],[8807,"T,L,V,Message,Theme,Renderer,"],[8808,"Message,Theme,Renderer,"],[8810,"Message,Theme,Renderer"],[8814,"NewTheme,Message,Renderer,,OldTheme"],[8815,"T"],[8817,"Message,Theme,Renderer"],[8819,"Message,Theme,Renderer,,"],[8820,"Theme,"],[8821,"C"],[8853,"U,T"],[8885,"U"],[8949,""],[8981,"C,U"],[9013,"C"],[9045,"T"],[9077,"Component::State,Component::Event,Message"],[9078,"Message,Theme,Renderer"],[9083,"Message,Theme,NewTheme,F,Renderer"],[9084,"Message,Theme,Renderer"],[9086,"T,Message,Theme,Renderer"],[9087,"Message,Theme,Renderer"],[9089,"T,L,V,Message,Theme,Renderer"],[9090,"Message,Theme,Renderer"],[9093,"T,Message,Theme,Renderer"],[9094,"Highlighter,Message,Theme,Renderer"],[9095,"Message,Theme,Renderer"],[9098,"T,Message,Theme,Renderer"],[9099,"Message,Theme,Renderer"],[9100,"Message,Theme,Renderer,Dependency,View"],[9101,"Message,P,Renderer"],[9102,"Message,Theme,Renderer,P"],[9103,",Theme,Renderer"],[9104,"Theme"],[9105,",Theme"],[9108,"T,Message,,Theme"],[9109,""],[9110,"Component::State,Component::Event,Theme,Renderer"],[9111,"V"],[9143,"Message,Theme,Renderer,"],[9149,"T,Message,Theme,Renderer,"],[9150,"Message,Theme,Renderer,"],[9152,"T,L,V,Message,Theme,Renderer,"],[9153,"Message,Theme,Renderer,"],[9155,"T,Message,Theme,"],[9156,"Highlighter,Message,Theme,Renderer,"],[9157,"Message,Theme,Renderer,"],[9159,"T,Message,Theme,"],[9160,"Message,P,"],[9161,"Theme,"],[9162,""],[9163,"Handle,"],[9164,"Message,Theme,Renderer,P,"],[9165,"Message,Theme,Renderer"],[9168,"Message,Theme,Renderer,"],[9171,"Message,Theme,Renderer,,"],[9172,""],[9174,"Message,Theme,Renderer"],[9175,"Highlighter,Message,Theme,Renderer"],[9176,"Message,Theme,Renderer,"],[9188,"T,M,D"],[9190,"C,T"],[9192,"C"],[9194,""],[9200,"T"],[9204,"WpParam,T"],[9206,""],[9208,"T"],[9210,""],[9212,"C,T"],[9214,""],[9215,"Catalog::Class"],[9216,""],[9217,"T"],[9223,""],[9227,"K"],[9230,""],[9232,"T"],[9236,"U,T"],[9238,""],[9240,"U"],[9244,"T"],[9250,"WpParam,T"],[9252,"U"],[9256,"T"],[9259,""],[9262,"Catalog::Class"],[9263,""],[9266,"T"],[9268,"C"],[9270,"U,T"],[9272,"U"],[9276,""],[9278,"C,U"],[9280,"C"],[9282,"T"],[9284,"V"],[9286,""],[9287,""],[9321,"T,M,D"],[9331,"C,T"],[9341,"C"],[9351,""],[9371,"T"],[9391,"WpParam,T"],[9401,""],[9412,"T"],[9422,""],[9434,"K"],[9435,"C,T"],[9445,""],[9452,"T"],[9482,"Program::State,Renderer,Theme"],[9483,""],[9484,""],[9497,"K"],[9501,""],[9513,"T"],[9515,""],[9518,"T"],[9519,""],[9520,"T"],[9525,""],[9526,"T"],[9527,""],[9528,"T"],[9529,""],[9531,"T"],[9541,"U,T"],[9552,""],[9553,"__H"],[9554,""],[9565,"U"],[9585,"T"],[9615,"WpParam,T"],[9625,"U"],[9645,"T"],[9655,""],[9661,"Program::State"],[9662,""],[9663,"T"],[9669,""],[9687,"T"],[9697,""],[9698,"C"],[9708,"U,T"],[9718,"U"],[9738,""],[9748,"C,U"],[9758,"C"],[9768,""],[9769,"T"],[9779,"Program::State,Message"],[9780,""],[9781,"V"],[9791,""],[9803,"T,M,D"],[9804,"C,T"],[9805,"C"],[9806,""],[9808,"T"],[9810,"WpParam,T"],[9811,""],[9812,"T"],[9813,""],[9814,"C,T"],[9815,"T"],[9818,""],[9820,"K"],[9823,""],[9824,"T"],[9826,"U,T"],[9827,""],[9828,"U"],[9830,"T"],[9833,"WpParam,T"],[9834,"U"],[9836,"T"],[9837,""],[9839,"T"],[9840,"C"],[9841,"U,T"],[9842,"U"],[9844,""],[9845,"C,U"],[9846,"C"],[9847,"T"],[9848,"V"],[9853,"T,M,D"],[9855,""],[9856,""],[9857,"C,T"],[9859,"C"],[9861,""],[9865,"T"],[9869,"WpParam,T"],[9871,""],[9873,"T"],[9875,""],[9877,"C,T"],[9879,"T"],[9885,""],[9892,"T"],[9896,"U,T"],[9898,""],[9900,"U"],[9904,"T"],[9910,"WpParam,T"],[9912,"U"],[9916,"T"],[9919,""],[9924,"T"],[9926,"C"],[9928,"U,T"],[9930,"U"],[9934,""],[9936,"C,U"],[9938,"C"],[9940,"T"],[9942,"V"],[9947,"T,M,D"],[9950,""],[9952,"C,T"],[9954,"C"],[9956,""],[9961,"T"],[9965,""],[9966,"WpParam,T"],[9968,""],[9971,"T"],[9972,""],[9974,"C,T"],[9976,""],[9977,"T"],[9983,""],[9988,"T"],[9992,"U,T"],[9994,""],[9996,"U"],[10000,"T"],[10006,"WpParam,T"],[10008,"U"],[10012,"T"],[10014,""],[10017,"T"],[10018,""],[10023,"T"],[10024,"C"],[10026,"U,T"],[10028,"U"],[10032,""],[10034,"C,U"],[10036,"C"],[10038,"T"],[10040,"V"],[10044,"T,M,D"],[10045,"C,T"],[10046,"C"],[10047,""],[10049,"T"],[10051,"WpParam,T"],[10052,""],[10055,"T"],[10056,""],[10057,"C,T"],[10058,"T"],[10061,""],[10066,"T"],[10068,"U,T"],[10069,""],[10070,"U"],[10072,"T"],[10075,"WpParam,T"],[10076,"U"],[10078,"T"],[10079,""],[10084,"T"],[10085,"C"],[10086,"U,T"],[10087,"U"],[10089,""],[10090,"C,U"],[10091,"C"],[10092,"T"],[10093,"V"],[10134,""],[10159,"T,M,D"],[10184,"C,T"],[10209,"C"],[10234,""],[10292,"T"],[10342,""],[10350,"WpParam,T"],[10375,""],[10379,"Endpoint,ControlPoint"],[10380,""],[10389,"T"],[10390,""],[10399,"T"],[10422,""],[10448,"C,T"],[10473,""],[10480,"T"],[10555,""],[10584,"Endpoint,ControlPoint"],[10585,""],[10593,"K"],[10608,""],[10610,"T"],[10611,""],[10612,"Endpoint,ControlPoint"],[10613,""],[10620,"Endpoint,ControlPoint"],[10621,""],[10634,"F"],[10635,"T"],[10639,""],[10640,"T"],[10641,"Ep,Cp"],[10642,"T"],[10645,""],[10646,"T"],[10690,"U,T"],[10715,""],[10726,"Endpoint"],[10727,""],[10730,"Endpoint"],[10731,"Endpoint,ControlPoint,__H"],[10732,"__H"],[10736,""],[10738,"T"],[10739,""],[10743,"T"],[10744,""],[10771,"U"],[10821,"T"],[10894,"WpParam,T"],[10919,"U"],[10969,"I"],[10970,""],[10974,"I"],[10977,""],[10978,"T"],[11003,"Ep,Cp"],[11004,""],[11017,"T"],[11018,""],[11044,"T"],[11048,""],[11060,"T"],[11061,"Endpoint,ControlPoint"],[11062,""],[11078,"Ep,Cp"],[11079,""],[11080,"T"],[11103,""],[11107,"T"],[11109,"C"],[11134,"U,T"],[11159,"U"],[11209,""],[11234,"C,U"],[11259,"C"],[11284,"T"],[11309,"V"],[11334,""],[11337,"Ep,Cp"],[11338,""],[11387,"T,M,D"],[11392,""],[11394,"B"],[11395,""],[11397,"B"],[11398,""],[11400,"B"],[11401,""],[11403,"B"],[11404,""],[11408,"B"],[11409,""],[11411,"B"],[11412,""],[11414,"B"],[11415,"Builder"],[11416,""],[11417,"Builder"],[11418,"C,T"],[11423,"C"],[11428,""],[11439,"Builder"],[11440,"Builder,Transform"],[11441,"B"],[11443,"T"],[11453,""],[11455,"Build::PathType"],[11456,"Builder"],[11458,"Builder,Transform"],[11459,"Builder"],[11461,"B"],[11462,"P,B"],[11463,"WpParam,T"],[11468,""],[11469,"B"],[11470,"T"],[11472,""],[11477,"Builder"],[11479,"B"],[11480,"C,T"],[11485,""],[11487,"Builder"],[11488,"Builder,Transform"],[11489,"Builder"],[11491,"B"],[11493,"Builder"],[11494,""],[11495,"B"],[11496,"T"],[11511,""],[11517,"Builder"],[11518,"Builder,Transform"],[11519,"B"],[11521,""],[11522,"B"],[11523,""],[11528,"Builder"],[11529,"B"],[11530,""],[11532,"B"],[11533,"T"],[11543,"U,T"],[11548,"B,__H"],[11549,""],[11550,"Builder"],[11551,""],[11556,"B"],[11558,"U"],[11568,"T"],[11583,"WpParam,T"],[11588,"U"],[11598,"B"],[11599,"T"],[11604,""],[11606,"Builder"],[11607,"Builder,Transform"],[11608,"Builder"],[11610,"B"],[11612,""],[11613,"Builder"],[11616,"Builder,Transform"],[11617,"Builder"],[11618,""],[11619,"B"],[11620,"T"],[11622,""],[11623,"Builder"],[11624,"Builder,Transform"],[11625,"B"],[11626,""],[11629,"B"],[11630,""],[11632,"Builder"],[11633,"Builder,Transform"],[11634,"Builder"],[11636,"B"],[11638,""],[11639,"Builder"],[11640,""],[11641,"Builder"],[11642,""],[11643,"Builder"],[11644,""],[11645,"Builder"],[11646,""],[11647,"Builder"],[11648,""],[11649,"Builder"],[11650,""],[11651,"Builder"],[11652,""],[11656,"Builder"],[11657,"Builder,Transform"],[11658,"Builder"],[11660,"B"],[11662,"Builder"],[11663,"Builder,Transform"],[11665,""],[11666,"Builder"],[11667,""],[11668,"Builder"],[11669,""],[11670,"Builder"],[11671,""],[11672,"Builder"],[11673,"T"],[11675,""],[11679,"Transform"],[11681,"Builder,Transform"],[11682,"B,Transform"],[11683,"C"],[11688,"U,T"],[11693,"U"],[11703,""],[11708,"C,U"],[11713,"C"],[11718,"T"],[11723,""],[11724,"Builder"],[11725,"V"],[11730,"B"],[11731,""],[11733,"B"],[11742,"T,M,D"],[11747,"C,T"],[11752,"C"],[11757,""],[11768,"T"],[11778,""],[11779,"WpParam,T"],[11784,"Endpoint,ControlPoint"],[11785,""],[11786,"Endpoint,ControlPoint"],[11787,""],[11788,"Endpoint,ControlPoint"],[11789,"T"],[11794,""],[11799,"C,T"],[11804,""],[11806,"T"],[11821,""],[11827,"Endpoint,ControlPoint"],[11829,""],[11830,"T"],[11840,"U,T"],[11845,"Endpoint,ControlPoint"],[11849,""],[11854,"U"],[11864,"T"],[11876,"WpParam,T"],[11881,"U"],[11891,"I"],[11894,"T"],[11899,"Endpoint,ControlPoint"],[11900,""],[11902,"Endpoint,ControlPoint"],[11903,""],[11904,"Endpoint,ControlPoint"],[11905,"T"],[11906,"Ep,Cp"],[11907,""],[11908,"T"],[11913,"C"],[11918,"U,T"],[11923,"U"],[11933,""],[11938,"C,U"],[11943,"C"],[11948,"T"],[11953,"V"],[11958,""],[11996,"S"],[11997,""],[11998,"S"],[12000,"T,M,D"],[12009,"T"],[12012,"Segment::Scalar"],[12013,"S"],[12021,""],[12022,"T"],[12025,"Segment::Scalar"],[12026,"S"],[12033,"C,T"],[12042,"C"],[12051,""],[12069,"S"],[12070,""],[12071,"S"],[12075,"Segment::Scalar"],[12076,"S"],[12084,"T"],[12102,"S"],[12117,""],[12118,"S"],[12119,"WpParam,T"],[12128,"S,NewS"],[12130,"T,NewT"],[12131,"S"],[12132,""],[12133,"S"],[12145,"T"],[12155,""],[12164,"S"],[12166,"C,T"],[12175,"S"],[12177,""],[12181,"S"],[12183,"T"],[12203,"Segment::Scalar"],[12204,"S"],[12214,"T"],[12226,"S"],[12229,""],[12238,"Segment::Scalar"],[12239,"S"],[12244,"Segment::Scalar"],[12245,"S"],[12251,""],[12252,"S"],[12259,"T"],[12260,"S"],[12261,"K"],[12267,"S"],[12278,""],[12279,"S"],[12284,"Segment::Scalar"],[12285,"S"],[12301,"T"],[12302,"S,F"],[12308,"Segment::Scalar"],[12309,"S,F"],[12310,"S"],[12311,"S,F"],[12312,"S"],[12313,"S,F"],[12314,"S"],[12315,"S,F"],[12316,"S"],[12317,"S,F"],[12340,"T"],[12343,"Segment::Scalar"],[12344,"S"],[12345,"T"],[12346,"S"],[12348,"T"],[12349,"S"],[12350,"T"],[12351,"S"],[12352,"T"],[12353,"S"],[12355,"T"],[12357,"S"],[12358,"T"],[12359,"S"],[12360,"T"],[12362,""],[12366,"T"],[12375,"U,T"],[12384,"S"],[12385,"T"],[12386,"S"],[12387,"T,__H"],[12388,""],[12389,"S"],[12391,""],[12400,"S"],[12408,"U"],[12426,"T"],[12453,"WpParam,T"],[12462,"U"],[12480,"T"],[12489,"S"],[12491,"T"],[12492,"S"],[12504,""],[12505,"S"],[12507,"T"],[12508,"S"],[12520,""],[12527,"S"],[12528,""],[12529,"T"],[12532,"S"],[12534,"T"],[12535,"S"],[12540,"T"],[12542,"S"],[12543,""],[12544,"T"],[12545,"S"],[12549,"T"],[12550,""],[12553,"Segment::Scalar"],[12554,"S"],[12564,"T"],[12565,"S"],[12567,"T"],[12568,"S"],[12577,"Segment::Scalar"],[12578,"S"],[12587,"Segment::Scalar"],[12588,"S"],[12600,""],[12601,"T"],[12603,"T,I"],[12605,""],[12607,"S"],[12608,"Segment::Scalar"],[12609,"S"],[12617,""],[12621,"S"],[12623,"T"],[12624,"S"],[12628,"T"],[12629,"S"],[12633,"T"],[12634,"S"],[12635,"T"],[12644,"S"],[12649,"S,T"],[12653,"S"],[12654,"T,NewT"],[12655,"C"],[12664,"U,T"],[12673,"U"],[12691,"T"],[12692,""],[12701,"C,U"],[12710,"C"],[12719,"T"],[12729,""],[12730,"S"],[12731,""],[12732,"S"],[12734,"V"],[12743,""],[12744,"Segment::Scalar"],[12745,"S"],[12753,""],[12756,"S"],[12760,""],[12762,"Segment::Scalar"],[12763,"S"],[12771,""],[12774,"S"],[12778,"T"],[12783,"T,M,D"],[12784,"C,T"],[12785,"C"],[12786,""],[12788,"T"],[12790,"WpParam,T"],[12791,""],[12792,"C,T"],[12793,"T"],[12796,""],[12798,"T"],[12799,""],[12800,"T"],[12801,"U,T"],[12802,""],[12803,"U"],[12805,"T"],[12808,"WpParam,T"],[12809,"U"],[12811,"I"],[12812,"T"],[12813,""],[12814,"S"],[12815,""],[12821,"C"],[12822,"U,T"],[12823,"U"],[12825,""],[12826,"C,U"],[12827,"C"],[12828,"T"],[12829,"V"],[12830,""],[12837,"T,M,D"],[12842,"C,T"],[12847,"C"],[12852,""],[12862,"T"],[12864,""],[12865,"T"],[12867,""],[12868,"T"],[12869,""],[12870,"T"],[12871,""],[12873,"T"],[12875,""],[12876,"T"],[12881,""],[12882,"T"],[12887,""],[12888,"T"],[12890,"WpParam,T"],[12895,"T"],[12896,""],[12897,"T"],[12898,""],[12899,"T"],[12901,""],[12902,"T"],[12904,""],[12905,"T"],[12909,""],[12913,"T"],[12914,""],[12915,"T"],[12916,"K"],[12919,"C,T"],[12924,"T"],[12925,""],[12926,"T"],[12931,""],[12932,"T"],[12938,""],[12939,"T"],[12945,"T,R"],[12946,""],[12947,"T"],[12949,""],[12951,"T"],[12952,""],[12954,"T"],[12955,"U"],[12957,"T"],[12959,""],[12961,"T"],[12962,"K"],[12971,"T,I"],[12972,""],[12973,"T"],[12975,""],[12977,"T"],[12983,""],[12984,"T"],[12991,""],[12992,"T,I"],[12993,"U,T"],[12998,""],[12999,"T"],[13000,""],[13002,"T"],[13003,""],[13005,"T,H"],[13006,"H"],[13007,""],[13012,"T"],[13013,"U"],[13023,"T"],[13038,"WpParam,T"],[13043,"U"],[13053,"T"],[13058,"I"],[13060,"T"],[13066,""],[13067,"T"],[13068,""],[13069,"T"],[13070,""],[13072,"T"],[13073,""],[13076,"T"],[13077,""],[13079,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ,FromK,FromL"],[13080,"FromA,FromB,FromC,FromD,FromE"],[13081,"FromA,FromB,FromC,FromD"],[13082,"FromA,FromB,FromC"],[13083,"FromA,FromB"],[13084,"FromA"],[13085,"FromA,FromB,FromC,FromD,FromE,FromF"],[13086,"FromA,FromB,FromC,FromD,FromE,FromF,FromG"],[13087,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH"],[13088,""],[13089,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI"],[13090,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ"],[13091,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ,FromK"],[13092,"FromA"],[13093,"FromA,FromB"],[13094,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ,FromK"],[13095,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ,FromK,FromL"],[13096,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI"],[13097,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH"],[13098,"FromA,FromB,FromC,FromD,FromE,FromF,FromG"],[13099,"FromA,FromB,FromC,FromD,FromE,FromF"],[13100,"FromA,FromB,FromC,FromD,FromE"],[13101,"FromA,FromB,FromC,FromD"],[13102,"FromA,FromB,FromC"],[13103,""],[13104,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ"],[13105,"T"],[13106,""],[13107,"T"],[13109,""],[13110,"T"],[13117,""],[13119,"T"],[13121,""],[13122,"T"],[13124,""],[13126,"T"],[13128,""],[13129,"T"],[13130,""],[13131,"T,F"],[13132,"T"],[13133,""],[13134,"T"],[13137,""],[13138,"T"],[13145,""],[13149,"T"],[13150,""],[13151,"C"],[13156,"T"],[13157,"U,T"],[13158,"T"],[13159,"U,T"],[13161,""],[13162,"U,T"],[13163,""],[13164,"U,T"],[13165,"T"],[13166,"U"],[13176,"T"],[13177,""],[13184,"C,U"],[13189,"C"],[13194,"T"],[13199,"V"],[13204,""],[13270,"T,M,D"],[13271,"C,T"],[13272,"C"],[13273,""],[13275,"T"],[13277,"WpParam,T"],[13278,"C,T"],[13279,""],[13281,"T"],[13284,""],[13285,"T"],[13286,""],[13287,"T"],[13288,"U,T"],[13289,""],[13290,"U"],[13292,"T"],[13295,"WpParam,T"],[13296,"U"],[13298,"I"],[13299,"T"],[13300,"S"],[13302,""],[13303,"C"],[13304,"U,T"],[13305,"U"],[13307,""],[13308,"C,U"],[13309,"C"],[13310,"T"],[13311,"V"],[13337,"T,U"],[13341,"T,M,D"],[13364,"T,U"],[13370,"T,Src,Dst"],[13371,"T,U"],[13376,"T,Src,Dst1,Dst2"],[13378,"T,U"],[13390,"T,Src,Dst"],[13392,"T,U"],[13396,""],[13401,"T,U"],[13404,""],[13406,"T"],[13407,"T,U"],[13409,"T"],[13411,"T,U"],[13413,"T"],[13415,"T,Src,Dst"],[13417,"T,U"],[13420,"T,Src,Dst"],[13422,"T,U"],[13424,"T,Src,Dst"],[13430,"T,U"],[13433,"T,Src,Dst"],[13437,"C,T"],[13460,"C"],[13483,""],[13529,"T"],[13575,""],[13576,"T,U"],[13577,""],[13579,"WpParam,T"],[13602,"T,U,NewT"],[13608,"T,Src,Dst,NewT"],[13609,"T,U,NewT"],[13611,"T,Src,Dst,NewT"],[13613,"T,U,NewT"],[13615,"T,Src,Dst,NewT"],[13617,"T,U,V"],[13623,"T,Src,Dst,Src2,Dst2"],[13626,"T,U,V"],[13630,"T,U"],[13647,"T,Src,Dst"],[13648,"T,U"],[13661,"T,Src,Dst"],[13665,"T,U"],[13668,"T,Src,Dst"],[13670,"T,U"],[13672,"T,Src,Dst"],[13674,""],[13677,"T"],[13700,""],[13723,"T,U"],[13724,"T,Src,Dst"],[13725,""],[13726,"K"],[13729,"T,U"],[13733,"C,T"],[13756,"T,U"],[13766,""],[13767,"T,U"],[13769,"T,Src,Dst"],[13771,"T,U"],[13777,"T,Src,Dst"],[13778,"T,U"],[13781,"T,Src,Dst"],[13783,"T,U"],[13785,"T,Src,Dst"],[13787,""],[13789,"T,U"],[13790,""],[13791,"T"],[13837,"T,Src,Dst"],[13839,"T,U"],[13841,"T,U2,U1"],[13842,"T,U"],[13844,"T,U2,U1"],[13845,"T,Dst,Src"],[13847,"T,U"],[13849,"T,U2,U1"],[13851,"T,U"],[13852,"T,U2,U1"],[13853,"T,U"],[13854,"T,U2,U1"],[13855,"T,U"],[13856,"T,U2,U1"],[13857,"T,U"],[13858,"T,U2,U1"],[13859,"T,U"],[13861,"T,U2,U1"],[13862,"T,U"],[13863,"T,U2,U1"],[13864,"T,U"],[13889,"T"],[13912,""],[13935,"T,U"],[13942,"T,Src,Dst"],[13946,"T,U"],[13949,"T,Src,Dst"],[13951,"T,U"],[13953,"T,Src,Dst"],[13955,""],[13958,"T,U"],[13962,"K"],[14031,"T,Src,Dst"],[14032,"T,U"],[14034,""],[14035,"T,U"],[14054,"T,Src,Dst"],[14058,"T,U"],[14061,"T,Src,Dst"],[14063,"T,U"],[14065,"T,Src,Dst"],[14067,""],[14070,"T"],[14071,"T,U"],[14073,"T"],[14074,"T,U"],[14075,"T"],[14076,"T,U"],[14079,"T"],[14081,"T,U"],[14085,"T"],[14087,"T,U"],[14088,"T,Src,Dst"],[14089,"T"],[14090,"T,Dst,Src"],[14091,"T"],[14096,"T,U"],[14099,"T"],[14100,"T,U"],[14103,"T,Src,Dst"],[14104,"T"],[14106,"T,Src,Dst"],[14108,"T,U"],[14111,"T"],[14112,"T,U"],[14113,"T,Src,Dst"],[14114,"T,U"],[14115,"T"],[14117,"T,Src,Dst"],[14119,"T"],[14146,"T,U"],[14147,"T,Src,Dst"],[14151,"T,U"],[14161,"I,T,U"],[14164,"T,Src,Dst"],[14166,"T,U"],[14169,"U,T"],[14192,"T,Dst,Src"],[14193,"T,U"],[14198,"T,Src,Dst"],[14201,"T,U"],[14203,"T,Src,Dst"],[14205,"T,U"],[14207,"T,Src,Dst"],[14209,"T,U"],[14212,"T,Src,Dst"],[14214,"T,U"],[14218,"T,U,H"],[14225,"T,Src,Dst,H"],[14229,"T,U,H"],[14232,"T,Src,Dst,H"],[14234,"T,U,H"],[14236,"T,Src,Dst,H"],[14238,"__H"],[14241,"T,U"],[14244,""],[14246,"T,U"],[14247,""],[14248,"T,Src,Dst"],[14256,"T,U"],[14259,""],[14282,"T,U"],[14292,"U"],[14338,"T"],[14407,"WpParam,T"],[14430,"U"],[14476,"T"],[14499,"T,Src,Dst"],[14509,"T,U"],[14523,"T,Src,Dst"],[14528,"T,U"],[14530,"T,Src,Dst"],[14531,"T,U"],[14534,""],[14537,"T,U"],[14545,"T,Src,Dst"],[14546,"T,U"],[14554,""],[14576,"T,U,V,F"],[14580,"T,U"],[14584,"T,Src,Dst"],[14585,"T,U"],[14589,""],[14591,"T,U"],[14597,"T,Src,Dst"],[14598,"T,U"],[14602,""],[14604,"T,U"],[14606,"T,U1,U2"],[14607,"T,U"],[14609,"T,U1,U2"],[14610,"T,U"],[14611,"T,Src,Dst"],[14612,"T,U1,U2"],[14613,"T,U"],[14615,"T,U1,U2"],[14617,"T,U"],[14618,"T,A,B,C"],[14619,"T,U"],[14620,"T,U1,U2"],[14622,"T,U"],[14623,"T,U1,U2"],[14624,"T,U"],[14625,"T,U1,U2"],[14626,"T,U"],[14628,"T,U1,U2"],[14629,"T,U"],[14650,"T,Src,Dst"],[14651,"T,U"],[14666,"T,Src,Dst"],[14669,"T,U"],[14672,"T,Src,Dst"],[14674,"T,U"],[14676,"T,Src,Dst"],[14679,"T,U"],[14680,"T,Src,Dst"],[14681,""],[14683,"T,Src,Dst"],[14685,"T,U"],[14687,""],[14689,"T,U"],[14693,"T"],[14711,"T,Src,Dst"],[14712,"T,U"],[14714,""],[14716,"T,U"],[14718,""],[14719,"T,Src,Dst"],[14720,"T,U"],[14722,"T,Src,Dst"],[14727,"T,U"],[14728,"T,Src,Dst"],[14729,""],[14730,"T,Src,Dst"],[14731,"T,U"],[14733,"U"],[14734,"T,Src,Dst"],[14740,"T,U"],[14742,"T,Src,Dst"],[14744,""],[14745,"T,Src,Dst"],[14746,""],[14748,"T,U"],[14753,""],[14754,"T,U"],[14756,"T,Src,Dst"],[14758,""],[14759,"T,U"],[14782,"S,T,U"],[14785,"T,Src,Dst"],[14787,"T,U"],[14794,""],[14795,"T,U"],[14797,""],[14798,"T,U"],[14800,"T,Src,Dst"],[14802,"T,U"],[14806,"T,Src,Dst"],[14808,"T,U"],[14812,"T,Src,Dst"],[14813,"T,U"],[14820,"T,Src,Dst"],[14821,"T,U"],[14824,"T,Src,Dst2,Dst1"],[14826,"T,U"],[14836,"T,Src,Dst"],[14838,"T,U"],[14840,"T,U,I"],[14850,""],[14851,"T,Src,Dst,Dst2"],[14852,"T,Src,Dst,NewSrc"],[14853,"T,Src,Dst,NewDst"],[14856,"T,Src,Dst"],[14862,"T,U"],[14864,"T,Src,Dst"],[14865,"T,U"],[14866,"T,Src,Dst"],[14867,"T,U"],[14868,"T,Src,Dst"],[14869,"T,U"],[14873,"T,Src,Dst"],[14875,"T,U"],[14877,"T,Src,Dst"],[14879,"T,U"],[14881,"T,Src,Dst"],[14886,"T,U"],[14894,"T,Src,Dst"],[14896,"T,U"],[14905,"T,Src,Dst"],[14907,"T,U"],[14916,"T,Src,Dst"],[14918,"T,U"],[14927,"T,Src,Dst"],[14929,"T,U"],[14934,"T"],[14957,"T,U"],[14963,"T,Src,Dst"],[14968,"T,U"],[14974,"T,Src,Dst"],[14976,"T,U"],[14987,"T,Src,Dst"],[14989,"T,U"],[14998,"T,Src,Dst"],[15001,"T,U"],[15003,"T,Src,Dst"],[15005,"T,U"],[15007,"T,Src,Dst"],[15009,"T,U"],[15016,"T,Src,Dst"],[15018,"T,U"],[15024,"T,Src,Dst"],[15026,""],[15027,"T,Src,Dst"],[15033,"S"],[15035,"T,Src,Dst"],[15036,"S"],[15037,"T,Src,Dst"],[15038,"S"],[15039,"T,Src,Dst"],[15055,"S"],[15056,"T,Src,Dst"],[15057,"S"],[15058,"T,Src,Dst"],[15059,"S"],[15060,"T,Src,Dst"],[15061,"S"],[15062,"T,Src,Dst"],[15066,"T,U"],[15069,"T,Src,Dst"],[15071,""],[15072,"T,U,NewT"],[15078,"T,Src,Dst,NewT"],[15079,"T,U,NewT"],[15081,"T,Src,Dst,NewT"],[15083,"T,U,NewT"],[15085,"T,Src,Dst,NewT"],[15087,"C"],[15110,"U,T"],[15133,"U"],[15179,"T,U"],[15181,""],[15204,"C,U"],[15227,"C"],[15250,"T,U"],[15253,"T,Src,Dst"],[15254,"T"],[15277,"T,U"],[15279,"T,Src,Dst"],[15280,"T,U"],[15283,"V"],[15306,""],[15307,"T,U"],[15310,""],[15312,"T,Src,Dst,NewDst"],[15314,"T,U"],[15319,"T,Src,Dst,NewSrc"],[15321,""],[15330,"T,U"],[15335,""],[15336,"T,U"],[15339,""],[15340,"T,U"],[15341,""],[15350,"T,U"],[15357,""],[15358,"T,U"],[15359,""],[15364,"T,U"],[15382,"T,U,V,F"],[15387,"Eps"],[15388,""],[15389,"Eps"],[15390,"T"],[15412,""],[15489,"T,M,D"],[15492,"C,T"],[15495,"C"],[15498,""],[15504,"T"],[15510,"WpParam,T"],[15513,"C,T"],[15516,""],[15517,"T"],[15526,""],[15529,"T"],[15532,""],[15533,"T"],[15536,"U,T"],[15539,""],[15542,"U"],[15548,"T"],[15557,"WpParam,T"],[15560,"U"],[15566,"I"],[15568,"T"],[15571,"S"],[15576,""],[15577,"C"],[15580,"U,T"],[15583,"U"],[15589,""],[15592,"C,U"],[15595,"C"],[15598,"T"],[15601,"V"],[15607,"Segment::Scalar"],[15620,"S"],[15622,"Segment::Scalar"],[15624,"S"],[15635,"T,M,D"],[15639,"C,T"],[15643,"C"],[15647,""],[15655,"T"],[15663,"WpParam,T"],[15667,"Iter"],[15668,"C,T"],[15672,"T"],[15684,""],[15690,"T"],[15698,"U,T"],[15702,""],[15706,"U"],[15714,"T"],[15726,"WpParam,T"],[15730,"U"],[15738,"I"],[15742,"T"],[15746,"Iter"],[15747,"T,I"],[15748,"Iter"],[15751,"I,T"],[15752,"Iter"],[15755,"T"],[15757,"C"],[15761,"U,T"],[15765,"U"],[15773,""],[15777,"C,U"],[15781,"C"],[15785,"T"],[15789,"V"],[15793,"Iter"],[15803,""],[15838,"T,M,D"],[15841,"C,T"],[15844,"C"],[15847,""],[15857,"T"],[15863,""],[15867,"WpParam,T"],[15870,""],[15871,"T"],[15872,""],[15873,"C,T"],[15876,""],[15880,"T"],[15889,""],[15896,"T"],[15902,"U,T"],[15905,""],[15908,"U"],[15914,"T"],[15923,"WpParam,T"],[15926,"U"],[15932,"I"],[15933,"T"],[15936,""],[15954,"T"],[15955,"C"],[15958,"U,T"],[15961,"U"],[15967,""],[15970,"C,U"],[15973,"C"],[15976,"T"],[15979,"V"],[15982,""],[15989,"T,M,D"],[15993,"C,T"],[15997,"C"],[16001,""],[16009,"T"],[16017,"WpParam,T"],[16021,""],[16022,"T"],[16024,""],[16025,"T"],[16029,""],[16035,"C,T"],[16039,"T"],[16051,""],[16055,"T"],[16063,"U,T"],[16067,""],[16071,"U"],[16079,"T"],[16091,"WpParam,T"],[16095,"U"],[16103,"I"],[16107,"T"],[16111,""],[16113,"T"],[16115,""],[16116,"T"],[16117,""],[16119,"T"],[16123,"C"],[16127,"U,T"],[16131,"U"],[16139,""],[16143,"C,U"],[16147,"C"],[16151,"T"],[16155,"V"],[16164,""],[16166,"Build::PathType"],[16167,""],[16220,"T,M,D"],[16223,"C,T"],[16226,"C"],[16229,""],[16237,"T"],[16243,"WpParam,T"],[16246,"Font"],[16247,""],[16249,"T"],[16252,""],[16256,"C,T"],[16259,""],[16260,"Catalog::Class"],[16261,"T"],[16270,""],[16273,"Font"],[16274,""],[16276,"K"],[16279,"Font"],[16280,""],[16283,"T"],[16289,"U,T"],[16292,""],[16296,"U"],[16302,"T"],[16311,"WpParam,T"],[16314,"U"],[16320,"T"],[16323,""],[16328,"Catalog::Class"],[16329,""],[16331,"T"],[16334,"C"],[16337,"U,T"],[16340,"U"],[16346,""],[16349,"C,U"],[16352,"C"],[16355,"T"],[16358,"V"],[16361,""],[16367,"T,M,D"],[16368,"C,T"],[16369,"C"],[16370,""],[16372,"T"],[16374,"WpParam,T"],[16375,"T"],[16377,""],[16378,"C,T"],[16379,"T"],[16380,"Catalog::Class"],[16382,"T"],[16385,""],[16386,"T"],[16389,"U,T"],[16390,""],[16391,"U"],[16393,"T"],[16395,"WpParam,T"],[16396,"U"],[16398,"T"],[16403,"C"],[16404,"U,T"],[16405,"U"],[16407,""],[16408,"C,U"],[16409,"C"],[16410,"T"],[16411,"V"],[16412,"T"],[16419,"T,M,D"],[16421,"C,T"],[16423,"C"],[16425,""],[16429,""],[16431,""],[16432,""],[16433,""],[16435,"T"],[16439,"WpParam,T"],[16441,""],[16443,"T"],[16445,""],[16447,""],[16448,"C,T"],[16450,""],[16452,"Catalog::Class"],[16453,""],[16454,"T"],[16460,"Renderer"],[16461,""],[16465,"K"],[16468,""],[16471,"T"],[16472,""],[16474,"T"],[16475,""],[16476,"T"],[16478,"U,T"],[16480,"__H"],[16481,""],[16483,"U"],[16487,"T"],[16493,"WpParam,T"],[16495,"U"],[16499,"T"],[16501,""],[16503,"T"],[16504,""],[16507,""],[16508,""],[16509,"Catalog::Class"],[16510,""],[16512,"T"],[16514,"Theme"],[16515,"C"],[16517,"U,T"],[16519,"U"],[16523,""],[16525,"C,U"],[16527,"C"],[16529,""],[16530,"T"],[16532,""],[16533,"V"],[16544,"T,M,D"],[16545,"C,T"],[16546,"C"],[16547,""],[16549,"T"],[16551,"WpParam,T"],[16552,"C,T"],[16553,"Handle"],[16554,"T"],[16557,"Handle,Renderer"],[16558,"Handle,Renderer,Theme"],[16559,""],[16560,"Handle"],[16561,"T"],[16563,"U,T"],[16564,"Handle,"],[16565,""],[16566,"U"],[16568,"T"],[16571,"WpParam,T"],[16572,"U"],[16574,"T"],[16575,"Handle,Renderer"],[16577,"Handle"],[16579,"Handle,Renderer"],[16580,"Handle,T"],[16581,"Handle,"],[16582,"Handle"],[16586,"C"],[16587,"U,T"],[16588,"U"],[16590,""],[16591,"C,U"],[16592,"C"],[16593,"T"],[16594,"Handle,Renderer,Message"],[16596,"Handle"],[16597,"V"],[16598,"Handle,"],[16599,""],[16605,"T,M,D"],[16606,"C,T"],[16607,"C"],[16608,""],[16610,"T"],[16612,"WpParam,T"],[16613,""],[16614,"T"],[16615,""],[16616,"C,T"],[16617,""],[16618,"T"],[16621,""],[16623,"T"],[16625,"U,T"],[16626,""],[16627,"U"],[16629,"T"],[16632,"WpParam,T"],[16633,"U"],[16635,"T"],[16636,""],[16638,"T"],[16639,"Renderer"],[16640,"T"],[16641,"C"],[16642,"U,T"],[16643,"U"],[16645,""],[16646,"C,U"],[16647,"C"],[16648,"T"],[16649,"V"],[16651,"T,M,D"],[16652,"Key,Message,Theme,Renderer"],[16653,"C,T"],[16654,"C"],[16655,""],[16657,"T"],[16659,"WpParam,T"],[16660,"Key,Message,Theme,Renderer"],[16662,"C,T"],[16663,"Key,Message,Renderer"],[16664,"T"],[16666,"Key,Message,Theme,Renderer"],[16667,"T"],[16668,"Key,Message,Theme,Renderer"],[16669,""],[16670,"Key,Message,Theme,Renderer,"],[16671,"T"],[16673,"U,T"],[16674,"Key,Message,Theme,Renderer"],[16675,"Key,Message,Theme,Renderer,"],[16676,""],[16677,"U"],[16679,"T"],[16681,"WpParam,T"],[16682,"U"],[16684,"T"],[16685,"Key,Message,Theme,Renderer"],[16686,"Key,Message,Theme,Renderer,"],[16687,"Key,Message,Theme,Renderer"],[16689,"T"],[16690,"Key,Message,Theme,Renderer"],[16692,"Key,Message,Theme,Renderer,P"],[16693,"Key,Message,Theme,Renderer,"],[16695,"Key,Message,Theme,Renderer"],[16696,"Key,Message,Theme,Renderer,"],[16697,"Key,Message,Theme,Renderer"],[16699,"C"],[16700,"U,T"],[16701,"U"],[16703,""],[16704,"C,U"],[16705,"C"],[16706,"T"],[16707,"Key,Message,Theme,Renderer"],[16708,"V"],[16709,"Key,Message,Theme,Renderer,"],[16710,"Key,Message,Theme,Renderer"],[16711,"Key,Message,Theme,Renderer,"],[16734,"T,M,D"],[16741,"C,T"],[16748,"C"],[16755,""],[16774,"T"],[16788,"WpParam,T"],[16795,""],[16802,"T"],[16808,""],[16816,"Message,,Theme,Renderer"],[16817,"Catalog::Class"],[16818,"Message,Theme,Renderer"],[16819,""],[16820,"K"],[16822,"C,T"],[16829,""],[16830,"T"],[16844,"D"],[16846,""],[16848,"T"],[16855,""],[16865,"K"],[16871,""],[16881,"T"],[16887,""],[16892,"T"],[16900,"P"],[16902,""],[16903,"U,T"],[16910,""],[16919,"H"],[16920,"__H"],[16921,"Message,,Theme,Renderer"],[16922,"Message,Theme,Renderer"],[16923,""],[16925,"Message,Theme,Renderer"],[16926,""],[16941,"U"],[16955,"T"],[16973,"WpParam,T"],[16980,"U"],[16994,"T"],[17001,""],[17003,"Message,Theme,Renderer,"],[17004,""],[17011,"T"],[17012,"Message"],[17013,""],[17014,"Message,Theme,Renderer,"],[17015,"Message,Theme,Renderer"],[17016,""],[17017,"Message,,Theme,Renderer"],[17018,"Message,Theme,Renderer"],[17019,""],[17022,"I"],[17023,""],[17036,"S"],[17038,""],[17048,""],[17049,""],[17055,"T"],[17061,""],[17065,"C"],[17072,""],[17073,"U,T"],[17074,""],[17075,"U,T"],[17081,"U"],[17095,""],[17102,"C,U"],[17109,"C"],[17116,"Message,Theme,Renderer,"],[17117,"Message,Theme,Renderer"],[17118,"T"],[17125,""],[17126,",,Theme,Renderer"],[17127,",,Message,Theme,Renderer,"],[17128,"V"],[17135,""],[17136,","],[17137,""],[17155,"Catalog::Class"],[17156,""],[17158,"Catalog::Class"],[17159,""],[17204,"T,M,D"],[17222,"T"],[17223,"Message,Theme,Renderer"],[17224,"C,T"],[17242,"C"],[17260,""],[17298,"T"],[17334,"WpParam,T"],[17352,""],[17353,"Message,Theme,Renderer"],[17354,"Message,Theme,Renderer,"],[17356,""],[17357,"T"],[17358,""],[17362,"T"],[17363,""],[17371,"T"],[17386,""],[17401,"T"],[17402,""],[17405,"K"],[17407,"C,T"],[17425,"Message,Theme,Renderer,"],[17426,""],[17427,"Catalog::Class"],[17428,""],[17429,"T"],[17483,"Message,Theme,Renderer"],[17485,""],[17494,"T"],[17495,""],[17504,"Message,Theme,Renderer,,"],[17505,""],[17512,"K"],[17524,""],[17525,"T"],[17526,""],[17530,"T"],[17531,""],[17539,"Message,Theme,Renderer,T"],[17540,"T"],[17542,"Message,Theme,Renderer"],[17543,"T"],[17577,"U,T"],[17595,"T"],[17597,"__H"],[17598,"H"],[17599,"__H"],[17601,""],[17622,"U"],[17658,"T"],[17709,"WpParam,T"],[17727,"U"],[17763,"T"],[17782,"Message,Theme,Renderer"],[17783,"T"],[17790,"Message,Theme,Renderer,"],[17793,"T"],[17795,"Message,Theme,Renderer,P"],[17796,""],[17802,"T"],[17804,""],[17805,"T"],[17806,""],[17809,"T"],[17810,""],[17812,"Catalog::Class"],[17813,"Message,Theme,Renderer,"],[17815,"T"],[17816,"Message,Theme,Renderer"],[17817,"T"],[17832,"C"],[17850,"U,T"],[17868,"U"],[17904,""],[17922,"C,U"],[17940,"C"],[17958,"T"],[17976,"V"],[17994,""],[17995,"T,"],[17996,""],[18015,"T,M,D"],[18017,"C,T"],[18019,"C"],[18021,""],[18025,"T"],[18029,"WpParam,T"],[18031,""],[18033,"T"],[18035,""],[18037,"C,T"],[18039,""],[18040,"T"],[18046,""],[18051,"T"],[18056,"U,T"],[18058,""],[18061,"U"],[18065,"T"],[18071,"WpParam,T"],[18073,"U"],[18077,"T"],[18080,""],[18083,"T"],[18085,"C"],[18087,"U,T"],[18089,"U"],[18093,""],[18095,"C,U"],[18097,"C"],[18099,"T"],[18101,"V"],[18103,""],[18122,"T,M,D"],[18126,"C,T"],[18130,"C"],[18134,""],[18144,"T"],[18152,"WpParam,T"],[18156,"Font"],[18158,""],[18160,"T"],[18164,""],[18169,"C,T"],[18173,""],[18174,"Catalog::Class"],[18175,"Font"],[18176,"Catalog::Class"],[18177,"T"],[18189,""],[18193,"Font"],[18195,""],[18197,"K"],[18200,"Font"],[18202,""],[18205,"T"],[18213,"U,T"],[18217,""],[18222,"U"],[18230,"T"],[18242,"WpParam,T"],[18246,"U"],[18254,"T"],[18258,""],[18259,"T"],[18260,""],[18263,"Catalog::Class"],[18264,""],[18265,"T"],[18269,"C"],[18273,"U,T"],[18277,"U"],[18285,""],[18289,"C,U"],[18293,"C"],[18297,"T"],[18301,"V"],[18305,""],[18315,"T,M,D"],[18316,"C,T"],[18317,"C"],[18318,""],[18323,"T"],[18325,"WpParam,T"],[18326,""],[18327,"T"],[18328,""],[18329,"C,T"],[18330,""],[18331,"Catalog::Class"],[18332,"T"],[18335,""],[18338,"T"],[18340,"U,T"],[18341,""],[18342,"U"],[18344,"T"],[18347,"WpParam,T"],[18348,"U"],[18350,"T"],[18351,""],[18353,"Catalog::Class"],[18354,""],[18355,"T"],[18356,"C"],[18357,"U,T"],[18358,"U"],[18360,""],[18361,"C,U"],[18362,"C"],[18363,"T"],[18364,"V"],[18365,""],[18386,"T,M,D"],[18391,"C,T"],[18396,"C"],[18401,""],[18412,"T"],[18422,"WpParam,T"],[18427,""],[18432,"T"],[18436,""],[18440,"C,T"],[18445,""],[18446,"Catalog::Class"],[18447,"T"],[18462,""],[18471,"K"],[18480,""],[18486,"T"],[18490,""],[18491,"T"],[18497,"U,T"],[18502,""],[18507,"U"],[18517,"T"],[18531,"WpParam,T"],[18536,"U"],[18546,"T"],[18551,""],[18552,"Catalog::Class"],[18553,"T"],[18557,""],[18559,"C"],[18564,"U,T"],[18569,"U"],[18579,""],[18584,"C,U"],[18589,"C"],[18594,"T"],[18599,"V"],[18604,""],[18614,"T,M,D"],[18616,"C,T"],[18618,"C"],[18620,""],[18627,"T"],[18631,"WpParam,T"],[18633,""],[18635,"T"],[18637,""],[18639,"C,T"],[18641,""],[18642,"Catalog::Class"],[18643,"T"],[18647,""],[18648,"T"],[18650,""],[18654,"K"],[18657,""],[18659,"T"],[18663,"U,T"],[18665,""],[18667,"U"],[18671,"T"],[18677,"WpParam,T"],[18679,"U"],[18683,"T"],[18685,"Catalog::Class"],[18686,""],[18687,"T"],[18689,"C"],[18691,"U,T"],[18693,"U"],[18697,""],[18699,"C,U"],[18701,"C"],[18703,"T"],[18705,"V"],[18707,""],[18719,"T,M,D"],[18721,"C,T"],[18723,"C"],[18725,""],[18729,"T"],[18733,"WpParam,T"],[18735,""],[18737,"T"],[18739,""],[18742,"C,T"],[18744,""],[18745,"Catalog::Class"],[18746,"T"],[18752,""],[18760,"T"],[18764,"U,T"],[18766,""],[18768,"U"],[18772,"T"],[18778,"WpParam,T"],[18780,"U"],[18784,"T"],[18786,""],[18787,"Catalog::Class"],[18788,"T"],[18790,"C"],[18792,"U,T"],[18794,"U"],[18798,""],[18800,"C,U"],[18802,"C"],[18804,"T"],[18806,"V"],[18808,""],[18836,"T,M,D"],[18847,""],[18848,"C,T"],[18859,"C"],[18870,""],[18895,"T"],[18917,""],[18918,"WpParam,T"],[18929,""],[18940,"T"],[18951,""],[18963,"C,T"],[18974,""],[18977,"Catalog::Class"],[18978,""],[18983,"T"],[19016,""],[19037,"K"],[19046,""],[19057,"T"],[19062,""],[19063,"T"],[19080,"U,T"],[19091,""],[19092,"__H"],[19093,""],[19106,"U"],[19128,"T"],[19161,"WpParam,T"],[19172,"U"],[19194,"T"],[19205,""],[19206,""],[19207,""],[19208,"T"],[19213,""],[19214,",T"],[19216,""],[19217,""],[19218,",T"],[19219,""],[19220,"Catalog::Class"],[19221,"T"],[19232,"C"],[19243,"U,T"],[19254,"U"],[19276,""],[19287,"C,U"],[19298,"C"],[19309,""],[19310,"T"],[19321,""],[19323,"V"],[19334,""],[19335,""],[19359,"T,M,D"],[19361,"C,T"],[19363,"C"],[19365,""],[19369,"T"],[19373,"WpParam,T"],[19375,""],[19376,"T"],[19377,""],[19378,"C,T"],[19380,""],[19381,"T"],[19387,"Program::State,Program::Primitive"],[19388,""],[19392,"T"],[19396,"U,T"],[19398,"T"],[19400,""],[19403,"U"],[19407,"T"],[19412,"WpParam,T"],[19414,"U"],[19418,"T"],[19420,""],[19421,"Program::State,Program::Primitive"],[19422,"T"],[19423,""],[19430,"T"],[19432,"C"],[19434,"U,T"],[19436,"U"],[19440,""],[19442,"C,U"],[19444,"C"],[19446,"T"],[19448,"Program::State,Program::Primitive,Message"],[19449,"V"],[19451,""],[19466,"T,M,D"],[19471,"C,T"],[19476,"C"],[19481,""],[19496,"T"],[19506,"WpParam,T"],[19511,""],[19516,"T"],[19521,""],[19526,"C,T"],[19531,""],[19532,"Catalog::Class"],[19533,"T"],[19548,""],[19558,"K"],[19561,""],[19566,"T"],[19576,"U,T"],[19581,""],[19587,"U"],[19597,"T"],[19612,"WpParam,T"],[19617,"U"],[19627,"T"],[19632,""],[19634,"Catalog::Class"],[19635,"T"],[19640,"C"],[19645,"U,T"],[19650,"U"],[19660,""],[19665,"C,U"],[19670,"C"],[19675,"T"],[19680,"V"],[19685,""],[19686,""],[19687,""],[19699,"T,M,D"],[19701,"C,T"],[19703,"C"],[19705,""],[19709,"T"],[19713,"WpParam,T"],[19715,""],[19717,"T"],[19719,""],[19722,"C,T"],[19724,"Catalog::Class"],[19725,""],[19726,"T"],[19732,""],[19736,"K"],[19739,""],[19741,"T"],[19745,"U,T"],[19747,""],[19749,"U"],[19753,"T"],[19759,"WpParam,T"],[19761,"U"],[19765,"T"],[19768,"Catalog::Class"],[19769,"T"],[19771,"C"],[19773,"U,T"],[19775,"U"],[19779,""],[19781,"C,U"],[19783,"C"],[19785,"T"],[19787,"V"],[19816,"T,M,D"],[19819,"Link,Message,Theme,Renderer,"],[19821,"C,T"],[19824,"C"],[19827,""],[19834,"T"],[19840,"WpParam,T"],[19843,"Link,Message,Theme,Renderer"],[19844,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[19845,"Link,Message,Theme,Renderer,"],[19846,""],[19847,"T"],[19848,""],[19849,"Link,Message,Theme,Renderer,"],[19850,""],[19852,"Link,Message,Theme,Renderer,"],[19853,"C,T"],[19856,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[19857,""],[19859,"Catalog::Class"],[19860,"Link,Message,Theme,Renderer"],[19861,"P"],[19862,""],[19863,"T"],[19872,"Renderer"],[19873,"Link,Message,Theme,Renderer"],[19874,""],[19878,"P"],[19879,""],[19880,"Link,Message,Theme,Renderer,"],[19881,""],[19882,"T"],[19888,"Link,T,Message,Theme,Renderer"],[19889,"U,T"],[19892,"Link,Message,Theme,Renderer,"],[19893,""],[19894,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[19895,""],[19898,"U"],[19904,"T"],[19912,"WpParam,T"],[19915,"U"],[19921,""],[19922,"T"],[19925,"Renderer"],[19926,"Link,Message,Theme,Renderer"],[19927,"Link,Message,Theme,Renderer,"],[19928,""],[19930,"Link,Message,Theme,Renderer"],[19931,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[19932,"Link,Message,Theme,Renderer"],[19933,"T"],[19936,"Link,Message,Theme,Renderer,"],[19937,""],[19940,"Link,Message,Theme,Renderer,"],[19941,"Link,Message,Theme,Renderer"],[19942,""],[19943,"Link,Message,Theme,Renderer"],[19944,""],[19945,"Catalog::Class"],[19946,"Link,Message,Theme,Renderer,"],[19947,""],[19948,"Link,Message,Theme,Renderer"],[19949,""],[19950,"T"],[19951,"C"],[19954,"U,T"],[19957,"U"],[19963,""],[19966,"C,U"],[19969,"C"],[19972,""],[19973,"T"],[19976,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[19977,"Link,Message,Theme,Renderer"],[19978,"V"],[19981,"Link,Message,Theme,Renderer,"],[19982,"Link,,Message,Theme,Renderer"],[19983,"Link,Message,Theme,Renderer"],[20049,"T,M,D"],[20060,"C,T"],[20071,"C"],[20082,""],[20107,"T"],[20129,"WpParam,T"],[20140,""],[20145,"Message"],[20146,""],[20149,"T"],[20158,""],[20167,"C,T"],[20178,"R"],[20179,""],[20180,"Catalog::Class"],[20181,"Renderer"],[20182,""],[20184,"T"],[20206,""],[20207,"T"],[20218,""],[20235,"Message"],[20236,""],[20239,"K"],[20251,"Renderer"],[20252,""],[20257,"Highlighter"],[20258,"Message"],[20259,""],[20262,"Highlighter"],[20263,"T"],[20285,"Message"],[20286,"U,T"],[20297,""],[20309,"U"],[20331,"T"],[20362,"WpParam,T"],[20373,"U"],[20395,"T"],[20406,""],[20407,"Highlighter"],[20409,""],[20410,"R"],[20414,""],[20415,"R"],[20416,"T"],[20419,"R"],[20420,""],[20421,"R"],[20422,""],[20424,"Catalog::Class"],[20425,"R"],[20426,""],[20428,"T"],[20437,"C"],[20448,"U,T"],[20459,"U"],[20481,""],[20492,"C,U"],[20503,"C"],[20514,"Highlighter"],[20515,"T"],[20526,""],[20527,"V"],[20538,""],[20539,"R"],[20540,""],[20561,"T,M,D"],[20569,"C,T"],[20577,"C"],[20585,""],[20603,"T"],[20619,"WpParam,T"],[20627,""],[20629,"Font"],[20630,""],[20632,"P"],[20633,""],[20635,"T"],[20643,""],[20652,"C,T"],[20661,"P"],[20662,""],[20663,"Catalog::Class"],[20664,""],[20665,"P"],[20666,"T"],[20690,""],[20702,"K"],[20711,""],[20714,"Font"],[20715,""],[20717,"P"],[20718,""],[20720,",T"],[20721,"P"],[20723,""],[20724,"T"],[20729,""],[20731,"T"],[20742,"U,T"],[20750,"__H"],[20751,""],[20762,"U"],[20778,"T"],[20802,"WpParam,T"],[20810,"U"],[20826,"T"],[20834,""],[20835,"P"],[20837,""],[20838,",T"],[20839,"P"],[20841,",T"],[20842,"P"],[20844,",T"],[20845,"P"],[20847,""],[20848,""],[20849,"P"],[20850,""],[20851,"T"],[20853,""],[20859,",T"],[20860,"P"],[20862,""],[20868,"Catalog::Class"],[20869,"T"],[20877,""],[20879,"C"],[20887,"U,T"],[20895,"U"],[20911,""],[20919,"C,U"],[20927,"C"],[20935,"P"],[20937,""],[20939,"T"],[20947,""],[20948,"V"],[20956,""],[20961,"T,M,D"],[20962,"C,T"],[20963,"C"],[20964,""],[20966,"T"],[20968,"WpParam,T"],[20969,""],[20970,"T"],[20971,""],[20972,"C,T"],[20973,"T"],[20976,""],[20978,"K"],[20981,""],[20982,"T"],[20984,"U,T"],[20985,""],[20986,"U"],[20988,"T"],[20991,"WpParam,T"],[20992,"U"],[20994,"T"],[20996,"C"],[20997,"U,T"],[20998,"U"],[21000,""],[21001,"C,U"],[21002,"C"],[21003,"T"],[21004,"V"],[21005,""],[21119,"T,M,D"],[21121,"C,T"],[21123,"C"],[21125,""],[21132,"T"],[21136,"WpParam,T"],[21138,""],[21140,"T"],[21142,""],[21144,"C,T"],[21146,""],[21147,"Catalog::Class"],[21148,"T"],[21154,""],[21158,"K"],[21161,""],[21166,"T"],[21170,"U,T"],[21172,""],[21174,"U"],[21178,"T"],[21184,"WpParam,T"],[21186,"U"],[21190,"T"],[21192,"Catalog::Class"],[21193,"T"],[21195,"C"],[21197,"U,T"],[21199,"U"],[21203,""],[21205,"C,U"],[21207,"C"],[21209,"T"],[21211,"V"],[21213,""],[21222,"T,M,D"],[21223,"C,T"],[21224,"C"],[21225,""],[21227,"T"],[21229,"WpParam,T"],[21230,""],[21231,"T"],[21232,""],[21233,"C,T"],[21234,""],[21235,"T"],[21238,""],[21240,"K"],[21243,""],[21244,"T"],[21246,"U,T"],[21247,""],[21248,"U"],[21250,"T"],[21253,"WpParam,T"],[21254,"U"],[21256,"T"],[21259,"C"],[21260,"U,T"],[21261,"U"],[21263,""],[21264,"C,U"],[21265,"C"],[21266,"T"],[21267,"V"],[21281,""],[21285,"Catalog::Class"],[21286,""],[21289,"Catalog::Class"],[21290,""],[21373,"T,M,D"],[21385,"C,T"],[21397,"C"],[21409,""],[21434,"T"],[21458,""],[21459,"WpParam,T"],[21471,""],[21482,"T"],[21493,""],[21504,"T"],[21505,""],[21509,"K"],[21511,"C,T"],[21523,""],[21528,"T"],[21552,"Message"],[21553,"T"],[21567,""],[21579,"Message"],[21580,"U"],[21582,""],[21588,"K"],[21600,""],[21615,"T"],[21625,""],[21626,"T"],[21640,"U,T"],[21652,""],[21653,"T"],[21654,""],[21663,"__H"],[21665,""],[21678,"U"],[21702,"T"],[21737,"WpParam,T"],[21749,"U"],[21773,""],[21774,"T"],[21786,""],[21788,"T"],[21789,""],[21791,"T"],[21793,""],[21794,"T"],[21797,""],[21803,"T"],[21804,""],[21805,"T"],[21806,""],[21807,"T,"],[21808,""],[21811,"T"],[21820,""],[21822,"T"],[21833,""],[21835,"T"],[21837,""],[21838,"C"],[21850,"U,T"],[21862,"U"],[21886,""],[21898,"C,U"],[21910,"C"],[21922,""],[21923,"T"],[21935,""],[21936,"V"],[21948,""],[21955,"T,M,D"],[21956,"C,T"],[21957,"C"],[21958,""],[21960,"T"],[21962,"WpParam,T"],[21963,"C,T"],[21964,"T"],[21967,""],[21970,"T"],[21971,""],[21974,"T"],[21975,"P"],[21976,""],[21978,"U,T"],[21979,""],[21980,"U"],[21982,"T"],[21985,"WpParam,T"],[21986,"U"],[21988,"T"],[21989,""],[21992,"C"],[21993,"U,T"],[21994,"U"],[21996,""],[21997,"C,U"],[21998,"C"],[21999,"T"],[22000,"V"],[22070,""],[22071,"T,M,D"],[22105,""],[22107,"C,T"],[22141,"C"],[22175,""],[22249,"T"],[22253,""],[22254,"T"],[22256,""],[22257,"T"],[22319,""],[22321,"WpParam,T"],[22355,""],[22389,"T"],[22423,""],[22457,"C,T"],[22491,""],[22493,"T"],[22561,""],[22565,"T"],[22599,""],[22666,"K"],[22765,""],[22801,"T"],[22832,""],[22834,"T"],[22835,""],[22855,"T"],[22856,""],[22865,"T"],[22900,"U,T"],[22934,""],[22937,"__H"],[22970,""],[23007,"U"],[23075,"T"],[23158,"WpParam,T"],[23192,"U"],[23260,"T"],[23294,""],[23337,"T"],[23371,""],[23373,"C"],[23407,"U,T"],[23441,"U"],[23509,""],[23546,"C,U"],[23580,"C"],[23614,"T"],[23648,""],[23650,"V"],[23684,""],[23695,"T,M,D"],[23696,"C,T"],[23697,"C"],[23698,""],[23700,"T"],[23702,""],[23703,"WpParam,T"],[23704,"C,T"],[23705,"T"],[23708,""],[23711,"T"],[23713,"U,T"],[23714,""],[23715,"U"],[23717,"T"],[23720,"WpParam,T"],[23721,"U"],[23723,"T"],[23724,""],[23728,"C"],[23729,"U,T"],[23730,"U"],[23732,""],[23733,"C,U"],[23734,"C"],[23735,"T"],[23736,"V"],[23739,"T,M,D"],[23740,""],[23741,"C,T"],[23742,"C"],[23743,""],[23745,"T"],[23747,"WpParam,T"],[23748,""],[23749,"T"],[23750,""],[23751,"C,T"],[23752,""],[23754,"T"],[23757,""],[23759,"K"],[23762,""],[23764,"T"],[23766,"U,T"],[23767,""],[23770,"U"],[23772,"T"],[23775,"WpParam,T"],[23776,"U"],[23778,"T"],[23779,""],[23783,"T"],[23784,""],[23789,"T"],[23790,""],[23791,"C"],[23792,"U,T"],[23793,"U"],[23795,""],[23796,"C,U"],[23797,"C"],[23798,"T"],[23799,""],[23800,"V"]]}],["iced_core",{"t":"EETGEEFPPGPFFEPPPPPEEPTTTEEEGPTETEFFTTFFEGPFFFPFFPETEEFTFTETTTONNNNNNNNNNNNNNNNNNNNNNNNNNNCCONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOQNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNCONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOCNNNOOOCCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCCNNNNNCNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNONCCNNNNNNNNNONNNNCNNNNNNNNNNNNNNNNNNNNNCCCCNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCOOCNNNOOOOOOGPPPPPGPPPPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPGKKPNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFFNNNNNNNNNNHNHNOHNONNNNNNNNHNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNHOHNHNNNHNHNOHNONNNNNNNNNNNNNNNNHNOKGFPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNMNPGPPPPGPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNPPPPTPPPPPGPFPPTPPPPPPPPPPPPGGPPPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONFGFPNNNNNONNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNONNNNNNNNNNNNNNNNNNNNNNNNNNNFPGGRFFPPPKPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNONNNNNNNNNONNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOPPPPGGPPPPFPGPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOTTTGEPPTPGFPPPTPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOOOOOPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPGPGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFFTFNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNHNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNHNHNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGPPNNNNNNNNNNNNNNNNNHNNNNNNNNPPGPPPEPPGPPPGPPPPPGPPPPPPPPPPPPPPPGPPPPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOFPGPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFFKNNNNNNNNNNNNNNNMNNNNNNNHNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFTNHNNNNHNONNNNNNNNNNNNNNNNNNNNNNNNHNONNHNONHNONNNNNNNNNKFKFNNNNNNONNNNONNMNNNNNNNNNNMMNNMNNNNNNNNNNNNNNNNNNNNMNNMOMMONNNNNNNNNNNNNNNNNNNNNPGFPKFNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNMNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNMNNONONNNNNNNNNNNNNNNNNNNNNNNNNNNTPPPPPTPGERRIPFEGTKGPPPERPKPGFFPPGNNNNNNNNNNNNNNNNNNNNNNNNNONNONNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNONNNNNMMCNNNNNNNMMMNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOCONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNOONONNNNNNNOCONOONOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNOGPPPPPGPGPPPPGPKPPRPPPPPPFGGPPPPPPPPPPPPPPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMMNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMMMMNNMMONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNMOFRKRFRNNNNNNNNNNNNMNNNNNNNONNMNNNNNONNNNNNMNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNMNNNRKFNNNNNNNNNMNNNNNNMMMMNNNNNNNMNNNNNNNNMMNNNNNNNNNMNNMMTKPPPPFPPPPPPPPPPPPPPEPPFGPPPNNNNNNNNNOMNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFTTTTTTFJJJJJJJJJJJJJJJJJJJJJJFTTTTTTTTTTTFFFTTFFTTTFNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNOOOOOOOOOOOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOOFFTTTTTTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNHHNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGFPPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOOFEEEKNNNNNNNNNNNNMNNNNNNNNNNNNMNNNCNMNNNCNCNNNNNNNNNNPEPKGEPENNNHNNNNMNNNCNNNNNNNNNNHHCNNCNHNNNNNNNNFKNNNNNNNNNNHNNHNHMHHONNNNNNNNNMNNONNNNNNNMNFTFTKNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHMHMHMNNNNNNNNNNNNNNNNNNOOOOKHMHMHMHMKREEFFIFENNNNNNNNNNNHNNNNNNNNNNNNNNNONNNNHHMNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNHHNNNNMNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNPPGFFNNNNNNNNNNNNNNNNNNONNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONONNNNNNNNNNNNNNNNNNNNNNNNNPPPPPPPPGPGPPPPPPEFPGGPPPPPPPGGPPEEPPPPPPGPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOPPGFNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOGPFPNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNFFNNONNNNNNNNNNNNNNNNNNONNNONNNNNNNNOONNNNNNNNNNNNOOOONNOOOOONNONNNNNNNNNNNNNNONN","n":["Alignment","Animation","BLACK","Background","Border","Clipboard","Color","","Contain","ContentFit","Cover","Degrees","Element","Event","Fill","","FillPortion","Fixed","Floating","Font","Gradient","","IDENTITY","INFINITE","INFINITY","Image","InputMethod","Layout","Length","None","ORIGIN","Overlay","PI","Padding","Pixels","Point","RANGE","","Radians","Rectangle","Renderer","Rotation","ScaleDown","Settings","Shadow","Shell","Shrink","Size","SmolStr","Solid","Svg","TRANSPARENT","Text","Theme","Transformation","UNIT","Vector","WHITE","Widget","ZERO","","","a","adapt_into_using","","","","","","","","","","","","","","","","","","add","","","","","","","","add_assign","alignment","animation","antialiasing","apply","are_widgets_invalid","area","arrays_from","","","","","","","","","","","","","","","","","","arrays_into","","","","","","","","","","","","","","","","","","as_ref","","as_str","as_widget","as_widget_mut","b","blur_radius","border","borrow","","","","","","","","","","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","","","","","","","cam16_into_unclamped","","","","","","","","","","","","","","","","","","capture_event","center","center_x","center_y","clipboard","clone","","","","","","","","","","","","","","","","clone_into","","","","","","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","","","","","","cmp","color","","components_from","","","","","","","","","","","","","","","","","","contains","default","","","","","","","","","","","","default_font","default_text_size","degrees","deref","distance","","div","","","","","enclose","eq","","","","","","","","","","","","","","","","","","","","","event","event_status","expand","","explain","fill_factor","fit","fluid","fmt","","","","","","","","","","","","","","","","","","","","","font","fonts","from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","","","","","","","","","from_f64","","from_i64","","from_iter","","","","from_linear_rgba","from_rgb","from_rgb8","from_rgba","from_rgba8","from_stimulus","","","","","","","","","","","","","","","","","","from_str","from_u64","","g","gradient","hash","","","height","","id","image","input_method","","input_method_mut","intersection","intersects","into","","","","","","","","","","","","","","","","","","into_angle","","","","","","","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","","","","","","","into_color","","","","","","","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","","","","","","","into_linear","into_rgba8","into_stimulus","","","","","","","","","","","","","","","","","","invalidate_layout","invalidate_widgets","inverse","invert","is_empty","","is_event_captured","is_fill","is_heap_allocated","is_layout_invalid","is_within","keyboard","layout","len","map","max","merge","min","mouse","mul","","","","","","","","","","","","","","","neg","never","new","","","","","","","new_inline","new_inline_from_ascii","new_static","null_value","","","","","","","","","","","","offset","orthographic","overlay","padding","parse","partial_cmp","","","","","","position","publish","r","radians","radians_mut","redraw_request","rem","renderer","replace_redraw_request","request_input_method","request_redraw","request_redraw_at","revalidate_layout","rotate","","scale","scale_alpha","","scale_factor","shrink","size","snap","sub","","","","","","sub_assign","svg","text","theme","time","to_distance","to_owned","","","","","","","","","","","","","","","","to_smolstr","","","","to_string","","","","","touch","translate","translation","try_components_into","","","","","","","","","","","","","","","","","","try_from","","","","","","","","","","","","","","","","","","try_into","","","","","","","","","","","","","","","","","","try_into_color","","","","","","","","","","","","","","","","","","type_id","","","","","","","","","","","","","","","","","","uints_from","","","","","","","","","","","","","","","","","","uints_into","","","","","","","","","","","","","","","","","","union","vzip","","","","","","","","","","","","","","","","","","widget","width","","window","with_radius","with_size","with_vertices","x","","","y","","","Alignment","Bottom","Center","","","End","Horizontal","Left","Right","Start","Top","Vertical","adapt_into_using","","","arrays_from","","","arrays_into","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","","","clone_into","","","clone_to_uninit","","","components_from","","","eq","","","fmt","","","from","","","","","","","from_angle","","","from_stimulus","","","hash","","","into","","","into_angle","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","to_owned","","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","vzip","","","Animation","Custom","EaseIn","EaseInBack","EaseInBounce","EaseInCirc","EaseInCubic","EaseInElastic","EaseInExpo","EaseInOut","EaseInOutBack","EaseInOutBounce","EaseInOutCirc","EaseInOutCubic","EaseInOutElastic","EaseInOutExpo","EaseInOutQuad","EaseInOutQuart","EaseInOutQuint","EaseInQuad","EaseInQuart","EaseInQuint","EaseOut","EaseOutBack","EaseOutBounce","EaseOutCirc","EaseOutCubic","EaseOutElastic","EaseOutExpo","EaseOutQuad","EaseOutQuart","EaseOutQuint","Easing","Float","Interpolable","Linear","adapt_into_using","","arrays_from","","arrays_into","","auto_reverse","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","default","delay","duration","easing","eq","float_value","fmt","","from","","from_angle","","from_stimulus","","go","go_mut","interpolate","interpolate_with","interpolated","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","is_animating","new","null_value","quick","repeat","repeat_forever","slow","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","value","","very_quick","very_slow","vzip","","Border","Radius","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","bottom","","bottom_left","","","bottom_right","","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","color","","","components_from","","default","","eq","","fmt","","from","","","","","","from_angle","","from_stimulus","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","left","","new","null_value","","radius","","right","","rounded","","to_owned","","top","","top_left","","","top_right","","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","width","","","Clipboard","Kind","Null","Primary","Standard","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","eq","fmt","","from","","from_angle","","from_stimulus","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","read","","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","write","","Captured","Event","Ignored","InputMethod","Keyboard","Mouse","Status","Touch","Window","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","eq","","fmt","","from","","from_angle","","from_stimulus","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","merge","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","Black","Bold","Condensed","Cursive","DEFAULT","Expanded","ExtraBold","ExtraCondensed","ExtraExpanded","ExtraLight","Family","Fantasy","Font","Italic","Light","MONOSPACE","Medium","Monospace","Name","Normal","","","Oblique","SansSerif","SemiCondensed","SemiExpanded","Semibold","Serif","Stretch","Style","Thin","UltraCondensed","UltraExpanded","Weight","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","borrow","","","","","borrow_mut","","","","","cam16_into_unclamped","","","","","clone","","","","","clone_into","","","","","clone_to_uninit","","","","","components_from","","","","","default","","","","","eq","","","","","family","fmt","","","","","from","","","","","from_angle","","","","","from_stimulus","","","","","hash","","","","","into","","","","","into_angle","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_stimulus","","","","","null_value","","","","","stretch","style","to_owned","","","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","vzip","","","","","weight","with_name","ColorStop","Gradient","Linear","","adapt_into_using","","","add_stop","add_stops","angle","arrays_from","","","arrays_into","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","","","clone_into","","","clone_to_uninit","","","color","components_from","","","default","eq","","","fmt","","","from","","","","from_angle","","","from_stimulus","","","into","","","into_angle","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","new","null_value","offset","scale_alpha","","stops","to_owned","","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","vzip","","","Bytes","","FilterMethod","Handle","","Id","Image","Linear","Nearest","Path","Renderer","Rgba","adapt_into_using","","","","","advance","arrays_from","","","","","arrays_into","","","","","as_ref","borrow","","","","","","borrow_mut","","","","","cam16_into_unclamped","","","","","chunk","clear","clone","","","","","clone_into","","","","","clone_to_uninit","","","","","cmp","","components_from","","","","","copy_from_slice","copy_to_bytes","default","","deref","draw_image","drop","encode_hex","encode_hex_upper","eq","","","","","","","","","","","filter_method","","fmt","","","","","","","from","","","","","","","","","","","","","","","from_angle","","","","","from_bytes","from_iter","from_owner","from_path","from_rgba","from_static","from_stimulus","","","","","handle","hash","","","id","into","","","","","into_angle","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_iter","","into_stimulus","","","","","is_empty","is_unique","len","measure_image","new","","null_value","","opacity","","partial_cmp","","","","","","","remaining","rotation","","slice","slice_ref","snap","","split_off","split_to","to_owned","","","","","truncate","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","try_into_mut","type_id","","","","","uints_from","","","","","uints_into","","","","","vzip","","","","","height","id","pixels","width","Allowed","Closed","Commit","Disabled","Event","InputMethod","None","Normal","Open","Opened","Preedit","","Purpose","Secure","Terminal","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","as_ref","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","clone","","","","clone_into","","","","clone_to_uninit","","","","components_from","","","","content","default","","eq","","","","fmt","","","","from","","","","from_angle","","","","from_stimulus","","","","hash","into","","","","into_angle","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_stimulus","","","","is_open","merge","new","null_value","","selection","to_owned","","","","","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","vzip","","","","position","preedit","purpose","ALT","COMMAND","CTRL","Event","Key","KeyPressed","KeyReleased","LOGO","Left","Location","Modifiers","ModifiersChanged","Numpad","Right","SHIFT","Standard","adapt_into_using","","","all","alt","arrays_from","","","arrays_into","","","bitand","bitand_assign","bitor","bitor_assign","bits","","bitxor","bitxor_assign","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","","","clone_into","","","clone_to_uninit","","","cmp","command","complement","components_from","","","contains","control","default","difference","empty","eq","","","extend","fmt","","","","","","","from","","","from_angle","","","from_bits","from_bits_retain","","from_bits_truncate","from_iter","from_name","from_stimulus","","","hash","insert","intersection","intersects","into","","","into_angle","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_iter","into_stimulus","","","is_all","is_empty","iter","iter_names","jump","key","logo","macos_command","not","null_value","partial_cmp","remove","set","shift","sub","sub_assign","symmetric_difference","to_owned","","","toggle","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","union","vzip","","","key","","location","","modified_key","","modifiers","","physical_key","","text","AVRInput","AVRPower","Abort","Accept","Again","","AllCandidates","Alphanumeric","Alt","AltGraph","AltLeft","AltRight","Android","AppSwitch","ArrowDown","","ArrowLeft","","ArrowRight","","ArrowUp","","Attn","AudioBalanceLeft","AudioBalanceRight","AudioBassBoostDown","AudioBassBoostToggle","AudioBassBoostUp","AudioFaderFront","AudioFaderRear","AudioSurroundModeNext","AudioTrebleDown","AudioTrebleUp","AudioVolumeDown","","AudioVolumeMute","","AudioVolumeUp","","Backquote","Backslash","Backspace","","BracketLeft","BracketRight","BrightnessDown","BrightnessUp","BrowserBack","","BrowserFavorites","","BrowserForward","","BrowserHome","","BrowserRefresh","","BrowserSearch","","BrowserStop","","Call","Camera","CameraFocus","Cancel","CapsLock","","ChannelDown","ChannelUp","Character","Clear","Close","ClosedCaptionToggle","Code","","CodeInput","ColorF0Red","ColorF1Green","ColorF2Yellow","ColorF3Blue","ColorF4Grey","ColorF5Brown","Comma","Compose","ContextMenu","","Control","ControlLeft","ControlRight","Convert","","Copy","","CrSel","Cut","","DVR","Delete","","Digit0","Digit1","Digit2","Digit3","Digit4","Digit5","Digit6","Digit7","Digit8","Digit9","Dimmer","DisplaySwap","Eisu","Eject","","End","","EndCall","Enter","","Equal","EraseEof","Escape","","ExSel","Execute","Exit","F1","","F10","","F11","","F12","","F13","","F14","","F15","","F16","","F17","","F18","","F19","","F2","","F20","","F21","","F22","","F23","","F24","","F25","","F26","","F27","","F28","","F29","","F3","","F30","","F31","","F32","","F33","","F34","","F35","","F4","","F5","","F6","","F7","","F8","","F9","","FavoriteClear0","FavoriteClear1","FavoriteClear2","FavoriteClear3","FavoriteRecall0","FavoriteRecall1","FavoriteRecall2","FavoriteRecall3","FavoriteStore0","FavoriteStore1","FavoriteStore2","FavoriteStore3","FinalMode","Find","","Fn","","FnLock","","GoBack","GoHome","GroupFirst","GroupLast","GroupNext","GroupPrevious","Guide","GuideNextDay","GuidePreviousDay","HangulMode","HanjaMode","Hankaku","HeadsetHook","Help","","Hibernate","Hiragana","","HiraganaKatakana","Home","","Hyper","","Info","Insert","","InstantReplay","IntlBackslash","IntlRo","IntlYen","JunjaMode","KanaMode","","KanjiMode","Katakana","","Key","Key11","Key12","KeyA","KeyB","KeyC","KeyD","KeyE","KeyF","KeyG","KeyH","KeyI","KeyJ","KeyK","KeyL","KeyM","KeyN","KeyO","KeyP","KeyQ","KeyR","KeyS","KeyT","KeyU","KeyV","KeyW","KeyX","KeyY","KeyZ","Lang1","Lang2","Lang3","Lang4","Lang5","LastNumberRedial","LaunchApp1","LaunchApp2","LaunchApplication1","LaunchApplication2","LaunchCalendar","LaunchContacts","LaunchMail","","LaunchMediaPlayer","LaunchMusicPlayer","LaunchPhone","LaunchScreenSaver","LaunchSpreadsheet","LaunchWebBrowser","LaunchWebCam","LaunchWordProcessor","Link","ListProgram","LiveContent","Lock","LogOff","MacOS","MailForward","MailReply","MailSend","MannerMode","MediaApps","MediaAudioTrack","MediaClose","MediaFastForward","MediaLast","MediaPause","MediaPlay","MediaPlayPause","","MediaRecord","MediaRewind","MediaSelect","MediaSkipBackward","MediaSkipForward","MediaStepBackward","MediaStepForward","MediaStop","","MediaTopMenu","MediaTrackNext","","MediaTrackPrevious","","Meta","","MicrophoneToggle","MicrophoneVolumeDown","MicrophoneVolumeMute","MicrophoneVolumeUp","Minus","ModeChange","Named","","NativeCode","NavigateIn","NavigateNext","NavigateOut","NavigatePrevious","New","NextCandidate","NextFavoriteChannel","NextUserProfile","NonConvert","","Notification","NumLock","","Numpad0","Numpad1","Numpad2","Numpad3","Numpad4","Numpad5","Numpad6","Numpad7","Numpad8","Numpad9","NumpadAdd","NumpadBackspace","NumpadClear","NumpadClearEntry","NumpadComma","NumpadDecimal","NumpadDivide","NumpadEnter","NumpadEqual","NumpadHash","NumpadMemoryAdd","NumpadMemoryClear","NumpadMemoryRecall","NumpadMemoryStore","NumpadMemorySubtract","NumpadMultiply","NumpadParenLeft","NumpadParenRight","NumpadStar","NumpadSubtract","OnDemand","Open","","PageDown","","PageUp","","Pairing","Paste","","Pause","","Period","Physical","PinPDown","PinPMove","PinPToggle","PinPUp","Play","PlaySpeedDown","PlaySpeedReset","PlaySpeedUp","Power","","PowerOff","PreviousCandidate","Print","PrintScreen","","Process","Props","","Quote","RandomToggle","RcLowBattery","RecordSpeedNext","Redo","Resume","RfBypass","Romaji","STBInput","STBPower","Save","ScanChannelsToggle","ScreenModeNext","ScrollLock","","Select","","Semicolon","Settings","Shift","ShiftLeft","ShiftRight","SingleCandidate","Slash","Sleep","Soft1","Soft2","Soft3","Soft4","Space","","SpeechCorrectionList","SpeechInputToggle","SpellCheck","SplitScreenToggle","Standby","Subtitle","Super","SuperLeft","SuperRight","Suspend","Symbol","SymbolLock","TV","TV3DMode","TVAntennaCable","TVAudioDescription","TVAudioDescriptionMixDown","TVAudioDescriptionMixUp","TVContentsMenu","TVDataService","TVInput","TVInputComponent1","TVInputComponent2","TVInputComposite1","TVInputComposite2","TVInputHDMI1","TVInputHDMI2","TVInputHDMI3","TVInputHDMI4","TVInputVGA1","TVMediaContext","TVNetwork","TVNumberEntry","TVPower","TVRadioService","TVSatellite","TVSatelliteBS","TVSatelliteCS","TVSatelliteToggle","TVTerrestrialAnalog","TVTerrestrialDigital","TVTimer","Tab","","Teletext","Turbo","Undo","","Unidentified","","","VideoModeNext","VoiceDial","WakeUp","","Windows","Wink","Xkb","Zenkaku","ZenkakuHankaku","ZoomIn","ZoomOut","ZoomToggle","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","as_ref","borrow","","","","","borrow_mut","","","","","cam16_into_unclamped","","","","","clone","","","","","clone_into","","","","","clone_to_uninit","","","","","cmp","","","","","components_from","","","","","eq","","","","","","","","","fmt","","","","","from","","","","","","from_angle","","","","","from_stimulus","","","","","hash","","","","","into","","","","","into_angle","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_stimulus","","","","","partial_cmp","","","","","to_owned","","","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","vzip","","","","","Layout","Limits","NONE","Node","adapt_into_using","","","align","align_mut","arrays_from","","","arrays_into","","","atomic","borrow","","","borrow_mut","","","bounds","","cam16_into_unclamped","","","children","","clone","","","clone_into","","","clone_to_uninit","","","components_from","","","contained","container","default","eq","flex","fmt","","","from","","","from_angle","","","from_stimulus","","","height","into","","","into_angle","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","loose","max","max_height","max_width","min","min_height","min_width","move_to","move_to_mut","new","","","next_to_each_other","null_value","padded","position","positioned","resolve","shrink","size","sized","to_owned","","","translate","translate_mut","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","vzip","","","width","with_children","with_offset","Axis","Horizontal","Vertical","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","components_from","fmt","from","from_angle","from_stimulus","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","resolve","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vzip","Available","Back","Button","ButtonPressed","ButtonReleased","Cell","Click","Copy","Crosshair","Cursor","CursorEntered","CursorLeft","CursorMoved","Event","Forward","Grab","Grabbing","Help","Idle","Interaction","Left","Levitating","Lines","Middle","Move","None","NotAllowed","Other","Pixels","Pointer","ResizingDiagonallyDown","ResizingDiagonallyUp","ResizingHorizontally","ResizingVertically","Right","ScrollDelta","Text","Unavailable","WheelScrolled","Working","ZoomIn","ZoomOut","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","borrow","","","","","borrow_mut","","","","","cam16_into_unclamped","","","","","click","clone","","","","","clone_into","","","","","clone_to_uninit","","","","","cmp","components_from","","","","","default","","eq","","","","","fmt","","","","","from","","","","","from_angle","","","","","from_stimulus","","","","","hash","into","","","","","into_angle","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_stimulus","","","","","is_levitating","is_over","land","levitate","mul","null_value","","partial_cmp","position","position_from","position_in","position_over","to_owned","","","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","vzip","","","","","delta","position","x","","y","","Click","Double","Kind","Single","Triple","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","eq","fmt","","from","","from_angle","","from_stimulus","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","kind","mul","new","position","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","Element","Group","Overlay","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","components_from","","default","draw","","","from","","","from_angle","","from_children","from_stimulus","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","is_over","","","layout","","","map","mouse_interaction","","","new","","null_value","operate","","","overlay","","","","push","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","update","","","vzip","","with_children","Padding","ZERO","adapt_into_using","all","arrays_from","arrays_into","borrow","borrow_mut","bottom","","","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","default","eq","fit","fmt","from","","","","","","from_angle","from_stimulus","horizontal","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","left","","","new","null_value","right","","","to_owned","top","","","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vertical","vzip","Headless","Quad","Renderer","Style","adapt_into_using","","arrays_from","","arrays_into","","border","borrow","","borrow_mut","","bounds","cam16_into_unclamped","","clear","clone","","clone_into","","clone_to_uninit","","components_from","","default","","end_layer","end_transformation","eq","","fill_quad","fmt","","from","","from_angle","","from_stimulus","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","new","null_value","","screenshot","shadow","start_layer","start_transformation","text_color","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","with_layer","with_transformation","with_translation","Bytes","Data","Handle","Path","Renderer","Svg","adapt_into_using","","","arrays_from","","","arrays_into","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","","","clone_into","","","clone_to_uninit","","","color","","components_from","","","data","draw_svg","eq","","","fmt","","","from","","","","","from_angle","","","from_memory","from_path","from_stimulus","","","handle","hash","","id","into","","","into_angle","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","measure_svg","new","opacity","","rotation","","to_owned","","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","vzip","","","ARROW_DOWN_ICON","Absolute","Advanced","Basic","Borrowed","Bounds","CHECKMARK_ICON","CharOffset","Difference","Editor","","Font","Fragment","Glyph","Highlight","Highlighter","Hit","ICON_FONT","IntoFragment","LineHeight","None","","Owned","Paragraph","","Relative","Renderer","Shape","Shaping","Span","Text","Word","WordOrGlyph","Wrapping","adapt_into_using","","","","","","","","arrays_from","","","","","","","","arrays_into","","","","","","","","background","","background_maybe","border","","border_maybe","borrow","","","","","","","","borrow_mut","","","","","","","","bounds","cam16_into_unclamped","","","","","","","","clone","","","","","","","","clone_into","","","","","","","","clone_to_uninit","","","","","","","","color","","color_maybe","components_from","","","","","","","","content","cursor","default","","","","default_font","default_size","editor","eq","","","","","","","fill_editor","fill_paragraph","fill_text","fmt","","","","","","","","font","","","font_maybe","from","","","","","","","","","","","from_angle","","","","","","","","from_stimulus","","","","","","","","hash","","","highlight","highlighter","horizontal_alignment","into","","","","","","","","into_angle","","","","","","","","into_cam16_unclamped","","","","","","","","into_color","","","","","","","","into_color_unclamped","","","","","","","","into_fragment","","","into_stimulus","","","","","","","","line_height","","","link","","link_maybe","new","null_value","","","","padding","","paragraph","shaping","size","","","strikethrough","","text","to_absolute","to_owned","","","","","","","","to_static","try_components_into","","","","","","","","try_from","","","","","","","","try_into","","","","","","","","try_into_color","","","","","","","","type_id","","","","","","","","uints_from","","","","","","","","uints_into","","","","","","","","underline","","vertical_alignment","vzip","","","","","","","","wrapping","Action","Backspace","Caret","Click","Cr","CrLf","Cursor","Delete","Direction","DocumentEnd","DocumentStart","Down","Drag","Edit","","Editor","End","Enter","Font","Home","Insert","Left","","Lf","LfCr","Line","LineEnding","Motion","Move","None","PageDown","PageUp","Paste","Right","","Scroll","Select","SelectAll","SelectLine","SelectWord","Selection","Up","WordLeft","WordRight","adapt_into_using","","","","","","","arrays_from","","","","","","","arrays_into","","","","","","","as_str","borrow","","","","","","","borrow_mut","","","","","","","bounds","cam16_into_unclamped","","","","","","","clone","","","","","","","clone_into","","","","","","","clone_to_uninit","","","","","","","components_from","","","","","","","cursor","cursor_position","default","","direction","ending","eq","","","","","","fmt","","","","","","","from","","","","","","","from_angle","","","","","","","from_stimulus","","","","","","","highlight","into","","","","","","","into_angle","","","","","","","into_cam16_unclamped","","","","","","","into_color","","","","","","","into_color_unclamped","","","","","","","into_stimulus","","","","","","","is_edit","is_empty","line","line_count","min_bounds","null_value","","perform","selection","text","to_owned","","","","","","","try_components_into","","","","","","","try_from","","","","","","","try_into","","","","","","","try_into_color","","","","","","","type_id","","","","","","","uints_from","","","","","","","uints_into","","","","","","","update","vzip","","","","","","","widen","with_text","lines","Format","Highlight","Highlighter","Iterator","PlainText","Settings","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","change_line","","clone","","clone_into","","clone_to_uninit","","color","components_from","","current_line","","default","eq","fmt","","font","from","","from_angle","","from_stimulus","","highlight_line","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","new","","null_value","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","update","","vzip","","Font","Paragraph","Plain","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","compare","components_from","default","fmt","from","from_angle","from_stimulus","grapheme_position","hit_span","hit_test","horizontal_alignment","","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","min_bounds","","min_height","","min_width","","new","null_value","raw","resize","span_bounds","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","update","vertical_alignment","","vzip","with_spans","with_text","ALL","Base","CatppuccinFrappe","CatppuccinLatte","CatppuccinMacchiato","CatppuccinMocha","Custom","","Dark","Dracula","Ferra","GruvboxDark","GruvboxLight","KanagawaDragon","KanagawaLotus","KanagawaWave","Light","Moonfly","Nightfly","Nord","Oxocarbon","Palette","SolarizedDark","SolarizedLight","Style","Theme","TokyoNight","TokyoNightLight","TokyoNightStorm","adapt_into_using","","","arrays_from","","","arrays_into","","","background_color","base","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","","","clone_into","","","clone_to_uninit","","","components_from","","","custom","custom_with_fn","default","","","eq","","","extended_palette","fmt","","","","","from","","","from_angle","","","from_stimulus","","","into","","","into_angle","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","new","null_value","palette","","style","text_color","to_owned","","","to_smolstr","","to_string","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","vzip","","","with_fn","Background","CATPPUCCIN_FRAPPE","CATPPUCCIN_LATTE","CATPPUCCIN_MACCHIATO","CATPPUCCIN_MOCHA","DARK","DRACULA","Danger","EXTENDED_CATPPUCCIN_FRAPPE","EXTENDED_CATPPUCCIN_LATTE","EXTENDED_CATPPUCCIN_MACCHIATO","EXTENDED_CATPPUCCIN_MOCHA","EXTENDED_DARK","EXTENDED_DRACULA","EXTENDED_FERRA","EXTENDED_GRUVBOX_DARK","EXTENDED_GRUVBOX_LIGHT","EXTENDED_KANAGAWA_DRAGON","EXTENDED_KANAGAWA_LOTUS","EXTENDED_KANAGAWA_WAVE","EXTENDED_LIGHT","EXTENDED_MOONFLY","EXTENDED_NIGHTFLY","EXTENDED_NORD","EXTENDED_OXOCARBON","EXTENDED_SOLARIZED_DARK","EXTENDED_SOLARIZED_LIGHT","EXTENDED_TOKYO_NIGHT","EXTENDED_TOKYO_NIGHT_LIGHT","EXTENDED_TOKYO_NIGHT_STORM","Extended","FERRA","GRUVBOX_DARK","GRUVBOX_LIGHT","KANAGAWA_DRAGON","KANAGAWA_LOTUS","KANAGAWA_WAVE","LIGHT","MOONFLY","NIGHTFLY","NORD","OXOCARBON","Pair","Palette","Primary","SOLARIZED_DARK","SOLARIZED_LIGHT","Secondary","Success","TOKYO_NIGHT","TOKYO_NIGHT_LIGHT","TOKYO_NIGHT_STORM","Warning","adapt_into_using","","","","","","","","","arrays_from","","","","","","","","","arrays_into","","","","","","","","","background","","base","","","","","","borrow","","","","","","","","","borrow_mut","","","","","","","","","cam16_into_unclamped","","","","","","","","","clone","","","","","","","","","clone_into","","","","","","","","","clone_to_uninit","","","","","","","","","color","components_from","","","","","","","","","danger","","eq","","","","","","","","","fmt","","","","","","","","","from","","","","","","","","","from_angle","","","","","","","","","from_stimulus","","","","","","","","","generate","","","","","","into","","","","","","","","","into_angle","","","","","","","","","into_cam16_unclamped","","","","","","","","","into_color","","","","","","","","","into_color_unclamped","","","","","","","","","into_stimulus","","","","","","","","","is_dark","new","","primary","","secondary","strong","","","","","","success","","text","","to_owned","","","","","","","","","try_components_into","","","","","","","","","try_from","","","","","","","","","try_into","","","","","","","","","try_into_color","","","","","","","","","type_id","","","","","","","","","uints_from","","","","","","","","","uints_into","","","","","","","","","vzip","","","","","","","","","warning","","weak","","","","","","Duration","Instant","MAX","MICROSECOND","MILLISECOND","NANOSECOND","SECOND","ZERO","abs_diff","adapt_into_using","","add","","add_assign","","arrays_from","","arrays_into","","as_micros","as_millis","as_millis_f32","as_millis_f64","as_nanos","as_secs","as_secs_f32","as_secs_f64","borrow","","","borrow_mut","","cam16_into_unclamped","","checked_add","","checked_div","checked_duration_since","checked_mul","checked_sub","","clone","","clone_into","","clone_to_uninit","","cmp","","components_from","","days","default","deserialize","deserializer_for_signature","div","div_assign","div_duration_f32","div_duration_f64","div_f32","div_f64","duration_since","elapsed","elapsed_since","eq","","fmt","","from","","","from_angle","","from_days","from_hours","from_micros","from_millis","from_mins","from_nanos","from_secs","from_secs_f32","from_secs_f64","from_stimulus","","from_weeks","hash","","hours","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","is_zero","milliseconds","minutes","mul","mul_assign","mul_f32","mul_f64","new","now","null_value","partial_cmp","","saturating_add","saturating_duration_since","saturating_mul","saturating_sub","seconds","serialize","signature","sub","","","sub_assign","","subsec_micros","subsec_millis","subsec_nanos","sum","","to_owned","","try_components_into","","try_from","","try_from_secs_f32","try_from_secs_f64","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","Event","Finger","FingerLifted","FingerLost","FingerMoved","FingerPressed","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","eq","","fmt","","from","","from_angle","","from_stimulus","","hash","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","id","","","","position","","","","Id","Operation","Text","Tree","Widget","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","children","clone","clone_into","clone_to_uninit","components_from","diff","draw","eq","fmt","from","from_angle","from_stimulus","hash","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","layout","mouse_interaction","new","operate","operation","overlay","size","size_hint","state","tag","text","to_owned","tree","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","unique","update","vzip","Chain","Focusable","None","Operation","Outcome","Scrollable","Some","TextInput","adapt_into_using","arrays_from","arrays_into","black_box","borrow","borrow_mut","cam16_into_unclamped","components_from","container","custom","finish","fmt","focusable","","from","from_angle","from_stimulus","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","map","scope","scrollable","","text","text_input","","then","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vzip","Count","Focusable","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","count","default","eq","find_focused","fmt","focus","","focus_next","focus_previous","focused","from","from_angle","from_stimulus","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","is_focused","null_value","to_owned","total","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","unfocus","vzip","AbsoluteOffset","END","RelativeOffset","START","Scrollable","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","default","","eq","","fmt","","from","","from_angle","","from_stimulus","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","null_value","","scroll_by","","scroll_to","","snap_to","","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","x","","y","","TextInput","move_cursor_to","","move_cursor_to_end","","move_cursor_to_front","","select_all","","Catalog","Class","LineHeight","Shaping","State","Style","StyleFn","Text","Wrapping","adapt_into_using","","","align_x","align_y","arrays_from","","","arrays_into","","","base","borrow","","","borrow_mut","","","cam16_into_unclamped","","","center","class","clone","clone_into","clone_to_uninit","color","","color_maybe","components_from","","","danger","default","","","","draw","","eq","fmt","","font","from","","","","from_angle","","","from_stimulus","","","height","into","","","into_angle","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","layout","","line_height","new","null_value","","operate","primary","secondary","shaping","size","","state","style","","success","tag","to_owned","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","vzip","","","width","wrapping","None","Some","State","Tag","Tree","adapt_into_using","","","arrays_from","","","arrays_into","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","children","clone","clone_into","clone_to_uninit","cmp","components_from","","","diff","diff_children","diff_children_custom","diff_children_custom_with_search","downcast_mut","downcast_ref","empty","eq","fmt","","","from","","","from_angle","","","from_stimulus","","","hash","into","","","into_angle","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","new","","of","partial_cmp","state","stateless","tag","to_owned","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","vzip","","","AlwaysOnBottom","AlwaysOnTop","At","Centered","CloseRequested","Closed","Critical","Default","Direction","East","Event","FileDropped","FileHovered","FilesHoveredLeft","Focused","Fullscreen","Hidden","Icon","Id","Informational","Level","Mode","Moved","NextFrame","Normal","North","NorthEast","NorthWest","Opened","Position","RedrawRequest","RedrawRequested","Resized","Screenshot","Settings","South","SouthEast","SouthWest","Specific","SpecificWith","Unfocused","UserAttention","Wait","West","Windowed","adapt_into_using","","","","","","","","arrays_from","","","","","","","","arrays_into","","","","","","","","borrow","","","","","","","","borrow_mut","","","","","","","","cam16_into_unclamped","","","","","","","","clone","","","","","","","","clone_into","","","","","","","","clone_to_uninit","","","","","","","","cmp","","components_from","","","","","","","","default","","eq","","","","","","fmt","","","","","","","","","from","","","","","","","","","from_angle","","","","","","","","from_stimulus","","","","","","","","hash","icon","into","","","","","","","","into_angle","","","","","","","","into_cam16_unclamped","","","","","","","","into_color","","","","","","","","into_color_unclamped","","","","","","","","into_stimulus","","","","","","","","null_value","","partial_cmp","","screenshot","settings","to_owned","","","","","","","","to_smolstr","to_string","try_components_into","","","","","","","","try_from","","","","","","","","try_into","","","","","","","","try_into_color","","","","","","","","type_id","","","","","","","","uints_from","","","","","","","","uints_into","","","","","","","","unique","vzip","","","","","","","","position","size","ByteCountNotDivisibleBy4","DimensionsVsPixelCount","Error","Icon","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","clone_into","clone_to_uninit","components_from","","fmt","","","from","","from_angle","","from_rgba","from_stimulus","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_raw","into_stimulus","","to_owned","to_smolstr","to_string","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","byte_count","height","pixel_count","width","width_x_height","CropError","OutOfBounds","Screenshot","Zero","adapt_into_using","","arrays_from","","arrays_into","","as_ref","borrow","","borrow_mut","","bytes","cam16_into_unclamped","","clone","clone_into","clone_to_uninit","components_from","","crop","encode_hex","encode_hex_upper","fmt","","","from","","from_angle","","from_stimulus","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","new","scale_factor","size","to_owned","to_smolstr","to_string","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","PlatformSpecific","Settings","adapt_into_using","","application_id","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","decorations","default","","eq","exit_on_close_request","fmt","","from","","from_angle","","from_stimulus","","fullscreen","icon","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","level","max_size","maximized","min_size","null_value","","override_redirect","platform_specific","position","resizable","size","to_owned","","transparent","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","visible","vzip",""],"q":[[0,"iced_core"],[868,"iced_core::alignment"],[977,"iced_core::animation"],[1094,"iced_core::border"],[1195,"iced_core::clipboard"],[1263,"iced_core::event"],[1333,"iced_core::font"],[1537,"iced_core::gradient"],[1643,"iced_core::image"],[1882,"iced_core::image::Handle"],[1886,"iced_core::input_method"],[2034,"iced_core::input_method::InputMethod"],[2037,"iced_core::keyboard"],[2196,"iced_core::keyboard::Event"],[2207,"iced_core::keyboard::key"],[2893,"iced_core::layout"],[3023,"iced_core::layout::flex"],[3052,"iced_core::mouse"],[3261,"iced_core::mouse::Event"],[3263,"iced_core::mouse::ScrollDelta"],[3267,"iced_core::mouse::click"],[3335,"iced_core::overlay"],[3417,"iced_core::padding"],[3473,"iced_core::renderer"],[3556,"iced_core::svg"],[3670,"iced_core::text"],[4008,"iced_core::text::editor"],[4283,"iced_core::text::editor::Action"],[4284,"iced_core::text::highlighter"],[4363,"iced_core::text::paragraph"],[4418,"iced_core::theme"],[4559,"iced_core::theme::palette"],[4923,"iced_core::time"],[5072,"iced_core::touch"],[5139,"iced_core::touch::Event"],[5147,"iced_core::widget"],[5200,"iced_core::widget::operation"],[5247,"iced_core::widget::operation::focusable"],[5291,"iced_core::widget::operation::scrollable"],[5370,"iced_core::widget::operation::text_input"],[5379,"iced_core::widget::text"],[5504,"iced_core::widget::tree"],[5606,"iced_core::window"],[5906,"iced_core::window::Event"],[5908,"iced_core::window::icon"],[5971,"iced_core::window::icon::Error"],[5976,"iced_core::window::screenshot"],[6045,"iced_core::window::settings"],[6126,"iced_core::color"],[6127,"palette::chromatic_adaptation"],[6128,"iced_core::angle"],[6129,"iced_core::pixels"],[6130,"iced_core::point"],[6131,"iced_core::vector"],[6132,"core::ops::arith"],[6133,"iced_core::rectangle"],[6134,"iced_core::size"],[6135,"iced_core::settings"],[6136,"iced_core::rotation"],[6137,"iced_core::shell"],[6138,"smol_str"],[6139,"iced_core::transformation"],[6140,"iced_core::element"],[6141,"iced_core::shadow"],[6142,"palette::cam16::parameters"],[6143,"iced_core::background"],[6144,"iced_core::content_fit"],[6145,"iced_core::length"],[6146,"core::clone"],[6147,"core::cmp"],[6148,"core::default"],[6149,"num_traits::float"],[6150,"num_traits"],[6151,"alloc::string"],[6152,"core::convert"],[6153,"core::fmt"],[6154,"core::result"],[6155,"alloc::vec"],[6156,"alloc::sync"],[6157,"alloc::boxed"],[6158,"alloc::borrow"],[6159,"palette::rgb"],[6160,"core::option"],[6161,"core::iter::traits::collect"],[6162,"core::hash"],[6163,"core::ops::function"],[6164,"core::marker"],[6165,"iced_core::window::redraw_request"],[6166,"palette::convert::try_from_into_color"],[6167,"core::any"],[6168,"lilt::animated"],[6169,"core::time"],[6170,"std::time"],[6171,"lilt::traits"],[6172,"bytes::bytes"],[6173,"bytes::bytes_mut"],[6174,"std::path"],[6175,"core::ops::range"],[6176,"iced_core::keyboard::modifiers"],[6177,"iced_core::keyboard::event"],[6178,"iced_core::keyboard::location"],[6179,"bitflags::iter"],[6180,"iced_core::layout::node"],[6181,"iced_core::layout::limits"],[6182,"core::iter::traits::double_ended"],[6183,"iced_core::mouse::button"],[6184,"iced_core::mouse::cursor"],[6185,"iced_core::mouse::event"],[6186,"iced_core::mouse::interaction"],[6187,"iced_core::overlay::group"],[6188,"iced_core::overlay::element"],[6189,"core::iter::traits::iterator"],[6190,"std::sync::lazy_lock"],[6191,"serde::de"],[6192,"zvariant_utils::signature"],[6193,"zvariant::error"],[6194,"nix::sys::time"],[6195,"serde::ser"],[6196,"iced_core::widget::id"],[6197,"core::borrow"],[6198,"iced_core::window::direction"],[6199,"iced_core::window::event"],[6200,"iced_core::window::id"],[6201,"iced_core::window::level"],[6202,"iced_core::window::mode"],[6203,"iced_core::window::position"],[6204,"iced_core::window::user_attention"],[6205,"iced_core::window::settings::platform"]],"i":"``b````ChCj`0```0Cl00Bd``3BlAfAh````5n`h```j1````8```7``6`:```3`:`l4A`<;368:B`CdBf:<588669;:58``2=0;4378ChbCjCl:=?Bd765?Bl;:9=>5432=j2:987l257>=<46A`BhC`46>=<;358:B`CdBf:<50;;;`479ChbCjCl:Af298Ah2=;`>=j2:987l257>=<46A`6Bh<;2479B`Cd8:311;26977444<222225577?>=<469;08:3`Bf:9C`>?>44799ChbCj0Cl:<>>Af0222:98Ah00002===<8?h8765?n35=<;24?j202????99999?;02:987l257?>=46A`Bh35<`0;676B```Bf0992C`68ChbCjCl9;>Bd7Cd7?Bl;:7=?6543<>Af3:29Ah2=<9?h9876?n36=5<24?>;j2;:98l258?7>46A`Bh?35>=<;247:B`:Bf8:3??2C`68ChbCjCl9;>Bd7Cd7?Bl;8855:883:8Af``;8Ah:0`?h0??n3332224???`>;03<2?>>>>98l147>635A`76``;Bhj05537Bf>;;06`00000879?>98886558736````6216?>=<458;B`;8:437>6337>6`::3C`38ChbCjCl:;>Bd6Cd8?Bl<;7:?6543=>Af392:Ah2>=935A`Bh>j5>=<;437:B`:Bf8:43C`38ChbCjCl;:>Bd7Cd7?Bl<;7:?6543>=Af3:29Ah2>=96=35A`5Bh>j5>=<;437:B`:Bf8:4`98`999594594`KbJnK`21`0012`1021021021021021021021021021021021021110022102102102102102102102102102102102102102102102102102102`Kh000000000000000000000000000000```00Kd101001010101010101010001Kf212121211111Kn32323232323222322223232323232323232322232``LbL`10101010`0`00`0010101010`11101010101000001010101010101010`0010`1`0`110`0`00`001010101010101010`11```Lf00Lh101010101010101010110101010101010101010Lj121212121212121212101Eb`0Ll00`000101010101010101010101010101010101010101011010101010101010101M`0MbLnDf23223`1`Md41422430023342``433`12430124301243012430124301243012430124301243012430124301243011243012430124301243012430124301243012430124301243012430124301112430124301243012430124301243012430124301243011```Gf0MfGh000210210210210210210210210121012102102210210210210210210210210210011200210210210210210210210210210`Ml``Nd``N`02`2MhMj4Mn3221503215032221503215032150322215032150321503202150322232422222222221503112221503222222221155503215035225522150312035215032150321503215032150322215032224212311222222021122112221503221503215032150321503221503215032150321503Od000IbOj01``1Oh21`1`002Of12301230120301230123012301230123012301200130123012301230123012230123012301230123012301233001033001230123012301230123012301230123012Ol00On00``A@`01A@b``10020102221021022222222210210210210210210222210222222102210222221021022222221022222102102102102102210222222`2222222222210221021021021021021021022102A@hA@l101010101AA`0AAb110111100AAd22121212122222222222212121112111222121212121212122222122A@j333`A@n44444443443433434344344333333333334444343443344344443434343434343434343434343434343434343434343434343434343434343434343434444444444444434343444444444444443443443434434333443443`4433333333333333333333333333333334334444434444444444444244444444444434434444434434343444434`1`44444444434433333333333333333333333333333334434343443433`4444444443444434433444434444444434334433433444443444444433344444444444444444444444444444444434343120444324244444143201432014320114320143201432014320143201432014320143201433220001432011432014320143201432014320143201432014320143201432014320143201432014320143201432014320143201432014320``AAl`0AAjAAn11210210`2102101021010210210210210`112`2102102102102210210210210210210222222211210`1`0`221`21011210210210210210210210210210`ABb000000000000000000`00000000ABhABf`ABj0ABn`00`111`20000`23ABl311130111113`142111342013420134201342013420134201`3420134201342011342014134201342013420134201342013342013420134201342013420134201444444114444342013420134201342013420134201342013420134201AC`ACbACdACf10`ACj`00ACh10101010101010101011010101010101010101010000010101010101010101```ADbACl1010101010100ACn2122121`2121212121212121002122102112102110121212121212121210211`Ed0`0000`00000000000000000000000000`0000`000`00000000000````ADfAD`101011010110Eh21212121210021021212121212121212121ADh3203112323232323232323232111ADn``0``ADjADl2102102102102102102102102111020AE`21321322113213112132131213213213213213213022222213213213213213213213213213GdAElAEh0AFnAF`4AEn``55`AEj```6``023`65`2```00`AEf51623AEbAEd273845102738451010110127384510273845102273845102738451027384510273845101112738451024738199`73845109992738451012112738884511027384510273845107381`22738451027384510273845102738451027384510AFl77384956212322222849222`3232222938495621238495621384956213849562138495621384956213849562138495621223384956213`AGdAGjAGbAG`0`3`AGf002`2`04AFj151AGh33```432262044444522246205AGl457316045731604457316045731604257316045731604573160457316045731604220430573104573160457316045731604573160425731604573160457316045731604573160457316045222204220573160457316045731604573160457316045731604573160457316042573160432AHb`AGn`0`0AHnAH`10101010102110101001021001001010102110101010101021010101010101010102110AFh``AI`000000001000000111100000001010100001100000000010011AIf`0000`00000000000000`00``0000AIhAIb2102100AId332132132132132132132133`3332133322132132132132132132132132132123`33132132323213213213213213213213212`AIj00000````````````````````````00000000000```00``000`0AIlAJdAJbAJfAJhAJjAJlAJn87654321087654321087543210876543210876543210876543210876543210876543210876543210687654321087876543210876543210876543210876543210876543210743210876543210876543210876543210876543210876543210876543210765877543210878687654321087654321087654321087654321087654321087654321087654321087654321087654321087543210``Kj000000Kl10101010111111111011010101101010101010101`11111111100001010110111111111101101`0101010101011``1111101011011`11001011111101010111010101010101``AKn0000AL`10101010101010101010101010100101010101010101010101010101010ALbALdALfALh3210`````ALj00000Cb1111001111111111110010`00000`1`1111111101AMd`0```0`000`0000ADd001`0111111111```00`0`11111111``AN`000000000`00`0`AMf``11111111110111111111101`ANd`0`ANb101010101010101010101010101010101010101010101`AMj`0`01212121212121212121212``AMl`0`0`0`Gb```````G`ANfAIn22210210`21021021022000202210``310`2010222102102102210210210210210210`222102``222232`2021021021021021021021021022ALl0```0ABdALn21021021021021010000210111`2210210210210210021021021021021021021001010210210210210210210210210AOb0JdAOfANn0AOh2`ANl`2222AOd0``2``3561113``33``111443`51013AO`71563240715632407156324071563240715632407156324071563240715632407156306240715637540715624007156324071566324071563240715630`2407156324071563240715632407156324071563240715637506``240715630024071563240715632407156324071563240715632407156324071563024071563AOj0AOn0``AOl10101010101000010110101`0101010101010010110101010101010101B@`B@b000`B@d`0Nl1010100101001000010000110101010101010101010000110101010101010101``B@fB@h11010101010101010100101010101010001010101010100000101000010010101010101010010","f":"``````````````````````````````````````````````````````````````{bd}{eg{}{{f{c}}}{}}00000000000000000{{hj}c{}}{{hh}c{}}{{ld}l}{{ll}l}{{{n{c}}{A`{c}}}{{n{c}}}{{Ad{}{{Ab{}}}}}}{{{Af{c}}{A`{c}}}{{Af{c}}}{{Ad{}{{Ab{}}}}}}{{{Ah{c}}{Ah{c}}}e{{Ad{}{{Ab{}}}}}{}}{{{A`{c}}{A`{c}}}{{A`{c}}}{{Ad{}{{Ab{}}}}}}{{{Al{Ajh}}h}An}``{B`Bb}{{BdAh}Ah}{{{Al{{Bf{c}}}}}Bb{}}{{{Al{{Af{d}}}}}d}{ce{}{}}00000000000000000{{}c{}}00000000000000000{{{Al{Bh}}}{{Al{Bj}}}}{{{Al{Bl}}}{{Al{{Bn{d}}}}}}1{{{Al{{C`{ceg}}}}}{{Al{Cb}}}{}{}{}}{{{Al{Aj{C`{ceg}}}}}{{Al{AjCb}}}{}{}{}}{bd}{Cdd}`{Al{{Al{c}}}{}}604{{{Al{{Al{{C`{ceg}}}}}}}{{Al{Cb}}}{}{}{}}1111111111111111{{{Al{Aj}}}{{Al{Ajc}}}{}}00000000000000000{{{Cf{c}}}e{}{}}00000000000000000{{{Al{Aj{Bf{c}}}}}An{}}{{{Al{{Af{d}}}}}n}>>`{{{Al{Bh}}}Bh}{{{Al{j}}}j}{{{Al{h}}}h}{{{Al{Ch}}}Ch}{{{Al{b}}}b}{{{Al{Cj}}}Cj}{{{Al{Cl}}}Cl}{{{Al{l}}}l}{{{Al{{n{c}}}}}{{n{c}}}Cn}{{{Al{{Af{c}}}}}{{Af{c}}}Cn}{{{Al{Bd}}}Bd}{{{Al{B`}}}B`}{{{Al{Cd}}}Cd}{{{Al{{Ah{c}}}}}{{Ah{c}}}Cn}{{{Al{Bl}}}Bl}{{{Al{{A`{c}}}}}{{A`{c}}}Cn}{{Al{Al{Ajc}}}An{}}000000000000000{{AlD`}An}000000000000000{{{Al{Bh}}{Al{Bh}}}Db}{Cdb}`{ce{}{}}00000000000000000{{{Al{{Af{d}}}}n}Bb}{{}Bh}{{}b}{{}Cj}{{}l}{{}{{n{c}}}Dd}{{}{{Af{c}}}Dd}{{}Bd}{{}B`}{{}Cd}{{}{{Ah{c}}}Dd}{{}Bl}{{}{{A`{c}}}Dd}{B`Df}{B`l}{Bdj}{{{Al{Bh}}}{{Al{Bj}}}}{{{Al{{n{c}}}}{n{c}}}c{DhDj}}{{{Al{{Af{d}}}}n}d}{{hd}c{}}{{hh}c{}}{{lDl}l}{{ld}l}{{ll}l}{{ClCl}Cl}{{{Al{Bh}}{Al{Bh}}}Bb}{{{Al{Bh}}{Al{Bj}}}Bb}{{{Al{Bh}}{Al{{Al{Bj}}}}}Bb}{{{Al{Bh}}{Al{Dn}}}Bb}{{{Al{Bh}}{Al{{Al{Dn}}}}}Bb}{{{Al{j}}{Al{d}}}Bb}{{{Al{j}}{Al{j}}}Bb}{{{Al{h}}{Al{d}}}Bb}{{{Al{h}}{Al{h}}}Bb}{{{Al{Ch}}{Al{Ch}}}Bb}{{{Al{b}}{Al{b}}}Bb}{{{Al{Cj}}{Al{Cj}}}Bb}{{{Al{Cl}}{Al{Cl}}}Bb}{{{Al{l}}{Al{l}}}Bb}{{{Al{{n{c}}}}{Al{{n{c}}}}}BbE`}{{{Al{{Af{c}}}}{Al{{Af{c}}}}}BbE`}{{{Al{Bd}}{Al{Bd}}}Bb}{{{Al{Cd}}{Al{Cd}}}Bb}{{{Al{{Ah{c}}}}{Al{{Ah{c}}}}}BbE`}{{{Al{Bl}}{Al{Bl}}}Bb}{{{Al{{A`{c}}}}{Al{{A`{c}}}}}BbE`}`{{{Al{{Bf{c}}}}}Eb{}}{{{Af{d}}c}{{Af{d}}}{{Ef{Ed}}}}{{Ahc}Ah{{Ef{Ah}}}}{{{C`{ceg}}i}{{C`{ceg}}}{}{}Eh{{Ef{b}}}}{{{Al{Cl}}}Ej}{{{Al{Cj}}AhAh}Ah}{{{Al{Cl}}}Cl}{{{Al{Bh}}{Al{AjEl}}}{{F`{AnEn}}}}0{{{Al{j}}{Al{AjEl}}}Fb}{{{Al{h}}{Al{AjEl}}}Fb}0{{{Al{Ch}}{Al{AjEl}}}Fb}{{{Al{b}}{Al{AjEl}}}Fb}{{{Al{Cj}}{Al{AjEl}}}Fb}0{{{Al{Cl}}{Al{AjEl}}}Fb}{{{Al{l}}{Al{AjEl}}}Fb}{{{Al{{n{c}}}}{Al{AjEl}}}FbFd}{{{Al{{n{c}}}}{Al{AjEl}}}FbFf}{{{Al{{Af{c}}}}{Al{AjEl}}}FbFf}{{{Al{Bd}}{Al{AjEl}}}Fb}{{{Al{B`}}{Al{AjEl}}}Fb}{{{Al{Cd}}{Al{AjEl}}}Fb}{{{Al{{Bf{c}}}}{Al{AjEl}}}FbFf}{{{Al{{Ah{c}}}}{Al{AjEl}}}FbFf}{{{Al{Bl}}{Al{AjEl}}}Fb}{{{Al{{A`{c}}}}{Al{AjEl}}}FbFf}`{B`Fh}{DnBh}{{{Al{Bj}}}Bh}{{{Fj{Bj}}}Bh}{{{Fl{Bj}}}Bh}{{{Al{AjBj}}}Bh}{cc{}}{{{Al{Dn}}}Bh}{{{Fn{Bj}}}Bh}{{{G`{ce}}}{{C`{gce}}}GbGd{}}3{{{Al{Bj}}}{{C`{ceg}}}{}GbGd}{D`j}5{dj}6{D`h}{jh}{dh}{bCh}{GfCh};{GhCh}{Gjb}{{{Bn{d}}}b}{Glb}?1?{EjCl}{lCl}{dCl}{cc{}}0{dl}{Ejl}{{{Gn{cc}}}{{n{c}}}Dj}3{{{Bn{c}}}{{n{c}}}Dj}4{{{Af{Dl}}}{{Af{d}}}}{dBd}6{hBd}777{EdAh}{{{Gn{cc}}}{{Ah{c}}}{}}{{{Bn{c}}}{{Ah{c}}}{}}:{{{A`{c}}}{{Ah{c}}}{}};{{{Bn{c}}}{{A`{c}}}{}}{{{Ah{c}}}{{A`{c}}}{}}==================={H`{{Hb{j}}}}{H`{{Hb{h}}}}{Hd{{Hb{j}}}}{Hd{{Hb{h}}}}{cBh{{Hh{}{{Hf{{Al{Bj}}}}}}}}{cBh{{Hh{}{{Hf{{Al{Dn}}}}}}}}{cBh{{Hh{}{{Hf{Dn}}}}}}{cBh{{Hh{}{{Hf{Hj}}}}}}{{dddd}b}{{ddd}b}{{D`D`D`}b}2{{D`D`D`d}b}{ce{}{}}00000000000000000{{{Al{Bj}}}{{F`{Bh}}}}{Hl{{Hb{j}}}}{Hl{{Hb{h}}}}{bd}`{{{Al{Bh}}{Al{Ajc}}}AnHn}{{{Al{Cj}}{Al{Ajc}}}AnHn}{{{Al{{Ah{c}}}}{Al{Aje}}}AnI`Hn}{Af}{Ah}{B`Hb}``{{{Al{{Bf{c}}}}}{{Al{Ib}}}{}}{{{Al{Aj{Bf{c}}}}}{{Al{AjIb}}}{}}{{{Al{{Af{d}}}}{Al{{Af{d}}}}}{{Hb{{Af{d}}}}}}{{{Al{{Af{d}}}}{Al{{Af{d}}}}}Bb}{{}c{}}00000000000000000000000000000000000{{{Cf{c}}}e{}{}}00000000000000000111111111111111111111111111111111111{b{{Bn{d}}}}{b{{Bn{D`}}}}{{}c{}}00000000000000000{{{Al{Aj{Bf{c}}}}}An{}}0{bb}{{{Al{Ajb}}}An}{{{Al{Bh}}}Bb}{{{Al{{Bf{c}}}}}Bb{}}0{{{Al{Cl}}}Bb}21{{{Al{{Af{d}}}}{Al{Af}}}Bb}``{{{Al{Bh}}}Id}{{{C`{ceg}}k}{{C`{ieg}}}{}{}Eh{}{{If{c}{{Ab{i}}}}}}{{AhAh}Ah}{{{Al{Aj{Bf{c}}}}{Bf{e}}g}An{}{}{{If{e}{{Ab{c}}}}}}1`{{jd}c{}}{{hh}c{}}{{hd}c{}}{{ld}l}{{ll}l}{{nBl}n}{{{Af{c}}{A`{c}}}{{Af{c}}}{{Ih{}{{Ab{}}}}Ij}}{{{Af{d}}d}{{Af{d}}}}{{AfBl}Af}{{AhBl}Ah}{{{Ah{c}}c}e{{Ih{}{{Ab{}}}}Ij}{}}{{{Ah{c}}{A`{c}}}e{{Ih{}{{Ab{}}}}Ij}{}}{{BlBl}Bl}{{A`Bl}A`}{{{A`{c}}c}{{A`{c}}}{{Ih{}{{Ab{}}}}Ij}}{{{A`{c}}}e{{Il{}{{Ab{}}}}}{}}{Inc{}}{cBh{{J`{Bj}}}}{i{{C`{ceg}}}{}{}Eh{{Cb{ceg}}}}{{cc}{{n{c}}}Dj}{{nAh}{{Af{d}}}}{{{Al{Aj{Fh{c}}}}}{{Bf{c}}}{}}{{cc}{{Ah{c}}}{}}{{cc}{{A`{c}}}{}}{{{Al{Bj}}}Bh}{{Id{Al{{Jb{D`}}}}}Bh}1{{}c{}}00000000000{CdA`}{{DlDl}Bl}``{{{Al{Bj}}}{{Hb{b}}}}{{{Al{Bh}}{Al{Bh}}}{{Hb{Db}}}}{{{Al{j}}{Al{d}}}{{Hb{Db}}}}{{{Al{j}}{Al{j}}}{{Hb{Db}}}}{{{Al{h}}{Al{d}}}{{Hb{Db}}}}{{{Al{h}}{Al{h}}}{{Hb{Db}}}}{{{Al{l}}{Al{l}}}{{Hb{Db}}}}{{{Al{{Af{d}}}}}n}{{{Al{Aj{Bf{c}}}}c}An{}}{bd}{Bdh}{{{Al{AjBd}}}{{Al{Ajh}}}}{{{Al{{Bf{c}}}}}Jd{}}{{hh}c{}}`{{{Al{Aj{Bf{c}}}}Jd}An{}}{{{Al{Aj{Bf{c}}}}{Al{{Ib{e}}}}}An{}{{J`{Bj}}}}{{{Al{Aj{Bf{c}}}}}An{}}{{{Al{Aj{Bf{c}}}}e}An{}{{Ef{Jd}}}}{{{Al{Aj{Bf{c}}}}e}An{}Jf}{{{Af{d}}h}{{Af{d}}}}{{Ahh}Ah}{dBl}{{Chd}Ch}{{bd}b}{{{Al{Bl}}}d}{{{Af{d}}c}{{Af{d}}}{{Ef{Ed}}}}{{{Al{{Af{d}}}}}Ah}{{{Af{d}}}{{Hb{{Af{Dl}}}}}}{{hh}c{}}{{{n{c}}{A`{c}}}{{n{c}}}{{Jh{}{{Ab{}}}}}}{{{n{c}}{n{c}}}{{A`{c}}}{{Jh{}{{Ab{}}}}}}{{{Af{c}}{A`{c}}}{{Af{c}}}{{Jh{}{{Ab{}}}}}}{{{Ah{c}}{Ah{c}}}e{{Jh{}{{Ab{}}}}}{}}{{{A`{c}}{A`{c}}}{{A`{c}}}{{Jh{}{{Ab{}}}}}}{{{Al{Ajh}}h}An}````{{{Al{h}}{Al{Af}}}{{Gn{nn}}}}{Alc{}}000000000000000{AlBh}000{{{Al{Bh}}}Dn}{AlDn}000`{{dd}Bl}{{{Al{Bl}}}A`}{{}{{F`{c}}}{}}00000000000000000{c{{F`{e}}}{}{}}00000000000000000{{}{{F`{c}}}{}}00000000000000000{{}{{F`{c{Jj{c}}}}}{}}00000000000000000{AlJl}00000000000000000{ce{}{}}00000000000000000{{}c{}}00000000000000000{{{Al{{Af{d}}}}{Al{{Af{d}}}}}{{Af{d}}}}{{}c{}}00000000000000000`{Af}{Ah}`{d{{Af{d}}}}{{{Ah{c}}}{{Af{c}}}Dd}{{nnn}{{Gn{Afh}}}}{n}5{A`}160````````````{eg{}{{f{c}}}{}}00{ce{}{}}00;;;{Al{{Al{c}}}{}}00{{{Al{Aj}}}{{Al{Ajc}}}{}}00{{{Cf{c}}}e{}{}}00{{{Al{Jn}}}Jn}{{{Al{K`}}}K`}{{{Al{Kb}}}Kb}{{Al{Al{Ajc}}}An{}}00{{AlD`}An}00888{{{Al{Jn}}{Al{Jn}}}Bb}{{{Al{K`}}{Al{K`}}}Bb}{{{Al{Kb}}{Al{Kb}}}Bb}{{{Al{Jn}}{Al{AjEl}}}Fb}{{{Al{K`}}{Al{AjEl}}}Fb}{{{Al{Kb}}{Al{AjEl}}}Fb}{K`Jn}{cc{}}{KbJn}1{JnK`}2{JnKb}333{ce{}{}}00{{{Al{Jn}}{Al{Ajc}}}AnHn}{{{Al{K`}}{Al{Ajc}}}AnHn}{{{Al{Kb}}{Al{Ajc}}}AnHn}{{}c{}}00000{{{Cf{c}}}e{}{}}00111111{{}c{}}00{Alc{}}00{{}{{F`{c}}}{}}00{c{{F`{e}}}{}{}}00{{}{{F`{c}}}{}}00{{}{{F`{c{Jj{c}}}}}{}}00{AlJl}00{ce{}{}}00{{}c{}}00{{}c{}}00````````````````````````````````````{eg{}{{f{c}}}{}}0{ce{}{}}033{{{Kd{c}}}{{Kd{c}}}{CnIjE`Kf}}{Al{{Al{c}}}{}}0{{{Al{Aj}}}{{Al{Ajc}}}{}}0??{{{Al{Kh}}}Kh}{{{Al{{Kd{c}}}}}{{Kd{c}}}{CnIjE`KfCn}}{{Al{Al{Ajc}}}An{}}0{{AlD`}An}077{{}Kh}{{{Kd{c}}Kj}{{Kd{c}}}{CnIjE`Kf}}0{{{Kd{c}}Kh}{{Kd{c}}}{CnIjE`Kf}}{{{Al{Kh}}{Al{Kh}}}Bb}{{{Al{Kf}}}d}{{{Al{Kh}}{Al{AjEl}}}{{F`{AnEn}}}}{{{Al{{Kd{c}}}}{Al{AjEl}}}Fb{CnIjE`KfFf}}{cc{}}000{ce{}{}}0{{{Kd{c}}c}{{Kd{c}}}{CnIjE`Kf}}{{{Al{Aj{Kd{c}}}}c}An{CnIjE`Kf}}{{{Al{{Kd{Bb}}}}ccKl}c{KnCn}}{{{Al{{Kd{c}}}}gKl}e{CnIjE`Kf}Kn{{If{c}{{Ab{e}}}}}}{{{Al{Kn}}Knd}Kn}{{}c{}}000{{{Cf{c}}}e{}{}}01111{{}c{}}0{{{Al{{Kd{c}}}}Kl}Bb{CnIjE`Kf}}{c{{Kd{c}}}{CnIjE`Kf}}2{{{Kd{c}}}{{Kd{c}}}{CnIjE`Kf}}{{{Kd{c}}Dl}{{Kd{c}}}{CnIjE`Kf}}11{Alc{}}0{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{{}{{F`{c}}}{}}0{{}{{F`{c{Jj{c}}}}}{}}0{AlJl}0{ce{}{}}0{{}c{}}0{{Khd}d}{{{Al{{Kd{c}}}}}c{CnIjE`Kf}};;{{}c{}}0``{eg{}{{f{c}}}{}}0{ce{}{}}055{Al{{Al{c}}}{}}0{{{Al{Aj}}}{{Al{Ajc}}}{}}0{cL`{{Ef{l}}}}{{L`c}L`{{Ef{l}}}}10{L`d}210{{{Cf{c}}}e{}{}}0{{{Al{Lb}}}Lb}{{{Al{L`}}}L`}{{Al{Al{Ajc}}}An{}}0{{AlD`}An}0{cLb{{Ef{b}}}}{{Lbc}Lb{{Ef{b}}}}{Lbb}=={{}Lb}{{}L`}{{{Al{Lb}}{Al{Lb}}}Bb}{{{Al{L`}}{Al{L`}}}Bb}{{{Al{Lb}}{Al{AjEl}}}Fb}{{{Al{L`}}{Al{AjEl}}}Fb}{cc{}}0{LdL`}{dL`}{D`L`}{EjL`}44{ce{}{}}0{{}c{}}000{{{Cf{c}}}e{}{}}01111{{}c{}}0{cL`{{Ef{l}}}}{{L`c}L`{{Ef{l}}}}1221{LbL`}21{cLb{{Ef{L`}}}}{{Lbc}Lb{{Ef{L`}}}}{Alc{}}05454{L`d}650{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{{}{{F`{c}}}{}}0{{}{{F`{c{Jj{c}}}}}{}}0{AlJl}0{ce{}{}}0{{}c{}}0{{}c{}}0{cLb{{Ef{l}}}}{{Lbc}Lb{{Ef{l}}}}{Lbd}`````{eg{}{{f{c}}}{}}0{ce{}{}}066{Al{{Al{c}}}{}}0{{{Al{Aj}}}{{Al{Ajc}}}{}}0{{{Cf{c}}}e{}{}}0{{{Al{Lf}}}Lf}{{{Al{Lh}}}Lh}{{Al{Al{Ajc}}}An{}}0{{AlD`}An}077{{{Al{Lf}}{Al{Lf}}}Bb}{{{Al{Lf}}{Al{AjEl}}}Fb}{{{Al{Lh}}{Al{AjEl}}}Fb}{cc{}}000{ce{}{}}0{{}c{}}000::0000{{}c{}}0{{{Al{Lj}}Lf}{{Hb{Dn}}}}{{{Al{Lh}}Lf}{{Hb{Dn}}}}{Alc{}}0{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{{}{{F`{c}}}{}}0{{}{{F`{c{Jj{c}}}}}{}}0{AlJl}0{ce{}{}}0{{}c{}}0{{}c{}}0{{{Al{AjLj}}LfDn}An}{{{Al{AjLh}}LfDn}An}`````````{eg{}{{f{c}}}{}}0{ce{}{}}055{Al{{Al{c}}}{}}0{{{Al{Aj}}}{{Al{Ajc}}}{}}0{{{Cf{c}}}e{}{}}0{{{Al{Ll}}}Ll}{{{Al{Eb}}}Eb}{{Al{Al{Ajc}}}An{}}0{{AlD`}An}077{{{Al{Ll}}{Al{Ll}}}Bb}{{{Al{Eb}}{Al{Eb}}}Bb}{{{Al{Ll}}{Al{AjEl}}}Fb}{{{Al{Eb}}{Al{AjEl}}}Fb}{cc{}}000{ce{}{}}0{{}c{}}000;;0000{{}c{}}0{{EbEb}Eb}{Alc{}}0{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{{}{{F`{c}}}{}}0{{}{{F`{c{Jj{c}}}}}{}}0{AlJl}0{ce{}{}}0{{}c{}}0{{}c{}}0``````````````````````````````````{eg{}{{f{c}}}{}}0000{ce{}{}}000033333{Al{{Al{c}}}{}}0000{{{Al{Aj}}}{{Al{Ajc}}}{}}0000{{{Cf{c}}}e{}{}}0000{{{Al{Df}}}Df}{{{Al{Ln}}}Ln}{{{Al{M`}}}M`}{{{Al{Mb}}}Mb}{{{Al{Md}}}Md}{{Al{Al{Ajc}}}An{}}0000{{AlD`}An}0000:::::{{}Df}{{}Ln}{{}M`}{{}Mb}{{}Md}{{{Al{Df}}{Al{Df}}}Bb}{{{Al{Ln}}{Al{Ln}}}Bb}{{{Al{M`}}{Al{M`}}}Bb}{{{Al{Mb}}{Al{Mb}}}Bb}{{{Al{Md}}{Al{Md}}}Bb}{DfLn}{{{Al{Df}}{Al{AjEl}}}Fb}{{{Al{Ln}}{Al{AjEl}}}Fb}{{{Al{M`}}{Al{AjEl}}}Fb}{{{Al{Mb}}{Al{AjEl}}}Fb}{{{Al{Md}}{Al{AjEl}}}Fb}{cc{}}000000000{ce{}{}}0000{{{Al{Df}}{Al{Ajc}}}AnHn}{{{Al{Ln}}{Al{Ajc}}}AnHn}{{{Al{M`}}{Al{Ajc}}}AnHn}{{{Al{Mb}}{Al{Ajc}}}AnHn}{{{Al{Md}}{Al{Ajc}}}AnHn}{{}c{}}000000000{{{Cf{c}}}e{}{}}00001111111111{{}c{}}000000000{DfMb}{DfMd}{Alc{}}0000{{}{{F`{c}}}{}}0000{c{{F`{e}}}{}{}}0000{{}{{F`{c}}}{}}0000{{}{{F`{c{Jj{c}}}}}{}}0000{AlJl}0000{ce{}{}}0000{{}c{}}0000{{}c{}}0000{DfM`}{{{Al{Bj}}}Df}````{eg{}{{f{c}}}{}}00{{Ghdb}Gh}{{Ghc}Gh{{Hh{}{{Hf{Mf}}}}}}{Ghh}{ce{}{}}00888{Al{{Al{c}}}{}}00{{{Al{Aj}}}{{Al{Ajc}}}{}}00{{{Cf{c}}}e{}{}}00{{{Al{Gf}}}Gf}{{{Al{Mf}}}Mf}{{{Al{Gh}}}Gh}{{Al{Al{Ajc}}}An{}}00{{AlD`}An}00{Mfb}999{{}Mf}{{{Al{Gf}}{Al{Gf}}}Bb}{{{Al{Mf}}{Al{Mf}}}Bb}{{{Al{Gh}}{Al{Gh}}}Bb}{{{Al{Gf}}{Al{AjEl}}}Fb}{{{Al{Mf}}{Al{AjEl}}}Fb}{{{Al{Gh}}{Al{AjEl}}}Fb}{GhGf}{cc{}}00000{ce{}{}}00{{}c{}}00000{{{Cf{c}}}e{}{}}00111111{{}c{}}00{cGh{{Ef{h}}}}1{Mfd}{{Gfd}Gf}{{Ghd}Gh}{GhBn}{Alc{}}00{{}{{F`{c}}}{}}00{c{{F`{e}}}{}{}}00{{}{{F`{c}}}{}}00{{}{{F`{c{Jj{c}}}}}{}}00{AlJl}00{ce{}{}}00{{}c{}}00{{}c{}}00````````````{eg{}{{f{c}}}{}}0000{{{Al{AjMh}}Id}An}{ce{}{}}000044444{{{Al{Mh}}}{{Al{{Jb{D`}}}}}}0{Al{{Al{c}}}{}}0000{{{Al{Aj}}}{{Al{Ajc}}}{}}0000{{{Cf{c}}}e{}{}}00003{{{Al{AjMh}}}An}{{{Al{Mh}}}Mh}{{{Al{{Mj{c}}}}}{{Mj{c}}}Cn}{{{Al{Ml}}}Ml}{{{Al{Mn}}}Mn}{{{Al{N`}}}N`}{{Al{Al{Ajc}}}An{}}0000{{AlD`}An}0000{{{Al{Mh}}{Al{Mh}}}Db}{{{Al{Mn}}{Al{Mn}}}Db}>>>>>{{{Al{{Jb{D`}}}}}Mh}{{{Al{AjMh}}Id}Mh}{{}Mh}{{}N`}{{{Al{Mh}}}{{Al{{Jb{D`}}}}}}{{{Al{Aj{Nd{}{{Nb{c}}}}}}{Mj{c}}Af}AnCn}?{Alc{{Nf{Hj}}}}0{{{Al{Mh}}{Al{Nh}}}Bb}{{{Al{Mh}}{Al{Dn}}}Bb}{{{Al{Mh}}{Al{{Al{c}}}}}BbNj}{{{Al{Mh}}{Al{Mh}}}Bb}{{{Al{Mh}}{Al{{Jb{D`}}}}}Bb}{{{Al{Mh}}{Al{Bj}}}Bb}{{{Al{Mh}}{Al{{Fh{D`}}}}}Bb}{{{Al{{Mj{c}}}}{Al{{Mj{c}}}}}BbE`}{{{Al{Ml}}{Al{Ml}}}Bb}{{{Al{Mn}}{Al{Mn}}}Bb}{{{Al{N`}}{Al{N`}}}Bb}{{{Mj{Ml}}N`}{{Mj{Ml}}}}{MjN`}{{{Al{Mh}}{Al{AjEl}}}{{F`{AnEn}}}}00{{{Al{{Mj{c}}}}{Al{AjEl}}}FbFf}{{{Al{Ml}}{Al{AjEl}}}Fb}{{{Al{Mn}}{Al{AjEl}}}Fb}{{{Al{N`}}{Al{AjEl}}}Fb}{NlMh}{NhMh}{{{Al{{Jb{D`}}}}}Mh}{{{Al{Bj}}}Mh}{{{Fl{{Jb{D`}}}}}Mh}{cc{}}{{{Fh{D`}}}Mh}{DnMh}{{{Al{Ml}}}Mj}3{cMl{{Ef{Nn}}}}4{{{Al{Ml}}}Ml}5555555{cMl{{Ef{Mh}}}}{cMh{{Hh{}{{Hf{D`}}}}}}{cMh{{J`{{Jb{D`}}}}O`}}4{{DlDlc}Ml{{Ef{Mh}}}}<{ce{}{}}0000{Mj}{{{Al{Mh}}{Al{Ajc}}}AnHn}{{{Al{Mn}}{Al{Ajc}}}AnHn}{{{Al{N`}}{Al{Ajc}}}AnHn}{{{Al{Ml}}}Mn}{{}c{}}000000000{{{Cf{c}}}e{}{}}00001111111111{Mh}{{{Al{Mh}}}}{{}c{}}0000{{{Al{Mh}}}Bb}0{{{Al{Mh}}}Id}{{{Al{{Nd{}{{Nb{c}}}}}}{Al{c}}}{{Ah{Dl}}}Cn}{{}Mh}{c{{Mj{Ml}}}{{Ef{Ml}}}}55{{{Mj{Ml}}c}{{Mj{Ml}}}{{Ef{d}}}}{Mjd}{{{Al{Mh}}{Al{{Fh{D`}}}}}{{Hb{Db}}}}{{{Al{Mh}}{Al{{Al{c}}}}}{{Hb{Db}}}Nj}{{{Al{Mh}}{Al{Dn}}}{{Hb{Db}}}}{{{Al{Mh}}{Al{Bj}}}{{Hb{Db}}}}{{{Al{Mh}}{Al{{Jb{D`}}}}}{{Hb{Db}}}}{{{Al{Mh}}{Al{Mh}}}{{Hb{Db}}}}{{{Al{Mn}}{Al{Mn}}}{{Hb{Db}}}}<{{{Mj{Ml}}c}{{Mj{Ml}}}{{Ef{h}}}}{Mjh}{{{Al{Mh}}c}Mh{{Ob{Id}}}}{{{Al{Mh}}{Al{{Jb{D`}}}}}Mh}{{{Mj{Ml}}Bb}{{Mj{Ml}}}}{MjBb}{{{Al{AjMh}}Id}Mh}0{Alc{}}0000{{{Al{AjMh}}Id}An}{{}{{F`{c}}}{}}0000{c{{F`{e}}}{}{}}0000{{}{{F`{c}}}{}}0000{{}{{F`{c{Jj{c}}}}}{}}0000{Mh{{F`{NhMh}}}}{AlJl}0000{ce{}{}}0000{{}c{}}0000{{}c{}}0000{OdDl}{OdMn}{OdMh}2```````````````{eg{}{{f{c}}}{}}000{ce{}{}}0006666{{{Al{Of}}}{{Of{{Al{Bj}}}}}}{Al{{Al{c}}}{}}000{{{Al{Aj}}}{{Al{Ajc}}}{}}000{{{Cf{c}}}e{}{}}000{{{Al{{Ib{c}}}}}{{Ib{c}}}Cn}{{{Al{{Of{c}}}}}{{Of{c}}}Cn}{{{Al{Oh}}}Oh}{{{Al{Oj}}}Oj}{{Al{Al{Ajc}}}An{}}000{{AlD`}An}000::::{Of}{{}{{Of{c}}}Dd}{{}Oh}{{{Al{{Ib{c}}}}{Al{{Ib{c}}}}}BbE`}{{{Al{{Of{c}}}}{Al{{Of{c}}}}}BbE`}{{{Al{Oh}}{Al{Oh}}}Bb}{{{Al{Oj}}{Al{Oj}}}Bb}{{{Al{{Ib{c}}}}{Al{AjEl}}}FbFf}{{{Al{{Of{c}}}}{Al{AjEl}}}FbFf}{{{Al{Oh}}{Al{AjEl}}}Fb}{{{Al{Oj}}{Al{AjEl}}}Fb}{cc{}}0000000{ce{}{}}000{{{Al{Oj}}{Al{Ajc}}}AnHn}{{}c{}}0000000{{{Cf{c}}}e{}{}}00011111111{{}c{}}000{{{Al{Ib}}}Bb}{{{Al{AjIb}}{Al{{Ib{c}}}}}An{{J`{Bj}}}}{{}{{Of{c}}}Dd}33{OfHb}{Alc{}}{{{Al{{Ib{c}}}}}Ib{{J`{Bj}}}}{{{Al{{Of{c}}}}}Of{{J`{Bj}}}}222{{}{{F`{c}}}{}}000{c{{F`{e}}}{}{}}000{{}{{F`{c}}}{}}000{{}{{F`{c{Jj{c}}}}}{}}000{AlJl}000{ce{}{}}000{{}c{}}000{{}c{}}000{Oln}{OlHb}{OlOh}````````````````{eg{}{{f{c}}}{}}00{{}On}{OnBb}{ce{}{}}00888{{OnOn}On}{{{Al{AjOn}}On}An}10{{{Al{On}}}Dl}021{Al{{Al{c}}}{}}00{{{Al{Aj}}}{{Al{Ajc}}}{}}00{{{Cf{c}}}e{}{}}00{{{Al{A@`}}}A@`}{{{Al{A@b}}}A@b}{{{Al{On}}}On}{{Al{Al{Ajc}}}An{}}00{{AlD`}An}00{{{Al{On}}{Al{On}}}Db}={OnOn}==={{{Al{On}}On}Bb}?{{}On}>0{{{Al{A@`}}{Al{A@`}}}Bb}{{{Al{A@b}}{Al{A@b}}}Bb}{{{Al{On}}{Al{On}}}Bb}{{{Al{AjOn}}c}An{{Hh{}{{Hf{On}}}}}}{{{Al{A@`}}{Al{AjEl}}}Fb}{{{Al{A@b}}{Al{AjEl}}}Fb}{{{Al{On}}{Al{AjEl}}}Fb}0000{cc{}}00000{Dl{{Hb{On}}}}{DlOn}00{cOn{{Hh{}{{Hf{On}}}}}}{{{Al{Bj}}}{{Hb{On}}}}{ce{}{}}00{{{Al{On}}{Al{Ajc}}}AnHn}{{{Al{AjOn}}On}An}{{OnOn}On}{{{Al{On}}On}Bb}{{}c{}}00000{{{Cf{c}}}e{}{}}00111111{Onc{}}{{}c{}}00{{{Al{On}}}Bb}0{{{Al{On}}}{{A@d{On}}}}{{{Al{On}}}{{A@f{On}}}}{OnBb}`00{OnOn}5{{{Al{On}}{Al{On}}}{{Hb{Db}}}}<{{{Al{AjOn}}OnBb}An}3<=<{Alc{}}00>{{}{{F`{c}}}{}}00{c{{F`{e}}}{}{}}00{{}{{F`{c}}}{}}00{{}{{F`{c{Jj{c}}}}}{}}00{AlJl}00{ce{}{}}00{{}c{}}00{{OnOn}On}{{}c{}}00{A@hA@j}{A@lA@j}{A@hA@b}{A@lA@b}32{A@hOn}{A@lOn}{A@hA@n}{A@lA@n}{A@hHb}```````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````{eg{}{{f{c}}}{}}0000{ce{}{}}0000====={{{Al{A@j}}}{{A@j{{Al{Bj}}}}}}{Al{{Al{c}}}{}}0000{{{Al{Aj}}}{{Al{Ajc}}}{}}0000{{{Cf{c}}}e{}{}}0000{{{Al{{A@j{c}}}}}{{A@j{c}}}Cn}{{{Al{AA`}}}AA`}{{{Al{AAb}}}AAb}{{{Al{AAd}}}AAd}{{{Al{A@n}}}A@n}{{Al{Al{Ajc}}}An{}}0000{{AlD`}An}0000{{{Al{{A@j{c}}}}{Al{{A@j{c}}}}}DbAAf}{{{Al{AA`}}{Al{AA`}}}Db}{{{Al{AAb}}{Al{AAb}}}Db}{{{Al{AAd}}{Al{AAd}}}Db}{{{Al{A@n}}{Al{A@n}}}Db}{ce{}{}}0000{{{Al{{A@j{c}}}}{Al{{A@j{c}}}}}BbE`}{{{Al{AA`}}{Al{AA`}}}Bb}{{{Al{AAb}}{Al{A@n}}}Bb}{{{Al{AAb}}{Al{AAb}}}Bb}{{{Al{AAd}}{Al{AAd}}}Bb}{{{Al{AAd}}{Al{A@n}}}Bb}{{{Al{A@n}}{Al{AAb}}}Bb}{{{Al{A@n}}{Al{AAd}}}Bb}{{{Al{A@n}}{Al{A@n}}}Bb}{{{Al{{A@j{c}}}}{Al{AjEl}}}FbFf}{{{Al{AA`}}{Al{AjEl}}}Fb}{{{Al{AAb}}{Al{AjEl}}}Fb}{{{Al{AAd}}{Al{AjEl}}}Fb}{{{Al{A@n}}{Al{AjEl}}}Fb}{AA`A@j}{cc{}}000000000{ce{}{}}0000{{{Al{{A@j{c}}}}{Al{Aje}}}AnI`Hn}{{{Al{AA`}}{Al{Ajc}}}AnHn}{{{Al{AAb}}{Al{Ajc}}}AnHn}{{{Al{AAd}}{Al{Ajc}}}AnHn}{{{Al{A@n}}{Al{Ajc}}}AnHn}{{}c{}}000000000{{{Cf{c}}}e{}{}}00001111111111{{}c{}}0000{{{Al{{A@j{c}}}}{Al{{A@j{c}}}}}{{Hb{Db}}}AAh}{{{Al{AA`}}{Al{AA`}}}{{Hb{Db}}}}{{{Al{AAb}}{Al{AAb}}}{{Hb{Db}}}}{{{Al{AAd}}{Al{AAd}}}{{Hb{Db}}}}{{{Al{A@n}}{Al{A@n}}}{{Hb{Db}}}}{Alc{}}0000{{}{{F`{c}}}{}}0000{c{{F`{e}}}{}{}}0000{{}{{F`{c}}}{}}0000{{}{{F`{c{Jj{c}}}}}{}}0000{AlJl}0000{ce{}{}}0000{{}c{}}0000{{}c{}}0000````{eg{}{{f{c}}}{}}00{{AAjJnJnAh}AAj}{{{Al{AjAAj}}JnJnAh}An}{ce{}{}}00555{{{Al{AAl}}ce}AAj{{Ef{Cl}}}{{Ef{Cl}}}}{Al{{Al{c}}}{}}00{{{Al{Aj}}}{{Al{Ajc}}}{}}00{{{Al{AAj}}}Af}{{{Al{AAn}}}Af}{{{Cf{c}}}e{}{}}00{{{Al{AAj}}}{{Al{{Jb{AAj}}}}}}{AAn{{`{{AB`{}{{Hf{AAn}}}}}}}}{{{Al{AAl}}}AAl}{{{Al{AAj}}}AAj}{{{Al{AAn}}}AAn}{{Al{Al{Ajc}}}An{}}00{{AlD`}An}00==={{{Al{AAl}}ceg}AAj{{Ef{Cl}}}{{Ef{Cl}}}{{Jf{{Al{AAl}}}{{Ab{AAj}}}}}}{{AAjEd}AAj}{{}AAj}{{{Al{AAl}}{Al{AAl}}}Bb}`{{{Al{AAl}}{Al{AjEl}}}Fb}{{{Al{AAj}}{Al{AjEl}}}Fb}{{{Al{AAn}}{Al{AjEl}}}Fb}{cc{}}00000{ce{}{}}00{{AAlc}AAl{{Ef{Cl}}}}{{}c{}}00000{{{Cf{c}}}e{}{}}00111111{{}c{}}00{{{Al{AAl}}}AAl}{{{Al{AAl}}}Ah}{{AAld}AAl}0100{{AAjc}AAj{{Ef{n}}}}{{{Al{AjAAj}}c}An{{Ef{n}}}}{{AhAh}AAl}{AhAAj}{{{Al{AAj}}}AAn}{{{Al{AAl}}dce}AAj{{Jf{{Al{AAl}}}{{Ab{AAj}}}}}{{Jf{{Al{AAl}}}{{Ab{AAj}}}}}}9{{{Al{AAl}}cegi}AAj{{Ef{Cl}}}{{Ef{Cl}}}{{Ef{Ed}}}{{Jf{{Al{AAl}}}{{Ab{AAj}}}}}}{{{Al{AAn}}}n}{{{Al{AAl}}cegik}AAj{{Ef{Cl}}}{{Ef{Cl}}}{{Ef{Ed}}}{{Jf{{Al{AAl}}}{{Ab{AAj}}}}}{{Jf{AAjAh}{{Ab{AAj}}}}}}{{{Al{AAl}}ceAh}Ah{{Ef{Cl}}}{{Ef{Cl}}}}{{{Al{AAl}}c}AAl{{Ef{Ah}}}}{{{Al{AAj}}}Ah}{{{Al{AAl}}ceg}AAj{{Ef{Cl}}}{{Ef{Cl}}}{{Jf{{Al{AAl}}}{{Ab{Ah}}}}}}{Alc{}}00{{AAjc}AAj{{Ef{A`}}}}{{{Al{AjAAj}}c}An{{Ef{A`}}}}{{}{{F`{c}}}{}}00{c{{F`{e}}}{}{}}00{{}{{F`{c}}}{}}00{{}{{F`{c{Jj{c}}}}}{}}00{AlJl}00{ce{}{}}00{{}c{}}00{{}c{}}00{{AAlc}AAl{{Ef{Cl}}}}{{Ah{Fh{AAj}}}AAj}{{A`{Al{AAj}}}AAn}```{eg{}{{f{c}}}{}}{ce{}{}}6{Al{{Al{c}}}{}}{{{Al{Aj}}}{{Al{Ajc}}}{}}{{{Cf{c}}}e{}{}}3{{{Al{ABb}}{Al{AjEl}}}Fb}{cc{}}0{ce{}{}}{{}c{}}0400{{}c{}}{{ABb{Al{c}}{Al{AAl}}ClClEddJn{Al{{Jb{{C`{egc}}}}}}{Al{Aj{Jb{ABd}}}}}AAjEh{}{}}{{}{{F`{c}}}{}}{c{{F`{e}}}{}{}}{{}{{F`{c}}}{}}{{}{{F`{c{Jj{c}}}}}{}}{AlJl}{ce{}{}}{{}c{}}{{}c{}}``````````````````````````````````````````{eg{}{{f{c}}}{}}0000{ce{}{}}000033333{Al{{Al{c}}}{}}0000{{{Al{Aj}}}{{Al{Ajc}}}{}}0000{{{Cf{c}}}e{}{}}0000`{{{Al{ABf}}}ABf}{{{Al{ABh}}}ABh}{{{Al{ABj}}}ABj}{{{Al{ABl}}}ABl}{{{Al{ABn}}}ABn}{{Al{Al{Ajc}}}An{}}0000{{AlD`}An}0000{{{Al{ABn}}{Al{ABn}}}Db};;;;;{{}ABh}{{}ABn}{{{Al{ABf}}{Al{ABf}}}Bb}{{{Al{ABh}}{Al{ABh}}}Bb}{{{Al{ABj}}{Al{ABj}}}Bb}{{{Al{ABl}}{Al{ABl}}}Bb}{{{Al{ABn}}{Al{ABn}}}Bb}{{{Al{ABf}}{Al{AjEl}}}Fb}{{{Al{ABh}}{Al{AjEl}}}Fb}{{{Al{ABj}}{Al{AjEl}}}Fb}{{{Al{ABl}}{Al{AjEl}}}Fb}{{{Al{ABn}}{Al{AjEl}}}Fb}{cc{}}000000000{ce{}{}}0000{{{Al{ABf}}{Al{Ajc}}}AnHn}{{}c{}}000000000{{{Cf{c}}}e{}{}}00001111111111{{}c{}}0000{ABhBb}{{ABhAf}Bb}{ABhABh}0{{ABhBl}ABh}44{{{Al{ABn}}{Al{ABn}}}{{Hb{Db}}}}{ABh{{Hb{n}}}}{{ABhn}{{Hb{n}}}}{{ABhAf}{{Hb{n}}}}0{Alc{}}0000{{}{{F`{c}}}{}}0000{c{{F`{e}}}{}{}}0000{{}{{F`{c}}}{}}0000{{}{{F`{c{Jj{c}}}}}{}}0000{AlJl}0000{ce{}{}}0000{{}c{}}0000{{}c{}}0000{AC`ABl}{ACbn}{ACdd}{ACfd}10`````{eg{}{{f{c}}}{}}0{ce{}{}}077{Al{{Al{c}}}{}}0{{{Al{Aj}}}{{Al{Ajc}}}{}}0{{{Cf{c}}}e{}{}}0{{{Al{ACh}}}ACh}{{{Al{ACj}}}ACj}{{Al{Al{Ajc}}}An{}}0{{AlD`}An}077{{{Al{ACj}}{Al{ACj}}}Bb}{{{Al{ACh}}{Al{AjEl}}}Fb}{{{Al{ACj}}{Al{AjEl}}}Fb}{cc{}}000{ce{}{}}0{{}c{}}000::0000{{}c{}}0{{{Al{ACh}}}ACj}{{AChBl}ACh}{{nABf{Hb{ACh}}}ACh}{{{Al{ACh}}}n}{Alc{}}0{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{{}{{F`{c}}}{}}0{{}{{F`{c{Jj{c}}}}}{}}0{AlJl}0{ce{}{}}0{{}c{}}0{{}c{}}0```{eg{}{{f{c}}}{}}0{ce{}{}}033{Al{{Al{c}}}{}}0{{{Al{Aj}}}{{Al{Ajc}}}{}}0{{{Cf{c}}}e{}{}}033{{}{{ACl{ceg}}}{}{}Eh}{{{Al{ACn}}{Al{Ajc}}{Al{e}}{Al{AD`}}AAnABh}AnEh{}}{{{Al{{ADb{ceg}}}}{Al{Ajg}}{Al{e}}{Al{AD`}}AAnABh}An{}{}Eh}{{{Al{{ACl{ceg}}}}{Al{Ajg}}{Al{e}}{Al{AD`}}AAnABh}An{}{}Eh}{cc{}}{{{ACl{ceg}}}{{ADb{ceg}}}{}{}Eh}111{{{Al{Aj{Jb{{C`{ceg}}}}}}{Al{AjABd}}AAn{Al{g}}A`}{{Hb{{ADb{ceg}}}}}{}{}Eh}{ce{}{}}0{{}c{}}000990000{{}c{}}0{{{Al{{ADb{ceg}}}}AAn{Al{g}}n}Bb{}{}Eh}{{{Al{{ACl{ceg}}}}AAn{Al{g}}n}Bb{}{}Eh}{{{Al{ACn}}AAn{Al{c}}n}BbEh}{{{Al{AjACn}}{Al{c}}Ah}AAjEh}{{{Al{Aj{ADb{ceg}}}}{Al{g}}Ah}AAj{}{}Eh}{{{Al{Aj{ACl{ceg}}}}{Al{g}}Ah}AAj{}{}Eh}{{{ADb{ceg}}{Al{If}}}{{ADb{ieg}}}{}{}Eh{}}{{{Al{{ADb{ceg}}}}AAnABh{Al{Af}}{Al{g}}}ABn{}{}Eh}{{{Al{{ACl{ceg}}}}AAnABh{Al{Af}}{Al{g}}}ABn{}{}Eh}{{{Al{ACn}}AAnABh{Al{Af}}{Al{c}}}ABnEh}{{{Fl{ACn}}}{{ADb{ceg}}}{}{}Eh}{{}{{ACl{ceg}}}{}{}Eh}<{{{Al{Aj{ADb{ceg}}}}AAn{Al{g}}{Al{AjADd}}}An{}{}Eh}{{{Al{Aj{ACl{ceg}}}}AAn{Al{g}}{Al{AjADd}}}An{}{}Eh}{{{Al{AjACn}}AAn{Al{c}}{Al{AjADd}}}AnEh}{{{Al{Aj{ADb{ceg}}}}AAn{Al{g}}}{{Hb{{ADb{ceg}}}}}{}{}Eh}{{{Al{Aj{ACl{ceg}}}}AAn{Al{g}}}{{Hb{{ADb{ceg}}}}}{}{}Eh}{{{ACl{ceg}}}{{ADb{ceg}}}{}{}Eh}{{{Al{AjACn}}AAn{Al{c}}}{{Hb{{ADb{egc}}}}}Eh{}{}}{{{ACl{ceg}}i}{{ACl{ceg}}}{}{}Eh{{Ef{{ADb{ceg}}}}}}{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{{}{{F`{c}}}{}}0{{}{{F`{c{Jj{c}}}}}{}}0{AlJl}0{ce{}{}}0{{}c{}}0{{{Al{Aj{ADb{ceg}}}}{Al{Ll}}AAnABh{Al{g}}{Al{AjLj}}{Al{Aj{Bf{c}}}}}An{}{}Eh}{{{Al{Aj{ACl{ceg}}}}{Al{Ll}}AAnABh{Al{g}}{Al{AjLj}}{Al{Aj{Bf{c}}}}}An{}{}Eh}{{{Al{AjACn}}{Al{Ll}}AAnABh{Al{c}}{Al{AjLj}}{Al{Aj{Bf{e}}}}}AnEh{}}{{}c{}}0{{{Fh{{ADb{ceg}}}}}{{ACl{ceg}}}{}{}Eh}``{eg{}{{f{c}}}{}}{cEd{{Ef{l}}}}{ce{}{}}8{Al{{Al{c}}}{}}{{{Al{Aj}}}{{Al{Ajc}}}{}}3{{Edc}Ed{{Ef{l}}}}{Edd}{{{Cf{c}}}e{}{}}{{{Al{Ed}}}Ed}{{Al{Al{Ajc}}}An{}}{{AlD`}An}8{{}Ed}{{{Al{Ed}}{Al{Ed}}}Bb}{{EdAhAh}Ed}{{{Al{Ed}}{Al{AjEl}}}Fb}{lEd}{dEd}{EjEd}{cc{}}{{{Bn{d}}}Ed}{{{Bn{Ej}}}Ed}2{ce{}{}}?{{}c{}}0?00{{}c{}}{cEd{{Ef{l}}}}{{Edc}Ed{{Ef{l}}}}{Edd}:3210{Alc{}}321{{}{{F`{c}}}{}}{c{{F`{e}}}{}{}}{{}{{F`{c}}}{}}{{}{{F`{c{Jj{c}}}}}{}}{AlJl}{ce{}{}}{{}c{}}8{{}c{}}````{eg{}{{f{c}}}{}}0{ce{}{}}033{ADfLb}{Al{{Al{c}}}{}}0{{{Al{Aj}}}{{Al{Ajc}}}{}}0{ADfAf}{{{Cf{c}}}e{}{}}0{{{Al{AjEh}}}An}{{{Al{ADf}}}ADf}{{{Al{AD`}}}AD`}{{Al{Al{Ajc}}}An{}}0{{AlD`}An}0::{{}ADf}{{}AD`}66{{{Al{ADf}}{Al{ADf}}}Bb}{{{Al{AD`}}{Al{AD`}}}Bb}{{{Al{AjEh}}ADfc}An{{Ef{Ch}}}}{{{Al{ADf}}{Al{AjEl}}}Fb}{{{Al{AD`}}{Al{AjEl}}}Fb}{cc{}}000{ce{}{}}0{{}c{}}000??0000{{}c{}}0{{Dfl}ADh}11{{{Al{AjADh}}{Ah{Dl}}db}{{Fh{D`}}}}{ADfCd}{{{Al{AjEh}}Af}An}{{{Al{AjEh}}Bl}An}{AD`b}{Alc{}}0{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{{}{{F`{c}}}{}}0{{}{{F`{c{Jj{c}}}}}{}}0{AlJl}0{ce{}{}}0{{}c{}}0{{}c{}}0{{{Al{AjEh}}Afc}An{{Jf{{Al{AjEh}}}}}}{{{Al{AjEh}}Blc}An{{Jf{{Al{AjEh}}}}}}{{{Al{AjEh}}A`c}An{{Jf{{Al{AjEh}}}}}}``````{eg{}{{f{c}}}{}}00{ce{}{}}00666{Al{{Al{c}}}{}}00{{{Al{Aj}}}{{Al{Ajc}}}{}}00{{{Cf{c}}}e{}{}}00{{{Al{{ADj{c}}}}}{{ADj{c}}}Cn}{{{Al{ADl}}}ADl}{{{Al{ADn}}}ADn}{{Al{Al{Ajc}}}An{}}00{{AlD`}An}00{{{ADj{ADl}}c}{{ADj{ADl}}}{{Ef{b}}}}{ADjHb}:::{{{Al{ADl}}}{{Al{ADn}}}}{{{Al{AjAE`}}ADjAf}An}{{{Al{{ADj{c}}}}{Al{{ADj{c}}}}}BbE`}{{{Al{ADl}}{Al{ADl}}}Bb}{{{Al{ADn}}{Al{ADn}}}Bb}{{{Al{{ADj{c}}}}{Al{AjEl}}}FbFf}{{{Al{ADl}}{Al{AjEl}}}Fb}{{{Al{ADn}}{Al{AjEl}}}Fb}{cc{}}{{{Al{ADl}}}ADj}1{cADl{{Ef{Nn}}}}2222{cADl{{Ef{{Fn{{Jb{D`}}}}}}}}{cADl{{Ef{Nn}}}}{ce{}{}}00{ADj}{{{Al{ADl}}{Al{Ajc}}}AnHn}{{{Al{ADn}}{Al{Ajc}}}AnHn}{{{Al{ADl}}}Hl}{{}c{}}00000{{{Cf{c}}}e{}{}}00111111{{}c{}}00{{{Al{AE`}}{Al{ADl}}}{{Ah{Dl}}}}{c{{ADj{ADl}}}{{Ef{ADl}}}}{{{ADj{ADl}}c}{{ADj{ADl}}}{{Ef{d}}}}{ADjd}{{{ADj{ADl}}c}{{ADj{ADl}}}{{Ef{h}}}}{ADjh}{Alc{}}00{{}{{F`{c}}}{}}00{c{{F`{e}}}{}{}}00{{}{{F`{c}}}{}}00{{}{{F`{c{Jj{c}}}}}{}}00{AlJl}00{ce{}{}}00{{}c{}}00{{}c{}}00``````````````````````````````````{eg{}{{f{c}}}{}}0000000{ce{}{}}000000033333333{{{AEb{ce}}g}{{AEb{ce}}}{}{}{{Ef{Ch}}}}{AEdCh}{{{AEb{ce}}{Hb{g}}}{{AEb{ce}}}{}{}{{Ef{Ch}}}}{{{AEb{ce}}g}{{AEb{ce}}}{}{}{{Ef{Lb}}}}{AEdLb}{{{AEb{ce}}{Hb{g}}}{{AEb{ce}}}{}{}{{Ef{Lb}}}}{Al{{Al{c}}}{}}0000000{{{Al{Aj}}}{{Al{Ajc}}}{}}0000000{AEfAh}{{{Cf{c}}}e{}{}}0000000{{{Al{{AEf{ce}}}}}{{AEf{ce}}}CnCn}{{{Al{AEh}}}AEh}{{{Al{AEj}}}AEj}{{{Al{AEl}}}AEl}{{{Al{AEn}}}AEn}{{{Al{AF`}}}AF`}{{{Al{{AEb{ce}}}}}{{AEb{ce}}}CnCn}{{{Al{AEd}}}AEd}{{Al{Al{Ajc}}}An{}}0000000{{AlD`}An}0000000{{{AEb{ce}}g}{{AEb{ce}}}{}{}{{Ef{b}}}}{AEbHb}{{{AEb{ce}}{Hb{g}}}{{AEb{ce}}}{}{}{{Ef{b}}}}{ce{}{}}0000000{AEf}{AEnId}{{}AEh}{{}AEj}{{}AEl}{{}{{AEb{ce}}}{}{}}{{{Al{{Gd{}{{AFb{c}}{AFd{e}}{AFf{g}}}}}}}c{IjE`}{{AFh{}{{AFb{c}}}}}{{AFj{}{{AFb{c}}}}}}{{{Al{{Gd{}{{AFb{c}}{AFd{e}}{AFf{g}}}}}}}l{IjE`}{{AFh{}{{AFb{c}}}}}{{AFj{}{{AFb{c}}}}}}`{{{Al{AEh}}{Al{AEh}}}Bb}{{{Al{AEj}}{Al{AEj}}}Bb}{{{Al{AEl}}{Al{AEl}}}Bb}{{{Al{AEn}}{Al{AEn}}}Bb}{{{Al{AF`}}{Al{AF`}}}Bb}{{{Al{{AEb{ce}}}}{Al{{AEb{ce}}}}}Bb{}E`}{{{Al{AEd}}{Al{AEd}}}Bb}{{{Al{Aj{Gd{}{{AFb{c}}{AFd{e}}{AFf{g}}}}}}{Al{g}}nbAf}An{IjE`}{{AFh{}{{AFb{c}}}}}{{AFj{}{{AFb{c}}}}}}{{{Al{Aj{Gd{}{{AFb{c}}{AFd{e}}{AFf{g}}}}}}{Al{e}}nbAf}An{IjE`}{{AFh{}{{AFb{c}}}}}{{AFj{}{{AFb{c}}}}}}{{{Al{Aj{Gd{}{{AFb{c}}{AFd{e}}{AFf{g}}}}}}{AEf{Dnc}}nbAf}An{IjE`}{{AFh{}{{AFb{c}}}}}{{AFj{}{{AFb{c}}}}}}{{{Al{{AEf{ce}}}}{Al{AjEl}}}FbFfFf}{{{Al{AEh}}{Al{AjEl}}}Fb}{{{Al{AEj}}{Al{AjEl}}}Fb}{{{Al{AEl}}{Al{AjEl}}}Fb}{{{Al{AEn}}{Al{AjEl}}}Fb}{{{Al{AF`}}{Al{AjEl}}}Fb}{{{Al{{AEb{ce}}}}{Al{AjEl}}}FbFfFf}{{{Al{AEd}}{Al{AjEl}}}Fb}{{{AEb{ce}}g}{{AEb{ce}}}{}{}{{Ef{e}}}}{AEf}{AEbHb}{{{AEb{ce}}{Hb{g}}}{{AEb{ce}}}{}{}{{Ef{e}}}}{cc{}}000{lAEl}{dAEl}222{{{Al{Bj}}}{{AEb{ce}}}{}{}}333333333{ce{}{}}0000000{{{Al{AEh}}{Al{Ajc}}}AnHn}{{{Al{AEj}}{Al{Ajc}}}AnHn}{{{Al{AEl}}{Al{Ajc}}}AnHn}9`{AEfK`}{{}c{}}000000000000000{{{Cf{c}}}e{}{}}00000001111111111111111{AFlAFn}{{{Al{AFn}}}AFn}{AFnAFn}{{}c{}}0000000{{{AEb{ce}}g}{{AEb{ce}}}{}{}{{Ef{AEl}}}}{AEfAEl}{AEbHb}{{{AEb{ce}}g}{{AEb{ce}}}{}{}{{Ef{c}}}}1{{{AEb{ce}}{Hb{g}}}{{AEb{ce}}}{}{}{{Ef{c}}}}{c{{AEb{eg}}}AFl{}{}}6666{{{AEb{ce}}g}{{AEb{ce}}}{}{}{{Ef{Ed}}}}{AEbEd}`{AEfAEh}{{{AEb{ce}}g}{{AEb{ce}}}{}{}{{Ef{l}}}}{AEfl}8{{{AEb{ce}}Bb}{{AEb{ce}}}{}{}}{AEbBb}{AEbAFn}{{AEll}l}{Alc{}}0000000{{{AEb{ce}}}{{AEb{ce}}}{}{}}{{}{{F`{c}}}{}}0000000{c{{F`{e}}}{}{}}0000000{{}{{F`{c}}}{}}0000000{{}{{F`{c{Jj{c}}}}}{}}0000000{AlJl}0000000{ce{}{}}0000000{{}c{}}0000000<;{AEfKb}{{}c{}}0000000{AEfAEj}````````````````````````````````````````````{eg{}{{f{c}}}{}}000000{ce{}{}}0000005555555{AG`{{Al{Bj}}}}{Al{{Al{c}}}{}}000000{{{Al{Aj}}}{{Al{Ajc}}}{}}000000{{{Al{{AFj{}{{AFb{c}}}}}}}Ah{IjE`Dd}}{{{Cf{c}}}e{}{}}000000{{{Al{AGb}}}AGb}{{{Al{AGd}}}AGd}{{{Al{AGf}}}AGf}{{{Al{AGh}}}AGh}{{{Al{AGj}}}AGj}{{{Al{AGl}}}AGl}{{{Al{AG`}}}AG`}{{Al{Al{Ajc}}}An{}}000000{{AlD`}An}000000>>>>>>>{{{Al{{AFj{}{{AFb{c}}}}}}}AGj{IjE`Dd}}{{{Al{{AFj{}{{AFb{c}}}}}}}{{Gn{IdId}}}{IjE`Dd}}{{}AGl}{{}AG`}{{{Al{AGf}}}AGh}{AGlAG`}{{{Al{AGb}}{Al{AGb}}}Bb}{{{Al{AGd}}{Al{AGd}}}Bb}{{{Al{AGf}}{Al{AGf}}}Bb}{{{Al{AGh}}{Al{AGh}}}Bb}{{{Al{AGl}}{Al{AGl}}}Bb}{{{Al{AG`}}{Al{AG`}}}Bb}{{{Al{AGb}}{Al{AjEl}}}Fb}{{{Al{AGd}}{Al{AjEl}}}Fb}{{{Al{AGf}}{Al{AjEl}}}Fb}{{{Al{AGh}}{Al{AjEl}}}Fb}{{{Al{AGj}}{Al{AjEl}}}Fb}{{{Al{AGl}}{Al{AjEl}}}Fb}{{{Al{AG`}}{Al{AjEl}}}Fb}{cc{}}0000000000000{ce{}{}}000000{{{Al{Aj{AFj{}{{AFb{c}}}}}}c{Al{Aje}}g}An{IjE`Dd}AGn{{If{Al}{{Ab{{AH`{c}}}}}}}}{{}c{}}0000000000000{{{Cf{c}}}e{}{}}00000011111111111111{{}c{}}000000{{{Al{AGb}}}Bb}{{{Al{{AFj{}{{AFb{c}}}}}}}Bb{IjE`Dd}}{{{Al{{AFj{}{{AFb{c}}}}}}Id}{{Hb{AGl}}}{IjE`Dd}}{{{Al{{AFj{}{{AFb{c}}}}}}}Id{IjE`Dd}}{{{Al{{AFj{}{{AFb{c}}}}}}}Ah{IjE`Dd}}55{{{Al{Aj{AFj{}{{AFb{c}}}}}}AGb}An{IjE`Dd}}{{{Al{{AFj{}{{AFb{c}}}}}}}{{Hb{Dn}}}{IjE`Dd}}{AGlFn}{Alc{}}000000{{}{{F`{c}}}{}}000000{c{{F`{e}}}{}{}}000000{{}{{F`{c}}}{}}000000{{}{{F`{c{Jj{c}}}}}{}}000000{AlJl}000000{ce{}{}}000000{{}c{}}000000{{{Al{Aj{AFj{}{{AFb{c}}}}}}AhclAElAEj{Al{Aje}}}An{IjE`Dd}AGn}{{}c{}}000000{AGfAGf}{{{Al{Bj}}}{{AFj{}{{AFb{c}}}}}{IjE`Dd}}{AHbLd}``````{eg{}{{f{c}}}{}}0{ce{}{}}077{Al{{Al{c}}}{}}0{{{Al{Aj}}}{{Al{Ajc}}}{}}0{{{Cf{c}}}e{}{}}0{{{Al{Aj{AGn{}{{AHd{c}}{AHf{e}}{AHh{g}}}}}}Id}An{E`Cn}{}{{AHl{}{{Hf{{Gn{{AHj{Id}}e}}}}}}}}{{{Al{AjAHn}}Id}An}{{{Al{AHn}}}AHn}{{{Al{{AH`{c}}}}}{{AH`{c}}}Cn}{{Al{Al{Ajc}}}An{}}0{{AlD`}An}0{AH`Hb}::{{{Al{{AGn{}{{AHd{c}}{AHf{e}}{AHh{g}}}}}}}Id{E`Cn}{}{{AHl{}{{Hf{{Gn{{AHj{Id}}e}}}}}}}}{{{Al{AHn}}}Id}{{}{{AH`{c}}}{}}{{{Al{{AH`{c}}}}{Al{{AH`{c}}}}}BbE`}{{{Al{AHn}}{Al{AjEl}}}Fb}{{{Al{{AH`{c}}}}{Al{AjEl}}}FbFf}6{cc{}}000{ce{}{}}0{{{Al{Aj{AGn{}{{AHd{c}}{AHf{e}}{AHh{g}}}}}}{Al{Bj}}}g{E`Cn}{}{{AHl{}{{Hf{{Gn{{AHj{Id}}e}}}}}}}}{{{Al{AjAHn}}{Al{Bj}}}c{}}{{}c{}}000{{{Cf{c}}}e{}{}}01111{{}c{}}0{{{Al{c}}}{{AGn{}{{AHd{c}}{AHf{e}}{AHh{g}}}}}{E`Cn}{}{{AHl{}{{Hf{{Gn{{AHj{Id}}e}}}}}}}}{{{Al{c}}}AHn{}}2{Alc{}}0{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{{}{{F`{c}}}{}}0{{}{{F`{c{Jj{c}}}}}{}}0{AlJl}0{ce{}{}}0{{}c{}}0{{{Al{Aj{AGn{}{{AHd{c}}{AHf{e}}{AHh{g}}}}}}{Al{c}}}An{E`Cn}{}{{AHl{}{{Hf{{Gn{{AHj{Id}}e}}}}}}}}{{{Al{AjAHn}}{Al{c}}}An{}}{{}c{}}0```{eg{}{{f{c}}}{}}{ce{}{}}5{Al{{Al{c}}}{}}{{{Al{Aj}}}{{Al{Ajc}}}{}}{{{Cf{c}}}e{}{}}{{{Al{{AI`{c}}}}}{{AI`{c}}}{CnAFh}}{{Al{Al{Ajc}}}An{}}{{AlD`}An}{{{Al{{AFh{}{{AFb{c}}}}}}{AEf{Anc}}}AF`{IjE`}}7{{}{{AI`{c}}}{DdAFh}}{{{Al{{AI`{c}}}}{Al{AjEl}}}Fb{FfAFh}}{cc{}}0{ce{}{}}{{{Al{{AFh{}{{AFb{c}}}}}}IdId}{{Hb{n}}}{IjE`}}{{{Al{{AFh{}{{AFb{c}}}}}}n}{{Hb{Id}}}{IjE`}}{{{Al{{AFh{}{{AFb{c}}}}}}n}{{Hb{AEn}}}{IjE`}}{{{Al{{AFh{}{{AFb{c}}}}}}}K`{IjE`}}{{{Al{{AI`{c}}}}}K`AFh}{{}c{}}0>00{{}c{}}{{{Al{{AFh{}{{AFb{c}}}}}}}Ah{IjE`}}{{{Al{{AI`{c}}}}}AhAFh}{{{Al{{AFh{}{{AFb{c}}}}}}}d{IjE`}}{{{Al{{AI`{c}}}}}dAFh}10{{{AEf{{Al{Bj}}}}}{{AI`{c}}}AFh}5{{{Al{{AI`{c}}}}}{{Al{c}}}AFh}{{{Al{Aj{AFh{}{{AFb{c}}}}}}Ah}An{IjE`}}{{{Al{{AFh{}{{AFb{c}}}}}}Id}{{Fh{Af}}}{IjE`}}{Alc{}}{{}{{F`{c}}}{}}{c{{F`{e}}}{}{}}{{}{{F`{c}}}{}}{{}{{F`{c{Jj{c}}}}}{}}{AlJl}{ce{}{}}{{}c{}}{{{Al{Aj{AI`{c}}}}{AEf{{Al{Bj}}}}}AnAFh}{{{Al{{AFh{}{{AFb{c}}}}}}}Kb{IjE`}}{{{Al{{AI`{c}}}}}KbAFh}{{}c{}}{{{AEf{{Al{{Jb{{AEb{ce}}}}}}e}}}{{AFh{}{{AFb{e}}}}}{}{IjE`}}{{{AEf{{Al{Bj}}c}}}{{AFh{}{{AFb{c}}}}}{IjE`}}`````````````````````````````{eg{}{{f{c}}}{}}00{ce{}{}}00888{AIbb}{{{Al{AId}}}AIb}{{{Al{AIf}}}AIb}{Al{{Al{c}}}{}}00{{{Al{Aj}}}{{Al{Ajc}}}{}}00{{{Cf{c}}}e{}{}}00{{{Al{AIf}}}AIf}{{{Al{AIh}}}AIh}{{{Al{AIb}}}AIb}{{Al{Al{Ajc}}}An{}}00{{AlD`}An}00;;;{{DnAIj}AIf}{{DnAIjc}AIf{{Jf{AIj}{{Ab{AIl}}}}}}:{{}AIf}{{}c{}}{{{Al{AIf}}{Al{AIf}}}Bb}{{{Al{AIh}}{Al{AIh}}}Bb}{{{Al{AIb}}{Al{AIb}}}Bb}{{{Al{AIf}}}{{Al{AIl}}}}{{{Al{AIf}}{Al{AjEl}}}Fb}0{{{Al{AIh}}{Al{AjEl}}}Fb}0{{{Al{AIb}}{Al{AjEl}}}Fb}{cc{}}00000{ce{}{}}00{{}c{}}00000{{{Cf{c}}}e{}{}}00111111{{}c{}}00{{DnAIj}AIh}1`{{{Al{AIf}}}AIj}{{{Al{AIf}}{Al{c}}}AIn{}}{AIbb}{Alc{}}00{AlBh}0{AlDn}0{{}{{F`{c}}}{}}00{c{{F`{e}}}{}{}}00{{}{{F`{c}}}{}}00{{}{{F`{c{Jj{c}}}}}{}}00{AlJl}00{ce{}{}}00{{}c{}}00{{}c{}}00{{DnAIjc}AIh{{Jf{AIj}{{Ab{AIl}}}}}}````````{{}AJ`}000000000000000000000```````````````````````{eg{}{{f{c}}}{}}00000000{ce{}{}}00000000555555555{AIjb}{AIlAJb}{AJbAJd}{AJfAJd}{AJhAJd}{AJjAJd}{AJlAJd}{AJnAJd}{Al{{Al{c}}}{}}00000000{{{Al{Aj}}}{{Al{Ajc}}}{}}00000000{{{Cf{c}}}e{}{}}00000000{{{Al{AIj}}}AIj}{{{Al{AIl}}}AIl}{{{Al{AJd}}}AJd}{{{Al{AJb}}}AJb}{{{Al{AJf}}}AJf}{{{Al{AJh}}}AJh}{{{Al{AJj}}}AJj}{{{Al{AJl}}}AJl}{{{Al{AJn}}}AJn}{{Al{Al{Ajc}}}An{}}00000000{{AlD`}An}00000000{AJdb}{ce{}{}}00000000{AIjb}{AIlAJn}{{{Al{AIj}}{Al{AIj}}}Bb}{{{Al{AIl}}{Al{AIl}}}Bb}{{{Al{AJd}}{Al{AJd}}}Bb}{{{Al{AJb}}{Al{AJb}}}Bb}{{{Al{AJf}}{Al{AJf}}}Bb}{{{Al{AJh}}{Al{AJh}}}Bb}{{{Al{AJj}}{Al{AJj}}}Bb}{{{Al{AJl}}{Al{AJl}}}Bb}{{{Al{AJn}}{Al{AJn}}}Bb}{{{Al{AIj}}{Al{AjEl}}}Fb}{{{Al{AIl}}{Al{AjEl}}}Fb}{{{Al{AJd}}{Al{AjEl}}}Fb}{{{Al{AJb}}{Al{AjEl}}}Fb}{{{Al{AJf}}{Al{AjEl}}}Fb}{{{Al{AJh}}{Al{AjEl}}}Fb}{{{Al{AJj}}{Al{AjEl}}}Fb}{{{Al{AJl}}{Al{AjEl}}}Fb}{{{Al{AJn}}{Al{AjEl}}}Fb}{cc{}}00000000000000000{ce{}{}}00000000{AIjAIl}{{bbb}AJf}{{bb}AJh}{{bbb}AJj}{{bbb}AJl}{{bbb}AJn}{{}c{}}00000000000000000{{{Cf{c}}}e{}{}}00000000111111111111111111{{}c{}}00000000{AIlBb}{{bb}AJd}{{bb}AJb}{AIjb}{AIlAJf}{AIlAJh}{AJbAJd}{AJfAJd}{AJhAJd}{AJjAJd}{AJlAJd}{AJnAJd}8{AIlAJj}9{AJdb}{Alc{}}00000000{{}{{F`{c}}}{}}00000000{c{{F`{e}}}{}{}}00000000{{}{{F`{c}}}{}}00000000{{}{{F`{c{Jj{c}}}}}{}}00000000{AlJl}00000000{ce{}{}}00000000{{}c{}}00000000{{}c{}}00000000{AIjb}{AIlAJl}{AJbAJd}{AJfAJd}{AJhAJd}{AJjAJd}{AJlAJd}{AJnAJd}````````{{KjKj}Kj}{eg{}{{f{c}}}{}}0{{KlKj}Kl}2{{{Al{AjKl}}Kj}An}{{{Al{AjKj}}Kj}An}{ce{}{}}0??{{{Al{Kj}}}AK`}0{{{Al{Kj}}}d}{{{Al{Kj}}}H`}2{{{Al{Kj}}}Hl}21{Al{{Al{c}}}{}}0{Al{{Al{c}}}{}}{{{Al{Aj}}}{{Al{Ajc}}}{}}0{{{Cf{c}}}e{}{}}0{{{Al{Kl}}Kj}{{Hb{Kl}}}}{{KjKj}{{Hb{Kj}}}}{{KjDl}{{Hb{Kj}}}}{{{Al{Kl}}Kl}{{Hb{Kj}}}}132{{{Al{Kl}}}Kl}{{{Al{Kj}}}Kj}{{Al{Al{Ajc}}}An{}}0{{AlD`}An}0{{{Al{Kl}}{Al{Kl}}}Db}{{{Al{Kj}}{Al{Kj}}}Db}{ce{}{}}0{HlKj}{{}Kj}{c{{F`{Kj}}}AKb}{{{Al{AKd}}}{{F`{AKf}}}}{{KjDl}Kj}{{{Al{AjKj}}Dl}An}{{KjKj}d}{{KjKj}H`}{{Kjd}Kj}{{KjH`}Kj}{{{Al{Kl}}Kl}Kj}{{{Al{Kl}}}Kj}{{KlKl}d}{{{Al{Kl}}{Al{Kl}}}Bb}{{{Al{Kj}}{Al{Kj}}}Bb}{{{Al{Kl}}{Al{AjEl}}}{{F`{AnEn}}}}{{{Al{Kj}}{Al{AjEl}}}{{F`{AnEn}}}}{cc{}}0{AKhKj}11{HlKj}000000{dKj}{H`Kj}{ce{}{}}03{{{Al{Kl}}{Al{Ajc}}}AnHn}{{{Al{Kj}}{Al{Ajc}}}AnHn}5{{}c{}}000{{{Cf{c}}}e{}{}}01111{{}c{}}0{{{Al{Kj}}}Bb}99{{KjDl}Kj}{{{Al{AjKj}}Dl}An}{{Kjd}Kj}{{KjH`}Kj}{{HlDl}Kj}{{}Kl}7{{{Al{Kl}}{Al{Kl}}}{{Hb{Db}}}}{{{Al{Kj}}{Al{Kj}}}{{Hb{Db}}}}{{KjKj}Kj}{{{Al{Kl}}Kl}Kj}91{HlKj}{{{Al{Kj}}c}F`AKj}{AlAKd}{{KlKl}Kj}{{KlKj}Kl}6{{{Al{AjKl}}Kj}An}{{{Al{AjKj}}Kj}An}{{{Al{Kj}}}Dl}00{cKj{{AHl{}{{Hf{Kj}}}}}}{cKj{{AHl{}{{Hf{{Al{Kj}}}}}}}}{Alc{}}0{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{d{{F`{KjAKl}}}}{H`{{F`{KjAKl}}}}{{}{{F`{c}}}{}}0{{}{{F`{c{Jj{c}}}}}{}}0{AlJl}0{ce{}{}}0{{}c{}}0{{}c{}}0``````{eg{}{{f{c}}}{}}0{ce{}{}}033{Al{{Al{c}}}{}}0{{{Al{Aj}}}{{Al{Ajc}}}{}}0{{{Cf{c}}}e{}{}}0{{{Al{AKn}}}AKn}{{{Al{AL`}}}AL`}{{Al{Al{Ajc}}}An{}}0{{AlD`}An}077{{{Al{AKn}}{Al{AKn}}}Bb}{{{Al{AL`}}{Al{AL`}}}Bb}{{{Al{AKn}}{Al{AjEl}}}Fb}{{{Al{AL`}}{Al{AjEl}}}Fb}{cc{}}000{ce{}{}}0{{{Al{AL`}}{Al{Ajc}}}AnHn}{{}c{}}000<<0000{{}c{}}0{Alc{}}0{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{{}{{F`{c}}}{}}0{{}{{F`{c{Jj{c}}}}}{}}0{AlJl}0{ce{}{}}0{{}c{}}0{{}c{}}0{ALbAL`}{ALdAL`}{ALfAL`}{ALhAL`}{ALbn}{ALdn}{ALfn}{ALhn}`````{eg{}{{f{c}}}{}}{ce{}{}};{Al{{Al{c}}}{}}{{{Al{Aj}}}{{Al{Ajc}}}{}}{{{Cf{c}}}e{}{}}{{{Al{Cb}}}{{Fh{ABd}}}}{{{Al{ALj}}}ALj}{{Al{Al{Ajc}}}An{}}{{AlD`}An}7{{{Al{Cb}}{Al{AjABd}}}An}{{{Al{Cb}}{Al{ABd}}{Al{Ajc}}{Al{e}}{Al{AD`}}AAnABh{Al{Af}}}AnEh{}}{{{Al{ALj}}{Al{ALj}}}Bb}{{{Al{ALj}}{Al{AjEl}}}Fb}{cc{}}0{ce{}{}}{{{Al{ALj}}{Al{Ajc}}}AnHn}{{}c{}}0<00{{}c{}}{{{Al{Cb}}{Al{AjABd}}{Al{c}}{Al{AAl}}}AAjEh}{{{Al{Cb}}{Al{ABd}}AAnABh{Al{Af}}{Al{c}}}ABnEh}{cALj{{Ef{{Fn{Bj}}}}}}{{{Al{Cb}}{Al{AjABd}}AAn{Al{c}}{Al{AjADd}}}AnEh}`{{{Al{AjCb}}{Al{AjABd}}AAn{Al{c}}A`}{{Hb{{ADb{egc}}}}}Eh{}{}}{{{Al{Cb}}}{{Ah{Cl}}}}0{{{Al{Cb}}}ALl}{{{Al{Cb}}}ALn}`{Alc{}}`{{}{{F`{c}}}{}}{c{{F`{e}}}{}{}}{{}{{F`{c}}}{}}{{}{{F`{c{Jj{c}}}}}{}}{AlJl}{ce{}{}}{{}c{}}{{}ALj}{{{Al{AjCb}}{Al{AjABd}}{Al{Ll}}AAnABh{Al{c}}{Al{AjLj}}{Al{Aj{Bf{e}}}}{Al{Af}}}AnEh{}}{{}c{}}````````{eg{}{{f{c}}}{}}{ce{}{}}5{{{Al{AjADd}}}{{`{{ADd{c}}}}}{}}{Al{{Al{c}}}{}}{{{Al{Aj}}}{{Al{Ajc}}}{}}{{{Cf{c}}}e{}{}}4{{{Al{AjADd}}{Hb{{Al{ALj}}}}Af{Al{AjAM`}}}An}{{{Al{AjADd}}{Hb{{Al{ALj}}}}Af{Al{AjAMb}}}An}{{{Al{ADd}}}{{AMd{c}}}{}}{{{Al{{AMd{c}}}}{Al{AjEl}}}FbFf}`{{{Al{AjADd}}{Hb{{Al{ALj}}}}Af{Al{AjAMf}}}An}{cc{}}0{ce{}{}}{{}c{}}0800{{}c{}}{{ei}{{`{{ADd{g}}}}}{}{{ADd{c}}}{}{{If{c}{{Ab{g}}}}O`AMh}}{{ALje}{{`{{ADd{c}}}}}{}{{ADd{c}}}}`{{{Al{AjADd}}{Hb{{Al{ALj}}}}AfAfA`{Al{AjAMj}}}An}{{{Al{AjADd}}{Hb{{Al{ALj}}}}Af{Al{Bj}}}An}`{{{Al{AjADd}}{Hb{{Al{ALj}}}}Af{Al{AjAMl}}}An}{{e{AMn{c}{{Ab{i}}}}}{{`{{ADd{g}}}}}{}{{ADd{c}}}O`{{ADd{g}}}}{{}{{F`{c}}}{}}{c{{F`{e}}}{}{}}{{}{{F`{c}}}{}}{{}{{F`{c{Jj{c}}}}}{}}{AlJl}{ce{}{}}{{}c{}}{{}c{}}``{eg{}{{f{c}}}{}}{ce{}{}}3{Al{{Al{c}}}{}}{{{Al{Aj}}}{{Al{Ajc}}}{}}{{{Cf{c}}}e{}{}}{{{Al{AN`}}}AN`}{{Al{Al{Ajc}}}An{}}{{AlD`}An}6{{}{{`{{ADd{AN`}}}}}}{{}AN`}{{{Al{AN`}}{Al{AN`}}}Bb}{{}{{`{{ADd{ALj}}}}}}{{{Al{AN`}}{Al{AjEl}}}Fb}{ALj{{`{{ADd{c}}}}}{}}{{{Al{AjAMf}}}An}{{}{{`{{ADd{c}}}}}O`}0{AN`Hb}{cc{}}0{ce{}{}}{{}c{}}0?00{{}c{}}{{{Al{AMf}}}Bb}1{Alc{}}{AN`Id}{{}{{F`{c}}}{}}{c{{F`{e}}}{}{}}{{}{{F`{c}}}{}}{{}{{F`{c{Jj{c}}}}}{}}{AlJl}{ce{}{}}{{}c{}}{{{Al{AjAMf}}}An}{{}c{}}`````{eg{}{{f{c}}}{}}0{ce{}{}}044{Al{{Al{c}}}{}}0{{{Al{Aj}}}{{Al{Ajc}}}{}}0{{{Cf{c}}}e{}{}}0{{{Al{ANb}}}ANb}{{{Al{ANd}}}ANd}{{Al{Al{Ajc}}}An{}}0{{AlD`}An}077{{}ANb}{{}ANd}{{{Al{ANb}}{Al{ANb}}}Bb}{{{Al{ANd}}{Al{ANd}}}Bb}{{{Al{ANb}}{Al{AjEl}}}Fb}{{{Al{ANd}}{Al{AjEl}}}Fb}{cc{}}000{ce{}{}}0{{}c{}}000==0000{{}c{}}000{{ALjANb}{{`{{ADd{c}}}}}{}}{{{Al{AjAMj}}ANbAfAf}An}1{{{Al{AjAMj}}ANb}An}{{ALjANd}{{`{{ADd{c}}}}}{}}{{{Al{AjAMj}}ANd}An}{Alc{}}0{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{{}{{F`{c}}}{}}0{{}{{F`{c{Jj{c}}}}}{}}0{AlJl}0{ce{}{}}0{{}c{}}0{{}c{}}0{ANbd}{ANdd}10`{{ALjId}{{`{{ADd{c}}}}}{}}{{{Al{AjAMl}}Id}An}{ALj{{`{{ADd{c}}}}}{}}{{{Al{AjAMl}}}An}1010`````````{eg{}{{f{c}}}{}}00{{{G`{ce}}g}{{G`{ce}}}GbGd{{Ef{K`}}}}{{{G`{ce}}g}{{G`{ce}}}GbGd{{Ef{Kb}}}}{ce{}{}}00;;;{{{Al{AIf}}}AIn}{Al{{Al{c}}}{}}00{{{Al{Aj}}}{{Al{Ajc}}}{}}00{{{Cf{c}}}e{}{}}00{{{G`{ce}}}{{G`{ce}}}GbGd}{{{G`{ce}}g}{{G`{ce}}}GbGdEf}{{{Al{AIn}}}AIn}{{Al{Al{Ajc}}}An{}}{{AlD`}An}{{{G`{ce}}g}{{G`{ce}}}GbGd{{Ef{b}}}}{AInHb}{{{G`{ce}}{Hb{g}}}{{G`{ce}}}GbGd{{Ef{b}}}}<<<;;{{}c{}}{{}{{ANf{c}}}{DdAFh}}{{}AIn}{{{Al{Ajc}}{Al{AD`}}AAnAlAIn{Al{Af}}}AnGd}{{{Al{{G`{ce}}}}{Al{ABd}}{Al{Aje}}{Al{c}}{Al{AD`}}AAnABh{Al{Af}}}AnGbGd}{{{Al{AIn}}{Al{AIn}}}Bb}{{{Al{{ANf{c}}}}{Al{AjEl}}}Fb{FfAFh}}{{{Al{AIn}}{Al{AjEl}}}Fb}>{{{Al{Bj}}}{{G`{ce}}}GbGd}{cc{}}00000{ce{}{}}00{{{G`{ce}}g}{{G`{ce}}}GbGd{{Ef{Cl}}}}{{}c{}}00000{{{Cf{c}}}e{}{}}00111111{{}c{}}00{{{Al{AjANf}}{Al{c}}{Al{AAl}}ClCl{Al{Bj}}AEl{Hb{l}}HbK`KbAEhAEj}AAjGd}{{{Al{{G`{ce}}}}{Al{AjABd}}{Al{e}}{Al{AAl}}}AAjGbGd}{{{G`{ce}}g}{{G`{ce}}}GbGd{{Ef{AEl}}}}{c{{G`{eg}}}AFlGbGd}44{{{Al{{G`{ce}}}}{Al{AjABd}}AAn{Al{e}}{Al{AjADd}}}AnGbGd}{{{Al{AIf}}}AIn}0{{{G`{ce}}AEh}{{G`{ce}}}GbGd}{{{Al{{G`{ce}}}}}{{Ah{Cl}}}GbGd}{{{G`{ce}}g}{{G`{ce}}}GbGd{{Ef{l}}}}{{{Al{{G`{ce}}}}}ALlGbGd}{{{Al{{Gb{}{{ANh{c}}}}}}{Al{c}}}AIn{}}{{{G`{ce}}g}{{G`{ce}}}GbGd{{If{{Al{c}}}{{Ab{AIn}}}}}}6{{{Al{{G`{ce}}}}}ALnGbGd}{Alc{}}{{}{{F`{c}}}{}}00{c{{F`{e}}}{}{}}00{{}{{F`{c}}}{}}00{{}{{F`{c{Jj{c}}}}}{}}00{AlJl}00{ce{}{}}00{{}c{}}00{{}c{}}00{{{G`{ce}}g}{{G`{ce}}}GbGd{{Ef{Cl}}}}{{{G`{ce}}AEj}{{G`{ce}}}GbGd}`````{eg{}{{f{c}}}{}}00{ce{}{}}00555{Al{{Al{c}}}{}}00{{{Al{Aj}}}{{Al{Ajc}}}{}}00{{{Cf{c}}}e{}{}}00{ABdFh}{{{Al{ALn}}}ALn}{{Al{Al{Ajc}}}An{}}{{AlD`}An}{{{Al{ALn}}{Al{ALn}}}Db}888{{{Al{AjABd}}c}An{{ANj{Cb}}}}{{{Al{AjABd}}{Al{{Jb{c}}}}}An{{ANj{Cb}}}}{{{Al{AjABd}}{Al{{Jb{c}}}}eg}An{}{{If{{Al{AjABd}}{Al{c}}}}}{{If{{Al{c}}}{{Ab{ABd}}}}}}{{{Al{Aj{Fh{ABd}}}}{Al{{Jb{c}}}}egi}An{}{{If{{Al{AjABd}}{Al{c}}}}}{{If{Id}{{Ab{Bb}}}}}{{If{{Al{c}}}{{Ab{ABd}}}}}}{{{Al{AjALl}}}{{Al{Ajc}}}{}}{{{Al{ALl}}}{{Al{c}}}{}}{{}ABd}{{{Al{ALn}}{Al{ALn}}}Bb}{{{Al{ALl}}{Al{AjEl}}}Fb}{{{Al{ABd}}{Al{AjEl}}}Fb}{{{Al{ALn}}{Al{AjEl}}}Fb}{cc{}}00000{ce{}{}}00{{{Al{ALn}}{Al{Ajc}}}AnHn}{{}c{}}00000{{{Cf{c}}}e{}{}}00111111{{}c{}}00{cALl{}}{cABd{{ANj{Cb}}}}{{}ALn}{{{Al{ALn}}{Al{ALn}}}{{Hb{Db}}}}{ABdALl}2{ABdALn}{Alc{}}{{}{{F`{c}}}{}}00{c{{F`{e}}}{}{}}00{{}{{F`{c}}}{}}00{{}{{F`{c{Jj{c}}}}}{}}00{AlJl}00{ce{}{}}00{{}c{}}00{{}c{}}00`````````````````````````````````````````````{eg{}{{f{c}}}{}}0000000{ce{}{}}000000033333333{Al{{Al{c}}}{}}0000000{{{Al{Aj}}}{{Al{Ajc}}}{}}0000000{{{Cf{c}}}e{}{}}0000000{{{Al{ANl}}}ANl}{{{Al{ANn}}}ANn}{{{Al{AO`}}}AO`}{{{Al{AOb}}}AOb}{{{Al{AOd}}}AOd}{{{Al{AOf}}}AOf}{{{Al{Jd}}}Jd}{{{Al{AOh}}}AOh}{{Al{Al{Ajc}}}An{}}0000000{{AlD`}An}0000000{{{Al{AO`}}{Al{AO`}}}Db}{{{Al{Jd}}{Al{Jd}}}Db}????????{{}AOb}{{}AOf}{{{Al{ANn}}{Al{ANn}}}Bb}{{{Al{AO`}}{Al{AO`}}}Bb}{{{Al{AOb}}{Al{AOb}}}Bb}{{{Al{AOd}}{Al{AOd}}}Bb}{{{Al{AOf}}{Al{AOf}}}Bb}{{{Al{Jd}}{Al{Jd}}}Bb}{{{Al{ANl}}{Al{AjEl}}}Fb}{{{Al{ANn}}{Al{AjEl}}}Fb}{{{Al{AO`}}{Al{AjEl}}}Fb}0{{{Al{AOb}}{Al{AjEl}}}Fb}{{{Al{AOd}}{Al{AjEl}}}Fb}{{{Al{AOf}}{Al{AjEl}}}Fb}{{{Al{Jd}}{Al{AjEl}}}Fb}{{{Al{AOh}}{Al{AjEl}}}Fb}{cc{}}000000{KlJd}111111111{ce{}{}}0000000{{{Al{AO`}}{Al{Ajc}}}AnHn}`{{}c{}}000000000000000{{{Cf{c}}}e{}{}}00000001111111111111111{{}c{}}000000000{{{Al{AO`}}{Al{AO`}}}{{Hb{Db}}}}{{{Al{Jd}}{Al{Jd}}}{{Hb{Db}}}}``{Alc{}}0000000{AlBh}{AlDn}{{}{{F`{c}}}{}}0000000{c{{F`{e}}}{}{}}0000000{{}{{F`{c}}}{}}0000000{{}{{F`{c{Jj{c}}}}}{}}0000000{AlJl}0000000{ce{}{}}0000000{{}c{}}0000000{{}AO`}{{}c{}}0000000{AOjHb}{AOjAh}````{eg{}{{f{c}}}{}}0{ce{}{}}066{Al{{Al{c}}}{}}0{{{Al{Aj}}}{{Al{Ajc}}}{}}0{{{Cf{c}}}e{}{}}0{{{Al{AOl}}}AOl}{{Al{Al{Ajc}}}An{}}{{AlD`}An}66{{{Al{AOl}}{Al{AjEl}}}Fb}{{{Al{AOn}}{Al{AjEl}}}Fb}0{cc{}}000{{{Fh{D`}}DlDl}{{F`{AOlAOn}}}}{ce{}{}}0{{}c{}}000990000{AOl{{Gn{{Fh{D`}}{Ah{Dl}}}}}}{{}c{}}0{Alc{}}{AlBh}{AlDn}{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{{}{{F`{c}}}{}}0{{}{{F`{c{Jj{c}}}}}{}}0{AlJl}0{ce{}{}}0{{}c{}}0{{}c{}}0{B@`Id}{B@bDl}{B@bId}10````{eg{}{{f{c}}}{}}0{ce{}{}}066{{{Al{Nl}}}{{Al{{Jb{D`}}}}}}{Al{{Al{c}}}{}}0{{{Al{Aj}}}{{Al{Ajc}}}{}}0{NlMh}{{{Cf{c}}}e{}{}}0{{{Al{Nl}}}Nl}{{Al{Al{Ajc}}}An{}}{{AlD`}An}88{{{Al{Nl}}{Af{Dl}}}{{F`{NlB@d}}}}{Alc{{Nf{Hj}}}}0{{{Al{Nl}}{Al{AjEl}}}Fb}{{{Al{B@d}}{Al{AjEl}}}Fb}0{cc{}}000{ce{}{}}0{{}c{}}000::0000{{}c{}}0{{c{Ah{Dl}}H`}Nl{{Ef{Mh}}}}{NlH`}{NlAh}{Alc{}}{AlBh}{AlDn}{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{{}{{F`{c}}}{}}0{{}{{F`{c{Jj{c}}}}}{}}0{AlJl}0{ce{}{}}0{{}c{}}0{{}c{}}0``{eg{}{{f{c}}}{}}0{B@fDn}{ce{}{}}044{Al{{Al{c}}}{}}0{{{Al{Aj}}}{{Al{Ajc}}}{}}0{{{Cf{c}}}e{}{}}0{{{Al{B@f}}}B@f}{{{Al{B@h}}}B@h}{{Al{Al{Ajc}}}An{}}0{{AlD`}An}077{B@hBb}{{}B@f}{{}B@h}{{{Al{B@f}}{Al{B@f}}}Bb}3{{{Al{B@f}}{Al{AjEl}}}Fb}{{{Al{B@h}}{Al{AjEl}}}Fb}{cc{}}000{ce{}{}}07{B@hHb}{{}c{}}000>>0000{{}c{}}0{B@hAOb}3;311{B@fBb}{B@hB@f}{B@hAOf}>{B@hAh}{Alc{}}0{B@hBb}{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{{}{{F`{c}}}{}}0{{}{{F`{c{Jj{c}}}}}{}}0{AlJl}0{ce{}{}}0{{}c{}}07{{}c{}}0","D":"O@d","p":[[5,"Color",0,6126],[1,"f32"],[10,"TransformMatrix",6127],[5,"Radians",0,6128],[5,"Degrees",0,6128],[5,"Pixels",0,6129],[5,"Point",0,6130],[5,"Vector",0,6131],[17,"Output"],[10,"Add",6132],[5,"Rectangle",0,6133],[5,"Size",0,6134],[0,"mut"],[1,"reference",null,null,1],[1,"unit"],[5,"Settings",0,6135],[1,"bool"],[6,"Rotation",0,6136],[5,"Shell",0,6137],[5,"SmolStr",0,6138],[1,"str"],[5,"Transformation",0,6139],[1,"array"],[5,"Element",0,6140],[10,"Widget",5147],[5,"Shadow",0,6141],[5,"BakedParameters",6142],[6,"Background",0,6143],[6,"ContentFit",0,6144],[6,"Length",0,6145],[10,"Clone",6146],[1,"u8"],[6,"Ordering",6147],[10,"Default",6148],[5,"Font",1333],[10,"Float",6149],[10,"Num",6150],[1,"u32"],[5,"String",6151],[10,"PartialEq",6147],[6,"Status",1263],[5,"Padding",3417],[10,"Into",6152,null,1],[10,"Renderer",3473],[1,"u16"],[5,"Formatter",6153],[5,"Error",6153],[6,"Result",6154,null,1],[8,"Result",6153],[10,"Display",6153],[10,"Debug",6153],[5,"Vec",6155],[5,"Arc",6156,null,1],[5,"Box",6157,null,1],[6,"Cow",6158],[5,"Text",5379],[10,"Catalog",5379],[10,"Renderer",3670],[6,"Gradient",1537],[5,"Linear",1537],[8,"Srgba",6159],[8,"Srgb",6159],[1,"tuple",null,null,1],[1,"f64"],[6,"Option",6160,null,1],[1,"i64"],[17,"Item"],[10,"IntoIterator",6161],[1,"char"],[1,"u64"],[10,"Hasher",6162],[10,"Hash",6162],[6,"InputMethod",1886],[1,"usize"],[10,"Fn",6163],[10,"Mul",6132],[10,"Copy",6164],[10,"Neg",6132],[6,"Infallible",6152],[10,"AsRef",6152],[1,"slice"],[6,"RedrawRequest",5606,6165],[10,"FnOnce",6163],[10,"Sub",6132],[5,"OutOfBounds",6166],[5,"TypeId",6167],[6,"Alignment",868],[6,"Horizontal",868],[6,"Vertical",868],[5,"Animation",977],[10,"Float",977],[6,"Easing",977,6168],[5,"Duration",4923,6169],[5,"Instant",4923,6170],[10,"Interpolable",977,6171],[5,"Radius",1094],[5,"Border",1094],[1,"i32"],[6,"Kind",1195],[5,"Null",1195],[10,"Clipboard",1195],[6,"Event",1263],[6,"Family",1333],[6,"Weight",1333],[6,"Stretch",1333],[6,"Style",1333],[5,"ColorStop",1537],[5,"Bytes",1643,6172],[5,"Image",1643],[6,"Handle",1643],[5,"Id",1643],[6,"FilterMethod",1643],[17,"Handle"],[10,"Renderer",1643],[10,"FromIterator",6161],[5,"BytesMut",6173],[10,"Sized",6164],[5,"Screenshot",5976],[5,"PathBuf",6174],[10,"Send",6164],[10,"RangeBounds",6175],[15,"Rgba",1882],[5,"Preedit",1886],[6,"Purpose",1886],[6,"Event",1886],[15,"Open",2034],[5,"Modifiers",2037,6176],[6,"Event",2037,6177],[6,"Location",2037,6178],[5,"Iter",6179],[5,"IterNames",6179],[15,"KeyPressed",2196],[6,"Key",2207],[15,"KeyReleased",2196],[6,"Physical",2207],[6,"Named",2207],[6,"Code",2207],[6,"NativeCode",2207],[10,"Ord",6147],[10,"PartialOrd",6147],[5,"Node",2893,6180],[5,"Limits",2893,6181],[5,"Layout",2893],[10,"DoubleEndedIterator",6182],[6,"Axis",3023],[5,"Tree",5504],[6,"Button",3052,6183],[6,"Cursor",3052,6184],[6,"Event",3052,6185],[6,"ScrollDelta",3052,6185],[6,"Interaction",3052,6186],[15,"WheelScrolled",3261],[15,"CursorMoved",3261],[15,"Lines",3263],[15,"Pixels",3263],[5,"Click",3267],[6,"Kind",3267],[5,"Group",3335,6187],[10,"Overlay",3335],[5,"Style",3473],[5,"Element",3335,6188],[10,"Operation",5200],[5,"Quad",3473],[10,"Headless",3473],[5,"Svg",3556],[5,"Handle",3556],[6,"Data",3556],[10,"Renderer",3556],[5,"Span",3670],[5,"Highlight",3670],[5,"Text",3670],[6,"Shaping",3670],[6,"Wrapping",3670],[6,"LineHeight",3670],[6,"Hit",3670],[6,"Difference",3670],[17,"Font"],[17,"Paragraph"],[17,"Editor"],[10,"Paragraph",4363],[10,"Editor",4008],[10,"IntoFragment",3670],[8,"Fragment",3670],[6,"LineEnding",4008],[6,"Action",4008],[6,"Edit",4008],[6,"Motion",4008],[6,"Direction",4008],[6,"Cursor",4008],[5,"Line",4008],[10,"Highlighter",4284],[5,"Format",4284],[15,"Scroll",4283],[17,"Settings"],[17,"Highlight"],[17,"Iterator"],[5,"Range",6175],[10,"Iterator",6189],[5,"PlainText",4284],[5,"Plain",4363],[5,"Style",4418],[10,"Base",4418],[6,"Theme",4418],[5,"Custom",4418],[5,"Palette",4559],[5,"Extended",4559],[5,"Style",5379],[5,"LazyLock",6190],[5,"Background",4559],[5,"Pair",4559],[5,"Primary",4559],[5,"Secondary",4559],[5,"Success",4559],[5,"Warning",4559],[5,"Danger",4559],[1,"u128"],[10,"Deserializer",6191],[6,"Signature",6192],[6,"Error",6193],[5,"TimeSpec",6194],[10,"Serializer",6195],[5,"TryFromFloatSecsError",6169],[6,"Event",5072],[5,"Finger",5072],[15,"FingerPressed",5139],[15,"FingerMoved",5139],[15,"FingerLifted",5139],[15,"FingerLost",5139],[5,"Id",5147,6196],[6,"State",5504],[5,"Tag",5504],[10,"FnMut",6163],[10,"Any",6167],[6,"Outcome",5200],[10,"Focusable",5247],[10,"Sync",6164],[10,"Scrollable",5291],[10,"TextInput",5370],[1,"fn"],[5,"Count",5247],[5,"AbsoluteOffset",5291],[5,"RelativeOffset",5291],[5,"State",5379],[17,"Class"],[10,"Borrow",6197],[6,"Direction",5606,6198],[6,"Event",5606,6199],[5,"Id",5606,6200],[6,"Level",5606,6201],[6,"Mode",5606,6202],[6,"Position",5606,6203],[6,"UserAttention",5606,6204],[15,"Opened",5906],[5,"Icon",5908],[6,"Error",5908],[15,"ByteCountNotDivisibleBy4",5971],[15,"DimensionsVsPixelCount",5971],[6,"CropError",5976],[5,"PlatformSpecific",6045,6205],[5,"Settings",6045]],"r":[[0,868],[1,977],[2,6126],[3,6143],[4,1094],[5,1195],[6,6126],[7,6143],[8,6144],[9,6144],[10,6144],[11,6128],[12,6140],[13,1263],[14,6144],[15,6145],[16,6145],[17,6145],[18,6136],[19,1333],[20,1537],[21,6143],[22,6139],[23,6133],[24,6134],[25,1643],[26,1886],[27,2893],[28,6145],[29,6144],[30,6130],[31,3335],[32,6128],[33,3417],[34,6129],[35,6130],[36,6128],[37,6128],[38,6128],[39,6133],[40,3473],[41,6136],[42,6144],[43,6135],[44,6141],[45,6137],[46,6145],[47,6134],[48,6138],[49,6136],[50,3556],[51,6126],[52,3670],[53,4418],[54,6139],[55,6134],[56,6131],[57,6126],[58,5147],[59,6129],[60,6134],[61,6131],[62,6126],[63,6138],[64,6140],[65,6128],[66,6128],[67,6143],[68,6126],[69,6144],[70,6145],[71,6129],[72,6130],[73,6133],[74,6136],[75,6135],[76,6141],[77,6137],[78,6134],[79,6139],[80,6131],[81,6128],[82,6128],[83,6129],[84,6129],[85,6130],[86,6133],[87,6134],[88,6131],[89,6128],[92,6135],[93,6136],[94,6137],[95,6133],[96,6138],[97,6140],[98,6128],[99,6128],[100,6143],[101,6126],[102,6144],[103,6145],[104,6129],[105,6130],[106,6133],[107,6136],[108,6135],[109,6141],[110,6137],[111,6134],[112,6139],[113,6131],[114,6138],[115,6140],[116,6128],[117,6128],[118,6143],[119,6126],[120,6144],[121,6145],[122,6129],[123,6130],[124,6133],[125,6136],[126,6135],[127,6141],[128,6137],[129,6134],[130,6139],[131,6131],[132,6138],[133,6139],[134,6138],[135,6140],[136,6140],[137,6126],[138,6141],[140,6138],[141,6138],[142,6140],[143,6140],[144,6140],[145,6128],[146,6128],[147,6143],[148,6126],[149,6144],[150,6145],[151,6129],[152,6130],[153,6133],[154,6136],[155,6135],[156,6141],[157,6137],[158,6134],[159,6139],[160,6131],[161,6138],[162,6140],[163,6128],[164,6128],[165,6143],[166,6126],[167,6144],[168,6145],[169,6129],[170,6130],[171,6133],[172,6136],[173,6135],[174,6141],[175,6137],[176,6134],[177,6139],[178,6131],[179,6138],[180,6140],[181,6128],[182,6128],[183,6143],[184,6126],[185,6144],[186,6145],[187,6129],[188,6130],[189,6133],[190,6136],[191,6135],[192,6141],[193,6137],[194,6134],[195,6139],[196,6131],[197,6137],[198,6133],[199,6133],[200,6133],[202,6138],[203,6128],[204,6128],[205,6143],[206,6126],[207,6144],[208,6145],[209,6129],[210,6130],[211,6133],[212,6136],[213,6135],[214,6141],[215,6134],[216,6139],[217,6131],[218,6138],[219,6128],[220,6128],[221,6143],[222,6126],[223,6144],[224,6145],[225,6129],[226,6130],[227,6133],[228,6136],[229,6135],[230,6141],[231,6134],[232,6139],[233,6131],[234,6138],[235,6128],[236,6128],[237,6143],[238,6126],[239,6144],[240,6145],[241,6129],[242,6130],[243,6133],[244,6136],[245,6135],[246,6141],[247,6134],[248,6139],[249,6131],[250,6138],[251,6141],[253,6138],[254,6140],[255,6128],[256,6128],[257,6143],[258,6126],[259,6144],[260,6145],[261,6129],[262,6130],[263,6133],[264,6136],[265,6135],[266,6141],[267,6137],[268,6134],[269,6139],[270,6131],[271,6133],[272,6138],[273,6126],[274,6144],[275,6129],[276,6130],[277,6133],[278,6136],[279,6135],[280,6141],[281,6134],[282,6139],[283,6131],[284,6135],[285,6135],[286,6136],[287,6138],[288,6130],[289,6133],[290,6128],[291,6128],[292,6129],[293,6129],[294,6129],[295,6145],[296,6138],[297,6138],[298,6138],[299,6138],[300,6138],[301,6128],[302,6128],[303,6128],[304,6128],[305,6143],[306,6126],[307,6144],[308,6145],[309,6129],[310,6130],[311,6133],[312,6136],[313,6141],[314,6134],[315,6139],[316,6131],[318,6137],[319,6133],[320,6134],[321,6140],[322,6145],[323,6144],[324,6145],[325,6138],[326,6138],[327,6128],[328,6128],[329,6128],[330,6143],[331,6126],[332,6144],[333,6144],[334,6145],[335,6129],[336,6130],[337,6130],[338,6133],[339,6136],[340,6135],[341,6141],[342,6137],[343,6134],[344,6139],[345,6131],[347,6135],[348,6138],[349,6138],[350,6138],[351,6138],[352,6138],[353,6138],[354,6138],[355,6138],[356,6140],[357,6140],[358,6140],[359,6128],[360,6128],[361,6128],[362,6128],[363,6128],[364,6128],[365,6128],[366,6143],[367,6143],[368,6143],[369,6143],[370,6126],[371,6126],[372,6126],[373,6126],[374,6126],[375,6144],[376,6145],[377,6145],[378,6145],[379,6145],[380,6129],[381,6129],[382,6129],[383,6130],[384,6130],[385,6130],[386,6133],[387,6133],[388,6136],[389,6136],[390,6136],[391,6135],[392,6141],[393,6137],[394,6134],[395,6134],[396,6134],[397,6134],[398,6134],[399,6139],[400,6131],[401,6131],[402,6131],[403,6138],[404,6140],[405,6128],[406,6128],[407,6143],[408,6126],[409,6144],[410,6145],[411,6129],[412,6130],[413,6133],[414,6136],[415,6135],[416,6141],[417,6137],[418,6134],[419,6139],[420,6131],[421,6128],[422,6128],[423,6128],[424,6128],[425,6138],[426,6138],[427,6138],[428,6138],[429,6126],[430,6126],[431,6126],[432,6126],[433,6126],[434,6138],[435,6140],[436,6128],[437,6128],[438,6143],[439,6126],[440,6144],[441,6145],[442,6129],[443,6130],[444,6133],[445,6136],[446,6135],[447,6141],[448,6137],[449,6134],[450,6139],[451,6131],[452,6138],[453,6128],[454,6128],[455,6126],[457,6138],[458,6144],[459,6134],[460,6133],[461,6134],[462,6135],[465,6137],[466,6137],[467,6133],[468,6133],[469,6138],[470,6140],[471,6128],[472,6128],[473,6143],[474,6126],[475,6144],[476,6145],[477,6129],[478,6130],[479,6133],[480,6136],[481,6135],[482,6141],[483,6137],[484,6134],[485,6139],[486,6131],[487,6138],[488,6140],[489,6128],[490,6128],[491,6143],[492,6126],[493,6144],[494,6145],[495,6129],[496,6130],[497,6133],[498,6136],[499,6135],[500,6141],[501,6137],[502,6134],[503,6139],[504,6131],[505,6138],[506,6140],[507,6128],[508,6128],[509,6143],[510,6126],[511,6144],[512,6145],[513,6129],[514,6130],[515,6133],[516,6136],[517,6135],[518,6141],[519,6137],[520,6134],[521,6139],[522,6131],[523,6138],[524,6140],[525,6128],[526,6128],[527,6143],[528,6126],[529,6144],[530,6145],[531,6129],[532,6130],[533,6133],[534,6136],[535,6135],[536,6141],[537,6137],[538,6134],[539,6139],[540,6131],[541,6138],[542,6140],[543,6128],[544,6128],[545,6143],[546,6126],[547,6144],[548,6145],[549,6129],[550,6130],[551,6133],[552,6136],[553,6135],[554,6141],[555,6137],[556,6134],[557,6139],[558,6131],[559,6126],[560,6126],[561,6138],[562,6140],[563,6128],[564,6128],[565,6143],[566,6126],[567,6144],[568,6145],[569,6129],[570,6130],[571,6133],[572,6136],[573,6135],[574,6141],[575,6137],[576,6134],[577,6139],[578,6131],[579,6137],[580,6137],[581,6126],[582,6126],[583,6138],[584,6137],[585,6137],[586,6145],[587,6138],[588,6137],[589,6133],[592,6138],[593,6140],[594,6134],[595,6137],[596,6134],[598,6128],[599,6128],[600,6128],[601,6129],[602,6129],[603,6130],[604,6133],[605,6133],[606,6133],[607,6134],[608,6134],[609,6134],[610,6139],[611,6131],[612,6131],[613,6131],[615,6138],[616,6140],[617,6130],[618,6133],[619,6137],[620,6134],[621,6131],[622,6138],[623,6138],[624,6138],[625,6138],[626,6126],[627,6144],[628,6129],[629,6130],[630,6133],[631,6136],[632,6135],[633,6141],[634,6134],[635,6139],[636,6131],[637,6141],[638,6139],[641,6126],[642,6138],[643,6128],[644,6128],[645,6128],[646,6128],[647,6129],[648,6133],[649,6137],[650,6126],[651,6136],[652,6136],[653,6137],[654,6128],[656,6137],[657,6137],[658,6137],[659,6137],[660,6137],[661,6133],[662,6134],[663,6139],[664,6143],[665,6126],[666,6139],[667,6133],[668,6133],[669,6133],[670,6128],[671,6130],[672,6130],[673,6133],[674,6134],[675,6131],[676,6128],[681,6128],[682,6138],[683,6128],[684,6128],[685,6143],[686,6126],[687,6144],[688,6145],[689,6129],[690,6130],[691,6133],[692,6136],[693,6135],[694,6141],[695,6134],[696,6139],[697,6131],[698,6138],[699,6128],[700,6144],[701,6130],[702,6138],[703,6138],[704,6128],[705,6144],[706,6130],[708,6139],[709,6139],[710,6138],[711,6140],[712,6128],[713,6128],[714,6143],[715,6126],[716,6144],[717,6145],[718,6129],[719,6130],[720,6133],[721,6136],[722,6135],[723,6141],[724,6137],[725,6134],[726,6139],[727,6131],[728,6138],[729,6140],[730,6128],[731,6128],[732,6143],[733,6126],[734,6144],[735,6145],[736,6129],[737,6130],[738,6133],[739,6136],[740,6135],[741,6141],[742,6137],[743,6134],[744,6139],[745,6131],[746,6138],[747,6140],[748,6128],[749,6128],[750,6143],[751,6126],[752,6144],[753,6145],[754,6129],[755,6130],[756,6133],[757,6136],[758,6135],[759,6141],[760,6137],[761,6134],[762,6139],[763,6131],[764,6138],[765,6140],[766,6128],[767,6128],[768,6143],[769,6126],[770,6144],[771,6145],[772,6129],[773,6130],[774,6133],[775,6136],[776,6135],[777,6141],[778,6137],[779,6134],[780,6139],[781,6131],[782,6138],[783,6140],[784,6128],[785,6128],[786,6143],[787,6126],[788,6144],[789,6145],[790,6129],[791,6130],[792,6133],[793,6136],[794,6135],[795,6141],[796,6137],[797,6134],[798,6139],[799,6131],[800,6138],[801,6140],[802,6128],[803,6128],[804,6143],[805,6126],[806,6144],[807,6145],[808,6129],[809,6130],[810,6133],[811,6136],[812,6135],[813,6141],[814,6137],[815,6134],[816,6139],[817,6131],[818,6138],[819,6140],[820,6128],[821,6128],[822,6143],[823,6126],[824,6144],[825,6145],[826,6129],[827,6130],[828,6133],[829,6136],[830,6135],[831,6141],[832,6137],[833,6134],[834,6139],[835,6131],[836,6133],[837,6138],[838,6140],[839,6128],[840,6128],[841,6143],[842,6126],[843,6144],[844,6145],[845,6129],[846,6130],[847,6133],[848,6136],[849,6135],[850,6141],[851,6137],[852,6134],[853,6139],[854,6131],[856,6133],[857,6134],[859,6133],[860,6133],[861,6133],[862,6130],[863,6133],[864,6131],[865,6130],[866,6133],[867,6131],[978,6168],[979,6168],[980,6168],[981,6168],[982,6168],[983,6168],[984,6168],[985,6168],[986,6168],[987,6168],[988,6168],[989,6168],[990,6168],[991,6168],[992,6168],[993,6168],[994,6168],[995,6168],[996,6168],[997,6168],[998,6168],[999,6168],[1000,6168],[1001,6168],[1002,6168],[1003,6168],[1004,6168],[1005,6168],[1006,6168],[1007,6168],[1008,6168],[1009,6168],[1011,6171],[1012,6168],[1013,6168],[1015,6168],[1017,6168],[1020,6168],[1022,6168],[1024,6168],[1026,6168],[1028,6168],[1030,6168],[1032,6168],[1034,6168],[1038,6168],[1040,6168],[1042,6168],[1044,6168],[1046,6168],[1052,6171],[1053,6168],[1055,6168],[1057,6168],[1059,6168],[1061,6168],[1063,6168],[1067,6168],[1072,6168],[1074,6168],[1076,6168],[1078,6168],[1080,6168],[1082,6168],[1084,6168],[1086,6168],[1088,6168],[1092,6168],[1643,6172],[1655,6172],[1660,6172],[1661,6172],[1666,6172],[1671,6172],[1672,6172],[1673,6172],[1678,6172],[1683,6172],[1688,6172],[1689,6172],[1690,6172],[1695,6172],[1700,6172],[1705,6172],[1707,6172],[1712,6172],[1713,6172],[1714,6172],[1716,6172],[1718,6172],[1719,6172],[1720,6172],[1721,6172],[1722,6172],[1723,6172],[1724,6172],[1725,6172],[1726,6172],[1727,6172],[1734,6172],[1735,6172],[1736,6172],[1741,6172],[1742,6172],[1743,6172],[1744,6172],[1745,6172],[1746,6172],[1747,6172],[1748,6172],[1756,6172],[1762,6172],[1763,6172],[1766,6172],[1767,6172],[1773,6172],[1777,6172],[1782,6172],[1787,6172],[1792,6172],[1797,6172],[1802,6172],[1803,6172],[1804,6172],[1809,6172],[1810,6172],[1811,6172],[1813,6172],[1815,6172],[1819,6172],[1820,6172],[1821,6172],[1822,6172],[1823,6172],[1824,6172],[1826,6172],[1829,6172],[1830,6172],[1833,6172],[1834,6172],[1835,6172],[1840,6172],[1841,6172],[1846,6172],[1851,6172],[1856,6172],[1861,6172],[1862,6172],[1867,6172],[1872,6172],[1877,6172],[2037,6176],[2038,6176],[2039,6176],[2040,6177],[2041,2207],[2042,6177],[2043,6177],[2044,6176],[2045,6178],[2046,6178],[2047,6176],[2048,6177],[2049,6178],[2050,6178],[2051,6176],[2052,6178],[2053,6177],[2054,6178],[2055,6176],[2056,6176],[2057,6176],[2058,6177],[2059,6178],[2060,6176],[2061,6177],[2062,6178],[2063,6176],[2064,6176],[2065,6176],[2066,6176],[2067,6176],[2068,6176],[2069,6176],[2070,6176],[2071,6176],[2072,6177],[2073,6178],[2074,6176],[2075,6177],[2076,6178],[2077,6176],[2078,6177],[2079,6178],[2080,6176],[2081,6177],[2082,6178],[2083,6176],[2084,6177],[2085,6178],[2086,6176],[2087,6177],[2088,6178],[2089,6176],[2090,6176],[2091,6176],[2092,6176],[2093,6177],[2094,6178],[2095,6176],[2096,6176],[2097,6176],[2098,6176],[2099,6176],[2100,6176],[2101,6177],[2102,6178],[2103,6176],[2104,6176],[2105,6177],[2106,6178],[2107,6176],[2108,6176],[2109,6176],[2110,6176],[2111,6176],[2112,6177],[2113,6178],[2114,6176],[2115,6177],[2116,6178],[2117,6176],[2118,6176],[2119,6176],[2120,6176],[2121,6176],[2122,6176],[2123,6176],[2124,6177],[2125,6178],[2126,6176],[2127,6176],[2128,6176],[2129,6176],[2130,6176],[2131,6177],[2132,6178],[2133,6176],[2134,6177],[2135,6178],[2136,6176],[2137,6177],[2138,6178],[2139,6176],[2140,6177],[2141,6178],[2142,6176],[2143,6177],[2144,6178],[2145,6176],[2146,6176],[2147,6177],[2148,6178],[2149,6176],[2150,6176],[2151,6176],[2152,6176],[2153,6176],[2154,6176],[2156,6176],[2157,6176],[2158,6176],[2159,6176],[2160,6176],[2161,6176],[2162,6176],[2163,6176],[2164,6176],[2165,6176],[2166,6176],[2167,6177],[2168,6178],[2169,6176],[2170,6176],[2171,6177],[2172,6178],[2173,6176],[2174,6177],[2175,6178],[2176,6176],[2177,6177],[2178,6178],[2179,6176],[2180,6177],[2181,6178],[2182,6176],[2183,6177],[2184,6178],[2185,6176],[2186,6177],[2187,6178],[2188,6176],[2189,6177],[2190,6178],[2191,6176],[2192,6176],[2193,6177],[2194,6178],[2195,6176],[2894,6181],[2895,6181],[2896,6180],[2897,6181],[2898,6180],[2900,6180],[2901,6180],[2902,6181],[2903,6180],[2905,6181],[2906,6180],[2909,6181],[2910,6180],[2912,6181],[2913,6180],[2915,6180],[2917,6181],[2918,6180],[2920,6180],[2922,6181],[2923,6180],[2925,6181],[2926,6180],[2928,6181],[2929,6180],[2931,6181],[2932,6180],[2935,6180],[2936,6180],[2937,6181],[2939,6181],[2940,6180],[2942,6181],[2943,6180],[2945,6181],[2946,6180],[2948,6181],[2949,6180],[2951,6181],[2952,6181],[2953,6180],[2955,6181],[2956,6180],[2958,6181],[2959,6180],[2961,6181],[2962,6180],[2964,6181],[2965,6180],[2967,6181],[2968,6180],[2970,6181],[2971,6181],[2972,6181],[2973,6181],[2974,6181],[2975,6181],[2976,6181],[2977,6180],[2978,6180],[2979,6181],[2980,6180],[2983,6180],[2987,6181],[2988,6181],[2989,6180],[2991,6181],[2992,6180],[2994,6180],[2995,6180],[2996,6181],[2997,6180],[2999,6181],[3000,6180],[3002,6181],[3003,6180],[3005,6181],[3006,6180],[3008,6181],[3009,6180],[3011,6181],[3012,6180],[3014,6181],[3015,6180],[3017,6181],[3018,6180],[3020,6181],[3021,6180],[3052,6184],[3053,6183],[3054,6183],[3055,6185],[3056,6185],[3057,6186],[3058,3267],[3059,6186],[3060,6186],[3061,6184],[3062,6185],[3063,6185],[3064,6185],[3065,6185],[3066,6183],[3067,6186],[3068,6186],[3069,6186],[3070,6186],[3071,6186],[3072,6183],[3073,6184],[3074,6185],[3075,6183],[3076,6186],[3077,6186],[3078,6186],[3079,6183],[3080,6185],[3081,6186],[3082,6186],[3083,6186],[3084,6186],[3085,6186],[3086,6183],[3087,6185],[3088,6186],[3089,6184],[3090,6185],[3091,6186],[3092,6186],[3093,6186],[3094,6183],[3095,6184],[3096,6185],[3097,6185],[3098,6186],[3099,6183],[3100,6184],[3101,6185],[3102,6185],[3103,6186],[3104,6183],[3105,6184],[3106,6185],[3107,6185],[3108,6186],[3109,6183],[3110,6184],[3111,6185],[3112,6185],[3113,6186],[3114,6183],[3115,6184],[3116,6185],[3117,6185],[3118,6186],[3119,6183],[3120,6184],[3121,6185],[3122,6185],[3123,6186],[3125,6183],[3126,6184],[3127,6185],[3128,6185],[3129,6186],[3130,6183],[3131,6184],[3132,6185],[3133,6185],[3134,6186],[3135,6183],[3136,6184],[3137,6185],[3138,6185],[3139,6186],[3140,6186],[3141,6183],[3142,6184],[3143,6185],[3144,6185],[3145,6186],[3146,6184],[3147,6186],[3148,6183],[3149,6184],[3150,6185],[3151,6185],[3152,6186],[3153,6183],[3154,6184],[3155,6185],[3156,6185],[3157,6186],[3158,6183],[3159,6184],[3160,6185],[3161,6185],[3162,6186],[3163,6183],[3164,6184],[3165,6185],[3166,6185],[3167,6186],[3168,6183],[3169,6184],[3170,6185],[3171,6185],[3172,6186],[3173,6183],[3174,6183],[3175,6184],[3176,6185],[3177,6185],[3178,6186],[3179,6183],[3180,6184],[3181,6185],[3182,6185],[3183,6186],[3184,6183],[3185,6184],[3186,6185],[3187,6185],[3188,6186],[3189,6183],[3190,6184],[3191,6185],[3192,6185],[3193,6186],[3194,6183],[3195,6184],[3196,6185],[3197,6185],[3198,6186],[3199,6183],[3200,6184],[3201,6185],[3202,6185],[3203,6186],[3204,6184],[3205,6184],[3206,6184],[3207,6184],[3208,6184],[3209,6184],[3210,6186],[3211,6186],[3212,6184],[3213,6184],[3214,6184],[3215,6184],[3216,6183],[3217,6184],[3218,6185],[3219,6185],[3220,6186],[3221,6183],[3222,6184],[3223,6185],[3224,6185],[3225,6186],[3226,6183],[3227,6184],[3228,6185],[3229,6185],[3230,6186],[3231,6183],[3232,6184],[3233,6185],[3234,6185],[3235,6186],[3236,6183],[3237,6184],[3238,6185],[3239,6185],[3240,6186],[3241,6183],[3242,6184],[3243,6185],[3244,6185],[3245,6186],[3246,6183],[3247,6184],[3248,6185],[3249,6185],[3250,6186],[3251,6183],[3252,6184],[3253,6185],[3254,6185],[3255,6186],[3256,6183],[3257,6184],[3258,6185],[3259,6185],[3260,6186],[3335,6188],[3336,6187],[3338,6188],[3339,6187],[3340,6188],[3341,6187],[3342,6188],[3343,6187],[3344,6188],[3345,6187],[3346,6188],[3347,6187],[3348,6188],[3349,6187],[3350,6188],[3351,6187],[3352,6187],[3354,6188],[3355,6187],[3356,6188],[3357,6188],[3358,6187],[3359,6188],[3360,6187],[3362,6188],[3363,6187],[3364,6188],[3365,6187],[3366,6188],[3367,6187],[3368,6188],[3369,6187],[3370,6188],[3371,6187],[3372,6188],[3373,6187],[3374,6188],[3375,6187],[3376,6188],[3377,6187],[3380,6188],[3381,6187],[3382,6188],[3383,6188],[3384,6187],[3386,6188],[3387,6187],[3388,6187],[3389,6188],[3390,6187],[3392,6188],[3393,6187],[3394,6187],[3396,6187],[3397,6188],[3398,6187],[3399,6188],[3400,6187],[3401,6188],[3402,6187],[3403,6188],[3404,6187],[3405,6188],[3406,6187],[3407,6188],[3408,6187],[3409,6188],[3410,6187],[3411,6188],[3412,6187],[3414,6188],[3415,6187],[3416,6187],[3679,4008],[3685,4284],[3693,4363],[4439,4559],[4923,6169],[4924,6170],[4925,6169],[4926,6169],[4927,6169],[4928,6169],[4929,6169],[4930,6169],[4931,6169],[4932,6170],[4933,6169],[4934,6170],[4935,6169],[4936,6170],[4937,6169],[4938,6170],[4939,6169],[4940,6170],[4941,6169],[4942,6169],[4943,6169],[4944,6169],[4945,6169],[4946,6169],[4947,6169],[4948,6169],[4949,6169],[4950,6170],[4951,6169],[4952,6169],[4953,6170],[4954,6169],[4955,6170],[4956,6169],[4957,6170],[4958,6169],[4959,6169],[4960,6170],[4961,6169],[4962,6170],[4963,6169],[4964,6170],[4965,6169],[4966,6170],[4967,6169],[4968,6170],[4969,6169],[4970,6170],[4971,6169],[4972,6170],[4973,6169],[4975,6169],[4976,6169],[4977,6169],[4978,6169],[4979,6169],[4980,6169],[4981,6169],[4982,6169],[4983,6169],[4984,6170],[4985,6170],[4986,6170],[4987,6170],[4988,6169],[4989,6170],[4990,6169],[4991,6170],[4992,6169],[4993,6169],[4994,6170],[4995,6169],[4996,6169],[4997,6169],[4998,6169],[4999,6169],[5000,6169],[5001,6169],[5002,6169],[5003,6169],[5004,6169],[5005,6170],[5006,6169],[5007,6169],[5008,6170],[5009,6169],[5011,6170],[5012,6169],[5013,6170],[5014,6169],[5015,6170],[5016,6169],[5017,6170],[5018,6169],[5019,6170],[5020,6169],[5021,6170],[5022,6169],[5023,6169],[5026,6169],[5027,6169],[5028,6169],[5029,6169],[5030,6169],[5031,6170],[5032,6169],[5033,6170],[5034,6169],[5035,6169],[5036,6170],[5037,6169],[5038,6169],[5040,6169],[5041,6169],[5042,6170],[5043,6170],[5044,6169],[5045,6170],[5046,6169],[5047,6169],[5048,6169],[5049,6169],[5050,6169],[5051,6169],[5052,6170],[5053,6169],[5054,6170],[5055,6169],[5056,6170],[5057,6169],[5058,6169],[5059,6169],[5060,6170],[5061,6169],[5062,6170],[5063,6169],[5064,6170],[5065,6169],[5066,6170],[5067,6169],[5068,6170],[5069,6169],[5070,6170],[5071,6169],[5147,6196],[5148,5200],[5149,5379],[5150,5504],[5152,6196],[5153,6196],[5154,6196],[5155,6196],[5156,6196],[5157,6196],[5159,6196],[5160,6196],[5161,6196],[5162,6196],[5165,6196],[5166,6196],[5167,6196],[5168,6196],[5169,6196],[5170,6196],[5171,6196],[5172,6196],[5173,6196],[5174,6196],[5175,6196],[5176,6196],[5179,6196],[5188,6196],[5190,6196],[5191,6196],[5192,6196],[5193,6196],[5194,6196],[5195,6196],[5196,6196],[5197,6196],[5199,6196],[5201,5247],[5205,5291],[5207,5370],[5381,3670],[5382,3670],[5387,3670],[5606,6201],[5607,6201],[5608,6165],[5609,6203],[5610,6199],[5611,6199],[5612,6204],[5613,6203],[5614,6198],[5615,6198],[5616,6199],[5617,6199],[5618,6199],[5619,6199],[5620,6199],[5621,6202],[5622,6202],[5623,5908],[5624,6200],[5625,6204],[5626,6201],[5627,6202],[5628,6199],[5629,6165],[5630,6201],[5631,6198],[5632,6198],[5633,6198],[5634,6199],[5635,6203],[5636,6165],[5637,6199],[5638,6199],[5639,5976],[5640,6045],[5641,6198],[5642,6198],[5643,6198],[5644,6203],[5645,6203],[5646,6199],[5647,6204],[5648,6165],[5649,6198],[5650,6202],[5651,6198],[5652,6199],[5653,6200],[5654,6201],[5655,6202],[5656,6203],[5657,6165],[5658,6204],[5659,6198],[5660,6199],[5661,6200],[5662,6201],[5663,6202],[5664,6203],[5665,6165],[5666,6204],[5667,6198],[5668,6199],[5669,6200],[5670,6201],[5671,6202],[5672,6203],[5673,6165],[5674,6204],[5675,6198],[5676,6199],[5677,6200],[5678,6201],[5679,6202],[5680,6203],[5681,6165],[5682,6204],[5683,6198],[5684,6199],[5685,6200],[5686,6201],[5687,6202],[5688,6203],[5689,6165],[5690,6204],[5691,6198],[5692,6199],[5693,6200],[5694,6201],[5695,6202],[5696,6203],[5697,6165],[5698,6204],[5699,6198],[5700,6199],[5701,6200],[5702,6201],[5703,6202],[5704,6203],[5705,6165],[5706,6204],[5707,6198],[5708,6199],[5709,6200],[5710,6201],[5711,6202],[5712,6203],[5713,6165],[5714,6204],[5715,6198],[5716,6199],[5717,6200],[5718,6201],[5719,6202],[5720,6203],[5721,6165],[5722,6204],[5723,6200],[5724,6165],[5725,6198],[5726,6199],[5727,6200],[5728,6201],[5729,6202],[5730,6203],[5731,6165],[5732,6204],[5733,6201],[5734,6203],[5735,6199],[5736,6200],[5737,6201],[5738,6202],[5739,6203],[5740,6165],[5741,6198],[5742,6199],[5743,6200],[5744,6200],[5745,6201],[5746,6202],[5747,6203],[5748,6165],[5749,6204],[5750,6198],[5751,6199],[5752,6200],[5753,6201],[5754,6202],[5755,6203],[5756,6165],[5757,6165],[5758,6204],[5759,6198],[5760,6199],[5761,6200],[5762,6201],[5763,6202],[5764,6203],[5765,6165],[5766,6204],[5767,6198],[5768,6199],[5769,6200],[5770,6201],[5771,6202],[5772,6203],[5773,6165],[5774,6204],[5775,6200],[5777,6198],[5778,6199],[5779,6200],[5780,6201],[5781,6202],[5782,6203],[5783,6165],[5784,6204],[5785,6198],[5786,6199],[5787,6200],[5788,6201],[5789,6202],[5790,6203],[5791,6165],[5792,6204],[5793,6198],[5794,6199],[5795,6200],[5796,6201],[5797,6202],[5798,6203],[5799,6165],[5800,6204],[5801,6198],[5802,6199],[5803,6200],[5804,6201],[5805,6202],[5806,6203],[5807,6165],[5808,6204],[5809,6198],[5810,6199],[5811,6200],[5812,6201],[5813,6202],[5814,6203],[5815,6165],[5816,6204],[5817,6198],[5818,6199],[5819,6200],[5820,6201],[5821,6202],[5822,6203],[5823,6165],[5824,6204],[5825,6201],[5826,6203],[5827,6200],[5828,6165],[5831,6198],[5832,6199],[5833,6200],[5834,6201],[5835,6202],[5836,6203],[5837,6165],[5838,6204],[5839,6200],[5840,6200],[5841,6198],[5842,6199],[5843,6200],[5844,6201],[5845,6202],[5846,6203],[5847,6165],[5848,6204],[5849,6198],[5850,6199],[5851,6200],[5852,6201],[5853,6202],[5854,6203],[5855,6165],[5856,6204],[5857,6198],[5858,6199],[5859,6200],[5860,6201],[5861,6202],[5862,6203],[5863,6165],[5864,6204],[5865,6198],[5866,6199],[5867,6200],[5868,6201],[5869,6202],[5870,6203],[5871,6165],[5872,6204],[5873,6198],[5874,6199],[5875,6200],[5876,6201],[5877,6202],[5878,6203],[5879,6165],[5880,6204],[5881,6198],[5882,6199],[5883,6200],[5884,6201],[5885,6202],[5886,6203],[5887,6165],[5888,6204],[5889,6198],[5890,6199],[5891,6200],[5892,6201],[5893,6202],[5894,6203],[5895,6165],[5896,6204],[5897,6200],[5898,6198],[5899,6199],[5900,6200],[5901,6201],[5902,6202],[5903,6203],[5904,6165],[5905,6204],[6045,6205],[6047,6205],[6049,6205],[6050,6205],[6052,6205],[6054,6205],[6056,6205],[6058,6205],[6060,6205],[6062,6205],[6064,6205],[6066,6205],[6069,6205],[6071,6205],[6073,6205],[6075,6205],[6077,6205],[6079,6205],[6083,6205],[6085,6205],[6087,6205],[6089,6205],[6091,6205],[6093,6205],[6099,6205],[6101,6205],[6106,6205],[6109,6205],[6111,6205],[6113,6205],[6115,6205],[6117,6205],[6119,6205],[6121,6205],[6124,6205]],"b":[[81,"impl-Add%3CDegrees%3E-for-Radians"],[82,"impl-Add-for-Radians"],[83,"impl-Add%3Cf32%3E-for-Pixels"],[84,"impl-Add-for-Pixels"],[143,"impl-Borrow%3Cdyn+Widget%3CMessage,+Theme,+Renderer%3E%3E-for-Element%3C\'a,+Message,+Theme,+Renderer%3E"],[144,"impl-Borrow%3Cdyn+Widget%3CMessage,+Theme,+Renderer%3E%3E-for-%26Element%3C\'a,+Message,+Theme,+Renderer%3E"],[290,"impl-Div%3Cf32%3E-for-Radians"],[291,"impl-Div-for-Radians"],[292,"impl-Div%3Cu32%3E-for-Pixels"],[293,"impl-Div%3Cf32%3E-for-Pixels"],[294,"impl-Div-for-Pixels"],[296,"impl-PartialEq-for-SmolStr"],[297,"impl-PartialEq%3Cstr%3E-for-SmolStr"],[298,"impl-PartialEq%3C%26str%3E-for-SmolStr"],[299,"impl-PartialEq%3CString%3E-for-SmolStr"],[300,"impl-PartialEq%3C%26String%3E-for-SmolStr"],[301,"impl-PartialEq%3Cf32%3E-for-Degrees"],[302,"impl-PartialEq-for-Degrees"],[303,"impl-PartialEq%3Cf32%3E-for-Radians"],[304,"impl-PartialEq-for-Radians"],[325,"impl-Display-for-SmolStr"],[326,"impl-Debug-for-SmolStr"],[328,"impl-Debug-for-Radians"],[329,"impl-Display-for-Radians"],[332,"impl-Debug-for-ContentFit"],[333,"impl-Display-for-ContentFit"],[336,"impl-Display-for-Point%3CT%3E"],[337,"impl-Debug-for-Point%3CT%3E"],[348,"impl-From%3CString%3E-for-SmolStr"],[349,"impl-From%3C%26str%3E-for-SmolStr"],[350,"impl-From%3CArc%3Cstr%3E%3E-for-SmolStr"],[351,"impl-From%3CBox%3Cstr%3E%3E-for-SmolStr"],[352,"impl-From%3C%26mut+str%3E-for-SmolStr"],[354,"impl-From%3C%26String%3E-for-SmolStr"],[355,"impl-From%3CCow%3C\'a,+str%3E%3E-for-SmolStr"],[356,"impl-From%3CText%3C\'a,+Theme,+Renderer%3E%3E-for-Element%3C\'a,+Message,+Theme,+Renderer%3E"],[358,"impl-From%3C%26str%3E-for-Element%3C\'a,+Message,+Theme,+Renderer%3E"],[359,"impl-From%3Cu8%3E-for-Degrees"],[361,"impl-From%3Cf32%3E-for-Degrees"],[363,"impl-From%3Cu8%3E-for-Radians"],[364,"impl-From%3CDegrees%3E-for-Radians"],[365,"impl-From%3Cf32%3E-for-Radians"],[366,"impl-From%3CColor%3E-for-Background"],[367,"impl-From%3CGradient%3E-for-Background"],[369,"impl-From%3CLinear%3E-for-Background"],[370,"impl-From%3CAlpha%3CRgb,+f32%3E%3E-for-Color"],[371,"impl-From%3C%5Bf32;+3%5D%3E-for-Color"],[372,"impl-From%3CRgb%3E-for-Color"],[374,"impl-From%3C%5Bf32;+4%5D%3E-for-Color"],[376,"impl-From%3Cu16%3E-for-Length"],[377,"impl-From%3CPixels%3E-for-Length"],[378,"impl-From%3Cf32%3E-for-Length"],[381,"impl-From%3Cf32%3E-for-Pixels"],[382,"impl-From%3Cu16%3E-for-Pixels"],[383,"impl-From%3C(T,+T)%3E-for-Point%3CT%3E"],[385,"impl-From%3C%5BT;+2%5D%3E-for-Point%3CT%3E"],[388,"impl-From%3Cf32%3E-for-Rotation"],[390,"impl-From%3CRadians%3E-for-Rotation"],[394,"impl-From%3CPadding%3E-for-Size"],[395,"impl-From%3C(T,+T)%3E-for-Size%3CT%3E"],[396,"impl-From%3C%5BT;+2%5D%3E-for-Size%3CT%3E"],[398,"impl-From%3CVector%3CT%3E%3E-for-Size%3CT%3E"],[400,"impl-From%3C%5BT;+2%5D%3E-for-Vector%3CT%3E"],[401,"impl-From%3CSize%3CT%3E%3E-for-Vector%3CT%3E"],[425,"impl-FromIterator%3C%26str%3E-for-SmolStr"],[426,"impl-FromIterator%3C%26String%3E-for-SmolStr"],[427,"impl-FromIterator%3CString%3E-for-SmolStr"],[428,"impl-FromIterator%3Cchar%3E-for-SmolStr"],[599,"impl-Mul-for-Radians"],[600,"impl-Mul%3Cf32%3E-for-Radians"],[601,"impl-Mul%3Cf32%3E-for-Pixels"],[602,"impl-Mul-for-Pixels"],[604,"impl-Mul%3CVector%3CT%3E%3E-for-Rectangle%3CT%3E"],[605,"impl-Mul%3Cf32%3E-for-Rectangle"],[606,"impl-Mul%3CTransformation%3E-for-Rectangle"],[607,"impl-Mul%3CTransformation%3E-for-Size"],[608,"impl-Mul%3CT%3E-for-Size%3CT%3E"],[609,"impl-Mul%3CVector%3CT%3E%3E-for-Size%3CT%3E"],[611,"impl-Mul%3CTransformation%3E-for-Vector"],[612,"impl-Mul%3CT%3E-for-Vector%3CT%3E"],[643,"impl-PartialOrd%3Cf32%3E-for-Degrees"],[644,"impl-PartialOrd-for-Degrees"],[645,"impl-PartialOrd%3Cf32%3E-for-Radians"],[646,"impl-PartialOrd-for-Radians"],[671,"impl-Sub%3CVector%3CT%3E%3E-for-Point%3CT%3E"],[672,"impl-Sub-for-Point%3CT%3E"],[916,"impl-From%3CHorizontal%3E-for-Alignment"],[918,"impl-From%3CVertical%3E-for-Alignment"],[1135,"impl-From%3Ci32%3E-for-Radius"],[1136,"impl-From%3Cf32%3E-for-Radius"],[1137,"impl-From%3Cu8%3E-for-Radius"],[1138,"impl-From%3Cu16%3E-for-Radius"],[1721,"impl-PartialEq%3CBytesMut%3E-for-Bytes"],[1722,"impl-PartialEq%3CString%3E-for-Bytes"],[1723,"impl-PartialEq%3C%26T%3E-for-Bytes"],[1724,"impl-PartialEq-for-Bytes"],[1725,"impl-PartialEq%3C%5Bu8%5D%3E-for-Bytes"],[1726,"impl-PartialEq%3Cstr%3E-for-Bytes"],[1727,"impl-PartialEq%3CVec%3Cu8%3E%3E-for-Bytes"],[1734,"impl-Debug-for-Bytes"],[1735,"impl-LowerHex-for-Bytes"],[1736,"impl-UpperHex-for-Bytes"],[1741,"impl-From%3CScreenshot%3E-for-Bytes"],[1742,"impl-From%3CBytesMut%3E-for-Bytes"],[1743,"impl-From%3C%26%5Bu8%5D%3E-for-Bytes"],[1744,"impl-From%3C%26str%3E-for-Bytes"],[1745,"impl-From%3CBox%3C%5Bu8%5D%3E%3E-for-Bytes"],[1747,"impl-From%3CVec%3Cu8%3E%3E-for-Bytes"],[1748,"impl-From%3CString%3E-for-Bytes"],[1751,"impl-From%3CT%3E-for-Handle"],[1753,"impl-From%3C%26Handle%3E-for-Handle"],[1802,"impl-IntoIterator-for-Bytes"],[1803,"impl-IntoIterator-for-%26Bytes"],[1819,"impl-PartialOrd%3CVec%3Cu8%3E%3E-for-Bytes"],[1820,"impl-PartialOrd%3C%26T%3E-for-Bytes"],[1821,"impl-PartialOrd%3CString%3E-for-Bytes"],[1822,"impl-PartialOrd%3Cstr%3E-for-Bytes"],[1823,"impl-PartialOrd%3C%5Bu8%5D%3E-for-Bytes"],[1824,"impl-PartialOrd-for-Bytes"],[2068,"impl-Flags-for-Modifiers"],[2069,"impl-Modifiers"],[2107,"impl-Debug-for-Modifiers"],[2108,"impl-UpperHex-for-Modifiers"],[2109,"impl-Binary-for-Modifiers"],[2110,"impl-Octal-for-Modifiers"],[2111,"impl-LowerHex-for-Modifiers"],[2119,"impl-Modifiers"],[2120,"impl-Flags-for-Modifiers"],[2780,"impl-PartialEq%3CPhysical%3E-for-Code"],[2781,"impl-PartialEq-for-Code"],[2782,"impl-PartialEq-for-NativeCode"],[2783,"impl-PartialEq%3CPhysical%3E-for-NativeCode"],[2784,"impl-PartialEq%3CCode%3E-for-Physical"],[2785,"impl-PartialEq%3CNativeCode%3E-for-Physical"],[2786,"impl-PartialEq-for-Physical"],[3393,"impl-Overlay%3CMessage,+Theme,+Renderer%3E-for-Group%3C\'_,+Message,+Theme,+Renderer%3E"],[3394,"impl-Group%3C\'a,+Message,+Theme,+Renderer%3E"],[3437,"impl-From%3CPixels%3E-for-Padding"],[3438,"impl-From%3Cf32%3E-for-Padding"],[3439,"impl-From%3Cu16%3E-for-Padding"],[3441,"impl-From%3C%5Bf32;+2%5D%3E-for-Padding"],[3442,"impl-From%3C%5Bu16;+2%5D%3E-for-Padding"],[3829,"impl-From%3CPixels%3E-for-LineHeight"],[3830,"impl-From%3Cf32%3E-for-LineHeight"],[3899,"impl-IntoFragment%3C\'a%3E-for-%26Cow%3C\'_,+str%3E"],[3900,"impl-IntoFragment%3C\'a%3E-for-Cow%3C\'a,+str%3E"],[4483,"impl-Default-for-Theme"],[4484,"impl-Catalog-for-Theme"],[4489,"impl-Display-for-Theme"],[4490,"impl-Debug-for-Theme"],[4491,"impl-Display-for-Custom"],[4492,"impl-Debug-for-Custom"],[5042,"impl-Sub-for-Instant"],[5043,"impl-Sub%3CDuration%3E-for-Instant"],[5050,"impl-Sum-for-Duration"],[5051,"impl-Sum%3C%26Duration%3E-for-Duration"],[5470,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-Text%3C\'_,+Theme,+Renderer%3E"],[5471,"impl-Text%3C\'a,+Theme,+Renderer%3E"],[5743,"impl-Display-for-Id"],[5744,"impl-Debug-for-Id"],[5930,"impl-Debug-for-Error"],[5931,"impl-Display-for-Error"],[6003,"impl-Display-for-CropError"],[6004,"impl-Debug-for-CropError"]],"c":"OjAAAAEAAAAAAAAAEAAAAHAC","e":"OzAAAAEAAGwQqgEBAAEABQABAA4AAAAUAAEAGgACACAAAAAiAAAAKQAAADMAAAA1AAEAOwAAAEAAGgBhACYAjQA4AMsAMAD+ABEAEQELACABAAAjAQQAKQEUAEYBFABdAQQAYwECAGcBAQBqAQAAbAEEAHIBAwB3AQAAeQECAH4BAgCCAQAAhAEBAIcBAACLAQIAjwEAAJEBAQCUARkAswEUAMoBAgDoAUcAMgIRAEgCAABMAgAAUQIAAFcCDwBoAgAAcAIAAHICCwCDAgUAjwIAAJ8CBgCrAhgAxwJ9AEYDEQBxAyQAlwMAAJkDAACbAwkAqAMpANMDHwD1AwYA/QMOAA8EAwAVBAMAHQQAACAECQAsBAAAMQQQAEUEAQBJBAkAWwQHAGYEBwBwBAcAegQJAIcEAQCPBAEAmQQPALEEFgDKBAMA0AQJANsEEgDvBAAA+QQXABMFAwAZBQkAJAUUADsFBABDBQEARgUAAEkFAwBOBQIAVAUCAFgFOwCVBQQAnwUOALMFHQDTBSwABgYCAAwGFwAlBgoAMwYFADwGDgBMBgAAUQYaAHgGIQCbBhUAsgYDALcGDQDHBgsA1AYCANgGAADaBgAA3QYEAOMGAADoBgQA7gYCAPcGGgAYBwEAHAcHACwHBAAyBxMARwcTAG4HCwB7BxsAmAcJAKYHCACzBxMAygcBAM0HAADQByIA+gcAAAYIAgALCAUAFQgAABkIEgAuCAIAMwgAADYIAgA6CAYARAgCAEkIAABNCAMAVwgPAHAIAQB4CAIAfAgUAJIIAgCiCAAApwgAAMIIAADECAAAxggAANIIAADYCAAA2ggAANwIAADgCAAAHAkAAIEJAACMCQEAlQkAAL0JAADFCQAAxwkGANIJAADgCQAA4wkAAOkJAADsCQAA7gkCAP8JAAAYCgAAPgoAAEIKAABKCgAAVAoAAFsKAABdCgAAbQoAAG8KAACRCgAAmAoAAJoKAACjCg4Aswo2AO8KDgADC0oAUgsCAFcLBQBeCwUAZgsCAGsLCwB5CwEAfAsCAIILBQCMCw4AqAsAALALAgC1CxcA0wsHANwLAQDfCwQA5QsHAPILAwD8CwMABQwCAAoMBAARDAAAFAwgADYMIABcDAoAbAwYAIkMAwCRDCwAyQwWAOIMAwDoDAkA8wwAAPYMEQALDQ4AHA0AAB4NAAAgDQEAIw0BACcNCQAyDQAANg0AADkNAAA9DQAAPw0AAEINAABGDQ0AVQ0AAFcNAQBcDQAAXg0DAGUNBgBtDQMAcg0DAHgNBACBDQAAhQ0AAIkNBgCRDQAAlg0FAJ0NAwCiDQEApQ0JALENAQC0DQEAuA0DAL4NCQDJDQEA0A0RAOsNGgAIDgIADQ4FABQOAAAWDgAAGA4CAB0OAgAhDgEAJw4OADwOGgBgDgAAZg4AAG4OAAB5DhcAlw4PAKgOHwDLDgcA1Q4DANwOBgDmDgcA9g4BAPsOAAD9DhIAGw8fADwPCQBNDwMAXA8HAGUPNwCgDwcA1Q8UAOsPDQD6DyIAHxABACMQDAA3EA0ATRAiAHUQAQB6EDcAsxAGAMMQCwDQEAYA2BABANsQBADjEAMA6BAAAOsQCQD2EBEACRECAA8RCAAZEQIAHREBACURBAAxEQAANREHAEARAABYEQAAYBEIAGsRFQCEEQQAihEEAJIRBQCbEQ4AqxEAAK4RAACwER4ABRIaACgSNQBfEggAahIRAIUSEQCmEiwA4xJQAEUTAQBIEwYAVxMGAGUTCQBwEwQAexMEAIITAgCOEwEAkRMBAJYTCQCjEwEAqRMCALETAQC0EwMAuxMHAMUTCwDXExcA8RMEAPgTIwAdFAIAIRQFACgUAwAuFAEAMRQCADUUBABFFAAARxQGAFAUAABSFAAAVhQAAFgUAwBdFAMAZBQAAGgUAQBrFAQAeBQHAIIUCQCNFAEAkBQAAJcUAQCaFAQAoBQBAKMUBgCrFAAAsRQZAM0UAwDTFAsA5RQRAAYVAQAMFQMAEhUFABkVCAAkFQIAKhUCADAVAQAzFQMAOBUAADwVBQBGFQ4AVhUAAFkVAgBfFQAAYRUAAGUVGQCGFREAmRUGAKcVAwCuFQYAuBUOAMoVAADOFRgA+BUAAAgWAQAUFmIAfhYAAIAWEACaFisAyBZBAAsXBwAZFxMALxcBADIXAQA2FwcAPxcUAF0XCgBpFwYAcRcEAHgXAwB+FwkAixcSAKAXAQCjFxEAthcCALoXAQC+FwMAxhcJANQXAQDbFwEA3hcNAO0XAQA=","P":[[63,"T,M,D"],[81,"Add::Output"],[83,""],[85,"T"],[87,"T,Add::Output"],[88,"T"],[89,""],[94,"Message"],[95,""],[96,"C,T"],[114,"C"],[132,""],[135,"Message,Theme,Renderer"],[137,""],[140,"T"],[141,""],[142,"T"],[143,"Message,Theme,Renderer"],[145,"T"],[179,"WpParam,T"],[197,"Message"],[198,""],[210,"T"],[212,""],[215,"T"],[216,""],[217,"T"],[234,""],[253,"C,T"],[271,""],[276,"T"],[278,""],[281,"T"],[282,""],[283,"T"],[284,""],[288,"T"],[289,""],[290,"Div::Output"],[292,""],[310,"T"],[312,""],[314,"T"],[315,""],[316,"T"],[318,"Message"],[319,""],[321,"Message,Theme,Renderer,C"],[322,""],[336,"T"],[339,""],[342,"Message"],[343,"T"],[344,""],[345,"T"],[347,""],[353,"T"],[354,""],[356,"Theme,Renderer,Message"],[357,"T"],[358,"Message,Theme,Renderer"],[359,""],[360,"T"],[361,""],[362,"T"],[363,""],[368,"T"],[369,""],[373,"T"],[374,""],[375,"T"],[376,""],[379,"T"],[381,""],[383,"T"],[387,""],[389,"T"],[390,""],[391,"T"],[394,""],[395,"T"],[421,""],[425,"I"],[429,""],[434,"U,T"],[452,""],[457,"H"],[458,"__H"],[459,"T,__H"],[460,""],[465,"Message"],[467,""],[469,"U"],[505,"WpParam,T"],[523,"U"],[559,""],[561,"T"],[579,"Message"],[581,""],[584,"Message"],[586,""],[588,"Message"],[589,""],[593,"Message,Theme,Renderer,B,"],[594,""],[595,"Message,B,"],[596,""],[598,"Mul::Output"],[601,""],[604,"T"],[605,""],[608,"T,Mul::Output"],[610,""],[612,"T"],[613,"T,Neg::Output"],[614,"T"],[616,"Message,Theme,Renderer,"],[617,"T"],[618,""],[619,"Message"],[620,"T"],[622,""],[625,"T"],[637,""],[649,"Message"],[650,""],[653,"Message"],[654,"Rem::Output"],[656,"Message"],[657,"Message,T"],[658,"Message"],[659,"Message,"],[661,""],[667,""],[668,""],[670,"Sub::Output"],[671,"T"],[674,"T,Sub::Output"],[675,"T"],[676,""],[682,"T"],[698,""],[710,"C"],[728,"U,T"],[746,"U"],[782,""],[800,"C,U"],[818,"C"],[836,""],[837,"V"],[856,""],[860,"T"],[861,""],[880,"T,M,D"],[883,"C,T"],[886,"C"],[889,"T"],[895,"WpParam,T"],[898,""],[901,"T"],[904,""],[907,"C,T"],[910,""],[917,"T"],[918,""],[919,"T"],[920,""],[921,"T"],[922,""],[923,"T"],[926,"U,T"],[929,"__H"],[932,"U"],[938,"WpParam,T"],[941,"U"],[947,"T"],[953,"C"],[956,"U,T"],[959,"U"],[965,""],[968,"C,U"],[971,"C"],[974,"V"],[1013,"T,M,D"],[1015,"C,T"],[1017,"C"],[1019,"T"],[1024,"WpParam,T"],[1026,""],[1027,"T"],[1030,""],[1032,"C,T"],[1034,""],[1035,"T"],[1038,""],[1041,"T"],[1046,"U,T"],[1048,"T"],[1050,"I"],[1051,"T,I,"],[1052,""],[1053,"U"],[1057,"WpParam,T"],[1059,"U"],[1063,"T"],[1074,"C"],[1076,"U,T"],[1078,"U"],[1082,""],[1084,"C,U"],[1086,"C"],[1088,""],[1089,"T"],[1092,"V"],[1096,"T,M,D"],[1098,"C,T"],[1100,"C"],[1102,"T"],[1106,""],[1110,""],[1111,""],[1113,""],[1114,"WpParam,T"],[1116,""],[1118,"T"],[1120,""],[1122,""],[1124,""],[1125,"C,T"],[1127,""],[1133,"T"],[1135,""],[1139,"T"],[1141,"U,T"],[1143,"U"],[1147,"WpParam,T"],[1149,"U"],[1153,"T"],[1155,""],[1158,"T"],[1160,""],[1161,""],[1162,""],[1166,"T"],[1168,""],[1172,""],[1173,""],[1175,""],[1176,"C"],[1178,"U,T"],[1180,"U"],[1184,""],[1186,"C,U"],[1188,"C"],[1190,"V"],[1192,""],[1194,""],[1200,"T,M,D"],[1202,"C,T"],[1204,"C"],[1206,"T"],[1210,"WpParam,T"],[1212,""],[1214,"T"],[1216,""],[1218,"C,T"],[1220,""],[1223,"T"],[1227,"U,T"],[1229,"U"],[1233,"WpParam,T"],[1235,"U"],[1239,"T"],[1241,""],[1243,"T"],[1245,"C"],[1247,"U,T"],[1249,"U"],[1253,""],[1255,"C,U"],[1257,"C"],[1259,"V"],[1261,""],[1272,"T,M,D"],[1274,"C,T"],[1276,"C"],[1278,"T"],[1282,"WpParam,T"],[1284,""],[1286,"T"],[1288,""],[1290,"C,T"],[1292,""],[1296,"T"],[1300,"U,T"],[1302,"U"],[1306,"WpParam,T"],[1308,"U"],[1312,"T"],[1314,""],[1315,"T"],[1317,"C"],[1319,"U,T"],[1321,"U"],[1325,""],[1327,"C,U"],[1329,"C"],[1331,"V"],[1367,"T,M,D"],[1372,"C,T"],[1377,"C"],[1382,"T"],[1392,"WpParam,T"],[1397,""],[1402,"T"],[1407,""],[1412,"C,T"],[1417,""],[1433,"T"],[1443,"U,T"],[1448,"__H"],[1453,"U"],[1463,"WpParam,T"],[1468,"U"],[1478,"T"],[1488,""],[1490,"T"],[1495,"C"],[1500,"U,T"],[1505,"U"],[1515,""],[1520,"C,U"],[1525,"C"],[1530,"V"],[1535,""],[1541,"T,M,D"],[1544,""],[1545,""],[1546,""],[1547,"C,T"],[1550,"C"],[1553,"T"],[1559,"WpParam,T"],[1562,""],[1565,"T"],[1568,""],[1572,"C,T"],[1575,""],[1583,"T"],[1589,"U,T"],[1592,"U"],[1598,"WpParam,T"],[1601,"U"],[1607,"T"],[1610,""],[1611,"T"],[1612,""],[1616,"T"],[1619,"C"],[1622,"U,T"],[1625,"U"],[1631,""],[1634,"C,U"],[1637,"C"],[1640,"V"],[1655,"T,M,D"],[1660,""],[1661,"C,T"],[1666,"C"],[1671,""],[1673,"T"],[1683,"WpParam,T"],[1688,""],[1691,"H"],[1692,""],[1695,"T"],[1700,""],[1707,"C,T"],[1712,""],[1717,"Renderer::Handle"],[1718,""],[1719,"U"],[1721,""],[1723,"T"],[1724,""],[1728,"H"],[1729,""],[1737,"H"],[1738,""],[1746,"T"],[1747,""],[1750,"T"],[1753,""],[1754,"T"],[1761,""],[1762,"T"],[1765,""],[1766,""],[1767,"U,T"],[1772,""],[1773,"H"],[1774,"__H"],[1776,""],[1777,"U"],[1787,"WpParam,T"],[1792,"U"],[1802,""],[1804,"T"],[1809,""],[1812,"Renderer::Handle"],[1813,""],[1814,""],[1815,"T"],[1817,""],[1818,""],[1820,"T"],[1821,""],[1827,""],[1828,""],[1829,""],[1830,""],[1835,"T"],[1840,""],[1841,"C"],[1846,"U,T"],[1851,"U"],[1861,""],[1867,"C,U"],[1872,"C"],[1877,"V"],[1882,""],[1901,"T,M,D"],[1905,"C,T"],[1909,"C"],[1913,""],[1914,"T"],[1922,"WpParam,T"],[1926,"T"],[1928,""],[1930,"T"],[1934,""],[1938,"C,T"],[1942,""],[1943,"T"],[1944,""],[1945,"T"],[1947,""],[1949,"T"],[1951,""],[1953,"T"],[1961,"U,T"],[1965,"__H"],[1966,"U"],[1974,"WpParam,T"],[1978,"U"],[1986,"T"],[1990,""],[1991,"T"],[1995,""],[1996,"T"],[2002,"C"],[2006,"U,T"],[2010,"U"],[2018,""],[2022,"C,U"],[2026,"C"],[2030,"V"],[2034,""],[2053,"T,M,D"],[2056,""],[2058,"C,T"],[2061,"C"],[2064,""],[2072,"T"],[2078,"WpParam,T"],[2081,""],[2084,"T"],[2087,""],[2093,"C,T"],[2096,""],[2104,"T"],[2105,""],[2112,"T"],[2118,""],[2122,"T"],[2123,""],[2124,"U,T"],[2127,"__H"],[2128,""],[2131,"U"],[2137,"WpParam,T"],[2140,"U"],[2146,"IntoIterator::IntoIter"],[2147,"T"],[2150,""],[2159,"T"],[2160,""],[2167,"T"],[2170,""],[2171,"C"],[2174,"U,T"],[2177,"U"],[2183,""],[2186,"C,U"],[2189,"C"],[2192,""],[2193,"V"],[2196,""],[2722,"T,M,D"],[2727,"C,T"],[2732,"C"],[2737,""],[2738,"T"],[2748,"WpParam,T"],[2753,"C"],[2754,""],[2758,"T"],[2763,""],[2768,"C"],[2769,""],[2773,"C,T"],[2778,"C"],[2779,""],[2787,"C"],[2788,""],[2793,"T"],[2803,"U,T"],[2808,"C,__H"],[2809,"__H"],[2813,"U"],[2823,"WpParam,T"],[2828,"U"],[2838,"T"],[2843,"C"],[2844,""],[2848,"T"],[2853,"C"],[2858,"U,T"],[2863,"U"],[2873,""],[2878,"C,U"],[2883,"C"],[2888,"V"],[2897,"T,M,D"],[2900,""],[2902,"C,T"],[2905,"C"],[2908,","],[2909,"T"],[2915,""],[2917,"WpParam,T"],[2920,""],[2925,"T"],[2928,""],[2931,"C,T"],[2934,",,"],[2935,""],[2942,"T"],[2948,"U,T"],[2951,""],[2952,"U"],[2958,"WpParam,T"],[2961,"U"],[2967,"T"],[2970,""],[2977,""],[2979,""],[2982,","],[2983,"T"],[2984,",,,"],[2985,""],[2986,",,,,"],[2987,","],[2988,""],[2989,""],[2990,",,"],[2991,"T"],[2994,""],[2996,"C"],[2999,"U,T"],[3002,"U"],[3008,""],[3011,"C,U"],[3014,"C"],[3017,"V"],[3020,""],[3021,""],[3026,"T,M,D"],[3027,"C,T"],[3028,"C"],[3029,"T"],[3031,"WpParam,T"],[3032,"C,T"],[3033,""],[3034,"T"],[3036,"U,T"],[3037,"U"],[3039,"WpParam,T"],[3040,"U"],[3042,"T"],[3043,"Renderer,Message,Theme"],[3044,"C"],[3045,"U,T"],[3046,"U"],[3048,""],[3049,"C,U"],[3050,"C"],[3051,"V"],[3094,"T,M,D"],[3099,"C,T"],[3104,"C"],[3109,"T"],[3119,"WpParam,T"],[3125,""],[3130,"T"],[3135,""],[3141,"C,T"],[3146,""],[3158,"T"],[3168,"U,T"],[3173,"__H"],[3174,"U"],[3184,"WpParam,T"],[3189,"U"],[3199,"T"],[3204,""],[3209,"T"],[3211,""],[3216,"T"],[3221,"C"],[3226,"U,T"],[3231,"U"],[3241,""],[3246,"C,U"],[3251,"C"],[3256,"V"],[3261,""],[3272,"T,M,D"],[3274,"C,T"],[3276,"C"],[3278,"T"],[3282,"WpParam,T"],[3284,""],[3286,"T"],[3288,""],[3290,"C,T"],[3292,""],[3295,"T"],[3299,"U,T"],[3301,"U"],[3305,"WpParam,T"],[3307,"U"],[3311,"T"],[3313,""],[3317,"T"],[3319,"C"],[3321,"U,T"],[3323,"U"],[3327,""],[3329,"C,U"],[3331,"C"],[3333,"V"],[3338,"T,M,D"],[3340,"C,T"],[3342,"C"],[3344,"T"],[3348,"WpParam,T"],[3350,"C,T"],[3352,"Message,Theme,Renderer"],[3353,"Renderer,Theme"],[3354,"Message,Theme,Renderer"],[3356,"T"],[3357,"Message,Theme,Renderer"],[3358,"T"],[3361,"Message,Theme,Renderer"],[3362,"U,T"],[3364,"U"],[3368,"WpParam,T"],[3370,"U"],[3374,"T"],[3376,"Message,Theme,Renderer"],[3378,"Renderer"],[3380,"Message,Theme,Renderer"],[3382,"Message,Theme,Renderer,B"],[3383,"Message,Theme,Renderer"],[3385,"Renderer"],[3386,"Message,Theme,Renderer"],[3388,"T"],[3389,"Message,Theme,Renderer"],[3391,"Renderer"],[3392,"Message,Theme,Renderer"],[3395,"Renderer,Message,Theme"],[3396,"Message,Theme,Renderer,"],[3397,"C"],[3399,"U,T"],[3401,"U"],[3405,""],[3407,"C,U"],[3409,"C"],[3411,"Message,Theme,Renderer"],[3413,"Renderer,Message"],[3414,"V"],[3416,"Message,Theme,Renderer"],[3419,"T,M,D"],[3420,""],[3421,"C,T"],[3422,"C"],[3423,"T"],[3425,""],[3427,""],[3428,"WpParam,T"],[3429,""],[3430,"T"],[3431,""],[3432,"C,T"],[3433,""],[3440,"T"],[3441,""],[3443,"T"],[3444,"U,T"],[3445,""],[3446,"U"],[3448,"WpParam,T"],[3449,"U"],[3451,"T"],[3452,""],[3454,""],[3456,"T"],[3457,""],[3459,""],[3460,"T"],[3461,""],[3463,""],[3464,"C"],[3465,"U,T"],[3466,"U"],[3468,""],[3469,"C,U"],[3470,"C"],[3471,""],[3472,"V"],[3477,"T,M,D"],[3479,"C,T"],[3481,"C"],[3483,""],[3484,"T"],[3488,""],[3489,"WpParam,T"],[3491,""],[3494,"T"],[3496,""],[3498,"C,T"],[3500,""],[3506,""],[3507,""],[3509,"T"],[3513,"U,T"],[3515,"U"],[3519,"WpParam,T"],[3521,"U"],[3525,"T"],[3527,""],[3528,"T"],[3530,""],[3535,"T"],[3537,"C"],[3539,"U,T"],[3541,"U"],[3545,""],[3547,"C,U"],[3549,"C"],[3551,"V"],[3553,""],[3562,"T,M,D"],[3565,"C,T"],[3568,"C"],[3571,"T"],[3577,"WpParam,T"],[3580,"H"],[3581,""],[3583,"T"],[3586,""],[3589,""],[3590,""],[3591,"C,T"],[3594,""],[3596,"H"],[3597,""],[3599,"H"],[3600,""],[3602,"T"],[3603,""],[3604,"T"],[3610,""],[3612,"U,T"],[3615,""],[3616,"H"],[3617,"__H"],[3618,""],[3619,"U"],[3625,"WpParam,T"],[3628,"U"],[3634,"T"],[3637,""],[3638,""],[3640,""],[3641,""],[3642,""],[3643,"T"],[3646,"C"],[3649,"U,T"],[3652,"U"],[3658,""],[3661,"C,U"],[3664,"C"],[3667,"V"],[3704,"T,M,D"],[3712,"C,T"],[3720,"C"],[3728,"Link,Font,"],[3729,""],[3730,"Link,Font,"],[3732,""],[3733,"Link,Font,"],[3734,"T"],[3750,""],[3751,"WpParam,T"],[3759,"Content,Font"],[3760,""],[3765,"Link,Font"],[3766,""],[3767,"T"],[3775,""],[3783,"Link,Font,"],[3784,""],[3785,"Link,Font,"],[3786,"C,T"],[3794,""],[3799,"Link,Font"],[3800,"Renderer::Font,Renderer::Paragraph,Renderer::Editor"],[3803,""],[3808,"Link,Font"],[3809,""],[3810,"Renderer::Font,Renderer::Paragraph,Renderer::Editor"],[3813,"Content,Font"],[3814,""],[3819,"Link,Font"],[3820,""],[3821,"Link,Font,"],[3822,""],[3824,"Link,Font,"],[3825,"T"],[3829,""],[3831,"T"],[3834,"Link,Font"],[3835,"T"],[3844,"U,T"],[3852,"__H"],[3854,"H"],[3855,""],[3858,"U"],[3874,"WpParam,T"],[3882,"U"],[3898,""],[3901,"T"],[3909,"Link,Font,"],[3910,""],[3912,"Link,Font,"],[3913,""],[3914,"Link,Font,"],[3915,",Link,Font"],[3916,"T"],[3920,"Link,Font,"],[3921,""],[3924,"Link,Font,"],[3925,""],[3927,"Link,Font"],[3928,""],[3931,"T"],[3939,"Link,Font"],[3940,"C"],[3948,"U,T"],[3956,"U"],[3972,""],[3980,"C,U"],[3988,"C"],[3996,"Link,Font"],[3997,""],[3999,"V"],[4007,""],[4052,"T,M,D"],[4059,"C,T"],[4066,"C"],[4073,""],[4074,"T"],[4088,"Editor::Font"],[4089,"WpParam,T"],[4096,""],[4103,"T"],[4110,""],[4117,"C,T"],[4124,"Editor::Font"],[4126,""],[4143,"T"],[4157,"U,T"],[4164,"Editor::Font,H,"],[4165,"U"],[4179,"WpParam,T"],[4186,"U"],[4200,"T"],[4207,""],[4208,"Editor::Font"],[4212,"T"],[4214,"Editor::Font"],[4216,""],[4217,"T"],[4224,"C"],[4231,"U,T"],[4238,"U"],[4252,""],[4259,"C,U"],[4266,"C"],[4273,"Editor::Font,"],[4274,"V"],[4281,""],[4282,"Editor::Font"],[4283,""],[4290,"T,M,D"],[4292,"C,T"],[4294,"C"],[4296,"T"],[4300,"WpParam,T"],[4302,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[4303,""],[4305,"Font"],[4306,"T"],[4308,""],[4311,"C,T"],[4313,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[4314,""],[4315,"Font"],[4317,""],[4318,"Font"],[4319,""],[4320,"T"],[4324,"U,T"],[4326,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[4327,"Highlighter::Iterator"],[4328,"U"],[4332,"WpParam,T"],[4334,"U"],[4338,"T"],[4340,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[4341,"Highlighter::Settings"],[4342,"T"],[4345,"C"],[4347,"U,T"],[4349,"U"],[4353,""],[4355,"C,U"],[4357,"C"],[4359,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[4360,"Highlighter::Settings"],[4361,"V"],[4366,"T,M,D"],[4367,"C,T"],[4368,"C"],[4369,"T"],[4371,"WpParam,T"],[4372,"P"],[4373,"T"],[4374,""],[4375,"Paragraph::Font"],[4376,"C,T"],[4377,"P"],[4379,"T"],[4381,"U,T"],[4382,"Paragraph::Font"],[4386,"P"],[4387,"U"],[4389,"WpParam,T"],[4390,"U"],[4392,"T"],[4393,"Paragraph::Font"],[4394,"P"],[4395,"Paragraph::Font"],[4396,"P"],[4397,"Paragraph::Font"],[4398,"P"],[4400,"T"],[4401,"P"],[4402,"Paragraph::Font"],[4404,"T"],[4405,"C"],[4406,"U,T"],[4407,"U"],[4409,""],[4410,"C,U"],[4411,"C"],[4412,"P"],[4413,"Paragraph::Font"],[4414,"P"],[4415,"V"],[4416,"Link,Paragraph::Font"],[4417,"Paragraph::Font"],[4447,"T,M,D"],[4450,"C,T"],[4453,"C"],[4456,""],[4459,"T"],[4465,"WpParam,T"],[4468,""],[4471,"T"],[4474,""],[4477,"C,T"],[4480,""],[4481,""],[4482,""],[4484,"Catalog::Class"],[4485,""],[4494,"T"],[4500,"U,T"],[4503,"U"],[4509,"WpParam,T"],[4512,"U"],[4518,"T"],[4521,""],[4522,"T"],[4524,""],[4525,"Catalog::Class"],[4526,""],[4527,"T"],[4530,""],[4534,"C"],[4537,"U,T"],[4540,"U"],[4546,""],[4549,"C,U"],[4552,"C"],[4555,"V"],[4558,""],[4567,""],[4612,"T,M,D"],[4621,"C,T"],[4630,"C"],[4639,""],[4647,"T"],[4665,"WpParam,T"],[4674,""],[4683,"T"],[4692,""],[4702,"C,T"],[4711,""],[4731,"T"],[4749,"U,T"],[4758,""],[4764,"U"],[4782,"WpParam,T"],[4791,"U"],[4809,"T"],[4818,""],[4834,"T"],[4843,"C"],[4852,"U,T"],[4861,"U"],[4879,""],[4888,"C,U"],[4897,"C"],[4906,"V"],[4915,""],[4932,"T,M,D"],[4934,""],[4938,"C,T"],[4940,"C"],[4942,""],[4950,"T"],[4952,"Borrowed"],[4953,"T"],[4955,"WpParam,T"],[4957,""],[4966,"T"],[4968,""],[4972,"C,T"],[4974,""],[4976,"D"],[4977,""],[4991,"T"],[4993,""],[4994,"T"],[4996,""],[5005,"U,T"],[5007,""],[5008,"__H"],[5010,""],[5011,"U"],[5015,"WpParam,T"],[5017,"U"],[5021,"T"],[5023,""],[5032,"T"],[5033,""],[5040,"S"],[5041,""],[5050,"I"],[5052,"T"],[5054,"C"],[5056,"U,T"],[5058,""],[5060,"U"],[5064,""],[5066,"C,U"],[5068,"C"],[5070,"V"],[5078,"T,M,D"],[5080,"C,T"],[5082,"C"],[5084,"T"],[5088,"WpParam,T"],[5090,""],[5092,"T"],[5094,""],[5096,"C,T"],[5098,""],[5102,"T"],[5106,"U,T"],[5108,"__H"],[5109,"U"],[5113,"WpParam,T"],[5115,"U"],[5119,"T"],[5123,"C"],[5125,"U,T"],[5127,"U"],[5131,""],[5133,"C,U"],[5135,"C"],[5137,"V"],[5139,""],[5152,"T,M,D"],[5153,"C,T"],[5154,"C"],[5155,"T"],[5157,"WpParam,T"],[5158,""],[5160,"T"],[5161,""],[5162,"C,T"],[5163,""],[5164,"Renderer,Theme"],[5165,""],[5167,"T"],[5169,"U,T"],[5170,"__H"],[5171,"U"],[5173,"WpParam,T"],[5174,"U"],[5176,"T"],[5177,"Renderer"],[5179,""],[5180,"Renderer"],[5182,"Renderer,Message,Theme"],[5183,""],[5188,"T"],[5190,"C"],[5191,"U,T"],[5192,"U"],[5194,""],[5195,"C,U"],[5196,"C"],[5197,""],[5198,"Renderer,Message"],[5199,"V"],[5208,"T,M,D"],[5209,"C,T"],[5210,"C"],[5211,"O"],[5212,"T"],[5214,"WpParam,T"],[5215,"C,T"],[5216,""],[5218,"T"],[5221,""],[5222,"T"],[5224,"U,T"],[5225,"U"],[5227,"WpParam,T"],[5228,"U"],[5230,"T"],[5231,"A,,B,"],[5232,"T,"],[5234,""],[5238,"A,,B,O"],[5239,"C"],[5240,"U,T"],[5241,"U"],[5243,""],[5244,"C,U"],[5245,"C"],[5246,"V"],[5249,"T,M,D"],[5250,"C,T"],[5251,"C"],[5252,"T"],[5254,"WpParam,T"],[5255,""],[5256,"T"],[5257,""],[5258,"C,T"],[5259,""],[5264,"T"],[5265,""],[5266,"T"],[5268,""],[5269,"T"],[5271,"U,T"],[5272,"U"],[5274,"WpParam,T"],[5275,"U"],[5277,"T"],[5278,""],[5279,"T"],[5281,""],[5282,"C"],[5283,"U,T"],[5284,"U"],[5286,""],[5287,"C,U"],[5288,"C"],[5289,""],[5290,"V"],[5296,"T,M,D"],[5298,"C,T"],[5300,"C"],[5302,"T"],[5306,"WpParam,T"],[5308,""],[5310,"T"],[5312,""],[5314,"C,T"],[5316,""],[5322,"T"],[5326,"U,T"],[5328,"U"],[5332,"WpParam,T"],[5334,"U"],[5338,"T"],[5343,""],[5344,"T"],[5345,""],[5346,"T"],[5347,""],[5348,"T"],[5350,"C"],[5352,"U,T"],[5354,"U"],[5358,""],[5360,"C,U"],[5362,"C"],[5364,"V"],[5366,""],[5371,"T"],[5372,""],[5373,"T"],[5374,""],[5375,"T"],[5376,""],[5377,"T"],[5378,""],[5388,"T,M,D"],[5391,"Theme,Renderer,"],[5393,"C,T"],[5396,"C"],[5399,""],[5400,"T"],[5406,"WpParam,T"],[5409,"Theme,Renderer"],[5410,"Theme,Renderer,"],[5411,""],[5412,"T"],[5413,""],[5414,"Theme,Renderer,"],[5415,""],[5416,"Theme,Renderer,"],[5417,"C,T"],[5420,""],[5422,"Catalog::Class"],[5423,"P"],[5424,""],[5425,"Renderer"],[5426,"Theme,Renderer"],[5427,""],[5428,"P"],[5429,""],[5430,"Theme,Renderer,"],[5431,"Theme,Renderer"],[5432,"T"],[5438,"U,T"],[5441,"Theme,Renderer,"],[5442,"U"],[5448,"WpParam,T"],[5451,"U"],[5457,"T"],[5460,"Renderer"],[5461,"Theme,Renderer"],[5462,"Theme,Renderer,"],[5463,",Theme,Renderer"],[5464,"T"],[5466,"Theme,Renderer"],[5467,""],[5469,"Theme,Renderer"],[5471,"Theme,Renderer,"],[5472,"Theme,Renderer"],[5473,"Catalog::Class"],[5474,"Theme,Renderer,"],[5475,""],[5476,"Theme,Renderer"],[5477,"T"],[5478,"C"],[5481,"U,T"],[5484,"U"],[5490,""],[5493,"C,U"],[5496,"C"],[5499,"V"],[5502,"Theme,Renderer,"],[5503,"Theme,Renderer"],[5509,"T,M,D"],[5512,"C,T"],[5515,"C"],[5518,"T"],[5524,"WpParam,T"],[5527,""],[5529,"T"],[5530,""],[5532,"C,T"],[5535,""],[5537,"T,,"],[5538,"T,,,"],[5539,"T"],[5541,""],[5546,"T"],[5552,"U,T"],[5555,"__H"],[5556,"U"],[5562,"WpParam,T"],[5565,"U"],[5571,"T"],[5575,""],[5576,""],[5581,"T"],[5582,"C"],[5585,"U,T"],[5588,"U"],[5594,""],[5597,"C,U"],[5600,"C"],[5603,"V"],[5651,"T,M,D"],[5659,"C,T"],[5667,"C"],[5675,"T"],[5691,"WpParam,T"],[5699,""],[5707,"T"],[5715,""],[5725,"C,T"],[5733,""],[5750,"T"],[5757,""],[5758,"T"],[5767,"U,T"],[5775,"__H"],[5777,"U"],[5793,"WpParam,T"],[5801,"U"],[5817,"T"],[5827,""],[5831,"T"],[5839,""],[5841,"C"],[5849,"U,T"],[5857,"U"],[5873,""],[5881,"C,U"],[5889,"C"],[5897,""],[5898,"V"],[5906,""],[5912,"T,M,D"],[5914,"C,T"],[5916,"C"],[5918,"T"],[5922,"WpParam,T"],[5924,""],[5925,"T"],[5926,""],[5927,"C,T"],[5929,""],[5932,"T"],[5936,""],[5937,"U,T"],[5939,"U"],[5943,"WpParam,T"],[5945,"U"],[5949,""],[5950,"T"],[5953,""],[5955,"C"],[5957,"U,T"],[5959,"U"],[5963,""],[5965,"C,U"],[5967,"C"],[5969,"V"],[5971,""],[5980,"T,M,D"],[5982,"C,T"],[5984,"C"],[5986,""],[5987,"T"],[5991,""],[5992,"WpParam,T"],[5994,""],[5995,"T"],[5996,""],[5997,"C,T"],[5999,""],[6000,"U"],[6002,""],[6005,"T"],[6009,"U,T"],[6011,"U"],[6015,"WpParam,T"],[6017,"U"],[6021,"T"],[6023,""],[6024,""],[6026,"T"],[6027,""],[6029,"C"],[6031,"U,T"],[6033,"U"],[6037,""],[6039,"C,U"],[6041,"C"],[6043,"V"],[6047,"T,M,D"],[6049,""],[6050,"C,T"],[6052,"C"],[6054,"T"],[6058,"WpParam,T"],[6060,""],[6062,"T"],[6064,""],[6066,"C,T"],[6068,""],[6075,"T"],[6079,"U,T"],[6081,""],[6083,"U"],[6087,"WpParam,T"],[6089,"U"],[6093,"T"],[6095,""],[6099,"T"],[6101,""],[6106,"T"],[6108,""],[6109,"C"],[6111,"U,T"],[6113,"U"],[6117,""],[6119,"C,U"],[6121,"C"],[6123,""],[6124,"V"]]}],["iced_futures",{"t":"IIEKKFENNNCNNHNNNENCCNNNNENNNNNNCNNNCCNNNNNNNNNCCCCCCCFNNNNNNNNNNNNNNNNNNNCNNNNNNNNHFNNNNNNNNNNNNNNNNNNNCNNNNNNNNHINNCINNNCHHFNNNNNNNNNNNNNNNNNNNCNNNNNNNNHHHHKNMMHHHHGIIPGPRGPPKFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOO","n":["BoxFuture","BoxStream","Executor","MaybeSend","MaybeSync","Runtime","Subscription","adapt_into_using","arrays_from","arrays_into","backend","borrow","borrow_mut","boxed_stream","broadcast","cam16_into_unclamped","components_from","core","enter","event","executor","fmt","from","from_angle","from_stimulus","futures","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","keyboard","new","run","spawn","stream","subscription","track","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vzip","default","native","null","async_std","smol","thread_pool","tokio","Executor","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","components_from","fmt","from","from_angle","from_stimulus","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","new","spawn","time","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vzip","every","Executor","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","components_from","fmt","from","from_angle","from_stimulus","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","new","spawn","time","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vzip","every","Executor","new","spawn","time","Executor","enter","new","spawn","time","every","repeat","Executor","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","components_from","fmt","from","from_angle","from_stimulus","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","new","spawn","time","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vzip","listen","listen_raw","listen_url","listen_with","Executor","enter","new","spawn","on_key_press","on_key_release","channel","try_channel","Event","EventStream","Hasher","Interaction","MacOS","","Output","PlatformSpecific","","ReceivedUrl","Recipe","Subscription","Tracker","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","batch","borrow","","","","","borrow_mut","","","","","broadcast","cam16_into_unclamped","","","","","clone","","","clone_into","","","clone_to_uninit","","","components_from","","","","","default","eq","","","fmt","","","","","from","","","","","from_angle","","","","","from_recipe","from_stimulus","","","","","hash","into","","","","","into_angle","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_recipes","into_stimulus","","","","","map","new","none","null_value","run","run_with","stream","to_owned","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","update","vzip","","","","","with","event","status","window"],"q":[[0,"iced_futures"],[47,"iced_futures::backend"],[50,"iced_futures::backend::native"],[54,"iced_futures::backend::native::async_std"],[83,"iced_futures::backend::native::async_std::time"],[84,"iced_futures::backend::native::smol"],[113,"iced_futures::backend::native::smol::time"],[114,"iced_futures::backend::native::thread_pool"],[118,"iced_futures::backend::native::tokio"],[123,"iced_futures::backend::native::tokio::time"],[125,"iced_futures::backend::null"],[154,"iced_futures::event"],[158,"iced_futures::executor"],[162,"iced_futures::keyboard"],[164,"iced_futures::stream"],[166,"iced_futures::subscription"],[334,"iced_futures::subscription::Event"],[337,"palette::chromatic_adaptation"],[338,"iced_futures::platform"],[339,"futures_core::stream"],[340,"core::marker"],[341,"iced_futures::runtime"],[342,"iced_futures::maybe::platform"],[343,"futures_channel::mpsc"],[344,"futures_sink"],[345,"core::clone"],[346,"palette::cam16::parameters"],[347,"core::ops::function"],[348,"core::fmt"],[349,"alloc::boxed"],[350,"core::iter::traits::collect"],[351,"core::result"],[352,"palette::convert::try_from_into_color"],[353,"core::any"],[354,"std::io::error"],[355,"core::future::future"],[356,"core::time"],[357,"std::time"],[358,"iced_core::event"],[359,"iced_core::window::id"],[360,"core::option"],[361,"alloc::string"],[362,"iced_core::keyboard::key"],[363,"iced_core::keyboard::modifiers"],[364,"iced_futures::subscription::tracker"],[365,"alloc::vec"],[366,"core::hash"],[367,"core::iter::traits::iterator"]],"i":"```````A`00`00`000`0``0000`000000`000``000000000````````Cn000000000000000000`00000000``Dj000000000000000000`00000000``Dl0``Dn00````Eb000000000000000000`00000000`````Af00```````Ab`FhCb`2Fj```DhFf542105421054211054210542010542542542542105420542105421054210542`1054231054210542105421054210542`105421010113542105421054210542105421054210542105420105421H`00","f":"```````{eg{}{{b{c}}}{}}{ce{}{}}{{}c{}}`{d{{d{c}}}{}}{{{d{f}}}{{d{fc}}}{}}{e{{h{c}}}{}{{l{}{{j{c}}}}n}}{{{d{f{A`{cge}}}}Ab}AdAfAh{{An{e}{{Aj{Al}}}}B`AhBb}}{{{Bd{c}}}e{}{}}6`{{{d{{A`{cge}}}}k}iAfAh{{An{e}{{Aj{Al}}}}B`AhBb}{}{{Bh{}{{Bf{i}}}}}}``{{{d{{A`{ceg}}}}{d{fBj}}}BlBnBnBn}{cc{}}0{ce{}{}}`{{}c{}}0500{{}c{}}`{{cg}{{A`{cge}}}AfAh{{An{e}{{Aj{Al}}}}B`AhBb}}{{{d{f{A`{cge}}}}{h{e}}}AdAfAh{{An{e}{{Aj{Al}}}}B`AhBb}}{{{d{f{A`{cge}}}}{C`{e}}}AdAfAh{{An{e}{{Aj{Al}}}}B`AhBb}}``{{{d{f{A`{cge}}}}i}AdAfAh{{An{e}{{Aj{Al}}}}B`AhBb}{{Cf{}{{j{{Cd{Cb}}}}}}}}{{}{{Ch{c}}}{}}{c{{Ch{e}}}{}{}}{{}{{Ch{c}}}{}}{{}{{Ch{c{Cj{c}}}}}{}}{dCl}{ce{}{}}{{}c{}}{{}c{}}````````{eg{}{{b{c}}}{}}{ce{}{}}3{d{{d{c}}}{}}{{{d{f}}}{{d{fc}}}{}}{{{Bd{c}}}e{}{}}3{{{d{Cn}}{d{fBj}}}Bl}{cc{}}0{ce{}{}}{{}c{}}0400{{}c{}}{{}{{Ch{CnD`}}}}{{{d{Cn}}c}Ad{{Db{}{{Bf{Ad}}}}n}}`{{}{{Ch{c}}}{}}{c{{Ch{e}}}{}{}}{{}{{Ch{c}}}{}}{{}{{Ch{c{Cj{c}}}}}{}}{dCl}{ce{}{}}{{}c{}}{{}c{}}{Dd{{Dh{Df}}}}`{eg{}{{b{c}}}{}}{ce{}{}}4{d{{d{c}}}{}}{{{d{f}}}{{d{fc}}}{}}{{{Bd{c}}}e{}{}}3{{{d{Dj}}{d{fBj}}}Bl}{cc{}}0{ce{}{}}{{}c{}}0400{{}c{}}{{}{{Ch{DjD`}}}}{{{d{Dj}}c}Ad{{Db{}{{Bf{Ad}}}}n}}`{{}{{Ch{c}}}{}}{c{{Ch{e}}}{}{}}{{}{{Ch{c}}}{}}{{}{{Ch{c{Cj{c}}}}}{}}{dCl}{ce{}{}}{{}c{}}{{}c{}}{Dd{{Dh{Df}}}}`{{}{{Ch{DlD`}}}}{{{d{Dl}}c}Ad{{Db{}{{Bf{Ad}}}}n}}``{{{d{Dn}}e}c{}{{Bh{}{{Bf{c}}}}}}{{}{{Ch{DnD`}}}}{{{d{Dn}}c}Ad{{Db{}{{Bf{Ad}}}}n}}`5{{{E`{}{{Bf{e}}}}Dd}{{Dh{c}}}Ah{{Db{}{{Bf{c}}}}Ah}}`{eg{}{{b{c}}}{}}{ce{}{}}:{d{{d{c}}}{}}{{{d{f}}}{{d{fc}}}{}}{{{Bd{c}}}e{}{}}3{{{d{Eb}}{d{fBj}}}Bl}{cc{}}0{ce{}{}}{{}c{}}0400{{}c{}}{{}{{Ch{EbD`}}}}{{{d{Eb}}c}Ad{{Db{}{{Bf{Ad}}}}n}}`{{}{{Ch{c}}}{}}{c{{Ch{e}}}{}{}}{{}{{Ch{c}}}{}}{{}{{Ch{c{Cj{c}}}}}{}}{dCl}{ce{}{}}{{}c{}}{{}c{}}{{}{{Dh{Ed}}}}{{{E`{EdEfEh}{{Bf{{Ej{c}}}}}}}{{Dh{c}}}Ah}{{}{{Dh{El}}}}1`{{{d{Af}}e}c{}{{Bh{}{{Bf{c}}}}}}{{}{{Ch{AfD`}}}}{{{d{Af}}c}Ad{{Db{}{{Bf{Ad}}}}Ah}}{{{E`{EnF`}{{Bf{{Ej{c}}}}}}}{{Dh{c}}}Ah}0{{Fbg}{{`{{l{}{{j{c}}}}}}}{}{{Db{}{{Bf{Ad}}}}}{{Bh{{Fd{c}}}{{Bf{e}}}}}}{{Fbi}{{`{{l{}{{j{{Ch{ce}}}}}}}}}{}{}{{Db{}{{Bf{{Ch{Ade}}}}}}}{{Bh{{Fd{c}}}{{Bf{g}}}}}}`````````````{eg{}{{b{c}}}{}}0000{ce{}{}}0000<<<<<{e{{Dh{c}}}{}{{Cf{}{{j{{Dh{c}}}}}}}}{d{{d{c}}}{}}0000{{{d{f}}}{{d{fc}}}{}}0000{{{d{fFf}}Ab}Ad}{{{Bd{c}}}e{}{}}0000{{{d{Ab}}}Ab}{{{d{Fh}}}Fh}{{{d{Fj}}}Fj}{{d{d{fc}}}Ad{}}00{{dFl}Ad}00:::::{{}Ff}{{{d{Ab}}{d{Ab}}}Fn}{{{d{Fh}}{d{Fh}}}Fn}{{{d{Fj}}{d{Fj}}}Fn}{{{d{{Dh{c}}}}{d{fBj}}}Bl{}}{{{d{Ff}}{d{fBj}}}Bl}{{{d{Ab}}{d{fBj}}}Bl}{{{d{Fh}}{d{fBj}}}Bl}{{{d{Fj}}{d{fBj}}}Bl}{cc{}}000000000{e{{Dh{c}}}{}{{Cb{}{{Bf{c}}}}}}{ce{}{}}0000{{{d{{Cb{}{{Bf{c}}}}}}{d{fG`}}}Ad{}}{{}c{}}000000000{{{Bd{c}}}e{}{}}00001111111111{{{Dh{c}}}{{Gb{{Cd{Cb}}}}}{}}{{}c{}}0000{{{Dh{c}}g}{{Dh{e}}}{}{}{{Gd{c}{{Bf{e}}}}AhBb}}{{}Ff}{{}{{Dh{c}}}{}}3{{{E`{}{{Bf{e}}}}}{{Dh{c}}}{}{{l{}{{j{c}}}}Ah}}{{c{E`{{d{c}}}{{Bf{g}}}}}{{Dh{e}}}Gf{}{{l{}{{j{e}}}}Ah}}{{{Cd{{Cb{}{{Bf{c}}}}}}Gh}{{h{c}}}{}}{dc{}}00{{}{{Ch{c}}}{}}0000{c{{Ch{e}}}{}{}}0000{{}{{Ch{c}}}{}}0000{{}{{Ch{c{Cj{c}}}}}{}}0000{dCl}0000{ce{}{}}0000{{}c{}}0000{{{d{fFf}}cg}{{Gb{{C`{Ad}}}}}{{Gj{}{{j{{Cd{Cb}}}}}}}Ah{{An{e}{{Aj{Al}}}}B`AhBb}}{{}c{}}0000{{{Dh{c}}e}{{Dh{{Gl{ec}}}}}{}{GfBbnGn}}{H`Ed}{H`Ef}{H`Eh}","D":"Lf","p":[[10,"TransformMatrix",337],[1,"reference",null,null,1],[0,"mut"],[8,"BoxStream",0,338],[17,"Item"],[10,"Stream",339],[10,"Send",340],[5,"Runtime",0,341],[6,"Event",166],[1,"unit"],[10,"Executor",158],[10,"MaybeSend",0,342],[17,"Error"],[5,"SendError",343],[10,"Sink",344],[10,"Unpin",340],[10,"Clone",345],[5,"BakedParameters",346],[17,"Output"],[10,"FnOnce",347],[5,"Formatter",348],[8,"Result",348],[10,"Debug",348],[8,"BoxFuture",0,338],[10,"Recipe",166],[5,"Box",349,null,1],[10,"IntoIterator",350],[6,"Result",351,null,1],[5,"OutOfBounds",352],[5,"TypeId",353],[5,"Executor",54],[5,"Error",354],[10,"Future",355,null,1],[5,"Duration",356],[5,"Instant",357],[5,"Subscription",166],[5,"Executor",84],[8,"Executor",114],[8,"Executor",118],[1,"fn"],[5,"Executor",125],[6,"Event",358],[6,"Status",358],[5,"Id",359],[6,"Option",360,null,1],[5,"String",361],[6,"Key",362],[5,"Modifiers",363],[1,"usize"],[5,"Sender",343],[5,"Tracker",166,364],[6,"PlatformSpecific",166],[6,"MacOS",166],[1,"u8"],[1,"bool"],[8,"Hasher",166],[5,"Vec",365],[10,"Fn",347],[10,"Hash",366],[8,"EventStream",166],[10,"Iterator",367],[1,"tuple",null,null,1],[10,"Sync",340],[15,"Interaction",334]],"r":[[0,338],[1,338],[2,158],[3,342],[4,342],[5,341],[6,166],[7,341],[8,341],[9,341],[11,341],[12,341],[13,338],[14,341],[15,341],[16,341],[18,341],[21,341],[22,341],[23,341],[24,341],[26,341],[27,341],[28,341],[29,341],[30,341],[31,341],[33,341],[34,341],[35,341],[38,341],[39,341],[40,341],[41,341],[42,341],[43,341],[44,341],[45,341],[46,341],[178,364],[180,364],[185,364],[190,364],[196,364],[201,364],[205,364],[207,364],[221,364],[225,364],[230,364],[235,364],[240,364],[246,364],[252,364],[257,364],[262,364],[267,364],[272,364],[278,364],[283,364],[285,364],[293,364],[298,364],[303,364],[308,364],[313,364],[318,364],[323,364],[327,364],[329,364]],"b":[],"c":"OjAAAAAAAAA=","e":"OzAAAAEAAO4AIAADAAAABwADAAwAAQAQAAIAFgAAABgAAgAcAAQAKAAHADgABwBBAAEARAAGAEwABwBWAAcAXwABAGIABgBqAAcAdAABAHgAAgB/AAcAiAABAIsABgCTAAcAtAAOAMQACQDPABsA8AAEAPYABAABARMAFgEEAB4BAAAiASUASQEEAA==","P":[[7,"T,M,D"],[8,"C,T"],[9,"C"],[11,"T"],[13,"T,S"],[14,"Executor,Message,Sender"],[15,"WpParam,T"],[16,"C,T"],[18,"Executor,Message,Sender,R,"],[21,"Executor,Sender,Message"],[22,"T"],[24,"U,T"],[26,"U"],[28,"WpParam,T"],[29,"U"],[31,"T"],[33,"Executor,Message,Sender"],[38,"Executor,Message,Sender,"],[39,"C"],[40,"U,T"],[41,"U"],[43,""],[44,"C,U"],[45,"C"],[46,"V"],[55,"T,M,D"],[56,"C,T"],[57,"C"],[58,"T"],[60,"WpParam,T"],[61,"C,T"],[62,""],[63,"T"],[65,"U,T"],[66,"U"],[68,"WpParam,T"],[69,"U"],[71,"T"],[72,""],[73,""],[75,"C"],[76,"U,T"],[77,"U"],[79,""],[80,"C,U"],[81,"C"],[82,"V"],[83,""],[85,"T,M,D"],[86,"C,T"],[87,"C"],[88,"T"],[90,"WpParam,T"],[91,"C,T"],[92,""],[93,"T"],[95,"U,T"],[96,"U"],[98,"WpParam,T"],[99,"U"],[101,"T"],[102,""],[103,""],[105,"C"],[106,"U,T"],[107,"U"],[109,""],[110,"C,U"],[111,"C"],[112,"V"],[113,""],[116,""],[119,"R,"],[120,""],[121,""],[123,""],[124,"T,F"],[126,"T,M,D"],[127,"C,T"],[128,"C"],[129,"T"],[131,"WpParam,T"],[132,"C,T"],[133,""],[134,"T"],[136,"U,T"],[137,"U"],[139,"WpParam,T"],[140,"U"],[142,"T"],[143,""],[144,""],[146,"C"],[147,"U,T"],[148,"U"],[150,""],[151,"C,U"],[152,"C"],[153,"V"],[154,""],[155,"Message"],[156,""],[157,"Message"],[159,"R,"],[160,""],[161,""],[162,"Message"],[164,"T,F,"],[165,"T,E,F,"],[179,"T,M,D"],[184,"C,T"],[189,"C"],[194,"T,"],[195,"T"],[205,""],[206,"WpParam,T"],[211,""],[214,"T"],[217,""],[220,"C,T"],[225,""],[229,"T"],[230,""],[234,"T"],[244,"T,"],[245,"U,T"],[250,"Recipe::Output"],[251,"U"],[261,"WpParam,T"],[266,"U"],[276,"T"],[282,"T,A,F"],[283,""],[284,"T"],[286,"T,S"],[287,"D,T,S"],[288,"Recipe::Output"],[289,"T"],[292,"C"],[297,"U,T"],[302,"U"],[312,""],[317,"C,U"],[322,"C"],[327,",Message,Receiver"],[328,"V"],[333,"T,A"],[334,""]]}],["iced_graphics",{"t":"GEEEEEEPPPPEFEFNNNONNNNNNNNNNNNCNNNNNNNNNNNNCNNNCECNOONNNNNNNNNNNCNNNNNNNNNNNNECCCNNNNNNNNNNNNNNNNNNNNNCNCNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNFRKPPFGNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOSFNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNKRKFPPPRRGPKNNONNNNONNNNNNNNNNNMMMNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNMMNNNNNNNNNNNNNNNNNNNMHHHPPGPPPGPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOFEERREPFEEEEKPEGFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNONNNNNNNNNNNNNMNNNNNNNNNCNONNNNNOCNNNNNNNNNNNNNNNNNNNNNEOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNMNNNNOOCONNOOOONOCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNPFPGENNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNKFRNNNNNNMNNNNMMNMNNMNMNMNNNNMNNNNNNNMNNNMMNMNMNMNMNMNMNMNMNNNNNNNNNMNNNEFFNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNENNNNNNNNNNNNNNNNNNNNNNNNNNNNFFNNNNNNNNNNNNOONNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNOOOOONNNNNNNNNNNNNNNNNNPPGFGPPPPFENNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOONNNNOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNGFPFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNGPPNNNNNNNNNNNNNNNNNNNENNNNNNNHNNNNNNNNNKFNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNMMNNNNNNNNNMFPFFGKPFNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOONOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNOOOOOOEPEPSFEPFPGFNNNNNNNNNNNNNNNNNNNNOCNNNNONNNNNNNNNNONNNNENNNNNNNNNNNNNCNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNCNONHHNNNHHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOOOOOOOOOOOOOOOOFFFINNNNNNNNNNNNNNNNOONNNNNNNNNONNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNOONNNNNNNNNNNNNNNNNNNNNNNNNNFFNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNONNNN","n":["Antialiasing","Cache","Compositor","Error","Gradient","Image","Layer","MSAAx16","MSAAx2","MSAAx4","MSAAx8","Mesh","Settings","Text","Viewport","adapt_into_using","","","antialiasing","arrays_from","","","arrays_into","","","borrow","","","borrow_mut","","","cache","cam16_into_unclamped","","","clone","","","clone_into","","","clone_to_uninit","","","color","components_from","","","compositor","core","damage","default","default_font","default_text_size","deref","","","deref_mut","","","drop","","","eq","","error","fmt","","","from","","","from_angle","","","from_stimulus","","","futures","geometry","gradient","image","init","","","into","","","into_angle","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","layer","logical_size","mesh","null_value","physical_height","physical_size","physical_width","projection","sample_count","scale_factor","text","to_owned","","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","vzip","","","with_physical_size","Cache","","Cached","Empty","Filled","Group","State","adapt_into_using","","","arrays_from","","","arrays_into","","","borrow","","","borrow_mut","","","cache","cam16_into_unclamped","","","clear","clone","","clone_into","","clone_to_uninit","","cmp","components_from","","","default","deref","","","deref_mut","","","drop","","","eq","","fmt","","","from","","","from_angle","","","from_stimulus","","","group","hash","init","","","into","","","into_angle","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","is_singleton","load","new","null_value","partial_cmp","put","state","to_owned","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","unique","vzip","","","with_group","current","previous","GAMMA_CORRECTION","Packed","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components","components_from","deref","deref_mut","drop","eq","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","is_valid_bit_pattern","pack","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vzip","Compositor","","Default","Information","Lost","OutOfMemory","Outdated","Renderer","Surface","SurfaceError","Timeout","Window","adapt_into_using","","adapter","arrays_from","","arrays_into","","backend","borrow","","borrow_mut","","cam16_into_unclamped","","clone","clone_into","clone_to_uninit","components_from","","configure_surface","create_renderer","create_surface","deref","","deref_mut","","drop","","eq","fetch_information","fmt","","","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","load_font","new","present","screenshot","to_owned","to_smolstr","to_string","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","with_backend","diff","group","list","BackendError","DidNotMatch","Error","GraphicsAdapterNotFound","List","NoAvailablePixelFormat","Reason","RequestFailed","VersionNotSupported","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","deref","","deref_mut","","drop","","eq","","fmt","","","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","to_owned","","to_smolstr","to_string","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","backend","reason","preferred_backend","Cache","Fill","Frame","","Geometry","Gradient","","Image","LineCap","LineDash","LineJoin","Path","Renderer","Solid","Stroke","Style","Svg","Text","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","borrow","","","","","borrow_mut","","","","","cam16_into_unclamped","","","","","clear","clone","","","","clone_into","","","","clone_to_uninit","","","","color","","","components_from","","","","","content","default","","deref","","","","","deref_mut","","","","","draw","draw_geometry","draw_with","drop","","","","","eq","","","fill","filter_method","","fmt","","","","","font","frame","from","","","","","","","","","","","from_angle","","","","","from_stimulus","","","","","gradient","handle","","horizontal_alignment","init","","","","","into","","","","","into_angle","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_stimulus","","","","","line_height","new","","","new_frame","null_value","","opacity","","","","path","position","rotation","","","","shaping","size","snap","","stroke","to_owned","","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","vertical_alignment","vzip","","","","","with_group","EvenOdd","Fill","NonZero","Rule","Style","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","default","deref","","deref_mut","","drop","","eq","fmt","","from","","","","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","null_value","rule","style","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","Backend","Frame","Geometry","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","center","","components_from","deref","deref_mut","draft","draw_image","","draw_svg","","drop","fill","","fill_rectangle","","fill_text","","from","from_angle","from_stimulus","height","","init","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_geometry","","into_stimulus","new","paste","pop_transform","","push_transform","","rotate","","scale","","scale_nonuniform","","size","","stroke","","stroke_rectangle","","translate","","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vzip","width","","with_clip","with_save","Arc","Builder","Path","adapt_into_using","","arc","","arc_to","arrays_from","","arrays_into","","bezier_curve_to","borrow","","borrow_mut","","build","cam16_into_unclamped","","circle","","clone","clone_into","clone_to_uninit","close","components_from","","default","deref","","deref_mut","","drop","","ellipse","fmt","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","line","line_to","lyon_path","move_to","new","","null_value","quadratic_curve_to","raw","rectangle","","rounded_rectangle","","to_owned","transform","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","Arc","Elliptical","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","center","","clone","","clone_into","","clone_to_uninit","","components_from","","deref","","deref_mut","","drop","","end_angle","","fmt","","from","","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","radii","radius","rotation","start_angle","","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","Bevel","Butt","LineCap","LineDash","LineJoin","Miter","Round","","Square","Stroke","Style","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","clone","","","","clone_into","","","","clone_to_uninit","","","","components_from","","","","default","","","","deref","","","","deref_mut","","","","drop","","","","fmt","","","","from","","","","from_angle","","","","from_stimulus","","","","init","","","","into","","","","into_angle","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_stimulus","","","","line_cap","line_dash","line_join","null_value","","","","offset","segments","style","to_owned","","","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","vzip","","","","width","with_color","with_line_cap","with_line_join","with_width","Gradient","Linear","","Packed","adapt_into_using","","","add_stop","add_stops","arrays_from","","","arrays_into","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","","","clone_into","","","clone_to_uninit","","","components_from","","","deref","","","deref_mut","","","drop","","","end","eq","","","fmt","","","from","","","","from_angle","","","from_stimulus","","","init","","","into","","","into_angle","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","is_valid_bit_pattern","new","pack","","","start","stops","to_owned","","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","vzip","","","Image","Raster","Vector","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","bounds","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","deref","deref_mut","drop","eq","fmt","from","from_angle","from_stimulus","image_rs","init","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","load","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vzip","Layer","Stack","adapt_into_using","arrays_from","arrays_into","as_slice","borrow","borrow_mut","cam16_into_unclamped","clear","components_from","current_mut","default","deref","deref_mut","drop","flush","","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","iter","iter_mut","new","null_value","pop_clip","pop_transformation","push_clip","push_transformation","reset","resize","transformation","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vzip","with_bounds","AttributeCount","Gradient","GradientVertex2D","Indexed","Mesh","Renderer","Solid","SolidVertex2D","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","attribute_count_of","borrow","","","","","borrow_mut","","","","","cam16_into_unclamped","","","","","clip_bounds","clone","","","","","clone_into","","","","","clone_to_uninit","","","","","color","components_from","","","","","default","deref","","","","","deref_mut","","","","","draw_mesh","drop","","","","","eq","","","","fmt","","","","","from","","","","","from_angle","","","","","from_stimulus","","","","","gradient","gradient_vertices","gradients","indices","","","init","","","","","into","","","","","into_angle","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_stimulus","","","","","is_valid_bit_pattern","","null_value","position","","solid_vertices","solids","to_owned","","","","","transformation","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","vertices","vzip","","","","","buffers","","clip_bounds","","transformation","","Cache","Cached","Editor","","FIRA_SANS_REGULAR","FontSystem","Paragraph","","Raw","","Text","Version","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","borrow","","","","borrow_mut","","","","buffer","cache","cam16_into_unclamped","","","","clip_bounds","clone","","","clone_into","","","clone_to_uninit","","","cmp","color","components_from","","","","cosmic_text","default","deref","","","","deref_mut","","","","drop","","","","editor","eq","","","fmt","","","font_system","from","","","","from_angle","","","","from_stimulus","","","","hash","init","","","","into","","","","into_angle","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_stimulus","","","","load_font","measure","null_value","paragraph","partial_cmp","position","raw","to_attributes","to_color","to_owned","","","to_shaping","to_wrap","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","version","visible_bounds","vzip","","","","bounds","clip_bounds","","","color","","","content","editor","font","horizontal_alignment","line_height","paragraph","position","","raw","shaping","size","transformation","","","vertical_alignment","Cache","Entry","Key","KeyHash","adapt_into_using","","","allocate","arrays_from","","","arrays_into","","","borrow","","","borrow_mut","","","bounds","buffer","cam16_into_unclamped","","","clone","clone_into","clone_to_uninit","components_from","","","content","default","deref","","","deref_mut","","","drop","","","fmt","","","font","from","","","from_angle","","","from_stimulus","","","get","init","","","into","","","into_angle","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","line_height","min_bounds","new","null_value","shaping","size","to_owned","trim","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","vzip","","","Editor","Weak","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","bounds","","buffer","cam16_into_unclamped","","clone","clone_into","clone_to_uninit","components_from","","cursor","cursor_position","default","deref","","deref_mut","","downgrade","drop","","eq","","fmt","","from","","from_angle","","from_stimulus","","highlight","init","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","is_empty","line","line_count","min_bounds","new","null_value","perform","selection","to_owned","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","update","upgrade","vzip","","with_text","Paragraph","Weak","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","buffer","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","compare","components_from","","default","deref","","deref_mut","","downgrade","drop","","eq","","fmt","","from","","from_angle","","from_stimulus","","grapheme_position","hit_span","hit_test","horizontal_alignment","","init","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","min_bounds","","new","null_value","resize","span_bounds","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upgrade","vertical_alignment","","vzip","","with_spans","with_text"],"q":[[0,"iced_graphics"],[142,"iced_graphics::cache"],[261,"iced_graphics::cache::State"],[263,"iced_graphics::color"],[302,"iced_graphics::compositor"],[391,"iced_graphics::damage"],[394,"iced_graphics::error"],[474,"iced_graphics::error::Error"],[476,"iced_graphics::error::Reason"],[477,"iced_graphics::geometry"],[708,"iced_graphics::geometry::fill"],[787,"iced_graphics::geometry::frame"],[859,"iced_graphics::geometry::path"],[947,"iced_graphics::geometry::path::arc"],[1025,"iced_graphics::geometry::stroke"],[1187,"iced_graphics::gradient"],[1304,"iced_graphics::image"],[1344,"iced_graphics::layer"],[1393,"iced_graphics::mesh"],[1590,"iced_graphics::mesh::Mesh"],[1596,"iced_graphics::text"],[1761,"iced_graphics::text::Text"],[1783,"iced_graphics::text::cache"],[1892,"iced_graphics::text::editor"],[1977,"iced_graphics::text::paragraph"],[2067,"palette::chromatic_adaptation"],[2068,"iced_graphics::settings"],[2069,"core::option"],[2070,"palette::cam16::parameters"],[2071,"iced_graphics::antialiasing"],[2072,"iced_graphics::viewport"],[2073,"iced_core::font"],[2074,"iced_core::pixels"],[2075,"core::fmt"],[2076,"iced_core::size"],[2077,"iced_core::transformation"],[2078,"core::result"],[2079,"palette::convert::try_from_into_color"],[2080,"core::any"],[2081,"core::clone"],[2082,"core::cmp"],[2083,"core::hash"],[2084,"core::cell"],[2085,"iced_core::color"],[2086,"core::convert"],[2087,"alloc::string"],[2088,"alloc::borrow"],[2089,"core::future::future"],[2090,"alloc::vec"],[2091,"smol_str"],[2092,"iced_core::rectangle"],[2093,"core::ops::function"],[2094,"iced_graphics::geometry::cache"],[2095,"iced_graphics::geometry::style"],[2096,"iced_graphics::geometry::text"],[2097,"iced_core::image"],[2098,"iced_core::svg"],[2099,"iced_core::alignment"],[2100,"iced_core::text"],[2101,"iced_core::point"],[2102,"iced_core::angle"],[2103,"iced_core::vector"],[2104,"iced_graphics::geometry::path::builder"],[2105,"lyon_path::path"],[2106,"iced_core::border"],[2107,"lyon_path::math"],[2108,"iced_core::gradient"],[2109,"core::iter::traits::collect"],[2110,"image::color"],[2111,"bytes::bytes"],[2112,"image::buffer_"],[2113,"image::error"],[2114,"core::iter::traits::iterator"],[2115,"alloc::sync"],[2116,"std::sync::poison::rwlock"],[2117,"cosmic_text::buffer"],[2118,"cosmic_text::font::system"],[2119,"cosmic_text::attrs"],[2120,"cosmic_text::shape"],[2121,"cosmic_text::layout"],[2122,"iced_core::text::editor"],[2123,"iced_core::text::highlighter"]],"i":"```````n000````0dA`1210210210210`210210210210`210```11121021021021`210210210210````210210210210210210210`0`1000020`2102102102102102102102102100`Cd`Cl0``CjCf21021021021023102102020201021102102102021021021021021010210210210210210210203110110210210210210210210210201021DhDj``Dl00000000000000000000000000`000000000`ACj``Eh00En0`1`1Ed020200202020222201112020202122020202020202020202020111122220202020202020201```FhGh`111`0110101010101010101010101010101101010101010101010101010111010101010101010Gj0Gl```H`0`Hb``````0````Gn1HdHfHh3421034210342103421034210342104210421002034210232342103421035234210410`11342102`344422211003421034210`1023421034210342103421034210342103421023105321010`210102211`4210342103421034210342103421034210342102342103K``0``Jn1010101010101010101001010110100001010101010101010101000010101010101010101``IbHj00000100001101001010100001000000010001101010101010101010000000001000```KhId`11101011010110100001101101010101010101010101010101001`1101101010001010101010101010``KjKl10101010101010101010101010101010010101010101010101001010101010101010101010LfLd```1010``Kf12Lh123012301230123012301230123012301230123012301230123012301230123012301230123012301230123012301230111123000112301230123012301230123012301230123011111``Il`0KbM`112102102102102102102102102102102102101210210221021021021021021021021021021001`2111210210210210210210210210210`Md00000000000000000000`0000000`000000000``Mn0000000000000N`11111111111111111111001111111110`Nf````0`0NjNlNnNh4321043210`432104321043210443210432104321024321004321043210O`5432154325432154321543215432121154154321543215432154321543215432154321321321154321554321543215432154321543215432154321454321ObOd1010`Oj`0```0`0``On1OlOf23102310231023100`23100310310310102310`1231023102310`310310`231023102310123102310231023102310231023102`1`102``310``2310231023102310231023102310232310AA`AAbAAd210220222110AAj332103````AAlAAnABb221021021021010210111210122102102102101210210210221021021021021021021010221112210210210210210210210210``ABdAAf101010101011000010111101011010101010101101010101010101111111101010101010101010101``AC`AAh10101010110101010110110101101010101010111101010101010101010111110101010101010100101011","f":"```````````````{eg{}{{b{c}}}{}}00{df}{ce{}{}}00{{}c{}}00{h{{h{c}}}{}}00{{{h{j}}}{{h{jc}}}{}}00`{{{l{c}}}e{}{}}00{{{h{n}}}n}{{{h{d}}}d}{{{h{A`}}}A`}{{h{h{jc}}}Ab{}}00{{hAd}Ab}00`999```{{}d}{dAf}{dAh}{Aj{{h{c}}}{}}00{Aj{{h{jc}}}{}}00{AjAb}00{{{h{n}}{h{n}}}Al}{{{h{d}}{h{d}}}Al}`{{{h{n}}{h{jAn}}}B`}{{{h{d}}{h{jAn}}}B`}{{{h{A`}}{h{jAn}}}B`}{cc{}}00000{ce{}{}}00````{{}Aj}00{{}c{}}00000{{{l{c}}}e{}{}}00111111{{}c{}}00`{{{h{A`}}}{{Bd{Bb}}}}`1{{{h{A`}}}Bf}{{{h{A`}}}{{Bd{Bf}}}}1{{{h{A`}}}Bh}{nBf}{{{h{A`}}}Bj}`{hc{}}00{{}{{Bl{c}}}{}}00{c{{Bl{e}}}{}{}}00{{}{{Bl{c}}}{}}00{{}{{Bl{c{Bn{c}}}}}{}}00{hC`}00{ce{}{}}00{{}c{}}00{{}c{}}00{{{Bd{Bf}}Bj}A`}```````{eg{}{{b{c}}}{}}00{ce{}{}}00444{h{{h{c}}}{}}00{{{h{j}}}{{h{jc}}}{}}00{{{Cd{}{{Cb{c}}}}Cf{f{c}}}cCh}{{{l{c}}}e{}{}}00{{{h{{Cj{c}}}}}Ab{}}{{{h{Cf}}}Cf}{{{h{{Cl{c}}}}}{{Cl{c}}}Ch}{{h{h{jc}}}Ab{}}0{{hAd}Ab}0{{{h{Cf}}{h{Cf}}}Cn}:::{{}{{Cj{c}}}{}}{Aj{{h{c}}}{}}00{Aj{{h{jc}}}{}}00{AjAb}00{{{h{Cf}}{h{Cf}}}Al}{{{h{{Cl{c}}}}{h{{Cl{c}}}}}AlD`}{{{h{{Cj{c}}}}{h{jAn}}}B`Db}{{{h{Cf}}{h{jAn}}}B`}{{{h{{Cl{c}}}}{h{jAn}}}B`Db}{cc{}}00000{ce{}{}}00{{{h{{Cj{c}}}}}Cf{}}{{{h{Cf}}{h{jc}}}AbDd}{{}Aj}00{{}c{}}00000{{{l{c}}}e{}{}}00111111{{}c{}}00{CfAl}{{{h{c}}}{{Cd{}{{Cb{c}}}}}Ch}{{}{{Cj{c}}}{}}3{{{h{Cf}}{h{Cf}}}{{f{Cn}}}}{{{h{{Cj{c}}}}c}Ab{}}{{{h{{Cj{c}}}}}{{h{{Df{{Cl{c}}}}}}}{}}{hc{}}0{{}{{Bl{c}}}{}}00{c{{Bl{e}}}{}{}}00{{}{{Bl{c}}}{}}00{{}{{Bl{c{Bn{c}}}}}{}}00{hC`}00{ce{}{}}00{{}c{}}00{{}Cf}{{}c{}}00{Cf{{Cj{c}}}{}}{Dh}{Djf}{{}Al}`{eg{}{{b{c}}}{}}{ce{}{}}8{h{{h{c}}}{}}{{{h{j}}}{{h{jc}}}{}}{{{l{c}}}e{}{}}{{{h{Dl}}}Dl}{{h{h{jc}}}Ab{}}{{hAd}Ab}{Dl{{Dn{Bb}}}}7{Aj{{h{c}}}{}}{Aj{{h{jc}}}{}}{AjAb}{{{h{Dl}}{h{Dl}}}Al}{{{h{Dl}}{h{jAn}}}B`}{cc{}}0{ce{}{}}{{}Aj}{{}c{}}0=00{{}c{}}{{{h{c}}}Al{}}{cDl{{Eb{E`}}}}{hc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{Bn{c}}}}}{}}{hC`}{ce{}{}}{{}c{}}{{}c{}}````````````{eg{}{{b{c}}}{}}0{EdEf}{ce{}{}}0441{h{{h{c}}}{}}0{{{h{j}}}{{h{jc}}}{}}0{{{l{c}}}e{}{}}0{{{h{Eh}}}Eh}{{h{h{jc}}}Ab{}}{{hAd}Ab}66{{{h{j{En{}{{Ej{c}}{El{e}}}}}}{h{je}}BfBf}Ab{}{}}{{{h{{En{}{{Ej{c}}{El{e}}}}}}}c{}{}}{{{h{j{En{}{{Ej{c}}{El{e}}}}}}gBfBf}e{}{}{F`Ch}}{Aj{{h{c}}}{}}0{Aj{{h{jc}}}{}}0{AjAb}0{{{h{Eh}}{h{Eh}}}Al}{{{h{{En{}{{Ej{c}}{El{e}}}}}}}Ed{}{}}{{{h{Eh}}{h{jAn}}}B`}0{{{h{Ed}}{h{jAn}}}B`}{cc{}}000{ce{}{}}0{{}Aj}0{{}c{}}000{{{l{c}}}e{}{}}01111{{}c{}}0{{{h{j{En{}{{Ej{c}}{El{e}}}}}}{Fd{{Fb{Ad}}}}}Ab{}{}}{{dc}{{`{{Fj{}{{Ff{{Bl{{En{}{{Ej{e}}{El{g}}}}Fh}}}}}}}}}{F`Ch}{}{}}{{{h{j{En{}{{Ej{c}}{El{e}}}}}}{h{jc}}{h{je}}{h{A`}}E`{h{{Fb{g}}}}}{{Bl{AbEh}}}{}{}{{Fn{Fl}}}}{{{h{j{En{}{{Ej{c}}{El{e}}}}}}{h{jc}}{h{A`}}E`{h{{Fb{g}}}}}{{G`{Ad}}}{}{}{{Fn{Fl}}}}{hc{}}{hGb}{hEf}{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{Bn{c}}}}}{}}0{hC`}0{ce{}{}}0{{}c{}}0{{}c{}}0{{dc{f{{h{Fl}}}}}{{`{{Fj{}{{Ff{{Bl{{En{}{{Ej{e}}{El{g}}}}Fh}}}}}}}}}{F`Ch}{}{}}{{{h{{Fb{c}}}}{h{{Fb{c}}}}eg}{{G`{Gd}}}{}{{Gf{{h{c}}}{{Ff{{G`{Gd}}}}}}}{{Gf{{h{c}}{h{c}}}{{Ff{{G`{Gd}}}}}}}}{{{G`{Gd}}Gd}{{G`{Gd}}}}{{{h{{Fb{c}}}}{h{{Fb{c}}}}eg}{{G`{Gd}}}{}{{Gf{{h{c}}}{{Ff{{G`{Gd}}}}}}}{{Gf{{h{c}}{h{c}}}{{Ff{Al}}}}}}`````````{eg{}{{b{c}}}{}}0{ce{}{}}077{h{{h{c}}}{}}0{{{h{j}}}{{h{jc}}}{}}0{{{l{c}}}e{}{}}0{{{h{Fh}}}Fh}{{{h{Gh}}}Gh}{{h{h{jc}}}Ab{}}0{{hAd}Ab}077{Aj{{h{c}}}{}}0{Aj{{h{jc}}}{}}0{AjAb}0{{{h{Fh}}{h{Fh}}}Al}{{{h{Gh}}{h{Gh}}}Al}{{{h{Fh}}{h{jAn}}}B`}0{{{h{Gh}}{h{jAn}}}B`}{cc{}}000{ce{}{}}0{{}Aj}0{{}c{}}000??0000{{}c{}}0{hc{}}0{hGb}{hEf}{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{Bn{c}}}}}{}}0{hC`}0{ce{}{}}0{{}c{}}0{{}c{}}0{Gjh}{GjGh}{GlEf}``````````````````{eg{}{{b{c}}}{}}0000{ce{}{}}000066666{h{{h{c}}}{}}0000{{{h{j}}}{{h{jc}}}{}}0000{{{l{c}}}e{}{}}0000{{{h{{Gn{c}}}}}AbH`}{{{h{Hb}}}Hb}{{{h{Hd}}}Hd}{{{h{{Hf{c}}}}}{{Hf{c}}}Ch}{{{h{{Hh{c}}}}}{{Hh{c}}}Ch}{{h{h{jc}}}Ab{}}000{{hAd}Ab}000{{Hhc}Hh{{Eb{E`}}}}{HdE`}{Hhf}====={HdEf}{{}{{Gn{c}}}H`}{{}Hd}{Aj{{h{c}}}{}}0000{Aj{{h{jc}}}{}}0000{{{h{{Gn{c}}}}{h{c}}Bde}{}H`{{Hl{{h{j{Hj{c}}}}}}}}{{{h{j{H`{}{{Hn{c}}{I`{e}}}}}}c}AbCd{{Ib{}{{Hn{c}}}}}}{{{h{Hd}}c}Ab{{If{IdE`}}}}{AjAb}0000{{{h{Hb}}{h{Hb}}}Al}{{{h{{Hf{c}}}}{h{{Hf{c}}}}}AlD`}{{{h{{Hh{c}}}}{h{{Hh{c}}}}}AlD`}`{{HfIh}Hf}{HfIh}{{{h{{Gn{c}}}}{h{jAn}}}B`H`}{{{h{Hb}}{h{jAn}}}B`}{{{h{Hd}}{h{jAn}}}B`}{{{h{{Hf{c}}}}{h{jAn}}}{{Bl{AbIj}}}Db}{{{h{{Hh{c}}}}{h{jAn}}}{{Bl{AbIj}}}Db}{HdAf}`{cc{}}{IlHb}1{E`Hb}2{{{h{Fl}}}Hd}{EfHd}4{{{h{In}}}Hf}{{{h{J`}}}Hh}666666{ce{}{}}0000`{Hf}{Hh}{HdJb}{{}Aj}0000{{}c{}}000000000{{{l{c}}}e{}{}}00001111111111{{}c{}}0000{HdJd}{{}{{Gn{c}}}H`}{cHf{{Eb{In}}}}{cHh{{Eb{J`}}}}{{{h{{H`{}{{Hn{c}}{I`{e}}}}}}Bd}eCd{{Ib{}{{Hn{c}}}}}}55{{Hfc}Hf{{Eb{Bb}}}}{{Hhc}Hh{{Eb{Bb}}}}{HfBb}{HhBb}`{HdJf}{{Hfc}Hf{{Eb{Jh}}}}{{Hhc}Hh{{Eb{Jh}}}}{HfJh}{HhJh}{HdJj}{HdAh}{{HfAl}Hf}{HfAl}`{hc{}}000{{}{{Bl{c}}}{}}0000{c{{Bl{e}}}{}{}}0000{{}{{Bl{c}}}{}}0000{{}{{Bl{c{Bn{c}}}}}{}}0000{hC`}0000{ce{}{}}0000{{}c{}}0000{HdJl}{{}c{}}0000{Cf{{Gn{c}}}H`}`````{eg{}{{b{c}}}{}}0{ce{}{}}055{h{{h{c}}}{}}0{{{h{j}}}{{h{jc}}}{}}0{{{l{c}}}e{}{}}0{{{h{Jn}}}Jn}{{{h{K`}}}K`}{{h{h{jc}}}Ab{}}0{{hAd}Ab}077{{}Jn}{Aj{{h{c}}}{}}0{Aj{{h{jc}}}{}}0{AjAb}0{{{h{K`}}{h{K`}}}Al}{{{h{Jn}}{h{jAn}}}B`}{{{h{K`}}{h{jAn}}}B`}{E`Jn}{KbJn}{IlJn}{cc{}}000{ce{}{}}0{{}Aj}0{{}c{}}000{{{l{c}}}e{}{}}01111{{}c{}}00{JnK`}{JnHb}{hc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{Bn{c}}}}}{}}0{hC`}0{ce{}{}}0{{}c{}}0{{}c{}}0```{eg{}{{b{c}}}{}}{ce{}{}}3{h{{h{c}}}{}}{{{h{j}}}{{h{jc}}}{}}{{{l{c}}}e{}{}}{{{h{{Ib{}{{Hn{c}}}}}}}Jf{}}{{{h{{Hj{c}}}}}JfH`}5{Aj{{h{c}}}{}}{Aj{{h{jc}}}{}}{{{h{j{Ib{}{{Hn{c}}}}}}Gd}{{Ib{}{{Hn{c}}}}}{}}{{{h{j{Ib{}{{Hn{c}}}}}}Gde}Ab{}{{Eb{Hf}}}}{{{h{j{Hj{c}}}}Gde}AbH`{{Eb{Hf}}}}{{{h{j{Ib{}{{Hn{c}}}}}}Gde}Ab{}{{Eb{Hh}}}}{{{h{j{Hj{c}}}}Gde}AbH`{{Eb{Hh}}}}{AjAb}{{{h{j{Ib{}{{Hn{c}}}}}}{h{Id}}e}Ab{}{{Eb{Jn}}}}{{{h{j{Hj{c}}}}{h{Id}}e}AbH`{{Eb{Jn}}}}{{{h{j{Ib{}{{Hn{c}}}}}}JfBde}Ab{}{{Eb{Jn}}}}{{{h{j{Hj{c}}}}JfBde}AbH`{{Eb{Jn}}}}{{{h{j{Ib{}{{Hn{c}}}}}}e}Ab{}{{Eb{Hd}}}}{{{h{j{Hj{c}}}}e}AbH`{{Eb{Hd}}}}{cc{}}0{ce{}{}}{{{h{{Ib{}{{Hn{c}}}}}}}Bb{}}{{{h{{Hj{c}}}}}BbH`}{{}Aj}{{}c{}}0{{{l{c}}}e{}{}}11{{{Ib{}{{Hn{c}}}}}c{}}{{{Hj{c}}}{}H`}{{}c{}}{{{h{c}}Bd}{{Hj{c}}}H`}{{{h{j{Ib{}{{Hn{c}}}}}}{Ib{}{{Hn{c}}}}}Ab{}}{{{h{j{Ib{}{{Hn{c}}}}}}}Ab{}}{{{h{j{Hj{c}}}}}AbH`}10{{{h{j{Ib{}{{Hn{c}}}}}}e}Ab{}{{Eb{Jh}}}}{{{h{j{Hj{c}}}}e}AbH`{{Eb{Jh}}}}{{{h{j{Ib{}{{Hn{c}}}}}}e}Ab{}{{Eb{Bb}}}}{{{h{j{Hj{c}}}}e}AbH`{{Eb{Bb}}}}{{{h{j{Ib{}{{Hn{c}}}}}}e}Ab{}{{Eb{Kd}}}}{{{h{j{Hj{c}}}}e}AbH`{{Eb{Kd}}}}{{{h{{Ib{}{{Hn{c}}}}}}}Bd{}}{{{h{{Hj{c}}}}}BdH`}{{{h{j{Ib{}{{Hn{c}}}}}}{h{Id}}e}Ab{}{{Eb{Kf}}}}{{{h{j{Hj{c}}}}{h{Id}}e}AbH`{{Eb{Kf}}}}{{{h{j{Ib{}{{Hn{c}}}}}}JfBde}Ab{}{{Eb{Kf}}}}{{{h{j{Hj{c}}}}JfBde}AbH`{{Eb{Kf}}}}{{{h{j{Ib{}{{Hn{c}}}}}}Kd}Ab{}}{{{h{j{Hj{c}}}}Kd}AbH`}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{Bn{c}}}}}{}}{hC`}{ce{}{}}{{}c{}}{{}c{}}{{{h{{Ib{}{{Hn{c}}}}}}}Bb{}}{{{h{{Hj{c}}}}}BbH`}{{{h{j{Hj{c}}}}Gdg}eH`{}{{Hl{{h{j{Hj{c}}}}}{{Ff{e}}}}}}{{{h{j{Hj{c}}}}g}eH`{}{{Hl{{h{j{Hj{c}}}}}{{Ff{e}}}}}}```{eg{}{{b{c}}}{}}0`{{{h{jKh}}Kj}Ab}{{{h{jKh}}JfJfBb}Ab}{ce{}{}}099{{{h{jKh}}JfJfJf}Ab}{h{{h{c}}}{}}0{{{h{j}}}{{h{jc}}}{}}0{KhId}{{{l{c}}}e{}{}}0{{{h{jKh}}JfBb}Ab}{{JfBb}Id}{{{h{Id}}}Id}{{h{h{jc}}}Ab{}}{{hAd}Ab}{{{h{jKh}}}Ab};;{{}Kh}{Aj{{h{c}}}{}}0{Aj{{h{jc}}}{}}0{AjAb}0{{{h{jKh}}Kl}Ab}{{{h{Id}}{h{jAn}}}B`}{cc{}}000{ce{}{}}0{{}Aj}0{{}c{}}000{{{l{c}}}e{}{}}01111{{}c{}}0{{JfJf}Id}{{{h{jKh}}Jf}Ab}`0={cId{{Hl{{h{jKh}}}}}}3{{{h{jKh}}JfJf}Ab}{{{h{Id}}}{{h{Kn}}}}{{{h{jKh}}JfBd}Ab}{{JfBd}Id}{{{h{jKh}}JfBdL`}Ab}{{JfBdL`}Id}{hc{}}{{{h{Id}}{h{Lb}}}Id}{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{Bn{c}}}}}{}}0{hC`}0{ce{}{}}0{{}c{}}0{{}c{}}0``{eg{}{{b{c}}}{}}0{ce{}{}}033{h{{h{c}}}{}}0{{{h{j}}}{{h{jc}}}{}}0{{{l{c}}}e{}{}}0{KjJf}{KlJf}{{{h{Kj}}}Kj}{{{h{Kl}}}Kl}{{h{h{jc}}}Ab{}}0{{hAd}Ab}099{Aj{{h{c}}}{}}0{Aj{{h{jc}}}{}}0{AjAb}0{KjJh}{KlJh}{{{h{Kj}}{h{jAn}}}B`}{{{h{Kl}}{h{jAn}}}B`}{cc{}}0{KjKl}11{ce{}{}}0{{}Aj}0{{}c{}}000{{{l{c}}}e{}{}}01111{{}c{}}0{KlKd}{KjBb};<;{hc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{Bn{c}}}}}{}}0{hC`}0{ce{}{}}0{{}c{}}0{{}c{}}0```````````{eg{}{{b{c}}}{}}000{ce{}{}}0003333{h{{h{c}}}{}}000{{{h{j}}}{{h{jc}}}{}}000{{{l{c}}}e{}{}}000{{{h{Kf}}}Kf}{{{h{Ld}}}Ld}{{{h{Lf}}}Lf}{{{h{Lh}}}Lh}{{h{h{jc}}}Ab{}}000{{hAd}Ab}0009999{{}Kf}{{}Ld}{{}Lf}{{}Lh}{Aj{{h{c}}}{}}000{Aj{{h{jc}}}{}}000{AjAb}000{{{h{Kf}}{h{jAn}}}B`}{{{h{Ld}}{h{jAn}}}B`}{{{h{Lf}}{h{jAn}}}B`}{{{h{Lh}}{h{jAn}}}B`}{cc{}}0000000{ce{}{}}000{{}Aj}000{{}c{}}0000000{{{l{c}}}e{}{}}00011111111{{}c{}}000{KfLd}{KfLh}{KfLf}3333{LhAj}{Lhh}{KfHb}{hc{}}000{{}{{Bl{c}}}{}}000{c{{Bl{e}}}{}{}}000{{}{{Bl{c}}}{}}000{{}{{Bl{c{Bn{c}}}}}{}}000{hC`}000{ce{}{}}000{{}c{}}000{{}c{}}000{KfBb}{{KfE`}Kf}{{KfLd}Kf}{{KfLf}Kf}{{KfBb}Kf}````{eg{}{{b{c}}}{}}00{{KbBbE`}Kb}{{Kbc}Kb{{Ln{}{{Lj{Ll}}}}}}{ce{}{}}00:::{h{{h{c}}}{}}00{{{h{j}}}{{h{jc}}}{}}00{{{l{c}}}e{}{}}00{{{h{Il}}}Il}{{{h{Kb}}}Kb}{{{h{M`}}}M`}{{h{h{jc}}}Ab{}}00{{hAd}Ab}00888{Aj{{h{c}}}{}}00{Aj{{h{jc}}}{}}00{AjAb}00{KbJf}{{{h{Il}}{h{Il}}}Al}{{{h{Kb}}{h{Kb}}}Al}{{{h{M`}}{h{M`}}}Al}{{{h{Il}}{h{jAn}}}B`}{{{h{Kb}}{h{jAn}}}B`}{{{h{M`}}{h{jAn}}}B`}{cc{}}{KbIl}11111{ce{}{}}00{{}Aj}00{{}c{}}00000{{{l{c}}}e{}{}}00111111{{}c{}}00{{{h{c}}}Al{}}{{JfJf}Kb}{{{h{Mb}}Gd}M`}{{{h{Il}}}M`}{{{h{Kb}}}M`}{KbJf}{KbDn}{hc{}}00{{}{{Bl{c}}}{}}00{c{{Bl{e}}}{}{}}00{{}{{Bl{c}}}{}}00{{}{{Bl{c{Bn{c}}}}}{}}00{hC`}00{ce{}{}}00{{}c{}}00{{}c{}}00```{eg{}{{b{c}}}{}}{ce{}{}}3{h{{h{c}}}{}}{{{h{j}}}{{h{jc}}}{}}{{{h{Md}}}Gd}{{{l{c}}}e{}{}}{{{h{Md}}}Md}{{h{h{jc}}}Ab{}}{{hAd}Ab}7{Aj{{h{c}}}{}}{Aj{{h{jc}}}{}}{AjAb}{{{h{Md}}{h{Md}}}Al}{{{h{Md}}{h{jAn}}}B`}{cc{}}0{ce{}{}}`{{}Aj}{{}c{}}0<00{{}c{}}{{{h{In}}}{{Ml{{Mj{{Mf{Ad}}Mh}}}}}}{hc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{Bn{c}}}}}{}}{hC`}{ce{}{}}{{}c{}}{{}c{}}``{eg{}{{b{c}}}{}}{ce{}{}}3{{{h{{Mn{c}}}}}{{h{{Fb{c}}}}}N`}{h{{h{c}}}{}}{{{h{j}}}{{h{jc}}}{}}{{{l{c}}}e{}{}}{{{h{j{Mn{c}}}}}AbN`}5{{{h{j{Mn{c}}}}}{{Nb{{h{jc}}Bh}}}N`}{{}{{Mn{c}}}N`}{Aj{{h{c}}}{}}{Aj{{h{jc}}}{}}{AjAb}{{{h{jN`}}}Ab}6{{{h{{Mn{c}}}}{h{jAn}}}B`{DbN`}}{cc{}}0{ce{}{}}{{}Aj}{{}c{}}0<00{{}c{}}{{{h{{Mn{c}}}}}{{`{{Nd{}{{Lj{{h{c}}}}}}}}}N`}{{{h{j{Mn{c}}}}}{{`{{Nd{}{{Lj{{h{jc}}}}}}}}}N`}<2>>{{{h{j{Mn{c}}}}Gd}AbN`}{{{h{j{Mn{c}}}}Bh}AbN`}:{{{h{jN`}}Gd}Ab}{{{h{{Mn{c}}}}}BhN`}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{Bn{c}}}}}{}}{hC`}{ce{}{}}{{}c{}}{{}c{}}{GdN`}````````{eg{}{{b{c}}}{}}0000{ce{}{}}000044444{{{h{{Fb{Nf}}}}}Nh}{h{{h{c}}}{}}0000{{{h{j}}}{{h{jc}}}{}}0000{{{l{c}}}e{}{}}0000{{{h{Nf}}}Gd}{{{h{Nf}}}Nf}{{{h{{Nj{c}}}}}{{Nj{c}}}Ch}{{{h{Nl}}}Nl}{{{h{Nn}}}Nn}{{{h{Nh}}}Nh}{{h{h{jc}}}Ab{}}0000{{hAd}Ab}0000{NlDl}====={{}Nh}{Aj{{h{c}}}{}}0000{Aj{{h{jc}}}{}}0000{{{h{jO`}}Nf}Ab}{AjAb}0000{{{h{Nf}}{h{Nf}}}Al}{{{h{{Nj{c}}}}{h{{Nj{c}}}}}AlD`}{{{h{Nl}}{h{Nl}}}Al}{{{h{Nn}}{h{Nn}}}Al}{{{h{Nf}}{h{jAn}}}B`}{{{h{{Nj{c}}}}{h{jAn}}}B`Db}{{{h{Nl}}{h{jAn}}}B`}{{{h{Nn}}{h{jAn}}}B`}{{{h{Nh}}{h{jAn}}}B`}{cc{}}000000000{ce{}{}}0000{NnM`}{NhAj}0{{{h{Nf}}}{{h{{Fb{Bf}}}}}}{NjG`}2{{}Aj}0000{{}c{}}000000000{{{l{c}}}e{}{}}00001111111111{{}c{}}0000{{{h{c}}}Al{}}01{NlDn}{NnDn}99{hc{}}0000{{{h{Nf}}}Bh}{{}{{Bl{c}}}{}}0000{c{{Bl{e}}}{}{}}0000{{}{{Bl{c}}}{}}0000{{}{{Bl{c{Bn{c}}}}}{}}0000{hC`}0000{ce{}{}}0000{{}c{}}0000{NjG`}{{}c{}}0000{ObNj}{OdNj}{ObGd}{OdGd}{ObBh}{OdBh}````{{}h}```````{eg{}{{b{c}}}{}}000{ce{}{}}000;;;;{h{{h{c}}}{}}000{{{h{j}}}{{h{jc}}}{}}000{OfOh}`{{{l{c}}}e{}{}}000{OfGd}{{{h{Oj}}}Oj}{{{h{Ol}}}Ol}{{{h{Of}}}Of}{{h{h{jc}}}Ab{}}00{{hAd}Ab}00{{{h{Ol}}{h{Ol}}}Cn}{OfE`}<<<<`{{}Ol}{Aj{{h{c}}}{}}000{Aj{{h{jc}}}{}}000{AjAb}000`{{{h{Oj}}{h{Oj}}}Al}{{{h{Ol}}{h{Ol}}}Al}{{{h{Of}}{h{Of}}}Al}{{{h{Oj}}{h{jAn}}}B`}{{{h{Ol}}{h{jAn}}}B`}{{{h{Of}}{h{jAn}}}B`}{{}{{h{{A@`{On}}}}}}{cc{}}0000000{ce{}{}}000{{{h{Ol}}{h{jc}}}AbDd}{{}Aj}000{{}c{}}0000000{{{l{c}}}e{}{}}00011111111{{}c{}}000{{{h{jOn}}{Fd{{Fb{Ad}}}}}Ab}{{{h{A@b}}}Bd}2`{{{h{Ol}}{h{Ol}}}{{f{Cn}}}}{OfJf}{{{h{jOn}}}{{h{jA@d}}}}{AfA@f}{E`A@h}{hc{}}00{JjA@j}{A@lA@n}{{}{{Bl{c}}}{}}000{c{{Bl{e}}}{}{}}000{{}{{Bl{c}}}{}}000{{}{{Bl{c{Bn{c}}}}}{}}000{hC`}000{ce{}{}}000{{}c{}}000{{{h{On}}}Ol}{{{h{Oj}}}{{f{Gd}}}}{{}c{}}000{AA`Gd}{AAbGd}{AAdGd}2{AAbE`}{AAdE`}{AA`E`}{AA`Ef}{AAdAAf}{AA`Af}{AA`Jb}{AA`Ah}{AAbAAh}{AAbJf}{AAdJf}{AAjOf}{AA`Jj}5{AAbBh}{AAdBh}{AAjBh}{AA`Jl}````{eg{}{{b{c}}}{}}00{{{h{jAAl}}{h{jA@d}}AAn}{{Nb{AB`{h{jABb}}}}}}{ce{}{}}00{{}c{}}00{h{{h{c}}}{}}00{{{h{j}}}{{h{jc}}}{}}00{AAnBd}{ABbA@b}{{{l{c}}}e{}{}}00{{{h{AAn}}}AAn}{{h{h{jc}}}Ab{}}{{hAd}Ab}999{AAnh}{{}AAl}{Aj{{h{c}}}{}}00{Aj{{h{jc}}}{}}00{AjAb}00{{{h{AAl}}{h{jAn}}}B`}{{{h{AAn}}{h{jAn}}}B`}{{{h{ABb}}{h{jAn}}}B`}{AAnAf}{cc{}}00000{ce{}{}}00{{{h{AAl}}{h{AB`}}}{{f{{h{ABb}}}}}}{{}Aj}00{{}c{}}00000{{{l{c}}}e{}{}}00111111{{}c{}}00{AAnBb}{ABbBd}{{}AAl}3{AAnJj}3{hc{}}{{{h{jAAl}}}Ab}{{}{{Bl{c}}}{}}00{c{{Bl{e}}}{}{}}00{{}{{Bl{c}}}{}}00{{}{{Bl{c{Bn{c}}}}}{}}00{hC`}00{ce{}{}}00{{}c{}}00{{}c{}}00``{eg{}{{b{c}}}{}}0{ce{}{}}033{h{{h{c}}}{}}0{{{h{j}}}{{h{jc}}}{}}0{{{h{ABd}}}Bd}{AAfBd}{{{h{ABd}}}{{h{A@b}}}}{{{l{c}}}e{}{}}0{{{h{AAf}}}AAf}{{h{h{jc}}}Ab{}}{{hAd}Ab}99{{{h{ABd}}}ABf}{{{h{ABd}}}{{Nb{AjAj}}}}{{}ABd}{Aj{{h{c}}}{}}0{Aj{{h{jc}}}{}}0{{{h{ABd}}}AAf}{AjAb}0{{{h{ABd}}{h{ABd}}}Al}{{{h{AAf}}{h{AAf}}}Al}{{{h{ABd}}{h{jAn}}}B`}{{{h{AAf}}{h{jAn}}}B`}{cc{}}000{ce{}{}}0{{{h{jABd}}c{h{je}}g}Ab{}ABh{{Gf{h}{{Ff{{ABj{c}}}}}}}}{{}Aj}0{{}c{}}000{{{l{c}}}e{}{}}01111{{}c{}}0{{{h{ABd}}}Al}{{{h{ABd}}Aj}{{f{ABl}}}}{{{h{ABd}}}Aj}{{{h{ABd}}}Bd}{{}ABd}5{{{h{jABd}}ABn}Ab}{{{h{ABd}}}{{f{Ef}}}}{hc{}}{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{Bn{c}}}}}{}}0{hC`}0{ce{}{}}0{{}c{}}0{{{h{jABd}}BdAfAhJdA@l{h{jc}}}AbABh}{{{h{AAf}}}{{f{ABd}}}}{{}c{}}0{{{h{Fl}}}ABd}``{eg{}{{b{c}}}{}}0{ce{}{}}066{h{{h{c}}}{}}0{{{h{j}}}{{h{jc}}}{}}0{{{h{AC`}}}{{h{A@b}}}}{{{l{c}}}e{}{}}0{{{h{AC`}}}AC`}{{{h{AAh}}}AAh}{{h{h{jc}}}Ab{}}0{{hAd}Ab}0{{{h{AC`}}{ACb{Ab}}}ACd}99{{}AC`}{Aj{{h{c}}}{}}0{Aj{{h{jc}}}{}}0{{{h{AC`}}}AAh}{AjAb}0{{{h{AC`}}{h{AC`}}}Al}{{{h{AAh}}{h{AAh}}}Al}{{{h{AC`}}{h{jAn}}}B`}{{{h{AAh}}{h{jAn}}}B`}{cc{}}000{ce{}{}}0{{{h{AC`}}AjAj}{{f{Jf}}}}{{{h{AC`}}Jf}{{f{Aj}}}}{{{h{AC`}}Jf}{{f{ACf}}}}{{{h{AC`}}}Jb}{AAhJb}{{}Aj}0{{}c{}}000{{{l{c}}}e{}{}}01111{{}c{}}0{{{h{AC`}}}Bd}{AAhBd}{{}AC`}3{{{h{jAC`}}Bd}Ab}{{{h{AC`}}Aj}{{G`{Gd}}}}{hc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{Bn{c}}}}}{}}0{hC`}0{ce{}{}}0{{}c{}}0{{{h{AAh}}}{{f{AC`}}}}{{{h{AC`}}}Jl}{AAhJl}{{}c{}}0{{{ACb{{h{{Fb{{ACh{c}}}}}}}}}AC`{}}{{{ACb{{h{Fl}}}}}AC`}","D":"CHf","p":[[10,"TransformMatrix",2067],[5,"Settings",0,2068],[6,"Option",2069,null,1],[1,"reference",null,null,1],[0,"mut"],[5,"BakedParameters",2070],[6,"Antialiasing",0,2071],[5,"Viewport",0,2072],[1,"unit"],[1,"u8"],[5,"Font",2073],[5,"Pixels",2074],[1,"usize"],[1,"bool"],[5,"Formatter",2075],[8,"Result",2075],[1,"f32"],[5,"Size",2076],[1,"u32"],[5,"Transformation",2077],[1,"f64"],[6,"Result",2078,null,1],[5,"OutOfBounds",2079],[5,"TypeId",2080],[17,"Cache"],[10,"Cached",142],[5,"Group",142],[10,"Clone",2081],[5,"Cache",142],[6,"State",142],[6,"Ordering",2082],[10,"PartialEq",2082],[10,"Debug",2075],[10,"Hasher",2083],[5,"RefCell",2084],[15,"Filled",261],[15,"Empty",261],[5,"Packed",263],[1,"array"],[5,"Color",2085],[10,"Into",2086,null,1],[5,"Information",302],[5,"String",2087],[6,"SurfaceError",302],[17,"Renderer"],[17,"Surface"],[10,"Compositor",302],[10,"Window",302],[1,"slice"],[6,"Cow",2088],[17,"Output"],[6,"Error",394],[10,"Future",2089,null,1],[1,"str"],[10,"AsRef",2086],[5,"Vec",2090],[5,"SmolStr",2091],[5,"Rectangle",2092],[10,"Fn",2093],[6,"Reason",394],[15,"GraphicsAdapterNotFound",474],[15,"DidNotMatch",476],[5,"Cache",477,2094],[10,"Renderer",477],[6,"Style",477,2095],[5,"Text",477,2096],[5,"Image",477,2097],[5,"Svg",477,2098],[5,"Frame",787],[10,"FnOnce",2093],[17,"Geometry"],[17,"Frame"],[10,"Backend",787],[5,"Path",859],[10,"FnMut",2093],[6,"FilterMethod",2097],[5,"Error",2075],[6,"Gradient",1187],[6,"Handle",2097],[5,"Handle",2098],[6,"Horizontal",2099],[6,"LineHeight",2100],[5,"Point",2101],[5,"Radians",2102],[6,"Shaping",2100],[6,"Vertical",2099],[5,"Fill",708],[6,"Rule",708],[5,"Linear",1187],[5,"Vector",2103],[5,"Stroke",1025],[5,"Builder",859,2104],[5,"Arc",947],[5,"Elliptical",947],[5,"Path",2105],[5,"Radius",2106],[8,"Transform",2107],[6,"LineCap",1025],[6,"LineJoin",1025],[5,"LineDash",1025],[17,"Item"],[5,"ColorStop",2108],[10,"IntoIterator",2109],[5,"Packed",1187],[6,"Gradient",2108],[6,"Image",1304],[5,"Rgba",2110],[5,"Bytes",2111],[5,"ImageBuffer",2112],[8,"ImageResult",2113],[5,"Stack",1344],[10,"Layer",1344],[1,"tuple",null,null,1],[10,"Iterator",2114],[6,"Mesh",1393],[5,"AttributeCount",1393],[5,"Indexed",1393],[5,"SolidVertex2D",1393],[5,"GradientVertex2D",1393],[10,"Renderer",1393],[15,"Solid",1590],[15,"Gradient",1590],[5,"Raw",1596],[5,"Weak",2115],[6,"Text",1596],[5,"Version",1596],[5,"FontSystem",1596],[5,"RwLock",2116],[5,"Buffer",2117],[5,"FontSystem",2118],[5,"Attrs",2119],[5,"Color",2119],[6,"Shaping",2120],[6,"Wrapping",2100],[6,"Wrap",2121],[15,"Cached",1761],[15,"Paragraph",1761],[15,"Editor",1761],[5,"Weak",1892],[5,"Weak",1977],[15,"Raw",1761],[5,"Cache",1783],[5,"Key",1783],[8,"KeyHash",1783],[5,"Entry",1783],[5,"Editor",1892],[6,"Cursor",2122],[10,"Highlighter",2123],[5,"Format",2123],[5,"Line",2122],[6,"Action",2122],[5,"Paragraph",1977],[5,"Text",2100],[6,"Difference",2100],[6,"Hit",2100],[5,"Span",2100],[10,"Default",302]],"r":[[0,2071],[1,142],[2,302],[3,394],[4,1187],[5,1304],[6,1344],[7,2071],[8,2071],[9,2071],[10,2071],[11,1393],[12,2068],[13,1596],[14,2072],[15,2071],[16,2068],[17,2072],[18,2068],[19,2071],[20,2068],[21,2072],[22,2071],[23,2068],[24,2072],[25,2071],[26,2068],[27,2072],[28,2071],[29,2068],[30,2072],[32,2071],[33,2068],[34,2072],[35,2071],[36,2068],[37,2072],[38,2071],[39,2068],[40,2072],[41,2071],[42,2068],[43,2072],[45,2071],[46,2068],[47,2072],[51,2068],[52,2068],[53,2068],[54,2071],[55,2068],[56,2072],[57,2071],[58,2068],[59,2072],[60,2071],[61,2068],[62,2072],[63,2071],[64,2068],[66,2071],[67,2068],[68,2072],[69,2071],[70,2068],[71,2072],[72,2071],[73,2068],[74,2072],[75,2071],[76,2068],[77,2072],[82,2071],[83,2068],[84,2072],[85,2071],[86,2068],[87,2072],[88,2071],[89,2068],[90,2072],[91,2071],[92,2068],[93,2072],[94,2071],[95,2068],[96,2072],[97,2071],[98,2068],[99,2072],[100,2071],[101,2068],[102,2072],[104,2072],[106,2068],[107,2072],[108,2072],[109,2072],[110,2072],[111,2071],[112,2072],[114,2071],[115,2068],[116,2072],[117,2071],[118,2068],[119,2072],[120,2071],[121,2068],[122,2072],[123,2071],[124,2068],[125,2072],[126,2071],[127,2068],[128,2072],[129,2071],[130,2068],[131,2072],[132,2071],[133,2068],[134,2072],[135,2071],[136,2068],[137,2072],[138,2071],[139,2068],[140,2072],[141,2072],[477,2094],[478,708],[479,787],[482,1187],[483,2095],[484,2097],[485,1025],[486,1025],[487,1025],[488,859],[490,2095],[491,1025],[492,2095],[493,2098],[494,2096],[495,2094],[496,2095],[497,2096],[498,2097],[499,2098],[500,2094],[501,2095],[502,2096],[503,2097],[504,2098],[505,2094],[506,2095],[507,2096],[508,2097],[509,2098],[510,2094],[511,2095],[512,2096],[513,2097],[514,2098],[515,2094],[516,2095],[517,2096],[518,2097],[519,2098],[520,2094],[521,2095],[522,2096],[523,2097],[524,2098],[525,2094],[526,2095],[527,2096],[528,2097],[529,2098],[530,2095],[531,2096],[532,2097],[533,2098],[534,2095],[535,2096],[536,2097],[537,2098],[538,2098],[539,2096],[540,2098],[541,2094],[542,2095],[543,2096],[544,2097],[545,2098],[546,2096],[547,2094],[548,2096],[549,2094],[550,2095],[551,2096],[552,2097],[553,2098],[554,2094],[555,2095],[556,2096],[557,2097],[558,2098],[559,2094],[561,2096],[562,2094],[563,2095],[564,2096],[565,2097],[566,2098],[567,2095],[568,2097],[569,2098],[571,2097],[572,2097],[573,2094],[574,2095],[575,2096],[576,2097],[577,2098],[578,2096],[580,2094],[581,2095],[582,2095],[583,2095],[584,2096],[585,2096],[586,2096],[587,2097],[588,2097],[589,2098],[590,2098],[591,2094],[592,2095],[593,2096],[594,2097],[595,2098],[596,2094],[597,2095],[598,2096],[599,2097],[600,2098],[601,0],[602,2097],[603,2098],[604,2096],[605,2094],[606,2095],[607,2096],[608,2097],[609,2098],[610,2094],[611,2095],[612,2096],[613,2097],[614,2098],[615,2094],[616,2095],[617,2096],[618,2097],[619,2098],[620,2094],[621,2095],[622,2096],[623,2097],[624,2098],[625,2094],[626,2095],[627,2096],[628,2097],[629,2098],[630,2094],[631,2095],[632,2096],[633,2097],[634,2098],[635,2094],[636,2095],[637,2096],[638,2097],[639,2098],[640,2096],[641,2094],[642,2097],[643,2098],[645,2094],[646,2096],[647,2097],[648,2098],[649,2097],[650,2098],[652,2096],[653,2097],[654,2098],[655,2097],[656,2098],[657,2096],[658,2096],[659,2097],[660,2097],[662,2095],[663,2096],[664,2097],[665,2098],[666,2094],[667,2095],[668,2096],[669,2097],[670,2098],[671,2094],[672,2095],[673,2096],[674,2097],[675,2098],[676,2094],[677,2095],[678,2096],[679,2097],[680,2098],[681,2094],[682,2095],[683,2096],[684,2097],[685,2098],[686,2094],[687,2095],[688,2096],[689,2097],[690,2098],[691,2094],[692,2095],[693,2096],[694,2097],[695,2098],[696,2094],[697,2095],[698,2096],[699,2097],[700,2098],[701,2096],[702,2094],[703,2095],[704,2096],[705,2097],[706,2098],[707,2094],[712,2095],[859,947],[860,2104],[862,2104],[865,2104],[866,2104],[867,2104],[869,2104],[871,2104],[872,2104],[874,2104],[876,2104],[877,2104],[879,2104],[884,2104],[885,2104],[887,2104],[888,2104],[890,2104],[892,2104],[894,2104],[896,2104],[898,2104],[900,2104],[902,2104],[904,2104],[906,2104],[908,2104],[910,2104],[912,2104],[914,2104],[917,2104],[919,2104],[920,2104],[922,2104],[923,2104],[925,2104],[927,2104],[931,2104],[933,2104],[935,2104],[937,2104],[939,2104],[941,2104],[943,2104],[945,2104],[1035,2095],[1596,1783],[1598,1892],[1602,1977]],"b":[[344,"impl-Debug-for-SurfaceError"],[345,"impl-Display-for-SurfaceError"],[431,"impl-Debug-for-Error"],[432,"impl-Display-for-Error"],[581,"impl-From%3CGradient%3E-for-Style"],[583,"impl-From%3CColor%3E-for-Style"],[585,"impl-From%3C%26str%3E-for-Text"],[586,"impl-From%3CString%3E-for-Text"],[743,"impl-From%3CColor%3E-for-Fill"],[744,"impl-From%3CLinear%3E-for-Fill"],[745,"impl-From%3CGradient%3E-for-Fill"]],"c":"OjAAAAAAAAA=","e":"OzAAAAEAAFAGvgACAAUADAAAAA4AAAAQAAIAFAALACEACwAuAAIAMgAAADQAAAA3AAoAQwACAEkABgBTAAIAWQAOAGsAAABzABoAlgAOAKYAAgCqABgAxgAFAM0AAwDUAA4A5gABAOoAFgACAQIACgEIABQBBQAbAQIAHwEFACYBCAA7AQEAPgEDAEMBCgBRAQYAWQECAF4BBQBmAQkAdAESAJQBHgC1AQUAvQEdAN8BAQDjAQAA5gEDAOwBAADwAR0ADwILAB4CBAAkAgsAMwIHAD4CBABGAgAASAIAAEoCAQBNAgEAUAIKAF4CBABoAhgAhgIBAJcCJgC/AgQAxQIAAMcCAADJAiEA7QIFAPUCCgACAxEAFgMHAB8DBAAlAwAAJwMBACoDAAAsAwAALwMCADMDAAA1AwQAOwMAAD0DAQBAAwAAQgMAAEQDAABGAwAASAMAAEoDAABMAwAATgMAAFADCABcAwAAXwMBAGQDAwBpAwMAbgMBAHIDAgB2AwgAgAMAAIMDBQCLAwkAlwMAAJsDAACiAwAApAMPALYDCwDEAw0A1AMBANgDBgDhAwkA8AMRAAwEPABNBAsAXQQTAHQEAwB7BCMAqAQCAK0EIwDSBAUA2QQAANwECADoBA8A/gQaABwFBAAiBQkALQUDADIFBAA4BQgAQwUCAEcFAgBLBQAATQUDAFMFAABVBQIAWQUEAGEFAABpBQcAegUOAIoFDgCaBQ4AqgUPALsFDQDOBQkA3gUEAOgFGwAIBgQADgYiADIGBAA9BgAAPwYAAEMGAABJBhMAXwYDAGQGCQBvBhEAggYFAI0GDACeBhMAtAYAALYGAAC7BgIAwAYbAN4GAwDjBgEA5gYBAOoGAADuBgMA9AYCAPwGAgAABwsADgcIABgHDAApBwUAMAcCADYHDgBIBwAASwcAAE0HFwBnBwoAdAcNAIMHBQCLBwYAlAcNAKMHEgC3BwIAvAcJAMcHDwDYBwUA4AcHAOkHAQDtBwoA+gcSAA4IAAAQCAMA","P":[[15,"T,M,D"],[18,""],[19,"C,T"],[22,"C"],[25,"T"],[32,"WpParam,T"],[35,""],[38,"T"],[41,""],[45,"C,T"],[51,""],[54,"T"],[60,""],[69,"T"],[75,"U,T"],[82,""],[85,"U"],[91,"WpParam,T"],[94,"U"],[100,"T"],[104,""],[106,"T"],[107,""],[114,"T"],[117,"C"],[120,"U,T"],[123,"U"],[129,""],[132,"C,U"],[135,"C"],[138,"V"],[141,""],[149,"T,M,D"],[152,"C,T"],[155,"C"],[158,"T"],[164,"Cached::Cache"],[165,"WpParam,T"],[168,"T"],[169,""],[170,"T"],[173,""],[176,"C,T"],[179,"T"],[186,""],[190,"T"],[192,""],[193,"T"],[200,"U,T"],[203,"T"],[204,"__H"],[205,""],[208,"U"],[214,"WpParam,T"],[217,"U"],[223,"T"],[226,""],[227,"Cached::Cache"],[228,"T"],[230,""],[231,"T"],[235,"C"],[238,"U,T"],[241,"U"],[247,""],[250,"C,U"],[253,"C"],[256,""],[257,"V"],[260,"T"],[261,""],[265,"T,M,D"],[266,"C,T"],[267,"C"],[268,"T"],[270,"WpParam,T"],[271,""],[272,"T"],[273,""],[275,"C,T"],[276,"T"],[278,""],[281,"T"],[283,"U,T"],[284,""],[285,"U"],[287,"WpParam,T"],[288,"U"],[290,"T"],[292,""],[293,"T"],[294,"C"],[295,"U,T"],[296,"U"],[298,""],[299,"C,U"],[300,"C"],[301,"V"],[314,"T,M,D"],[316,""],[317,"C,T"],[319,"C"],[321,""],[322,"T"],[326,"WpParam,T"],[328,""],[329,"T"],[330,""],[331,"C,T"],[333,"Compositor::Renderer,Compositor::Surface"],[335,"Compositor::Renderer,Compositor::Surface,W"],[336,"T"],[340,""],[343,"Compositor::Renderer,Compositor::Surface"],[344,""],[347,"T"],[351,"U,T"],[353,""],[355,"U"],[359,"WpParam,T"],[361,"U"],[365,"T"],[367,"Compositor::Renderer,Compositor::Surface"],[368,"W,Compositor::Renderer,Compositor::Surface"],[369,"Compositor::Renderer,Compositor::Surface,T"],[371,"T"],[372,""],[374,"C"],[376,"U,T"],[378,"U"],[382,""],[384,"C,U"],[386,"C"],[388,"V"],[390,"W,Compositor::Renderer,Compositor::Surface"],[391,"T,,"],[392,""],[393,"T,,"],[403,"T,M,D"],[405,"C,T"],[407,"C"],[409,"T"],[413,"WpParam,T"],[415,""],[417,"T"],[419,""],[421,"C,T"],[423,"T"],[427,""],[434,"T"],[438,"U,T"],[440,""],[442,"U"],[446,"WpParam,T"],[448,"U"],[452,"T"],[456,""],[458,"C"],[460,"U,T"],[462,"U"],[466,""],[468,"C,U"],[470,"C"],[472,"V"],[474,""],[495,"T,M,D"],[500,"C,T"],[505,"C"],[510,"T"],[520,"WpParam,T"],[525,"Renderer"],[526,""],[528,"H"],[530,"T"],[534,""],[538,""],[539,""],[541,"C,T"],[546,""],[547,"Renderer"],[548,""],[549,"T"],[559,"Renderer,"],[560,"Renderer::Geometry,Renderer::Frame"],[561,""],[562,""],[568,"H"],[571,""],[573,"Renderer"],[574,""],[576,"H"],[578,""],[580,"T"],[581,""],[582,"T"],[583,""],[584,"T"],[585,""],[587,"T"],[588,""],[590,"T"],[596,"U,T"],[602,""],[610,"U"],[620,"WpParam,T"],[625,"U"],[635,"T"],[640,""],[641,"Renderer"],[642,""],[644,"Renderer::Geometry,Renderer::Frame"],[645,"T"],[647,""],[649,""],[653,""],[655,""],[662,"T"],[666,"C"],[671,"U,T"],[676,"U"],[686,""],[691,"C,U"],[696,"C"],[701,""],[702,"V"],[707,"Renderer"],[713,"T,M,D"],[715,"C,T"],[717,"C"],[719,"T"],[723,"WpParam,T"],[725,""],[727,"T"],[729,""],[731,"C,T"],[733,""],[734,"T"],[738,""],[746,"T"],[750,"U,T"],[752,""],[754,"U"],[758,"WpParam,T"],[760,"U"],[764,"T"],[767,""],[769,"T"],[771,"C"],[773,"U,T"],[775,"U"],[779,""],[781,"C,U"],[783,"C"],[785,"V"],[790,"T,M,D"],[791,"C,T"],[792,"C"],[793,"T"],[795,"WpParam,T"],[796,"Backend::Geometry"],[797,"Renderer"],[798,"C,T"],[799,"T"],[801,"Backend::Geometry"],[802,"Backend::Geometry,"],[803,"Renderer,"],[804,"Backend::Geometry,"],[805,"Renderer,"],[806,""],[807,"Backend::Geometry,"],[808,"Renderer,"],[809,"Backend::Geometry,"],[810,"Renderer,"],[811,"Backend::Geometry,"],[812,"Renderer,"],[813,"T"],[815,"U,T"],[816,"Backend::Geometry"],[817,"Renderer"],[818,""],[819,"U"],[821,"WpParam,T"],[822,"U"],[824,"Backend::Geometry"],[825,"Renderer"],[826,"T"],[827,"Renderer"],[828,"Backend::Geometry"],[830,"Renderer"],[831,"Backend::Geometry"],[832,"Renderer"],[833,"Backend::Geometry,"],[834,"Renderer,"],[835,"Backend::Geometry,"],[836,"Renderer,"],[837,"Backend::Geometry,"],[838,"Renderer,"],[839,"Backend::Geometry"],[840,"Renderer"],[841,"Backend::Geometry,"],[842,"Renderer,"],[843,"Backend::Geometry,"],[844,"Renderer,"],[845,"Backend::Geometry"],[846,"Renderer"],[847,"C"],[848,"U,T"],[849,"U"],[851,""],[852,"C,U"],[853,"C"],[854,"V"],[855,"Backend::Geometry"],[856,"Renderer"],[857,"Renderer,R,"],[862,"T,M,D"],[865,""],[867,"C,T"],[869,"C"],[871,""],[872,"T"],[876,""],[877,"WpParam,T"],[879,""],[882,"T"],[883,""],[885,"C,T"],[887,""],[888,"T"],[892,""],[896,"T"],[900,"U,T"],[902,""],[904,"U"],[908,"WpParam,T"],[910,"U"],[914,"T"],[916,""],[921,""],[922,"T"],[923,""],[929,"T"],[930,""],[931,"C"],[933,"U,T"],[935,"U"],[939,""],[941,"C,U"],[943,"C"],[945,"V"],[949,"T,M,D"],[951,"C,T"],[953,"C"],[955,"T"],[959,"WpParam,T"],[961,""],[965,"T"],[967,""],[969,"C,T"],[971,"T"],[975,""],[981,"T"],[983,""],[984,"T"],[986,"U,T"],[988,""],[990,"U"],[994,"WpParam,T"],[996,"U"],[1000,"T"],[1002,""],[1007,"T"],[1009,"C"],[1011,"U,T"],[1013,"U"],[1017,""],[1019,"C,U"],[1021,"C"],[1023,"V"],[1036,"T,M,D"],[1040,"C,T"],[1044,"C"],[1048,"T"],[1056,"WpParam,T"],[1060,""],[1064,"T"],[1068,""],[1072,"C,T"],[1076,""],[1080,"T"],[1088,""],[1096,"T"],[1104,"U,T"],[1108,""],[1112,"U"],[1120,"WpParam,T"],[1124,"U"],[1132,"T"],[1136,""],[1139,"T"],[1143,""],[1146,"T"],[1150,"C"],[1154,"U,T"],[1158,"U"],[1166,""],[1170,"C,U"],[1174,"C"],[1178,"V"],[1182,""],[1191,"T,M,D"],[1194,""],[1195,""],[1196,"C,T"],[1199,"C"],[1202,"T"],[1208,"WpParam,T"],[1211,""],[1214,"T"],[1217,""],[1220,"C,T"],[1223,"T"],[1229,""],[1239,"T"],[1240,""],[1241,"T"],[1246,"U,T"],[1249,""],[1252,"U"],[1258,"WpParam,T"],[1261,"U"],[1267,"T"],[1271,""],[1277,"T"],[1280,"C"],[1283,"U,T"],[1286,"U"],[1292,""],[1295,"C,U"],[1298,"C"],[1301,"V"],[1307,"T,M,D"],[1308,"C,T"],[1309,"C"],[1310,"T"],[1312,""],[1313,"WpParam,T"],[1314,""],[1315,"T"],[1316,""],[1317,"C,T"],[1318,"T"],[1320,""],[1323,"T"],[1325,"U,T"],[1327,""],[1328,"U"],[1330,"WpParam,T"],[1331,"U"],[1333,"T"],[1334,""],[1335,"T"],[1336,"C"],[1337,"U,T"],[1338,"U"],[1340,""],[1341,"C,U"],[1342,"C"],[1343,"V"],[1346,"T,M,D"],[1347,"C,T"],[1348,"C"],[1349,"T"],[1352,"WpParam,T"],[1353,"T"],[1354,"C,T"],[1355,"T"],[1359,""],[1361,"T"],[1365,"U,T"],[1366,""],[1367,"U"],[1369,"WpParam,T"],[1370,"U"],[1372,"T"],[1381,""],[1383,"T"],[1384,"C"],[1385,"U,T"],[1386,"U"],[1388,""],[1389,"C,U"],[1390,"C"],[1391,"V"],[1392,""],[1401,"T,M,D"],[1406,"C,T"],[1411,"C"],[1416,""],[1417,"T"],[1427,"WpParam,T"],[1432,""],[1434,"T"],[1435,""],[1438,"T"],[1443,""],[1449,"C,T"],[1454,""],[1455,"T"],[1465,""],[1472,"T"],[1473,""],[1476,"T"],[1477,""],[1480,"T"],[1490,"U,T"],[1495,""],[1506,"U"],[1516,"WpParam,T"],[1521,"U"],[1531,"T"],[1539,""],[1543,"T"],[1548,""],[1549,"C"],[1554,"U,T"],[1559,"U"],[1569,""],[1574,"C,U"],[1579,"C"],[1584,""],[1585,"V"],[1590,""],[1608,"T,M,D"],[1612,"C,T"],[1616,"C"],[1620,"T"],[1628,""],[1630,"WpParam,T"],[1634,""],[1638,"T"],[1641,""],[1646,"C,T"],[1651,""],[1652,"T"],[1660,""],[1672,"T"],[1680,"U,T"],[1684,"__H"],[1685,""],[1689,"U"],[1697,"WpParam,T"],[1701,"U"],[1709,"T"],[1713,""],[1715,"T"],[1717,""],[1722,"T"],[1725,""],[1727,"C"],[1731,"U,T"],[1735,"U"],[1743,""],[1747,"C,U"],[1751,"C"],[1755,""],[1757,"V"],[1761,""],[1787,"T,M,D"],[1790,""],[1791,"C,T"],[1794,"C"],[1797,"T"],[1803,""],[1805,"WpParam,T"],[1808,""],[1809,"T"],[1810,""],[1811,"C,T"],[1814,""],[1816,"T"],[1822,""],[1829,"T"],[1835,"U,T"],[1838,""],[1842,"U"],[1848,"WpParam,T"],[1851,"U"],[1857,"T"],[1860,""],[1863,"T"],[1864,""],[1866,"T"],[1867,""],[1868,"C"],[1871,"U,T"],[1874,"U"],[1880,""],[1883,"C,U"],[1886,"C"],[1889,"V"],[1894,"T,M,D"],[1896,"C,T"],[1898,"C"],[1900,"T"],[1904,""],[1907,"WpParam,T"],[1909,""],[1910,"T"],[1911,""],[1912,"C,T"],[1914,""],[1917,"T"],[1921,""],[1928,"T"],[1932,"U,T"],[1934,"Editor::Font,H,"],[1935,""],[1937,"U"],[1941,"WpParam,T"],[1943,"U"],[1947,"T"],[1949,""],[1954,"T"],[1955,""],[1957,"T"],[1958,"C"],[1960,"U,T"],[1962,"U"],[1966,""],[1968,"C,U"],[1970,"C"],[1972,""],[1973,""],[1974,"V"],[1976,""],[1979,"T,M,D"],[1981,"C,T"],[1983,"C"],[1985,"T"],[1989,""],[1990,"WpParam,T"],[1992,""],[1994,"T"],[1996,""],[1999,"C,T"],[2001,""],[2002,"T"],[2006,""],[2013,"T"],[2017,"U,T"],[2019,""],[2026,"U"],[2030,"WpParam,T"],[2032,"U"],[2036,"T"],[2038,""],[2041,"T"],[2042,""],[2044,"T"],[2046,"C"],[2048,"U,T"],[2050,"U"],[2054,""],[2056,"C,U"],[2058,"C"],[2060,""],[2063,"V"],[2065,"Link"],[2066,""]]}],["iced_highlighter",{"t":"TPPPFFPFPFGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN","n":["ALL","Base16Eighties","Base16Mocha","Base16Ocean","Highlight","Highlighter","InspiredGitHub","Settings","SolarizedDark","Stream","Theme","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","borrow","","","","","borrow_mut","","","","","cam16_into_unclamped","","","","","change_line","clone","","clone_into","","clone_to_uninit","","color","commit","components_from","","","","","current_line","eq","","equivalent","","","fmt","","","","","","font","from","","","","","from_angle","","","","","from_stimulus","","","","","highlight_line","","into","","","","","into_angle","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_stimulus","","","","","is_dark","new","","reset","theme","to_format","to_owned","","to_smolstr","to_string","token","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","update","vzip","","","",""],"q":[[0,"iced_highlighter"],[167,"palette::chromatic_adaptation"],[168,"palette::cam16::parameters"],[169,"iced_core::color"],[170,"core::option"],[171,"core::fmt"],[172,"iced_core::font"],[173,"core::ops::range"],[174,"core::iter::traits::iterator"],[175,"iced_core::text::highlighter"],[176,"smol_str"],[177,"alloc::string"],[178,"core::result"],[179,"palette::convert::try_from_into_color"],[180,"core::any"]],"i":"Ab000``0`0``jAlA`Af43210432104321043210432104314141402321043144443210440321043210432104323210432104321043210432104321044322101444132104321043210432104321043210432104332104","f":"```````````{eg{}{{b{c}}}{}}0000{ce{}{}}0000{{}c{}}0000{d{{d{c}}}{}}0000{{{d{f}}}{{d{fc}}}{}}0000{{{h{c}}}e{}{}}0000{{{d{fj}}l}n}{{{d{A`}}}A`}{{{d{Ab}}}Ab}{{d{d{fc}}}n{}}0{{dAd}n}0{{{d{Af}}}{{Aj{Ah}}}}{{{d{fAl}}}n};;;;;{{{d{j}}}l}{{{d{A`}}{d{A`}}}An}{{{d{Ab}}{d{Ab}}}An}{{d{d{c}}}An{}}00{{{d{j}}{d{fB`}}}Bb}{{{d{Al}}{d{fB`}}}Bb}{{{d{A`}}{d{fB`}}}Bb}{{{d{Af}}{d{fB`}}}Bb}{{{d{Ab}}{d{fB`}}}Bb}0{{{d{Af}}}{{Aj{Bd}}}}{cc{}}000000000{ce{}{}}0000{{{d{fj}}{d{Bf}}}c{}}{{{d{fAl}}{d{Bf}}}{{`{{Bn{}{{Bh{{Bl{{Bj{l}}Af}}}}}}}}}}{{}c{}}000000000{{{h{c}}}e{}{}}00001111111111{{}c{}}0000{AbAn}{{{d{c}}}j{}}{{{d{A`}}}Al}{{{d{fAl}}}n}{A`Ab}{{{d{Af}}}{{C`{Bd}}}}{dc{}}0{dCb}{dCd}{A`Cd}{{}{{Cf{c}}}{}}0000{c{{Cf{e}}}{}{}}0000{{}{{Cf{c}}}{}}0000{{}{{Cf{c{Ch{c}}}}}{}}0000{dCj}0000{ce{}{}}0000{{}c{}}0000{{{d{fj}}{d{c}}}n{}}{{}c{}}0000","D":"Cf","p":[[10,"TransformMatrix",167],[1,"reference",null,null,1],[0,"mut"],[5,"BakedParameters",168],[5,"Highlighter",0],[1,"usize"],[1,"unit"],[5,"Settings",0],[6,"Theme",0],[1,"u8"],[5,"Highlight",0],[5,"Color",169],[6,"Option",170,null,1],[5,"Stream",0],[1,"bool"],[5,"Formatter",171],[8,"Result",171],[5,"Font",172],[1,"str"],[17,"Item"],[5,"Range",173],[1,"tuple",null,null,1],[10,"Iterator",174],[5,"Format",175],[5,"SmolStr",176],[5,"String",177],[6,"Result",178,null,1],[5,"OutOfBounds",179],[5,"TypeId",180]],"r":[],"b":[[65,"impl-Display-for-Theme"],[66,"impl-Debug-for-Theme"]],"c":"OjAAAAAAAAA=","e":"OzAAAAEAAIwACgACAAIABwAAAAkAAAAMACQAMwAQAEoACgBbABgAdQAAAHoAAwB/ACgA","P":[[11,"T,M,D"],[16,"C,T"],[21,"C"],[26,"T"],[36,"WpParam,T"],[41,""],[44,"T"],[46,""],[50,"C,T"],[55,""],[58,"K"],[61,""],[68,"T"],[78,"U,T"],[83,"Highlighter::Iterator"],[84,""],[85,"U"],[95,"WpParam,T"],[100,"U"],[110,"T"],[115,""],[116,"Highlighter::Settings"],[117,""],[121,"T"],[123,""],[126,"C"],[131,"U,T"],[136,"U"],[146,""],[151,"C,U"],[156,"C"],[161,"Highlighter::Settings"],[162,"V"]]}],["iced_renderer",{"t":"IPPIPPECCEEGPPPGPPPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNPPFFFRRGPFGFGPPFKPPPPFGFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNCNNNNONNNNNNNNNNNNOCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCOONONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOONNNNNMNNNNNNNONNOONCNONNNNNNOONONNOONONOCNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNONNNNNNNPFPPGPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNKFRMMMMMMMMMMMMMMMMMMMMGFPFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNOONNNNNNNNNNNNNNNNNNNNFFFNNCNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNONNNNNNNNNNNNNNNNNNNFFNNNNNNNNOONNNNNNNNOONNNNNNNNNNNNNNNOOOOONNNNNNNNNNFIFKIPPPPIFFPFPPPPPPFPGFGTTTIFFFFPPPGGPPSPPPFFFFFIFFKKPPPPPFPPGPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNMNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCONNNNNNNCNNNNNNNNNNNNNNNNNMNNNNNNNNNCCNNNOOCMNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOFKFFKRKFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNOOMNNNNNNNNNNNNNNNNNNMNNNNNNNNNNMMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMMNNNNNNMNNNNNNNNNMNNNNNNNMMNNNNNNMNMNMNMNMNMNMNNNNNNNNNNNNNNMNMNMNMNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNFFFFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFFFIFTTTTTTFFFTTTTIFITTKRIKIFTTTIIFITNONNNNNNNNNNNNNNMNNNNNNNNONNNMNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOCNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNMNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNOOOONNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNOOOOOOONONNNNNNNNNNNNNHONNCNNNOOOMNNNNNNNNNNNNNNHNNNNNNNNMNNNNNNNNNMNNNNNNNNNNNNONNNNOONMNNNNNNNNOOOONNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCMHONNNNNNNNNNNONNNNNNNNNOOONNNNOONNNNNNNNNOOONNNNNFFFFNNNNNNNNONNNNNONONNNNNNNNNNNNNONOOOOOONNNNNNNNNOOFFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFFNNNNNNNNNOONNNNNONNNNNNNNNNNNNNNONNNNNNNNNFFFFFFFFFFFFFFFFFFFFFKFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNCCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOHHHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNCNNNNNNNNNNNNNNNNNMNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOONNNNNNNNNNNNNNNNNOOOOOOOOOOOOOOOOOOOOOONNNNNNNNNNNNNOONNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNONNNNNNNNNNNNHHNNNNNNNNNNNONOMHNNNNONNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNOHHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNOONNNNNNNNNOOOOOOOOONNNNNNNNNNNOOOOOOOOONNNNNNNNNOOOOONNNNNNNNNNNNNNNNNNNNNNKMNMHHIIIIIIIIIIIIIIIIIIIIOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOKKKKKMMMMMFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNRKKMMMMNNMMMMMMMMMNNHHHHHHFFFKFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNIIIIIIIIIOOOOOOOOOOHOHHOOOOOOOIFFFFFFFFFFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFFFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNKKKRKMMMMMMMMMMMMMMMMMMMMMMMMMMPPPGFGPPPPPFGOOOOOOO","n":["Compositor","Primary","","Renderer","Secondary","","core","fallback","geometry","graphics","wgpu","Compositor","Primary","","","Renderer","Secondary","","","Surface","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clear","components_from","","","configure_surface","create_renderer","create_surface","default_font","default_size","deref","","","deref_mut","","","downcast","","","draw_geometry","draw_image","draw_mesh","draw_primitive","draw_svg","drop","","","end_layer","end_transformation","fetch_information","fill_editor","fill_paragraph","fill_quad","fill_text","fmt","","","from","","","from_angle","","","from_stimulus","","","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","load_font","measure_image","measure_svg","new","new_frame","present","screenshot","","start_layer","start_transformation","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","with_backend","Bevel","Butt","Cache","Fill","Frame","","Geometry","Gradient","","Image","LineCap","LineDash","LineJoin","Linear","Miter","Path","Renderer","Round","","Solid","Square","Stroke","Style","Svg","Text","adapt_into_using","","","","","","","","","","","","","arrays_from","","","","","","","","","","","","","arrays_into","","","","","","","","","","","","","as_any","","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","","borrow","","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","","cam16_into_unclamped","","","","","","","","","","","","","center","circle","clear","clone","","","","","","","","","","","clone_into","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","color","","","components_from","","","","","","","","","","","","","content","default","","","","","","","deref","","","","","","","","","","","","","deref_mut","","","","","","","","","","","","","downcast","","","","","","","","","","","","","draw","draw_geometry","draw_image","draw_svg","draw_with","drop","","","","","","","","","","","","","eq","","","","fill","","fill_rectangle","fill_text","filter_method","","fmt","","","","","","","","","","","","font","frame","from","","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","","","","from_stimulus","","","","","","","","","","","","","gradient","handle","","height","horizontal_alignment","init","","","","","","","","","","","","","into","","","","","","","","","","","","","into_angle","","","","","","","","","","","","","into_any","","","","","","","","","","","","","into_any_arc","","","","","","","","","","","","into_any_rc","","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","","into_color","","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","","into_geometry","into_stimulus","","","","","","","","","","","","","line","line_cap","line_dash","line_height","line_join","new","","","","","new_frame","null_value","","","","","","","offset","opacity","","","","pack","path","pop_transform","position","push_transform","raw","rectangle","rotate","rotation","","","","rounded_rectangle","rule","scale","scale_nonuniform","segments","shaping","size","","snap","","stroke","","stroke_rectangle","style","","to_owned","","","","","","","","","","","transform","translate","try_components_into","","","","","","","","","","","","","try_from","","","","","","","","","","","","","try_into","","","","","","","","","","","","","try_into_color","","","","","","","","","","","","","type_id","","","","","","","","","","","","","uints_from","","","","","","","","","","","","","uints_into","","","","","","","","","","","","","upcast","","","","","","","","","","","","","vertical_alignment","vzip","","","","","","","","","","","","","width","","with_clip","with_color","with_group","with_line_cap","with_line_join","with_save","with_width","EvenOdd","Fill","Gradient","NonZero","Rule","Solid","Style","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","deref","deref_mut","downcast","drop","eq","equivalent","","","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","rule","style","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Backend","Frame","Geometry","center","draft","draw_image","draw_svg","fill","fill_rectangle","fill_text","height","into_geometry","paste","pop_transform","push_transform","rotate","scale","scale_nonuniform","size","stroke","stroke_rectangle","translate","width","Gradient","Linear","","Packed","adapt_into_using","","add_stop","add_stops","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","deref","","deref_mut","","downcast","","drop","","end","eq","","fmt","","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","is_valid_bit_pattern","new","pack","","start","stops","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","Arc","Builder","Path","adapt_into_using","","arc","","arc_to","arrays_from","","arrays_into","","as_any","","as_any_mut","","bezier_curve_to","borrow","","borrow_mut","","build","cam16_into_unclamped","","center","circle","clone","clone_into","clone_to_uninit","close","components_from","","default","deref","","deref_mut","","downcast","","drop","","ellipse","end_angle","fmt","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","line_to","move_to","new","null_value","quadratic_curve_to","radius","rectangle","rounded_rectangle","start_angle","to_owned","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","Arc","Elliptical","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","center","","clone","clone_into","clone_to_uninit","components_from","deref","deref_mut","downcast","drop","end_angle","","fmt","from","","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","radii","radius","rotation","start_angle","","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","ArcFlags","AttributeIndex","AttributeSlice","AttributeStore","Attributes","Begin","","","Bevel","Builder","BuilderImpl","BuilderWithAttributes","Butt","ControlPointId","Cubic","","","End","","","EndpointId","EvenOdd","Event","EventId","FillRule","INVALID","","","IdEvent","IdIter","IdPolygon","Iter","IterWithAttributes","Line","","","LineCap","LineJoin","Miter","MiterClip","NO_ATTRIBUTES","Negative","","NonZero","Path","PathBuffer","PathBufferSlice","PathCommands","PathCommandsSlice","PathEvent","PathSlice","Polygon","Position","PositionStore","Positive","","Quadratic","","","Reversed","Round","","Side","Square","Winding","adapt_into_using","","","","","","","","","","","","","","","","","","","","","","","","","arrays_from","","","","","","","","","","","","","","","","","","","","","","","","","arrays_into","","","","","","","","","","","","","","","","","","","","","","","","","as_any","","","","","","","","","","","","","","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","","","","","","","","","","","","","","as_slice","","","attributes","","begin","","","borrow","","","","","","","","","","","","","","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","","","","","","","","","","","","","","build","","","builder","","","","builder_with_attributes","cam16_into_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","clear","clone","","","","","","","","","","","","","","","","","","","","","","","clone_into","","","","","","","","","","","","","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","","","","","","","","","","","","","closed","","commands","components_from","","","","","","","","","","","","","","","","","","","","","","","","","cubic_bezier_to","","","default","","","","deref","","","","","","","","","","","","","","","","","","","","","","","","","deref_mut","","","","","","","","","","","","","","","","","","","","","","","","","downcast","","","","","","","","","","","","","","","","","","","","","","","","","drop","","","","","","","","","","","","","","","","","","","","","","","","","end","","","eq","","","","","","","","","","equivalent","","","","","","","","","","","","","","","event","","","","events","extend_from_paths","","first_endpoint","","fmt","","","","","","","","","","","","","","","","","for_each_flattened","from","","","","","","","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","","","","","","","","","","","","","","","","from_iter","","from_stimulus","","","","","","","","","","","","","","","","","","","","","","","","","from_usize","","get","","","","","","get_control_point","","","","get_endpoint","","","","hash","","","","","id_iter","","","index","","","","","indices","","init","","","","","","","","","","","","","","","","","","","","","","","","","into","","","","","","","","","","","","","","","","","","","","","","","","","into_angle","","","","","","","","","","","","","","","","","","","","","","","","","into_any","","","","","","","","","","","","","","","","","","","","","","","","","into_any_arc","","","","","","","","","","","","","","","","","","","","","","","into_any_rc","","","","","","","","","","","","","","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","into_color","","","","","","","","","","","","","","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","into_iter","","","","","","","","into_path","into_stimulus","","","","","","","","","","","","","","","","","","","","","","","","","is_edge","is_empty","","","is_in","is_negative","is_out","is_positive","iter","","","","","","","","iter_with_attributes","","iterator","large_arc","last_endpoint","","len","","line_to","","","math","new","","","","","next","","","","next_event_id_in_path","","next_event_id_in_sub_path","","null_value","","","","num_attributes","","","","","","","offset","","opposite","path","path_buffer","path_events","path_slice","points","","","polygon","position","quadratic_bezier_to","","","reserve","","","","reversed","","svg_builder","sweep","to","to_f32","to_owned","","","","","","","","","","","","","","","","","","","","","","","to_usize","","","traits","transformed","","try_components_into","","","","","","","","","","","","","","","","","","","","","","","","","try_from","","","","","","","","","","","","","","","","","","","","","","","","","try_into","","","","","","","","","","","","","","","","","","","","","","","","","try_into_color","","","","","","","","","","","","","","","","","","","","","","","","","type_id","","","","","","","","","","","","","","","","","","","","","","","","","uints_from","","","","","","","","","","","","","","","","","","","","","","","","","uints_into","","","","","","","","","","","","","","","","","","","","","","","","","upcast","","","","","","","","","","","","","","","","","","","","","","","","","vzip","","","","","","","","","","","","","","","","","","","","","","","","","with_attributes","with_capacity","","with_points","with_svg","at","close","ctrl","ctrl1","ctrl2","first","from","","","last","to","","","at","close","ctrl","ctrl1","ctrl2","first","from","","","last","to","","","at","close","ctrl","ctrl1","ctrl2","first","from","","","last","to","","","BorderRadii","Build","Flattened","NoAttributes","PathBuilder","PathType","SvgPathBuilder","Transformed","WithSvg","adapt_into_using","","","","","add_circle","","","add_ellipse","","","add_line_segment","","","add_point","","","add_polygon","","","","","add_rectangle","","","add_rounded_rectangle","","","arc","arc_to","","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","begin","","","","","borrow","","","","","borrow_mut","","","","","bottom_left","bottom_right","build","","","","","","","","cam16_into_unclamped","","","","","clone","","clone_into","","clone_to_uninit","","close","","","","","","components_from","","","","","cubic_bezier_to","","","","","","","","current_position","default","","deref","","","","","deref_mut","","","","","downcast","","","","","drop","","","","","end","","","","","eq","","event","","extend_from_paths","flattened","","","","fmt","","","from","","","","","from_angle","","","","","from_stimulus","","","","","hash","horizontal_line_to","","init","","","","","inner","inner_mut","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","","","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_inner","into_stimulus","","","","","line_to","","","","","","","","move_to","","","new","","","","","null_value","","num_attributes","","","","partial_cmp","path_event","","","quadratic_bezier_to","","","","","","","","relative_arc_to","","relative_cubic_bezier_to","","relative_horizontal_line_to","","relative_line_to","","relative_move_to","","relative_quadratic_bezier_to","","relative_vertical_line_to","","reserve","","","","","","","","","","set_tolerance","set_transform","","smooth_cubic_bezier_to","","smooth_quadratic_bezier_to","","smooth_relative_cubic_bezier_to","","smooth_relative_quadratic_bezier_to","","to_owned","","to_smolstr","to_string","top_left","top_right","transformed","","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","vertical_line_to","","vzip","","","","","with_capacity","with_svg","","","wrap","CommandsPathSlice","Events","Iter","PathCommands","PathCommandsBuilder","PathCommandsSlice","PointEvents","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","begin","borrow","","","","","borrow_mut","","","","","build","cam16_into_unclamped","","","","","clone","","","","","clone_into","","","","","clone_to_uninit","","","","","components_from","","","","","cubic_bezier_to","default","deref","","","","","deref_mut","","","","","downcast","","","","","drop","","","","","end","events","fmt","","from","","","","","from_angle","","","","","from_stimulus","","","","","get_control_point","get_endpoint","index","","init","","","","","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_iter","","","into_stimulus","","","","","iter","line_to","new","next","","","null_value","points","quadratic_bezier_to","to_owned","","","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","vzip","","","","","with_capacity","Angle","Arc","ArcFlags","Box2D","CubicBezierSegment","DIV_EPSILON","EIGHT","EPSILON","FIVE","FOUR","HALF","Line","LineEquation","LineSegment","MAX","MIN","NINE","ONE","Point","QuadraticBezierSegment","Rotation","SEVEN","SIX","Scalar","","Scale","Segment","Size","SvgArc","TEN","THREE","TWO","Transform","Translation","Triangle","Vector","ZERO","a","","ab","ac","adapt_into_using","","","","","","","","","add","","add_assign","after_split","","","","","","","","","angle","angle_to","approx_epsilon","approx_eq_eps","approximate_length","","","","","","","arc","arrays_from","","","","","","","","","arrays_into","","","","","","","","","as_any","","","","","","","","","as_any_mut","","","","","","","","","b","","ba","baseline","","bc","before_split","","","","","","","","","borrow","","","","","","","","","borrow_mut","","","","","","","","","bounding_box","","","","","bounding_range_x","","","","bounding_range_y","","","","bounding_triangle","c","","ca","cam16_into_unclamped","","","","","","","","","cast","","","cb","center","circle","clipped","clipped_x","clipped_y","clone","","","","","","","","","clone_into","","","","","","","","","clone_to_uninit","","","","","","","","","closest_point","","components_from","","","","","","","","","contains_point","contains_segment","ctrl","ctrl1","ctrl2","cubic_bezier","cubic_intersections","cubic_intersections_t","default","degrees","deref","","","","","","","","","deref_mut","","","","","","","","","derivative","","","","","","","distance_to_point","","","","div","","div_assign","downcast","","","","","","","","","drag","","drag_with_weight","drop","","","","","","","","","dx","","","","","","dy","","","","","","end_angle","epsilon_for","eq","","","","","","","","equation","equivalent","","","","","","fast_bounding_box","","","fast_bounding_range_x","","","fast_bounding_range_y","","","fat_line","","flags","flattened","","","flattened_t","flattening_step","flip","","","","","","","","","fmt","","","","","","","","","for_each_cubic_bezier","","for_each_flattened","","","","for_each_flattened_with_t","","","","","","","","","for_each_inflection_t","for_each_local_x_extremum_t","","for_each_local_y_extremum_t","","for_each_monotonic","","for_each_monotonic_range","","for_each_quadratic_bezier","","","for_each_quadratic_bezier_with_t","","","for_each_x_monotonic","","for_each_x_monotonic_range","","for_each_y_monotonic","","for_each_y_monotonic_range","","frac_pi_2","frac_pi_3","frac_pi_4","from","","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","from_stimulus","","","","","","","","","from_svg_arc","get","get_angle","hash","height","horizontal_line_intersection","horizontal_line_intersection_t","init","","","","","","","","","intersection","","intersection_t","intersects","","intersects_box","intersects_line","intersects_line_segment","into","","","","","","","","","into_angle","","","","","","","","","into_any","","","","","","","","","into_any_arc","","","","","","","","","into_any_rc","","","","","","","","","into_cam16_unclamped","","","","","","","","","into_color","","","","","","","","","into_color_unclamped","","","","","","","","","into_stimulus","","","","","","","","","invert","is_a_point","is_finite","is_horizontal","is_linear","","is_monotonic","","is_quadratic","is_straight_line","is_vertical","is_x_monotonic","","is_y_monotonic","","large_arc","length","","lerp","line_intersection","line_intersection_t","line_intersections","","line_intersections_t","","line_segment_intersections","","line_segment_intersections_t","","local_x_extremum_t","local_y_extremum_t","m11","m12","m21","m22","m31","m32","max","mid_point","min","mul","mul_assign","neg","new","normal","null_value","num_quadratics","offset","overlaps_line","overlaps_segment","parallel_line","partial_cmp","pi","point","","positive","project_point","quadratic_bezier","quadratic_intersections","quadratic_intersections_t","radians","","radii","","sample","","","","","","","","","sample_tangent","set_length","signed","signed_distance_to_point","","sin_cos","size","solve_t_for_x","","solve_t_for_y","","solve_x_for_y","","solve_y_for_x","","split","","","","","","","","","split_at_x","split_range","","","","","","","","","square_distance_to_point","","","square_length","start_angle","sub","sub_assign","sum","","sweep","sweep_angle","tangent","to","","","","","","","","","","","","","to_arc","to_cubic","to_degrees","to_f32","","","","","to_f64","","","","","to_line","to_owned","","","","","","","","","to_quadratic","to_quadratic_error","to_svg_arc","to_vector","traits","transform","transformed","","","translate","try_cast","try_components_into","","","","","","","","","try_from","","","","","","","","","try_into","","","","","","","","","try_into_color","","","","","","","","","two_pi","type_id","","","","","","","","","uints_from","","","","","","","","","uints_into","","","","","","","","","upcast","","","","","","","","","utils","value","vector","","vertical_line_intersection","vertical_line_intersection_t","vzip","","","","","","","","","width","x","","","","","","","","","","","","x_maximum_t","","x_minimum_t","","x_rotation","","y","","","","","","","","","","","","y_maximum_t","","y_minimum_t","","zero","Arc","ArcFlags","Flattened","SvgArc","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","center","components_from","deref","deref_mut","downcast","drop","flags","from","","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_iter","into_stimulus","large_arc","next","radii","","start_angle","sweep","sweep_angle","to","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","x_rotation","","ArrayString","ArrayVec","CapacityError","Drain","IntoIter","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","as_mut","as_mut_ptr","","as_mut_slice","","as_mut_str","as_ptr","","as_ref","","","as_slice","","as_str","borrow","","","","","","","borrow_mut","","","","","","","cam16_into_unclamped","","","","","capacity","","clear","","clone","","","","clone_from","","clone_into","","","","clone_to_uninit","","","","cmp","","","compare","","","components_from","","","","","default","","deref","","","","","","","deref_mut","","","","","","","downcast","","","","","drain","drop","","","","","","","","element","encode_hex","encode_hex_upper","eq","","","","","equivalent","","","","","","","","","extend","flush","fmt","","","","","","from","","","","","","","from_angle","","","","","from_byte_string","from_iter","from_stimulus","","","","","from_str","ge","","","gt","","","hash","","init","","","","","insert","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","","","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_inner","into_inner_unchecked","into_iter","","","","","into_stimulus","","","","","is_empty","","is_full","","le","","","len","","lt","","","multiunzip","","","","","","","","","","","","","","","","","","","","","","","","","","new","","","new_const","","next","","next_back","","null_value","","partial_cmp","","","","pop","","pop_at","push","","push_str","push_unchecked","remaining_capacity","","remove","","retain","set_len","","simplify","size_hint","","swap_pop","swap_remove","take","to_owned","","","","to_smolstr","","to_string","","truncate","","try_components_into","","","","","try_extend_from_slice","try_from","","","","","","","","try_insert","try_into","","","","","try_into_color","","","","","try_push","","try_push_str","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","vzip","","","","","write","write_as_big_endian","","","","","","","","","","","","","","","","","","","","","","","","write_as_little_endian","","","","","","","","","","","","","","","","","","","","","","","","write_char","write_f32","write_f64","write_i128","write_i16","write_i32","write_i64","write_i8","write_str","write_u128","write_u16","write_u32","write_u64","write_u8","zero_filled","CubicBezierSegment","Flattened","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","components_from","ctrl1","ctrl2","deref","deref_mut","downcast","drop","from","","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_iter","into_stimulus","next","size_hint","to","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Angle","BoolVector2D","BoolVector3D","Box2D","Box3D","HomogeneousVector","Length","Point2D","Point3D","Rect","RigidTransform3D","Rotation2D","Rotation3D","Scale","SideOffsets2D","Size2D","Size3D","Transform2D","Transform3D","Translation2D","Translation3D","Trig","UnknownUnit","Vector2D","Vector3D","abs","","","","adapt_into_using","","","","","","","","","","","","","","","","","","","","","","","add","","","","","","","","","","","","","","","","","","add_assign","","","","","","","","","","","","add_size","","all","","and","","angle","angle_from_x_axis","angle_to","","any","","approx_epsilon","","","","","","","","","approx_eq","","approx_eq_eps","","","","","","","","","","","approxeq","approxord","area","","","around_axis","around_x","around_y","around_z","arrays_from","","","","","","","","","","","","","","","","","","","","","","","arrays_into","","","","","","","","","","","","","","","","","","","","","","","as_any","","","","","","","","","","","","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","","","","","","","","","","","","borrow","","","","","","","","","","","","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","","","","","","","","","","","","bottom","box3d","bvec2","bvec3","cam16_into_unclamped","","","","","","","","","","","","","","","","","","","","","","","cast","","","","","","","","","","","","","","","cast_unit","","","","","","","","","","","","","ceil","","","","","","","","","","","","center","","","clamp","","","","","","","clamp_length","","clone","","","","","","","","","","","","","","","","","","","","","","","clone_into","","","","","","","","","","","","","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","","","","","","","","","","","","","cmp","","","compare","","","component_div","","component_mul","","components_from","","","","","","","","","","","","","","","","","","","","","","","contains","","","","","contains_box","","contains_inclusive","","contains_rect","cos","cross","","decompose_reversed","default","","","","","","","","","","","","","","","","","","degrees_to_radians","depth","","deref","","","","","","","","","","","","","","","","","","","","","","","deref_mut","","","","","","","","","","","","","","","","","","","","","","","determinant","","distance_to","","div","","","","","","","","","","","","","","","","","","","","","","","div_assign","","","","","","","","","","","","","","","","","","","","","div_euclid","","dot","","downcast","","","","","","","","","","","","","","","","","","","","","","","drop","","","","","","","","","","","","","","","","","","","","","","","eq","","","","","","","","","","","","","","","","","","","","","","","equal","","","","equivalent","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","euler","extend","","fast_atan2","floor","","","","","","","","","","","","fmt","","","","","","","","","","","","","","","","","","","","","","","from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","","","","","","","","","","","","","","from_angle_and_length","from_array","","from_arrays","","from_length_all_same","from_lengths","","","","","","","from_origin_and_size","","from_points","","","from_rotation","from_scale","from_size","","","from_stimulus","","","","","","","","","","","","","","","","","","","","","","","from_translation","from_untyped","","","","","","","","","","","","","","","","from_vectors_inner","from_vectors_outer","get","","get_angle","greater_than","","","","hash","","","","","","","","","","","","","","","","","","","","","","","height","","","","","horizontal","i","identity","","","","","","","","inflate","","","init","","","","","","","","","","","","","","","","","","","","","","","inner_box","inner_rect","intersection","","","intersection_unchecked","","intersects","","","into","","","","","","","","","","","","","","","","","","","","","","","into_angle","","","","","","","","","","","","","","","","","","","","","","","into_any","","","","","","","","","","","","","","","","","","","","","","","into_any_arc","","","","","","","","","","","","","","","","","","","","","","","into_any_rc","","","","","","","","","","","","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","","","","","","","","","","","","into_color","","","","","","","","","","","","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","","","","","","","","","","","","into_stimulus","","","","","","","","","","","","","","","","","","","","","","","inverse","","","","","","","","is_2d","is_backface_visible","is_empty","","","","","is_finite","","","","","","","","","is_identity","","","is_invertible","","is_negative","","is_normalized","is_positive","","is_zero","j","k","left","length","","lerp","","","","","","","","","","","lower_than","","","","m11","","m12","","m13","m14","m21","","m22","","m23","m24","m31","","m32","","m33","m34","m41","m42","m43","m44","map","","","","max","","","","","","","","","","","max_x","max_y","min","","","","","","","","","","","min_x","min_y","mul","","","","","","","","","","","","","","","","","","","","","","","mul_assign","","","","","","","","","","","","","","","","","","","","","mul_s","neg","","","","","","","","new","","","","","","","","","","","","","","","","","","","new_2d","new_all_same","new_from_reversed","none","","norm","normalize","","","not","","not_equal","","","","null_value","","","","","","","","","","","","","","","","","num","one","","","or","","origin","","","ortho","outer_box","outer_rect","outer_transformed_box","outer_transformed_box2d","outer_transformed_box3d","outer_transformed_rect","","partial_cmp","","","perspective","point2","point3","position","pre_rotate","","pre_scale","","pre_translate","","project_onto_vector","","project_to_2d","quaternion","r","radians","","radians_to_degrees","rect","reflect","","rem_euclid","","right","robust_normalize","","rotation","","","round","","","","","","","","","","","","","","","round_in","","","round_out","","","saturating_add","saturating_sub","scale","","","","","select_point","","select_size","","select_vector","","set_size","sin","size","","","size2","size3","skew","slerp","splat","","","","","","","","square_length","","square_norm","sub","","","","","","","","","","","","","","","sub_assign","","","","","","","","","","","","sum","","","","","","","","","","tan","then","","","","","then_rotate","","then_scale","","then_translate","","to_2d","","","to_3d","","","","to_array","","","","","","","","","","to_array_4d","","to_array_transposed","","to_arrays","","to_arrays_transposed","to_box2d","to_f32","","","","","","","","","","","to_f64","","","","","","","","","","","to_i32","","","","","","","","","","","to_i64","","","","","","","","","","","to_non_empty","","","to_owned","","","","","","","","","","","","","","","","","","","","","","","to_point","","to_point2d","to_point3d","to_rect","to_size","to_transform","","","","","","","to_tuple","","","","","","","","to_tuple_4d","","to_u32","","","","","","","","","","","to_u64","","to_untyped","","","","","","","","","","","","","","","","to_usize","","","","","","","","","","","to_vector","","","","","","top","transform_box","transform_box2d","","transform_box3d","","transform_point","","","","","","","","transform_point2d","","","transform_point2d_homogeneous","transform_point3d","","","","transform_point3d_homogeneous","transform_rect","","","transform_size","","","transform_vector","","","","","","","transform_vector2d","","transform_vector3d","","translate","","","translation","","","try_cast","","","","","","","","","","","","","","","try_components_into","","","","","","","","","","","","","","","","","","","","","","","try_from","","","","","","","","","","","","","","","","","","","","","","","try_into","","","","","","","","","","","","","","","","","","","","","","","try_into_color","","","","","","","","","","","","","","","","","","","","","","","try_normalize","","type_id","","","","","","","","","","","","","","","","","","","","","","","uints_from","","","","","","","","","","","","","","","","","","","","","","","uints_into","","","","","","","","","","","","","","","","","","","","","","","union","","","unit_quaternion","upcast","","","","","","","","","","","","","","","","","","","","","","","vec2","vec3","vector_part","vertical","volume","","vzip","","","","","","","","","","","","","","","","","","","","","","","w","width","","","","","with_destination","","with_length","with_max_length","","with_min_length","","with_source","","x","","","","","","","","","x_range","","","xy","","","xy_area","xz","","","xz_area","y","","","","","","","","","y_range","","","yx","","yz","","","yz_area","z","","","","","z_range","zero","","","","","","","","","","","","","","","","","zip","","","","ApproxEq","approx_epsilon","approx_eq","approx_eq_eps","max","min","Box2D","Box3D","HomogeneousVector","Length","Point2D","Point3D","Rect","RigidTransform3D","Rotation2D","Rotation3D","Scale","SideOffsets2D","Size2D","Size3D","Transform2D","Transform3D","Translation2D","Translation3D","Vector2D","Vector3D","angle","bottom","depth","height","","i","j","k","left","m11","","m12","","m13","m14","m21","","m22","","m23","m24","m31","","m32","","m33","m34","m41","m42","m43","m44","max","","min","","origin","r","right","rotation","size","top","translation","w","width","","x","","","","","","","y","","","","","","","z","","","","Ceil","Floor","One","Round","Zero","ceil","floor","one","round","zero","Flattened","FlattenedT","FlatteningParameters","QuadraticBezierSegment","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","components_from","","","ctrl","deref","","","deref_mut","","","downcast","","","drop","","","from","","","","from_angle","","","from_stimulus","","","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_iter","","into_stimulus","","","new","next","","size_hint","","to","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","Scalar","Segment","Transformation","after_split","approximate_length","before_split","derivative","dx","dy","flip","for_each_flattened_with_t","from","sample","split","split_range","to","transform_point","transform_vector","x","y","cubic_polynomial_roots","directed_angle","directed_angle2","min_max","normalized_tangent","tangent","Flattened","FromPolyline","NoAttributes","PathIterator","Transformed","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","as_any","","","","as_any_mut","","","","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","closed","components_from","","","","deref","","","","deref_mut","","","","downcast","","","","drop","","","","flattened","","from","","","","from_angle","","","","from_stimulus","","","","init","","","","into","","","","into_angle","","","","into_any","","","","into_any_arc","","","","into_any_rc","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_iter","","","","into_stimulus","","","","new","","","next","","","","open","size_hint","transformed","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","upcast","","","","vzip","","","","with_attributes","Angle","Box2D","Point","Rotation","Scale","Size","Transform","Translation","Vector","angle","height","m11","m12","m21","m22","m31","m32","max","min","point","radians","size","vector","width","x","","","y","","","Builder","BuilderImpl","BuilderWithAttributes","IdIter","Iter","IterWithAttributes","Path","PathSlice","Reversed","Builder","BuilderWithAttributes","Iter","PathBuffer","PathBufferSlice","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","begin","","","","borrow","","","borrow_mut","","","build","","","","cam16_into_unclamped","","","clone","clone_into","clone_to_uninit","components_from","","","cubic_bezier_to","","","","deref","","","deref_mut","","","downcast","","","drop","","","end","","","","from","","","from_angle","","","from_stimulus","","","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_iter","into_stimulus","","","line_to","","","","new","next","next_back","num_attributes","","quadratic_bezier_to","","","","reserve","","","","size_hint","to_owned","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","with_attributes","IdPolygon","IdPolygonIter","PathEvents","Polygon","PolygonIdIter","PolygonIter","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","as_any","","","","as_any_mut","","","","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","clone","","","","clone_into","","","","clone_to_uninit","","","","closed","","components_from","","","","deref","","","","deref_mut","","","","downcast","","","","drop","","","","from","","","","from_angle","","","","from_stimulus","","","","init","","","","into","","","","into_angle","","","","into_any","","","","into_any_arc","","","","into_any_rc","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_iter","","","","into_stimulus","","","","new","next","","","","par_bridge","points","","to_owned","","","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","upcast","","","","vzip","","","","Build","PathBuilder","PathIterator","PathType","SvgPathBuilder","arc_to","begin","build","close","cubic_bezier_to","","end","horizontal_line_to","line_to","","move_to","num_attributes","quadratic_bezier_to","","relative_arc_to","relative_cubic_bezier_to","relative_horizontal_line_to","relative_line_to","relative_move_to","relative_quadratic_bezier_to","relative_vertical_line_to","smooth_cubic_bezier_to","smooth_quadratic_bezier_to","smooth_relative_cubic_bezier_to","smooth_relative_quadratic_bezier_to","vertical_line_to","Bevel","Butt","Gradient","LineCap","LineDash","LineJoin","Miter","Round","","Solid","Square","Stroke","Style","line_cap","line_dash","line_join","offset","segments","style","width"],"q":[[0,"iced_renderer"],[11,"iced_renderer::fallback"],[157,"iced_renderer::geometry"],[801,"iced_renderer::geometry::fill"],[803,"iced_renderer::geometry"],[804,"iced_renderer::geometry::fill"],[806,"iced_renderer::geometry"],[807,"iced_renderer::geometry::fill"],[842,"iced_renderer::geometry"],[844,"iced_renderer::geometry::fill"],[854,"iced_renderer::geometry::frame"],[877,"iced_renderer::geometry::gradient"],[879,"iced_renderer::geometry"],[880,"iced_renderer::geometry::gradient"],[972,"iced_renderer::geometry::path"],[1070,"iced_renderer::geometry::path::arc"],[1080,"iced_renderer::geometry::path"],[1081,"iced_renderer::geometry::path::arc"],[1090,"iced_renderer::geometry::path"],[1091,"iced_renderer::geometry::path::arc"],[1108,"iced_renderer::geometry::path"],[1109,"iced_renderer::geometry::path::arc"],[1110,"iced_renderer::geometry::path"],[1111,"iced_renderer::geometry::path::arc"],[1122,"iced_renderer::geometry::path::lyon_path"],[2367,"iced_renderer::geometry::path::lyon_path::Event"],[2406,"iced_renderer::geometry::path::lyon_path::builder"],[2763,"iced_renderer::geometry::path::lyon_path::commands"],[2987,"iced_renderer::geometry::path::lyon_path::geom"],[3532,"iced_renderer::geometry::path::lyon_path"],[3533,"iced_renderer::geometry::path::lyon_path::geom"],[3633,"iced_renderer::geometry::path::lyon_path"],[3634,"iced_renderer::geometry::path::lyon_path::geom"],[3807,"iced_renderer::geometry::path::lyon_path::geom::arc"],[3819,"iced_renderer::geometry::path::lyon_path::geom"],[3820,"iced_renderer::geometry::path::lyon_path::geom::arc"],[3825,"iced_renderer::geometry::path::lyon_path::geom"],[3826,"iced_renderer::geometry::path::lyon_path::geom::arc"],[3827,"iced_renderer::geometry::path::lyon_path::geom"],[3828,"iced_renderer::geometry::path::lyon_path::geom::arc"],[3841,"iced_renderer::geometry::path::lyon_path"],[3842,"iced_renderer::geometry::path::lyon_path::geom::arc"],[3843,"iced_renderer::geometry::path::lyon_path::geom"],[3846,"iced_renderer::geometry::path::lyon_path"],[3847,"iced_renderer::geometry::path::lyon_path::geom"],[3849,"iced_renderer::geometry::path::lyon_path::geom::arc"],[3858,"iced_renderer::geometry::path::lyon_path::geom"],[3860,"iced_renderer::geometry::path::lyon_path::geom::arrayvec"],[4293,"iced_renderer::geometry::path::lyon_path::geom::cubic_bezier"],[4304,"iced_renderer::geometry::path::lyon_path::geom"],[4306,"iced_renderer::geometry::path::lyon_path::geom::cubic_bezier"],[4311,"iced_renderer::geometry::path::lyon_path::geom"],[4312,"iced_renderer::geometry::path::lyon_path::geom::cubic_bezier"],[4327,"iced_renderer::geometry::path::lyon_path::geom"],[4328,"iced_renderer::geometry::path::lyon_path::geom::cubic_bezier"],[4337,"iced_renderer::geometry::path::lyon_path::geom::euclid"],[5771,"iced_renderer::geometry::path::lyon_path::geom"],[5772,"iced_renderer::geometry::path::lyon_path::geom::euclid"],[6411,"iced_renderer::geometry::path::lyon_path::geom::euclid::approxeq"],[6415,"iced_renderer::geometry::path::lyon_path::geom::euclid::approxord"],[6417,"iced_renderer::geometry::path::lyon_path::geom::euclid::default"],[6440,"iced_renderer::geometry::path::lyon_path::geom"],[6441,"iced_renderer::geometry::path::lyon_path::geom::euclid::default"],[6468,"iced_renderer::geometry::path::lyon_path::geom"],[6469,"iced_renderer::geometry::path::lyon_path::geom::euclid::default"],[6470,"iced_renderer::geometry::path::lyon_path::geom"],[6471,"iced_renderer::geometry::path::lyon_path::geom::euclid::default"],[6480,"iced_renderer::geometry::path::lyon_path::geom"],[6481,"iced_renderer::geometry::path::lyon_path::geom::euclid::default"],[6482,"iced_renderer::geometry::path::lyon_path::geom"],[6483,"iced_renderer::geometry::path::lyon_path::geom::euclid::default"],[6484,"iced_renderer::geometry::path::lyon_path::geom"],[6485,"iced_renderer::geometry::path::lyon_path::geom::euclid::default"],[6489,"iced_renderer::geometry::path::lyon_path::geom"],[6490,"iced_renderer::geometry::path::lyon_path::geom::euclid::default"],[6491,"iced_renderer::geometry::path::lyon_path::geom"],[6492,"iced_renderer::geometry::path::lyon_path::geom::euclid::default"],[6500,"iced_renderer::geometry::path::lyon_path::geom::euclid::num"],[6510,"iced_renderer::geometry::path::lyon_path::geom::quadratic_bezier"],[6541,"iced_renderer::geometry::path::lyon_path::geom"],[6542,"iced_renderer::geometry::path::lyon_path::geom::quadratic_bezier"],[6557,"iced_renderer::geometry::path::lyon_path::geom"],[6558,"iced_renderer::geometry::path::lyon_path::geom::quadratic_bezier"],[6601,"iced_renderer::geometry::path::lyon_path::geom"],[6602,"iced_renderer::geometry::path::lyon_path::geom::quadratic_bezier"],[6629,"iced_renderer::geometry::path::lyon_path::geom"],[6630,"iced_renderer::geometry::path::lyon_path::geom::traits"],[6632,"iced_renderer::geometry::path::lyon_path::geom"],[6645,"iced_renderer::geometry::path::lyon_path::geom::traits"],[6647,"iced_renderer::geometry::path::lyon_path::geom"],[6649,"iced_renderer::geometry::path::lyon_path::geom::utils"],[6655,"iced_renderer::geometry::path::lyon_path::iterator"],[6819,"iced_renderer::geometry::path::lyon_path::math"],[6849,"iced_renderer::geometry::path::lyon_path::path"],[6858,"iced_renderer::geometry::path::lyon_path::path_buffer"],[7008,"iced_renderer::geometry::path::lyon_path::polygon"],[7058,"iced_renderer::geometry::path::lyon_path"],[7060,"iced_renderer::geometry::path::lyon_path::polygon"],[7142,"iced_renderer::geometry::path::lyon_path"],[7144,"iced_renderer::geometry::path::lyon_path::polygon"],[7184,"iced_renderer::geometry::path::lyon_path::traits"],[7187,"iced_renderer::geometry::path::lyon_path::builder"],[7188,"iced_renderer::geometry::path::lyon_path::traits"],[7189,"iced_renderer::geometry::path::lyon_path::builder"],[7215,"iced_renderer::geometry"],[7218,"iced_renderer::geometry::stroke"],[7221,"iced_renderer::geometry"],[7226,"iced_renderer::geometry::stroke"],[7228,"iced_renderer::geometry"],[7235,"palette::chromatic_adaptation"],[7236,"core::any"],[7237,"palette::cam16::parameters"],[7238,"iced_core::renderer"],[7239,"iced_graphics::compositor"],[7240,"core::clone"],[7241,"iced_core::text"],[7242,"iced_core::pixels"],[7243,"iced_graphics::geometry"],[7244,"iced_core::image"],[7245,"iced_core::rectangle"],[7246,"iced_graphics::mesh"],[7247,"iced_wgpu::primitive"],[7248,"iced_core::svg"],[7249,"iced_core::point"],[7250,"iced_core::color"],[7251,"iced_core::background"],[7252,"core::convert"],[7253,"alloc::string"],[7254,"core::fmt"],[7255,"alloc::boxed"],[7256,"alloc::sync"],[7257,"alloc::rc"],[7258,"alloc::borrow"],[7259,"iced_core::size"],[7260,"iced_core::font"],[7261,"iced_wgpu"],[7262,"iced_tiny_skia"],[7263,"iced_graphics::viewport"],[7264,"core::result"],[7265,"alloc::vec"],[7266,"iced_core::transformation"],[7267,"palette::convert::try_from_into_color"],[7268,"core::option"],[7269,"iced_graphics::settings"],[7270,"iced_graphics::error"],[7271,"iced_graphics::geometry::frame"],[7272,"iced_graphics::geometry::path"],[7273,"iced_graphics::geometry::cache"],[7274,"iced_graphics::gradient"],[7275,"iced_graphics::geometry::fill"],[7276,"iced_graphics::geometry::stroke"],[7277,"iced_graphics::geometry::style"],[7278,"iced_graphics::geometry::text"],[7279,"core::ops::function"],[7280,"iced_graphics::cache"],[7281,"core::cmp"],[7282,"iced_core::alignment"],[7283,"iced_graphics::geometry::path::builder"],[7284,"lyon_path::path"],[7285,"iced_core::angle"],[7286,"iced_core::border"],[7287,"iced_core::vector"],[7288,"euclid"],[7289,"euclid::transform2d"],[7290,"iced_core::gradient"],[7291,"core::iter::traits::collect"],[7292,"iced_graphics::geometry::path::arc"],[7293,"lyon_path::commands"],[7294,"lyon_path::path_buffer"],[7295,"lyon_path"],[7296,"euclid::point"],[7297,"lyon_path::builder"],[7298,"lyon_geom::arc"],[7299,"lyon_path::events"],[7300,"lyon_path::polygon"],[7301,"core::hash"],[7302,"core::ops::range"],[7303,"lyon_path::iterator"],[7304,"lyon_geom::traits"],[7305,"euclid::vector"],[7306,"euclid::angle"],[7307,"lyon_geom::line"],[7308,"euclid::box2d"],[7309,"core::default"],[7310,"smol_str"],[7311,"lyon_geom::scalar"],[7312,"lyon_geom::triangle"],[7313,"core::marker"],[7314,"core::ops::arith"],[7315,"lyon_geom::segment"],[7316,"lyon_geom::cubic_bezier"],[7317,"lyon_geom::quadratic_bezier"],[7318,"lyon_geom"],[7319,"num_traits::identities"],[7320,"num_traits::float"],[7321,"euclid::approxeq"],[7322,"num_traits::cast"],[7323,"arrayvec::arrayvec"],[7324,"euclid::trig"],[7325,"euclid::default"],[7326,"num_traits::real"],[7327,"euclid::size"],[7328,"core::iter::traits::iterator"],[7329,"arrayvec::array_string"],[7330,"std::path"],[7331,"arrayvec::errors"],[7332,"std::io::error"],[7333,"core::str::error"],[7334,"endi::endian"],[7335,"num_traits::sign"],[7336,"euclid::length"],[7337,"euclid::scale"],[7338,"euclid::side_offsets"],[7339,"euclid::translation"],[7340,"euclid::rotation"],[7341,"euclid::transform3d"],[7342,"euclid::rect"],[7343,"euclid::box3d"],[7344,"euclid::rigid"],[7345,"euclid::num"],[7346,"euclid::homogen"],[7347,"num_traits::ops::euclid"],[7348,"num_traits::ops::saturating"],[7349,"lyon_path::math"],[7350,"rayon::iter::par_bridge"],[7351,"iced_graphics"],[7352,"euclid::approxord"],[7353,"lyon_geom::utils"]],"i":"`BEdBEf`10``````lAbEd`210`21021021021021021021021022101112221021021022222210221222221021021021021021021021021021021021021021012222121222102102102102102102102102101IdIb```Bh0`Ih````Hl4``3413````HfHj2HnHhI`89If7IjBjCj879654<=3:210879654<=3:210879654<=3:210879654<=3:210879654<=3:210879654<=3:210879654<=3:2108579654<=3:2109654<=3:2109654<=3:210020879654<=3:2102764<=32879654<=3:210879654<=3:210879654<=3:2107;882879654<=3:2109:10`8881179654<=3:2102`8799666654<=3:::2221100879654<=3:210879654<=3:210`1082879654<=3:210879654<=3:210879654<=3:210879654<=3:21089654<=3:210879654<=3:210879654<=3:210879654<=3:210879654<=3:2108879654<=3:2105442487510;764<=32310109`82855810105688328211`88649654<=3:21058879654<=3:210879654<=3:210879654<=3:210879654<=3:210879654<=3:210879654<=3:210879654<=3:210879654<=3:2102879654<=3:210848474484Lb`;0`;`0000000000000000000000000000000000770000000000``Jd00000000000000000000``;`K`Kj11101010101010101010101010101010110101010101010101010101010101001`11110101010101010101010```KhMl`11101010101101011001000110110101010100101010101010101010101010101111101100101010101010101010``Mn0000000100000000010000000000000000010100000000000`````BEhBEjOjA@h```A@f`432432`A@l```AA`NjAAb`````876``55`A@jA@n5``````````10:98`67`6`ABjOhAAjN`Nb=KlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbN`Kl=0NdNlO`0ABjOhAAj7NbOj8765OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbNlO`0`N`Kl?0ABjOhAAj4NbOj5Nd98OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAb;OhN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbOhN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbOhN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAb98`ABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbNlO`0OhKl3?ABj2AAjN`NbOj5Nd98OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbNlO`0OhOj;:987654000777666555444N`Nb?>154KlNd532410A@`NfNhA@fA@hA@jA@lA@nAA`NjAAbOnABjOhAAjN`Nb0Oj0KlNd0NlO`Ol;A@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbKlAAl21>021>Oj987632?3322?NfNhABjOh8N`Nb698NlO`OlOnA@`:9A@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`A@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjN`KlNd0OlOnA@`66OhAAj7NbOj87NlO`876NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAb>Nd<;5656N`NbKl3?>=<03`Oh14NfNhNlO`0`AAj6214ABjOlOnA@`<;<;9:68AAh5;>766AA`NjA@j``A@bN`71A@d`AAn>==>==NfKlNd1OhOj917Nb143NlO`OlOnA@`:Nh?=A@fA@hA@jA@lA@nAA`NjAAb210`?KlABjOhAAjN`NbOj6NdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbKlNl=Oj1ACnAD`ADbADd02ADf21302143211302130214321130213021`````AEl```AEfAEhACjAEdOdADh0100100100100AE`0211211240465432654326543265432165226543265432337665442265432323232011442654321065442243265432654326543265432165223211211423326543265432654322046543222654326543265432654326543265432654326543226543210654422044654323216523112106544220404040404040411006544226540404040432333311426543265432654326543265432654326543265432046543221122```````ACfObAAdABhAFd43210432104321043210343210432103432104321043210432104321033432104321043210432103443432104321043210444443210432104321043210434321043210432104321021043210433210323432104321043210432104321043210432104321043210432103`````AFh00000```0000```00`AGd````111````1AFfAFj00AGfAHlAGhADnAHn6AGj6ADl000966443311AGl111:775542`765439281765439281765439281765439281988528:77554422765439281765439281754287528752829887654392817218774447654392817654392817654392814276543928184255`5511765439281765439281:7554224392111765439281525765439281:55422:554227;76549281399911175275275252675222:77554422765439281767652:7765542257575525276576552525252111:77776555444392228165427654392817654392817171AJ`5587654:3925455945987654:39287654:39287654:39287654:39287654:39287654:39287654:39287654:39287654:392:32:636367:6363Oh643667474747444AJd00000AJf80555==59=88=55`75=`9955;:>;;998866;857=5`98988=8=>;;9988668>;;9988668768;55552;=>;;998866:986:6598765987658;:987=6<599;8`<98685;:987=6<5;:987=6<5;:987=6<5;:987=6<55;:987=6<5;:987=6<5;:987=6<5;:987=6<5`?`788;:987=6<53>;;998866AKjAKlAKn<9<9>=AGd??==<<::321=:=:9````AIh0000000AGf11111AHl2022222222222229210191022222222210`````AI`ALbALjAL`ALf432104321043210432104414314141143144321104432110432104141431041431043104104104321041443211044321104321044433221004444110444111000444311004432110432101443210141141141432104432104321043210432104321043210432104321044444324321041414114141133333333333332222222222222410413232414110414411441414410324444310101041432104443211104432104321041143210432104321043210432104444444444444444444444444444444444444444444444444144444441444441``AIj00000000AGh01111101111111111111110111111111`````````````````````````AKbANjADjANlAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOd?>AOfAOh?>LjB@`AOjAOlLh??>>==87AKb0ANj087ADj0ANl0ANnNn0AO`0>65=<43109898AOn554:93210B@b65=<=<4321065==<<``AEbB@d:22221B@fB@n8762B@h65AObAOd?>AOfAOh?>LjB@`AOjAOlLh=;:ANnNnAO`?=<54321AOd<;AOfAOh<;LjB@`AOjAOlLh?>8ANnNnAO`B@dB@hAOnB@bAOb?AKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhANn=10=17676AEbB@fB@n3NnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@d=<21210AIb:9B@h`43ANnNnAO`5AObAOdAKbANjAOfAOhADjANlLjB@`Lh?B@f8AEb1B@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLh43NnAO`AEb0B@f0ANn004433B@d0AOd0AKb0ANj0??>>66554887733221100??>>87?>65B@n5984B@hAOnB@bAOb765AOfAOhADjANlLjB@`AOjAOlLhAEbB@f?ANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLh:965AEb00B@f00B@n00ANn00Nn00AO`00B@d00B@h00AOn00B@b00AOb00AOd00AKb00ANj00AOf00AOh00ADj00ANl00Lj00B@`00AOj00AOl00Lh00=Nn7AIb11AO`0==<<9988AEbB@fB@nANn64B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEb0B@f0B@n0000ANnNn00AO`00B@d0B@h00AOnB@bAObAOdAKb000ANj000AOf0AOh0ADj0000ANl000Lj0B@`0AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLh64343;NnAO`=<;87AEbB@f10B@dB@h932132B@nANn7632AOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhB@hAEbB@fNnAO`B@d5AOnB@bAKbANjAOfAOhADjANlLjB@`AOd0ANnAOb<:965AEbB@fB@n4NnAO`B@dB@hAOnB@b9;AKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@d==98798B@nANnNnAO`;9876:AKbANj76ADjANlLjB@`AOjAOlLhAEbB@d1B@f12020120?>=<1B@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLh?>=<874333AEbB@fB@d=<21NnAO`2?>;:AOb>=:954B@bAKbANjAOd330ADjANl;:ANn98:654215421LjB@`10001010001010000000;:432;:<97643>=<<2;:<97643>=<<>>==22;;::<<95577664433>>==2;;::<<557766443302;:57643>=B@n3<;=B@hAOn<8:9AOfAOh98655:3AOjAOl??;:10>=;:AEbB@f;NnAO`B@dAObAOdAKbANj<;ADjANlLjB@`Lh`843?>;:91=921121ANn912``<323232542B@b0AOnADlAIb`98NnAO`>;:98B@hAEbB@f4433B@dAKb0ANj0ADj0ANl0654654>>654LjB@`AOjAOl1010:>:98``2B@b>=87AOfAOh87872ANnNn00AO`00AObAOd?>65=<433220?>65=<44??>>==<=>=>=>=5?=60ADj?76AKbANj<;2ANlLjB@`;210100B@dAEbB@f?>276AOfAOh:732NnAO`6;:32<954106;:32<954106;:32<954654B@nANn328B@hAOnB@bAObAOdAKbANj<;ADjANlLjB@`AOjAOlLh65??AEb7>=54=<0?61320B@hAOnB@bAKbANj:9ADjANlLjB@`?:<;954>=32<;54>=AOd?AOb?0?9900AOf0449AOh44:2044210210;;22155:4:4AEb?>65=0?ANnNnAO`B@d7>=65<;:94B@fB@n5432B@hAOnB@b<=AKbANj==ANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLh65AEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@dB@b32B@nANnNnAO`5B@hAOn6AObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLh``B@b=87::9:9873NnAO`>=<;874320;730;73510>=<;874321<0;7350=;7343ANn22113AOdAKb0ANj0ADj0ANl07610`AHh00``````````````````````BAjBAlBAnAJ`1BB`003BBbBBd10001010001010000000AJfBBf10BBh58BBj190BBl89AKlBBnAKnBC`4BCbBCd54326104260`````B@jBAdB@lBAfBA`````BCfAIlAIn210210210210210210210210AGj321321321321321032132132132132132132132132132132121321321210321321321321321321321321321AGd``0000000000000ACl011```````````AChBClBCnBCh3210321032103210321032103210032103210321032103210BCj043214321432143214321432143214321432143214321432143214321321432113004321432143214321432143214321432143214`````````BD`BDbBDd00000BDf0`BDh``3BDjBDlBDn210``````````````OfBE`ABn2102102102102211210210221121000021022112102102102102211210210210210210210210210210210210210021022111002122112211002102102102102102102102102102``````ACbAC`ACdABd3210321032103210321032103210321032103210A@bA@d5432543254325432543254325432543254325432543254325432543254325432543254325432254322105432543254325432543254325432543254325432```AEl`AE`ADh210101011001111111111111IdIbIh```21201``I`00If011","f":"````````````````````{eg{}{{b{c}}}{}}00{ce{}{}}00{{}c{}}00{d{{d{f}}}}00{{{d{h}}}{{d{hf}}}}00{d{{d{c}}}{}}00{{{d{h}}}{{d{hc}}}{}}00{{{j{c}}}e{}{}}00{{{d{h{l{ce}}}}}nA`A`}777{{{d{h{Ab{ce}}}}{d{hg}}AdAd}nAfAf{}}{{{d{{Ab{ce}}}}}gAfAf{}}{{{d{h{Ab{ce}}}}gAdAd}iAfAf{AhAj}{}}{{{d{{l{ce}}}}}gAl{{Al{}{{An{}}{B`{}}{Bb{}}}}}{}}{{{d{{l{ce}}}}}BdAl{{Al{}{{An{}}{B`{}}{Bb{}}}}}}{Bf{{d{c}}}{}}00{Bf{{d{hc}}}{}}00:::{{{d{h{l{ce}}}}g}nBhBh{}}{{{d{h{l{ce}}}}BjBl}nBn{{Bn{}{{C`{}}}}}}{{{d{h{l{ce}}}}Cb}nCdCd}{{{d{h{l{ce}}}}Blg}nCfA`Ch}{{{d{h{l{ce}}}}CjBl}nClCl}{Bfn}00=={{{d{{Ab{ce}}}}}CnAfAf}{{{d{h{l{ce}}}}{d{g}}D`DbBl}nAl{{Al{}{{An{}}{B`{}}{Bb{}}}}}{}}{{{d{h{l{ce}}}}{d{g}}D`DbBl}nAl{{Al{}{{An{}}{B`{}}{Bb{}}}}}{}}{{{d{h{l{ce}}}}Ddg}nA`A`{{Dh{Df}}}}{{{d{h{l{ce}}}}{Dl{Djg}}D`DbBl}nAl{{Al{}{{An{}}{B`{}}{Bb{}}}}}{}}{{{d{{l{ce}}}}{d{hDn}}}E`EbEb}{{{d{{Ab{ce}}}}{d{hDn}}}E`{AfEb}{AfEb}}{{{d{{Ed{ce}}}}{d{hDn}}}E`EbEb}{cc{}}00000{ce{}{}}00{{}Bf}00{{}c{}}00000{{{Ef{c}}}{{Ef{f}}}{}}00{{{Eh{c}}}{{Eh{f}}}{}}00{{{Ej{c}}}{{Ej{f}}}{}}00{{{j{c}}}e{}{}}00444444{{}c{}}00{{{d{h{Ab{ce}}}}{F`{{En{El}}}}}nAfAf}{{{d{{l{ce}}}}{d{g}}}{{Fb{Ad}}}Bn{{Bn{}{{C`{}}}}}{}}{{{d{{l{ce}}}}{d{Fd}}}{{Fb{Ad}}}ClCl}{{FfBd}{{l{FhFj}}}}{{{d{{l{ce}}}}Fb}gBhBh{}}{{{d{h{Ab{ce}}}}{d{hg}}{d{hi}}{d{Fl}}Db{d{{En{k}}}}}{{G`{nFn}}}AfAf{}{}{{Gd{Gb}}}}{{{d{h{l{FhFj}}}}{Fb{Ad}}GfDb}{{Gh{El}}}}{{{d{h{Ab{ce}}}}{d{hg}}{d{Fl}}Db{d{{En{i}}}}}{{Gh{El}}}AfAf{}{{Gd{Gb}}}}{{{d{h{l{ce}}}}Bl}nA`A`}{{{d{h{l{ce}}}}Gj}nA`A`}{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{Gl{c}}}}}{}}00{dGn}00{ce{}{}}00{{}c{}}00{d{{H`{{d{c}}}}}{}}00{{}c{}}00{{Hbc{H`{{d{Gb}}}}}{{G`{{Ab{eg}}Hd}}}{AhAj}AfAf}`````````````````````````{eg{}{{b{c}}}{}}000000000000{ce{}{}}0000000000005555555555555{d{{d{f}}}}000000000000{{{d{h}}}{{d{hf}}}}000000000000{d{{d{c}}}{}}000000000000{{{d{h}}}{{d{hc}}}{}}000000000000{{{j{c}}}e{}{}}000000000000{{{d{{Hf{c}}}}}D`Bh}{{D`Gf}Hh}{{{d{{Hj{c}}}}}nBh}{{{d{Hl}}}Hl}{{{d{Hn}}}Hn}{{{d{Hh}}}Hh}{{{d{I`}}}I`}{{{d{Ib}}}Ib}{{{d{Id}}}Id}{{{d{If}}}If}{{{d{Ih}}}Ih}{{{d{Ij}}}Ij}{{{d{{Bj{c}}}}}{{Bj{c}}}Aj}{{{d{{Cj{c}}}}}{{Cj{c}}}Aj}{{d{d{hc}}}n{}}0000000000{{dEl}n}0000000000{{Cjc}Cj{{Dh{Db}}}}{IjDb}{CjH`}{ce{}{}}000000000000{IjDj}{{}{{Hj{c}}}Bh}{{}Hn}{{}I`}{{}Ib}{{}Id}{{}If}{{}Ij}{Bf{{d{c}}}{}}000000000000{Bf{{d{hc}}}{}}000000000000{d{{d{c}}}{}}000000000000{{{d{{Hj{c}}}}{d{c}}Fbe}{}Bh{{Il{{d{h{Hf{c}}}}}}}}{{{d{h{Bh{}{{In{c}}{J`{e}}}}}}c}nJb{{Jd{}{{In{c}}}}}}{{{d{h{Hf{c}}}}Ble}nBh{{Dh{Bj}}}}{{{d{h{Hf{c}}}}Ble}nBh{{Dh{Cj}}}}{{{d{Ij}}c}n{{Jf{HhDb}}}}{Bfn}000000000000{{{d{Hl}}{d{Hl}}}Jh}{{{d{Ih}}{d{Ih}}}Jh}{{{d{{Bj{c}}}}{d{{Bj{c}}}}}JhJj}{{{d{{Cj{c}}}}{d{{Cj{c}}}}}JhJj}`{{{d{h{Hf{c}}}}{d{Hh}}e}nBh{{Dh{Hn}}}}{{{d{h{Hf{c}}}}D`Fbe}nBh{{Dh{Hn}}}}{{{d{h{Hf{c}}}}e}nBh{{Dh{Ij}}}}{{BjJl}Bj}{BjJl}{{{d{{Hj{c}}}}{d{hDn}}}{{G`{nJn}}}Bh}{{{d{Hl}}{d{hDn}}}{{G`{nJn}}}}{{{d{Hn}}{d{hDn}}}{{G`{nJn}}}}{{{d{Hh}}{d{hDn}}}{{G`{nJn}}}}{{{d{I`}}{d{hDn}}}{{G`{nJn}}}}{{{d{Ib}}{d{hDn}}}{{G`{nJn}}}}{{{d{Id}}{d{hDn}}}{{G`{nJn}}}}{{{d{If}}{d{hDn}}}{{G`{nJn}}}}{{{d{Ih}}{d{hDn}}}{{G`{nJn}}}}{{{d{Ij}}{d{hDn}}}{{G`{nJn}}}}{{{d{{Bj{c}}}}{d{hDn}}}{{G`{nJn}}}Eb}{{{d{{Cj{c}}}}{d{hDn}}}{{G`{nJn}}}Eb}{IjFf}`{cc{}}0{K`Hl}11{DbHn}{HlHn}{K`Hn}44444{DbIh}5{HlIh}{{{d{Gb}}}Ij}7{DjIj}8{{{d{Kb}}}Bj}9{{{d{Fd}}}Cj}:::::::::::::{ce{}{}}000000000000`{Bj}{Cj}{{{d{{Hf{c}}}}}GfBh}{IjKd}{{}Bf}000000000000{{}c{}}0000000000000000000000000{{{Ef{c}}}{{Ef{f}}}{}}000000000000{{{Eh{c}}}{{Eh{f}}}{}}00000000000{{{Ej{c}}}{{Ej{f}}}{}}000000000000{{{j{c}}}e{}{}}00000000000044444444444444444444444444{{{Hf{c}}}{}Bh}{{}c{}}000000000000{{D`D`}Hh}{I`Ib}{I`If}{IjKf}{I`Id}{{{d{c}}Fb}{{Hf{c}}}Bh}{{}{{Hj{c}}}Bh}{cHh{{Il{{d{hKh}}}}}}{cBj{{Dh{Kb}}}}{cCj{{Dh{Fd}}}}{{{d{{Bh{}{{In{c}}{J`{e}}}}}}Fb}eJb{{Jd{}{{In{c}}}}}};;;;;;;{IfBf}{{Bjc}Bj{{Dh{Gf}}}}{{Cjc}Cj{{Dh{Gf}}}}{BjGf}{CjGf}{{{d{Hl}}}Kj}`{{{d{h{Hf{c}}}}}nBh}{IjD`}1{{{d{Hh}}}{{d{Kl}}}}{{D`Fb}Hh}{{{d{h{Hf{c}}}}e}nBh{{Dh{Kn}}}}{{Bjc}Bj{{Dh{Kn}}}}{{Cjc}Cj{{Dh{Kn}}}}{BjKn}{CjKn}{{D`FbL`}Hh}{HnLb}{{{d{h{Hf{c}}}}e}nBh{{Dh{Gf}}}}{{{d{h{Hf{c}}}}e}nBh{{Dh{Ld}}}}{Ifd}{IjLf}{{{d{{Hf{c}}}}}FbBh}{IjBd}{{BjJh}Bj}{BjJh}`{{{d{h{Hf{c}}}}{d{Hh}}e}nBh{{Dh{I`}}}}{{{d{h{Hf{c}}}}D`Fbe}nBh{{Dh{I`}}}}{HnIh}{I`Ih}{dc{}}0000000000{{{d{Hh}}{d{{Lj{GfLhLh}}}}}Hh}{{{d{h{Hf{c}}}}Ld}nBh}{{}{{G`{c}}}{}}000000000000{c{{G`{e}}}{}{}}000000000000{{}{{G`{c}}}{}}000000000000{{}{{G`{c{Gl{c}}}}}{}}000000000000{dGn}000000000000{ce{}{}}000000000000{{}c{}}000000000000{d{{H`{{d{c}}}}}{}}000000000000{IjLl}{{}c{}}000000000000{{{d{{Hf{c}}}}}GfBh}{I`Gf}{{{d{h{Hf{c}}}}Blg}eBh{}{{Il{{d{h{Hf{c}}}}}{{Ln{e}}}}}}{{I`Db}I`}{M`{{Hj{c}}}Bh}{{I`Ib}I`}{{I`Id}I`}{{{d{h{Hf{c}}}}g}eBh{}{{Il{{d{h{Hf{c}}}}}{{Ln{e}}}}}}{{I`Gf}I`}```````{eg{}{{b{c}}}{}}{ce{}{}}>{d{{d{f}}}}{{{d{h}}}{{d{hf}}}}{d{{d{c}}}{}}{{{d{h}}}{{d{hc}}}{}}{{{j{c}}}e{}{}}{{{d{Lb}}}Lb}{{d{d{hc}}}n{}}{{dEl}n}8{Bf{{d{c}}}{}}{Bf{{d{hc}}}{}}7{Bfn}{{{d{Lb}}{d{Lb}}}Jh}{{d{d{c}}}Jh{}}00{{{d{Lb}}{d{hDn}}}{{G`{nJn}}}}{cc{}}0{ce{}{}}{{}Bf}{{}c{}}0{{{Ef{c}}}{{Ef{f}}}{}}{{{Eh{c}}}{{Eh{f}}}{}}{{{Ej{c}}}{{Ej{f}}}{}}{{{j{c}}}e{}{}}44{{}c{}}{HnLb}{HnIh}{dc{}}{{}{{G`{c}}}{}}{c{{G`{e}}}{}{}}{{}{{G`{c}}}{}}{{}{{G`{c{Gl{c}}}}}{}}{dGn}{ce{}{}}{{}c{}}{d{{H`{{d{c}}}}}{}}{{}c{}}```{{{d{{Jd{}{{In{c}}}}}}}D`{}}{{{d{h{Jd{}{{In{c}}}}}}Bl}{{Jd{}{{In{c}}}}}{}}{{{d{h{Jd{}{{In{c}}}}}}Ble}n{}{{Dh{Bj}}}}{{{d{h{Jd{}{{In{c}}}}}}Ble}n{}{{Dh{Cj}}}}{{{d{h{Jd{}{{In{c}}}}}}{d{Hh}}e}n{}{{Dh{Hn}}}}{{{d{h{Jd{}{{In{c}}}}}}D`Fbe}n{}{{Dh{Hn}}}}{{{d{h{Jd{}{{In{c}}}}}}e}n{}{{Dh{Ij}}}}{{{d{{Jd{}{{In{c}}}}}}}Gf{}}{{{Jd{}{{In{c}}}}}c{}}{{{d{h{Jd{}{{In{c}}}}}}{Jd{}{{In{c}}}}}n{}}{{{d{h{Jd{}{{In{c}}}}}}}n{}}0{{{d{h{Jd{}{{In{c}}}}}}e}n{}{{Dh{Kn}}}}{{{d{h{Jd{}{{In{c}}}}}}e}n{}{{Dh{Gf}}}}{{{d{h{Jd{}{{In{c}}}}}}e}n{}{{Dh{Ld}}}}{{{d{{Jd{}{{In{c}}}}}}}Fb{}}{{{d{h{Jd{}{{In{c}}}}}}{d{Hh}}e}n{}{{Dh{I`}}}}{{{d{h{Jd{}{{In{c}}}}}}D`Fbe}n{}{{Dh{I`}}}}{{{d{h{Jd{}{{In{c}}}}}}Ld}n{}}:````{eg{}{{b{c}}}{}}0{{K`GfDb}K`}{{K`c}K`{{Mf{}{{Mb{Md}}}}}}{ce{}{}}0{{}c{}}0{d{{d{f}}}}0{{{d{h}}}{{d{hf}}}}0{d{{d{c}}}{}}0{{{d{h}}}{{d{hc}}}{}}0{{{j{c}}}e{}{}}0{{{d{K`}}}K`}{{{d{Kj}}}Kj}{{d{d{hc}}}n{}}0{{dEl}n}0::{Bf{{d{c}}}{}}0{Bf{{d{hc}}}{}}088{Bfn}0{K`D`}{{{d{K`}}{d{K`}}}Jh}{{{d{Kj}}{d{Kj}}}Jh}{{{d{K`}}{d{hDn}}}{{G`{nJn}}}}{{{d{Kj}}{d{hDn}}}{{G`{nJn}}}}{cc{}}000{ce{}{}}0{{}Bf}0{{}c{}}000{{{Ef{c}}}{{Ef{f}}}{}}0{{{Eh{c}}}{{Eh{f}}}{}}0{{{Ej{c}}}{{Ej{f}}}{}}0{{{j{c}}}e{}{}}04444{{}c{}}0{{{d{c}}}Jh{}}{{D`D`}K`}{{{d{Mh}}Bl}Kj}{{{d{K`}}}Kj}{K`D`}{K`Mj}{dc{}}0{{}{{G`{c}}}{}}0{c{{G`{e}}}{}{}}0{{}{{G`{c}}}{}}0{{}{{G`{c{Gl{c}}}}}{}}0{dGn}0{ce{}{}}0{{}c{}}0{d{{H`{{d{c}}}}}{}}0{{}c{}}0```{eg{}{{b{c}}}{}}0`{{{d{hKh}}Ml}n}{{{d{hKh}}D`D`Gf}n}{ce{}{}}066{d{{d{f}}}}0{{{d{h}}}{{d{hf}}}}0{{{d{hKh}}D`D`D`}n}{d{{d{c}}}{}}0{{{d{h}}}{{d{hc}}}{}}0{KhHh}{{{j{c}}}e{}{}}0{MlD`}{{{d{hKh}}D`Gf}n}{{{d{Ml}}}Ml}{{d{d{hc}}}n{}}{{dEl}n}{{{d{hKh}}}n}=={{}Kh}{Bf{{d{c}}}{}}0{Bf{{d{hc}}}{}}0<<{Bfn}0{{{d{hKh}}Mn}n}{MlKn}{{{d{Ml}}{d{hDn}}}{{G`{nJn}}}}{cc{}}000{ce{}{}}0{{}Bf}0{{}c{}}000{{{Ef{c}}}{{Ef{f}}}{}}0{{{Eh{c}}}{{Eh{f}}}{}}0{{{Ej{c}}}{{Ej{f}}}{}}0{{{j{c}}}e{}{}}04444{{}c{}}0{{{d{hKh}}D`}n}0{{}Kh}2{{{d{hKh}}D`D`}n}{MlGf}{{{d{hKh}}D`Fb}n}{{{d{hKh}}D`FbL`}n}{MlKn}{dc{}}{{}{{G`{c}}}{}}0{c{{G`{e}}}{}{}}0{{}{{G`{c}}}{}}0{{}{{G`{c{Gl{c}}}}}{}}0{dGn}0{ce{}{}}0{{}c{}}0{d{{H`{{d{c}}}}}{}}0{{}c{}}0``{eg{}{{b{c}}}{}}{ce{}{}}4{d{{d{f}}}}{{{d{h}}}{{d{hf}}}}{d{{d{c}}}{}}{{{d{h}}}{{d{hc}}}{}}{{{j{c}}}e{}{}}{MlD`}{MnD`}{{{d{Mn}}}Mn}{{d{d{hc}}}n{}}{{dEl}n}:{Bf{{d{c}}}{}}{Bf{{d{hc}}}{}}9{Bfn}{MlKn}{MnKn}{{{d{Mn}}{d{hDn}}}{{G`{nJn}}}}{cc{}}{MlMn}1{ce{}{}}{{}Bf}{{}c{}}0{{{Ef{c}}}{{Ef{f}}}{}}{{{Eh{c}}}{{Eh{f}}}{}}{{{Ej{c}}}{{Ej{f}}}{}}{{{j{c}}}e{}{}}44{{}c{}}{MnLd}{MlGf}=>={dc{}}{{}{{G`{c}}}{}}{c{{G`{e}}}{}{}}{{}{{G`{c}}}{}}{{}{{G`{c{Gl{c}}}}}{}}{dGn}{ce{}{}}{{}c{}}{d{{H`{{d{c}}}}}{}}{{}c{}}````````````````````````````````````````{{}d}````````````````````````{eg{}{{b{c}}}{}}000000000000000000000000{ce{}{}}0000000000000000000000005555555555555555555555555{d{{d{f}}}}000000000000000000000000{{{d{h}}}{{d{hf}}}}000000000000000000000000{{{d{N`}}}Nb}{{{d{Kl}}}Nd}{{{d{Nf}}}Nh}{{{d{Kl}}Nj}{{d{{En{Gf}}}}}}{{{d{Nd}}Nj}{{d{{En{Gf}}}}}}{{{d{hNl}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}{{{d{hO`}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}0{d{{d{c}}}{}}000000000000000000000000{{{d{h}}}{{d{hc}}}{}}000000000000000000000000{NlKl}{O`Kl}0`{{}Ob}{{}{{Od{Nl}}}}{{{d{hNf}}}Of}{BfO`}{{{j{c}}}e{}{}}000000000000000000000000{{{d{hNf}}}n}{{{d{Oh}}}Oh}{{{d{N`}}}N`}{{{d{Nb}}}Nb}{{{d{{Oj{ce}}}}}{{Oj{ce}}}AjAj}{{{d{Kl}}}Kl}{{{d{Nd}}}Nd}{{{d{Nl}}}Nl}{{{d{O`}}}O`}{{{d{Ol}}}Ol}{{{d{On}}}On}{{{d{A@`}}}A@`}{{{d{Nf}}}Nf}{{{d{Nh}}}Nh}{{{d{{A@b{c}}}}}{{A@b{c}}}Aj}{{{d{A@d}}}A@d}{{{d{A@f}}}A@f}{{{d{A@h}}}A@h}{{{d{A@j}}}A@j}{{{d{A@l}}}A@l}{{{d{A@n}}}A@n}{{{d{AA`}}}AA`}{{{d{Nj}}}Nj}{{{d{AAb}}}AAb}{{d{d{hc}}}n{}}0000000000000000000000{{dEl}n}0000000000000000000000{A@bJh}{A@dJh}`{ce{}{}}000000000000000000000000{{{d{hNl}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}{{{d{hO`}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}0{{}Oh}{{}Kl}{{}Nl}{{}Nf}{Bf{{d{c}}}{}}000000000000000000000000{Bf{{d{hc}}}{}}000000000000000000000000{d{{d{c}}}{}}000000000000000000000000{Bfn}000000000000000000000000{{{d{hNl}}Jh}n}{{{d{hO`}}Jh}n}0{{{d{Oh}}{d{Oh}}}Jh}{{{d{{Oj{ce}}}}{d{{Oj{ce}}}}}JhJjJj}{{{d{A@f}}{d{A@f}}}Jh}{{{d{A@h}}{d{A@h}}}Jh}{{{d{A@j}}{d{A@j}}}Jh}{{{d{A@l}}{d{A@l}}}Jh}{{{d{A@n}}{d{A@n}}}Jh}{{{d{AA`}}{d{AA`}}}Jh}{{{d{Nj}}{d{Nj}}}Jh}{{{d{AAb}}{d{AAb}}}Jh}{{d{d{c}}}Jh{}}00000000000000{{{d{N`}}AAb}{{Oj{NjAA`}}}}{{{d{Nb}}AAb}{{Oj{NjAA`}}}}{{{d{{A@b{c}}}}AAb}{{Oj{{d{c}}n}}}{}}{{{d{A@d}}AAb}{{Oj{NjAA`}}}}{{{d{N`}}{d{{En{c}}}}{d{{En{e}}}}}{{AAd{ce}}}{}{}}{{{d{hNl}}{d{{En{Nd}}}}}n}{{{d{hO`}}{d{{En{Nd}}}}}n}{{{d{Kl}}}{{H`{{AAf{{Nn{GfLh}}{d{{En{Gf}}}}}}}}}}{{{d{Nd}}}{{H`{{AAf{{Nn{GfLh}}{d{{En{Gf}}}}}}}}}}{{{d{Oh}}{d{hDn}}}{{G`{nJn}}}}{{{d{N`}}{d{hDn}}}{{G`{nJn}}}}{{{d{Nb}}{d{hDn}}}{{G`{nJn}}}}{{{d{{Oj{ce}}}}{d{hDn}}}{{G`{nJn}}}EbEb}{{{d{Kl}}{d{hDn}}}{{G`{nJn}}}}{{{d{Nd}}{d{hDn}}}{{G`{nJn}}}}{{{d{A@`}}{d{hDn}}}{{G`{nJn}}}}{{{d{Nf}}{d{hDn}}}{{G`{nJn}}}}{{{d{Nh}}{d{hDn}}}{{G`{nJn}}}}{{{d{A@f}}{d{hDn}}}{{G`{nJn}}}}{{{d{A@h}}{d{hDn}}}{{G`{nJn}}}}{{{d{A@j}}{d{hDn}}}{{G`{nJn}}}}{{{d{A@l}}{d{hDn}}}{{G`{nJn}}}}{{{d{A@n}}{d{hDn}}}{{G`{nJn}}}}{{{d{AA`}}{d{hDn}}}{{G`{nJn}}}}{{{d{Nj}}{d{hDn}}}{{G`{nJn}}}}{{{d{AAb}}{d{hDn}}}{{G`{nJn}}}}{{OnGf{d{hc}}}n{{Jf{{d{{Oj{{AAf{{Nn{GfLh}}{d{{En{Gf}}}}}}{Nn{GfLh}}}}}}}}}}{cc{}}0000{{{d{N`}}}Nb}1{{{d{{Oj{ce}}}}}cAj{}}2{{{d{Kl}}}Nd}3333333333333333333333333333333333333333333{cKl{{Mf{}{{Mb{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}}}}}}{cNf{{Mf{}{{Mb{Nd}}}}}}{ce{}{}}000000000000000000000000{BfAA`}{BfNj}{{{d{AAh}}Nj}{{d{{En{Gf}}}}}}{{{d{AAj}}Nj}{{d{{En{Gf}}}}}}{{{d{Kl}}Nj}{{d{{En{Gf}}}}}}{{{d{Nd}}Nj}{{d{{En{Gf}}}}}}{{{d{Nf}}Bf}Nd}{{{d{Nh}}Bf}Nd}{{{d{AAl}}AA`}{{Nn{GfLh}}}}{{{d{Kl}}AA`}{{Nn{GfLh}}}}{{{d{Nd}}AA`}{{Nn{GfLh}}}}{{{d{{A@b{c}}}}AA`}{{Nn{GfLh}}}AAn}{{{d{AAl}}Nj}{{Nn{GfLh}}}}{{{d{Kl}}Nj}{{Nn{GfLh}}}}{{{d{Nd}}Nj}{{Nn{GfLh}}}}{{{d{{A@b{c}}}}Nj}{{Nn{GfLh}}}AAn}{{{d{{Oj{ce}}}}{d{hg}}}nAB`AB`ABb}{{{d{A@n}}{d{hc}}}nABb}{{{d{AA`}}{d{hc}}}nABb}{{{d{Nj}}{d{hc}}}nABb}{{{d{AAb}}{d{hc}}}nABb}{{{d{Kl}}}A@`}{{{d{Nd}}}A@`}{{{d{{A@b{c}}}}}ABd{}}{{{d{Kl}}AA`}{{d{{Nn{GfLh}}}}}}{{{d{Kl}}Nj}{{d{{Nn{GfLh}}}}}}{{{d{Nd}}AA`}{{d{{Nn{GfLh}}}}}}{{{d{Nd}}Nj}{{d{{Nn{GfLh}}}}}}{{{d{{A@b{c}}}}Nj}{{d{c}}}{}}{{{d{Nf}}}{{ABf{Bf}}}}{{{d{Nh}}}{{ABf{Bf}}}}{{}Bf}000000000000000000000000{{}c{}}0000000000000000000000000000000000000000000000000{{{Ef{c}}}{{Ef{f}}}{}}000000000000000000000000{{{Eh{c}}}{{Eh{f}}}{}}0000000000000000000000{{{Ej{c}}}{{Ej{f}}}{}}000000000000000000000000{{{j{c}}}e{}{}}00000000000000000000000044444444444444444444444444444444444444444444444444{{}c{}}{{{d{N`}}}ABh}{{{d{Kl}}}Ol}{{{d{Nd}}}Ol}{NdOl}444{ABjKl}{{}c{}}000000000000000000000000{{{d{{Oj{ce}}}}}Jh{}{}}{{{d{Nd}}}Jh}{{{d{Nf}}}Jh}{{{d{Nh}}}Jh}{{{d{A@l}}ABl}Jh}{A@jJh}10;{{{d{Nb}}}ABh};:{{{d{Nf}}}ABn}{{{d{Nh}}}ABn}{{{d{{A@b{c}}}}}{{AC`{c}}}{}}{{{d{A@d}}}ACb}{{{d{Kl}}}On}{{{d{Nd}}}On}`{OhJh}{{{d{Kl}}}{{H`{{AAf{{Nn{GfLh}}{d{{En{Gf}}}}}}}}}}{{{d{Nd}}}{{H`{{AAf{{Nn{GfLh}}{d{{En{Gf}}}}}}}}}}{{{d{Nf}}}Bf}{{{d{Nh}}}Bf}{{{d{hNl}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}{{{d{hO`}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}0`{{{d{{En{Gf}}}}Bf}AAj}{{}Kl}{{}Nl}{BfO`}{{}Nf}{{{d{hABj}}}H`}{{{d{hOl}}}{{H`{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}}}}{{{d{hOn}}}H`}{{{d{hA@`}}}{{H`{{Oj{NjAA`}}}}}}{{{d{N`}}AAb}{{H`{AAb}}}}{{{d{Nb}}AAb}{{H`{AAb}}}}{{{d{N`}}AAb}AAb}{{{d{Nb}}AAb}AAb}{{}c{}}000{{{d{AAh}}}Bf}{{{d{AAj}}}Bf}{{{d{Kl}}}Bf}{{{d{Nd}}}Bf}{{{d{Nl}}}Bf}{{{d{O`}}}Bf}0{AA`Bf}{NjBf}{A@jA@j}``{{{d{{A@b{c}}}}}{{ACd{c}}}AAn}{{{d{N`}}{d{{En{c}}}}{d{{En{e}}}}}{{ACf{ce}}}{}{}}{OnOl}{A@bd}{A@dd}`{{{d{AAn}}}{{Nn{GfLh}}}}{{{d{hNl}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}{{{d{hO`}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}0{{{d{hNl}}BfBf}n}{{{d{hO`}}BfBf}n}0{{{d{hNf}}BfBfBf}n}{{{d{Kl}}}{{ACh{ABj}}}}{{{d{Nd}}}{{ACh{ABj}}}}{{}{{ACj{Nl}}}}{OhJh}{{{d{{Oj{ce}}}}}cAj{}}{A@jGf}{dc{}}0000000000000000000000{AA`Bf}{NjBf}{AAbBf}`{{{d{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}}{d{c}}}{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}{{ACl{Gf}}}}{{Kl{d{c}}}Kl{{ACl{Gf}}}}{{}{{G`{c}}}{}}000000000000000000000000{c{{G`{e}}}{}{}}000000000000000000000000{{}{{G`{c}}}{}}000000000000000000000000{{}{{G`{c{Gl{c}}}}}{}}000000000000000000000000{dGn}000000000000000000000000{ce{}{}}000000000000000000000000{{}c{}}000000000000000000000000{d{{H`{{d{c}}}}}{}}000000000000000000000000{{}c{}}000000000000000000000000{BfKl}{{BfBf}Nl}{{BfBfBf}Nf}{{{d{{Oj{ce}}}}}{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}AAnAAn}{Nl{{ACj{Nl}}}}{ACn}{AD`Jh}{ADb}{ADd}0{AD`}{ADf}321032{ACnNj}5{ADbAA`}{ADdAA`}0{AD`Nj}{ADfNj}{ADbNj}{ADdNj}3210{ACnNn}<{ADbNn}{ADdNn}0{AD`Nn}{ADfNn}321032`````````{eg{}{{b{c}}}{}}0000{{{d{hADh}}{Nn{GfLh}}GfA@n{d{{En{Gf}}}}}n}0{{{d{h{Od{c}}}}{Nn{GfLh}}GfA@n}nADh}{{{d{hADh}}{Nn{GfLh}}{ADj{GfLh}}{ADl{Gf}}A@n{d{{En{Gf}}}}}n}0{{{d{h{Od{c}}}}{Nn{GfLh}}{ADj{GfLh}}{ADl{Gf}}A@n}nADh}{{{d{hADh}}{d{{ADn{Gf}}}}{d{{En{Gf}}}}}{{AAf{NjNj}}}}0{{{d{h{Od{c}}}}{d{{ADn{Gf}}}}}{{AAf{NjNj}}}ADh}{{{d{hADh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}0{{{d{h{Od{c}}}}{Nn{GfLh}}}NjADh}{{{d{hADh}}{A@b{{Nn{GfLh}}}}{d{{En{Gf}}}}}n}0{{{d{hAE`}}{A@b{{Nn{GfLh}}}}}n}0{{{d{h{Od{c}}}}{A@b{{Nn{GfLh}}}}}nADh}{{{d{hADh}}{d{{AEb{GfLh}}}}A@n{d{{En{Gf}}}}}n}0{{{d{h{Od{c}}}}{d{{AEb{GfLh}}}}A@n}nADh}{{{d{hADh}}{d{{AEb{GfLh}}}}{d{AEd}}A@n{d{{En{Gf}}}}}n}0{{{d{h{Od{c}}}}{d{{AEb{GfLh}}}}{d{AEd}}A@n}nADh}{{{d{h{ACj{c}}}}{Nn{GfLh}}{ADj{GfLh}}{ADl{Gf}}{ADl{Gf}}}nADh}{{{d{hAE`}}{ADj{GfLh}}{ADl{Gf}}Oh{Nn{GfLh}}}n}{{{d{h{ACj{c}}}}{ADj{GfLh}}{ADl{Gf}}Oh{Nn{GfLh}}}nADh}{ce{}{}}0000{{}c{}}0000{d{{d{f}}}}0000{{{d{h}}}{{d{hf}}}}0000?{{{d{h{AEf{c}}}}{Nn{GfLh}}{d{{En{Gf}}}}}NjADh}{{{d{h{AEh{ce}}}}{Nn{GfLh}}{d{{En{Gf}}}}}NjADh{{ACl{Gf}}}}{{{d{h{Od{c}}}}{Nn{GfLh}}}NjADh}{{{d{h{Od{c}}}}{Nn{GfLh}}{d{{En{Gf}}}}}NjADh}{d{{d{c}}}{}}0000{{{d{h}}}{{d{hc}}}{}}0000{AEdGf}0{{{AEl{}{{AEj{c}}}}}c{}}{{{AEf{c}}}{}{AElADh}}{{{AEf{c}}}{}AEl}{{{AEh{ce}}}{}AEl{}}{{{ACj{c}}}{}{ADhAEl}}{{{ACj{c}}}{}{AElADh}}{{{Od{c}}}{}{ADhAEl}}{{{Od{e}}}c{}{{AEl{}{{AEj{c}}}}ADh}}{{{j{c}}}e{}{}}0000{{{d{AEd}}}AEd}{{{d{{Od{c}}}}}{{Od{c}}}{AjADh}}{{d{d{hc}}}n{}}0{{dEl}n}0{{{d{hAE`}}}n}{{{d{hADh}}}n}0{{{d{h{ACj{c}}}}}nADh}0{{{d{h{Od{c}}}}}nADh}{ce{}{}}0000{{{d{hADh}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}{{{d{hAE`}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}}n}{{{d{h{AEf{c}}}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}NjADh}{{{d{h{AEh{ce}}}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}NjADh{{ACl{Gf}}}}{{{d{h{ACj{c}}}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}}nADh}{{{d{h{ACj{c}}}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}}NjADh}{{{d{h{Od{c}}}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}NjADh}{{{d{h{Od{c}}}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}}NjADh}{{{d{{ACj{c}}}}}{{Nn{GfLh}}}ADh}{{}AEd}{{}{{Od{c}}}{ADhAEn}}{Bf{{d{c}}}{}}0000{Bf{{d{hc}}}{}}0000{d{{d{c}}}{}}0000{Bfn}0000{{{d{hADh}}Jh}n}{{{d{h{AEf{c}}}}Jh}nADh}{{{d{h{AEh{ce}}}}Jh}nADh{{ACl{Gf}}}}{{{d{h{Od{c}}}}Jh}nADh}0{{{d{AEd}}{d{AEd}}}Jh}{{{d{{Od{c}}}}{d{{Od{c}}}}}Jh{JjADh}}{{{d{hADh}}{Oj{{AAf{{Nn{GfLh}}{d{{En{Gf}}}}}}{Nn{GfLh}}}}}n}0{{{d{h{Od{Nl}}}}{d{{En{Nd}}}}}n}{{ADhGf}{{AEf{ADh}}}}0{{{ACj{c}}Gf}{{ACj{{AEf{c}}}}}ADh}{{{Od{c}}Gf}{{Od{{AEf{c}}}}}ADh}{{{d{AEd}}{d{hDn}}}{{G`{nJn}}}}0{{{d{{Od{c}}}}{d{hDn}}}{{G`{nJn}}}{EbADh}}{cc{}}000000000{ce{}{}}0000{{{d{{Od{c}}}}{d{he}}}n{AB`ADh}ABb}{{{d{hAE`}}Gf}n}{{{d{h{ACj{c}}}}Gf}nADh}{{}Bf}0000{{{d{{Od{c}}}}}{{d{c}}}ADh}{{{d{h{Od{c}}}}}{{d{hc}}}ADh}{{}c{}}000000000{{{Ef{c}}}{{Ef{f}}}{}}0000{{{Eh{c}}}{{Eh{f}}}{}}0000{{{Ej{c}}}{{Ej{f}}}{}}0000{{{j{c}}}e{}{}}00004444444444{{{Od{c}}}cADh}{{}c{}}0000{{{d{hADh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}{{{d{hAE`}}{Nn{GfLh}}}n}{{{d{h{AEf{c}}}}{Nn{GfLh}}{d{{En{Gf}}}}}NjADh}{{{d{h{AEh{ce}}}}{Nn{GfLh}}{d{{En{Gf}}}}}NjADh{{ACl{Gf}}}}{{{d{h{ACj{c}}}}{Nn{GfLh}}}nADh}{{{d{h{ACj{c}}}}{Nn{GfLh}}}NjADh}{{{d{h{Od{c}}}}{Nn{GfLh}}}NjADh}{{{d{h{Od{c}}}}{Nn{GfLh}}{d{{En{Gf}}}}}NjADh}623{{cGf}{{AEf{c}}}ADh}{{ce}{{AEh{ce}}}{}{}}{c{{ACj{c}}}ADh}{GfAEd}{{}{{Od{c}}}{AEnADh}}=={{{d{ADh}}}Bf}{{{d{{AEf{c}}}}}BfADh}{{{d{{AEh{ce}}}}}BfADh{{ACl{Gf}}}}{{{d{{Od{c}}}}}BfADh}{{{d{AEd}}{d{AEd}}}{{H`{AF`}}}}{{{d{hADh}}{Oj{{Nn{GfLh}}{Nn{GfLh}}}}{d{{En{Gf}}}}}n}0{{{d{h{Od{c}}}}{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}nADh}{{{d{hADh}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}{{{d{hAE`}}{Nn{GfLh}}{Nn{GfLh}}}n}{{{d{h{AEf{c}}}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}NjADh}{{{d{h{AEh{ce}}}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}NjADh{{ACl{Gf}}}}{{{d{h{ACj{c}}}}{Nn{GfLh}}{Nn{GfLh}}}NjADh}{{{d{h{ACj{c}}}}{Nn{GfLh}}{Nn{GfLh}}}nADh}{{{d{h{Od{c}}}}{Nn{GfLh}}{Nn{GfLh}}}NjADh}{{{d{h{Od{c}}}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}NjADh}{{{d{hAE`}}{ADj{GfLh}}{ADl{Gf}}Oh{ADj{GfLh}}}n}{{{d{h{ACj{c}}}}{ADj{GfLh}}{ADl{Gf}}Oh{ADj{GfLh}}}nADh}{{{d{hAE`}}{ADj{GfLh}}{ADj{GfLh}}{ADj{GfLh}}}n}{{{d{h{ACj{c}}}}{ADj{GfLh}}{ADj{GfLh}}{ADj{GfLh}}}nADh}{{{d{hAE`}}Gf}n}{{{d{h{ACj{c}}}}Gf}nADh}{{{d{hAE`}}{ADj{GfLh}}}n}{{{d{h{ACj{c}}}}{ADj{GfLh}}}nADh}10{{{d{hAE`}}{ADj{GfLh}}{ADj{GfLh}}}n}{{{d{h{ACj{c}}}}{ADj{GfLh}}{ADj{GfLh}}}nADh}54{{{d{hADh}}BfBf}n}0{{{d{hAE`}}BfBf}n}0{{{d{h{AEf{c}}}}BfBf}nADh}{{{d{h{AEh{ce}}}}BfBf}nADh{{ACl{Gf}}}}{{{d{h{ACj{c}}}}BfBf}nADh}0{{{d{h{Od{c}}}}BfBf}nADh}0{{{d{h{AEf{c}}}}Gf}nADh}{{{d{h{AEh{ce}}}}e}n{}{}}{{{d{h{ACj{{AEh{ce}}}}}}e}nADh{{ACl{Gf}}}}{{{d{hAE`}}{Nn{GfLh}}{Nn{GfLh}}}n}{{{d{h{ACj{c}}}}{Nn{GfLh}}{Nn{GfLh}}}nADh}{{{d{hAE`}}{Nn{GfLh}}}n}{{{d{h{ACj{c}}}}{Nn{GfLh}}}nADh}>={{{d{hAE`}}{ADj{GfLh}}}n}{{{d{h{ACj{c}}}}{ADj{GfLh}}}nADh}{dc{}}0{dAFb}{dDj}{AEdGf}0{{ADhc}{{AEh{ADhc}}}{{ACl{Gf}}}}0{{{ACj{c}}e}{{ACj{{AEh{ce}}}}}ADh{{ACl{Gf}}}}{{{Od{c}}e}{{Od{{AEh{ce}}}}}ADh{{ACl{Gf}}}}{{}{{G`{c}}}{}}0000{c{{G`{e}}}{}{}}0000{{}{{G`{c}}}{}}0000{{}{{G`{c{Gl{c}}}}}{}}0000{dGn}0000{ce{}{}}0000{{}c{}}0000{d{{H`{{d{c}}}}}{}}0000{{{d{hAE`}}Gf}n}{{{d{h{ACj{c}}}}Gf}nADh}{{}c{}}0000{{BfBf}{{Od{c}}}{AEnADh}}{ADh{{ACj{ADh}}}}0{{{Od{c}}}{{ACj{c}}}ADh}{c{{Od{c}}}ADh}```````{eg{}{{b{c}}}{}}0000{ce{}{}}0000:::::{d{{d{f}}}}0000{{{d{h}}}{{d{hf}}}}0000{{{d{hOb}}Nj}AAb}{d{{d{c}}}{}}0000{{{d{h}}}{{d{hc}}}{}}0000{ObN`}{{{j{c}}}e{}{}}0000{{{d{{ACf{ce}}}}}{{ACf{ce}}}AjAj}{{{d{Ob}}}Ob}{{{d{{AAd{ce}}}}}{{AAd{ce}}}AjAj}{{{d{ABh}}}ABh}{{{d{{AFd{ce}}}}}{{AFd{ce}}}AjAj}{{d{d{hc}}}n{}}0000{{dEl}n}0000>>>>>{{{d{hOb}}AA`AA`Nj}AAb}{{}Ob}{Bf{{d{c}}}{}}0000{Bf{{d{hc}}}{}}0000>>>>>{Bfn}0000{{{d{hOb}}Jh}{{H`{AAb}}}}{{{d{{ACf{ce}}}}}{{AAd{ce}}}{}{}}{{{d{{ACf{ce}}}}{d{hDn}}}{{G`{nJn}}}EbEb}{{{d{Ob}}{d{hDn}}}{{G`{nJn}}}}{cc{}}000000000{ce{}{}}0000{{{d{{ACf{ce}}}}AA`}{{Nn{GfLh}}}AAnAAn}{{{d{{ACf{ce}}}}Nj}{{Nn{GfLh}}}AAnAAn}{{{d{{ACf{ce}}}}AA`}{{d{e}}}{}{}}{{{d{{ACf{ce}}}}Nj}{{d{c}}}{}{}}{{}Bf}0000{{}c{}}000000000{{{Ef{c}}}{{Ef{f}}}{}}0000{{{Eh{c}}}{{Eh{f}}}{}}0{{{Ej{c}}}{{Ej{f}}}{}}0000{{{j{c}}}e{}{}}00004444444444{{}c{}}00{{}c{}}0000{{{d{{ACf{ce}}}}}ABh{}{}}{{{d{hOb}}Nj}AAb}{{}Ob}{{{d{h{AAd{ce}}}}}{{H`{{Oj{{d{c}}{d{e}}}}}}}{}{}}{{{d{hABh}}}{{H`{{Oj{NjAA`}}}}}}{{{d{h{AFd{ce}}}}}{{H`{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}}}AAnAAn}6{{{AAd{ce}}}{{AFd{ce}}}AAnAAn}{{{d{hOb}}AA`Nj}AAb}{dc{}}0000{{}{{G`{c}}}{}}0000{c{{G`{e}}}{}{}}0000{{}{{G`{c}}}{}}0000{{}{{G`{c{Gl{c}}}}}{}}0000{dGn}0000{ce{}{}}0000{{}c{}}0000{d{{H`{{d{c}}}}}{}}0000{{}c{}}0000{BfOb}`````````````````````````````````````{{{d{{AFf{c}}}}}cAFh}{AFjNn}{{{d{{AFj{c}}}}}{{ADn{c}}}AFh}0{eg{}{{b{c}}}{}}00000000{{{ADl{c}}{d{{ADl{c}}}}}{{ADl{c}}}{AFl{AFn{}{{Ln{}}}}}}{{{ADl{c}}{ADl{c}}}{{ADl{c}}}{{AFn{}{{Ln{}}}}}}{{{d{h{ADl{c}}}}{ADl{c}}}nAG`}{{{d{{AGd{}{{AGb{c}}}}}}c}{{AGd{}{{AGb{c}}}}}AFh}{{{d{{AGf{c}}}}c}{{AGf{c}}}AFh}0{{{d{{AGh{c}}}}c}{{AGh{c}}}AFh}0{{{d{{ADn{c}}}}c}{{ADn{c}}}AFh}0{{{d{{AGj{c}}}}c}{{AGj{c}}}AFh}0{AGl}{{{d{{ADl{c}}}}{ADl{c}}}{{ADl{c}}}{{AGn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}AHdAHfAFl}}{{}cAHh}{{{d{{ADl{c}}}}{d{{ADl{c}}}}{d{c}}}JhAHh}{{{d{{AGd{}{{AGb{c}}}}}}c}cAFh}{{{d{{AGf{c}}}}c}cAFh}0{{{d{{AGh{c}}}}c}cAFh}0{{{d{{ADn{c}}}}c}cAFh}{{{d{{AGj{c}}}}c}cAFh}`{ce{}{}}00000000{{}c{}}00000000{d{{d{f}}}}00000000{{{d{h}}}{{d{hf}}}}00000000{{{d{{AFf{c}}}}}cAFh}{AFjNn}{{{d{{AFj{c}}}}}{{ADn{c}}}AFh}{{{d{{AGh{c}}}}}{{ADn{c}}}AFh}{{{d{{AGj{c}}}}}{{ADn{c}}}AFh}2{{{d{{AGd{}{{AGb{c}}}}}}c}{{AGd{}{{AGb{c}}}}}AFh}{{{d{{AGf{c}}}}c}{{AGf{c}}}AFh}0{{{d{{AGh{c}}}}c}{{AGh{c}}}AFh}0{{{d{{ADn{c}}}}c}{{ADn{c}}}AFh}0{{{d{{AGj{c}}}}c}{{AGj{c}}}AFh}0{d{{d{c}}}{}}00000000{{{d{h}}}{{d{hc}}}{}}00000000{{{d{{AGf{c}}}}}{{AEb{cLh}}}AFh}{{{d{{AGh{c}}}}}{{AEb{cLh}}}AFh}{{{d{{ADn{c}}}}}{{AEb{cLh}}}AFh}{{{d{{AGj{c}}}}}{{AEb{cLh}}}AFh}{{{d{{AFj{c}}}}}{{AEb{cLh}}}AFh}{{{d{{AGf{c}}}}}{{AAf{cc}}}AFh}{{{d{{AGh{c}}}}}{{AAf{cc}}}AFh}{{{d{{AGj{c}}}}}{{AAf{cc}}}AFh}{{{d{{AFj{c}}}}}{{AAf{cc}}}AFh}3210{{{d{{AGj{c}}}}}{{AFj{c}}}AFh}{{{d{{AFf{c}}}}}cAFh}{AFjNn}{{{d{{AFj{c}}}}}{{ADn{c}}}AFh}{{{j{c}}}e{}{}}00000000{{{AGf{c}}}{{AGf{e}}}AFhAHj}{{{AGj{c}}}{{AGj{e}}}AFhAHj}{{{d{{ADl{c}}}}}{{ADl{e}}}{AHjAFl}AHj}4{AGfNn}{{{Nn{cLh}}c}{{AGf{c}}}AFh}{{{d{{ADn{c}}}}{d{{AEb{cLh}}}}}{{H`{{ADn{c}}}}}AFh}{{{d{{ADn{c}}}}{ABf{c}}}{{H`{{ADn{c}}}}}AFh}0{{{d{{AGf{c}}}}}{{AGf{c}}}Aj}{{{d{{AHl{c}}}}}{{AHl{c}}}Aj}{{{d{{AGh{c}}}}}{{AGh{c}}}Aj}{{{d{{ADn{c}}}}}{{ADn{c}}}Aj}{{{d{{AHn{c}}}}}{{AHn{c}}}Aj}{{{d{{AFf{c}}}}}{{AFf{c}}}Aj}{{{d{{AGj{c}}}}}{{AGj{c}}}Aj}{{{d{{AFj{c}}}}}{{AFj{c}}}Aj}{{{d{{ADl{c}}}}}{{ADl{c}}}Aj}{{d{d{hc}}}n{}}00000000{{dEl}n}00000000{{{d{{ADn{c}}}}{Nn{cLh}}}{{Nn{cLh}}}AFh}{{{d{{AGj{c}}}}{Nn{cLh}}}cAFh}{ce{}{}}00000000{{{d{{AFj{c}}}}{Nn{cLh}}}JhAFh}{{{d{{ADn{c}}}}{d{{ADn{c}}}}}JhAFh}{AGjNn}{AGhNn}0`{{{d{{AGh{c}}}}{d{{AGh{c}}}}}{{AI`{{Nn{cLh}}}}}AFh}{{{d{{AGh{c}}}}{d{{AGh{c}}}}}{{AI`{{AAf{cc}}}}}AFh}{{}{{ADl{c}}}AEn}{c{{ADl{c}}}AIb}{Bf{{d{c}}}{}}00000000{Bf{{d{hc}}}{}}00000000{{{d{{AGd{}{{AGb{c}}}}}}c}{{ADj{cLh}}}AFh}{{{d{{AGf{c}}}}c}{{ADj{cLh}}}AFh}{{{d{{AGh{c}}}}c}{{ADj{cLh}}}AFh}0{{{d{{ADn{c}}}}c}{{ADj{cLh}}}AFh}{{{d{{AGj{c}}}}c}{{ADj{cLh}}}AFh}0{{{d{{ADn{c}}}}{Nn{cLh}}}cAFh}{{{d{{AHn{c}}}}{d{{Nn{cLh}}}}}cAFh}{{{d{{AFf{c}}}}{d{{Nn{cLh}}}}}cAFh}{{{d{{AGj{c}}}}{Nn{cLh}}}cAFh}{{{ADl{c}}c}{{ADl{c}}}{{AId{}{{Ln{}}}}}}{{{ADl{c}}{ADl{c}}}c{{AId{}{{Ln{}}}}}}{{{d{h{ADl{c}}}}c}nAIf}{d{{d{c}}}{}}00000000{{{d{{AGh{c}}}}c{Nn{cLh}}}{{AGh{c}}}AFh}{{{d{{AGj{c}}}}c{Nn{cLh}}}{{AGj{c}}}AFh}{{{d{{AGh{c}}}}c{Nn{cLh}}c}{{AGh{c}}}AFh}{Bfn}00000000{{{d{{AGd{}{{AGb{c}}}}}}c}cAFh}{{{d{{AGh{c}}}}c}cAFh}0{{{d{{ADn{c}}}}c}cAFh}{{{d{{AGj{c}}}}c}cAFh}0322100{{{d{{AGf{c}}}}}{{ADl{c}}}AFh}{AFhAFh}{{{d{{AGf{c}}}}{d{{AGf{c}}}}}JhJj}{{{d{{AHl{c}}}}{d{{AHl{c}}}}}JhJj}{{{d{{AGh{c}}}}{d{{AGh{c}}}}}JhJj}{{{d{{ADn{c}}}}{d{{ADn{c}}}}}JhJj}{{{d{{AFf{c}}}}{d{{AFf{c}}}}}JhJj}{{{d{{AGj{c}}}}{d{{AGj{c}}}}}JhJj}{{{d{{AFj{c}}}}{d{{AFj{c}}}}}JhJj}{{{d{{ADl{c}}}}{d{{ADl{c}}}}}JhJj}{{{d{{AHn{c}}}}}{{AFf{c}}}AFh}{{d{d{c}}}Jh{}}00000{{{d{{AGf{c}}}}}{{AEb{cLh}}}AFh}{{{d{{AGh{c}}}}}{{AEb{cLh}}}AFh}{{{d{{AGj{c}}}}}{{AEb{cLh}}}AFh}{{{d{{AGf{c}}}}}{{AAf{cc}}}AFh}{{{d{{AGh{c}}}}}{{AAf{cc}}}AFh}{{{d{{AGj{c}}}}}{{AAf{cc}}}AFh}210{{{d{{AGh{c}}}}}{{AAf{{AFf{c}}{AFf{c}}}}}AFh}{{{d{{AGj{c}}}}}{{AAf{{AFf{c}}{AFf{c}}}}}AFh}{AHlOh}{{{d{{AGf{c}}}}c}{{AIh{c}}}AFh}{{{d{{AGh{c}}}}c}{{AIj{c}}}AFh}{{{d{{AGj{c}}}}c}{{AIl{c}}}AFh}{{{d{{AGj{c}}}}c}{{AIn{c}}}AFh}{{{d{{AGj{c}}}}c}cAFh}{{{d{{AGd{}{{AGb{c}}}}}}}{{AGd{}{{AGb{c}}}}}AFh}{{{d{{AGf{c}}}}}{{AGf{c}}}AFh}0{{{d{{AGh{c}}}}}{{AGh{c}}}AFh}0{{{d{{ADn{c}}}}}{{ADn{c}}}AFh}0{{{d{{AGj{c}}}}}{{AGj{c}}}AFh}0{{{d{{AGf{c}}}}{d{hDn}}}{{G`{nJn}}}Eb}{{{d{{AHl{c}}}}{d{hDn}}}{{G`{nJn}}}Eb}{{{d{{AGh{c}}}}{d{hDn}}}{{G`{nJn}}}Eb}{{{d{{ADn{c}}}}{d{hDn}}}{{G`{nJn}}}Eb}{{{d{{AHn{c}}}}{d{hDn}}}{{G`{nJn}}}Eb}{{{d{{AFf{c}}}}{d{hDn}}}{{G`{nJn}}}Eb}{{{d{{AGj{c}}}}{d{hDn}}}{{G`{nJn}}}Eb}{{{d{{AFj{c}}}}{d{hDn}}}{{G`{nJn}}}Eb}{{{d{{ADl{c}}}}{d{hDn}}}{{G`{nJn}}}Eb}{{{d{{AGf{c}}}}{d{he}}}nAFh{{Jf{{d{{AGh{c}}}}}}}}{{{d{{AHl{c}}}}{d{he}}}nAFh{{Jf{{d{{AGh{c}}}}}}}}{{{d{{AGf{c}}}}c{d{he}}}nAFh{{Jf{{d{{ADn{c}}}}}}}}{{{d{{AHl{c}}}}c{d{he}}}nAFh{{Jf{{d{{ADn{c}}}}}}}}{{{d{{AGh{c}}}}c{d{he}}}nAFh{{Jf{{d{{ADn{c}}}}}}}}{{{d{{AGj{c}}}}c{d{he}}}nAFh{{Jf{{d{{ADn{c}}}}}}}}{{{d{{AGd{}{{AGb{c}}}}}}c{d{hJf}}}nAFh}{{{d{{AGf{c}}}}{d{hJf}}}nAFh}{{{d{{AGf{c}}}}c{d{he}}}nAFh{{Jf{{d{{ADn{c}}}}{ABf{c}}}}}}{{{d{{AHl{c}}}}c{d{he}}}nAFh{{Jf{{d{{ADn{c}}}}{ABf{c}}}}}}{{{d{{AGh{c}}}}c{d{he}}}nAFh{{Jf{{d{{ADn{c}}}}{ABf{c}}}}}}{{{d{{AGh{c}}}}{d{hJf}}}nAFh}{{{d{{ADn{c}}}}{d{hJf}}}nAFh}{{{d{{AGj{c}}}}c{d{he}}}nAFh{{Jf{{d{{ADn{c}}}}{ABf{c}}}}}}{{{d{{AGj{c}}}}{d{hJf}}}nAFh}{{{d{{AGh{c}}}}{d{he}}}nAFh{{Jf{c}}}}{{{d{{AGf{c}}}}{d{he}}}nAFh{{Jf{c}}}}101{{{d{{AGh{c}}}}{d{he}}}nAFh{{Jf{{d{{AGh{c}}}}}}}}{{{d{{AGj{c}}}}{d{he}}}nAFh{{Jf{{d{{AGj{c}}}}}}}}{{{d{{AGh{c}}}}{d{he}}}nAFh{{Jf{{ABf{c}}}}}}{{{d{{AGj{c}}}}{d{he}}}nAFh{{Jf{{ABf{c}}}}}}{{{d{{AGf{c}}}}{d{he}}}nAFh{{Jf{{d{{AGj{c}}}}}}}}{{{d{{AHl{c}}}}{d{he}}}nAFh{{Jf{{d{{AGj{c}}}}}}}}{{{d{{AGh{c}}}}c{d{he}}}nAFh{{Jf{{d{{AGj{c}}}}}}}}{{{d{{AGf{c}}}}{d{he}}}nAFh{{Jf{{d{{AGj{c}}}}{ABf{c}}}}}}{{{d{{AHl{c}}}}{d{he}}}nAFh{{Jf{{d{{AGj{c}}}}{ABf{c}}}}}}{{{d{{AGh{c}}}}c{d{he}}}nAFh{{Jf{{d{{AGj{c}}}}{ABf{c}}}}}}98769876{{}{{ADl{c}}}{AHf{AFn{}{{Ln{}}}}}}00{{{d{{AGd{}{{AGb{c}}}}}}}{{Nn{cLh}}}AFh}{cc{}}{{{d{{AGf{c}}}}}{{Nn{cLh}}}AFh}0{{{AHl{c}}}{{AGf{c}}}AFh}2{{{d{{AGh{c}}}}}{{Nn{cLh}}}AFh}30{{{d{{ADn{c}}}}}{{Nn{cLh}}}AFh}0444{{{d{{AGj{c}}}}}{{Nn{cLh}}}AFh}5055{AHlNn}{AGhNn}{ADnNn}{AGjNn}999999999{ce{}{}}00000000{{{d{{AHl{c}}}}}{{AGf{c}}}AFh}{{{ADl{c}}}c{}}{{{d{{AGf{c}}}}c}{{ADl{c}}}AFh}{{{d{{ADl{c}}}}{d{he}}}nAB`ABb}{AJ`}{{{d{{ADn{c}}}}c}{{H`{{Nn{cLh}}}}}AFh}{{{d{{ADn{c}}}}c}{{H`{c}}}AFh}{{}Bf}00000000{{{d{{ADn{c}}}}{d{{ADn{c}}}}}{{H`{{Nn{cLh}}}}}AFh}{{{d{{AHn{c}}}}{d{{AHn{c}}}}}{{H`{{Nn{cLh}}}}}AFh}{{{d{{ADn{c}}}}{d{{ADn{c}}}}}{{H`{{AAf{cc}}}}}AFh}{{{d{{ADn{c}}}}{d{{ADn{c}}}}}JhAFh}{{{d{{AFj{c}}}}{d{{AFj{c}}}}}JhAFh}{{{d{{AHn{c}}}}{d{{AEb{cLh}}}}}JhAFh}{{{d{{ADn{c}}}}{d{{AHn{c}}}}}JhAFh}{{{d{{AFj{c}}}}{d{{ADn{c}}}}}JhAFh}{{}c{}}00000000000000000{{{Ef{c}}}{{Ef{f}}}{}}00000000{{{Eh{c}}}{{Eh{f}}}{}}00000000{{{Ej{c}}}{{Ej{f}}}{}}00000000{{{j{c}}}e{}{}}00000000444444444444444444{{}c{}}00000000{{{d{{AFf{c}}}}}{{AFf{c}}}AFh}{{{d{{AGj{c}}}}c}JhAFh}{{{ADl{c}}}JhAJb}{{{d{{AFf{c}}}}}JhAFh}{{{d{{AGh{c}}}}c}JhAFh}3{{{d{{AGh{c}}}}}JhAFh}{{{d{{AGj{c}}}}}JhAFh}2{{{d{{AHl{c}}}}}JhAFh}42121{OhJh}{{{d{{ADn{c}}}}}cAFh}{{{d{{AGj{c}}}}}cAFh}{{{d{{ADl{c}}}}{ADl{c}}c}{{ADl{c}}}{{AGn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}AHdAHfAFl}}{{{d{{ADn{c}}}}{d{{AHn{c}}}}}{{H`{{Nn{cLh}}}}}AFh}{{{d{{ADn{c}}}}{d{{AHn{c}}}}}{{H`{c}}}AFh}{{{d{{AGh{c}}}}{d{{AHn{c}}}}}{{AI`{{Nn{cLh}}}}}AFh}{{{d{{AGj{c}}}}{d{{AHn{c}}}}}{{AI`{{Nn{cLh}}}}}AFh}{{{d{{AGh{c}}}}{d{{AHn{c}}}}}{{AI`{c}}}AFh}{{{d{{AGj{c}}}}{d{{AHn{c}}}}}{{AI`{c}}}AFh}{{{d{{AGh{c}}}}{d{{ADn{c}}}}}{{AI`{{Nn{cLh}}}}}AFh}{{{d{{AGj{c}}}}{d{{ADn{c}}}}}{{AI`{{Nn{cLh}}}}}AFh}{{{d{{AGh{c}}}}{d{{ADn{c}}}}}{{AI`{{AAf{cc}}}}}AFh}{{{d{{AGj{c}}}}{d{{ADn{c}}}}}{{AI`{{AAf{cc}}}}}AFh}{{{d{{AGj{c}}}}}{{H`{c}}}AFh}0{AJd}00000{AJfNn}{{{d{h{ADn{c}}}}}{{Nn{cLh}}}AFh}1{{{ADl{c}}c}{{ADl{c}}}{{AHb{}{{Ln{}}}}}}{{{d{h{ADl{c}}}}c}nAJh}{{{ADl{c}}}{{ADl{c}}}{{AJj{}{{Ln{}}}}}}{{ccc}{{AFf{c}}}AFh}{{{d{{AFf{c}}}}}{{ADj{cLh}}}AFh}{{}c{}}{{{d{{AGh{c}}}}c}AdAFh}{{{d{{AFf{c}}}}c}{{AFf{c}}}AFh}{{{d{{ADn{c}}}}{d{{AHn{c}}}}}JhAFh}{{{d{{ADn{c}}}}{d{{ADn{c}}}}}JhAFh}{{{d{{AFf{c}}}}{d{{Nn{cLh}}}}}{{AFf{c}}}AFh}{{{d{{ADl{c}}}}{d{{ADl{c}}}}}{{H`{AF`}}}AJl}{{}{{ADl{c}}}{AHf{AFn{}{{Ln{}}}}}}{{cc}{{Nn{cLh}}}{}}{AHnNn}{{{d{{ADl{c}}}}}{{ADl{c}}}{{AH`{}{{Ln{}}}}{AGn{}{{Ln{}}}}{AFn{}{{Ln{}}}}AJnAHfAJlAFl}}{{{d{{AFf{c}}}}{d{{Nn{cLh}}}}}{{Nn{cLh}}}AFh}`{{{d{{AGh{c}}}}{d{{AGj{c}}}}}{{AI`{{Nn{cLh}}}}}AFh}{{{d{{AGh{c}}}}{d{{AGj{c}}}}}{{AI`{{AAf{cc}}}}}AFh}{c{{ADl{c}}}{}}{ADl}{AGfADj}{AHlADj}{{{d{{AGd{}{{AGb{c}}}}}}c}{{Nn{cLh}}}AFh}{{{d{{AGf{c}}}}c}{{Nn{cLh}}}AFh}0{{{d{{AGh{c}}}}c}{{Nn{cLh}}}AFh}0{{{d{{ADn{c}}}}c}{{Nn{cLh}}}AFh}0{{{d{{AGj{c}}}}c}{{Nn{cLh}}}AFh}0{{{d{{AGf{c}}}}c}{{ADj{cLh}}}AFh}{{{d{h{ADn{c}}}}c}nAFh}>{{{d{{AHn{c}}}}{d{{Nn{cLh}}}}}cAFh}{{{d{{AFf{c}}}}{d{{Nn{cLh}}}}}cAFh}{{{ADl{c}}}{{AAf{cc}}}AK`}{{cc}{{AKb{cLh}}}{}}{{{d{{AGh{c}}}}c}{{AI`{c}}}AFh}{{{d{{ADn{c}}}}c}cAFh}100{{{d{{AFf{c}}}}c}{{H`{c}}}AFh}10{{{d{{AGd{}{{AGb{c}}}}}}c}{{AAf{{AGd{}{{AGb{c}}}}{AGd{}{{AGb{c}}}}}}}AFh}{{{d{{AGf{c}}}}c}{{AAf{{AGf{c}}{AGf{c}}}}}AFh}0{{{d{{AGh{c}}}}c}{{AAf{{AGh{c}}{AGh{c}}}}}AFh}0{{{d{{ADn{c}}}}c}{{AAf{{ADn{c}}{ADn{c}}}}}AFh}0{{{d{{AGj{c}}}}c}{{AAf{{AGj{c}}{AGj{c}}}}}AFh}01{{{d{{AGd{}{{AGb{c}}}}}}{ABf{c}}}{{AGd{}{{AGb{c}}}}}AFh}{{{d{{AGf{c}}}}{ABf{c}}}{{AGf{c}}}AFh}0{{{d{{AGh{c}}}}{ABf{c}}}{{AGh{c}}}AFh}0{{{d{{ADn{c}}}}{ABf{c}}}{{ADn{c}}}AFh}0{{{d{{AGj{c}}}}{ABf{c}}}{{AGj{c}}}AFh}0{{{d{{ADn{c}}}}{Nn{cLh}}}cAFh}{{{d{{AHn{c}}}}{Nn{cLh}}}cAFh}{{{d{{AGj{c}}}}{Nn{cLh}}}cAFh}{{{d{{ADn{c}}}}}cAFh}{AGfADl}{{{ADl{c}}{ADl{c}}}{}{{AH`{}{{Ln{}}}}}}{{{d{h{ADl{c}}}}{ADl{c}}}nAKd}{e{{ADl{c}}}{AFnAJn}{{AKf{}{{Mb{{ADl{c}}}}}}}}{e{{ADl{c}}}{AFnAFlAJn}{{AKf{}{{Mb{{d{{ADl{c}}}}}}}}}}{OhJh}5{{{d{{AFf{c}}}}}{{ADj{cLh}}}AFh}{{{d{{AGd{}{{AGb{c}}}}}}}{{Nn{cLh}}}AFh}{{{d{{AGf{c}}}}}{{Nn{cLh}}}AFh}0{{{d{{AGh{c}}}}}{{Nn{cLh}}}AFh}0{{{d{{ADn{c}}}}}{{Nn{cLh}}}AFh}0{{{d{{AGj{c}}}}}{{Nn{cLh}}}AFh}0{AHlNn}{AGhNn}{ADnNn}{AGjNn}{{{d{{AHl{c}}}}}{{AGf{c}}}AFh}{{{d{{AGj{c}}}}}{{AGh{c}}}AFh}{{{ADl{c}}}cAIb}{{{d{{AGh{c}}}}}{{AGh{Gf}}}AFh}{{{d{{ADn{c}}}}}{{ADn{Gf}}}AFh}{{{d{{AHn{c}}}}}{{AHn{Gf}}}AFh}{{{d{{AGj{c}}}}}{{AGj{Gf}}}AFh}{{{d{{ADl{c}}}}}{{ADl{Gf}}}{AHjAFl}}{{{d{{AGh{c}}}}}{{AGh{AKh}}}AFh}{{{d{{ADn{c}}}}}{{ADn{AKh}}}AFh}{{{d{{AHn{c}}}}}{{AHn{AKh}}}AFh}{{{d{{AGj{c}}}}}{{AGj{AKh}}}AFh}{{{d{{ADl{c}}}}}{{ADl{AKh}}}{AHjAFl}}{{{d{{ADn{c}}}}}{{AHn{c}}}AFh}{dc{}}00000000{{{d{{AGh{c}}}}}{{AGj{c}}}AFh}{{{d{{AGh{c}}}}}cAFh}{{{d{{AGf{c}}}}}{{AHl{c}}}AFh}{{{d{{ADn{c}}}}}{{ADj{cLh}}}AFh}`{{{d{{AFj{c}}}}{d{e}}}{{AFj{c}}}AFh{{ACl{c}}}}{{{d{{AGh{c}}}}{d{e}}}{{AGh{c}}}AFh{{ACl{c}}}}{{{d{{ADn{c}}}}{d{e}}}{{ADn{c}}}AFh{{ACl{c}}}}{{{d{{AGj{c}}}}{d{e}}}{{AGj{c}}}AFh{{ACl{c}}}}{{{d{h{ADn{c}}}}{ADj{cLh}}}{{ADn{c}}}AFh}{{{d{{ADl{c}}}}}{{H`{{ADl{e}}}}}{AHjAFl}AHj}{{}{{G`{c}}}{}}00000000{c{{G`{e}}}{}{}}00000000{{}{{G`{c}}}{}}00000000{{}{{G`{c{Gl{c}}}}}{}}00000000{{}{{ADl{c}}}{AHf{AFn{}{{Ln{}}}}}}{dGn}00000000{ce{}{}}00000000{{}c{}}00000000{d{{H`{{d{c}}}}}{}}00000000`{GfAFh}{{cc}{{ADj{cLh}}}{}}{AHnADj}{{{d{{ADn{c}}}}c}{{H`{{Nn{cLh}}}}}AFh}{{{d{{ADn{c}}}}c}{{H`{c}}}AFh}{{}c{}}00000000{AJ`}{{{d{{AGd{}{{AGb{c}}}}}}c}cAFh}{{{d{{AGf{c}}}}c}cAFh}0{{{d{{AGh{c}}}}c}cAFh}0{{{d{{ADn{c}}}}c}cAFh}0{{{d{{AGj{c}}}}c}cAFh}0{AKj}{AKl}{AKn}{{{d{{AGh{c}}}}}cAFh}{{{d{{AGj{c}}}}}cAFh}10{AGfADl}{AHlADl};::9988776543232{{}{{ADl{c}}}AJn}````{eg{}{{b{c}}}{}}{ce{}{}}{{}c{}}{d{{d{f}}}}{{{d{h}}}{{d{hf}}}}{d{{d{c}}}{}}{{{d{h}}}{{d{hc}}}{}}{{{j{c}}}e{}{}}{AGfNn}7{Bf{{d{c}}}{}}{Bf{{d{hc}}}{}}5{Bfn}{AHlOh}{cc{}}{AHlNn}1{ce{}{}}{{}Bf}{{}c{}}0{{{Ef{c}}}{{Ef{f}}}{}}{{{Eh{c}}}{{Eh{f}}}{}}{{{Ej{c}}}{{Ej{f}}}{}}=33{{}c{}}{{}c{}}{OhJh}{{{d{h{AIh{c}}}}}{{H`{{Nn{cLh}}}}}AFh}{AGfADj}{AHlADj}{AGfADl}40={{}{{G`{c}}}{}}{c{{G`{e}}}{}{}}{{}{{G`{c}}}{}}{{}{{G`{c{Gl{c}}}}}{}}{dGn}{ce{}{}}{{}c{}}{d{{H`{{d{c}}}}}{}}{{}c{}}9{AHlADl}`````{eg{}{{b{c}}}{}}0000{ce{}{}}000055555{d{{d{f}}}}0000{{{d{h}}}{{d{hf}}}}0000{{{d{h{AI`{c}}}}}{{d{h{En{c}}}}}{}}{{{d{h{AI`{c}}}}}{}{}}{{{d{hAL`}}}El}2{{{d{h{ALb{c}}}}}{{d{h{En{c}}}}}{}}{{{d{hAL`}}}{{d{hGb}}}}{{{d{{AI`{c}}}}}{}{}}{{{d{AL`}}}El}{{{d{{AI`{c}}}}}{{d{{En{c}}}}}{}}{{{d{AL`}}}{{d{Gb}}}}{{{d{AL`}}}{{d{ALd}}}}2{{{d{{ALb{c}}}}}{{d{{En{c}}}}}{}}23{d{{d{c}}}{}}00030{{{d{h}}}{{d{hc}}}{}}<00080{{{j{c}}}e{}{}}0000{{{d{{AI`{c}}}}}Bf{}}{{{d{AL`}}}Bf}{{{d{h{AI`{c}}}}}n{}}{{{d{hAL`}}}n}{{{d{{AI`{c}}}}}{{AI`{c}}}Aj}{{{d{{ALb{c}}}}}{{ALb{c}}}Aj}{{{d{AL`}}}AL`}{{{d{{ALf{c}}}}}{{ALf{c}}}Aj}{{{d{h{AI`{c}}}}{d{{AI`{c}}}}}nAj}{{{d{hAL`}}{d{AL`}}}n}{{d{d{hc}}}n{}}000{{dEl}n}000{{{d{{AI`{c}}}}{d{{AI`{c}}}}}AF`ALh}{{{d{AL`}}{d{AL`}}}AF`}{{{d{{ALf{c}}}}{d{{ALf{c}}}}}AF`ALh}{{d{d{c}}}AF`{}}00{ce{}{}}0000{{}{{AI`{c}}}{}}{{}AL`}{Bf{{d{c}}}{}}{{{d{{AI`{c}}}}}d{}}11{{{d{AL`}}}{{d{Gb}}}}22{Bf{{d{hc}}}{}}{{{d{h{AI`{c}}}}}{{d{h}}}{}}11{{{d{hAL`}}}{{d{hGb}}}}22{d{{d{c}}}{}}0000{{{d{h{AI`{c}}}}e}{{ALj{c}}}{}{{ALl{Bf}}}}{{{d{h{AI`{c}}}}}n{}}{Bfn}0{{{d{h{ALb{c}}}}}n{}}1{{{d{h{ALj{c}}}}}n{}}22{{{ALf{c}}}c{}}{dc{{AM`{ALn}}}}0{{{d{{AI`{c}}}}{d{{AI`{c}}}}}JhJj}{{{d{{AI`{c}}}}{d{{En{c}}}}}JhJj}{{{d{AL`}}{d{Gb}}}Jh}{{{d{AL`}}{d{AL`}}}Jh}{{{d{{ALf{c}}}}{d{{ALf{c}}}}}JhJj}{{d{d{c}}}Jh{}}00000000{{{d{h{AI`{c}}}}e}n{}{{Mf{}{{Mb{c}}}}}}{{{d{h{AI`{El}}}}}{{G`{nAMb}}}}{{{d{{AI`{c}}}}{d{hDn}}}{{G`{nJn}}}Eb}{{{d{{ALb{c}}}}{d{hDn}}}{{G`{nJn}}}Eb}{{{d{AL`}}{d{hDn}}}{{G`{nJn}}}}0{{{d{{ALf{c}}}}{d{hDn}}}{{G`{nJn}}}{}}0{cc{}}{{{Mj{c}}}{{AI`{c}}}{}}11{{{d{Gb}}}{{G`{AL`{ALf{{d{Gb}}}}}}}}2222222{{{d{{Mj{El}}}}}{{G`{AL`AMd}}}}{e{{AI`{c}}}{}{{Mf{}{{Mb{c}}}}}}{ce{}{}}0000{{{d{Gb}}}{{G`{AL`}}}}{{{d{{AI`{c}}}}{d{{AI`{c}}}}}JhAJl}{{{d{AL`}}{d{AL`}}}Jh}{{{d{AL`}}{d{Gb}}}Jh}210{{{d{{AI`{c}}}}{d{he}}}nAB`ABb}{{{d{AL`}}{d{hc}}}nABb}{{}Bf}0000{{{d{h{AI`{c}}}}Bfc}n{}}{{}c{}}000000000{{{Ef{c}}}{{Ef{f}}}{}}0000{{{Eh{c}}}{{Eh{f}}}{}}0000{{{Ej{c}}}{{Ej{f}}}{}}0000{{{j{c}}}e{}{}}00004444444444{{{AI`{c}}}{{G`{{Mj{c}}{AI`{c}}}}}{}}{{{AI`{c}}}{{Mj{c}}}{}}{{{d{{AI`{c}}}}}{}{}}{{{AI`{c}}}{{ALb{c}}}{}}{{{d{h{AI`{c}}}}}{}{}}{{}c{}}0{{}c{}}0000{{{d{{AI`{c}}}}}Jh{}}{{{d{AL`}}}Jh}10{{{d{{AI`{c}}}}{d{{AI`{c}}}}}JhAJl}{{{d{AL`}}{d{AL`}}}Jh}{{{d{AL`}}{d{Gb}}}Jh}{{{d{{AI`{c}}}}}Bf{}}{{{d{AL`}}}Bf}432{{}{{AAf{ce}}}{}{}}{{}{{AAf{cegikmoAaAcAeAg}}}{}{}{}{}{}{}{}{}{}{}{}}{{}{{AAf{cegi}}}{}{}{}{}}{{}{{AAf{ceg}}}{}{}{}}{{}{{AAf{cegik}}}{}{}{}{}{}}{{}{{AAf{cegikmoAaAcAeAgAi}}}{}{}{}{}{}{}{}{}{}{}{}{}}{{}{{AAf{cegikmoAaAcAe}}}{}{}{}{}{}{}{}{}{}{}}{{}{{AAf{cegikm}}}{}{}{}{}{}{}}{{}n}{{}{{AAf{c}}}{}}{{}{{AAf{cegikmoAaAc}}}{}{}{}{}{}{}{}{}{}}{{}{{AAf{cegikmo}}}{}{}{}{}{}{}{}}{{}{{AAf{cegikmoAa}}}{}{}{}{}{}{}{}{}}153084:726<;9{{}{{AI`{c}}}{}}{{}AL`}{c{{ALf{c}}}{}}21{{{d{h{ALb{c}}}}}H`{}}{{{d{h{ALj{c}}}}}H`{}}10{{}c{}}0{{{d{{AI`{c}}}}{d{{AI`{c}}}}}{{H`{AF`}}}AJl}{{{d{AL`}}{d{AL`}}}{{H`{AF`}}}}{{{d{AL`}}{d{Gb}}}{{H`{AF`}}}}{{{d{{ALf{c}}}}{d{{ALf{c}}}}}{{H`{AF`}}}AJl}{{{d{h{AI`{c}}}}}{{H`{c}}}{}}{{{d{hAL`}}}{{H`{ALn}}}}{{{d{h{AI`{c}}}}Bf}{{H`{c}}}{}}{{{d{h{AI`{c}}}}c}n{}}{{{d{hAL`}}ALn}n}{{{d{hAL`}}{d{Gb}}}n}2{{{d{{AI`{c}}}}}Bf{}}{{{d{AL`}}}Bf}{{{d{h{AI`{c}}}}Bf}c{}}{{{d{hAL`}}Bf}ALn}{{{d{h{AI`{c}}}}e}n{}{{Jf{{d{hc}}}{{Ln{Jh}}}}}}{{{d{h{AI`{c}}}}Bf}n{}}{{{d{hAL`}}Bf}n}{{{ALf{c}}}ALf{}}{{{d{{ALb{c}}}}}{{AAf{Bf{H`{Bf}}}}}{}}{{{d{{ALj{c}}}}}{{AAf{Bf{H`{Bf}}}}}{}}=7{{{d{h{AI`{c}}}}}{{AI`{c}}}{}}{dc{}}000{dAFb}0{dDj}087{{}{{G`{c}}}{}}0000{{{d{h{AI`{c}}}}{d{{En{c}}}}}{{G`{nALf}}}AFl}{c{{G`{e}}}{}{}}{{{d{{En{c}}}}}{{G`{{AI`{c}}}}}Aj}11{{{d{Gb}}}{{G`{AL`}}}}2{AMf{{G`{AL`}}}}3{{{d{h{AI`{c}}}}Bfc}{{G`{n{ALf{c}}}}}{}}{{}{{G`{c}}}{}}0000{{}{{G`{c{Gl{c}}}}}{}}0000{{{d{h{AI`{c}}}}c}{{G`{n{ALf{c}}}}}{}}{{{d{hAL`}}ALn}{{G`{n{ALf{ALn}}}}}}{{{d{hAL`}}{d{Gb}}}{{G`{n{ALf{{d{Gb}}}}}}}}{dGn}0000{ce{}{}}0000{{}c{}}0000{d{{H`{{d{c}}}}}{}}0000{{}c{}}0000{{{d{h{AI`{El}}}}{d{{En{El}}}}}{{G`{BfAMb}}}}{{{d{h}}{d{AMh}}}{{G`{nAMb}}}}{{{d{h}}{d{El}}}{{G`{nAMb}}}}{{{d{h}}{d{{En{ABl}}}}}{{G`{nAMb}}}}{{{d{h}}{d{{En{Gf}}}}}{{G`{nAMb}}}}{{{d{h}}{d{{En{El}}}}}{{G`{nAMb}}}}{{{d{h}}{d{{En{AMj}}}}}{{G`{nAMb}}}}{{{d{h}}{d{{En{AMl}}}}}{{G`{nAMb}}}}{{{d{h}}{d{AKh}}}{{G`{nAMb}}}}{{{d{h}}{d{Gf}}}{{G`{nAMb}}}}{{{d{h}}{d{{En{AMn}}}}}{{G`{nAMb}}}}{{{d{h}}{d{AMn}}}{{G`{nAMb}}}}{{{d{h}}{d{AMj}}}{{G`{nAMb}}}}{{{d{h}}{d{{En{AN`}}}}}{{G`{nAMb}}}}{{{d{h}}{d{{En{ANb}}}}}{{G`{nAMb}}}}{{{d{h}}{d{{En{AKh}}}}}{{G`{nAMb}}}}{{{d{h}}{d{{En{ANd}}}}}{{G`{nAMb}}}}{{{d{h}}{d{ANd}}}{{G`{nAMb}}}}{{{d{h}}{d{ABl}}}{{G`{nAMb}}}}{{{d{h}}{d{{En{AMh}}}}}{{G`{nAMb}}}}{{{d{h}}{d{ANb}}}{{G`{nAMb}}}}{{{d{h}}{d{AN`}}}{{G`{nAMb}}}}{{{d{h}}{d{Ad}}}{{G`{nAMb}}}}{{{d{h}}{d{AMl}}}{{G`{nAMb}}}}{{{d{h}}{d{{En{Ad}}}}}{{G`{nAMb}}}}7=>8{{{d{h}}{d{{En{Gf}}}}}{{G`{nAMb}}}}{{{d{h}}{d{El}}}{{G`{nAMb}}}}{{{d{h}}{d{{En{ABl}}}}}{{G`{nAMb}}}}8=>3<{{{d{h}}{d{{En{AMl}}}}}{{G`{nAMb}}}}567{{{d{h}}{d{{En{El}}}}}{{G`{nAMb}}}}9{{{d{h}}{d{AMh}}}{{G`{nAMb}}}}<{{{d{h}}{d{AMj}}}{{G`{nAMb}}}}{{{d{h}}{d{AKh}}}{{G`{nAMb}}}}{{{d{h}}{d{Gf}}}{{G`{nAMb}}}}{{{d{h}}{d{{En{AMj}}}}}{{G`{nAMb}}}}{{{d{hAL`}}ALn}{{G`{nJn}}}}{{{d{h}}ANfGf}{{G`{nAMb}}}}{{{d{h}}ANfAKh}{{G`{nAMb}}}}{{{d{h}}ANfAMn}{{G`{nAMb}}}}{{{d{h}}ANfABl}{{G`{nAMb}}}}{{{d{h}}ANfANd}{{G`{nAMb}}}}{{{d{h}}ANfAMj}{{G`{nAMb}}}}{{{d{h}}ANfAMh}{{G`{nAMb}}}}{{{d{hAL`}}{d{Gb}}}{{G`{nJn}}}}{{{d{h}}ANfANb}{{G`{nAMb}}}}{{{d{h}}ANfAMl}{{G`{nAMb}}}}{{{d{h}}ANfAd}{{G`{nAMb}}}}{{{d{h}}ANfAN`}{{G`{nAMb}}}}{{{d{h}}ANfEl}{{G`{nAMb}}}}{{}AL`}``{eg{}{{b{c}}}{}}{ce{}{}}{{}c{}}{d{{d{f}}}}{{{d{h}}}{{d{hf}}}}{d{{d{c}}}{}}{{{d{h}}}{{d{hc}}}{}}{{{j{c}}}e{}{}}6{AGhNn}0{Bf{{d{c}}}{}}{Bf{{d{hc}}}{}}5{Bfn}{cc{}}40{ce{}{}}{{}Bf}{{}c{}}0{{{Ef{c}}}{{Ef{f}}}{}}{{{Eh{c}}}{{Eh{f}}}{}}{{{Ej{c}}}{{Ej{f}}}{}};33{{}c{}}{{}c{}}{{{d{h{AIj{c}}}}}{{H`{{Nn{cLh}}}}}AFh}{{{d{{AIj{c}}}}}{{AAf{Bf{H`{Bf}}}}}AFh}>{{}{{G`{c}}}{}}{c{{G`{e}}}{}{}}{{}{{G`{c}}}{}}{{}{{G`{c{Gl{c}}}}}{}}{dGn}{ce{}{}}{{}c{}}{d{{H`{{d{c}}}}}{}}{{}c{}}`````````````````````````{{{AKb{ce}}}{{AKb{ce}}}ANh{}}{{{ANj{ce}}}{{ANj{ce}}}ANh{}}{{{ADj{ce}}}{{ADj{ce}}}ANh{}}{{{ANl{ce}}}{{ANl{ce}}}ANh{}}{eg{}{{b{c}}}{}}0000000000000000000000{{{ANn{ce}}{ANn{ce}}}{}AFn{}}{{{ANn{ce}}{d{{ANn{ce}}}}}{}{AFnAFl}{}}{{{Nn{ce}}{ADj{ce}}}{}AFn{}}{{{Nn{ce}}{AKb{ce}}}{}AFn{}}{{{AO`{ce}}{ANj{ce}}}{}AFn{}}{{{AO`{ce}}{ANl{ce}}}{}AFn{}}{{{AOb{ceg}}{AOb{ceg}}}{}AFn{}{}}{{{AOd{ce}}{AOd{ce}}}{{AOd{ce}}}{{AFn{}{{Ln{}}}}}{}}{{{AKb{ce}}{d{{AKb{ce}}}}}{{AKb{ce}}}{AFl{AFn{}{{Ln{}}}}}{}}{{{AKb{ce}}{AKb{ce}}}{}AFn{}}{{{ANj{ce}}{d{{ANj{ce}}}}}{{ANj{ce}}}{AFl{AFn{}{{Ln{}}}}}{}}{{{ANj{ce}}{ANj{ce}}}{}AFn{}}{{{AOf{ceg}}{AOf{cgi}}}{}AFn{}{}{}}{{{AOh{ceg}}{AOh{cgi}}}{}AFn{}{}{}}{{{ADj{ce}}{d{{ADj{ce}}}}}{}{AFnAFl}{}}{{{ADj{ce}}{ADj{ce}}}{}AFn{}}{{{ANl{ce}}{d{{ANl{ce}}}}}{}{AFnAFl}{}}{{{ANl{ce}}{ANl{ce}}}{}AFn{}}{{{d{h{ANn{ce}}}}{ANn{ce}}}nAG`{}}{{{d{h{Nn{ce}}}}{AKb{ce}}}nAG`{}}{{{d{h{Nn{ce}}}}{ADj{ce}}}n{AFl{AFn{}{{Ln{}}}}}{}}{{{d{h{AO`{ce}}}}{ANj{ce}}}nAG`{}}{{{d{h{AO`{ce}}}}{ANl{ce}}}n{AFl{AFn{}{{Ln{}}}}}{}}{{{d{h{AOd{ce}}}}{AOd{ce}}}nAG`{}}{{{d{h{AKb{ce}}}}{AKb{ce}}}nAG`{}}{{{d{h{ANj{ce}}}}{ANj{ce}}}nAG`{}}{{{d{h{AOf{ceg}}}}{AOf{cgg}}}nAG`{}{}}{{{d{h{AOh{ceg}}}}{AOh{cgg}}}nAG`{}{}}{{{d{h{ADj{ce}}}}{ADj{ce}}}n{AFl{AFn{}{{Ln{}}}}}{}}{{{d{h{ANl{ce}}}}{ANl{ce}}}n{AFl{AFn{}{{Ln{}}}}}{}}{{{Nn{ce}}{d{{AKb{ce}}}}}{{Nn{ce}}}{AFl{AFn{}{{Ln{}}}}}{}}{{{AO`{ce}}{ANj{ce}}}{{AO`{ce}}}{AFl{AFn{}{{Ln{}}}}}{}}{AOjJh}{AOlJh}{{AOjAOj}AOj}{{AOlAOl}AOl}{AOn}{{{ADj{ce}}}{{ADl{c}}}{AIbAFl}{}}{{{ADj{ce}}{ADj{ce}}}{{ADl{c}}}{{AH`{}{{Ln{}}}}AIbAFl{AHb{}{{Ln{}}}}{AFn{}{{Ln{}}}}}{}}{{{ANl{ce}}{ANl{ce}}}{{ADl{c}}}{AIbAK`}{}}76{{}cAHh}{{}{{Nn{ce}}}{}{}}{{}{{AO`{ce}}}{}{}}{{}c{}}0{{}{{ADj{ce}}}{}{}}{{}{{ANl{ce}}}{}{}}55{{{d{{Lj{ceg}}}}{d{{Lj{ceg}}}}}JhAHh{}{}}{{{d{{B@`{ceg}}}}{d{{B@`{ceg}}}}}JhAHh{}{}}{{{d{{ANn{ce}}}}{d{{ANn{ce}}}}{d{c}}}JhAHh{}}{{{d{{Nn{ce}}}}{d{{Nn{ce}}}}{d{{Nn{ce}}}}}JhAHh{}}{{{d{{AO`{ce}}}}{d{{AO`{ce}}}}{d{{AO`{ce}}}}}JhAHh{}}{{{d{{AOn{ceg}}}}{d{{AOn{ceg}}}}{d{c}}}Jh{AFl{AJj{}{{Ln{}}}}AHh}{}{}}{{{d{{B@b{ceg}}}}{d{{B@b{ceg}}}}{d{c}}}Jh{AFl{AJj{}{{Ln{}}}}AHh}{}{}}{{{d{{ADj{ce}}}}{d{{ADj{ce}}}}{d{{ADj{ce}}}}}JhAHh{}}{{{d{{ANl{ce}}}}{d{{ANl{ce}}}}{d{{ANl{ce}}}}}JhAHh{}}{{{d{{Lj{ceg}}}}{d{{Lj{ceg}}}}{d{c}}}JhAHh{}{}}0{{{d{{B@`{ceg}}}}{d{{B@`{ceg}}}}{d{c}}}JhAHh{}{}}0``{{{d{{AEb{ce}}}}}c{AFl{AHb{}{{Ln{}}}}{AH`{}{{Ln{}}}}}{}}{{{d{{B@d{ce}}}}}c{AFl{AHb{}{{Ln{}}}}}{}}{{{AKb{ce}}}{}{AHbAFl}{}}{{{ANl{ce}}{ADl{c}}}{{B@b{ceg}}}AK`{}{}}{{{ADl{c}}}{{B@b{ceg}}}AK`{}{}}00{ce{}{}}0000000000000000000000{{}c{}}0000000000000000000000{d{{d{f}}}}0000000000000000000000{{{d{h}}}{{d{hf}}}}0000000000000000000000{d{{d{c}}}{}}0000000000000000000000{{{d{h}}}{{d{hc}}}{}}0000000000000000000000{AOd}{{cccccc}{{B@f{ce}}}AFl{}}{{JhJh}AOj}{{JhJhJh}AOl}{{{j{c}}}e{}{}}0000000000000000000000{{{d{{AEb{ce}}}}}{{AEb{ge}}}{AHjAFl}{}AHj}{{{d{{B@f{ce}}}}}{{B@f{ge}}}{AHjAFl}{}AHj}{{{ANn{ce}}}{{ANn{ge}}}{AHjAj}{}AHj}{{{Nn{ce}}}{{Nn{ge}}}{AHjAFl}{}AHj}{{{AO`{ce}}}{{AO`{ge}}}{AHjAFl}{}AHj}{{{d{{B@d{ce}}}}}{{B@d{ge}}}{AHjAFl}{}AHj}{{{AOb{ceg}}}{{AOb{ieg}}}AHj{}{}AHj}{{{AKb{ce}}}{{AKb{ge}}}{AHjAFl}{}AHj}{{{ANj{ce}}}{{ANj{ge}}}{AHjAFl}{}AHj}{{{AOf{ceg}}}{{AOf{ieg}}}{AHjAFl}{}{}AHj}{{{AOh{ceg}}}{{AOh{ieg}}}{AHjAFl}{}{}AHj}{{{ADj{ce}}}{{ADj{ge}}}{AHjAFl}{}AHj}{{{ANl{ce}}}{{ANl{ge}}}{AHjAFl}{}AHj}{{{d{{Lj{ceg}}}}}{{Lj{ieg}}}{AHjAFl}{}{}AHj}{{{d{{B@`{ceg}}}}}{{B@`{ieg}}}{AHjAFl}{}{}AHj}{{{d{{AEb{ce}}}}}{{AEb{cg}}}AFl{}{}}{{{d{{B@f{ce}}}}}{{B@f{cg}}}AFl{}{}}{{{ANn{ce}}}{{ANn{cg}}}Aj{}{}}{{{Nn{ce}}}{{Nn{cg}}}AFl{}{}}{{{AO`{ce}}}{{AO`{cg}}}AFl{}{}}{{{d{{B@d{ce}}}}}{{B@d{cg}}}AFl{}{}}{{{d{{B@h{ceg}}}}}{{B@h{cik}}}AFl{}{}{}{}}{{{d{{AOn{ceg}}}}}{{AOn{cik}}}AFl{}{}{}{}}{{{d{{B@b{ceg}}}}}{{B@b{cik}}}AFl{}{}{}{}}{{{AKb{ce}}}{{AKb{cg}}}AFl{}{}}{{{ANj{ce}}}{{ANj{cg}}}AFl{}{}}{{{ADj{ce}}}{{ADj{cg}}}AFl{}{}}{{{ANl{ce}}}{{ANl{cg}}}AFl{}{}}{{{Nn{ce}}}{{Nn{ce}}}{B@jAFl}{}}{{{Nn{ce}}}{{Nn{ce}}}B@j{}}{{{AO`{ce}}}{{AO`{ce}}}B@j{}}{{{AO`{ce}}}{{AO`{ce}}}{B@jAFl}{}}{{{AKb{ce}}}{{AKb{ce}}}{B@jAFl}{}}{{{AKb{ce}}}{{AKb{ce}}}B@j{}}{{{ANj{ce}}}{{ANj{ce}}}{B@jAFl}{}}{{{ANj{ce}}}{{ANj{ce}}}B@j{}}{{{ADj{ce}}}{{ADj{ce}}}B@j{}}{{{ADj{ce}}}{{ADj{ce}}}{B@jAFl}{}}{{{ANl{ce}}}{{ANl{ce}}}B@j{}}{{{ANl{ce}}}{{ANl{ce}}}{B@jAFl}{}}{{{d{{AEb{ce}}}}}{{Nn{ce}}}{AFlB@l{AFn{}{{Ln{}}}}{AId{}{{Ln{}}}}}{}}{{{d{{B@f{ce}}}}}{{AO`{ce}}}{AFlB@l{AFn{}{{Ln{}}}}{AId{}{{Ln{}}}}}{}}{{{d{{B@d{ce}}}}}{{Nn{ce}}}{AFlB@l{AFn{}{{Ln{}}}}{AId{}{{Ln{}}}}}{}}{{{Nn{ce}}{Nn{ce}}{Nn{ce}}}{{Nn{ce}}}{AFlAJl}{}}{{{AO`{ce}}{AO`{ce}}{AO`{ce}}}{{AO`{ce}}}{AFlAJl}{}}{{{AOb{ceg}}{AOb{ceg}}{AOb{ceg}}}{{AOb{ceg}}}{AFlAJl}{}{}}{{{AKb{ce}}{AKb{ce}}{AKb{ce}}}{{AKb{ce}}}{AFlAJl}{}}{{{ANj{ce}}{ANj{ce}}{ANj{ce}}}{{ANj{ce}}}{AFlAJl}{}}{{{ADj{ce}}{ADj{ce}}{ADj{ce}}}{{ADj{ce}}}{AFlAJl}{}}{{{ANl{ce}}{ANl{ce}}{ANl{ce}}}{{ANl{ce}}}{AFlAJl}{}}{{{ADj{ce}}cc}{{ADj{ce}}}AK`{}}{{{ANl{ce}}cc}{{ANl{ce}}}AK`{}}{{{d{{AEb{ce}}}}}{{AEb{ce}}}Aj{}}{{{d{{B@f{ce}}}}}{{B@f{ce}}}Aj{}}{{{d{{B@n{ce}}}}}{{B@n{ce}}}Aj{}}{{{d{{ANn{ce}}}}}{{ANn{ce}}}Aj{}}{{{d{{Nn{ce}}}}}{{Nn{ce}}}Aj{}}{{{d{{AO`{ce}}}}}{{AO`{ce}}}Aj{}}{{{d{{B@d{ce}}}}}{{B@d{ce}}}Aj{}}{{{d{{B@h{ceg}}}}}{{B@h{ceg}}}Aj{}{}}{{{d{{AOn{ceg}}}}}{{AOn{ceg}}}Aj{}{}}{{{d{{B@b{ceg}}}}}{{B@b{ceg}}}Aj{}{}}{{{d{{AOb{ceg}}}}}{{AOb{ceg}}}Aj{}{}}{{{d{{AOd{ce}}}}}{{AOd{ce}}}Aj{}}{{{d{{AKb{ce}}}}}{{AKb{ce}}}Aj{}}{{{d{{ANj{ce}}}}}{{ANj{ce}}}Aj{}}{{{d{{AOf{ceg}}}}}{{AOf{ceg}}}Aj{}{}}{{{d{{AOh{ceg}}}}}{{AOh{ceg}}}Aj{}{}}{{{d{{ADj{ce}}}}}{{ADj{ce}}}Aj{}}{{{d{{ANl{ce}}}}}{{ANl{ce}}}Aj{}}{{{d{{Lj{ceg}}}}}{{Lj{ceg}}}Aj{}{}}{{{d{{B@`{ceg}}}}}{{B@`{ceg}}}Aj{}{}}{{{d{AOj}}}AOj}{{{d{AOl}}}AOl}{{{d{Lh}}}Lh}{{d{d{hc}}}n{}}0000000000000000000000{{dEl}n}0000000000000000000000{{{d{{ANn{ce}}}}{d{{ANn{ce}}}}}AF`ALh{}}{{{d{{AOb{ceg}}}}{d{{AOb{ceg}}}}}AF`ALh{}{}}{{{d{Lh}}{d{Lh}}}AF`}{{d{d{c}}}AF`{}}00{{{ADj{ce}}{ADj{ce}}}{{ADj{ce}}}{{AId{}{{Ln{}}}}}{}}{{{ANl{ce}}{ANl{ce}}}{{ANl{ce}}}{{AId{}{{Ln{}}}}AFl}{}}{{{ADj{ce}}{ADj{ce}}}{{ADj{ce}}}{{AHb{}{{Ln{}}}}}{}}{{{ANl{ce}}{ANl{ce}}}{{ANl{ce}}}{{AHb{}{{Ln{}}}}AFl}{}}{ce{}{}}0000000000000000000000{{{d{{AEb{ce}}}}{Nn{ce}}}JhAJl{}}{{{d{{B@f{ce}}}}{AO`{ce}}}JhAJl{}}{{{d{{B@d{ce}}}}{Nn{ce}}}Jh{AFlAJl{AFn{}{{Ln{}}}}}{}}{{{AKb{ce}}{AKb{ce}}}JhAJl{}}{{{ANj{ce}}{ANj{ce}}}JhAJl{}}{{{d{{AEb{ce}}}}{d{{AEb{ce}}}}}JhAJl{}}{{{d{{B@f{ce}}}}{d{{B@f{ce}}}}}JhAJl{}}65{{{d{{B@d{ce}}}}{d{{B@d{ce}}}}}Jh{AFlBA`AJl{AFn{}{{Ln{}}}}}{}}{AIbAIb}{{{ADj{ce}}{ADj{ce}}}c{{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}}{{{ANl{ce}}{ANl{ce}}}{{ANl{ce}}}{{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}AFl}{}}{{{d{{B@h{ceg}}}}}{{AAf{{ANl{ce}}{B@b{ceg}}}}}{AK`AHh}{}{}}`{{}{{AEb{ce}}}AEn{}}{{}{{B@f{ce}}}AEn{}}{{}{{ANn{ce}}}AEn{}}{{}{{Nn{ce}}}AEn{}}{{}{{AO`{ce}}}AEn{}}{{}{{B@d{ce}}}AEn{}}{{}{{AOb{ceg}}}AEn{}{}}{{}{{AOd{ce}}}AEn{}}{{}{{AKb{ce}}}AEn{}}{{}{{ANj{ce}}}AEn{}}{{}{{AOf{ceg}}}BA`{}{}}{{}{{AOh{ceg}}}BA`{}{}}{{}{{ADj{ce}}}AEn{}}{{}{{ANl{ce}}}AEn{}}{{}{{Lj{ceg}}}{BA`B@l}{}{}}{{}{{B@`{ceg}}}{BA`B@l}{}{}}{{}Lh}{AIbAIb}{{{d{{B@f{ce}}}}}c{AFl{AH`{}{{Ln{}}}}}{}}{ANj}{Bf{{d{c}}}{}}0000000000000000000000{Bf{{d{hc}}}{}}0000000000000000000000{{{d{{Lj{ceg}}}}}c{AFl{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AId{}{{Ln{}}}}JjBA`B@l}{}{}}{{{d{{B@`{ceg}}}}}c{{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AId{}{{Ln{}}}}AFl{AJj{}{{Ln{}}}}{AFn{}{{Ln{}}}}AJlB@lBA`}{}{}}{{{Nn{ce}}{Nn{ce}}}c{{AK`{}{{Ln{}}}}AH`}{}}{{{AO`{ce}}{AO`{ce}}}c{{AK`{}{{Ln{}}}}AH`}{}}{{{AEb{ce}}{AOb{cge}}}{}{AFlAId}{}{}}{{{AEb{ce}}c}{}{AFlAId}{}}{{{B@f{ce}}{AOb{cge}}}{}{AFlAId}{}{}}{{{B@f{ce}}c}{}{AFlAId}{}}{{{ANn{ce}}{AOb{cge}}}{}AId{}{}}{{{ANn{ce}}c}{}AId{}}{{{ANn{ce}}{ANn{cg}}}{}AId{}{}}{{{Nn{ce}}{AOb{cge}}}{}{AFlAId}{}{}}{{{Nn{ce}}c}{}{AFlAId}{}}{{{AO`{ce}}{AOb{cge}}}{}{AFlAId}{}{}}{{{AO`{ce}}c}{}{AFlAId}{}}{{{B@d{ce}}{AOb{cge}}}{}{AFlAId}{}{}}{{{B@d{ce}}c}{}{AFlAId}{}}{{{AOd{ce}}c}{}{AFlAId}{}}{{{AOd{ce}}{AOb{cge}}}{}{AFlAId}{}{}}{{{AKb{ce}}{AOb{cge}}}{}{AFlAId}{}{}}{{{AKb{ce}}c}{}{AFlAId}{}}{{{ANj{ce}}c}{}{AFlAId}{}}{{{ANj{ce}}{AOb{cge}}}{}{AFlAId}{}{}}{{{ADj{ce}}{AOb{cge}}}{}{AFlAId}{}{}}{{{ADj{ce}}c}{}{AFlAId}{}}{{{ANl{ce}}c}{}{AFlAId}{}}{{{ANl{ce}}{AOb{cge}}}{}{AFlAId}{}{}}{{{d{h{AEb{ce}}}}c}n{AFlAIf}{}}{{{d{h{AEb{ce}}}}{AOb{cee}}}n{AFlAIf}{}}{{{d{h{B@f{ce}}}}{AOb{cee}}}n{AFlAIf}{}}{{{d{h{B@f{ce}}}}c}n{AFlAIf}{}}{{{d{h{ANn{ce}}}}c}n{AFl{AId{}{{Ln{}}}}}{}}{{{d{h{Nn{ce}}}}c}n{AFl{AId{}{{Ln{}}}}}{}}{{{d{h{Nn{ce}}}}{AOb{cee}}}n{AFlAIf}{}}{{{d{h{AO`{ce}}}}{AOb{cee}}}n{AFlAIf}{}}{{{d{h{AO`{ce}}}}c}n{AFlAIf}{}}{{{d{h{B@d{ce}}}}{AOb{cee}}}n{AFlAIf}{}}{{{d{h{B@d{ce}}}}c}n{AFlAIf}{}}{{{d{h{AOd{ce}}}}c}n{AFlAIf}{}}{{{d{h{AOd{ce}}}}{AOb{cee}}}n{AFlAIf}{}}{{{d{h{AKb{ce}}}}c}n{AFlAIf}{}}{{{d{h{AKb{ce}}}}{AOb{cee}}}n{AFlAIf}{}}{{{d{h{ANj{ce}}}}{AOb{cee}}}n{AFlAIf}{}}{{{d{h{ANj{ce}}}}c}n{AFlAIf}{}}{{{d{h{ADj{ce}}}}{AOb{cee}}}n{AFlAIf}{}}{{{d{h{ADj{ce}}}}c}n{AFl{AId{}{{Ln{}}}}}{}}{{{d{h{ANl{ce}}}}{AOb{cee}}}n{AFlAIf}{}}{{{d{h{ANl{ce}}}}c}n{AFl{AId{}{{Ln{}}}}}{}}{{{d{{Nn{ce}}}}{d{{AKb{ce}}}}}{{Nn{ce}}}BAb{}}{{{d{{AO`{ce}}}}{d{{ANj{ce}}}}}{{AO`{ce}}}BAb{}}{{{ADj{ce}}{ADj{ce}}}c{{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}}{{{ANl{ce}}{ANl{ce}}}c{{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}}{d{{d{c}}}{}}0000000000000000000000{Bfn}0000000000000000000000{{{d{{AEb{ce}}}}{d{{AEb{ce}}}}}JhJj{}}{{{d{{B@f{ce}}}}{d{{B@f{ce}}}}}JhJj{}}{{{d{{B@n{ce}}}}{d{{B@n{ce}}}}}JhJj{}}{{{d{{ANn{ce}}}}{d{{ANn{ce}}}}}JhJj{}}{{{d{{Nn{ce}}}}{d{{Nn{ce}}}}}JhJj{}}{{{d{{AO`{ce}}}}{d{{AO`{ce}}}}}JhJj{}}{{{d{{B@d{ce}}}}{d{{B@d{ce}}}}}JhJj{}}{{{d{{B@h{ceg}}}}{d{{B@h{ceg}}}}}JhJj{}{}}{{{d{{AOn{ceg}}}}{d{{AOn{ceg}}}}}JhJj{}{}}{{{d{{B@b{ceg}}}}{d{{B@b{ceg}}}}}JhJj{}{}}{{{d{{AOb{ceg}}}}{d{{AOb{ceg}}}}}JhJj{}{}}{{{d{{AOd{ce}}}}{d{{AOd{ce}}}}}JhJj{}}{{{d{{AKb{ce}}}}{d{{AKb{ce}}}}}JhJj{}}{{{d{{ANj{ce}}}}{d{{ANj{ce}}}}}JhJj{}}{{{d{{AOf{ceg}}}}{d{{AOf{ceg}}}}}JhJj{}{}}{{{d{{AOh{ceg}}}}{d{{AOh{ceg}}}}}JhJj{}{}}{{{d{{ADj{ce}}}}{d{{ADj{ce}}}}}JhJj{}}{{{d{{ANl{ce}}}}{d{{ANl{ce}}}}}JhJj{}}{{{d{{Lj{ceg}}}}{d{{Lj{ceg}}}}}JhJj{}{}}{{{d{{B@`{ceg}}}}{d{{B@`{ceg}}}}}JhJj{}{}}{{{d{AOj}}{d{AOj}}}Jh}{{{d{AOl}}{d{AOl}}}Jh}{{{d{Lh}}{d{Lh}}}Jh}{{{AKb{ce}}{AKb{ce}}}AOjJj{}}{{{ANj{ce}}{ANj{ce}}}AOlJj{}}{{{ADj{ce}}{ADj{ce}}}AOjJj{}}{{{ANl{ce}}{ANl{ce}}}AOlJj{}}{{d{d{c}}}Jh{}}00000000000000000000000000000000000000000000000000000000000000000000{{{ADl{c}}{ADl{c}}{ADl{c}}}{{B@b{ceg}}}AK`{}{}}{{{Nn{ce}}c}{{AO`{ce}}}AFl{}}{{{ADj{ce}}c}{{ANl{ce}}}AFl{}}{{AIbAIb}AIb}{{{Nn{ce}}}{{Nn{ce}}}{BAdAFl}{}}{{{Nn{ce}}}{{Nn{ce}}}BAd{}}{{{AO`{ce}}}{{AO`{ce}}}{BAdAFl}{}}{{{AO`{ce}}}{{AO`{ce}}}BAd{}}{{{AKb{ce}}}{{AKb{ce}}}{BAdAFl}{}}{{{AKb{ce}}}{{AKb{ce}}}BAd{}}{{{ANj{ce}}}{{ANj{ce}}}{BAdAFl}{}}{{{ANj{ce}}}{{ANj{ce}}}BAd{}}{{{ADj{ce}}}{{ADj{ce}}}BAd{}}{{{ADj{ce}}}{{ADj{ce}}}{BAdAFl}{}}{{{ANl{ce}}}{{ANl{ce}}}BAd{}}{{{ANl{ce}}}{{ANl{ce}}}{BAdAFl}{}}{{{d{{AEb{ce}}}}{d{hDn}}}{{G`{nJn}}}Eb{}}{{{d{{B@f{ce}}}}{d{hDn}}}{{G`{nJn}}}Eb{}}{{{d{{B@n{ce}}}}{d{hDn}}}{{G`{nJn}}}Eb{}}{{{d{{ANn{ce}}}}{d{hDn}}}{{G`{nJn}}}Eb{}}{{{d{{Nn{ce}}}}{d{hDn}}}{{G`{nJn}}}Eb{}}{{{d{{AO`{ce}}}}{d{hDn}}}{{G`{nJn}}}Eb{}}{{{d{{B@d{ce}}}}{d{hDn}}}{{G`{nJn}}}Eb{}}{{{d{{B@h{ceg}}}}{d{hDn}}}{{G`{nJn}}}Eb{}{}}{{{d{{AOn{ceg}}}}{d{hDn}}}{{G`{nJn}}}Eb{}{}}{{{d{{B@b{ceg}}}}{d{hDn}}}{{G`{nJn}}}Eb{}{}}{{{d{{AOb{ceg}}}}{d{hDn}}}{{G`{nJn}}}Eb{}{}}{{{d{{AOd{ce}}}}{d{hDn}}}{{G`{nJn}}}Eb{}}{{{d{{AKb{ce}}}}{d{hDn}}}{{G`{nJn}}}Eb{}}{{{d{{ANj{ce}}}}{d{hDn}}}{{G`{nJn}}}Eb{}}{{{d{{AOf{ceg}}}}{d{hDn}}}{{G`{nJn}}}Eb{}{}}{{{d{{AOh{ceg}}}}{d{hDn}}}{{G`{nJn}}}Eb{}{}}{{{d{{ADj{ce}}}}{d{hDn}}}{{G`{nJn}}}Eb{}}{{{d{{ANl{ce}}}}{d{hDn}}}{{G`{nJn}}}Eb{}}{{{d{{Lj{ceg}}}}{d{hDn}}}{{G`{nJn}}}{AFlEbJjB@lBA`}{}{}}{{{d{{B@`{ceg}}}}{d{hDn}}}{{G`{nJn}}}{AFlEbJjB@lBA`}{}{}}{{{d{AOj}}{d{hDn}}}{{G`{nJn}}}}{{{d{AOl}}{d{hDn}}}{{G`{nJn}}}}{{{d{Lh}}{d{hDn}}}{{G`{nJn}}}}{cc{}}{{{AKb{ce}}}{{AEb{ce}}}{AFlBA`AJl}{}}{{{ANj{ce}}}{{B@f{ce}}}{AFlBA`AJl}{}}2{{{AO`{ce}}}{{B@n{ce}}}B@l{}}{{{ADj{ce}}}{{B@n{ce}}}BA`{}}4{{{Nn{ce}}}{{B@n{ce}}}{BA`B@l}{}}{{{ANl{ce}}}{{B@n{ce}}}BA`{}}6{{{AAf{cc}}}{{Nn{ce}}}{}{}}{{{Mj{c}}}{{Nn{ce}}}{}{}}8{{{AAf{ccc}}}{{AO`{ce}}}{}{}}{{{Mj{c}}}{{AO`{ce}}}{}{}}::{{{AKb{ce}}}{{B@d{ce}}}BA`{}};{{{B@b{ceg}}}{{B@h{ceg}}}{}{}{}}{{{ANl{ce}}}{{B@h{cge}}}{}{}{}}===={{{Mj{c}}}{{AKb{ce}}}{}{}}{{{AAf{cc}}}{{AKb{ce}}}{}{}}{{{ADj{ce}}}{{AKb{ce}}}{}{}}{cc{}}{{{AAf{ccc}}}{{ANj{ce}}}{}{}}{{{Mj{c}}}{{ANj{ce}}}{}{}}{{{ANl{ce}}}{{ANj{ce}}}{}{}}33{{{ADj{ce}}}{{AOf{ceg}}}{}{}{}}{{{ANl{ce}}}{{AOh{ceg}}}{}{}{}}5{{{AKb{ce}}}{{ADj{ce}}}{}{}}{{{Mj{c}}}{{ADj{ce}}}{}{}}7{{{AOf{ceg}}}{{ADj{ce}}}{}{}{}}{{{AAf{cc}}}{{ADj{ce}}}{}{}}9{{{Mj{c}}}{{ANl{ce}}}{}{}}{{{AOh{ceg}}}{{ANl{ce}}}{}{}{}}{{{AAf{ccc}}}{{ANl{ce}}}{}{}}<{{{AOf{ceg}}}{{Lj{ceg}}}{BA`B@l}{}{}}={{{AOh{ceg}}}{{B@`{ceg}}}{BA`B@l}{}{}}>>>>>>>>>>>>>>>>>>>>>>>>>>{{{ADl{c}}c}{{ADj{ce}}}{AIb{AHb{}{{Ln{}}}}AFl}{}}{{{Mj{c}}}{{Lj{ceg}}}AFl{}{}}{{{Mj{c}}}{{B@`{ceg}}}AFl{}{}}{{{Mj{{Mj{c}}}}}{{Lj{ceg}}}AFl{}{}}{{{Mj{{Mj{c}}}}}{{B@`{ceg}}}AFl{}{}}{{{ANn{ce}}}{{AOd{ce}}}AFl{}}{{{ANn{ce}}{ANn{ce}}}{{Nn{ce}}}{}{}}{{{ANn{ce}}{ANn{ce}}{ANn{ce}}}{{AO`{ce}}}{}{}}{{{ANn{ce}}{ANn{ce}}{ANn{ce}}{ANn{ce}}}{{AOd{ce}}}{}{}}{{{ANn{ce}}{ANn{ce}}}{{AKb{ce}}}{}{}}{{{ANn{ce}}{ANn{ce}}{ANn{ce}}}{{ANj{ce}}}{}{}}{{{ANn{ce}}{ANn{ce}}}{{ADj{ce}}}{}{}}{{{ANn{ce}}{ANn{ce}}{ANn{ce}}}{{ANl{ce}}}{}{}}{{{Nn{ce}}{AKb{ce}}}{{AEb{ce}}}{AFl{AFn{}{{Ln{}}}}}{}}{{{AO`{ce}}{ANj{ce}}}{{B@f{ce}}}{AFl{AFn{}{{Ln{}}}}}{}}{c{{AEb{eg}}}Mf{AFlBA`AJl}{}}{c{{B@f{eg}}}Mf{AFlBA`AJl}{}}{c{{B@d{eg}}}Mf{AFlBA`AJl{AH`{}{{Ln{}}}}}{}}{{{B@b{ceg}}}{{B@h{ceg}}}{}{}{}}{{{AOb{ceg}}}{{B@`{ceg}}}{{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AId{}{{Ln{}}}}AFl{AJj{}{{Ln{}}}}{AFn{}{{Ln{}}}}AJlB@lBA`}{}{}}{{{AKb{ce}}}{{AEb{ce}}}BA`{}}{{{ANj{ce}}}{{B@f{ce}}}BA`{}}{{{AKb{ce}}}{{B@d{ce}}}BA`{}}{ce{}{}}0000000000000000000000{{{ANl{ce}}}{{B@h{cge}}}{}{}{}}{{{d{{AEb{cLh}}}}}{{AEb{ce}}}AFl{}}{{{d{{B@f{cLh}}}}}{{B@f{ce}}}AFl{}}{{{Nn{cLh}}}{{Nn{ce}}}{}{}}{{{AO`{cLh}}}{{AO`{ce}}}{}{}}{{{d{{B@d{cLh}}}}}{{B@d{ce}}}AFl{}}{{{d{{B@h{cLhLh}}}}}{{B@h{ceg}}}{AK`AHh}{}{}}{{{d{{AOn{cLhLh}}}}}{{AOn{ceg}}}AFl{}{}}{{{d{{B@b{cLhLh}}}}}{{B@b{ceg}}}AFl{}{}}{{{AKb{cLh}}}{{AKb{ce}}}{}{}}{{{ANj{cLh}}}{{ANj{ce}}}{}{}}{{{d{{AOf{cLhLh}}}}}{{AOf{ceg}}}AFl{}{}}{{{d{{AOh{cLhLh}}}}}{{AOh{ceg}}}AFl{}{}}{{{ADj{cLh}}}{{ADj{ce}}}{}{}}{{{ANl{cLh}}}{{ANl{ce}}}{}{}}{{{d{{Lj{cLhLh}}}}}{{Lj{ceg}}}AFl{}{}}{{{d{{B@`{cLhLh}}}}}{{B@`{ceg}}}AFl{}{}}{{{ADj{ce}}{ADj{ce}}}{{AOd{ce}}}{{AJj{}{{Ln{}}}}}{}}0{{{ANn{ce}}}cAj{}}{{{AOb{ceg}}}c{}{}{}}{{{d{{AOn{ceg}}}}}{{ADl{c}}}AFl{}{}}{{{AKb{ce}}{AKb{ce}}}AOjAJl{}}{{{ANj{ce}}{ANj{ce}}}AOlAJl{}}{{{ADj{ce}}{ADj{ce}}}AOjAJl{}}{{{ANl{ce}}{ANl{ce}}}AOlAJl{}}{{{d{{AEb{ce}}}}{d{hg}}}nAB`{}ABb}{{{d{{B@f{ce}}}}{d{hg}}}nAB`{}ABb}{{{d{{B@n{ce}}}}{d{hg}}}nAB`{}ABb}{{{d{{ANn{ce}}}}{d{hg}}}nAB`{}ABb}{{{d{{Nn{ce}}}}{d{hg}}}nAB`{}ABb}{{{d{{AO`{ce}}}}{d{hg}}}nAB`{}ABb}{{{d{{B@d{ce}}}}{d{hg}}}nAB`{}ABb}{{{d{{B@h{ceg}}}}{d{hi}}}nAB`{}{}ABb}{{{d{{AOn{ceg}}}}{d{hi}}}nAB`{}{}ABb}{{{d{{B@b{ceg}}}}{d{hi}}}nAB`{}{}ABb}{{{d{{AOb{ceg}}}}{d{hi}}}nAB`{}{}ABb}{{{d{{AOd{ce}}}}{d{hg}}}nAB`{}ABb}{{{d{{AKb{ce}}}}{d{hg}}}nAB`{}ABb}{{{d{{ANj{ce}}}}{d{hg}}}nAB`{}ABb}{{{d{{AOf{ceg}}}}{d{hi}}}nAB`{}{}ABb}{{{d{{AOh{ceg}}}}{d{hi}}}nAB`{}{}ABb}{{{d{{ADj{ce}}}}{d{hg}}}nAB`{}ABb}{{{d{{ANl{ce}}}}{d{hg}}}nAB`{}ABb}{{{d{{Lj{ceg}}}}{d{hi}}}nAB`{}{}ABb}{{{d{{B@`{ceg}}}}{d{hi}}}nAB`{}{}ABb}{{{d{AOj}}{d{hc}}}nABb}{{{d{AOl}}{d{hc}}}nABb}{{{d{Lh}}{d{hc}}}nABb}{{{d{{AEb{ce}}}}}c{AFl{AH`{}{{Ln{}}}}}{}}{{{d{{B@f{ce}}}}}c{AFl{AH`{}{{Ln{}}}}}{}}{{{d{{B@d{ce}}}}}c{AFl{AFn{}{{Ln{}}}}}{}}{AKb}{ANj}{{{d{{AOd{ce}}}}}c{AFl{AFn{}{{Ln{}}}}}{}}{B@b}{{}{{B@h{ceg}}}{}{}{}}{{}{{AOn{ceg}}}AJn{}{}}{{}{{B@b{ceg}}}{AJnAHd}{}{}}{{}{{AOb{ceg}}}B@l{}{}}{{}{{AOf{ceg}}}BA`{}{}}{{}{{AOh{ceg}}}BA`{}{}}{{}{{Lj{ceg}}}{BA`B@l}{}{}}{{}{{B@`{ceg}}}{BA`B@l}{}{}}{{{d{{AEb{ce}}}}cc}{{AEb{ce}}}{AFl{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}}{}}{{{d{{B@f{ce}}}}ccc}{{B@f{ce}}}{AFl{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}}{}}{{{d{{B@d{ce}}}}cc}{{B@d{ce}}}{AFl{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}}{}}{{}Bf}0000000000000000000000{{{d{{AEb{ce}}}}{AOd{ce}}}{{AEb{ce}}}{AFl{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}}{}}{{{d{{B@d{ce}}}}{AOd{ce}}}{{B@d{ce}}}{AFlBA`AJl{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}}{}}{{{d{{AEb{ce}}}}{d{{AEb{ce}}}}}{{H`{{AEb{ce}}}}}{AFlAJl}{}}{{{d{{B@f{ce}}}}{d{{B@f{ce}}}}}{{H`{{B@f{ce}}}}}{AFlAJl}{}}{{{d{{B@d{ce}}}}{d{{B@d{ce}}}}}{{H`{{B@d{ce}}}}}{AFlAJl{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}}{}}{{{d{{AEb{ce}}}}{d{{AEb{ce}}}}}{{AEb{ce}}}{AFlAJl}{}}{{{d{{B@f{ce}}}}{d{{B@f{ce}}}}}{{B@f{ce}}}{AFlAJl}{}}{{{d{{AEb{ce}}}}{d{{AEb{ce}}}}}JhAJl{}}{{{d{{B@f{ce}}}}{d{{B@f{ce}}}}}JhAJl{}}{{{d{{B@d{ce}}}}{d{{B@d{ce}}}}}Jh{AFlAJl{AFn{}{{Ln{}}}}}{}}{{}c{}}000000000000000000000000000000000000000000000{{{Ef{c}}}{{Ef{f}}}{}}0000000000000000000000{{{Eh{c}}}{{Eh{f}}}{}}0000000000000000000000{{{Ej{c}}}{{Ej{f}}}{}}0000000000000000000000{{{j{c}}}e{}{}}00000000000000000000004444444444444444444444444444444444444444444444{{}c{}}0000000000000000000000{{{d{{B@h{ceg}}}}}{{B@h{cge}}}{AK`AHh}{}{}}{{{d{{AOn{ceg}}}}}{{AOn{cge}}}AK`{}{}}{{{d{{B@b{ceg}}}}}{{B@b{cge}}}AK`{}{}}{{{AOb{ceg}}}{{AOb{ge}}}{B@lAId}{}{}}{{{d{{AOf{ceg}}}}}{{AOf{ge}}}{AJjAFl}{}{}}{{{d{{AOh{ceg}}}}}{{AOh{ge}}}{AJjAFl}{}{}}{{{d{{Lj{ceg}}}}}{{H`{{Lj{cge}}}}}{AFl{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AId{}{{Ln{}}}}JjBA`B@l}{}{}}{{{d{{B@`{ceg}}}}}{{H`{{B@`{cge}}}}}{{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AId{}{{Ln{}}}}AFl{AJj{}{{Ln{}}}}{AFn{}{{Ln{}}}}AJlB@lBA`}{}{}}{{{d{{B@`{ceg}}}}}Jh{BA`B@lJj}{}{}}{{{d{{B@`{ceg}}}}}Jh{{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AId{}{{Ln{}}}}AFl{AJj{}{{Ln{}}}}{AFn{}{{Ln{}}}}AJlB@lBA`}{}{}}{{{d{{AEb{ce}}}}}JhAJl{}}{{{d{{B@f{ce}}}}}JhAJl{}}{{{d{{B@d{ce}}}}}Jh{AFlBA`AJl}{}}{{{AKb{ce}}}Jh{BA`AJl}{}}{{{ANj{ce}}}Jh{BA`AJl}{}}{{{AEb{ce}}}JhAJb{}}{{{B@f{ce}}}JhAJb{}}{{{Nn{ce}}}JhAJb{}}{{{AO`{ce}}}JhAJb{}}{{{B@d{ce}}}JhAJb{}}{{{AKb{ce}}}JhAJb{}}{{{ANj{ce}}}JhAJb{}}{{{ADj{ce}}}JhAJb{}}{{{ANl{ce}}}JhAJb{}}{{{AOb{ceg}}}Jh{JjB@l}{}{}}{{{d{{AOf{ceg}}}}}Jh{BA`Jj}{}{}}{{{d{{AOh{ceg}}}}}Jh{BA`Jj}{}{}}{{{d{{Lj{ceg}}}}}Jh{AFl{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AId{}{{Ln{}}}}JjBA`B@l}{}{}}{{{d{{B@`{ceg}}}}}Jh{{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AId{}{{Ln{}}}}AFl{AJj{}{{Ln{}}}}{AFn{}{{Ln{}}}}AJlB@lBA`}{}{}}{{{d{{AEb{ce}}}}}JhAJl{}}{{{d{{B@f{ce}}}}}JhAJl{}}{{{d{{B@b{ceg}}}}}Jh{AHhAK`}{}{}}{{{AKb{ce}}}JhANh{}}{{{ANj{ce}}}JhANh{}}{{{d{{AOd{ce}}}}}Jh{BA`Jj}{}}{B@b}0{AOd}{{{ADj{ce}}}cAK`{}}{{{ANl{ce}}}cAK`{}}{{{d{{AEb{ce}}}}{AEb{ce}}c}{{AEb{ce}}}{B@l{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}AFl}{}}{{{d{{B@f{ce}}}}{B@f{ce}}c}{{B@f{ce}}}{B@l{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}AFl}{}}{{{ANn{ce}}{ANn{ce}}c}{{ANn{ce}}}{B@l{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AFn{}{{Ln{}}}}Aj}{}}{{{Nn{ce}}{Nn{ce}}c}{{Nn{ce}}}{B@l{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AFn{}{{Ln{}}}}AFl}{}}{{{AO`{ce}}{AO`{ce}}c}{{AO`{ce}}}{B@l{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AFn{}{{Ln{}}}}AFl}{}}{{{d{{B@d{ce}}}}{B@d{ce}}c}{{B@d{ce}}}{B@l{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}AFl}{}}{{{d{{B@b{ceg}}}}{d{{B@b{ceg}}}}c}{{B@b{ceg}}}AK`{}{}}{{{AKb{ce}}{AKb{ce}}c}{{AKb{ce}}}{B@l{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AFn{}{{Ln{}}}}AFl}{}}{{{ANj{ce}}{ANj{ce}}c}{{ANj{ce}}}{B@l{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AFn{}{{Ln{}}}}AFl}{}}{{{ADj{ce}}{ADj{ce}}c}{{ADj{ce}}}{B@l{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}AFl}{}}{{{ANl{ce}}{ANl{ce}}c}{{ANl{ce}}}{B@l{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}AFl}{}}{{{AKb{ce}}{AKb{ce}}}AOjAJl{}}{{{ANj{ce}}{ANj{ce}}}AOlAJl{}}{{{ADj{ce}}{ADj{ce}}}AOjAJl{}}{{{ANl{ce}}{ANl{ce}}}AOlAJl{}}{Lj}{B@`}10001010001010000000{{{Nn{ce}}i}{{Nn{ge}}}{}{}{}{{Jf{c}{{Ln{g}}}}}}{{{AO`{ce}}i}{{AO`{ge}}}{}{}{}{{Jf{c}{{Ln{g}}}}}}{{{ADj{ce}}i}{{ADj{ge}}}{}{}{}{{Jf{c}{{Ln{g}}}}}}{{{ANl{ce}}i}{{ANl{ge}}}{}{}{}{{Jf{c}{{Ln{g}}}}}}{{{ANn{ce}}{ANn{ce}}}{{ANn{ce}}}AJl{}}{{{Nn{ce}}{Nn{ce}}}{{Nn{ce}}}AJl{}}{{{AO`{ce}}{AO`{ce}}}{{AO`{ce}}}AJl{}}{{{d{{B@d{ce}}}}}{{Nn{ce}}}{AFl{AFn{}{{Ln{}}}}}{}}{{{AOb{ceg}}{AOb{ceg}}}{{AOb{ceg}}}AJl{}{}}{{{AKb{ce}}{AKb{ce}}}{{AKb{ce}}}AJl{}}{{{ANj{ce}}{ANj{ce}}}{{ANj{ce}}}AJl{}}{{{ADj{ce}}{ADj{ce}}}{{ADj{ce}}}AJl{}}{{{ANl{ce}}{ANl{ce}}}{{ANl{ce}}}AJl{}}{AEbNn}{B@fAO`}{{{d{{B@d{ce}}}}}c{AFl{AFn{}{{Ln{}}}}}{}}0;:98765432100{{{AEb{ce}}c}{}{AFlAHb}{}}{{{AEb{ce}}{AOb{ceg}}}{}{AFlAHb}{}{}}{{{B@f{ce}}{AOb{ceg}}}{}{AFlAHb}{}{}}{{{B@f{ce}}c}{}{AFlAHb}{}}{{{ANn{ce}}c}{}AHb{}}{{{ANn{ce}}{AOb{ceg}}}{}AHb{}{}}{{{Nn{ce}}c}{}{AFlAHb}{}}{{{Nn{ce}}{AOb{ceg}}}{}{AFlAHb}{}{}}{{{AO`{ce}}{AOb{ceg}}}{}{AFlAHb}{}{}}{{{AO`{ce}}c}{}{AFlAHb}{}}{{{B@d{ce}}{AOb{ceg}}}{}{AFlAHb}{}{}}{{{B@d{ce}}c}{}{AFlAHb}{}}{{{AOb{ceg}}{AOb{cgi}}}{}AHb{}{}{}}{{{AOd{ce}}{AOb{ceg}}}{}{AFlAHb}{}{}}{{{AOd{ce}}c}{}{AFlAHb}{}}{{{AKb{ce}}{AOb{ceg}}}{}{AFlAHb}{}{}}{{{AKb{ce}}c}{}{AFlAHb}{}}{{{ANj{ce}}c}{}{AFlAHb}{}}{{{ANj{ce}}{AOb{ceg}}}{}{AFlAHb}{}{}}{{{ADj{ce}}c}{}{AFlAHb}{}}{{{ADj{ce}}{AOb{ceg}}}{}{AFlAHb}{}{}}{{{ANl{ce}}{AOb{ceg}}}{}{AFlAHb}{}{}}{{{ANl{ce}}c}{}{AFlAHb}{}}{{{d{h{AEb{ce}}}}c}n{AFlAJh}{}}{{{d{h{AEb{ce}}}}{AOb{cee}}}n{AFlAJh}{}}{{{d{h{B@f{ce}}}}c}n{AFlAJh}{}}{{{d{h{B@f{ce}}}}{AOb{cee}}}n{AFlAJh}{}}{{{d{h{ANn{ce}}}}c}n{AFl{AHb{}{{Ln{}}}}}{}}{{{d{h{Nn{ce}}}}{AOb{cee}}}n{AFlAJh}{}}{{{d{h{Nn{ce}}}}c}n{AFl{AHb{}{{Ln{}}}}}{}}{{{d{h{AO`{ce}}}}{AOb{cee}}}n{AFlAJh}{}}{{{d{h{AO`{ce}}}}c}n{AFlAJh}{}}{{{d{h{B@d{ce}}}}c}n{AFlAJh}{}}{{{d{h{B@d{ce}}}}{AOb{cee}}}n{AFlAJh}{}}{{{d{h{AOd{ce}}}}{AOb{cee}}}n{AFlAJh}{}}{{{d{h{AOd{ce}}}}c}n{AFlAJh}{}}{{{d{h{AKb{ce}}}}{AOb{cee}}}n{AFlAJh}{}}{{{d{h{AKb{ce}}}}c}n{AFlAJh}{}}{{{d{h{ANj{ce}}}}c}n{AFlAJh}{}}{{{d{h{ANj{ce}}}}{AOb{cee}}}n{AFlAJh}{}}{{{d{h{ADj{ce}}}}c}n{AFl{AHb{}{{Ln{}}}}}{}}{{{d{h{ADj{ce}}}}{AOb{cee}}}n{AFlAJh}{}}{{{d{h{ANl{ce}}}}{AOb{cee}}}n{AFlAJh}{}}{{{d{h{ANl{ce}}}}c}n{AFl{AHb{}{{Ln{}}}}}{}}{{{d{{B@`{ceg}}}}c}{{B@`{ceg}}}{{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AId{}{{Ln{}}}}AFl{AJj{}{{Ln{}}}}{AFn{}{{Ln{}}}}AJlB@lBA`}{}{}}{{{ANn{ce}}}{}AJj{}}{{{Nn{ce}}}{}AJj{}}{{{AO`{ce}}}{}AJj{}}{{{AOd{ce}}}{{AOd{ce}}}{{AJj{}{{Ln{}}}}}{}}{{{AKb{ce}}}{}AJj{}}{{{ANj{ce}}}{}AJj{}}{{{ADj{ce}}}{}AJj{}}{{{ANl{ce}}}{}AJj{}}{{{Nn{ce}}{Nn{ce}}}{{AEb{ce}}}{}{}}{{{AO`{ce}}{AO`{ce}}}{{B@f{ce}}}{}{}}{{cccc}{{B@n{ce}}}{}{}}{c{{ANn{ce}}}{}{}}{{cc}{{Nn{ce}}}{}{}}{{ccc}{{AO`{ce}}}{}{}}{{{Nn{ce}}{AKb{ce}}}{{B@d{ce}}}{}{}}{{{B@b{ceg}}{ANl{cg}}}{{B@h{ceg}}}{}{}{}}{{{ADl{c}}}{{AOn{ceg}}}{}{}{}}{c{{AOb{ceg}}}{}{}{}}{{cccc}{{AOd{ce}}}{}{}}{{cc}{{AKb{ce}}}{}{}}{{ccc}{{ANj{ce}}}{}{}}{{cc}{{AOf{ceg}}}{}{}{}}{{ccc}{{AOh{ceg}}}{}{}{}}{{cc}{{ADj{ce}}}{}{}}{{ccc}{{ANl{ce}}}{}{}}{{cccccc}{{Lj{ceg}}}{}{}{}}{{cccccccccccccccc}{{B@`{ceg}}}{}{}{}}{{cccccc}{{B@`{ceg}}}{BA`B@l}{}{}}{c{{AOd{ce}}}AFl{}}{{{ANl{ce}}{B@b{ceg}}}{{B@h{ceg}}}{}{}{}}{AOjJh}{AOlJh}{{{d{{B@b{ceg}}}}}cAK`{}{}}{{{d{{B@b{ceg}}}}}{{B@b{ceg}}}AK`{}{}}{{{ADj{ce}}}{{ADj{ce}}}AK`{}}{{{ANl{ce}}}{{ANl{ce}}}AK`{}}{AOjAOj}{AOlAOl}{{{AKb{ce}}{AKb{ce}}}AOjJj{}}{{{ANj{ce}}{ANj{ce}}}AOlJj{}}{{{ADj{ce}}{ADj{ce}}}AOjJj{}}{{{ANl{ce}}{ANl{ce}}}AOlJj{}}{{}c{}}0000000000000000`{{}{{AOb{ceg}}}B@l{}{}}{{}{{ADj{ce}}}B@l{}}{{}{{ANl{ce}}}B@l{}}{{AOjAOj}AOj}{{AOlAOl}AOl}{{}{{Nn{ce}}}BA`{}}{{}{{AO`{ce}}}BA`{}}{B@dNn}{{cccccc}{{B@`{ceg}}}{}{}{}}{{{d{{AEb{ce}}}}{AOd{ce}}}{{AEb{ce}}}{AFl{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}}{}}{{{d{{B@d{ce}}}}{AOd{ce}}}{{B@d{ce}}}{AFl{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}}{}}{{{d{{Lj{ceg}}}}{d{{AEb{ce}}}}}{{AEb{cg}}}{{AH`{}{{Ln{}}}}BA`AJlAFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}}{{{d{{B@`{ceg}}}}{d{{AEb{ce}}}}}{{H`{{AEb{cg}}}}}{{AH`{}{{Ln{}}}}{AId{}{{Ln{}}}}BA`AJlAFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}}{{{d{{B@`{ceg}}}}{d{{B@f{ce}}}}}{{H`{{B@f{cg}}}}}{{AH`{}{{Ln{}}}}{AId{}{{Ln{}}}}BA`AJlAFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}}{{{d{{Lj{ceg}}}}{d{{B@d{ce}}}}}{{B@d{cg}}}{{AH`{}{{Ln{}}}}BA`AJlAFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}}{{{d{{B@`{ceg}}}}{d{{B@d{ce}}}}}{{H`{{B@d{cg}}}}}{{AH`{}{{Ln{}}}}{AId{}{{Ln{}}}}BA`AJlAFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}}{{{d{{ANn{ce}}}}{d{{ANn{ce}}}}}{{H`{AF`}}}AJl{}}{{{d{{AOb{ceg}}}}{d{{AOb{ceg}}}}}{{H`{AF`}}}AJl{}{}}{{{d{Lh}}{d{Lh}}}{{H`{AF`}}}}{c{{B@`{ceg}}}{}{}{}}{{cc}{{Nn{ce}}}{}{}}{{ccc}{{AO`{ce}}}{}{}}{{{d{{Nn{Gfc}}}}}{{Nn{GfLh}}}{}}{{{d{{Lj{ceg}}}}{ADl{c}}}{{Lj{ceg}}}{AFl{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}BA`AIb}{}{}}{{{d{{B@`{ceg}}}}ccc{ADl{c}}}{{B@`{ceg}}}{{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AId{}{{Ln{}}}}AFlBA`B@lAIb}{}{}}{{{d{{Lj{ceg}}}}cc}{{Lj{ceg}}}{AFl{AHb{}{{Ln{}}}}}{}{}}{{{d{{B@`{ceg}}}}ccc}{{B@`{ceg}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}BA`B@l}{}{}}{{{d{{Lj{ceg}}}}{ADj{ce}}}{{Lj{ceg}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}BA`B@l}{}{}}{{{d{{B@`{ceg}}}}{ANl{ce}}}{{B@`{ceg}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}BA`B@l}{}{}}{{{ADj{ce}}{ADj{ce}}}{{ADj{ce}}}{{AH`{}{{Ln{}}}}{AId{}{{Ln{}}}}AFl{AHb{}{{Ln{}}}}{AFn{}{{Ln{}}}}}{}}{{{ANl{ce}}{ANl{ce}}}{{ANl{ce}}}{{AH`{}{{Ln{}}}}{AId{}{{Ln{}}}}AFl{AHb{}{{Ln{}}}}{AFn{}{{Ln{}}}}}{}}{{{d{{B@`{ceg}}}}}{{B@`{ceg}}}{AFl{AHb{}{{Ln{}}}}{AId{}{{Ln{}}}}BA`B@lJj}{}{}}{{cccc}{{B@b{ceg}}}{}{}{}}{B@b}{c{{AOn{ceg}}}{}{}{}}{ADl}{AIbAIb}{{cccc}{{B@d{ce}}}{}{}}{{{ADj{ce}}{ADj{ce}}}{{ADj{ce}}}{B@l{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}AFl}{}}{{{ANl{ce}}{ANl{ce}}}{{ANl{ce}}}{B@l{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}AFl}{}}{{{d{{Nn{ce}}}}{d{{AKb{ce}}}}}{{Nn{ce}}}BAb{}}{{{d{{AO`{ce}}}}{d{{ANj{ce}}}}}{{AO`{ce}}}BAb{}}{AOd}{{{ADj{ce}}}{{ADj{ce}}}AJb{}}{{{ANl{ce}}}{{ANl{ce}}}AJb{}}{{{ADl{c}}}{{Lj{ceg}}}{AFl{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}BA`AIb}{}{}}{{ccc{ADl{c}}}{{B@`{ceg}}}{}{}{}}{B@hB@b}{{{d{{AEb{ce}}}}}{{AEb{ce}}}BAf{}}{{{d{{B@f{ce}}}}}{{B@f{ce}}}BAf{}}{{{Nn{ce}}}{{Nn{ce}}}BAf{}}{{{Nn{ce}}}{{Nn{ce}}}{BAfAFl}{}}{{{AO`{ce}}}{{AO`{ce}}}BAf{}}{{{AO`{ce}}}{{AO`{ce}}}{BAfAFl}{}}{{{d{{B@d{ce}}}}}{{B@d{ce}}}{BAdB@jBAf{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}}{}}{{{AKb{ce}}}{{AKb{ce}}}BAf{}}{{{AKb{ce}}}{{AKb{ce}}}{BAfAFl}{}}{{{ANj{ce}}}{{ANj{ce}}}BAf{}}{{{ANj{ce}}}{{ANj{ce}}}{BAfAFl}{}}{{{ADj{ce}}}{{ADj{ce}}}BAf{}}{{{ADj{ce}}}{{ADj{ce}}}{BAfAFl}{}}{{{ANl{ce}}}{{ANl{ce}}}BAf{}}{{{ANl{ce}}}{{ANl{ce}}}{BAfAFl}{}}{{{d{{AEb{ce}}}}}{{AEb{ce}}}{BAdB@j}{}}{{{d{{B@f{ce}}}}}{{B@f{ce}}}{BAdB@j}{}}:10:{{{ANn{ce}}{ANn{ce}}}{{ANn{ce}}}BAh{}}0{{{d{{AEb{eg}}}}cc}{{AEb{eg}}}AFl{{AHb{}{{Ln{}}}}AFl}{}}{{{d{{B@f{eg}}}}ccc}{{B@f{eg}}}AFl{{AHb{}{{Ln{}}}}AFl}{}}{{{d{{B@d{eg}}}}cc}{{B@d{eg}}}AFl{AFl{AHb{}{{Ln{}}}}}{}}{{cc}{{Lj{ceg}}}BA`{}{}}{{ccc}{{B@`{ceg}}}{BA`B@l}{}{}}{{AOj{Nn{ce}}{Nn{ce}}}{{Nn{ce}}}{}{}}{{AOl{AO`{ce}}{AO`{ce}}}{{AO`{ce}}}{}{}}{{AOj{AKb{ce}}{AKb{ce}}}{{AKb{ce}}}{}{}}{{AOl{ANj{ce}}{ANj{ce}}}{{ANj{ce}}}{}{}}{{AOj{ADj{ce}}{ADj{ce}}}{{ADj{ce}}}{}{}}{{AOl{ANl{ce}}{ANl{ce}}}{{ANl{ce}}}{}{}}{{{d{h{AEb{ce}}}}{AKb{ce}}}n{AFl{AH`{}{{Ln{}}}}}{}}{AIbAIb}{{{d{{AEb{ce}}}}}{{AKb{ce}}}{AFl{AH`{}{{Ln{}}}}}{}}{{{d{{B@f{ce}}}}}{{ANj{ce}}}{AFl{AH`{}{{Ln{}}}}}{}}{B@dAKb}{{cc}{{AKb{ce}}}{}{}}{{ccc}{{ANj{ce}}}{}{}}{{{ADl{c}}{ADl{c}}}{{B@`{ceg}}}{AIbBA`B@l}{}{}}{{{d{{B@b{ceg}}}}{d{{B@b{ceg}}}}c}{{B@b{ceg}}}{AHhAK`}{}{}}{c{{Nn{ce}}}Aj{}}{c{{AO`{ce}}}Aj{}}{c{{AKb{ce}}}Aj{}}{c{{ANj{ce}}}Aj{}}{c{{AOf{ceg}}}Aj{}{}}{c{{AOh{ceg}}}Aj{}{}}{c{{ADj{ce}}}Aj{}}{c{{ANl{ce}}}Aj{}}{{{ADj{ce}}}c{AFl{AHb{}{{Ln{}}}}{AFn{}{{Ln{}}}}}{}}{{{ANl{ce}}}c{AFl{AHb{}{{Ln{}}}}{AFn{}{{Ln{}}}}}{}}{{{d{{B@b{ceg}}}}}cAK`{}{}}{{{ANn{ce}}{ANn{ce}}}{}AH`{}}{{{Nn{ce}}{Nn{ce}}}{}AH`{}}{{{Nn{ce}}{AKb{ce}}}{}AH`{}}{{{Nn{ce}}{ADj{ce}}}{}AH`{}}{{{AO`{ce}}{ANl{ce}}}{}AH`{}}{{{AO`{ce}}{ANj{ce}}}{}AH`{}}{{{AO`{ce}}{AO`{ce}}}{}AH`{}}{{{AOb{ceg}}{AOb{ceg}}}{}AH`{}{}}{{{AOd{ce}}{AOd{ce}}}{{AOd{ce}}}{{AH`{}{{Ln{}}}}}{}}{{{AKb{ce}}{AKb{ce}}}{}AH`{}}{{{ANj{ce}}{ANj{ce}}}{}AH`{}}{{{AOf{ceg}}{AOf{cig}}}{}AH`{}{}{}}{{{AOh{ceg}}{AOh{cig}}}{}AH`{}{}{}}{{{ADj{ce}}{ADj{ce}}}{}AH`{}}{{{ANl{ce}}{ANl{ce}}}{}AH`{}}{{{d{h{ANn{ce}}}}{ANn{ce}}}nAKd{}}{{{d{h{Nn{ce}}}}{ADj{ce}}}n{AFl{AH`{}{{Ln{}}}}}{}}{{{d{h{Nn{ce}}}}{AKb{ce}}}nAKd{}}{{{d{h{AO`{ce}}}}{ANl{ce}}}n{AFl{AH`{}{{Ln{}}}}}{}}{{{d{h{AO`{ce}}}}{ANj{ce}}}nAKd{}}{{{d{h{AOd{ce}}}}{AOd{ce}}}nAKd{}}{{{d{h{AKb{ce}}}}{AKb{ce}}}nAKd{}}{{{d{h{ANj{ce}}}}{ANj{ce}}}nAKd{}}{{{d{h{AOf{ceg}}}}{AOf{cgg}}}nAKd{}{}}{{{d{h{AOh{ceg}}}}{AOh{cgg}}}nAKd{}{}}{{{d{h{ADj{ce}}}}{ADj{ce}}}n{AFl{AH`{}{{Ln{}}}}}{}}{{{d{h{ANl{ce}}}}{ANl{ce}}}n{AFl{AH`{}{{Ln{}}}}}{}}{g{{ANn{ce}}}{{AFn{}{{Ln{}}}}AFlBA`}{}{{AKf{}{{Mb{{d{{ANn{ce}}}}}}}}}}{g{{ANn{ce}}}{{AFn{}{{Ln{}}}}BA`}{}{{AKf{}{{Mb{{ANn{ce}}}}}}}}{g{{AKb{ce}}}{{AFn{}{{Ln{}}}}AFlBA`}{}{{AKf{}{{Mb{{d{{AKb{ce}}}}}}}}}}{g{{AKb{ce}}}{{AFn{}{{Ln{}}}}BA`}{}{{AKf{}{{Mb{{AKb{ce}}}}}}}}{g{{ANj{ce}}}{{AFn{}{{Ln{}}}}AFlBA`}{}{{AKf{}{{Mb{{d{{ANj{ce}}}}}}}}}}{g{{ANj{ce}}}{{AFn{}{{Ln{}}}}BA`}{}{{AKf{}{{Mb{{ANj{ce}}}}}}}}{g{{ADj{ce}}}{{AFn{}{{Ln{}}}}BA`}{}{{AKf{}{{Mb{{ADj{ce}}}}}}}}{g{{ADj{ce}}}{{AFn{}{{Ln{}}}}AFlBA`}{}{{AKf{}{{Mb{{d{{ADj{ce}}}}}}}}}}{g{{ANl{ce}}}{{AFn{}{{Ln{}}}}AFlBA`}{}{{AKf{}{{Mb{{d{{ANl{ce}}}}}}}}}}{g{{ANl{ce}}}{{AFn{}{{Ln{}}}}BA`}{}{{AKf{}{{Mb{{ANl{ce}}}}}}}}{AIbAIb}{{{d{{B@h{ceg}}}}{d{{B@h{cgi}}}}}{{B@h{cei}}}{AK`AHh}{}{}{}}{{{d{{AOn{ceg}}}}{d{{AOn{cie}}}}}{{AOn{cig}}}AK`{}{}{}}{{{d{{B@b{ceg}}}}{d{{B@b{cgi}}}}}{{B@b{cei}}}{AHhAK`}{}{}{}}{{{d{{Lj{ceg}}}}{d{{Lj{cgi}}}}}{{Lj{cei}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}{}}{{{d{{B@`{ceg}}}}{d{{B@`{cgi}}}}}{{B@`{cei}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}{}}{{{d{{Lj{ceg}}}}{ADl{c}}}{{Lj{ceg}}}{AFl{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}BA`AIb}{}{}}{{{d{{B@`{ceg}}}}ccc{ADl{c}}}{{B@`{ceg}}}{{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AId{}{{Ln{}}}}AFlBA`B@lAIb}{}{}}{{{d{{Lj{ceg}}}}cc}{{Lj{ceg}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}BA`}{}{}}{{{d{{B@`{ceg}}}}ccc}{{B@`{ceg}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}BA`B@l}{}{}}{{{d{{Lj{ceg}}}}{ADj{cg}}}{{Lj{ceg}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}BA`B@l}{}{}}{{{d{{B@`{ceg}}}}{ANl{cg}}}{{B@`{ceg}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}BA`B@l}{}{}}{{{AO`{ce}}}{{Nn{ce}}}AFl{}}{{{ANl{ce}}}{{ADj{ce}}}AFl{}}{{{d{{B@`{ceg}}}}}{{Lj{ceg}}}AFl{}{}}{{{Nn{ce}}}{{AO`{ce}}}{BA`AFl}{}}{{{d{{AOn{ceg}}}}}{{B@b{ceg}}}AK`{}{}}{{{ADj{ce}}}{{ANl{ce}}}{BA`AFl}{}}{{{d{{Lj{ceg}}}}}{{B@`{ceg}}}{BA`B@lAFl}{}{}}{{{Nn{ce}}}{{Mj{c}}}AFl{}}{{{AO`{ce}}}{{Mj{c}}}AFl{}}{{{AKb{ce}}}{{Mj{c}}}AFl{}}{{{ANj{ce}}}{{Mj{c}}}AFl{}}{{{d{{AOf{ceg}}}}}{{Mj{c}}}AFl{}{}}{{{d{{AOh{ceg}}}}}{{Mj{c}}}AFl{}{}}{{{ADj{ce}}}{{Mj{c}}}AFl{}}{{{ANl{ce}}}{{Mj{c}}}AFl{}}{{{d{{Lj{ceg}}}}}{{Mj{c}}}AFl{}{}}{{{d{{B@`{ceg}}}}}{{Mj{c}}}AFl{}{}}{{{AO`{ce}}}{{Mj{c}}}{B@lAFl}{}}{{{ANl{ce}}}{{Mj{c}}}{BA`AFl}{}}32{{{d{{Lj{ceg}}}}}{{Mj{{Mj{c}}}}}AFl{}{}}{{{d{{B@`{ceg}}}}}{{Mj{{Mj{c}}}}}AFl{}{}}0{{{d{{B@d{ce}}}}}{{AEb{ce}}}{AFl{AFn{}{{Ln{}}}}}{}}{{{d{{AEb{ce}}}}}{{AEb{Gfe}}}{AHjAFl}{}}{{{d{{B@f{ce}}}}}{{B@f{Gfe}}}{AHjAFl}{}}{{{Nn{ce}}}{{Nn{Gfe}}}{AHjAFl}{}}{{{AO`{ce}}}{{AO`{Gfe}}}{AHjAFl}{}}{{{d{{B@d{ce}}}}}{{B@d{Gfe}}}{AHjAFl}{}}{{{AKb{ce}}}{{AKb{Gfe}}}{AHjAFl}{}}{{{ANj{ce}}}{{ANj{Gfe}}}{AHjAFl}{}}{{{AOf{ceg}}}{{AOf{Gfeg}}}{AHjAFl}{}{}}{{{AOh{ceg}}}{{AOh{Gfeg}}}{AHjAFl}{}{}}{{{ADj{ce}}}{{ADj{Gfe}}}{AHjAFl}{}}{{{ANl{ce}}}{{ANl{Gfe}}}{AHjAFl}{}}{{{d{{AEb{ce}}}}}{{AEb{AKhe}}}{AHjAFl}{}}{{{d{{B@f{ce}}}}}{{B@f{AKhe}}}{AHjAFl}{}}{{{Nn{ce}}}{{Nn{AKhe}}}{AHjAFl}{}}{{{AO`{ce}}}{{AO`{AKhe}}}{AHjAFl}{}}{{{d{{B@d{ce}}}}}{{B@d{AKhe}}}{AHjAFl}{}}{{{AKb{ce}}}{{AKb{AKhe}}}{AHjAFl}{}}{{{ANj{ce}}}{{ANj{AKhe}}}{AHjAFl}{}}{{{AOf{ceg}}}{{AOf{AKheg}}}{AHjAFl}{}{}}{{{AOh{ceg}}}{{AOh{AKheg}}}{AHjAFl}{}{}}{{{ADj{ce}}}{{ADj{AKhe}}}{AHjAFl}{}}{{{ANl{ce}}}{{ANl{AKhe}}}{AHjAFl}{}}{{{d{{AEb{ce}}}}}{{AEb{ANde}}}{AHjAFl}{}}{{{d{{B@f{ce}}}}}{{B@f{ANde}}}{AHjAFl}{}}{{{Nn{ce}}}{{Nn{ANde}}}{AHjAFl}{}}{{{AO`{ce}}}{{AO`{ANde}}}{AHjAFl}{}}{{{d{{B@d{ce}}}}}{{B@d{ANde}}}{AHjAFl}{}}{{{AKb{ce}}}{{AKb{ANde}}}{AHjAFl}{}}{{{ANj{ce}}}{{ANj{ANde}}}{AHjAFl}{}}{{{AOf{ceg}}}{{AOf{ANdeg}}}{AHjAFl}{}{}}{{{AOh{ceg}}}{{AOh{ANdeg}}}{AHjAFl}{}{}}{{{ADj{ce}}}{{ADj{ANde}}}{AHjAFl}{}}{{{ANl{ce}}}{{ANl{ANde}}}{AHjAFl}{}}{{{d{{AEb{ce}}}}}{{AEb{AMje}}}{AHjAFl}{}}{{{d{{B@f{ce}}}}}{{B@f{AMje}}}{AHjAFl}{}}{{{Nn{ce}}}{{Nn{AMje}}}{AHjAFl}{}}{{{AO`{ce}}}{{AO`{AMje}}}{AHjAFl}{}}{{{d{{B@d{ce}}}}}{{B@d{AMje}}}{AHjAFl}{}}{{{AKb{ce}}}{{AKb{AMje}}}{AHjAFl}{}}{{{ANj{ce}}}{{ANj{AMje}}}{AHjAFl}{}}{{{AOf{ceg}}}{{AOf{AMjeg}}}{AHjAFl}{}{}}{{{AOh{ceg}}}{{AOh{AMjeg}}}{AHjAFl}{}{}}{{{ADj{ce}}}{{ADj{AMje}}}{AHjAFl}{}}{{{ANl{ce}}}{{ANl{AMje}}}{AHjAFl}{}}{{{d{{AEb{ce}}}}}{{H`{{AEb{ce}}}}}{AFlAJl}{}}{{{d{{B@f{ce}}}}}{{H`{{B@f{ce}}}}}{AFlAJl}{}}{{{d{{B@d{ce}}}}}{{H`{{B@d{ce}}}}}{AFlBA`AJl}{}}{dc{}}0000000000000000000000{{{ADj{ce}}}{{Nn{ce}}}AFl{}}{{{ANl{ce}}}{{AO`{ce}}}AFl{}}{{{B@n{ce}}}{{H`{{Nn{ce}}}}}{AFl{AId{}{{Ln{}}}}BA`AJl}{}}{{{B@n{ce}}}{{H`{{AO`{ce}}}}}{AFl{AId{}{{Ln{}}}}BA`AJl}{}}{{{d{{AEb{ce}}}}}{{B@d{ce}}}{AFl{AH`{}{{Ln{}}}}}{}}{{{ADj{ce}}}{{AKb{ce}}}AFl{}}{{{d{{B@h{ceg}}}}}{{B@`{ceg}}}{AIbAK`AHh}{}{}}{{{d{{AOn{ceg}}}}}{{Lj{ceg}}}{AFl{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}AJnAIb}{}{}}{{{d{{B@b{ceg}}}}}{{B@`{ceg}}}{AHhAK`}{}{}}{{{d{{AOf{ceg}}}}}{{Lj{ceg}}}{BA`B@lAFl}{}{}}{{{d{{AOh{ceg}}}}}{{B@`{ceg}}}{BA`B@lAFl}{}{}}{{{ADj{ce}}}{{Lj{cee}}}{BA`B@lAFl}{}}{{{ANl{ce}}}{{B@`{cee}}}{BA`B@lAFl}{}}{{{Nn{ce}}}{{AAf{cc}}}AFl{}}{{{AO`{ce}}}{{AAf{ccc}}}AFl{}}{{{AKb{ce}}}{{AAf{cc}}}AFl{}}{{{ANj{ce}}}{{AAf{ccc}}}AFl{}}{{{d{{AOf{ceg}}}}}{{AAf{cc}}}AFl{}{}}{{{d{{AOh{ceg}}}}}{{AAf{ccc}}}AFl{}{}}{{{ADj{ce}}}{{AAf{cc}}}AFl{}}{{{ANl{ce}}}{{AAf{ccc}}}AFl{}}{{{AO`{ce}}}{{AAf{cccc}}}{B@lAFl}{}}{{{ANl{ce}}}{{AAf{cccc}}}{BA`AFl}{}}{{{d{{AEb{ce}}}}}{{AEb{Ade}}}{AHjAFl}{}}{{{d{{B@f{ce}}}}}{{B@f{Ade}}}{AHjAFl}{}}{{{Nn{ce}}}{{Nn{Ade}}}{AHjAFl}{}}{{{AO`{ce}}}{{AO`{Ade}}}{AHjAFl}{}}{{{d{{B@d{ce}}}}}{{B@d{Ade}}}{AHjAFl}{}}{{{AKb{ce}}}{{AKb{Ade}}}{AHjAFl}{}}{{{ANj{ce}}}{{ANj{Ade}}}{AHjAFl}{}}{{{AOf{ceg}}}{{AOf{Adeg}}}{AHjAFl}{}{}}{{{AOh{ceg}}}{{AOh{Adeg}}}{AHjAFl}{}{}}{{{ADj{ce}}}{{ADj{Ade}}}{AHjAFl}{}}{{{ANl{ce}}}{{ANl{Ade}}}{AHjAFl}{}}{{{d{{B@d{ce}}}}}{{B@d{AN`e}}}{AHjAFl}{}}{{{AKb{ce}}}{{AKb{AN`e}}}{AHjAFl}{}}{{{d{{AEb{ce}}}}}{{AEb{cLh}}}AFl{}}{{{d{{B@f{ce}}}}}{{B@f{cLh}}}AFl{}}{{{Nn{ce}}}{{Nn{cLh}}}AFl{}}{{{AO`{ce}}}{{AO`{cLh}}}AFl{}}{{{d{{B@d{ce}}}}}{{B@d{cLh}}}AFl{}}{{{d{{B@h{ceg}}}}}{{B@h{cLhLh}}}{AK`AHh}{}{}}{{{d{{AOn{ceg}}}}}{{AOn{cLhLh}}}AFl{}{}}{{{d{{B@b{ceg}}}}}{{B@b{cLhLh}}}AFl{}{}}{{{AKb{ce}}}{{AKb{cLh}}}AFl{}}{{{ANj{ce}}}{{ANj{cLh}}}AFl{}}{{{d{{AOf{ceg}}}}}{{AOf{cLhLh}}}AFl{}{}}{{{d{{AOh{ceg}}}}}{{AOh{cLhLh}}}AFl{}{}}{{{ADj{ce}}}{{ADj{cLh}}}AFl{}}{{{ANl{ce}}}{{ANl{cLh}}}AFl{}}{{{d{{Lj{ceg}}}}}{{Lj{cLhLh}}}AFl{}{}}{{{d{{B@`{ceg}}}}}{{B@`{cLhLh}}}AFl{}{}}{{{d{{AEb{ce}}}}}{{AEb{Bfe}}}{AHjAFl}{}}{{{d{{B@f{ce}}}}}{{B@f{Bfe}}}{AHjAFl}{}}{{{Nn{ce}}}{{Nn{Bfe}}}{AHjAFl}{}}{{{AO`{ce}}}{{AO`{Bfe}}}{AHjAFl}{}}{{{d{{B@d{ce}}}}}{{B@d{Bfe}}}{AHjAFl}{}}{{{AKb{ce}}}{{AKb{Bfe}}}{AHjAFl}{}}{{{ANj{ce}}}{{ANj{Bfe}}}{AHjAFl}{}}{{{AOf{ceg}}}{{AOf{Bfeg}}}{AHjAFl}{}{}}{{{AOh{ceg}}}{{AOh{Bfeg}}}{AHjAFl}{}{}}{{{ADj{ce}}}{{ADj{Bfe}}}{AHjAFl}{}}{{{ANl{ce}}}{{ANl{Bfe}}}{AHjAFl}{}}{{{Nn{ce}}}{{ADj{ce}}}AFl{}}{{{AO`{ce}}}{{ANl{ce}}}AFl{}}{{{AKb{ce}}}{{ADj{ce}}}AFl{}}{{{ANj{ce}}}{{ANl{ce}}}AFl{}}{{{d{{AOf{ceg}}}}}{{ADj{ce}}}AFl{}{}}{{{d{{AOh{ceg}}}}}{{ANl{ce}}}AFl{}{}}{AOd}{{{d{{AOf{ceg}}}}{d{{AEb{ce}}}}}{{AEb{g}}}{AFnAFl}{}{}}{{{AOb{ceg}}{d{{AEb{ce}}}}}{{AEb{g}}}{AFlAHb}{}{}}{{{d{{AOh{ceg}}}}{d{{AEb{ce}}}}}{{AEb{g}}}{AFnAFl}{}{}}{{{AOb{ceg}}{d{{B@f{ce}}}}}{{B@f{g}}}{AFlAHb}{}{}}{{{d{{AOh{ceg}}}}{d{{B@f{ce}}}}}{{B@f{g}}}{AFnAFl}{}{}}{{{d{{AOn{ceg}}}}{Nn{ce}}}{{Nn{cg}}}AK`{}{}}{{{d{{AOn{cLhLh}}}}{Nn{cLh}}}{{Nn{cLh}}}AFh}{{{AOb{ceg}}{Nn{ce}}}{{Nn{g}}}{AFlAHb}{}{}}{{{d{{AOb{cLhLh}}}}{Nn{cLh}}}{{Nn{cLh}}}AFh}{{{d{{AOf{ceg}}}}{Nn{ce}}}{{Nn{g}}}{AFnAFl}{}{}}{{{d{{AOf{cLhLh}}}}{Nn{cLh}}}{{Nn{cLh}}}AFh}{{{d{{Lj{cLhLh}}}}{Nn{cLh}}}{{Nn{cLh}}}AFh}{{{d{{Lj{ceg}}}}{Nn{ce}}}{{Nn{cg}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}}{{{d{{B@b{ceg}}}}{Nn{ce}}}{{Nn{cg}}}{AHhAK`}{}{}}{{{d{{AOh{ceg}}}}{d{{Nn{ce}}}}}{{Nn{g}}}{AFnAFl}{}{}}{{{d{{B@`{ceg}}}}{Nn{ce}}}{{H`{{Nn{cg}}}}}{{AId{}{{Ln{}}}}BA`AJlAFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}}{{{d{{B@`{ceg}}}}{Nn{ce}}}{{B@n{cg}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}}{{{d{{B@b{ceg}}}}{AO`{ce}}}{{AO`{cg}}}{AHhAK`}{}{}}{{{AOb{ceg}}{AO`{ce}}}{{AO`{g}}}{AFlAHb}{}{}}{{{d{{AOh{ceg}}}}{d{{AO`{ce}}}}}{{AO`{g}}}{AFnAFl}{}{}}{{{d{{B@`{ceg}}}}{AO`{ce}}}{{H`{{AO`{cg}}}}}{{AId{}{{Ln{}}}}BA`AJlAFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}}{{{d{{B@`{ceg}}}}{AO`{ce}}}{{B@n{cg}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}}{{{AOb{ceg}}{d{{B@d{ce}}}}}{{B@d{g}}}{AFlAHb}{}{}}{{{d{{AOf{ceg}}}}{d{{B@d{ce}}}}}{{B@d{g}}}{{AFn{}{{Ln{}}}}AFl}{}{}}{{{d{{AOh{ceg}}}}{d{{B@d{ce}}}}}{{B@d{cg}}}{{AFn{}{{Ln{}}}}AFl}{}{}}{{{AOb{ceg}}{AKb{ce}}}{{AKb{g}}}{AFlAHb}{}{}}{{{d{{AOf{ceg}}}}{AKb{ce}}}{{AKb{cg}}}{}{}{}}{{{AOh{ceg}}{AKb{ce}}}{{AKb{cg}}}{}{}{}}{{{d{{AOn{cLhLh}}}}{ADj{cLh}}}{{ADj{cLh}}}AFh}{{{d{{AOn{ceg}}}}{ADj{ce}}}{{ADj{cg}}}AK`{}{}}{{{AOb{ceg}}{ADj{ce}}}{{ADj{g}}}{AFlAHb}{}{}}{{{d{{AOb{cLhLh}}}}{ADj{cLh}}}{{ADj{cLh}}}AFh}{{{d{{AOf{cLhLh}}}}{ADj{cLh}}}{{ADj{cLh}}}AFh}{{{d{{Lj{cLhLh}}}}{ADj{cLh}}}{{ADj{cLh}}}AFh}{{{d{{Lj{ceg}}}}{ADj{ce}}}{{ADj{cg}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}}{{{d{{B@b{ceg}}}}{ADj{ce}}}{{ADj{cg}}}{AHhAK`}{}{}}{{{d{{B@`{ceg}}}}{ADj{ce}}}{{ADj{cg}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}}{{{d{{B@b{ceg}}}}{ANl{ce}}}{{ANl{cg}}}{AHhAK`}{}{}}{{{d{{B@`{ceg}}}}{ANl{ce}}}{{ANl{cg}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}}{{{d{{AEb{ce}}}}{ADj{ce}}}{{AEb{ce}}}{AFl{AFn{}{{Ln{}}}}}{}}{{{d{{B@f{ce}}}}{ANl{ce}}}{{B@f{ce}}}{AFl{AFn{}{{Ln{}}}}}{}}{{{d{{B@d{ce}}}}{ADj{ce}}}{{B@d{ce}}}{AFl{AFn{}{{Ln{}}}}}{}}{{cc}{{Lj{ceg}}}{BA`B@l}{}{}}{{ccc}{{B@`{ceg}}}{BA`B@l}{}{}}{B@hANl}{{{d{{AEb{ce}}}}}{{H`{{AEb{ge}}}}}{AHjAFl}{}AHj}{{{d{{B@f{ce}}}}}{{H`{{B@f{ge}}}}}{AHjAFl}{}AHj}{{{ANn{ce}}}{{H`{{ANn{ge}}}}}{AHjAj}{}AHj}{{{Nn{ce}}}{{H`{{Nn{ge}}}}}{AHjAFl}{}AHj}{{{AO`{ce}}}{{H`{{AO`{ge}}}}}{AHjAFl}{}AHj}{{{d{{B@d{ce}}}}}{{H`{{B@d{ge}}}}}{AHjAFl}{}AHj}{{{AOb{ceg}}}{{H`{{AOb{ieg}}}}}AHj{}{}AHj}{{{AKb{ce}}}{{H`{{AKb{ge}}}}}{AHjAFl}{}AHj}{{{ANj{ce}}}{{H`{{ANj{ge}}}}}{AHjAFl}{}AHj}{{{AOf{ceg}}}{{H`{{AOf{ieg}}}}}{AHjAFl}{}{}AHj}{{{AOh{ceg}}}{{H`{{AOh{ieg}}}}}{AHjAFl}{}{}AHj}{{{ADj{ce}}}{{H`{{ADj{ge}}}}}{AHjAFl}{}AHj}{{{ANl{ce}}}{{H`{{ANl{ge}}}}}{AHjAFl}{}AHj}{{{d{{Lj{ceg}}}}}{{H`{{Lj{ieg}}}}}{AHjAFl}{}{}AHj}{{{d{{B@`{ceg}}}}}{{H`{{B@`{ieg}}}}}{AHjAFl}{}{}AHj}{{}{{G`{c}}}{}}0000000000000000000000{c{{G`{e}}}{}{}}0000000000000000000000{{}{{G`{c}}}{}}0000000000000000000000{{}{{G`{c{Gl{c}}}}}{}}0000000000000000000000{{{ADj{ce}}}{{H`{{ADj{ce}}}}}AK`{}}{{{ANl{ce}}}{{H`{{ANl{ce}}}}}AK`{}}{dGn}0000000000000000000000{ce{}{}}0000000000000000000000{{}c{}}0000000000000000000000{{{d{{AEb{ce}}}}{d{{AEb{ce}}}}}{{AEb{ce}}}{AFlAJl}{}}{{{d{{B@f{ce}}}}{d{{B@f{ce}}}}}{{B@f{ce}}}{AFlAJl}{}}{{{d{{B@d{ce}}}}{d{{B@d{ce}}}}}{{B@d{ce}}}{AFlAJl{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}BA`}{}}{{cccc}{{B@b{ceg}}}AK`{}{}}{d{{H`{{d{c}}}}}{}}0000000000000000000000{{cc}{{ADj{ce}}}{}{}}{{ccc}{{ANl{ce}}}{}{}}{{{d{{B@b{ceg}}}}}{{ANl{cLh}}}AFl{}{}}{{{d{{AOd{ce}}}}}c{AFl{AFn{}{{Ln{}}}}}{}}{{{d{{B@f{ce}}}}}c{AFl{AHb{}{{Ln{}}}}{AH`{}{{Ln{}}}}}{}}{{{ANj{ce}}}c{{AHb{}{{Ln{}}}}AFl}{}}{{}c{}}0000000000000000000000{B@n}{{{d{{AEb{ce}}}}}c{AFl{AH`{}{{Ln{}}}}}{}}{{{d{{B@f{ce}}}}}c{AFl{AH`{}{{Ln{}}}}}{}}{{{d{{B@d{ce}}}}}c{AFl{AFn{}{{Ln{}}}}}{}}{AKb}{ANj}{{{d{{Lj{ceg}}}}}{{Lj{cei}}}AFl{}{}{}}{{{d{{B@`{ceg}}}}}{{B@`{cei}}}AFl{}{}{}}{{{ADj{ce}}c}{{ADj{ce}}}AK`{}}0{{{ANl{ce}}c}{{ANl{ce}}}AK`{}}10{{{d{{Lj{ceg}}}}}{{Lj{cig}}}AFl{}{}{}}{{{d{{B@`{ceg}}}}}{{B@`{cig}}}AFl{}{}{}};{Nn}{AO`}{AOf}{AOh}{ADj}{ANl}{AOjJh}{AOlJh}{{{d{{AEb{ce}}}}}{{ABf{c}}}AFl{}}{{{d{{B@f{ce}}}}}{{ABf{c}}}AFl{}}{{{d{{B@d{ce}}}}}{{ABf{c}}}{AFl{AFn{}{{Ln{}}}}}{}}{{{AO`{ce}}}{{Nn{ce}}}AFl{}}{{{ANl{ce}}}{{ADj{ce}}}AFl{}}{AOlAOj}{{{d{{B@f{ce}}}}}c{AFl{AHb{}{{Ln{}}}}{AH`{}{{Ln{}}}}}{}}3210{B@n}?>=<;:98765{{{Nn{ce}}}{{Nn{ce}}}AFl{}}{{{ADj{ce}}}{{ADj{ce}}}AFl{}}65432{AO`}?=;9{{}{{AEb{ce}}}BA`{}}{{}{{B@f{ce}}}BA`{}}{{}{{ANn{ce}}}BA`{}}{{}{{Nn{ce}}}BA`{}}0{{}{{AO`{ce}}}BA`{}}0{{}{{B@d{ce}}}BA`{}}{{}{{AOd{ce}}}BA`{}}{{}{{AKb{ce}}}BA`{}}0{{}{{ANj{ce}}}BA`{}}0{{}{{ADj{ce}}}BA`{}}0{{}{{ANl{ce}}}BA`{}}0{{{Nn{ce}}{Nn{ce}}i}{{ADj{ge}}}{}{}{}{{Jf{cc}{{Ln{g}}}}}}{{{AO`{ce}}{AO`{ce}}i}{{ANl{ge}}}{}{}{}{{Jf{cc}{{Ln{g}}}}}}{{{ADj{ce}}{ADj{ce}}i}{{ADj{ge}}}{}{}{}{{Jf{cc}{{Ln{g}}}}}}{{{ANl{ce}}{ANl{ce}}i}{{ANl{ge}}}{}{}{}{{Jf{cc}{{Ln{g}}}}}}`{{}c{}}{{{d{AHh}}{d{AHh}}}Jh}{{{d{AHh}}{d{AHh}}{d{c}}}Jh{}}{{cc}cAJl}0````````````````````{BAj}{BAl}{BAn}{AJ`}1{BB`}003{BBb}{BBd}10001010001010000000{AJfNn}{BBfAO`}10{BBhNn}58{BBjB@b}{BBhAKb}:{BBjANl}{BBl}:;{AKl}{BBn}{AKn}{BC`}4{BCb}{BCd}54326104260`````{B@jB@j}{BAdBAd}{{}B@l}{BAfBAf}{{}BA`}````{eg{}{{b{c}}}{}}00{ce{}{}}00{{}c{}}00{d{{d{f}}}}00{{{d{h}}}{{d{hf}}}}00{d{{d{c}}}{}}00{{{d{h}}}{{d{hc}}}{}}00{{{j{c}}}e{}{}}00666{AGjNn}{Bf{{d{c}}}{}}00{Bf{{d{hc}}}{}}00555{Bfn}00{cc{}}004000{ce{}{}}00{{}Bf}00{{}c{}}00000{{{Ef{c}}}{{Ef{f}}}{}}00{{{Eh{c}}}{{Eh{f}}}{}}00{{{Ej{c}}}{{Ej{f}}}{}}00;;;333333{{}c{}}0{{}c{}}00{{{d{{AGj{c}}}}c}{{BCf{c}}}AFh}{{{d{h{AIl{c}}}}}{{H`{{Nn{cLh}}}}}AFh}{{{d{h{AIn{c}}}}}{{H`{c}}}AFh}{{{d{{AIl{c}}}}}{{AAf{Bf{H`{Bf}}}}}AFh}{{{d{{AIn{c}}}}}{{AAf{Bf{H`{Bf}}}}}AFh}{AGjNn}{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{Gl{c}}}}}{}}00{dGn}00{ce{}{}}00{{}c{}}00{d{{H`{{d{c}}}}}{}}00{{}c{}}00```{{{d{{AGd{}{{AGb{c}}}}}}c}{{AGd{}{{AGb{c}}}}}AFh}{{{d{{AGd{}{{AGb{c}}}}}}c}cAFh}1{{{d{{AGd{}{{AGb{c}}}}}}c}{{ADj{cLh}}}AFh}11{{{d{{AGd{}{{AGb{c}}}}}}}{{AGd{}{{AGb{c}}}}}AFh}{{{d{{AGd{}{{AGb{c}}}}}}c{d{hJf}}}nAFh}{{{d{{AGd{}{{AGb{c}}}}}}}{{Nn{cLh}}}AFh}{{{d{{AGd{}{{AGb{c}}}}}}c}{{Nn{cLh}}}AFh}{{{d{{AGd{}{{AGb{c}}}}}}c}{{AAf{{AGd{}{{AGb{c}}}}{AGd{}{{AGb{c}}}}}}}AFh}{{{d{{AGd{}{{AGb{c}}}}}}{ABf{c}}}{{AGd{}{{AGb{c}}}}}AFh}3{{{d{ACl}}{Nn{cLh}}}{{Nn{cLh}}}{}}{{{d{ACl}}{ADj{cLh}}}{{ADj{cLh}}}{}}99{{cccc}{{AI`{c}}}AFh}{{{ADj{cLh}}{ADj{cLh}}}cAFh}{{{Nn{cLh}}{Nn{cLh}}{Nn{cLh}}}cAFh}{{cc}{{AAf{cc}}}AJb}{{{ADj{cLh}}}{{ADj{cLh}}}AFh}{{{ADj{cLh}}}{{ADj{cLh}}}AJb}`````{eg{}{{b{c}}}{}}000{ce{}{}}000{{}c{}}000{d{{d{f}}}}000{{{d{h}}}{{d{hf}}}}000{d{{d{c}}}{}}000{{{d{h}}}{{d{hc}}}{}}000{{{j{c}}}e{}{}}000{c{{BCh{c}}}{{AKf{}{{Mb{{Nn{GfLh}}}}}}}}7777{Bf{{d{c}}}{}}000{Bf{{d{hc}}}{}}0005555{Bfn}000{{BCjGf}{{BCl{BCj}}}}0{cc{}}0000000{ce{}{}}000{{}Bf}000{{}c{}}0000000{{{Ef{c}}}{{Ef{f}}}{}}000{{{Eh{c}}}{{Eh{f}}}{}}000{{{Ej{c}}}{{Ej{f}}}{}}000<<<<33333333{{}c{}}000{{}c{}}000{{Gfc}{{BCl{c}}}{{AKf{}{{Mb{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}}}}}}{{{d{c}}e}{{BCn{ec}}}{{ACl{Gf}}}{{AKf{}{{Mb{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}}}}}}{{Jhc}{{BCh{c}}}{{AKf{}{{Mb{{Nn{GfLh}}}}}}}}{{{d{h{ACh{c}}}}}{{H`{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}}}{{AKf{}{{Mb{{Oj{{AAf{{Nn{GfLh}}{d{{En{Gf}}}}}}{Nn{GfLh}}}}}}}}}}{{{d{h{BCl{c}}}}}{{H`{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}}}{{AKf{}{{Mb{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}}}}}}{{{d{h{BCn{ce}}}}}{{H`{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}}}{{AKf{}{{Mb{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}}}}}{{ACl{Gf}}}}{{{d{h{BCh{c}}}}}{{H`{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}}}{{AKf{}{{Mb{{Nn{GfLh}}}}}}}}{c{{BCh{c}}}{{AKf{}{{Mb{{Nn{GfLh}}}}}}}}{{{d{{BCl{c}}}}}{{AAf{Bf{H`{Bf}}}}}{{AKf{}{{Mb{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}}}}}}{{BCj{d{c}}}{{BCn{BCjc}}}{{ACl{Gf}}}}0{{}{{G`{c}}}{}}000{c{{G`{e}}}{}{}}000{{}{{G`{c}}}{}}000{{}{{G`{c{Gl{c}}}}}{}}000{dGn}000{ce{}{}}000{{}c{}}000{d{{H`{{d{c}}}}}{}}000{{}c{}}000{{{ACh{c}}}c{{AKf{}{{Mb{{Oj{{AAf{{Nn{GfLh}}{d{{En{Gf}}}}}}{Nn{GfLh}}}}}}}}}}`````````{BD`Gf}{BDbGf}{BDdGf}00000{BDfNn}0{{GfGf}{{Nn{GfLh}}}}{BDhGf}{{GfGf}{{AKb{GfLh}}}}{{GfGf}{{ADj{GfLh}}}}6{BDjGf}{BDlGf}{BDnGf}210``````````````{eg{}{{b{c}}}{}}00{ce{}{}}00{{}c{}}00{d{{d{f}}}}00{{{d{h}}}{{d{hf}}}}00{{{d{hOf}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}{{{d{hOf}}{Nn{GfLh}}}Nj}{{{d{hBE`}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}0{d{{d{c}}}{}}00{{{d{h}}}{{d{hc}}}{}}00{OfBf}0{BE`Bf}0{{{j{c}}}e{}{}}00{{{d{ABn}}}ABn}{{d{d{hc}}}n{}}{{dEl}n}>>>{{{d{hOf}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}{{{d{hOf}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}}Nj}{{{d{hBE`}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}0{Bf{{d{c}}}{}}00{Bf{{d{hc}}}{}}00<<<{Bfn}00{{{d{hOf}}Jh}n}0{{{d{hBE`}}Jh}n}0{cc{}}00000{ce{}{}}00{{}Bf}00{{}c{}}00000{{{Ef{c}}}{{Ef{f}}}{}}00{{{Eh{c}}}{{Eh{f}}}{}}00{{{Ej{c}}}{{Ej{f}}}{}}00{{{j{c}}}e{}{}}00444444{{}c{}}{{}c{}}00{{{d{hOf}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}{{{d{hOf}}{Nn{GfLh}}}Nj}{{{d{hBE`}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}0{{{d{hNf}}Bf}BE`}{{{d{hABn}}}{{H`{Nd}}}}0{{{d{Of}}}Bf}{{{d{BE`}}}Bf}{{{d{hOf}}{Nn{GfLh}}{Nn{GfLh}}}Nj}{{{d{hOf}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}{{{d{hBE`}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}0{{{d{hOf}}BfBf}n}0{{{d{hBE`}}BfBf}n}0{{{d{ABn}}}{{AAf{Bf{H`{Bf}}}}}}{dc{}}{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{Gl{c}}}}}{}}00{dGn}00{ce{}{}}00{{}c{}}00{d{{H`{{d{c}}}}}{}}00{{}c{}}00{{OfBf}BE`}``````{eg{}{{b{c}}}{}}000{ce{}{}}0005555{d{{d{f}}}}000{{{d{h}}}{{d{hf}}}}000{d{{d{c}}}{}}000{{{d{h}}}{{d{hc}}}{}}000{{{j{c}}}e{}{}}000{{{d{ACb}}}ACb}{{{d{{AC`{c}}}}}{{AC`{c}}}Aj}{{{d{{ACd{c}}}}}{{ACd{c}}}Aj}{{{d{ABd}}}ABd}{{d{d{hc}}}n{}}000{{dEl}n}000{A@bJh}{A@dJh}===={Bf{{d{c}}}{}}000{Bf{{d{hc}}}{}}000<<<<{Bfn}000{cc{}}0000000{ce{}{}}000{{}Bf}000{{}c{}}0000000{{{Ef{c}}}{{Ef{f}}}{}}000{{{Eh{c}}}{{Eh{f}}}{}}000{{{Ej{c}}}{{Ej{f}}}{}}000{{{j{c}}}e{}{}}00044444444{{}c{}}000{{}c{}}000{{{ABf{Ad}}Jh}ABd}{{{d{hACb}}}{{H`{{Oj{NjAA`}}}}}}{{{d{h{AC`{c}}}}}{{H`{{Oj{{d{c}}n}}}}}{}}{{{d{h{ACd{c}}}}}{{H`{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}}}AAn}{{{d{hABd}}}{{H`{{Oj{NjAA`}}}}}}{{}{{BEb{c}}}{}}{A@bd}{A@dd}{dc{}}000{{}{{G`{c}}}{}}000{c{{G`{e}}}{}{}}000{{}{{G`{c}}}{}}000{{}{{G`{c{Gl{c}}}}}{}}000{dGn}000{ce{}{}}000{{}c{}}000{d{{H`{{d{c}}}}}{}}000{{}c{}}000`````{{{d{hAE`}}{ADj{GfLh}}{ADl{Gf}}Oh{Nn{GfLh}}}n}{{{d{hADh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}{{{AEl{}{{AEj{c}}}}}c{}}{{{d{hAE`}}}n}{{{d{hADh}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}{{{d{hAE`}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}}n}{{{d{hADh}}Jh}n}{{{d{hAE`}}Gf}n}6{{{d{hAE`}}{Nn{GfLh}}}n}0{{{d{ADh}}}Bf}{{{d{hADh}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}{{{d{hAE`}}{Nn{GfLh}}{Nn{GfLh}}}n}{{{d{hAE`}}{ADj{GfLh}}{ADl{Gf}}Oh{ADj{GfLh}}}n}{{{d{hAE`}}{ADj{GfLh}}{ADj{GfLh}}{ADj{GfLh}}}n}6{{{d{hAE`}}{ADj{GfLh}}}n}0{{{d{hAE`}}{ADj{GfLh}}{ADj{GfLh}}}n}847018`````````````{I`Ib}{I`If}{I`Id}{IfBf}{Ifd}{I`Ih}{I`Gf}","D":"LNf","p":[[10,"TransformMatrix",7235],[1,"reference",null,null,1],[10,"Any",7236],[0,"mut"],[5,"BakedParameters",7237],[6,"Renderer",11],[1,"unit"],[10,"Renderer",7238],[6,"Compositor",11],[1,"u32"],[10,"Compositor",7239],[10,"Window",7239],[10,"Clone",7240],[10,"Renderer",7241],[17,"Font"],[17,"Paragraph"],[17,"Editor"],[5,"Pixels",7242],[1,"usize"],[10,"Renderer",7228,7243],[5,"Image",7228,7244],[5,"Rectangle",7245],[10,"Renderer",7244],[17,"Handle"],[6,"Mesh",7246],[10,"Renderer",7246],[10,"Renderer",7247],[10,"Primitive",7247],[5,"Svg",7228,7248],[10,"Renderer",7248],[5,"Information",7239],[5,"Point",7249],[5,"Color",7250],[5,"Quad",7238],[6,"Background",7251],[10,"Into",7252,null,1],[5,"String",7253],[5,"Text",7241],[5,"Formatter",7254],[8,"Result",7254],[10,"Debug",7254],[6,"Surface",11],[5,"Box",7255,null,1],[5,"Arc",7256,null,1],[5,"Rc",7257,null,1],[1,"u8"],[1,"slice"],[6,"Cow",7258],[5,"Size",7259],[5,"Handle",7248],[5,"Font",7260],[5,"Renderer",7261],[5,"Renderer",7262],[5,"Viewport",7263],[6,"SurfaceError",7239],[6,"Result",7264,null,1],[1,"str"],[10,"AsRef",7252],[1,"f32"],[5,"Vec",7265],[5,"Transformation",7266],[5,"OutOfBounds",7267],[5,"TypeId",7236],[6,"Option",7268,null,1],[5,"Settings",7269],[6,"Error",7270],[5,"Frame",7228,7271],[5,"Path",7228,7272],[5,"Cache",7228,7273],[6,"Gradient",7228,7274],[5,"Fill",7228,7275],[5,"Stroke",7228,7276],[6,"LineCap",7228,7276],[6,"LineJoin",7228,7276],[5,"LineDash",7228,7276],[6,"Style",7228,7277],[5,"Text",7228,7278],[10,"FnOnce",7279],[17,"Geometry"],[17,"Frame"],[10,"Cached",7280],[10,"Backend",854,7271],[10,"FnMut",7279],[1,"bool"],[10,"PartialEq",7281],[6,"FilterMethod",7244],[5,"Error",7254],[5,"Linear",880,7274],[6,"Handle",7244],[6,"Horizontal",7282],[6,"LineHeight",7241],[5,"Builder",1110,7283],[5,"Packed",880,7274],[5,"Path",7142,7284],[5,"Radians",7285],[5,"Radius",7286],[6,"Rule",844,7275],[5,"Vector",7287],[6,"Shaping",7241],[5,"UnknownUnit",5772,7288],[5,"Transform2D",5772,7289],[6,"Vertical",7282],[17,"Output"],[5,"Group",7280],[17,"Item"],[5,"ColorStop",7290],[10,"IntoIterator",7291],[6,"Gradient",7290],[1,"array"],[5,"Arc",1110,7292],[5,"Elliptical",1111,7292],[5,"PathCommands",7142,7293],[5,"PathCommandsSlice",7142,7293],[5,"PathSlice",7142,7284],[5,"PathBuffer",7142,7294],[5,"PathBufferSlice",7142,7294],[5,"EndpointId",7142,7295],[5,"BuilderImpl",7142,7284],[5,"Point2D",5772,7296],[5,"BuilderWithAttributes",7142,7284],[5,"PathCommandsBuilder",2763,7293],[5,"NoAttributes",7189,7297],[5,"Builder",6858,7294],[5,"ArcFlags",7142,7298],[6,"Event",7142,7299],[5,"Iter",7142,7284],[5,"IterWithAttributes",7142,7284],[5,"IdIter",7142,7284],[5,"Polygon",7142,7300],[5,"IdPolygon",7142,7300],[6,"LineCap",7142,7295],[6,"LineJoin",7142,7295],[6,"Side",7142,7295],[6,"FillRule",7142,7295],[6,"Winding",7142,7295],[5,"ControlPointId",7142,7295],[5,"EventId",7142,7295],[5,"Events",2763,7293],[1,"tuple",null,null,1],[10,"AttributeStore",7142,7295],[5,"AttributeSlice",7142,7295],[10,"PositionStore",7142,7295],[10,"Position",7142,7295],[10,"Hash",7301],[10,"Hasher",7301],[5,"PolygonIdIter",7144,7300],[5,"Range",7302],[5,"Iter",2763,7293],[5,"Reversed",7142,7284],[1,"i16"],[5,"Iter",6858,7294],[5,"PolygonIter",7144,7300],[5,"IdPolygonIter",7144,7300],[5,"PathEvents",7144,7300],[5,"CommandsPathSlice",2763,7293],[5,"NoAttributes",6655,7303],[5,"WithSvg",7189,7297],[10,"Transformation",6645,7304],[15,"Begin",2367],[15,"End",2367],[15,"Quadratic",2367],[15,"Cubic",2367],[15,"Line",2367],[10,"PathBuilder",7189,7297],[5,"Vector2D",5772,7305],[5,"Angle",6647,7306],[5,"LineSegment",6647,7307],[10,"SvgPathBuilder",7189,7297],[5,"Box2D",5772,7308],[5,"BorderRadii",7189,7297],[5,"Flattened",7189,7297],[5,"Transformed",7189,7297],[17,"PathType"],[10,"Build",7189,7297],[10,"Default",7309],[6,"Ordering",7281],[5,"SmolStr",7310],[5,"PointEvents",2763,7293],[5,"LineEquation",6647,7307],[10,"Scalar",6647,7311],[5,"Triangle",6647,7312],[10,"Copy",7313],[10,"Add",7314],[10,"AddAssign",7314],[17,"Scalar"],[10,"Segment",6647,7315],[5,"Arc",6647,7298],[5,"CubicBezierSegment",6647,7316],[5,"QuadraticBezierSegment",6647,7317],[8,"Rotation",6647,7318],[10,"Rem",7314],[10,"Sub",7314],[10,"Mul",7314],[10,"One",7319],[10,"FloatConst",7320],[10,"ApproxEq",6411,7321],[10,"NumCast",7322],[5,"SvgArc",6647,7298],[5,"Line",6647,7307],[5,"ArrayVec",3860,7323],[10,"Trig",5772,7324],[10,"Div",7314],[10,"DivAssign",7314],[5,"Flattened",3849,7298],[5,"Flattened",4328,7316],[5,"Flattened",6602,7317],[5,"FlattenedT",6602,7317],[8,"Size",6647],[10,"Float",7320],[8,"Transform",6647,7318],[8,"Box2D",6647,7325],[10,"MulAssign",7314],[10,"Neg",7314],[10,"PartialOrd",7281],[10,"Zero",7319],[10,"Real",7326],[5,"Size2D",5772,7327],[10,"SubAssign",7314],[10,"Iterator",7328],[1,"f64"],[8,"Translation",6647,7318],[8,"Point",6647],[8,"Vector",6647],[5,"ArrayString",3860,7329],[5,"IntoIter",3860,7323],[5,"Path",7330],[5,"CapacityError",3860,7331],[10,"Ord",7281],[5,"Drain",3860,7323],[10,"RangeBounds",7302],[1,"char"],[10,"FromIterator",7291],[5,"Error",7332],[5,"Utf8Error",7333],[5,"Arguments",7254],[1,"i8"],[1,"i64"],[1,"u16"],[1,"i128"],[1,"u64"],[1,"u128"],[1,"i32"],[6,"Endian",7334],[10,"Signed",7335],[5,"Size3D",5772,7327],[5,"Vector3D",5772,7305],[5,"Length",5772,7336],[5,"Point3D",5772,7296],[5,"Scale",5772,7337],[5,"SideOffsets2D",5772,7338],[5,"Translation2D",5772,7339],[5,"Translation3D",5772,7339],[5,"BoolVector2D",5772,7305],[5,"BoolVector3D",5772,7305],[5,"Rotation2D",5772,7340],[5,"Transform3D",5772,7341],[5,"Rotation3D",5772,7340],[5,"Rect",5772,7342],[5,"Box3D",5772,7343],[5,"RigidTransform3D",5772,7344],[10,"Ceil",6500,7345],[10,"One",6500,7345],[5,"HomogeneousVector",5772,7346],[10,"Zero",6500,7345],[10,"Euclid",7347],[10,"Floor",6500,7345],[10,"Round",6500,7345],[10,"Saturating",7348],[8,"Rotation2D",6492,7325],[8,"SideOffsets2D",6492,7325],[8,"Size3D",6492,7325],[8,"Rotation3D",6492,7325],[8,"Transform2D",6492,7325],[8,"Transform3D",6492,7325],[8,"Box3D",6492,7325],[8,"Rect",6492,7325],[8,"RigidTransform3D",6492,7325],[8,"HomogeneousVector",6492,7325],[8,"Point3D",6492,7325],[8,"Vector3D",6492,7325],[8,"Translation2D",6492,7325],[8,"Translation3D",6492,7325],[5,"FlatteningParameters",6602,7317],[5,"FromPolyline",6655,7303],[10,"PathIterator",6655,7303],[5,"Flattened",6655,7303],[5,"Transformed",6655,7303],[8,"Rotation",6819,7349],[8,"Size",6819,7349],[8,"Transform",6819,7349],[8,"Box2D",6819,7349],[8,"Angle",6819,7349],[8,"Point",6819,7349],[8,"Vector",6819,7349],[8,"Translation",6819,7349],[5,"BuilderWithAttributes",6858,7294],[5,"IterBridge",7350],[8,"Renderer",0],[8,"Compositor",0],[8,"PathEvent",7142],[8,"IdEvent",7142]],"r":[[8,7351],[157,7276],[158,7276],[159,7273],[160,7275],[161,7271],[162,7243],[163,7243],[164,7274],[165,7277],[166,7244],[167,7276],[168,7276],[169,7276],[170,7274],[171,7276],[172,7272],[173,7243],[174,7276],[175,7276],[176,7277],[177,7276],[178,7276],[179,7277],[180,7248],[181,7278],[182,7271],[183,7273],[184,7274],[185,7275],[186,7272],[187,7276],[188,7276],[189,7276],[190,7276],[191,7277],[192,7278],[193,7244],[194,7248],[195,7271],[196,7273],[197,7274],[198,7275],[199,7272],[200,7276],[201,7276],[202,7276],[203,7276],[204,7277],[205,7278],[206,7244],[207,7248],[208,7271],[209,7273],[210,7274],[211,7275],[212,7272],[213,7276],[214,7276],[215,7276],[216,7276],[217,7277],[218,7278],[219,7244],[220,7248],[221,7271],[222,7273],[223,7274],[224,7275],[225,7272],[226,7276],[227,7276],[228,7276],[229,7276],[230,7277],[231,7278],[232,7244],[233,7248],[234,7271],[235,7273],[236,7274],[237,7275],[238,7272],[239,7276],[240,7276],[241,7276],[242,7276],[243,7277],[244,7278],[245,7244],[246,7248],[247,7271],[248,7273],[249,7274],[250,7275],[251,7272],[252,7276],[253,7276],[254,7276],[255,7276],[256,7277],[257,7278],[258,7244],[259,7248],[260,7271],[261,7273],[262,7274],[263,7275],[264,7272],[265,7276],[266,7276],[267,7276],[268,7276],[269,7277],[270,7278],[271,7244],[272,7248],[273,7271],[274,7273],[275,7274],[276,7275],[277,7272],[278,7276],[279,7276],[280,7276],[281,7276],[282,7277],[283,7278],[284,7244],[285,7248],[286,7271],[287,7272],[288,7273],[289,7274],[290,7275],[291,7272],[292,7276],[293,7276],[294,7276],[295,7276],[296,7277],[297,7278],[298,7244],[299,7248],[300,7274],[301,7275],[302,7272],[303,7276],[304,7276],[305,7276],[306,7276],[307,7277],[308,7278],[309,7244],[310,7248],[311,7274],[312,7275],[313,7272],[314,7276],[315,7276],[316,7276],[317,7276],[318,7277],[319,7278],[320,7244],[321,7248],[322,7248],[323,7278],[324,7248],[325,7271],[326,7273],[327,7274],[328,7275],[329,7272],[330,7276],[331,7276],[332,7276],[333,7276],[334,7277],[335,7278],[336,7244],[337,7248],[338,7278],[339,7273],[340,7275],[341,7276],[342,7276],[343,7276],[344,7276],[345,7278],[346,7271],[347,7273],[348,7274],[349,7275],[350,7272],[351,7276],[352,7276],[353,7276],[354,7276],[355,7277],[356,7278],[357,7244],[358,7248],[359,7271],[360,7273],[361,7274],[362,7275],[363,7272],[364,7276],[365,7276],[366,7276],[367,7276],[368,7277],[369,7278],[370,7244],[371,7248],[372,7271],[373,7273],[374,7274],[375,7275],[376,7272],[377,7276],[378,7276],[379,7276],[380,7276],[381,7277],[382,7278],[383,7244],[384,7248],[385,7273],[386,7243],[387,7271],[388,7271],[389,7278],[390,7271],[391,7273],[392,7274],[393,7275],[394,7272],[395,7276],[396,7276],[397,7276],[398,7276],[399,7277],[400,7278],[401,7244],[402,7248],[403,7274],[404,7277],[405,7244],[406,7248],[407,7243],[408,7271],[409,7271],[410,7271],[411,7244],[412,7244],[413,7273],[414,7274],[415,7275],[416,7272],[417,7276],[418,7276],[419,7276],[420,7276],[421,7277],[422,7278],[423,7244],[424,7248],[425,7278],[426,7243],[427,7271],[428,7273],[429,7274],[430,7274],[431,7275],[432,7275],[433,7275],[434,7275],[435,7272],[436,7276],[437,7276],[438,7276],[439,7276],[440,7277],[441,7277],[442,7277],[443,7278],[444,7278],[445,7278],[446,7244],[447,7244],[448,7248],[449,7248],[450,7271],[451,7273],[452,7274],[453,7275],[454,7272],[455,7276],[456,7276],[457,7276],[458,7276],[459,7277],[460,7278],[461,7244],[462,7248],[463,7271],[464,7273],[465,7274],[466,7275],[467,7272],[468,7276],[469,7276],[470,7276],[471,7276],[472,7277],[473,7278],[474,7244],[475,7248],[476,7351],[477,7244],[478,7248],[479,7271],[480,7278],[481,7271],[482,7273],[483,7274],[484,7275],[485,7272],[486,7276],[487,7276],[488,7276],[489,7276],[490,7277],[491,7278],[492,7244],[493,7248],[494,7271],[495,7273],[496,7274],[497,7275],[498,7272],[499,7276],[500,7276],[501,7276],[502,7276],[503,7277],[504,7278],[505,7244],[506,7248],[507,7271],[508,7273],[509,7274],[510,7275],[511,7272],[512,7276],[513,7276],[514,7276],[515,7276],[516,7277],[517,7278],[518,7244],[519,7248],[520,7271],[521,7273],[522,7274],[523,7275],[524,7272],[525,7276],[526,7276],[527,7276],[528,7276],[529,7277],[530,7278],[531,7244],[532,7248],[533,7271],[534,7274],[535,7275],[536,7272],[537,7276],[538,7276],[539,7276],[540,7276],[541,7277],[542,7278],[543,7244],[544,7248],[545,7271],[546,7273],[547,7274],[548,7275],[549,7272],[550,7276],[551,7276],[552,7276],[553,7276],[554,7277],[555,7278],[556,7244],[557,7248],[558,7271],[559,7273],[560,7274],[561,7275],[562,7272],[563,7276],[564,7276],[565,7276],[566,7276],[567,7277],[568,7278],[569,7244],[570,7248],[571,7271],[572,7273],[573,7274],[574,7275],[575,7272],[576,7276],[577,7276],[578,7276],[579,7276],[580,7277],[581,7278],[582,7244],[583,7248],[584,7271],[585,7273],[586,7274],[587,7275],[588,7272],[589,7276],[590,7276],[591,7276],[592,7276],[593,7277],[594,7278],[595,7244],[596,7248],[597,7271],[598,7271],[599,7273],[600,7274],[601,7275],[602,7272],[603,7276],[604,7276],[605,7276],[606,7276],[607,7277],[608,7278],[609,7244],[610,7248],[611,7272],[612,7276],[613,7276],[614,7278],[615,7276],[616,7271],[617,7273],[618,7272],[619,7244],[620,7248],[621,7243],[622,7273],[623,7275],[624,7276],[625,7276],[626,7276],[627,7276],[628,7278],[629,7276],[630,7244],[631,7248],[632,7244],[633,7248],[634,7274],[635,7243],[636,7271],[637,7278],[638,7271],[639,7272],[640,7272],[641,7271],[642,7244],[643,7248],[644,7244],[645,7248],[646,7272],[647,7275],[648,7271],[649,7271],[650,7276],[651,7278],[652,7271],[653,7278],[654,7244],[655,7244],[656,7243],[657,7271],[658,7271],[659,7275],[660,7276],[661,7274],[662,7275],[663,7272],[664,7276],[665,7276],[666,7276],[667,7276],[668,7277],[669,7278],[670,7244],[671,7248],[672,7272],[673,7271],[674,7271],[675,7273],[676,7274],[677,7275],[678,7272],[679,7276],[680,7276],[681,7276],[682,7276],[683,7277],[684,7278],[685,7244],[686,7248],[687,7271],[688,7273],[689,7274],[690,7275],[691,7272],[692,7276],[693,7276],[694,7276],[695,7276],[696,7277],[697,7278],[698,7244],[699,7248],[700,7271],[701,7273],[702,7274],[703,7275],[704,7272],[705,7276],[706,7276],[707,7276],[708,7276],[709,7277],[710,7278],[711,7244],[712,7248],[713,7271],[714,7273],[715,7274],[716,7275],[717,7272],[718,7276],[719,7276],[720,7276],[721,7276],[722,7277],[723,7278],[724,7244],[725,7248],[726,7271],[727,7273],[728,7274],[729,7275],[730,7272],[731,7276],[732,7276],[733,7276],[734,7276],[735,7277],[736,7278],[737,7244],[738,7248],[739,7271],[740,7273],[741,7274],[742,7275],[743,7272],[744,7276],[745,7276],[746,7276],[747,7276],[748,7277],[749,7278],[750,7244],[751,7248],[752,7271],[753,7273],[754,7274],[755,7275],[756,7272],[757,7276],[758,7276],[759,7276],[760,7276],[761,7277],[762,7278],[763,7244],[764,7248],[765,7271],[766,7273],[767,7274],[768,7275],[769,7272],[770,7276],[771,7276],[772,7276],[773,7276],[774,7277],[775,7278],[776,7244],[777,7248],[778,7278],[779,7271],[780,7273],[781,7274],[782,7275],[783,7272],[784,7276],[785,7276],[786,7276],[787,7276],[788,7277],[789,7278],[790,7244],[791,7248],[792,7271],[793,7276],[794,7271],[795,7276],[796,7273],[797,7276],[798,7276],[799,7271],[800,7276],[801,7275],[802,7275],[803,7277],[804,7275],[805,7275],[806,7277],[807,7277],[808,7275],[809,7275],[810,7275],[811,7275],[812,7275],[813,7275],[814,7275],[815,7275],[816,7275],[817,7275],[818,7275],[819,7275],[820,7275],[821,7275],[822,7275],[823,7275],[824,7275],[825,7275],[826,7275],[827,7275],[828,7275],[829,7275],[830,7275],[831,7275],[832,7275],[833,7275],[834,7275],[835,7275],[836,7275],[837,7275],[838,7275],[839,7275],[840,7275],[841,7275],[842,7275],[843,7275],[844,7275],[845,7275],[846,7275],[847,7275],[848,7275],[849,7275],[850,7275],[851,7275],[852,7275],[853,7275],[854,7271],[855,7271],[856,7271],[857,7271],[858,7271],[859,7271],[860,7271],[861,7271],[862,7271],[863,7271],[864,7271],[865,7271],[866,7271],[867,7271],[868,7271],[869,7271],[870,7271],[871,7271],[872,7271],[873,7271],[874,7271],[875,7271],[876,7271],[877,7274],[878,7274],[879,7274],[880,7274],[881,7274],[882,7274],[883,7274],[884,7274],[885,7274],[886,7274],[887,7274],[888,7274],[889,7274],[890,7274],[891,7274],[892,7274],[893,7274],[894,7274],[895,7274],[896,7274],[897,7274],[898,7274],[899,7274],[900,7274],[901,7274],[902,7274],[903,7274],[904,7274],[905,7274],[906,7274],[907,7274],[908,7274],[909,7274],[910,7274],[911,7274],[912,7274],[913,7274],[914,7274],[915,7274],[916,7274],[917,7274],[918,7274],[919,7274],[920,7274],[921,7274],[922,7274],[923,7274],[924,7274],[925,7274],[926,7274],[927,7274],[928,7274],[929,7274],[930,7274],[931,7274],[932,7274],[933,7274],[934,7274],[935,7274],[936,7274],[937,7274],[938,7274],[939,7274],[940,7274],[941,7274],[942,7274],[943,7274],[944,7274],[945,7274],[946,7274],[947,7274],[948,7274],[949,7274],[950,7274],[951,7274],[952,7274],[953,7274],[954,7274],[955,7274],[956,7274],[957,7274],[958,7274],[959,7274],[960,7274],[961,7274],[962,7274],[963,7274],[964,7274],[965,7274],[966,7274],[967,7274],[968,7274],[969,7274],[970,7274],[971,7274],[972,7292],[973,7283],[974,7272],[975,7283],[976,7292],[977,7272],[978,7283],[979,7283],[980,7283],[981,7292],[982,7283],[983,7292],[984,7283],[985,7292],[986,7283],[987,7292],[988,7283],[989,7283],[990,7292],[991,7283],[992,7292],[993,7283],[994,7283],[995,7292],[996,7292],[997,7283],[998,7292],[999,7292],[1000,7292],[1001,7283],[1002,7283],[1003,7292],[1004,7283],[1005,7283],[1006,7292],[1007,7283],[1008,7292],[1009,7283],[1010,7292],[1011,7283],[1012,7292],[1013,7283],[1014,7292],[1015,7292],[1016,7283],[1017,7292],[1018,7283],[1019,7292],[1020,7283],[1021,7292],[1022,7283],[1023,7292],[1024,7283],[1025,7292],[1026,7283],[1027,7292],[1028,7283],[1029,7292],[1030,7283],[1031,7292],[1032,7283],[1033,7292],[1034,7283],[1035,7292],[1036,7283],[1037,7292],[1038,7283],[1039,7292],[1040,7283],[1041,7292],[1042,7283],[1043,7283],[1044,7283],[1045,7283],[1046,7283],[1047,7292],[1048,7283],[1049,7283],[1050,7292],[1051,7292],[1052,7283],[1053,7292],[1054,7283],[1055,7292],[1056,7283],[1057,7292],[1058,7283],[1059,7292],[1060,7283],[1061,7292],[1062,7283],[1063,7292],[1064,7283],[1065,7292],[1066,7283],[1067,7292],[1068,7283],[1069,7292],[1070,7292],[1071,7292],[1072,7292],[1073,7292],[1074,7292],[1075,7292],[1076,7292],[1077,7292],[1078,7292],[1079,7292],[1080,7292],[1081,7292],[1082,7292],[1083,7292],[1084,7292],[1085,7292],[1086,7292],[1087,7292],[1088,7292],[1089,7292],[1090,7292],[1091,7292],[1092,7292],[1093,7292],[1094,7292],[1095,7292],[1096,7292],[1097,7292],[1098,7292],[1099,7292],[1100,7292],[1101,7292],[1102,7292],[1103,7292],[1104,7292],[1105,7292],[1106,7292],[1107,7292],[1108,7292],[1109,7292],[1110,7292],[1111,7292],[1112,7292],[1113,7292],[1114,7292],[1115,7292],[1116,7292],[1117,7292],[1118,7292],[1119,7292],[1120,7292],[1121,7292],[1122,7298],[1123,7295],[1124,7295],[1125,7295],[1126,7295],[1129,7299],[1130,7295],[1131,7284],[1132,7284],[1133,7284],[1134,7295],[1135,7295],[1138,7299],[1141,7299],[1142,7295],[1143,7295],[1144,7299],[1145,7295],[1146,7295],[1147,7295],[1148,7295],[1149,7295],[1150,7299],[1151,7284],[1152,7300],[1153,7284],[1154,7284],[1157,7299],[1158,7295],[1159,7295],[1160,7295],[1161,7295],[1162,7295],[1163,7295],[1164,7295],[1165,7295],[1166,7284],[1167,7294],[1168,7294],[1169,7293],[1170,7293],[1171,7299],[1172,7284],[1173,7300],[1174,7295],[1175,7295],[1176,7295],[1177,7295],[1180,7299],[1181,7284],[1182,7295],[1183,7295],[1184,7295],[1185,7295],[1186,7295],[1187,7284],[1188,7298],[1189,7295],[1190,7293],[1191,7293],[1192,7299],[1193,7284],[1194,7284],[1195,7284],[1196,7284],[1197,7284],[1198,7284],[1199,7284],[1200,7294],[1201,7294],[1202,7300],[1203,7300],[1204,7295],[1205,7295],[1206,7295],[1207,7295],[1208,7295],[1209,7295],[1210,7295],[1211,7295],[1212,7284],[1213,7298],[1214,7295],[1215,7293],[1216,7293],[1217,7299],[1218,7284],[1219,7284],[1220,7284],[1221,7284],[1222,7284],[1223,7284],[1224,7284],[1225,7294],[1226,7294],[1227,7300],[1228,7300],[1229,7295],[1230,7295],[1231,7295],[1232,7295],[1233,7295],[1234,7295],[1235,7295],[1236,7295],[1237,7284],[1238,7298],[1239,7295],[1240,7293],[1241,7293],[1242,7299],[1243,7284],[1244,7284],[1245,7284],[1246,7284],[1247,7284],[1248,7284],[1249,7284],[1250,7294],[1251,7294],[1252,7300],[1253,7300],[1254,7295],[1255,7295],[1256,7295],[1257,7295],[1258,7295],[1259,7295],[1260,7295],[1261,7295],[1262,7284],[1263,7298],[1264,7295],[1265,7293],[1266,7293],[1267,7299],[1268,7284],[1269,7284],[1270,7284],[1271,7284],[1272,7284],[1273,7284],[1274,7284],[1275,7294],[1276,7294],[1277,7300],[1278,7300],[1279,7295],[1280,7295],[1281,7295],[1282,7295],[1283,7295],[1284,7295],[1285,7295],[1286,7295],[1287,7284],[1288,7298],[1289,7295],[1290,7293],[1291,7293],[1292,7299],[1293,7284],[1294,7284],[1295,7284],[1296,7284],[1297,7284],[1298,7284],[1299,7284],[1300,7294],[1301,7294],[1302,7300],[1303,7300],[1304,7295],[1305,7295],[1306,7295],[1307,7295],[1308,7295],[1309,7295],[1310,7295],[1311,7295],[1312,7293],[1313,7284],[1314,7294],[1315,7284],[1316,7284],[1317,7284],[1318,7284],[1319,7284],[1320,7284],[1321,7298],[1322,7295],[1323,7293],[1324,7293],[1325,7299],[1326,7284],[1327,7284],[1328,7284],[1329,7284],[1330,7284],[1331,7284],[1332,7284],[1333,7294],[1334,7294],[1335,7300],[1336,7300],[1337,7295],[1338,7295],[1339,7295],[1340,7295],[1341,7295],[1342,7295],[1343,7295],[1344,7295],[1345,7284],[1346,7298],[1347,7295],[1348,7293],[1349,7293],[1350,7299],[1351,7284],[1352,7284],[1353,7284],[1354,7284],[1355,7284],[1356,7284],[1357,7284],[1358,7294],[1359,7294],[1360,7300],[1361,7300],[1362,7295],[1363,7295],[1364,7295],[1365,7295],[1366,7295],[1367,7295],[1368,7295],[1369,7295],[1370,7284],[1371,7284],[1372,7284],[1373,7295],[1374,7293],[1375,7284],[1376,7294],[1377,7284],[1378,7284],[1379,7298],[1380,7295],[1381,7293],[1382,7293],[1383,7299],[1384,7284],[1385,7284],[1386,7284],[1387,7284],[1388,7284],[1389,7284],[1390,7284],[1391,7294],[1392,7294],[1393,7300],[1394,7300],[1395,7295],[1396,7295],[1397,7295],[1398,7295],[1399,7295],[1400,7295],[1401,7295],[1402,7295],[1403,7294],[1404,7298],[1405,7293],[1406,7293],[1407,7299],[1408,7284],[1409,7284],[1410,7284],[1411,7284],[1412,7284],[1413,7284],[1414,7284],[1415,7294],[1416,7294],[1417,7300],[1418,7300],[1419,7295],[1420,7295],[1421,7295],[1422,7295],[1423,7295],[1424,7295],[1425,7295],[1426,7295],[1427,7298],[1428,7293],[1429,7293],[1430,7299],[1431,7284],[1432,7284],[1433,7284],[1434,7284],[1435,7284],[1436,7284],[1437,7284],[1438,7294],[1439,7294],[1440,7300],[1441,7300],[1442,7295],[1443,7295],[1444,7295],[1445,7295],[1446,7295],[1447,7295],[1448,7295],[1449,7295],[1450,7298],[1451,7293],[1452,7293],[1453,7299],[1454,7284],[1455,7284],[1456,7284],[1457,7284],[1458,7284],[1459,7284],[1460,7284],[1461,7294],[1462,7294],[1463,7300],[1464,7300],[1465,7295],[1466,7295],[1467,7295],[1468,7295],[1469,7295],[1470,7295],[1471,7295],[1472,7295],[1473,7300],[1474,7300],[1475,7295],[1476,7284],[1477,7298],[1478,7295],[1479,7293],[1480,7293],[1481,7299],[1482,7284],[1483,7284],[1484,7284],[1485,7284],[1486,7284],[1487,7284],[1488,7284],[1489,7294],[1490,7294],[1491,7300],[1492,7300],[1493,7295],[1494,7295],[1495,7295],[1496,7295],[1497,7295],[1498,7295],[1499,7295],[1500,7295],[1501,7284],[1502,7284],[1503,7284],[1504,7298],[1505,7284],[1506,7284],[1507,7294],[1508,7284],[1509,7298],[1510,7295],[1511,7293],[1512,7293],[1513,7299],[1514,7284],[1515,7284],[1516,7284],[1517,7284],[1518,7284],[1519,7284],[1520,7284],[1521,7294],[1522,7294],[1523,7300],[1524,7300],[1525,7295],[1526,7295],[1527,7295],[1528,7295],[1529,7295],[1530,7295],[1531,7295],[1532,7295],[1533,7284],[1534,7298],[1535,7295],[1536,7293],[1537,7293],[1538,7299],[1539,7284],[1540,7284],[1541,7284],[1542,7284],[1543,7284],[1544,7284],[1545,7284],[1546,7294],[1547,7294],[1548,7300],[1549,7300],[1550,7295],[1551,7295],[1552,7295],[1553,7295],[1554,7295],[1555,7295],[1556,7295],[1557,7295],[1558,7284],[1559,7298],[1560,7295],[1561,7293],[1562,7293],[1563,7299],[1564,7284],[1565,7284],[1566,7284],[1567,7284],[1568,7284],[1569,7284],[1570,7284],[1571,7294],[1572,7294],[1573,7300],[1574,7300],[1575,7295],[1576,7295],[1577,7295],[1578,7295],[1579,7295],[1580,7295],[1581,7295],[1582,7295],[1583,7284],[1584,7298],[1585,7295],[1586,7293],[1587,7293],[1588,7299],[1589,7284],[1590,7284],[1591,7284],[1592,7284],[1593,7284],[1594,7284],[1595,7284],[1596,7294],[1597,7294],[1598,7300],[1599,7300],[1600,7295],[1601,7295],[1602,7295],[1603,7295],[1604,7295],[1605,7295],[1606,7295],[1607,7295],[1608,7284],[1609,7284],[1610,7284],[1611,7298],[1612,7299],[1613,7295],[1614,7295],[1615,7295],[1616,7295],[1617,7295],[1618,7295],[1619,7295],[1620,7295],[1621,7299],[1622,7299],[1623,7299],[1624,7295],[1625,7295],[1626,7295],[1627,7295],[1628,7295],[1629,7295],[1630,7295],[1631,7295],[1632,7295],[1633,7295],[1634,7295],[1635,7295],[1636,7293],[1637,7293],[1638,7300],[1639,7300],[1640,7293],[1641,7284],[1642,7284],[1643,7284],[1644,7284],[1645,7298],[1646,7293],[1647,7293],[1648,7299],[1649,7284],[1650,7284],[1651,7284],[1652,7294],[1653,7294],[1654,7295],[1655,7295],[1656,7295],[1657,7295],[1658,7295],[1659,7295],[1660,7295],[1661,7295],[1662,7284],[1663,7284],[1664,7298],[1665,7295],[1666,7293],[1667,7293],[1668,7293],[1669,7299],[1670,7299],[1671,7284],[1672,7284],[1673,7284],[1674,7284],[1675,7284],[1676,7284],[1677,7284],[1678,7284],[1679,7294],[1680,7294],[1681,7300],[1682,7300],[1683,7295],[1684,7295],[1685,7295],[1686,7295],[1687,7295],[1688,7295],[1689,7295],[1690,7295],[1691,7284],[1692,7298],[1693,7295],[1694,7293],[1695,7293],[1696,7299],[1697,7284],[1698,7284],[1699,7284],[1700,7284],[1701,7284],[1702,7284],[1703,7284],[1704,7294],[1705,7294],[1706,7300],[1707,7300],[1708,7295],[1709,7295],[1710,7295],[1711,7295],[1712,7295],[1713,7295],[1714,7295],[1715,7295],[1716,7284],[1717,7294],[1718,7284],[1719,7298],[1720,7295],[1721,7293],[1722,7293],[1723,7299],[1724,7284],[1725,7284],[1726,7284],[1727,7284],[1728,7284],[1729,7284],[1730,7284],[1731,7294],[1732,7294],[1733,7300],[1734,7300],[1735,7295],[1736,7295],[1737,7295],[1738,7295],[1739,7295],[1740,7295],[1741,7295],[1742,7295],[1743,7295],[1744,7295],[1745,7295],[1746,7295],[1747,7284],[1748,7284],[1749,7294],[1750,7294],[1751,7295],[1752,7284],[1753,7284],[1754,7300],[1755,7295],[1756,7284],[1757,7284],[1758,7300],[1759,7299],[1760,7295],[1761,7295],[1762,7295],[1763,7295],[1764,7284],[1765,7284],[1766,7300],[1767,7284],[1768,7284],[1769,7284],[1770,7284],[1771,7300],[1772,7294],[1773,7294],[1774,7284],[1775,7298],[1776,7295],[1777,7293],[1778,7293],[1779,7299],[1780,7284],[1781,7284],[1782,7284],[1783,7284],[1784,7284],[1785,7284],[1786,7284],[1787,7294],[1788,7294],[1789,7300],[1790,7300],[1791,7295],[1792,7295],[1793,7295],[1794,7295],[1795,7295],[1796,7295],[1797,7295],[1798,7295],[1799,7284],[1800,7298],[1801,7295],[1802,7293],[1803,7293],[1804,7299],[1805,7284],[1806,7284],[1807,7284],[1808,7284],[1809,7284],[1810,7284],[1811,7284],[1812,7294],[1813,7294],[1814,7300],[1815,7300],[1816,7295],[1817,7295],[1818,7295],[1819,7295],[1820,7295],[1821,7295],[1822,7295],[1823,7295],[1824,7284],[1825,7298],[1826,7295],[1827,7293],[1828,7293],[1829,7299],[1830,7284],[1831,7284],[1832,7284],[1833,7284],[1834,7284],[1835,7284],[1836,7284],[1837,7294],[1838,7294],[1839,7300],[1840,7300],[1841,7295],[1842,7295],[1843,7295],[1844,7295],[1845,7295],[1846,7295],[1847,7295],[1848,7295],[1849,7284],[1850,7298],[1851,7295],[1852,7293],[1853,7293],[1854,7299],[1855,7284],[1856,7284],[1857,7284],[1858,7284],[1859,7284],[1860,7284],[1861,7284],[1862,7294],[1863,7294],[1864,7300],[1865,7300],[1866,7295],[1867,7295],[1868,7295],[1869,7295],[1870,7295],[1871,7295],[1872,7295],[1873,7295],[1874,7284],[1875,7298],[1876,7295],[1877,7293],[1878,7293],[1879,7299],[1880,7284],[1881,7284],[1882,7284],[1883,7284],[1884,7284],[1885,7294],[1886,7294],[1887,7300],[1888,7300],[1889,7295],[1890,7295],[1891,7295],[1892,7295],[1893,7295],[1894,7295],[1895,7295],[1896,7295],[1897,7284],[1898,7298],[1899,7295],[1900,7293],[1901,7293],[1902,7299],[1903,7284],[1904,7284],[1905,7284],[1906,7284],[1907,7284],[1908,7284],[1909,7284],[1910,7294],[1911,7294],[1912,7300],[1913,7300],[1914,7295],[1915,7295],[1916,7295],[1917,7295],[1918,7295],[1919,7295],[1920,7295],[1921,7295],[1922,7284],[1923,7298],[1924,7295],[1925,7293],[1926,7293],[1927,7299],[1928,7284],[1929,7284],[1930,7284],[1931,7284],[1932,7284],[1933,7284],[1934,7284],[1935,7294],[1936,7294],[1937,7300],[1938,7300],[1939,7295],[1940,7295],[1941,7295],[1942,7295],[1943,7295],[1944,7295],[1945,7295],[1946,7295],[1947,7284],[1948,7298],[1949,7295],[1950,7293],[1951,7293],[1952,7299],[1953,7284],[1954,7284],[1955,7284],[1956,7284],[1957,7284],[1958,7284],[1959,7284],[1960,7294],[1961,7294],[1962,7300],[1963,7300],[1964,7295],[1965,7295],[1966,7295],[1967,7295],[1968,7295],[1969,7295],[1970,7295],[1971,7295],[1972,7284],[1973,7298],[1974,7295],[1975,7293],[1976,7293],[1977,7299],[1978,7284],[1979,7284],[1980,7284],[1981,7284],[1982,7284],[1983,7284],[1984,7284],[1985,7294],[1986,7294],[1987,7300],[1988,7300],[1989,7295],[1990,7295],[1991,7295],[1992,7295],[1993,7295],[1994,7295],[1995,7295],[1996,7295],[1997,7284],[1998,7293],[1999,7284],[2000,7284],[2001,7284],[2002,7284],[2003,7284],[2004,7284],[2005,7284],[2006,7284],[2007,7298],[2008,7295],[2009,7293],[2010,7293],[2011,7299],[2012,7284],[2013,7284],[2014,7284],[2015,7284],[2016,7284],[2017,7284],[2018,7284],[2019,7294],[2020,7294],[2021,7300],[2022,7300],[2023,7295],[2024,7295],[2025,7295],[2026,7295],[2027,7295],[2028,7295],[2029,7295],[2030,7295],[2031,7299],[2032,7284],[2033,7294],[2034,7294],[2035,7295],[2036,7295],[2037,7295],[2038,7295],[2039,7293],[2040,7293],[2041,7284],[2042,7284],[2043,7294],[2044,7294],[2045,7300],[2046,7300],[2047,7284],[2048,7284],[2049,7295],[2050,7298],[2051,7284],[2052,7284],[2053,7294],[2054,7294],[2055,7284],[2056,7284],[2057,7284],[2058,7295],[2059,7295],[2060,7284],[2061,7284],[2062,7284],[2063,7294],[2064,7284],[2065,7284],[2066,7284],[2067,7284],[2068,7293],[2069,7293],[2070,7293],[2071,7293],[2072,7298],[2073,7284],[2074,7284],[2075,7294],[2076,7295],[2077,7295],[2078,7284],[2079,7284],[2080,7284],[2081,7284],[2082,7284],[2083,7295],[2084,7295],[2085,7295],[2086,7295],[2087,7295],[2088,7300],[2089,7293],[2090,7284],[2091,7300],[2092,7300],[2093,7295],[2094,7295],[2095,7284],[2096,7284],[2097,7284],[2098,7284],[2099,7284],[2100,7284],[2101,7294],[2102,7284],[2103,7284],[2104,7284],[2105,7298],[2106,7299],[2107,7295],[2108,7298],[2109,7293],[2110,7293],[2111,7299],[2112,7284],[2113,7284],[2114,7284],[2115,7284],[2116,7284],[2117,7284],[2118,7284],[2119,7294],[2120,7294],[2121,7300],[2122,7300],[2123,7295],[2124,7295],[2125,7295],[2126,7295],[2127,7295],[2128,7295],[2129,7295],[2130,7295],[2131,7295],[2132,7295],[2133,7295],[2134,7295],[2135,7299],[2136,7284],[2137,7284],[2138,7298],[2139,7295],[2140,7293],[2141,7293],[2142,7299],[2143,7284],[2144,7284],[2145,7284],[2146,7284],[2147,7284],[2148,7284],[2149,7284],[2150,7294],[2151,7294],[2152,7300],[2153,7300],[2154,7295],[2155,7295],[2156,7295],[2157,7295],[2158,7295],[2159,7295],[2160,7295],[2161,7295],[2162,7284],[2163,7298],[2164,7295],[2165,7293],[2166,7293],[2167,7299],[2168,7284],[2169,7284],[2170,7284],[2171,7284],[2172,7284],[2173,7284],[2174,7284],[2175,7294],[2176,7294],[2177,7300],[2178,7300],[2179,7295],[2180,7295],[2181,7295],[2182,7295],[2183,7295],[2184,7295],[2185,7295],[2186,7295],[2187,7284],[2188,7298],[2189,7295],[2190,7293],[2191,7293],[2192,7299],[2193,7284],[2194,7284],[2195,7284],[2196,7284],[2197,7284],[2198,7284],[2199,7284],[2200,7294],[2201,7294],[2202,7300],[2203,7300],[2204,7295],[2205,7295],[2206,7295],[2207,7295],[2208,7295],[2209,7295],[2210,7295],[2211,7295],[2212,7284],[2213,7298],[2214,7295],[2215,7293],[2216,7293],[2217,7299],[2218,7284],[2219,7284],[2220,7284],[2221,7284],[2222,7284],[2223,7284],[2224,7284],[2225,7294],[2226,7294],[2227,7300],[2228,7300],[2229,7295],[2230,7295],[2231,7295],[2232,7295],[2233,7295],[2234,7295],[2235,7295],[2236,7295],[2237,7284],[2238,7298],[2239,7295],[2240,7293],[2241,7293],[2242,7299],[2243,7284],[2244,7284],[2245,7284],[2246,7284],[2247,7284],[2248,7284],[2249,7284],[2250,7294],[2251,7294],[2252,7300],[2253,7300],[2254,7295],[2255,7295],[2256,7295],[2257,7295],[2258,7295],[2259,7295],[2260,7295],[2261,7295],[2262,7284],[2263,7298],[2264,7295],[2265,7293],[2266,7293],[2267,7299],[2268,7284],[2269,7284],[2270,7284],[2271,7284],[2272,7284],[2273,7284],[2274,7284],[2275,7294],[2276,7294],[2277,7300],[2278,7300],[2279,7295],[2280,7295],[2281,7295],[2282,7295],[2283,7295],[2284,7295],[2285,7295],[2286,7295],[2287,7284],[2288,7298],[2289,7295],[2290,7293],[2291,7293],[2292,7299],[2293,7284],[2294,7284],[2295,7284],[2296,7284],[2297,7284],[2298,7284],[2299,7284],[2300,7294],[2301,7294],[2302,7300],[2303,7300],[2304,7295],[2305,7295],[2306,7295],[2307,7295],[2308,7295],[2309,7295],[2310,7295],[2311,7295],[2312,7284],[2313,7298],[2314,7295],[2315,7293],[2316,7293],[2317,7299],[2318,7284],[2319,7284],[2320,7284],[2321,7284],[2322,7284],[2323,7284],[2324,7284],[2325,7294],[2326,7294],[2327,7300],[2328,7300],[2329,7295],[2330,7295],[2331,7295],[2332,7295],[2333,7295],[2334,7295],[2335,7295],[2336,7295],[2337,7284],[2338,7298],[2339,7295],[2340,7293],[2341,7293],[2342,7299],[2343,7284],[2344,7284],[2345,7284],[2346,7284],[2347,7284],[2348,7284],[2349,7284],[2350,7294],[2351,7294],[2352,7300],[2353,7300],[2354,7295],[2355,7295],[2356,7295],[2357,7295],[2358,7295],[2359,7295],[2360,7295],[2361,7295],[2362,7284],[2363,7284],[2364,7294],[2365,7299],[2366,7284],[2406,7297],[2407,7297],[2408,7297],[2409,7297],[2410,7297],[2411,7297],[2412,7297],[2413,7297],[2414,7297],[2415,7297],[2416,7297],[2417,7297],[2418,7297],[2419,7297],[2420,7297],[2421,7297],[2422,7297],[2423,7297],[2424,7297],[2425,7297],[2426,7297],[2427,7297],[2428,7297],[2429,7297],[2430,7297],[2431,7297],[2432,7297],[2433,7297],[2434,7297],[2435,7297],[2436,7297],[2437,7297],[2438,7297],[2439,7297],[2440,7297],[2441,7297],[2442,7297],[2443,7297],[2444,7297],[2445,7297],[2446,7297],[2447,7297],[2448,7297],[2449,7297],[2450,7297],[2451,7297],[2452,7297],[2453,7297],[2454,7297],[2455,7297],[2456,7297],[2457,7297],[2458,7297],[2459,7297],[2460,7297],[2461,7297],[2462,7297],[2463,7297],[2464,7297],[2465,7297],[2466,7297],[2467,7297],[2468,7297],[2469,7297],[2470,7297],[2471,7297],[2472,7297],[2473,7297],[2474,7297],[2475,7297],[2476,7297],[2477,7297],[2478,7297],[2479,7297],[2480,7297],[2481,7297],[2482,7297],[2483,7297],[2484,7297],[2485,7297],[2486,7297],[2487,7297],[2488,7297],[2489,7297],[2490,7297],[2491,7297],[2492,7297],[2493,7297],[2494,7297],[2495,7297],[2496,7297],[2497,7297],[2498,7297],[2499,7297],[2500,7297],[2501,7297],[2502,7297],[2503,7297],[2504,7297],[2505,7297],[2506,7297],[2507,7297],[2508,7297],[2509,7297],[2510,7297],[2511,7297],[2512,7297],[2513,7297],[2514,7297],[2515,7297],[2516,7297],[2517,7297],[2518,7297],[2519,7297],[2520,7297],[2521,7297],[2522,7297],[2523,7297],[2524,7297],[2525,7297],[2526,7297],[2527,7297],[2528,7297],[2529,7297],[2530,7297],[2531,7297],[2532,7297],[2533,7297],[2534,7297],[2535,7297],[2536,7297],[2537,7297],[2538,7297],[2539,7297],[2540,7297],[2541,7297],[2542,7297],[2543,7297],[2544,7297],[2545,7297],[2546,7297],[2547,7297],[2548,7297],[2549,7297],[2550,7297],[2551,7297],[2552,7297],[2553,7297],[2554,7297],[2555,7297],[2556,7297],[2557,7297],[2558,7297],[2559,7297],[2560,7297],[2561,7297],[2562,7297],[2563,7297],[2564,7297],[2565,7297],[2566,7297],[2567,7297],[2568,7297],[2569,7297],[2570,7297],[2571,7297],[2572,7297],[2573,7297],[2574,7297],[2575,7297],[2576,7297],[2577,7297],[2578,7297],[2579,7297],[2580,7297],[2581,7297],[2582,7297],[2583,7297],[2584,7297],[2585,7297],[2586,7297],[2587,7297],[2588,7297],[2589,7297],[2590,7297],[2591,7297],[2592,7297],[2593,7297],[2594,7297],[2595,7297],[2596,7297],[2597,7297],[2598,7297],[2599,7297],[2600,7297],[2601,7297],[2602,7297],[2603,7297],[2604,7297],[2605,7297],[2606,7297],[2607,7297],[2608,7297],[2609,7297],[2610,7297],[2611,7297],[2612,7297],[2613,7297],[2614,7297],[2615,7297],[2616,7297],[2617,7297],[2618,7297],[2619,7297],[2620,7297],[2621,7297],[2622,7297],[2623,7297],[2624,7297],[2625,7297],[2626,7297],[2627,7297],[2628,7297],[2629,7297],[2630,7297],[2631,7297],[2632,7297],[2633,7297],[2634,7297],[2635,7297],[2636,7297],[2637,7297],[2638,7297],[2639,7297],[2640,7297],[2641,7297],[2642,7297],[2643,7297],[2644,7297],[2645,7297],[2646,7297],[2647,7297],[2648,7297],[2649,7297],[2650,7297],[2651,7297],[2652,7297],[2653,7297],[2654,7297],[2655,7297],[2656,7297],[2657,7297],[2658,7297],[2659,7297],[2660,7297],[2661,7297],[2662,7297],[2663,7297],[2664,7297],[2665,7297],[2666,7297],[2667,7297],[2668,7297],[2669,7297],[2670,7297],[2671,7297],[2672,7297],[2673,7297],[2674,7297],[2675,7297],[2676,7297],[2677,7297],[2678,7297],[2679,7297],[2680,7297],[2681,7297],[2682,7297],[2683,7297],[2684,7297],[2685,7297],[2686,7297],[2687,7297],[2688,7297],[2689,7297],[2690,7297],[2691,7297],[2692,7297],[2693,7297],[2694,7297],[2695,7297],[2696,7297],[2697,7297],[2698,7297],[2699,7297],[2700,7297],[2701,7297],[2702,7297],[2703,7297],[2704,7297],[2705,7297],[2706,7297],[2707,7297],[2708,7297],[2709,7297],[2710,7297],[2711,7297],[2712,7297],[2713,7297],[2714,7297],[2715,7297],[2716,7297],[2717,7297],[2718,7297],[2719,7297],[2720,7297],[2721,7297],[2722,7297],[2723,7297],[2724,7297],[2725,7297],[2726,7297],[2727,7297],[2728,7297],[2729,7297],[2730,7297],[2731,7297],[2732,7297],[2733,7297],[2734,7297],[2735,7297],[2736,7297],[2737,7297],[2738,7297],[2739,7297],[2740,7297],[2741,7297],[2742,7297],[2743,7297],[2744,7297],[2745,7297],[2746,7297],[2747,7297],[2748,7297],[2749,7297],[2750,7297],[2751,7297],[2752,7297],[2753,7297],[2754,7297],[2755,7297],[2756,7297],[2757,7297],[2758,7297],[2759,7297],[2760,7297],[2761,7297],[2762,7297],[2763,7293],[2764,7293],[2765,7293],[2766,7293],[2767,7293],[2768,7293],[2769,7293],[2770,7293],[2771,7293],[2772,7293],[2773,7293],[2774,7293],[2775,7293],[2776,7293],[2777,7293],[2778,7293],[2779,7293],[2780,7293],[2781,7293],[2782,7293],[2783,7293],[2784,7293],[2785,7293],[2786,7293],[2787,7293],[2788,7293],[2789,7293],[2790,7293],[2791,7293],[2792,7293],[2793,7293],[2794,7293],[2795,7293],[2796,7293],[2797,7293],[2798,7293],[2799,7293],[2800,7293],[2801,7293],[2802,7293],[2803,7293],[2804,7293],[2805,7293],[2806,7293],[2807,7293],[2808,7293],[2809,7293],[2810,7293],[2811,7293],[2812,7293],[2813,7293],[2814,7293],[2815,7293],[2816,7293],[2817,7293],[2818,7293],[2819,7293],[2820,7293],[2821,7293],[2822,7293],[2823,7293],[2824,7293],[2825,7293],[2826,7293],[2827,7293],[2828,7293],[2829,7293],[2830,7293],[2831,7293],[2832,7293],[2833,7293],[2834,7293],[2835,7293],[2836,7293],[2837,7293],[2838,7293],[2839,7293],[2840,7293],[2841,7293],[2842,7293],[2843,7293],[2844,7293],[2845,7293],[2846,7293],[2847,7293],[2848,7293],[2849,7293],[2850,7293],[2851,7293],[2852,7293],[2853,7293],[2854,7293],[2855,7293],[2856,7293],[2857,7293],[2858,7293],[2859,7293],[2860,7293],[2861,7293],[2862,7293],[2863,7293],[2864,7293],[2865,7293],[2866,7293],[2867,7293],[2868,7293],[2869,7293],[2870,7293],[2871,7293],[2872,7293],[2873,7293],[2874,7293],[2875,7293],[2876,7293],[2877,7293],[2878,7293],[2879,7293],[2880,7293],[2881,7293],[2882,7293],[2883,7293],[2884,7293],[2885,7293],[2886,7293],[2887,7293],[2888,7293],[2889,7293],[2890,7293],[2891,7293],[2892,7293],[2893,7293],[2894,7293],[2895,7293],[2896,7293],[2897,7293],[2898,7293],[2899,7293],[2900,7293],[2901,7293],[2902,7293],[2903,7293],[2904,7293],[2905,7293],[2906,7293],[2907,7293],[2908,7293],[2909,7293],[2910,7293],[2911,7293],[2912,7293],[2913,7293],[2914,7293],[2915,7293],[2916,7293],[2917,7293],[2918,7293],[2919,7293],[2920,7293],[2921,7293],[2922,7293],[2923,7293],[2924,7293],[2925,7293],[2926,7293],[2927,7293],[2928,7293],[2929,7293],[2930,7293],[2931,7293],[2932,7293],[2933,7293],[2934,7293],[2935,7293],[2936,7293],[2937,7293],[2938,7293],[2939,7293],[2940,7293],[2941,7293],[2942,7293],[2943,7293],[2944,7293],[2945,7293],[2946,7293],[2947,7293],[2948,7293],[2949,7293],[2950,7293],[2951,7293],[2952,7293],[2953,7293],[2954,7293],[2955,7293],[2956,7293],[2957,7293],[2958,7293],[2959,7293],[2960,7293],[2961,7293],[2962,7293],[2963,7293],[2964,7293],[2965,7293],[2966,7293],[2967,7293],[2968,7293],[2969,7293],[2970,7293],[2971,7293],[2972,7293],[2973,7293],[2974,7293],[2975,7293],[2976,7293],[2977,7293],[2978,7293],[2979,7293],[2980,7293],[2981,7293],[2982,7293],[2983,7293],[2984,7293],[2985,7293],[2986,7293],[2987,7306],[2988,7298],[2989,7298],[2990,7325],[2991,7316],[2992,7311],[2993,7311],[2994,7311],[2995,7311],[2996,7311],[2997,7311],[2998,7307],[2999,7307],[3000,7307],[3001,7311],[3002,7311],[3003,7311],[3004,7311],[3006,7317],[3007,7318],[3008,7311],[3009,7311],[3010,7311],[3011,7315],[3012,7325],[3013,7315],[3015,7298],[3016,7311],[3017,7311],[3018,7311],[3019,7318],[3020,7318],[3021,7312],[3023,7311],[3024,7307],[3025,7312],[3026,7312],[3027,7312],[3028,7298],[3029,7298],[3030,7316],[3031,7307],[3032,7307],[3033,7307],[3034,7317],[3035,7312],[3036,7306],[3037,7306],[3038,7306],[3039,7306],[3040,7315],[3041,7298],[3042,7298],[3043,7316],[3044,7316],[3045,7307],[3046,7307],[3047,7317],[3048,7317],[3049,7318],[3050,7306],[3051,7306],[3052,7306],[3053,7315],[3054,7298],[3055,7298],[3056,7316],[3057,7316],[3058,7307],[3059,7317],[3060,7318],[3061,7298],[3062,7298],[3063,7316],[3064,7307],[3065,7307],[3066,7307],[3067,7317],[3068,7312],[3069,7306],[3070,7298],[3071,7298],[3072,7316],[3073,7307],[3074,7307],[3075,7307],[3076,7317],[3077,7312],[3078,7306],[3079,7298],[3080,7298],[3081,7316],[3082,7307],[3083,7307],[3084,7307],[3085,7317],[3086,7312],[3087,7306],[3088,7298],[3089,7298],[3090,7316],[3091,7307],[3092,7307],[3093,7307],[3094,7317],[3095,7312],[3096,7306],[3097,7307],[3098,7312],[3099,7312],[3100,7316],[3101,7317],[3102,7312],[3103,7315],[3104,7298],[3105,7298],[3106,7316],[3107,7316],[3108,7307],[3109,7307],[3110,7317],[3111,7317],[3112,7298],[3113,7298],[3114,7316],[3115,7307],[3116,7307],[3117,7307],[3118,7317],[3119,7312],[3120,7306],[3121,7298],[3122,7298],[3123,7316],[3124,7307],[3125,7307],[3126,7307],[3127,7317],[3128,7312],[3129,7306],[3130,7298],[3131,7316],[3132,7307],[3133,7317],[3134,7312],[3135,7298],[3136,7316],[3137,7317],[3138,7312],[3139,7298],[3140,7316],[3141,7317],[3142,7312],[3143,7317],[3144,7307],[3145,7312],[3146,7312],[3147,7298],[3148,7298],[3149,7316],[3150,7307],[3151,7307],[3152,7307],[3153,7317],[3154,7312],[3155,7306],[3156,7298],[3157,7317],[3158,7306],[3159,7312],[3160,7298],[3161,7298],[3162,7307],[3163,7307],[3164,7307],[3165,7298],[3166,7298],[3167,7316],[3168,7307],[3169,7307],[3170,7307],[3171,7317],[3172,7312],[3173,7306],[3174,7298],[3175,7298],[3176,7316],[3177,7307],[3178,7307],[3179,7307],[3180,7317],[3181,7312],[3182,7306],[3183,7298],[3184,7298],[3185,7316],[3186,7307],[3187,7307],[3188,7307],[3189,7317],[3190,7312],[3191,7306],[3192,7307],[3193,7317],[3194,7298],[3195,7298],[3196,7316],[3197,7307],[3198,7307],[3199,7307],[3200,7317],[3201,7312],[3202,7306],[3203,7312],[3204,7307],[3205,7317],[3206,7316],[3207,7316],[3208,7318],[3209,7316],[3210,7316],[3211,7306],[3212,7306],[3213,7298],[3214,7298],[3215,7316],[3216,7307],[3217,7307],[3218,7307],[3219,7317],[3220,7312],[3221,7306],[3222,7298],[3223,7298],[3224,7316],[3225,7307],[3226,7307],[3227,7307],[3228,7317],[3229,7312],[3230,7306],[3231,7315],[3232,7298],[3233,7316],[3234,7316],[3235,7307],[3236,7317],[3237,7317],[3238,7307],[3239,7307],[3240,7307],[3241,7317],[3242,7306],[3243,7306],[3244,7306],[3245,7298],[3246,7298],[3247,7316],[3248,7307],[3249,7307],[3250,7307],[3251,7317],[3252,7312],[3253,7306],[3254,7316],[3255,7317],[3256,7316],[3257,7298],[3258,7298],[3259,7316],[3260,7307],[3261,7307],[3262,7307],[3263,7317],[3264,7312],[3265,7306],[3266,7315],[3267,7316],[3268,7316],[3269,7307],[3270,7317],[3271,7317],[3272,7315],[3273,7316],[3274,7316],[3275,7307],[3276,7317],[3277,7317],[3278,7298],[3279,7311],[3280,7298],[3281,7298],[3282,7316],[3283,7307],[3284,7307],[3285,7317],[3286,7312],[3287,7306],[3288,7307],[3289,7307],[3290,7307],[3291,7307],[3292,7306],[3293,7306],[3294,7306],[3295,7298],[3296,7316],[3297,7317],[3298,7298],[3299,7316],[3300,7317],[3301,7298],[3302,7316],[3303,7317],[3304,7316],[3305,7317],[3306,7298],[3307,7298],[3308,7316],[3309,7317],[3310,7317],[3311,7317],[3312,7315],[3313,7298],[3314,7298],[3315,7316],[3316,7316],[3317,7307],[3318,7307],[3319,7317],[3320,7317],[3321,7298],[3322,7298],[3323,7316],[3324,7307],[3325,7307],[3326,7307],[3327,7317],[3328,7312],[3329,7306],[3330,7298],[3331,7298],[3332,7298],[3333,7298],[3334,7316],[3335,7317],[3336,7315],[3337,7298],[3338,7298],[3339,7298],[3340,7316],[3341,7316],[3342,7307],[3343,7317],[3344,7317],[3345,7316],[3346,7298],[3347,7316],[3348,7298],[3349,7316],[3350,7316],[3351,7317],[3352,7316],[3353,7317],[3354,7298],[3355,7298],[3356,7316],[3357,7298],[3358,7298],[3359,7316],[3360,7316],[3361,7317],[3362,7316],[3363,7317],[3364,7316],[3365,7317],[3366,7316],[3367,7317],[3368,7306],[3369,7306],[3370,7306],[3371,7315],[3372,7298],[3373,7298],[3374,7298],[3375,7298],[3376,7298],[3377,7316],[3378,7316],[3379,7316],[3380,7307],[3381,7307],[3382,7307],[3383,7307],[3384,7307],[3385,7317],[3386,7317],[3387,7317],[3388,7312],[3389,7306],[3390,7298],[3391,7316],[3392,7307],[3393,7317],[3394,7298],[3395,7298],[3396,7316],[3397,7307],[3398,7307],[3399,7307],[3400,7317],[3401,7312],[3402,7306],[3403,7298],[3404,7298],[3405,7316],[3406,7307],[3407,7307],[3408,7307],[3409,7317],[3410,7312],[3411,7306],[3412,7298],[3413,7306],[3414,7298],[3415,7306],[3417,7307],[3418,7307],[3419,7298],[3420,7298],[3421,7316],[3422,7307],[3423,7307],[3424,7307],[3425,7317],[3426,7312],[3427,7306],[3428,7307],[3429,7307],[3430,7307],[3431,7307],[3432,7312],[3433,7307],[3434,7307],[3435,7312],[3436,7298],[3437,7298],[3438,7316],[3439,7307],[3440,7307],[3441,7307],[3442,7317],[3443,7312],[3444,7306],[3445,7298],[3446,7298],[3447,7316],[3448,7307],[3449,7307],[3450,7307],[3451,7317],[3452,7312],[3453,7306],[3454,7298],[3455,7298],[3456,7316],[3457,7307],[3458,7307],[3459,7307],[3460,7317],[3461,7312],[3462,7306],[3463,7298],[3464,7298],[3465,7316],[3466,7307],[3467,7307],[3468,7307],[3469,7317],[3470,7312],[3471,7306],[3472,7298],[3473,7298],[3474,7316],[3475,7307],[3476,7307],[3477,7307],[3478,7317],[3479,7312],[3480,7306],[3481,7298],[3482,7298],[3483,7316],[3484,7307],[3485,7307],[3486,7307],[3487,7317],[3488,7312],[3489,7306],[3490,7298],[3491,7298],[3492,7316],[3493,7307],[3494,7307],[3495,7307],[3496,7317],[3497,7312],[3498,7306],[3499,7298],[3500,7298],[3501,7316],[3502,7307],[3503,7307],[3504,7307],[3505,7317],[3506,7312],[3507,7306],[3508,7298],[3509,7298],[3510,7316],[3511,7307],[3512,7307],[3513,7307],[3514,7317],[3515,7312],[3516,7306],[3517,7307],[3518,7317],[3519,7306],[3520,7307],[3521,7316],[3522,7317],[3523,7316],[3524,7317],[3525,7316],[3526,7298],[3527,7307],[3528,7316],[3529,7317],[3530,7316],[3531,7317],[3532,7298],[3533,7307],[3534,7317],[3535,7306],[3536,7307],[3537,7307],[3538,7316],[3539,7317],[3540,7316],[3541,7317],[3542,7316],[3543,7317],[3544,7316],[3545,7317],[3546,7317],[3547,7317],[3548,7318],[3549,7318],[3550,7318],[3551,7318],[3552,7318],[3553,7318],[3554,7325],[3555,7307],[3556,7325],[3557,7306],[3558,7306],[3559,7306],[3560,7307],[3561,7307],[3562,7306],[3563,7316],[3564,7307],[3565,7307],[3566,7307],[3567,7307],[3568,7306],[3569,7306],[3570,7318],[3571,7307],[3572,7306],[3573,7307],[3574,7318],[3575,7316],[3576,7316],[3577,7306],[3578,7306],[3579,7298],[3580,7298],[3581,7315],[3582,7298],[3583,7298],[3584,7316],[3585,7316],[3586,7307],[3587,7307],[3588,7317],[3589,7317],[3590,7298],[3591,7307],[3592,7306],[3593,7307],[3594,7307],[3595,7306],[3596,7318],[3597,7316],[3598,7307],[3599,7316],[3600,7307],[3601,7307],[3602,7307],[3603,7307],[3604,7307],[3605,7315],[3606,7298],[3607,7298],[3608,7316],[3609,7316],[3610,7307],[3611,7307],[3612,7317],[3613,7317],[3614,7307],[3615,7315],[3616,7298],[3617,7298],[3618,7316],[3619,7316],[3620,7307],[3621,7307],[3622,7317],[3623,7317],[3624,7307],[3625,7307],[3626,7317],[3627,7307],[3628,7298],[3629,7306],[3630,7306],[3631,7306],[3632,7306],[3633,7298],[3634,7298],[3635,7307],[3636,7315],[3637,7298],[3638,7298],[3639,7316],[3640,7316],[3641,7307],[3642,7307],[3643,7317],[3644,7317],[3645,7298],[3646,7316],[3647,7307],[3648,7317],[3649,7298],[3650,7317],[3651,7306],[3652,7316],[3653,7307],[3654,7307],[3655,7317],[3656,7306],[3657,7316],[3658,7307],[3659,7307],[3660,7317],[3661,7306],[3662,7307],[3663,7298],[3664,7298],[3665,7316],[3666,7307],[3667,7307],[3668,7307],[3669,7317],[3670,7312],[3671,7306],[3672,7316],[3673,7316],[3674,7298],[3675,7307],[3676,7318],[3677,7312],[3678,7316],[3679,7307],[3680,7317],[3681,7307],[3682,7306],[3683,7298],[3684,7298],[3685,7316],[3686,7307],[3687,7307],[3688,7307],[3689,7317],[3690,7312],[3691,7306],[3692,7298],[3693,7298],[3694,7316],[3695,7307],[3696,7307],[3697,7307],[3698,7317],[3699,7312],[3700,7306],[3701,7298],[3702,7298],[3703,7316],[3704,7307],[3705,7307],[3706,7307],[3707,7317],[3708,7312],[3709,7306],[3710,7298],[3711,7298],[3712,7316],[3713,7307],[3714,7307],[3715,7307],[3716,7317],[3717,7312],[3718,7306],[3719,7306],[3720,7298],[3721,7298],[3722,7316],[3723,7307],[3724,7307],[3725,7307],[3726,7317],[3727,7312],[3728,7306],[3729,7298],[3730,7298],[3731,7316],[3732,7307],[3733,7307],[3734,7307],[3735,7317],[3736,7312],[3737,7306],[3738,7298],[3739,7298],[3740,7316],[3741,7307],[3742,7307],[3743,7307],[3744,7317],[3745,7312],[3746,7306],[3747,7298],[3748,7298],[3749,7316],[3750,7307],[3751,7307],[3752,7307],[3753,7317],[3754,7312],[3755,7306],[3756,7318],[3757,7311],[3758,7318],[3759,7307],[3760,7307],[3761,7307],[3762,7298],[3763,7298],[3764,7316],[3765,7307],[3766,7307],[3767,7307],[3768,7317],[3769,7312],[3770,7306],[3772,7315],[3773,7298],[3774,7298],[3775,7316],[3776,7316],[3777,7307],[3778,7307],[3779,7317],[3780,7317],[3781,7318],[3784,7316],[3785,7317],[3786,7316],[3787,7317],[3788,7298],[3789,7298],[3790,7315],[3791,7298],[3792,7298],[3793,7316],[3794,7316],[3795,7307],[3796,7307],[3797,7317],[3798,7317],[3799,7318],[3802,7316],[3803,7317],[3804,7316],[3805,7317],[3806,7306],[3807,7298],[3808,7298],[3809,7298],[3810,7298],[3811,7298],[3812,7298],[3813,7298],[3814,7298],[3815,7298],[3816,7298],[3817,7298],[3818,7298],[3819,7298],[3820,7298],[3821,7298],[3822,7298],[3823,7298],[3824,7298],[3825,7298],[3826,7298],[3827,7298],[3828,7298],[3829,7298],[3830,7298],[3831,7298],[3832,7298],[3833,7298],[3834,7298],[3835,7298],[3836,7298],[3837,7298],[3838,7298],[3839,7298],[3840,7298],[3841,7298],[3842,7298],[3843,7298],[3844,7298],[3845,7298],[3846,7298],[3847,7298],[3848,7298],[3849,7298],[3850,7298],[3851,7298],[3852,7298],[3853,7298],[3854,7298],[3855,7298],[3856,7298],[3857,7298],[3858,7298],[3859,7298],[3860,7329],[3861,7323],[3862,7331],[3863,7323],[3864,7323],[3865,7323],[3866,7323],[3867,7323],[3868,7329],[3869,7331],[3870,7323],[3871,7323],[3872,7323],[3873,7329],[3874,7331],[3875,7323],[3876,7323],[3877,7323],[3878,7329],[3879,7331],[3880,7323],[3881,7323],[3882,7323],[3883,7329],[3884,7331],[3885,7323],[3886,7323],[3887,7323],[3888,7329],[3889,7331],[3890,7323],[3891,7323],[3892,7329],[3893,7323],[3894,7323],[3895,7329],[3896,7323],[3897,7329],[3898,7323],[3899,7329],[3900,7329],[3901,7323],[3902,7323],[3903,7329],[3904,7323],[3905,7323],[3906,7323],[3907,7323],[3908,7329],[3909,7329],[3910,7331],[3911,7323],[3912,7323],[3913,7323],[3914,7323],[3915,7329],[3916,7329],[3917,7331],[3918,7323],[3919,7323],[3920,7323],[3921,7329],[3922,7331],[3923,7323],[3924,7329],[3925,7323],[3926,7329],[3927,7323],[3928,7323],[3929,7329],[3930,7331],[3931,7323],[3932,7329],[3933,7323],[3934,7323],[3935,7329],[3936,7331],[3937,7323],[3938,7323],[3939,7329],[3940,7331],[3941,7323],[3942,7329],[3943,7331],[3944,7323],[3945,7329],[3946,7331],[3947,7323],[3948,7323],[3949,7323],[3950,7329],[3951,7331],[3952,7323],[3953,7329],[3954,7323],[3955,7323],[3956,7323],[3957,7323],[3958,7329],[3959,7329],[3960,7331],[3961,7323],[3962,7323],[3963,7323],[3964,7323],[3965,7329],[3966,7329],[3967,7331],[3968,7323],[3969,7323],[3970,7323],[3971,7329],[3972,7331],[3973,7323],[3974,7323],[3975,7323],[3976,7323],[3977,7323],[3978,7323],[3979,7323],[3980,7329],[3981,7331],[3982,7331],[3983,7323],[3984,7323],[3985,7323],[3986,7323],[3987,7329],[3988,7329],[3989,7331],[3990,7323],[3991,7323],[3992,7323],[3993,7329],[3994,7329],[3995,7329],[3996,7331],[3997,7331],[3998,7331],[3999,7323],[4000,7323],[4001,7323],[4002,7323],[4003,7329],[4004,7329],[4005,7331],[4006,7331],[4007,7323],[4008,7323],[4009,7323],[4010,7323],[4011,7329],[4012,7329],[4013,7331],[4014,7323],[4015,7323],[4016,7323],[4017,7329],[4018,7331],[4019,7329],[4020,7323],[4021,7323],[4022,7323],[4023,7323],[4024,7329],[4025,7331],[4026,7329],[4027,7323],[4028,7329],[4029,7329],[4030,7323],[4031,7329],[4032,7329],[4033,7323],[4034,7329],[4035,7323],[4036,7323],[4037,7323],[4038,7329],[4039,7331],[4040,7323],[4041,7323],[4042,7323],[4043,7323],[4044,7329],[4045,7331],[4046,7323],[4047,7323],[4048,7323],[4049,7329],[4050,7331],[4051,7323],[4052,7323],[4053,7323],[4054,7329],[4055,7331],[4056,7323],[4057,7323],[4058,7323],[4059,7329],[4060,7331],[4061,7323],[4062,7323],[4063,7323],[4064,7329],[4065,7331],[4066,7323],[4067,7323],[4068,7323],[4069,7329],[4070,7331],[4071,7323],[4072,7323],[4073,7323],[4074,7329],[4075,7331],[4076,7323],[4077,7323],[4078,7323],[4079,7329],[4080,7331],[4081,7323],[4082,7323],[4083,7323],[4084,7323],[4085,7323],[4086,7323],[4087,7323],[4088,7323],[4089,7323],[4090,7323],[4091,7329],[4092,7331],[4093,7323],[4094,7329],[4095,7323],[4096,7329],[4097,7323],[4098,7329],[4099,7329],[4100,7323],[4101,7329],[4102,7323],[4103,7329],[4104,7329],[4105,7323],[4106,7323],[4107,7323],[4108,7323],[4109,7323],[4110,7323],[4111,7323],[4112,7323],[4113,7323],[4114,7323],[4115,7323],[4116,7323],[4117,7323],[4118,7323],[4119,7323],[4120,7323],[4121,7323],[4122,7323],[4123,7323],[4124,7323],[4125,7323],[4126,7323],[4127,7323],[4128,7323],[4129,7323],[4130,7323],[4131,7323],[4132,7329],[4133,7331],[4134,7323],[4135,7329],[4136,7323],[4137,7323],[4138,7323],[4139,7323],[4140,7323],[4141,7329],[4142,7323],[4143,7329],[4144,7329],[4145,7331],[4146,7323],[4147,7329],[4148,7323],[4149,7323],[4150,7329],[4151,7329],[4152,7323],[4153,7323],[4154,7329],[4155,7323],[4156,7329],[4157,7323],[4158,7323],[4159,7329],[4160,7331],[4161,7323],[4162,7323],[4163,7323],[4164,7323],[4165,7323],[4166,7323],[4167,7323],[4168,7329],[4169,7331],[4170,7329],[4171,7331],[4172,7329],[4173,7331],[4174,7323],[4175,7329],[4176,7323],[4177,7323],[4178,7323],[4179,7329],[4180,7331],[4181,7323],[4182,7323],[4183,7323],[4184,7323],[4185,7323],[4186,7329],[4187,7329],[4188,7329],[4189,7331],[4190,7323],[4191,7323],[4192,7323],[4193,7323],[4194,7329],[4195,7331],[4196,7323],[4197,7323],[4198,7323],[4199,7329],[4200,7331],[4201,7323],[4202,7329],[4203,7329],[4204,7323],[4205,7323],[4206,7323],[4207,7329],[4208,7331],[4209,7323],[4210,7323],[4211,7323],[4212,7329],[4213,7331],[4214,7323],[4215,7323],[4216,7323],[4217,7329],[4218,7331],[4219,7323],[4220,7323],[4221,7323],[4222,7329],[4223,7331],[4224,7323],[4225,7323],[4226,7323],[4227,7329],[4228,7331],[4229,7323],[4230,7323],[4231,7323],[4232,7323],[4233,7323],[4234,7323],[4235,7323],[4236,7323],[4237,7323],[4238,7323],[4239,7323],[4240,7323],[4241,7323],[4242,7323],[4243,7323],[4244,7323],[4245,7323],[4246,7323],[4247,7323],[4248,7323],[4249,7323],[4250,7323],[4251,7323],[4252,7323],[4253,7323],[4254,7323],[4255,7323],[4256,7323],[4257,7323],[4258,7323],[4259,7323],[4260,7323],[4261,7323],[4262,7323],[4263,7323],[4264,7323],[4265,7323],[4266,7323],[4267,7323],[4268,7323],[4269,7323],[4270,7323],[4271,7323],[4272,7323],[4273,7323],[4274,7323],[4275,7323],[4276,7323],[4277,7323],[4278,7329],[4279,7323],[4280,7323],[4281,7323],[4282,7323],[4283,7323],[4284,7323],[4285,7323],[4286,7329],[4287,7323],[4288,7323],[4289,7323],[4290,7323],[4291,7323],[4292,7329],[4293,7316],[4294,7316],[4295,7316],[4296,7316],[4297,7316],[4298,7316],[4299,7316],[4300,7316],[4301,7316],[4302,7316],[4303,7316],[4304,7316],[4305,7316],[4306,7316],[4307,7316],[4308,7316],[4309,7316],[4310,7316],[4311,7316],[4312,7316],[4313,7316],[4314,7316],[4315,7316],[4316,7316],[4317,7316],[4318,7316],[4319,7316],[4320,7316],[4321,7316],[4322,7316],[4323,7316],[4324,7316],[4325,7316],[4326,7316],[4327,7316],[4328,7316],[4329,7316],[4330,7316],[4331,7316],[4332,7316],[4333,7316],[4334,7316],[4335,7316],[4336,7316],[4337,7306],[4338,7305],[4339,7305],[4340,7308],[4341,7343],[4342,7346],[4343,7336],[4344,7296],[4345,7296],[4346,7342],[4347,7344],[4348,7340],[4349,7340],[4350,7337],[4351,7338],[4352,7327],[4353,7327],[4354,7289],[4355,7341],[4356,7339],[4357,7339],[4358,7324],[4359,7288],[4360,7305],[4361,7305],[4362,7327],[4363,7327],[4364,7305],[4365,7305],[4366,7308],[4367,7343],[4368,7346],[4369,7336],[4370,7296],[4371,7296],[4372,7342],[4373,7344],[4374,7340],[4375,7340],[4376,7337],[4377,7338],[4378,7327],[4379,7327],[4380,7339],[4381,7339],[4382,7305],[4383,7305],[4384,7289],[4385,7341],[4386,7305],[4387,7305],[4388,7288],[4389,7336],[4390,7336],[4391,7296],[4392,7296],[4393,7296],[4394,7296],[4395,7337],[4396,7338],[4397,7327],[4398,7327],[4399,7327],[4400,7327],[4401,7339],[4402,7339],[4403,7305],[4404,7305],[4405,7305],[4406,7305],[4407,7336],[4408,7296],[4409,7296],[4410,7296],[4411,7296],[4412,7338],[4413,7327],[4414,7327],[4415,7339],[4416,7339],[4417,7305],[4418,7305],[4419,7296],[4420,7296],[4421,7305],[4422,7305],[4423,7305],[4424,7305],[4425,7340],[4426,7305],[4427,7305],[4428,7305],[4429,7305],[4430,7305],[4431,7336],[4432,7296],[4433,7296],[4434,7340],[4435,7340],[4436,7305],[4437,7305],[4438,7289],[4439,7341],[4440,7289],[4441,7341],[4442,7336],[4443,7296],[4444,7296],[4445,7340],[4446,7340],[4447,7305],[4448,7305],[4449,7289],[4450,7289],[4451,7341],[4452,7341],[4453,7288],[4454,7288],[4455,7308],[4456,7342],[4457,7327],[4458,7340],[4459,7340],[4460,7340],[4461,7340],[4462,7308],[4463,7343],[4464,7346],[4465,7336],[4466,7296],[4467,7296],[4468,7342],[4469,7344],[4470,7340],[4471,7340],[4472,7337],[4473,7338],[4474,7327],[4475,7327],[4476,7339],[4477,7339],[4478,7305],[4479,7305],[4480,7289],[4481,7341],[4482,7305],[4483,7305],[4484,7288],[4485,7308],[4486,7343],[4487,7346],[4488,7336],[4489,7296],[4490,7296],[4491,7342],[4492,7344],[4493,7340],[4494,7340],[4495,7337],[4496,7338],[4497,7327],[4498,7327],[4499,7339],[4500,7339],[4501,7305],[4502,7305],[4503,7289],[4504,7341],[4505,7305],[4506,7305],[4507,7288],[4508,7308],[4509,7343],[4510,7346],[4511,7336],[4512,7296],[4513,7296],[4514,7342],[4515,7344],[4516,7340],[4517,7340],[4518,7337],[4519,7338],[4520,7327],[4521,7327],[4522,7339],[4523,7339],[4524,7305],[4525,7305],[4526,7289],[4527,7341],[4528,7305],[4529,7305],[4530,7288],[4531,7308],[4532,7343],[4533,7346],[4534,7336],[4535,7296],[4536,7296],[4537,7342],[4538,7344],[4539,7340],[4540,7340],[4541,7337],[4542,7338],[4543,7327],[4544,7327],[4545,7339],[4546,7339],[4547,7305],[4548,7305],[4549,7289],[4550,7341],[4551,7305],[4552,7305],[4553,7288],[4554,7308],[4555,7343],[4556,7346],[4557,7336],[4558,7296],[4559,7296],[4560,7342],[4561,7344],[4562,7340],[4563,7340],[4564,7337],[4565,7338],[4566,7327],[4567,7327],[4568,7339],[4569,7339],[4570,7305],[4571,7305],[4572,7289],[4573,7341],[4574,7305],[4575,7305],[4576,7288],[4577,7308],[4578,7343],[4579,7346],[4580,7336],[4581,7296],[4582,7296],[4583,7342],[4584,7344],[4585,7340],[4586,7340],[4587,7337],[4588,7338],[4589,7327],[4590,7327],[4591,7339],[4592,7339],[4593,7305],[4594,7305],[4595,7289],[4596,7341],[4597,7305],[4598,7305],[4599,7288],[4600,7338],[4601,7343],[4602,7305],[4603,7305],[4604,7308],[4605,7343],[4606,7346],[4607,7336],[4608,7296],[4609,7296],[4610,7342],[4611,7344],[4612,7340],[4613,7340],[4614,7337],[4615,7338],[4616,7327],[4617,7327],[4618,7339],[4619,7339],[4620,7305],[4621,7305],[4622,7289],[4623,7341],[4624,7305],[4625,7305],[4626,7288],[4627,7308],[4628,7343],[4629,7336],[4630,7296],[4631,7296],[4632,7342],[4633,7337],[4634,7327],[4635,7327],[4636,7339],[4637,7339],[4638,7305],[4639,7305],[4640,7289],[4641,7341],[4642,7308],[4643,7343],[4644,7336],[4645,7296],[4646,7296],[4647,7342],[4648,7344],[4649,7340],[4650,7340],[4651,7327],[4652,7327],[4653,7305],[4654,7305],[4655,7296],[4656,7296],[4657,7296],[4658,7296],[4659,7327],[4660,7327],[4661,7327],[4662,7327],[4663,7305],[4664,7305],[4665,7305],[4666,7305],[4667,7308],[4668,7343],[4669,7342],[4670,7296],[4671,7296],[4672,7337],[4673,7327],[4674,7327],[4675,7305],[4676,7305],[4677,7305],[4678,7305],[4679,7308],[4680,7343],[4681,7346],[4682,7336],[4683,7296],[4684,7296],[4685,7342],[4686,7344],[4687,7340],[4688,7340],[4689,7337],[4690,7338],[4691,7327],[4692,7327],[4693,7339],[4694,7339],[4695,7305],[4696,7305],[4697,7289],[4698,7341],[4699,7305],[4700,7305],[4701,7288],[4702,7308],[4703,7343],[4704,7346],[4705,7336],[4706,7296],[4707,7296],[4708,7342],[4709,7344],[4710,7340],[4711,7340],[4712,7337],[4713,7338],[4714,7327],[4715,7327],[4716,7339],[4717,7339],[4718,7305],[4719,7305],[4720,7289],[4721,7341],[4722,7305],[4723,7305],[4724,7288],[4725,7308],[4726,7343],[4727,7346],[4728,7336],[4729,7296],[4730,7296],[4731,7342],[4732,7344],[4733,7340],[4734,7340],[4735,7337],[4736,7338],[4737,7327],[4738,7327],[4739,7339],[4740,7339],[4741,7305],[4742,7305],[4743,7289],[4744,7341],[4745,7305],[4746,7305],[4747,7288],[4748,7336],[4749,7337],[4750,7288],[4751,7336],[4752,7337],[4753,7288],[4754,7305],[4755,7305],[4756,7305],[4757,7305],[4758,7308],[4759,7343],[4760,7346],[4761,7336],[4762,7296],[4763,7296],[4764,7342],[4765,7344],[4766,7340],[4767,7340],[4768,7337],[4769,7338],[4770,7327],[4771,7327],[4772,7339],[4773,7339],[4774,7305],[4775,7305],[4776,7289],[4777,7341],[4778,7305],[4779,7305],[4780,7288],[4781,7308],[4782,7343],[4783,7342],[4784,7327],[4785,7327],[4786,7308],[4787,7343],[4788,7308],[4789,7343],[4790,7342],[4791,7324],[4792,7305],[4793,7305],[4794,7344],[4795,7288],[4796,7308],[4797,7343],[4798,7336],[4799,7296],[4800,7296],[4801,7342],[4802,7337],[4803,7338],[4804,7327],[4805,7327],[4806,7339],[4807,7339],[4808,7305],[4809,7305],[4810,7289],[4811,7341],[4812,7288],[4813,7324],[4814,7343],[4815,7327],[4816,7308],[4817,7343],[4818,7346],[4819,7336],[4820,7296],[4821,7296],[4822,7342],[4823,7344],[4824,7340],[4825,7340],[4826,7337],[4827,7338],[4828,7327],[4829,7327],[4830,7339],[4831,7339],[4832,7305],[4833,7305],[4834,7289],[4835,7341],[4836,7305],[4837,7305],[4838,7288],[4839,7308],[4840,7343],[4841,7346],[4842,7336],[4843,7296],[4844,7296],[4845,7342],[4846,7344],[4847,7340],[4848,7340],[4849,7337],[4850,7338],[4851,7327],[4852,7327],[4853,7339],[4854,7339],[4855,7305],[4856,7305],[4857,7289],[4858,7341],[4859,7305],[4860,7305],[4861,7288],[4862,7289],[4863,7341],[4864,7296],[4865,7296],[4866,7308],[4867,7308],[4868,7343],[4869,7343],[4870,7336],[4871,7336],[4872,7336],[4873,7296],[4874,7296],[4875,7296],[4876,7296],[4877,7342],[4878,7342],[4879,7338],[4880,7338],[4881,7327],[4882,7327],[4883,7327],[4884,7327],[4885,7305],[4886,7305],[4887,7305],[4888,7305],[4889,7308],[4890,7308],[4891,7343],[4892,7343],[4893,7336],[4894,7296],[4895,7296],[4896,7296],[4897,7296],[4898,7342],[4899,7342],[4900,7338],[4901,7338],[4902,7327],[4903,7327],[4904,7327],[4905,7327],[4906,7305],[4907,7305],[4908,7305],[4909,7305],[4910,7296],[4911,7296],[4912,7305],[4913,7305],[4914,7308],[4915,7343],[4916,7346],[4917,7336],[4918,7296],[4919,7296],[4920,7342],[4921,7344],[4922,7340],[4923,7340],[4924,7337],[4925,7338],[4926,7327],[4927,7327],[4928,7339],[4929,7339],[4930,7305],[4931,7305],[4932,7289],[4933,7341],[4934,7305],[4935,7305],[4936,7288],[4937,7308],[4938,7343],[4939,7346],[4940,7336],[4941,7296],[4942,7296],[4943,7342],[4944,7344],[4945,7340],[4946,7340],[4947,7337],[4948,7338],[4949,7327],[4950,7327],[4951,7339],[4952,7339],[4953,7305],[4954,7305],[4955,7289],[4956,7341],[4957,7305],[4958,7305],[4959,7288],[4960,7308],[4961,7343],[4962,7346],[4963,7336],[4964,7296],[4965,7296],[4966,7342],[4967,7344],[4968,7340],[4969,7340],[4970,7337],[4971,7338],[4972,7327],[4973,7327],[4974,7339],[4975,7339],[4976,7305],[4977,7305],[4978,7289],[4979,7341],[4980,7305],[4981,7305],[4982,7288],[4983,7327],[4984,7327],[4985,7305],[4986,7305],[4987,7308],[4988,7308],[4989,7308],[4990,7343],[4991,7343],[4992,7343],[4993,7346],[4994,7346],[4995,7346],[4996,7336],[4997,7336],[4998,7336],[4999,7296],[5000,7296],[5001,7296],[5002,7296],[5003,7296],[5004,7296],[5005,7342],[5006,7342],[5007,7342],[5008,7344],[5009,7344],[5010,7344],[5011,7340],[5012,7340],[5013,7340],[5014,7340],[5015,7340],[5016,7340],[5017,7337],[5018,7337],[5019,7337],[5020,7338],[5021,7338],[5022,7338],[5023,7327],[5024,7327],[5025,7327],[5026,7327],[5027,7327],[5028,7327],[5029,7339],[5030,7339],[5031,7339],[5032,7339],[5033,7339],[5034,7339],[5035,7305],[5036,7305],[5037,7305],[5038,7305],[5039,7305],[5040,7305],[5041,7289],[5042,7289],[5043,7289],[5044,7341],[5045,7341],[5046,7341],[5047,7305],[5048,7305],[5049,7305],[5050,7305],[5051,7305],[5052,7305],[5053,7288],[5054,7288],[5055,7288],[5056,7340],[5057,7296],[5058,7305],[5059,7324],[5060,7296],[5061,7296],[5062,7296],[5063,7296],[5064,7327],[5065,7327],[5066,7327],[5067,7327],[5068,7305],[5069,7305],[5070,7305],[5071,7305],[5072,7308],[5073,7343],[5074,7346],[5075,7336],[5076,7296],[5077,7296],[5078,7342],[5079,7344],[5080,7340],[5081,7340],[5082,7337],[5083,7338],[5084,7327],[5085,7327],[5086,7339],[5087,7339],[5088,7305],[5089,7305],[5090,7289],[5091,7341],[5092,7305],[5093,7305],[5094,7288],[5095,7308],[5096,7308],[5097,7343],[5098,7343],[5099,7346],[5100,7346],[5101,7346],[5102,7346],[5103,7346],[5104,7336],[5105,7296],[5106,7296],[5107,7296],[5108,7296],[5109,7296],[5110,7296],[5111,7342],[5112,7342],[5113,7344],[5114,7344],[5115,7344],[5116,7340],[5117,7340],[5118,7337],[5119,7338],[5120,7327],[5121,7327],[5122,7327],[5123,7327],[5124,7327],[5125,7327],[5126,7327],[5127,7327],[5128,7339],[5129,7339],[5130,7339],[5131,7339],[5132,7305],[5133,7305],[5134,7305],[5135,7305],[5136,7305],[5137,7305],[5138,7305],[5139,7305],[5140,7305],[5141,7289],[5142,7289],[5143,7341],[5144,7341],[5145,7305],[5146,7305],[5147,7288],[5148,7308],[5149,7343],[5150,7346],[5151,7336],[5152,7296],[5153,7296],[5154,7342],[5155,7344],[5156,7340],[5157,7340],[5158,7337],[5159,7338],[5160,7327],[5161,7327],[5162,7339],[5163,7339],[5164,7305],[5165,7305],[5166,7289],[5167,7341],[5168,7305],[5169,7305],[5170,7288],[5171,7305],[5172,7289],[5173,7341],[5174,7289],[5175,7341],[5176,7338],[5177,7296],[5178,7296],[5179,7338],[5180,7327],[5181,7327],[5182,7305],[5183,7305],[5184,7308],[5185,7343],[5186,7308],[5187,7343],[5188,7342],[5189,7344],[5190,7341],[5191,7308],[5192,7343],[5193,7342],[5194,7308],[5195,7343],[5196,7346],[5197,7336],[5198,7296],[5199,7296],[5200,7342],[5201,7344],[5202,7340],[5203,7340],[5204,7337],[5205,7338],[5206,7327],[5207,7327],[5208,7339],[5209,7339],[5210,7305],[5211,7305],[5212,7289],[5213,7341],[5214,7305],[5215,7305],[5216,7288],[5217,7344],[5218,7308],[5219,7343],[5220,7296],[5221,7296],[5222,7342],[5223,7344],[5224,7340],[5225,7340],[5226,7327],[5227,7327],[5228,7339],[5229,7339],[5230,7305],[5231,7305],[5232,7289],[5233,7341],[5234,7338],[5235,7338],[5236,7336],[5237,7337],[5238,7340],[5239,7327],[5240,7327],[5241,7305],[5242,7305],[5243,7308],[5244,7343],[5245,7346],[5246,7336],[5247,7296],[5248,7296],[5249,7342],[5250,7344],[5251,7340],[5252,7340],[5253,7337],[5254,7338],[5255,7327],[5256,7327],[5257,7339],[5258,7339],[5259,7305],[5260,7305],[5261,7289],[5262,7341],[5263,7305],[5264,7305],[5265,7288],[5266,7308],[5267,7343],[5268,7342],[5269,7327],[5270,7327],[5271,7338],[5272,7340],[5273,7344],[5274,7340],[5275,7340],[5276,7337],[5277,7339],[5278,7339],[5279,7289],[5280,7341],[5281,7308],[5282,7343],[5283,7342],[5284,7308],[5285,7343],[5286,7346],[5287,7336],[5288,7296],[5289,7296],[5290,7342],[5291,7344],[5292,7340],[5293,7340],[5294,7337],[5295,7338],[5296,7327],[5297,7327],[5298,7339],[5299,7339],[5300,7305],[5301,7305],[5302,7289],[5303,7341],[5304,7305],[5305,7305],[5306,7288],[5307,7308],[5308,7342],[5309,7308],[5310,7343],[5311,7342],[5312,7308],[5313,7343],[5314,7308],[5315,7343],[5316,7342],[5317,7308],[5318,7343],[5319,7346],[5320,7336],[5321,7296],[5322,7296],[5323,7342],[5324,7344],[5325,7340],[5326,7340],[5327,7337],[5328,7338],[5329,7327],[5330,7327],[5331,7339],[5332,7339],[5333,7305],[5334,7305],[5335,7289],[5336,7341],[5337,7305],[5338,7305],[5339,7288],[5340,7308],[5341,7343],[5342,7346],[5343,7336],[5344,7296],[5345,7296],[5346,7342],[5347,7344],[5348,7340],[5349,7340],[5350,7337],[5351,7338],[5352,7327],[5353,7327],[5354,7339],[5355,7339],[5356,7305],[5357,7305],[5358,7289],[5359,7341],[5360,7305],[5361,7305],[5362,7288],[5363,7308],[5364,7343],[5365,7346],[5366,7336],[5367,7296],[5368,7296],[5369,7342],[5370,7344],[5371,7340],[5372,7340],[5373,7337],[5374,7338],[5375,7327],[5376,7327],[5377,7339],[5378,7339],[5379,7305],[5380,7305],[5381,7289],[5382,7341],[5383,7305],[5384,7305],[5385,7288],[5386,7308],[5387,7343],[5388,7346],[5389,7336],[5390,7296],[5391,7296],[5392,7342],[5393,7344],[5394,7340],[5395,7340],[5396,7337],[5397,7338],[5398,7327],[5399,7327],[5400,7339],[5401,7339],[5402,7305],[5403,7305],[5404,7289],[5405,7341],[5406,7305],[5407,7305],[5408,7288],[5409,7308],[5410,7343],[5411,7346],[5412,7336],[5413,7296],[5414,7296],[5415,7342],[5416,7344],[5417,7340],[5418,7340],[5419,7337],[5420,7338],[5421,7327],[5422,7327],[5423,7339],[5424,7339],[5425,7305],[5426,7305],[5427,7289],[5428,7341],[5429,7305],[5430,7305],[5431,7288],[5432,7308],[5433,7343],[5434,7346],[5435,7336],[5436,7296],[5437,7296],[5438,7342],[5439,7344],[5440,7340],[5441,7340],[5442,7337],[5443,7338],[5444,7327],[5445,7327],[5446,7339],[5447,7339],[5448,7305],[5449,7305],[5450,7289],[5451,7341],[5452,7305],[5453,7305],[5454,7288],[5455,7308],[5456,7343],[5457,7346],[5458,7336],[5459,7296],[5460,7296],[5461,7342],[5462,7344],[5463,7340],[5464,7340],[5465,7337],[5466,7338],[5467,7327],[5468,7327],[5469,7339],[5470,7339],[5471,7305],[5472,7305],[5473,7289],[5474,7341],[5475,7305],[5476,7305],[5477,7288],[5478,7308],[5479,7343],[5480,7346],[5481,7336],[5482,7296],[5483,7296],[5484,7342],[5485,7344],[5486,7340],[5487,7340],[5488,7337],[5489,7338],[5490,7327],[5491,7327],[5492,7339],[5493,7339],[5494,7305],[5495,7305],[5496,7289],[5497,7341],[5498,7305],[5499,7305],[5500,7288],[5501,7308],[5502,7343],[5503,7346],[5504,7336],[5505,7296],[5506,7296],[5507,7342],[5508,7344],[5509,7340],[5510,7340],[5511,7337],[5512,7338],[5513,7327],[5514,7327],[5515,7339],[5516,7339],[5517,7305],[5518,7305],[5519,7289],[5520,7341],[5521,7305],[5522,7305],[5523,7288],[5524,7344],[5525,7340],[5526,7340],[5527,7337],[5528,7339],[5529,7339],[5530,7289],[5531,7341],[5532,7341],[5533,7341],[5534,7308],[5535,7343],[5536,7342],[5537,7327],[5538,7327],[5539,7308],[5540,7343],[5541,7296],[5542,7296],[5543,7342],[5544,7327],[5545,7327],[5546,7305],[5547,7305],[5548,7337],[5549,7339],[5550,7339],[5551,7289],[5552,7341],[5553,7308],[5554,7343],[5555,7340],[5556,7327],[5557,7327],[5558,7338],[5559,7340],[5560,7340],[5561,7338],[5562,7305],[5563,7305],[5564,7308],[5565,7343],[5566,7336],[5567,7296],[5568,7296],[5569,7342],[5570,7340],[5571,7327],[5572,7327],[5573,7305],[5574,7305],[5575,7327],[5576,7327],[5577,7305],[5578,7305],[5579,7289],[5580,7341],[5581,7289],[5582,7341],[5583,7341],[5584,7341],[5585,7289],[5586,7341],[5587,7289],[5588,7341],[5589,7341],[5590,7341],[5591,7289],[5592,7341],[5593,7289],[5594,7341],[5595,7341],[5596,7341],[5597,7341],[5598,7341],[5599,7341],[5600,7341],[5601,7296],[5602,7296],[5603,7305],[5604,7305],[5605,7336],[5606,7296],[5607,7296],[5608,7342],[5609,7337],[5610,7327],[5611,7327],[5612,7305],[5613,7305],[5614,7308],[5615,7343],[5616,7342],[5617,7342],[5618,7336],[5619,7296],[5620,7296],[5621,7342],[5622,7337],[5623,7327],[5624,7327],[5625,7305],[5626,7305],[5627,7308],[5628,7343],[5629,7342],[5630,7342],[5631,7308],[5632,7308],[5633,7343],[5634,7343],[5635,7336],[5636,7336],[5637,7296],[5638,7296],[5639,7296],[5640,7296],[5641,7342],[5642,7342],[5643,7337],[5644,7338],[5645,7338],[5646,7327],[5647,7327],[5648,7327],[5649,7327],[5650,7305],[5651,7305],[5652,7305],[5653,7305],[5654,7308],[5655,7308],[5656,7343],[5657,7343],[5658,7336],[5659,7296],[5660,7296],[5661,7296],[5662,7296],[5663,7342],[5664,7342],[5665,7338],[5666,7338],[5667,7327],[5668,7327],[5669,7327],[5670,7327],[5671,7305],[5672,7305],[5673,7305],[5674,7305],[5675,7341],[5676,7336],[5677,7296],[5678,7296],[5679,7338],[5680,7327],[5681,7327],[5682,7305],[5683,7305],[5684,7308],[5685,7343],[5686,7346],[5687,7336],[5688,7296],[5689,7296],[5690,7342],[5691,7344],[5692,7340],[5693,7337],[5694,7338],[5695,7327],[5696,7327],[5697,7339],[5698,7339],[5699,7305],[5700,7305],[5701,7289],[5702,7341],[5703,7341],[5704,7338],[5705,7344],[5706,7305],[5707,7305],[5708,7340],[5709,7340],[5710,7305],[5711,7305],[5712,7305],[5713,7305],[5714,7327],[5715,7327],[5716,7305],[5717,7305],[5718,7308],[5719,7343],[5720,7336],[5721,7296],[5722,7296],[5723,7342],[5724,7337],[5725,7338],[5726,7327],[5727,7327],[5728,7339],[5729,7339],[5730,7305],[5731,7305],[5732,7289],[5733,7341],[5734,7288],[5735,7288],[5736,7337],[5737,7305],[5738,7305],[5739,7305],[5740,7305],[5741,7296],[5742,7296],[5743,7342],[5744,7341],[5745,7308],[5746,7342],[5747,7289],[5748,7341],[5749,7341],[5750,7289],[5751,7341],[5752,7336],[5753,7337],[5754,7288],[5755,7341],[5756,7296],[5757,7296],[5758,7296],[5759,7289],[5760,7341],[5761,7289],[5762,7341],[5763,7289],[5764,7341],[5765,7305],[5766,7305],[5767,7341],[5768,7340],[5769,7340],[5770,7340],[5771,7306],[5772,7324],[5773,7342],[5774,7305],[5775,7305],[5776,7296],[5777,7296],[5778,7338],[5779,7305],[5780,7305],[5781,7289],[5782,7341],[5783,7344],[5784,7308],[5785,7343],[5786,7296],[5787,7296],[5788,7296],[5789,7296],[5790,7342],[5791,7327],[5792,7327],[5793,7327],[5794,7327],[5795,7305],[5796,7305],[5797,7305],[5798,7305],[5799,7308],[5800,7343],[5801,7342],[5802,7308],[5803,7343],[5804,7342],[5805,7336],[5806,7336],[5807,7308],[5808,7343],[5809,7342],[5810,7289],[5811,7341],[5812,7305],[5813,7305],[5814,7305],[5815,7305],[5816,7305],[5817,7305],[5818,7308],[5819,7324],[5820,7308],[5821,7343],[5822,7342],[5823,7327],[5824,7327],[5825,7341],[5826,7340],[5827,7296],[5828,7296],[5829,7327],[5830,7327],[5831,7339],[5832,7339],[5833,7305],[5834,7305],[5835,7305],[5836,7305],[5837,7340],[5838,7336],[5839,7296],[5840,7296],[5841,7296],[5842,7296],[5843,7296],[5844,7296],[5845,7337],[5846,7338],[5847,7327],[5848,7327],[5849,7339],[5850,7339],[5851,7305],[5852,7305],[5853,7336],[5854,7296],[5855,7296],[5856,7296],[5857,7296],[5858,7338],[5859,7327],[5860,7327],[5861,7339],[5862,7339],[5863,7305],[5864,7305],[5865,7336],[5866,7336],[5867,7327],[5868,7327],[5869,7327],[5870,7327],[5871,7305],[5872,7305],[5873,7305],[5874,7305],[5875,7324],[5876,7344],[5877,7340],[5878,7340],[5879,7289],[5880,7341],[5881,7289],[5882,7341],[5883,7289],[5884,7341],[5885,7289],[5886,7341],[5887,7296],[5888,7305],[5889,7341],[5890,7296],[5891,7340],[5892,7305],[5893,7289],[5894,7296],[5895,7296],[5896,7327],[5897,7327],[5898,7339],[5899,7339],[5900,7305],[5901,7305],[5902,7289],[5903,7341],[5904,7296],[5905,7305],[5906,7289],[5907,7341],[5908,7289],[5909,7341],[5910,7341],[5911,7342],[5912,7308],[5913,7343],[5914,7296],[5915,7296],[5916,7342],[5917,7327],[5918,7327],[5919,7339],[5920,7339],[5921,7305],[5922,7305],[5923,7308],[5924,7343],[5925,7296],[5926,7296],[5927,7342],[5928,7327],[5929,7327],[5930,7339],[5931,7339],[5932,7305],[5933,7305],[5934,7308],[5935,7343],[5936,7296],[5937,7296],[5938,7342],[5939,7327],[5940,7327],[5941,7339],[5942,7339],[5943,7305],[5944,7305],[5945,7308],[5946,7343],[5947,7296],[5948,7296],[5949,7342],[5950,7327],[5951,7327],[5952,7339],[5953,7339],[5954,7305],[5955,7305],[5956,7308],[5957,7343],[5958,7342],[5959,7308],[5960,7343],[5961,7346],[5962,7336],[5963,7296],[5964,7296],[5965,7342],[5966,7344],[5967,7340],[5968,7340],[5969,7337],[5970,7338],[5971,7327],[5972,7327],[5973,7339],[5974,7339],[5975,7305],[5976,7305],[5977,7289],[5978,7341],[5979,7305],[5980,7305],[5981,7288],[5982,7305],[5983,7305],[5984,7346],[5985,7346],[5986,7308],[5987,7305],[5988,7344],[5989,7340],[5990,7340],[5991,7339],[5992,7339],[5993,7305],[5994,7305],[5995,7296],[5996,7296],[5997,7327],[5998,7327],[5999,7339],[6000,7339],[6001,7305],[6002,7305],[6003,7296],[6004,7305],[6005,7308],[6006,7343],[6007,7296],[6008,7296],[6009,7342],[6010,7327],[6011,7327],[6012,7339],[6013,7339],[6014,7305],[6015,7305],[6016,7342],[6017,7327],[6018,7308],[6019,7343],[6020,7296],[6021,7296],[6022,7342],[6023,7344],[6024,7340],[6025,7340],[6026,7327],[6027,7327],[6028,7339],[6029,7339],[6030,7305],[6031,7305],[6032,7289],[6033,7341],[6034,7308],[6035,7343],[6036,7296],[6037,7296],[6038,7342],[6039,7327],[6040,7327],[6041,7339],[6042,7339],[6043,7305],[6044,7305],[6045,7296],[6046,7296],[6047,7327],[6048,7327],[6049,7339],[6050,7339],[6051,7338],[6052,7339],[6053,7337],[6054,7339],[6055,7337],[6056,7339],[6057,7340],[6058,7340],[6059,7337],[6060,7337],[6061,7339],[6062,7339],[6063,7289],[6064,7289],[6065,7340],[6066,7339],[6067,7341],[6068,7341],[6069,7340],[6070,7337],[6071,7339],[6072,7341],[6073,7341],[6074,7337],[6075,7339],[6076,7339],[6077,7337],[6078,7339],[6079,7339],[6080,7340],[6081,7340],[6082,7337],[6083,7337],[6084,7339],[6085,7289],[6086,7289],[6087,7340],[6088,7341],[6089,7340],[6090,7341],[6091,7308],[6092,7343],[6093,7342],[6094,7289],[6095,7341],[6096,7344],[6097,7308],[6098,7343],[6099,7336],[6100,7296],[6101,7296],[6102,7342],[6103,7337],[6104,7327],[6105,7327],[6106,7339],[6107,7339],[6108,7305],[6109,7305],[6110,7289],[6111,7341],[6112,7308],[6113,7343],[6114,7346],[6115,7336],[6116,7296],[6117,7296],[6118,7342],[6119,7344],[6120,7340],[6121,7340],[6122,7337],[6123,7338],[6124,7327],[6125,7327],[6126,7339],[6127,7339],[6128,7305],[6129,7305],[6130,7289],[6131,7341],[6132,7305],[6133,7305],[6134,7288],[6135,7308],[6136,7343],[6137,7346],[6138,7336],[6139,7296],[6140,7296],[6141,7342],[6142,7344],[6143,7340],[6144,7340],[6145,7337],[6146,7338],[6147,7327],[6148,7327],[6149,7339],[6150,7339],[6151,7305],[6152,7305],[6153,7289],[6154,7341],[6155,7305],[6156,7305],[6157,7288],[6158,7308],[6159,7343],[6160,7346],[6161,7336],[6162,7296],[6163,7296],[6164,7342],[6165,7344],[6166,7340],[6167,7340],[6168,7337],[6169,7338],[6170,7327],[6171,7327],[6172,7339],[6173,7339],[6174,7305],[6175,7305],[6176,7289],[6177,7341],[6178,7305],[6179,7305],[6180,7288],[6181,7308],[6182,7343],[6183,7346],[6184,7336],[6185,7296],[6186,7296],[6187,7342],[6188,7344],[6189,7340],[6190,7340],[6191,7337],[6192,7338],[6193,7327],[6194,7327],[6195,7339],[6196,7339],[6197,7305],[6198,7305],[6199,7289],[6200,7341],[6201,7305],[6202,7305],[6203,7288],[6204,7305],[6205,7305],[6206,7308],[6207,7343],[6208,7346],[6209,7336],[6210,7296],[6211,7296],[6212,7342],[6213,7344],[6214,7340],[6215,7340],[6216,7337],[6217,7338],[6218,7327],[6219,7327],[6220,7339],[6221,7339],[6222,7305],[6223,7305],[6224,7289],[6225,7341],[6226,7305],[6227,7305],[6228,7288],[6229,7308],[6230,7343],[6231,7346],[6232,7336],[6233,7296],[6234,7296],[6235,7342],[6236,7344],[6237,7340],[6238,7340],[6239,7337],[6240,7338],[6241,7327],[6242,7327],[6243,7339],[6244,7339],[6245,7305],[6246,7305],[6247,7289],[6248,7341],[6249,7305],[6250,7305],[6251,7288],[6252,7308],[6253,7343],[6254,7346],[6255,7336],[6256,7296],[6257,7296],[6258,7342],[6259,7344],[6260,7340],[6261,7340],[6262,7337],[6263,7338],[6264,7327],[6265,7327],[6266,7339],[6267,7339],[6268,7305],[6269,7305],[6270,7289],[6271,7341],[6272,7305],[6273,7305],[6274,7288],[6275,7308],[6276,7343],[6277,7342],[6278,7340],[6279,7308],[6280,7343],[6281,7346],[6282,7336],[6283,7296],[6284,7296],[6285,7342],[6286,7344],[6287,7340],[6288,7340],[6289,7337],[6290,7338],[6291,7327],[6292,7327],[6293,7339],[6294,7339],[6295,7305],[6296,7305],[6297,7289],[6298,7341],[6299,7305],[6300,7305],[6301,7288],[6302,7305],[6303,7305],[6304,7340],[6305,7338],[6306,7343],[6307,7327],[6308,7308],[6309,7343],[6310,7346],[6311,7336],[6312,7296],[6313,7296],[6314,7342],[6315,7344],[6316,7340],[6317,7340],[6318,7337],[6319,7338],[6320,7327],[6321,7327],[6322,7339],[6323,7339],[6324,7305],[6325,7305],[6326,7289],[6327,7341],[6328,7305],[6329,7305],[6330,7288],[6331,7346],[6332,7308],[6333,7343],[6334,7342],[6335,7327],[6336,7327],[6337,7289],[6338,7341],[6339,7305],[6340,7305],[6341,7305],[6342,7305],[6343,7305],[6344,7289],[6345,7341],[6346,7346],[6347,7296],[6348,7296],[6349,7339],[6350,7339],[6351,7305],[6352,7305],[6353,7305],[6354,7305],[6355,7308],[6356,7343],[6357,7342],[6358,7296],[6359,7305],[6360,7305],[6361,7343],[6362,7296],[6363,7305],[6364,7305],[6365,7343],[6366,7346],[6367,7296],[6368,7296],[6369,7339],[6370,7339],[6371,7305],[6372,7305],[6373,7305],[6374,7305],[6375,7308],[6376,7343],[6377,7342],[6378,7296],[6379,7305],[6380,7296],[6381,7305],[6382,7305],[6383,7343],[6384,7346],[6385,7296],[6386,7339],[6387,7305],[6388,7305],[6389,7343],[6390,7308],[6391,7343],[6392,7336],[6393,7296],[6394,7296],[6395,7296],[6396,7296],[6397,7342],[6398,7338],[6399,7327],[6400,7327],[6401,7327],[6402,7327],[6403,7305],[6404,7305],[6405,7305],[6406,7305],[6407,7296],[6408,7296],[6409,7305],[6410,7305],[6411,7321],[6412,7321],[6413,7321],[6414,7321],[6415,7352],[6416,7352],[6417,7325],[6418,7325],[6419,7325],[6420,7325],[6421,7325],[6422,7325],[6423,7325],[6424,7325],[6425,7325],[6426,7325],[6427,7325],[6428,7325],[6429,7325],[6430,7325],[6431,7325],[6432,7325],[6433,7325],[6434,7325],[6435,7325],[6436,7325],[6437,7325],[6438,7325],[6439,7325],[6441,7325],[6442,7325],[6443,7325],[6444,7325],[6445,7325],[6446,7325],[6447,7325],[6448,7325],[6449,7325],[6450,7325],[6451,7325],[6452,7325],[6453,7325],[6454,7325],[6455,7325],[6456,7325],[6457,7325],[6458,7325],[6459,7325],[6460,7325],[6461,7325],[6462,7325],[6463,7325],[6464,7325],[6465,7325],[6466,7325],[6467,7325],[6468,7325],[6469,7325],[6470,7325],[6471,7325],[6472,7325],[6473,7325],[6474,7325],[6475,7325],[6476,7325],[6477,7325],[6478,7325],[6479,7325],[6481,7325],[6483,7325],[6485,7325],[6486,7325],[6487,7325],[6488,7325],[6490,7325],[6492,7325],[6493,7325],[6494,7325],[6495,7325],[6496,7325],[6497,7325],[6498,7325],[6499,7325],[6500,7345],[6501,7345],[6502,7345],[6503,7345],[6504,7345],[6505,7345],[6506,7345],[6507,7345],[6508,7345],[6509,7345],[6510,7317],[6511,7317],[6512,7317],[6513,7317],[6514,7317],[6515,7317],[6516,7317],[6517,7317],[6518,7317],[6519,7317],[6520,7317],[6521,7317],[6522,7317],[6523,7317],[6524,7317],[6525,7317],[6526,7317],[6527,7317],[6528,7317],[6529,7317],[6530,7317],[6531,7317],[6532,7317],[6533,7317],[6534,7317],[6535,7317],[6536,7317],[6537,7317],[6538,7317],[6539,7317],[6540,7317],[6541,7317],[6542,7317],[6543,7317],[6544,7317],[6545,7317],[6546,7317],[6547,7317],[6548,7317],[6549,7317],[6550,7317],[6551,7317],[6552,7317],[6553,7317],[6554,7317],[6555,7317],[6556,7317],[6557,7317],[6558,7317],[6559,7317],[6560,7317],[6561,7317],[6562,7317],[6563,7317],[6564,7317],[6565,7317],[6566,7317],[6567,7317],[6568,7317],[6569,7317],[6570,7317],[6571,7317],[6572,7317],[6573,7317],[6574,7317],[6575,7317],[6576,7317],[6577,7317],[6578,7317],[6579,7317],[6580,7317],[6581,7317],[6582,7317],[6583,7317],[6584,7317],[6585,7317],[6586,7317],[6587,7317],[6588,7317],[6589,7317],[6590,7317],[6591,7317],[6592,7317],[6593,7317],[6594,7317],[6595,7317],[6596,7317],[6597,7317],[6598,7317],[6599,7317],[6600,7317],[6601,7317],[6602,7317],[6603,7317],[6604,7317],[6605,7317],[6606,7317],[6607,7317],[6608,7317],[6609,7317],[6610,7317],[6611,7317],[6612,7317],[6613,7317],[6614,7317],[6615,7317],[6616,7317],[6617,7317],[6618,7317],[6619,7317],[6620,7317],[6621,7317],[6622,7317],[6623,7317],[6624,7317],[6625,7317],[6626,7317],[6627,7317],[6628,7317],[6629,7315],[6630,7315],[6631,7304],[6632,7315],[6633,7315],[6634,7315],[6635,7315],[6636,7315],[6637,7315],[6638,7315],[6639,7315],[6640,7315],[6641,7315],[6642,7315],[6643,7315],[6644,7315],[6645,7304],[6646,7304],[6647,7315],[6648,7315],[6649,7353],[6650,7353],[6651,7353],[6652,7353],[6653,7353],[6654,7353],[6655,7303],[6656,7303],[6657,7303],[6658,7303],[6659,7303],[6660,7303],[6661,7303],[6662,7303],[6663,7303],[6664,7303],[6665,7303],[6666,7303],[6667,7303],[6668,7303],[6669,7303],[6670,7303],[6671,7303],[6672,7303],[6673,7303],[6674,7303],[6675,7303],[6676,7303],[6677,7303],[6678,7303],[6679,7303],[6680,7303],[6681,7303],[6682,7303],[6683,7303],[6684,7303],[6685,7303],[6686,7303],[6687,7303],[6688,7303],[6689,7303],[6690,7303],[6691,7303],[6692,7303],[6693,7303],[6694,7303],[6695,7303],[6696,7303],[6697,7303],[6698,7303],[6699,7303],[6700,7303],[6701,7303],[6702,7303],[6703,7303],[6704,7303],[6705,7303],[6706,7303],[6707,7303],[6708,7303],[6709,7303],[6710,7303],[6711,7303],[6712,7303],[6713,7303],[6714,7303],[6715,7303],[6716,7303],[6717,7303],[6718,7303],[6719,7303],[6720,7303],[6721,7303],[6722,7303],[6723,7303],[6724,7303],[6725,7303],[6726,7303],[6727,7303],[6728,7303],[6729,7303],[6730,7303],[6731,7303],[6732,7303],[6733,7303],[6734,7303],[6735,7303],[6736,7303],[6737,7303],[6738,7303],[6739,7303],[6740,7303],[6741,7303],[6742,7303],[6743,7303],[6744,7303],[6745,7303],[6746,7303],[6747,7303],[6748,7303],[6749,7303],[6750,7303],[6751,7303],[6752,7303],[6753,7303],[6754,7303],[6755,7303],[6756,7303],[6757,7303],[6758,7303],[6759,7303],[6760,7303],[6761,7303],[6762,7303],[6763,7303],[6764,7303],[6765,7303],[6766,7303],[6767,7303],[6768,7303],[6769,7303],[6770,7303],[6771,7303],[6772,7303],[6773,7303],[6774,7303],[6775,7303],[6776,7303],[6777,7303],[6778,7303],[6779,7303],[6780,7303],[6781,7303],[6782,7303],[6783,7303],[6784,7303],[6785,7303],[6786,7303],[6787,7303],[6788,7303],[6789,7303],[6790,7303],[6791,7303],[6792,7303],[6793,7303],[6794,7303],[6795,7303],[6796,7303],[6797,7303],[6798,7303],[6799,7303],[6800,7303],[6801,7303],[6802,7303],[6803,7303],[6804,7303],[6805,7303],[6806,7303],[6807,7303],[6808,7303],[6809,7303],[6810,7303],[6811,7303],[6812,7303],[6813,7303],[6814,7303],[6815,7303],[6816,7303],[6817,7303],[6818,7303],[6819,7349],[6820,7349],[6821,7349],[6822,7349],[6823,7349],[6824,7349],[6825,7349],[6826,7349],[6827,7349],[6828,7349],[6829,7349],[6830,7349],[6831,7349],[6832,7349],[6833,7349],[6834,7349],[6835,7349],[6836,7349],[6837,7349],[6838,7349],[6839,7349],[6840,7349],[6841,7349],[6842,7349],[6843,7349],[6844,7349],[6845,7349],[6846,7349],[6847,7349],[6848,7349],[6849,7284],[6850,7284],[6851,7284],[6852,7284],[6853,7284],[6854,7284],[6855,7284],[6856,7284],[6857,7284],[6858,7294],[6859,7294],[6860,7294],[6861,7294],[6862,7294],[6863,7294],[6864,7294],[6865,7294],[6866,7294],[6867,7294],[6868,7294],[6869,7294],[6870,7294],[6871,7294],[6872,7294],[6873,7294],[6874,7294],[6875,7294],[6876,7294],[6877,7294],[6878,7294],[6879,7294],[6880,7294],[6881,7294],[6882,7294],[6883,7294],[6884,7294],[6885,7294],[6886,7294],[6887,7294],[6888,7294],[6889,7294],[6890,7294],[6891,7294],[6892,7294],[6893,7294],[6894,7294],[6895,7294],[6896,7294],[6897,7294],[6898,7294],[6899,7294],[6900,7294],[6901,7294],[6902,7294],[6903,7294],[6904,7294],[6905,7294],[6906,7294],[6907,7294],[6908,7294],[6909,7294],[6910,7294],[6911,7294],[6912,7294],[6913,7294],[6914,7294],[6915,7294],[6916,7294],[6917,7294],[6918,7294],[6919,7294],[6920,7294],[6921,7294],[6922,7294],[6923,7294],[6924,7294],[6925,7294],[6926,7294],[6927,7294],[6928,7294],[6929,7294],[6930,7294],[6931,7294],[6932,7294],[6933,7294],[6934,7294],[6935,7294],[6936,7294],[6937,7294],[6938,7294],[6939,7294],[6940,7294],[6941,7294],[6942,7294],[6943,7294],[6944,7294],[6945,7294],[6946,7294],[6947,7294],[6948,7294],[6949,7294],[6950,7294],[6951,7294],[6952,7294],[6953,7294],[6954,7294],[6955,7294],[6956,7294],[6957,7294],[6958,7294],[6959,7294],[6960,7294],[6961,7294],[6962,7294],[6963,7294],[6964,7294],[6965,7294],[6966,7294],[6967,7294],[6968,7294],[6969,7294],[6970,7294],[6971,7294],[6972,7294],[6973,7294],[6974,7294],[6975,7294],[6976,7294],[6977,7294],[6978,7294],[6979,7294],[6980,7294],[6981,7294],[6982,7294],[6983,7294],[6984,7294],[6985,7294],[6986,7294],[6987,7294],[6988,7294],[6989,7294],[6990,7294],[6991,7294],[6992,7294],[6993,7294],[6994,7294],[6995,7294],[6996,7294],[6997,7294],[6998,7294],[6999,7294],[7000,7294],[7001,7294],[7002,7294],[7003,7294],[7004,7294],[7005,7294],[7006,7294],[7007,7294],[7008,7300],[7009,7300],[7010,7300],[7011,7300],[7012,7300],[7013,7300],[7014,7300],[7015,7300],[7016,7300],[7017,7300],[7018,7300],[7019,7300],[7020,7300],[7021,7300],[7022,7300],[7023,7300],[7024,7300],[7025,7300],[7026,7300],[7027,7300],[7028,7300],[7029,7300],[7030,7300],[7031,7300],[7032,7300],[7033,7300],[7034,7300],[7035,7300],[7036,7300],[7037,7300],[7038,7300],[7039,7300],[7040,7300],[7041,7300],[7042,7300],[7043,7300],[7044,7300],[7045,7300],[7046,7300],[7047,7300],[7048,7300],[7049,7300],[7050,7300],[7051,7300],[7052,7300],[7053,7300],[7054,7300],[7055,7300],[7056,7300],[7057,7300],[7058,7300],[7059,7300],[7060,7300],[7061,7300],[7062,7300],[7063,7300],[7064,7300],[7065,7300],[7066,7300],[7067,7300],[7068,7300],[7069,7300],[7070,7300],[7071,7300],[7072,7300],[7073,7300],[7074,7300],[7075,7300],[7076,7300],[7077,7300],[7078,7300],[7079,7300],[7080,7300],[7081,7300],[7082,7300],[7083,7300],[7084,7300],[7085,7300],[7086,7300],[7087,7300],[7088,7300],[7089,7300],[7090,7300],[7091,7300],[7092,7300],[7093,7300],[7094,7300],[7095,7300],[7096,7300],[7097,7300],[7098,7300],[7099,7300],[7100,7300],[7101,7300],[7102,7300],[7103,7300],[7104,7300],[7105,7300],[7106,7300],[7107,7300],[7108,7300],[7109,7300],[7110,7300],[7111,7300],[7112,7300],[7113,7300],[7114,7300],[7115,7300],[7116,7300],[7117,7300],[7118,7300],[7119,7300],[7120,7300],[7121,7300],[7122,7300],[7123,7300],[7124,7300],[7125,7300],[7126,7300],[7127,7300],[7128,7300],[7129,7300],[7130,7300],[7131,7300],[7132,7300],[7133,7300],[7134,7300],[7135,7300],[7136,7300],[7137,7300],[7138,7300],[7139,7300],[7140,7300],[7141,7300],[7142,7300],[7143,7300],[7144,7300],[7145,7300],[7146,7300],[7147,7300],[7148,7300],[7149,7300],[7150,7300],[7151,7300],[7152,7300],[7153,7300],[7154,7300],[7155,7300],[7156,7300],[7157,7300],[7158,7300],[7159,7300],[7160,7300],[7161,7300],[7162,7300],[7163,7300],[7164,7300],[7165,7300],[7166,7300],[7167,7300],[7168,7300],[7169,7300],[7170,7300],[7171,7300],[7172,7300],[7173,7300],[7174,7300],[7175,7300],[7176,7300],[7177,7300],[7178,7300],[7179,7300],[7180,7300],[7181,7300],[7182,7300],[7183,7300],[7184,7297],[7185,7297],[7186,7303],[7187,7297],[7188,7297],[7189,7297],[7190,7297],[7191,7297],[7192,7297],[7193,7297],[7194,7297],[7195,7297],[7196,7297],[7197,7297],[7198,7297],[7199,7297],[7200,7297],[7201,7297],[7202,7297],[7203,7297],[7204,7297],[7205,7297],[7206,7297],[7207,7297],[7208,7297],[7209,7297],[7210,7297],[7211,7297],[7212,7297],[7213,7297],[7214,7297],[7215,7276],[7216,7276],[7217,7277],[7218,7276],[7219,7276],[7220,7276],[7221,7276],[7222,7276],[7223,7276],[7224,7277],[7225,7276],[7226,7276],[7227,7277],[7228,7276],[7229,7276],[7230,7276],[7231,7276],[7232,7276],[7233,7276],[7234,7276]],"b":[[432,"impl-From%3CColor%3E-for-Fill"],[433,"impl-From%3CGradient%3E-for-Fill"],[434,"impl-From%3CLinear%3E-for-Fill"],[440,"impl-From%3CColor%3E-for-Style"],[442,"impl-From%3CGradient%3E-for-Style"],[443,"impl-From%3C%26str%3E-for-Text"],[445,"impl-From%3CString%3E-for-Text"],[1318,"impl-BuilderWithAttributes"],[1319,"impl-PathBuilder-for-BuilderWithAttributes"],[1371,"impl-Build-for-BuilderWithAttributes"],[1372,"impl-BuilderWithAttributes"],[1502,"impl-BuilderWithAttributes"],[1503,"impl-PathBuilder-for-BuilderWithAttributes"],[1609,"impl-BuilderWithAttributes"],[1610,"impl-PathBuilder-for-BuilderWithAttributes"],[1767,"impl-Index%3CControlPointId%3E-for-Path"],[1768,"impl-Index%3CEndpointId%3E-for-Path"],[1769,"impl-Index%3CControlPointId%3E-for-PathSlice%3C\'l%3E"],[1770,"impl-Index%3CEndpointId%3E-for-PathSlice%3C\'l%3E"],[2000,"impl-IntoIterator-for-%26PathSlice%3C\'l%3E"],[2001,"impl-IntoIterator-for-PathSlice%3C\'l%3E"],[2056,"impl-PathBuilder-for-BuilderWithAttributes"],[2057,"impl-BuilderWithAttributes"],[2081,"impl-BuilderWithAttributes"],[2082,"impl-PathBuilder-for-BuilderWithAttributes"],[2096,"impl-BuilderWithAttributes"],[2097,"impl-PathBuilder-for-BuilderWithAttributes"],[2099,"impl-BuilderWithAttributes"],[2100,"impl-PathBuilder-for-BuilderWithAttributes"],[2469,"impl-NoAttributes%3CB%3E"],[2470,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[2484,"impl-Flattened%3CBuilder%3E"],[2485,"impl-Build-for-Flattened%3CBuilder%3E"],[2487,"impl-Build-for-WithSvg%3CBuilder%3E"],[2488,"impl-WithSvg%3CBuilder%3E"],[2489,"impl-Build-for-NoAttributes%3CB%3E"],[2490,"impl-NoAttributes%3CB%3E"],[2505,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[2506,"impl-WithSvg%3CBuilder%3E"],[2517,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[2518,"impl-WithSvg%3CBuilder%3E"],[2519,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[2520,"impl-NoAttributes%3CB%3E"],[2547,"impl-NoAttributes%3CB%3E"],[2548,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[2558,"impl-Debug-for-BorderRadii"],[2559,"impl-Display-for-BorderRadii"],[2636,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[2637,"impl-WithSvg%3CBuilder%3E"],[2638,"impl-NoAttributes%3CB%3E"],[2639,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[2641,"impl-WithSvg%3CBuilder%3E"],[2642,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[2662,"impl-WithSvg%3CBuilder%3E"],[2663,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[2664,"impl-NoAttributes%3CB%3E"],[2665,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[2686,"impl-WithSvg%3CBuilder%3E"],[2687,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[2688,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[2689,"impl-NoAttributes%3CB%3E"],[2875,"impl-Index%3CControlPointId%3E-for-CommandsPathSlice%3C\'l,+Endpoint,+ControlPoint%3E"],[2876,"impl-Index%3CEndpointId%3E-for-CommandsPathSlice%3C\'l,+Endpoint,+ControlPoint%3E"],[3037,"impl-Add%3C%26Angle%3CT%3E%3E-for-Angle%3CT%3E"],[3038,"impl-Add-for-Angle%3CT%3E"],[3041,"impl-Arc%3CS%3E"],[3042,"impl-Segment-for-Arc%3CS%3E"],[3043,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3044,"impl-CubicBezierSegment%3CS%3E"],[3045,"impl-Segment-for-LineSegment%3CS%3E"],[3046,"impl-LineSegment%3CS%3E"],[3047,"impl-QuadraticBezierSegment%3CS%3E"],[3048,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3054,"impl-Arc%3CS%3E"],[3055,"impl-Segment-for-Arc%3CS%3E"],[3056,"impl-CubicBezierSegment%3CS%3E"],[3057,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3104,"impl-Segment-for-Arc%3CS%3E"],[3105,"impl-Arc%3CS%3E"],[3106,"impl-CubicBezierSegment%3CS%3E"],[3107,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3108,"impl-Segment-for-LineSegment%3CS%3E"],[3109,"impl-LineSegment%3CS%3E"],[3110,"impl-QuadraticBezierSegment%3CS%3E"],[3111,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3233,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3234,"impl-CubicBezierSegment%3CS%3E"],[3236,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3237,"impl-QuadraticBezierSegment%3CS%3E"],[3242,"impl-Div%3CT%3E-for-Angle%3CT%3E"],[3243,"impl-Div-for-Angle%3CT%3E"],[3267,"impl-CubicBezierSegment%3CS%3E"],[3268,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3270,"impl-QuadraticBezierSegment%3CS%3E"],[3271,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3273,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3274,"impl-CubicBezierSegment%3CS%3E"],[3276,"impl-QuadraticBezierSegment%3CS%3E"],[3277,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3313,"impl-Arc%3CS%3E"],[3314,"impl-Segment-for-Arc%3CS%3E"],[3315,"impl-CubicBezierSegment%3CS%3E"],[3316,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3317,"impl-LineSegment%3CS%3E"],[3318,"impl-Segment-for-LineSegment%3CS%3E"],[3319,"impl-QuadraticBezierSegment%3CS%3E"],[3320,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3337,"impl-Segment-for-Arc%3CS%3E"],[3338,"impl-Arc%3CS%3E"],[3340,"impl-CubicBezierSegment%3CS%3E"],[3341,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3343,"impl-QuadraticBezierSegment%3CS%3E"],[3344,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3373,"impl-Arc%3CS%3E"],[3374,"impl-Segment-for-Arc%3CS%3E"],[3375,"impl-From%3CSvgArc%3CS%3E%3E-for-Arc%3CS%3E"],[3377,"impl-CubicBezierSegment%3CS%3E"],[3379,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3380,"impl-Segment-for-LineSegment%3CS%3E"],[3381,"impl-LineSegment%3CS%3E"],[3385,"impl-QuadraticBezierSegment%3CS%3E"],[3387,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3582,"impl-Arc%3CS%3E"],[3583,"impl-Segment-for-Arc%3CS%3E"],[3584,"impl-CubicBezierSegment%3CS%3E"],[3585,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3586,"impl-LineSegment%3CS%3E"],[3587,"impl-Segment-for-LineSegment%3CS%3E"],[3588,"impl-QuadraticBezierSegment%3CS%3E"],[3589,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3606,"impl-Arc%3CS%3E"],[3607,"impl-Segment-for-Arc%3CS%3E"],[3608,"impl-CubicBezierSegment%3CS%3E"],[3609,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3610,"impl-LineSegment%3CS%3E"],[3611,"impl-Segment-for-LineSegment%3CS%3E"],[3612,"impl-QuadraticBezierSegment%3CS%3E"],[3613,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3616,"impl-Segment-for-Arc%3CS%3E"],[3617,"impl-Arc%3CS%3E"],[3618,"impl-CubicBezierSegment%3CS%3E"],[3619,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3620,"impl-Segment-for-LineSegment%3CS%3E"],[3621,"impl-LineSegment%3CS%3E"],[3622,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3623,"impl-QuadraticBezierSegment%3CS%3E"],[3631,"impl-Sum-for-Angle%3CT%3E"],[3632,"impl-Sum%3C%26Angle%3CT%3E%3E-for-Angle%3CT%3E"],[3637,"impl-Arc%3CS%3E"],[3638,"impl-Segment-for-Arc%3CS%3E"],[3639,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3640,"impl-CubicBezierSegment%3CS%3E"],[3641,"impl-LineSegment%3CS%3E"],[3642,"impl-Segment-for-LineSegment%3CS%3E"],[3643,"impl-QuadraticBezierSegment%3CS%3E"],[3644,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3773,"impl-Arc%3CS%3E"],[3774,"impl-Segment-for-Arc%3CS%3E"],[3775,"impl-CubicBezierSegment%3CS%3E"],[3776,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3777,"impl-Segment-for-LineSegment%3CS%3E"],[3778,"impl-LineSegment%3CS%3E"],[3779,"impl-QuadraticBezierSegment%3CS%3E"],[3780,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3791,"impl-Arc%3CS%3E"],[3792,"impl-Segment-for-Arc%3CS%3E"],[3793,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3794,"impl-CubicBezierSegment%3CS%3E"],[3795,"impl-LineSegment%3CS%3E"],[3796,"impl-Segment-for-LineSegment%3CS%3E"],[3797,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3798,"impl-QuadraticBezierSegment%3CS%3E"],[3899,"impl-AsRef%3Cstr%3E-for-ArrayString%3CCAP%3E"],[3900,"impl-AsRef%3CPath%3E-for-ArrayString%3CCAP%3E"],[3985,"impl-PartialEq-for-ArrayVec%3CT,+CAP%3E"],[3986,"impl-PartialEq%3C%5BT%5D%3E-for-ArrayVec%3CT,+CAP%3E"],[3987,"impl-PartialEq%3Cstr%3E-for-ArrayString%3CCAP%3E"],[3988,"impl-PartialEq-for-ArrayString%3CCAP%3E"],[4003,"impl-Debug-for-ArrayString%3CCAP%3E"],[4004,"impl-Display-for-ArrayString%3CCAP%3E"],[4005,"impl-Display-for-CapacityError%3CT%3E"],[4006,"impl-Debug-for-CapacityError%3CT%3E"],[4028,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[4029,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[4031,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[4032,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[4083,"impl-IntoIterator-for-%26ArrayVec%3CT,+CAP%3E"],[4084,"impl-IntoIterator-for-ArrayVec%3CT,+CAP%3E"],[4085,"impl-IntoIterator-for-%26mut+ArrayVec%3CT,+CAP%3E"],[4098,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[4099,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[4103,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[4104,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[4143,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[4144,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[4186,"impl-TryFrom%3C%26str%3E-for-ArrayString%3CCAP%3E"],[4188,"impl-TryFrom%3CArguments%3C\'a%3E%3E-for-ArrayString%3CCAP%3E"],[4389,"impl-Add-for-Length%3CT,+U%3E"],[4390,"impl-Add%3C%26Length%3CT,+U%3E%3E-for-Length%3CT,+U%3E"],[4391,"impl-Add%3CVector2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[4392,"impl-Add%3CSize2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[4393,"impl-Add%3CSize3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[4394,"impl-Add%3CVector3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[4397,"impl-Add%3C%26Size2D%3CT,+U%3E%3E-for-Size2D%3CT,+U%3E"],[4398,"impl-Add-for-Size2D%3CT,+U%3E"],[4399,"impl-Add%3C%26Size3D%3CT,+U%3E%3E-for-Size3D%3CT,+U%3E"],[4400,"impl-Add-for-Size3D%3CT,+U%3E"],[4403,"impl-Add%3C%26Vector2D%3CT,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[4404,"impl-Add-for-Vector2D%3CT,+U%3E"],[4405,"impl-Add%3C%26Vector3D%3CT,+U%3E%3E-for-Vector3D%3CT,+U%3E"],[4406,"impl-Add-for-Vector3D%3CT,+U%3E"],[4408,"impl-AddAssign%3CSize2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[4409,"impl-AddAssign%3CVector2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[4410,"impl-AddAssign%3CSize3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[4411,"impl-AddAssign%3CVector3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[4449,"impl-ApproxEq%3CT%3E-for-Transform2D%3CT,+Src,+Dst%3E"],[4450,"impl-Transform2D%3CT,+Src,+Dst%3E"],[4451,"impl-ApproxEq%3CT%3E-for-Transform3D%3CT,+Src,+Dst%3E"],[4452,"impl-Transform3D%3CT,+Src,+Dst%3E"],[4655,"impl-Point2D%3CT,+U%3E"],[4656,"impl-Ceil-for-Point2D%3CT,+U%3E"],[4657,"impl-Ceil-for-Point3D%3CT,+U%3E"],[4658,"impl-Point3D%3CT,+U%3E"],[4659,"impl-Size2D%3CT,+U%3E"],[4660,"impl-Ceil-for-Size2D%3CT,+U%3E"],[4661,"impl-Size3D%3CT,+U%3E"],[4662,"impl-Ceil-for-Size3D%3CT,+U%3E"],[4663,"impl-Ceil-for-Vector2D%3CT,+U%3E"],[4664,"impl-Vector2D%3CT,+U%3E"],[4665,"impl-Ceil-for-Vector3D%3CT,+U%3E"],[4666,"impl-Vector3D%3CT,+U%3E"],[4866,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Box2D%3CT,+U2%3E"],[4867,"impl-Div%3CT%3E-for-Box2D%3CT,+U%3E"],[4868,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Box3D%3CT,+U2%3E"],[4869,"impl-Div%3CT%3E-for-Box3D%3CT,+U%3E"],[4870,"impl-Div%3CScale%3CT,+Src,+Dst%3E%3E-for-Length%3CT,+Dst%3E"],[4871,"impl-Div%3CT%3E-for-Length%3CT,+U%3E"],[4872,"impl-Div%3CLength%3CT,+Src%3E%3E-for-Length%3CT,+Dst%3E"],[4873,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Point2D%3CT,+U2%3E"],[4874,"impl-Div%3CT%3E-for-Point2D%3CT,+U%3E"],[4875,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Point3D%3CT,+U2%3E"],[4876,"impl-Div%3CT%3E-for-Point3D%3CT,+U%3E"],[4877,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Rect%3CT,+U2%3E"],[4878,"impl-Div%3CT%3E-for-Rect%3CT,+U%3E"],[4879,"impl-Div%3CT%3E-for-SideOffsets2D%3CT,+U%3E"],[4880,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-SideOffsets2D%3CT,+U2%3E"],[4881,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Size2D%3CT,+U2%3E"],[4882,"impl-Div%3CT%3E-for-Size2D%3CT,+U%3E"],[4883,"impl-Div%3CT%3E-for-Size3D%3CT,+U%3E"],[4884,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Size3D%3CT,+U2%3E"],[4885,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Vector2D%3CT,+U2%3E"],[4886,"impl-Div%3CT%3E-for-Vector2D%3CT,+U%3E"],[4887,"impl-Div%3CT%3E-for-Vector3D%3CT,+U%3E"],[4888,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Vector3D%3CT,+U2%3E"],[4889,"impl-DivAssign%3CT%3E-for-Box2D%3CT,+U%3E"],[4890,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Box2D%3CT,+U%3E"],[4891,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Box3D%3CT,+U%3E"],[4892,"impl-DivAssign%3CT%3E-for-Box3D%3CT,+U%3E"],[4894,"impl-DivAssign%3CT%3E-for-Point2D%3CT,+U%3E"],[4895,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Point2D%3CT,+U%3E"],[4896,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Point3D%3CT,+U%3E"],[4897,"impl-DivAssign%3CT%3E-for-Point3D%3CT,+U%3E"],[4898,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Rect%3CT,+U%3E"],[4899,"impl-DivAssign%3CT%3E-for-Rect%3CT,+U%3E"],[4900,"impl-DivAssign%3CT%3E-for-SideOffsets2D%3CT,+U%3E"],[4901,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-SideOffsets2D%3CT,+U%3E"],[4902,"impl-DivAssign%3CT%3E-for-Size2D%3CT,+U%3E"],[4903,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Size2D%3CT,+U%3E"],[4904,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Size3D%3CT,+U%3E"],[4905,"impl-DivAssign%3CT%3E-for-Size3D%3CT,+U%3E"],[4906,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[4907,"impl-DivAssign%3CT%3E-for-Vector2D%3CT,+U%3E"],[4908,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Vector3D%3CT,+U%3E"],[4909,"impl-DivAssign%3CT%3E-for-Vector3D%3CT,+U%3E"],[5060,"impl-Point2D%3CT,+U%3E"],[5061,"impl-Floor-for-Point2D%3CT,+U%3E"],[5062,"impl-Point3D%3CT,+U%3E"],[5063,"impl-Floor-for-Point3D%3CT,+U%3E"],[5064,"impl-Size2D%3CT,+U%3E"],[5065,"impl-Floor-for-Size2D%3CT,+U%3E"],[5066,"impl-Size3D%3CT,+U%3E"],[5067,"impl-Floor-for-Size3D%3CT,+U%3E"],[5068,"impl-Floor-for-Vector2D%3CT,+U%3E"],[5069,"impl-Vector2D%3CT,+U%3E"],[5070,"impl-Floor-for-Vector3D%3CT,+U%3E"],[5071,"impl-Vector3D%3CT,+U%3E"],[5099,"impl-From%3CPoint3D%3CT,+U%3E%3E-for-HomogeneousVector%3CT,+U%3E"],[5100,"impl-From%3CVector2D%3CT,+U%3E%3E-for-HomogeneousVector%3CT,+U%3E"],[5102,"impl-From%3CPoint2D%3CT,+U%3E%3E-for-HomogeneousVector%3CT,+U%3E"],[5103,"impl-From%3CVector3D%3CT,+U%3E%3E-for-HomogeneousVector%3CT,+U%3E"],[5105,"impl-From%3C(T,+T)%3E-for-Point2D%3CT,+U%3E"],[5106,"impl-From%3C%5BT;+2%5D%3E-for-Point2D%3CT,+U%3E"],[5108,"impl-From%3C(T,+T,+T)%3E-for-Point3D%3CT,+U%3E"],[5109,"impl-From%3C%5BT;+3%5D%3E-for-Point3D%3CT,+U%3E"],[5114,"impl-From%3CRotation3D%3CT,+Src,+Dst%3E%3E-for-RigidTransform3D%3CT,+Src,+Dst%3E"],[5115,"impl-From%3CVector3D%3CT,+Dst%3E%3E-for-RigidTransform3D%3CT,+Src,+Dst%3E"],[5120,"impl-From%3C%5BT;+2%5D%3E-for-Size2D%3CT,+U%3E"],[5121,"impl-From%3C(T,+T)%3E-for-Size2D%3CT,+U%3E"],[5122,"impl-From%3CVector2D%3CT,+U%3E%3E-for-Size2D%3CT,+U%3E"],[5124,"impl-From%3C(T,+T,+T)%3E-for-Size3D%3CT,+U%3E"],[5125,"impl-From%3C%5BT;+3%5D%3E-for-Size3D%3CT,+U%3E"],[5126,"impl-From%3CVector3D%3CT,+U%3E%3E-for-Size3D%3CT,+U%3E"],[5132,"impl-From%3CSize2D%3CT,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[5133,"impl-From%3C%5BT;+2%5D%3E-for-Vector2D%3CT,+U%3E"],[5135,"impl-From%3CTranslation2D%3CT,+Src,+Dst%3E%3E-for-Vector2D%3CT,+Src%3E"],[5136,"impl-From%3C(T,+T)%3E-for-Vector2D%3CT,+U%3E"],[5138,"impl-From%3C%5BT;+3%5D%3E-for-Vector3D%3CT,+U%3E"],[5139,"impl-From%3CTranslation3D%3CT,+Src,+Dst%3E%3E-for-Vector3D%3CT,+Src%3E"],[5140,"impl-From%3C(T,+T,+T)%3E-for-Vector3D%3CT,+U%3E"],[5631,"impl-Mul%3CT%3E-for-Box2D%3CT,+U%3E"],[5632,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Box2D%3CT,+U1%3E"],[5633,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Box3D%3CT,+U1%3E"],[5634,"impl-Mul%3CT%3E-for-Box3D%3CT,+U%3E"],[5635,"impl-Mul%3CT%3E-for-Length%3CT,+U%3E"],[5636,"impl-Mul%3CScale%3CT,+Src,+Dst%3E%3E-for-Length%3CT,+Src%3E"],[5637,"impl-Mul%3CT%3E-for-Point2D%3CT,+U%3E"],[5638,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Point2D%3CT,+U1%3E"],[5639,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Point3D%3CT,+U1%3E"],[5640,"impl-Mul%3CT%3E-for-Point3D%3CT,+U%3E"],[5641,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Rect%3CT,+U1%3E"],[5642,"impl-Mul%3CT%3E-for-Rect%3CT,+U%3E"],[5644,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-SideOffsets2D%3CT,+U1%3E"],[5645,"impl-Mul%3CT%3E-for-SideOffsets2D%3CT,+U%3E"],[5646,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Size2D%3CT,+U1%3E"],[5647,"impl-Mul%3CT%3E-for-Size2D%3CT,+U%3E"],[5648,"impl-Mul%3CT%3E-for-Size3D%3CT,+U%3E"],[5649,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Size3D%3CT,+U1%3E"],[5650,"impl-Mul%3CT%3E-for-Vector2D%3CT,+U%3E"],[5651,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Vector2D%3CT,+U1%3E"],[5652,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Vector3D%3CT,+U1%3E"],[5653,"impl-Mul%3CT%3E-for-Vector3D%3CT,+U%3E"],[5654,"impl-MulAssign%3CT%3E-for-Box2D%3CT,+U%3E"],[5655,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Box2D%3CT,+U%3E"],[5656,"impl-MulAssign%3CT%3E-for-Box3D%3CT,+U%3E"],[5657,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Box3D%3CT,+U%3E"],[5659,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Point2D%3CT,+U%3E"],[5660,"impl-MulAssign%3CT%3E-for-Point2D%3CT,+U%3E"],[5661,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Point3D%3CT,+U%3E"],[5662,"impl-MulAssign%3CT%3E-for-Point3D%3CT,+U%3E"],[5663,"impl-MulAssign%3CT%3E-for-Rect%3CT,+U%3E"],[5664,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Rect%3CT,+U%3E"],[5665,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-SideOffsets2D%3CT,+U%3E"],[5666,"impl-MulAssign%3CT%3E-for-SideOffsets2D%3CT,+U%3E"],[5667,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Size2D%3CT,+U%3E"],[5668,"impl-MulAssign%3CT%3E-for-Size2D%3CT,+U%3E"],[5669,"impl-MulAssign%3CT%3E-for-Size3D%3CT,+U%3E"],[5670,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Size3D%3CT,+U%3E"],[5671,"impl-MulAssign%3CT%3E-for-Vector2D%3CT,+U%3E"],[5672,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[5673,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Vector3D%3CT,+U%3E"],[5674,"impl-MulAssign%3CT%3E-for-Vector3D%3CT,+U%3E"],[5786,"impl-Round-for-Point2D%3CT,+U%3E"],[5787,"impl-Point2D%3CT,+U%3E"],[5788,"impl-Round-for-Point3D%3CT,+U%3E"],[5789,"impl-Point3D%3CT,+U%3E"],[5791,"impl-Round-for-Size2D%3CT,+U%3E"],[5792,"impl-Size2D%3CT,+U%3E"],[5793,"impl-Round-for-Size3D%3CT,+U%3E"],[5794,"impl-Size3D%3CT,+U%3E"],[5795,"impl-Round-for-Vector2D%3CT,+U%3E"],[5796,"impl-Vector2D%3CT,+U%3E"],[5797,"impl-Round-for-Vector3D%3CT,+U%3E"],[5798,"impl-Vector3D%3CT,+U%3E"],[5839,"impl-Sub-for-Point2D%3CT,+U%3E"],[5840,"impl-Sub%3CSize2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[5841,"impl-Sub%3CVector2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[5842,"impl-Sub%3CVector3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[5843,"impl-Sub%3CSize3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[5844,"impl-Sub-for-Point3D%3CT,+U%3E"],[5854,"impl-SubAssign%3CVector2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[5855,"impl-SubAssign%3CSize2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[5856,"impl-SubAssign%3CVector3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[5857,"impl-SubAssign%3CSize3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[5865,"impl-Sum%3C%26Length%3CT,+U%3E%3E-for-Length%3CT,+U%3E"],[5866,"impl-Sum-for-Length%3CT,+U%3E"],[5867,"impl-Sum%3C%26Size2D%3CT,+U%3E%3E-for-Size2D%3CT,+U%3E"],[5868,"impl-Sum-for-Size2D%3CT,+U%3E"],[5869,"impl-Sum%3C%26Size3D%3CT,+U%3E%3E-for-Size3D%3CT,+U%3E"],[5870,"impl-Sum-for-Size3D%3CT,+U%3E"],[5871,"impl-Sum-for-Vector2D%3CT,+U%3E"],[5872,"impl-Sum%3C%26Vector2D%3CT,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[5873,"impl-Sum%3C%26Vector3D%3CT,+U%3E%3E-for-Vector3D%3CT,+U%3E"],[5874,"impl-Sum-for-Vector3D%3CT,+U%3E"],[6057,"impl-Rotation2D%3CT,+Src,+Dst%3E"],[6058,"impl-Transformation%3CS%3E-for-Rotation2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[6059,"impl-Scale%3CT,+Src,+Dst%3E"],[6060,"impl-Transformation%3CS%3E-for-Scale%3CS,+UnknownUnit,+UnknownUnit%3E"],[6061,"impl-Translation2D%3CT,+Src,+Dst%3E"],[6062,"impl-Transformation%3CS%3E-for-Translation2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[6063,"impl-Transformation%3CS%3E-for-Transform2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[6064,"impl-Transform2D%3CT,+Src,+Dst%3E"],[6080,"impl-Transformation%3CS%3E-for-Rotation2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[6081,"impl-Rotation2D%3CT,+Src,+Dst%3E"],[6082,"impl-Scale%3CT,+Src,+Dst%3E"],[6083,"impl-Transformation%3CS%3E-for-Scale%3CS,+UnknownUnit,+UnknownUnit%3E"],[6085,"impl-Transformation%3CS%3E-for-Transform2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[6086,"impl-Transform2D%3CT,+Src,+Dst%3E"],[6393,"impl-Zero-for-Point2D%3CT,+U%3E"],[6394,"impl-Point2D%3CT,+U%3E"],[6395,"impl-Zero-for-Point3D%3CT,+U%3E"],[6396,"impl-Point3D%3CT,+U%3E"],[6399,"impl-Size2D%3CT,+U%3E"],[6400,"impl-Zero-for-Size2D%3CT,+U%3E"],[6401,"impl-Size3D%3CT,+U%3E"],[6402,"impl-Zero-for-Size3D%3CT,+U%3E"],[6403,"impl-Zero-for-Vector2D%3CT,+U%3E"],[6404,"impl-Vector2D%3CT,+U%3E"],[6405,"impl-Vector3D%3CT,+U%3E"],[6406,"impl-Zero-for-Vector3D%3CT,+U%3E"],[6878,"impl-PathBuilder-for-Builder%3C\'l%3E"],[6879,"impl-Builder%3C\'l%3E"],[6880,"impl-BuilderWithAttributes%3C\'l%3E"],[6881,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[6888,"impl-Builder%3C\'l%3E"],[6889,"impl-Build-for-Builder%3C\'l%3E"],[6890,"impl-BuilderWithAttributes%3C\'l%3E"],[6891,"impl-Build-for-BuilderWithAttributes%3C\'l%3E"],[6901,"impl-PathBuilder-for-Builder%3C\'l%3E"],[6902,"impl-Builder%3C\'l%3E"],[6903,"impl-BuilderWithAttributes%3C\'l%3E"],[6904,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[6917,"impl-Builder%3C\'l%3E"],[6918,"impl-PathBuilder-for-Builder%3C\'l%3E"],[6919,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[6920,"impl-BuilderWithAttributes%3C\'l%3E"],[6961,"impl-PathBuilder-for-Builder%3C\'l%3E"],[6962,"impl-Builder%3C\'l%3E"],[6963,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[6964,"impl-BuilderWithAttributes%3C\'l%3E"],[6970,"impl-Builder%3C\'l%3E"],[6971,"impl-PathBuilder-for-Builder%3C\'l%3E"],[6972,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[6973,"impl-BuilderWithAttributes%3C\'l%3E"],[6974,"impl-PathBuilder-for-Builder%3C\'l%3E"],[6975,"impl-Builder%3C\'l%3E"],[6976,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[6977,"impl-BuilderWithAttributes%3C\'l%3E"]],"c":"OjAAAAAAAAA=","e":"OzAAAAEAANAVmAEHAAAACgABABUAOwBUAAgAYAA9ALcAZwAiASAARgEMAFQBLQCHARAAngELAK4BAACxAQIAuQEAALsBAQC+AQAAwAEAAMIBGgDiAQwA/AFZAFcCDABvAgYAlgIKAKMCZwAMAwwAIgMAACUDAAApAxQAPwMCAEMDBwBNAwkAWQMUAHIDAQB2Ax0AlQMDAJsDBQCjAxAAuQMTANADAQDVAwcA3gMDAOMDAQDnAwIA6wMKAPgDAAD7AwUAAwQPABYEAAAcBBIAMQQHADsEBwBFBAAARwQDAEwEBwBZBAkAaAQCAGwEAABxBAUAeAQAAHwEAgCEBAIAjAQCAJkEBACkBHwAIwUAACYFNwBhBQAAYwVgAMUFnwBqBgEAbQYRAIUGAACHBgAAiQYAAJwGNQDTBhEA6AYfACEHtADXBxoA9AcDAPwHAQD/BwAABQgAAAgIAgAMCAAADggGABkIAwAeCAgAKwgCAC8IBwA7CBsAWAgAAFoIDAFwCQQAjAkAAI4JFACkCQEApwkMALUJBQC8CQoAygkBAM0JBADUCQQA2gkWAPIJAQD1CQUA/QkAAP8JAgAHCgoAEwoHACAKKABLCgMAUAoAAFIKDQBlCgMAagoAAGwKAABuCgAAcAoAAHIKAAB0CgAAdgoAAHgKAAB9CgQAgwoCAIcKAACJCgAAiwoAAI0KBgCWCgAAmAonAMEKBgDLCgAA0wojAPgKLwApCwEAMAsSAEgLJwBxCwAAcws3AK8LAACxCwUAugsEAMELBADHCwAAyQsCAM8LEQDjCwEA5gsAAOkLAADsCwEA7wsBAPILAgD2CykAIQwAACQMAQAoDBIAQAwAAEQMAABJDA0AWAwBAF4MGgB7DA4AjAwTAKEMAQCkDAEAqAwBAKsMFwDFDAEAyAwAAMoMAADMDAAAzgwBANEMDgDjDAAA5gwAAOsMAADzDAAA9QwAAPcMAAD5DAkACg0AAA4NAQARDQAAEw0AABUNAAApDQIALg0CADINAAA0DQIAOg0AADwNAAA/DRUAVg0AAFgNAABaDQwAaA0AAGoNAQB2DUgAwQ0AAMgNAADRDQEA1w0AAN0NBgDlDQYA7Q0FAPQNAAD2DQEA+g0DAAAOAAACDgAABA4AAAYOAAAKDgEADw4AABEOBAAYDgAAGg4AABwOAAAeDgEAIQ4AACQOAQAnDgAALQ4EADMOAQA2DgsARA4EAEoOAwBQDggAXQ4AAGIOAABkDkoAsA4LAL4OAQDBDgEAxQ4CAM0OAQDQDgIA1Q4BANgOAQDfDgAA5A4OAPQOAwD5DggAAw8DAAgPDAAaDxkAOw8CAEEPEgBYDxgAcw8SAIcPBwCQDw8AoQ8GAKkPAACvDwQAtg8SAM8PIgD0DwkAAhACAAcQHAApEAkAQhABAEcQBwBREAQAVxAHAGAQCQBtEFcAxxAPANgQAwDdEBQADxE2AFARCABbEQYAZBEAAGYRAABoEQEAbxGKAP0RFgApEgAAPBICAEgSSgCXEhYAsRIBALgSAAC9Eg0AzRICANESLQABEy0AMxNEAHwTRADEEwAA0RMWAOkTAQDsEwEA7xMBAPITAQD1EwEA+RMAAPsTAQABFAIABRQCAAoUAQANFAEAEBQBABMUAgAXFAAAGRQAAB0UFgBGFAAASxQXAHwUGQCYFAAApBQXAL8UAQDCFAAAxBQBAN0UtwChFQAAuhUAAMwVFQDnFQMA7xUDAPQVAwD8FS8ALRYHAD4WAABCFgEAVxYQAGkWAABwFgAAeRYCAH8WAACMFgEAkxYAAJgWAACuFgQAvBYDAMgWAQDPFiUAERcAABgXAABFFxkAYxcAAGUXAAB0FwAApBcAAKsXAACtFwAArxcBAMEXAADEFwIA0RcAAOEXWwA/GEQAhhgAAIgYFgCiGAEApRgaAMsYBADSGAQA2hgAAN4YBQDmGAQA8BgDAPUYAQD5GAEA/BgAAAEZAAADGQAAEBkVACcZAAAuGRsASxkFAFMZAQBXGQQAXhkDAGMZAQBnGQAAaRkAAGwZAABuGQAAcRkAAHMZJwCeGQkAqxk7AOgZAAD2GQEA+hkAAPwZAwACGgAABRo0AEAaCwBQGiMAdhoGAH8aJACvGgcAuBoAALwaAAC+GgEAwRoBANAaOQANGwgAGRtHAGcbQQCtGwsAvRtTACEcAAA=","P":[[20,"T,M,D"],[23,"C,T"],[26,"C"],[29,""],[35,"T"],[41,"WpParam,T"],[44,"A,B"],[45,"C,T"],[48,"A,B,Compositor::Surface"],[49,"A,B,Compositor::Renderer"],[50,"A,B,W,Compositor::Surface"],[51,"A,B,Renderer::Font"],[52,"A,B"],[53,"T"],[62,"A,B,Renderer::Geometry"],[63,"A,B"],[65,"A,B,"],[66,"A,B"],[67,""],[70,"A,B"],[73,"A,B,Renderer::Editor"],[74,"A,B,Renderer::Paragraph"],[75,"A,B,"],[76,"A,B,Renderer::Font"],[77,"A,B"],[80,"T"],[86,"U,T"],[89,""],[92,"U"],[98,"T"],[107,"WpParam,T"],[110,"U"],[116,"T"],[119,"A,B"],[120,"A,B,Renderer::Handle"],[121,"A,B"],[122,""],[123,"A,B,Renderer::Frame"],[124,"A,B,Compositor::Renderer,Compositor::Surface,T"],[125,""],[126,"A,B,Compositor::Renderer,T"],[127,"A,B"],[129,"C"],[132,"U,T"],[135,"U"],[141,""],[144,"C,U"],[147,"C"],[150,"T"],[153,"V"],[156,"W,A,B"],[182,"T,M,D"],[195,"C,T"],[208,"C"],[221,""],[247,"T"],[273,"WpParam,T"],[286,"Renderer"],[287,""],[288,"Renderer"],[289,""],[298,"H"],[300,"T"],[311,""],[322,""],[323,""],[325,"C,T"],[338,""],[339,"Renderer"],[340,""],[346,"T"],[385,"Renderer,"],[386,"Renderer::Geometry,Renderer::Frame"],[387,"Renderer,"],[389,""],[390,""],[405,"H"],[408,"Renderer,"],[411,""],[413,"Renderer"],[414,""],[423,"H"],[425,""],[427,"T"],[429,""],[430,"T"],[432,""],[435,"T"],[440,""],[441,"T"],[442,""],[444,"T"],[445,""],[446,"T"],[447,""],[448,"T"],[449,""],[450,"T"],[463,"U,T"],[477,""],[479,"Renderer"],[480,""],[494,"U"],[520,"T"],[558,"WpParam,T"],[571,"U"],[597,"Renderer"],[598,"T"],[611,""],[616,"Renderer"],[618,""],[621,"Renderer::Geometry,Renderer::Frame"],[622,"T"],[629,""],[630,""],[632,""],[636,"Renderer"],[637,""],[638,"Renderer"],[639,""],[641,"Renderer,"],[642,""],[644,""],[648,"Renderer,"],[650,""],[652,"Renderer"],[653,""],[657,"Renderer,"],[659,""],[661,"T"],[672,""],[673,"Renderer"],[674,"C"],[687,"U,T"],[700,"U"],[726,""],[739,"C,U"],[752,"C"],[765,"T"],[778,""],[779,"V"],[792,"Renderer"],[793,""],[794,"Renderer,R,"],[795,""],[796,"Renderer"],[797,""],[799,"Renderer,R,"],[800,""],[808,"T,M,D"],[809,"C,T"],[810,"C"],[811,""],[813,"T"],[815,"WpParam,T"],[816,""],[817,"T"],[818,""],[819,"C,T"],[820,"T"],[823,""],[825,"K"],[828,""],[829,"T"],[831,"U,T"],[832,""],[833,"U"],[835,"T"],[838,"WpParam,T"],[839,"U"],[841,"T"],[842,""],[844,"T"],[845,"C"],[846,"U,T"],[847,"U"],[849,""],[850,"C,U"],[851,"C"],[852,"T"],[853,"V"],[857,"Backend::Geometry"],[859,"Backend::Geometry,"],[864,"Backend::Geometry"],[869,"Backend::Geometry,"],[872,"Backend::Geometry"],[873,"Backend::Geometry,"],[875,"Backend::Geometry"],[881,"T,M,D"],[883,""],[884,""],[885,"C,T"],[887,"C"],[889,""],[893,"T"],[897,"WpParam,T"],[899,""],[901,"T"],[903,""],[905,"C,T"],[907,"T"],[913,""],[920,"T"],[924,"U,T"],[926,""],[928,"U"],[932,"T"],[938,"WpParam,T"],[940,"U"],[944,"T"],[947,""],[952,"T"],[954,"C"],[956,"U,T"],[958,"U"],[962,""],[964,"C,U"],[966,"C"],[968,"T"],[970,"V"],[975,"T,M,D"],[978,""],[980,"C,T"],[982,"C"],[984,""],[989,"T"],[993,""],[994,"WpParam,T"],[996,""],[999,"T"],[1000,""],[1002,"C,T"],[1004,""],[1005,"T"],[1011,""],[1016,"T"],[1020,"U,T"],[1022,""],[1024,"U"],[1028,"T"],[1034,"WpParam,T"],[1036,"U"],[1040,"T"],[1042,""],[1045,"T"],[1046,""],[1051,"T"],[1052,"C"],[1054,"U,T"],[1056,"U"],[1060,""],[1062,"C,U"],[1064,"C"],[1066,"T"],[1068,"V"],[1072,"T,M,D"],[1073,"C,T"],[1074,"C"],[1075,""],[1077,"T"],[1079,"WpParam,T"],[1080,""],[1083,"T"],[1084,""],[1085,"C,T"],[1086,"T"],[1089,""],[1093,"T"],[1094,""],[1095,"T"],[1096,"U,T"],[1097,""],[1098,"U"],[1100,"T"],[1103,"WpParam,T"],[1104,"U"],[1106,"T"],[1107,""],[1112,"T"],[1113,"C"],[1114,"U,T"],[1115,"U"],[1117,""],[1118,"C,U"],[1119,"C"],[1120,"T"],[1121,"V"],[1162,""],[1187,"T,M,D"],[1212,"C,T"],[1237,"C"],[1262,""],[1320,"T"],[1370,""],[1378,"WpParam,T"],[1403,""],[1407,"Endpoint,ControlPoint"],[1408,""],[1417,"T"],[1418,""],[1427,"T"],[1450,""],[1476,"C,T"],[1501,""],[1508,"T"],[1583,""],[1612,"Endpoint,ControlPoint"],[1613,""],[1621,"K"],[1636,""],[1638,"T"],[1639,""],[1640,"Endpoint,ControlPoint"],[1641,""],[1648,"Endpoint,ControlPoint"],[1649,""],[1662,"F"],[1663,"T"],[1668,""],[1669,"T"],[1670,"Ep,Cp"],[1671,"T"],[1672,""],[1673,"T"],[1718,"U,T"],[1743,""],[1754,"Endpoint"],[1755,""],[1758,"Endpoint"],[1759,"Endpoint,ControlPoint,__H"],[1760,"__H"],[1764,""],[1766,"T"],[1767,""],[1771,"T"],[1772,""],[1799,"U"],[1849,"T"],[1922,"WpParam,T"],[1947,"U"],[1997,"I"],[1998,""],[2002,"I"],[2005,""],[2006,"T"],[2031,"Ep,Cp"],[2032,""],[2045,"T"],[2046,""],[2072,"T"],[2076,""],[2088,"T"],[2089,"Endpoint,ControlPoint"],[2090,""],[2106,"Ep,Cp"],[2107,""],[2108,"T"],[2131,""],[2135,"T"],[2137,"C"],[2162,"U,T"],[2187,"U"],[2237,""],[2262,"C,U"],[2287,"C"],[2312,"T"],[2337,"V"],[2362,""],[2365,"Ep,Cp"],[2366,""],[2415,"T,M,D"],[2420,""],[2422,"B"],[2423,""],[2425,"B"],[2426,""],[2428,"B"],[2429,""],[2431,"B"],[2432,""],[2436,"B"],[2437,""],[2439,"B"],[2440,""],[2442,"B"],[2443,"Builder"],[2444,""],[2445,"Builder"],[2446,"C,T"],[2451,"C"],[2456,""],[2467,"Builder"],[2468,"Builder,Transform"],[2469,"B"],[2471,"T"],[2481,""],[2483,"Build::PathType"],[2484,"Builder"],[2486,"Builder,Transform"],[2487,"Builder"],[2489,"B"],[2490,"P,B"],[2491,"WpParam,T"],[2496,""],[2497,"B"],[2498,"T"],[2500,""],[2505,"Builder"],[2507,"B"],[2508,"C,T"],[2513,""],[2515,"Builder"],[2516,"Builder,Transform"],[2517,"Builder"],[2519,"B"],[2521,"Builder"],[2522,""],[2523,"B"],[2524,"T"],[2539,""],[2545,"Builder"],[2546,"Builder,Transform"],[2547,"B"],[2549,""],[2550,"B"],[2551,""],[2556,"Builder"],[2557,"B"],[2558,""],[2560,"B"],[2561,"T"],[2571,"U,T"],[2576,"B,__H"],[2577,""],[2578,"Builder"],[2579,""],[2584,"B"],[2586,"U"],[2596,"T"],[2611,"WpParam,T"],[2616,"U"],[2626,"B"],[2627,"T"],[2632,""],[2634,"Builder"],[2635,"Builder,Transform"],[2636,"Builder"],[2638,"B"],[2640,""],[2641,"Builder"],[2644,"Builder,Transform"],[2645,"Builder"],[2646,""],[2647,"B"],[2648,"T"],[2650,""],[2651,"Builder"],[2652,"Builder,Transform"],[2653,"B"],[2654,""],[2657,"B"],[2658,""],[2660,"Builder"],[2661,"Builder,Transform"],[2662,"Builder"],[2664,"B"],[2666,""],[2667,"Builder"],[2668,""],[2669,"Builder"],[2670,""],[2671,"Builder"],[2672,""],[2673,"Builder"],[2674,""],[2675,"Builder"],[2676,""],[2677,"Builder"],[2678,""],[2679,"Builder"],[2680,""],[2684,"Builder"],[2685,"Builder,Transform"],[2686,"Builder"],[2688,"B"],[2690,"Builder"],[2691,"Builder,Transform"],[2693,""],[2694,"Builder"],[2695,""],[2696,"Builder"],[2697,""],[2698,"Builder"],[2699,""],[2700,"Builder"],[2701,"T"],[2703,""],[2707,"Transform"],[2709,"Builder,Transform"],[2710,"B,Transform"],[2711,"C"],[2716,"U,T"],[2721,"U"],[2731,""],[2736,"C,U"],[2741,"C"],[2746,"T"],[2751,""],[2752,"Builder"],[2753,"V"],[2758,"B"],[2759,""],[2761,"B"],[2770,"T,M,D"],[2775,"C,T"],[2780,"C"],[2785,""],[2796,"T"],[2806,""],[2807,"WpParam,T"],[2812,"Endpoint,ControlPoint"],[2813,""],[2814,"Endpoint,ControlPoint"],[2815,""],[2816,"Endpoint,ControlPoint"],[2817,"T"],[2822,""],[2827,"C,T"],[2832,""],[2834,"T"],[2849,""],[2855,"Endpoint,ControlPoint"],[2857,""],[2858,"T"],[2868,"U,T"],[2873,"Endpoint,ControlPoint"],[2877,""],[2882,"U"],[2892,"T"],[2904,"WpParam,T"],[2909,"U"],[2919,"I"],[2922,"T"],[2927,"Endpoint,ControlPoint"],[2928,""],[2930,"Endpoint,ControlPoint"],[2931,""],[2932,"Endpoint,ControlPoint"],[2933,"T"],[2934,"Ep,Cp"],[2935,""],[2936,"T"],[2941,"C"],[2946,"U,T"],[2951,"U"],[2961,""],[2966,"C,U"],[2971,"C"],[2976,"T"],[2981,"V"],[2986,""],[3024,"S"],[3025,""],[3026,"S"],[3028,"T,M,D"],[3037,"T"],[3040,"Segment::Scalar"],[3041,"S"],[3049,""],[3050,"T"],[3053,"Segment::Scalar"],[3054,"S"],[3061,"C,T"],[3070,"C"],[3079,""],[3097,"S"],[3098,""],[3099,"S"],[3103,"Segment::Scalar"],[3104,"S"],[3112,"T"],[3130,"S"],[3145,""],[3146,"S"],[3147,"WpParam,T"],[3156,"S,NewS"],[3158,"T,NewT"],[3159,"S"],[3160,""],[3161,"S"],[3173,"T"],[3183,""],[3192,"S"],[3194,"C,T"],[3203,"S"],[3205,""],[3209,"S"],[3211,"T"],[3231,"Segment::Scalar"],[3232,"S"],[3242,"T"],[3254,"S"],[3257,""],[3266,"Segment::Scalar"],[3267,"S"],[3272,"Segment::Scalar"],[3273,"S"],[3279,""],[3280,"S"],[3287,"T"],[3288,"S"],[3289,"K"],[3295,"S"],[3306,""],[3307,"S"],[3312,"Segment::Scalar"],[3313,"S"],[3329,"T"],[3330,"S,F"],[3336,"Segment::Scalar"],[3337,"S"],[3338,"S,F"],[3341,"S"],[3343,"S,F"],[3344,"S"],[3345,"S,F"],[3368,"T"],[3371,"Segment::Scalar"],[3372,"T"],[3373,"S"],[3376,"T"],[3377,"S"],[3378,"T"],[3379,"S"],[3382,"T"],[3385,"S"],[3386,"T"],[3387,"S"],[3388,"T"],[3390,""],[3394,"T"],[3403,"U,T"],[3412,"S"],[3413,"T"],[3414,"S"],[3415,"T,__H"],[3416,""],[3417,"S"],[3419,""],[3428,"S"],[3436,"U"],[3454,"T"],[3481,"WpParam,T"],[3490,"U"],[3508,"T"],[3517,"S"],[3519,"T"],[3520,"S"],[3532,""],[3533,"S"],[3535,"T"],[3536,"S"],[3548,""],[3555,"S"],[3556,""],[3557,"T"],[3560,"S"],[3562,"T"],[3563,"S"],[3568,"T"],[3570,"S"],[3571,""],[3572,"T"],[3573,"S"],[3577,"T"],[3578,""],[3581,"Segment::Scalar"],[3582,"S"],[3592,"T"],[3593,"S"],[3595,"T"],[3596,"S"],[3605,"Segment::Scalar"],[3606,"S"],[3615,"Segment::Scalar"],[3616,"S"],[3628,""],[3629,"T"],[3631,"T,I"],[3633,""],[3635,"S"],[3636,"Segment::Scalar"],[3637,"S"],[3645,""],[3649,"S"],[3651,"T"],[3652,"S"],[3656,"T"],[3657,"S"],[3661,"T"],[3662,"S"],[3663,"T"],[3672,"S"],[3677,"S,T"],[3681,"S"],[3682,"T,NewT"],[3683,"C"],[3692,"U,T"],[3701,"U"],[3719,"T"],[3720,""],[3729,"C,U"],[3738,"C"],[3747,"T"],[3757,""],[3758,"S"],[3759,""],[3760,"S"],[3762,"V"],[3771,""],[3772,"Segment::Scalar"],[3773,"S"],[3781,""],[3784,"S"],[3788,""],[3790,"Segment::Scalar"],[3791,"S"],[3799,""],[3802,"S"],[3806,"T"],[3811,"T,M,D"],[3812,"C,T"],[3813,"C"],[3814,""],[3816,"T"],[3818,"WpParam,T"],[3819,""],[3820,"C,T"],[3821,"T"],[3824,""],[3826,"T"],[3827,""],[3828,"T"],[3829,"U,T"],[3830,""],[3831,"U"],[3833,"T"],[3836,"WpParam,T"],[3837,"U"],[3839,"I"],[3840,"T"],[3841,""],[3842,"S"],[3843,""],[3849,"C"],[3850,"U,T"],[3851,"U"],[3853,""],[3854,"C,U"],[3855,"C"],[3856,"T"],[3857,"V"],[3858,""],[3865,"T,M,D"],[3870,"C,T"],[3875,"C"],[3880,""],[3890,"T"],[3892,""],[3893,"T"],[3895,""],[3896,"T"],[3897,""],[3898,"T"],[3899,""],[3901,"T"],[3903,""],[3904,"T"],[3909,""],[3910,"T"],[3916,""],[3917,"T"],[3918,"WpParam,T"],[3923,"T"],[3924,""],[3925,"T"],[3926,""],[3927,"T"],[3929,""],[3930,"T"],[3932,""],[3933,"T"],[3937,""],[3941,"T"],[3942,""],[3943,"T"],[3944,"K"],[3947,"C,T"],[3952,"T"],[3953,""],[3954,"T"],[3958,""],[3959,"T"],[3965,""],[3966,"T"],[3973,"T,R"],[3974,"T"],[3975,""],[3977,"T"],[3978,""],[3979,"T"],[3980,""],[3982,"T"],[3983,"U"],[3985,"T"],[3987,""],[3989,"T"],[3990,"K"],[3999,"T,I"],[4000,""],[4001,"T"],[4003,""],[4005,"T"],[4011,""],[4012,"T"],[4019,""],[4020,"T,I"],[4021,"U,T"],[4026,""],[4027,"T"],[4028,""],[4030,"T"],[4031,""],[4033,"T,H"],[4034,"H"],[4035,""],[4040,"T"],[4041,"U"],[4051,"T"],[4066,"WpParam,T"],[4071,"U"],[4081,"T"],[4086,"I"],[4088,"T"],[4094,""],[4095,"T"],[4096,""],[4097,"T"],[4098,""],[4100,"T"],[4101,""],[4102,"T"],[4103,""],[4105,"FromA,FromB"],[4106,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ,FromK"],[4107,"FromA,FromB,FromC,FromD"],[4108,"FromA,FromB,FromC"],[4109,"FromA,FromB,FromC,FromD,FromE"],[4110,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ,FromK,FromL"],[4111,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ"],[4112,"FromA,FromB,FromC,FromD,FromE,FromF"],[4113,""],[4114,"FromA"],[4115,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI"],[4116,"FromA,FromB,FromC,FromD,FromE,FromF,FromG"],[4117,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH"],[4118,"FromA,FromB,FromC,FromD,FromE,FromF,FromG"],[4119,"FromA,FromB,FromC,FromD,FromE,FromF"],[4120,"FromA"],[4121,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH"],[4122,"FromA,FromB,FromC,FromD,FromE"],[4123,""],[4124,"FromA,FromB,FromC,FromD"],[4125,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ,FromK,FromL"],[4126,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI"],[4127,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ"],[4128,"FromA,FromB"],[4129,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ,FromK"],[4130,"FromA,FromB,FromC"],[4131,"T"],[4132,""],[4133,"T"],[4135,""],[4136,"T"],[4143,""],[4145,"T"],[4147,""],[4148,"T"],[4150,""],[4152,"T"],[4154,""],[4155,"T"],[4156,""],[4157,"T,F"],[4158,"T"],[4159,""],[4160,"T"],[4170,""],[4174,"T"],[4175,""],[4176,"C"],[4181,"T"],[4182,"U,T"],[4183,"T"],[4184,"U,T"],[4186,""],[4187,"U,T"],[4188,""],[4189,"U,T"],[4190,"T"],[4191,"U"],[4201,"T"],[4202,""],[4209,"C,U"],[4214,"C"],[4219,"T"],[4224,"V"],[4229,""],[4295,"T,M,D"],[4296,"C,T"],[4297,"C"],[4298,""],[4300,"T"],[4302,"WpParam,T"],[4303,"C,T"],[4304,""],[4306,"T"],[4309,""],[4310,"T"],[4311,""],[4312,"T"],[4313,"U,T"],[4314,""],[4315,"U"],[4317,"T"],[4320,"WpParam,T"],[4321,"U"],[4323,"I"],[4324,"T"],[4325,"S"],[4327,""],[4328,"C"],[4329,"U,T"],[4330,"U"],[4332,""],[4333,"C,U"],[4334,"C"],[4335,"T"],[4336,"V"],[4362,"T,U"],[4366,"T,M,D"],[4389,"T,U"],[4395,"T,Src,Dst"],[4396,"T,U"],[4401,"T,Src,Dst1,Dst2"],[4403,"T,U"],[4415,"T,Src,Dst"],[4417,"T,U"],[4421,""],[4426,"T,U"],[4429,""],[4431,"T"],[4432,"T,U"],[4434,"T"],[4436,"T,U"],[4438,"T"],[4440,"T,Src,Dst"],[4442,"T,U"],[4445,"T,Src,Dst"],[4447,"T,U"],[4449,"T,Src,Dst"],[4455,"T,U"],[4458,"T,Src,Dst"],[4462,"C,T"],[4485,"C"],[4508,""],[4554,"T"],[4600,""],[4601,"T,U"],[4602,""],[4604,"WpParam,T"],[4627,"T,U,NewT"],[4633,"T,Src,Dst,NewT"],[4634,"T,U,NewT"],[4636,"T,Src,Dst,NewT"],[4638,"T,U,NewT"],[4640,"T,Src,Dst,NewT"],[4642,"T,U,V"],[4648,"T,Src,Dst,Src2,Dst2"],[4651,"T,U,V"],[4655,"T,U"],[4672,"T,Src,Dst"],[4673,"T,U"],[4686,"T,Src,Dst"],[4690,"T,U"],[4693,"T,Src,Dst"],[4695,"T,U"],[4697,"T,Src,Dst"],[4699,""],[4702,"T"],[4725,""],[4748,"T,U"],[4749,"T,Src,Dst"],[4750,""],[4751,"K"],[4754,"T,U"],[4758,"C,T"],[4781,"T,U"],[4791,""],[4792,"T,U"],[4794,"T,Src,Dst"],[4796,"T,U"],[4802,"T,Src,Dst"],[4803,"T,U"],[4806,"T,Src,Dst"],[4808,"T,U"],[4810,"T,Src,Dst"],[4812,""],[4814,"T,U"],[4815,""],[4816,"T"],[4862,"T,Src,Dst"],[4864,"T,U"],[4866,"T,U2,U1"],[4867,"T,U"],[4868,"T,U2,U1"],[4869,"T,U"],[4870,"T,Dst,Src"],[4871,"T,U"],[4872,"T,Dst,Src"],[4873,"T,U2,U1"],[4874,"T,U"],[4875,"T,U2,U1"],[4876,"T,U"],[4877,"T,U2,U1"],[4878,"T,U"],[4880,"T,U2,U1"],[4882,"T,U"],[4884,"T,U2,U1"],[4886,"T,U"],[4888,"T,U2,U1"],[4889,"T,U"],[4914,"T"],[4937,""],[4960,"T,U"],[4967,"T,Src,Dst"],[4971,"T,U"],[4974,"T,Src,Dst"],[4976,"T,U"],[4978,"T,Src,Dst"],[4980,""],[4983,"T,U"],[4987,"K"],[5056,"T,Src,Dst"],[5057,"T,U"],[5059,""],[5060,"T,U"],[5079,"T,Src,Dst"],[5083,"T,U"],[5086,"T,Src,Dst"],[5088,"T,U"],[5090,"T,Src,Dst"],[5092,""],[5095,"T"],[5096,"T,U"],[5098,"T"],[5099,"T,U"],[5101,"T"],[5102,"T,U"],[5104,"T"],[5105,"T,U"],[5107,"T"],[5108,"T,U"],[5110,"T"],[5112,"T,U"],[5113,"T"],[5114,"T,Src,Dst"],[5115,"T,Dst,Src"],[5116,"T"],[5120,"T,U"],[5123,"T"],[5124,"T,U"],[5127,"T"],[5129,"T,Src,Dst"],[5131,"T"],[5132,"T,U"],[5134,"T"],[5135,"T,Src,Dst"],[5136,"T,U"],[5137,"T"],[5138,"T,U"],[5139,"T,Src,Dst"],[5140,"T,U"],[5141,"T"],[5142,"T,Src,Dst"],[5143,"T"],[5144,"T,Src,Dst"],[5145,"T"],[5171,"T,U"],[5172,"T,Src,Dst"],[5176,"T,U"],[5186,"I,T,U"],[5189,"T,Src,Dst"],[5191,"T,U"],[5194,"U,T"],[5217,"T,Dst,Src"],[5218,"T,U"],[5223,"T,Src,Dst"],[5226,"T,U"],[5228,"T,Src,Dst"],[5230,"T,U"],[5232,"T,Src,Dst"],[5234,"T,U"],[5237,"T,Src,Dst"],[5239,"T,U"],[5243,"T,U,H"],[5250,"T,Src,Dst,H"],[5254,"T,U,H"],[5257,"T,Src,Dst,H"],[5259,"T,U,H"],[5261,"T,Src,Dst,H"],[5263,"__H"],[5266,"T,U"],[5269,""],[5271,"T,U"],[5272,""],[5273,"T,Src,Dst"],[5281,"T,U"],[5284,""],[5307,"T,U"],[5317,"U"],[5363,"T"],[5432,"WpParam,T"],[5455,"U"],[5501,"T"],[5524,"T,Src,Dst"],[5534,"T,U"],[5548,"T,Src,Dst"],[5553,"T,U"],[5555,"T,Src,Dst"],[5556,"T,U"],[5559,""],[5562,"T,U"],[5570,"T,Src,Dst"],[5571,"T,U"],[5579,""],[5601,"T,U,V,F"],[5605,"T,U"],[5609,"T,Src,Dst"],[5610,"T,U"],[5614,""],[5616,"T,U"],[5622,"T,Src,Dst"],[5623,"T,U"],[5627,""],[5629,"T,U"],[5632,"T,U1,U2"],[5634,"T,U"],[5636,"T,Src,Dst"],[5637,"T,U"],[5638,"T,U1,U2"],[5640,"T,U"],[5641,"T,U1,U2"],[5642,"T,U"],[5643,"T,A,B,C"],[5644,"T,U1,U2"],[5645,"T,U"],[5646,"T,U1,U2"],[5647,"T,U"],[5649,"T,U1,U2"],[5650,"T,U"],[5651,"T,U1,U2"],[5653,"T,U"],[5675,"T,Src,Dst"],[5676,"T,U"],[5691,"T,Src,Dst"],[5694,"T,U"],[5697,"T,Src,Dst"],[5699,"T,U"],[5701,"T,Src,Dst"],[5704,"T,U"],[5705,"T,Src,Dst"],[5706,""],[5708,"T,Src,Dst"],[5710,"T,U"],[5712,""],[5714,"T,U"],[5718,"T"],[5736,"T,Src,Dst"],[5737,"T,U"],[5739,""],[5741,"T,U"],[5743,""],[5744,"T,Src,Dst"],[5745,"T,U"],[5747,"T,Src,Dst"],[5752,"T,U"],[5753,"T,Src,Dst"],[5754,""],[5755,"T,Src,Dst"],[5756,"T,U"],[5758,"U"],[5759,"T,Src,Dst"],[5765,"T,U"],[5767,"T,Src,Dst"],[5769,""],[5770,"T,Src,Dst"],[5771,""],[5773,"T,U"],[5778,""],[5779,"T,U"],[5781,"T,Src,Dst"],[5783,""],[5784,"T,U"],[5807,"S,T,U"],[5810,"T,Src,Dst"],[5812,"T,U"],[5819,""],[5820,"T,U"],[5822,""],[5823,"T,U"],[5825,"T,Src,Dst"],[5827,"T,U"],[5831,"T,Src,Dst"],[5833,"T,U"],[5837,"T,Src,Dst"],[5838,"T,U"],[5845,"T,Src,Dst"],[5846,"T,U"],[5849,"T,Src,Dst2,Dst1"],[5851,"T,U"],[5861,"T,Src,Dst"],[5863,"T,U"],[5865,"T,U,I"],[5875,""],[5876,"T,Src,Dst,Dst2"],[5877,"T,Src,Dst,NewSrc"],[5878,"T,Src,Dst,NewDst"],[5881,"T,Src,Dst"],[5887,"T,U"],[5889,"T,Src,Dst"],[5890,"T,U"],[5891,"T,Src,Dst"],[5892,"T,U"],[5893,"T,Src,Dst"],[5894,"T,U"],[5898,"T,Src,Dst"],[5900,"T,U"],[5902,"T,Src,Dst"],[5904,"T,U"],[5906,"T,Src,Dst"],[5911,"T,U"],[5919,"T,Src,Dst"],[5921,"T,U"],[5930,"T,Src,Dst"],[5932,"T,U"],[5941,"T,Src,Dst"],[5943,"T,U"],[5952,"T,Src,Dst"],[5954,"T,U"],[5959,"T"],[5982,"T,U"],[5988,"T,Src,Dst"],[5993,"T,U"],[5999,"T,Src,Dst"],[6001,"T,U"],[6012,"T,Src,Dst"],[6014,"T,U"],[6023,"T,Src,Dst"],[6026,"T,U"],[6028,"T,Src,Dst"],[6030,"T,U"],[6032,"T,Src,Dst"],[6034,"T,U"],[6041,"T,Src,Dst"],[6043,"T,U"],[6049,"T,Src,Dst"],[6051,""],[6052,"T,Src,Dst"],[6058,"S"],[6059,"T,Src,Dst"],[6060,"S"],[6061,"T,Src,Dst"],[6062,"S"],[6064,"T,Src,Dst"],[6080,"S"],[6081,"T,Src,Dst"],[6083,"S"],[6086,"T,Src,Dst"],[6091,"T,U"],[6094,"T,Src,Dst"],[6096,""],[6097,"T,U,NewT"],[6103,"T,Src,Dst,NewT"],[6104,"T,U,NewT"],[6106,"T,Src,Dst,NewT"],[6108,"T,U,NewT"],[6110,"T,Src,Dst,NewT"],[6112,"C"],[6135,"U,T"],[6158,"U"],[6204,"T,U"],[6206,""],[6229,"C,U"],[6252,"C"],[6275,"T,U"],[6278,"T,Src,Dst"],[6279,"T"],[6302,"T,U"],[6304,"T,Src,Dst"],[6305,"T,U"],[6308,"V"],[6331,""],[6332,"T,U"],[6335,""],[6337,"T,Src,Dst,NewDst"],[6339,"T,U"],[6344,"T,Src,Dst,NewSrc"],[6346,""],[6355,"T,U"],[6360,""],[6361,"T,U"],[6364,""],[6365,"T,U"],[6366,""],[6375,"T,U"],[6382,""],[6383,"T,U"],[6384,""],[6389,"T,U"],[6407,"T,U,V,F"],[6412,"Eps"],[6413,""],[6414,"Eps"],[6415,"T"],[6437,""],[6514,"T,M,D"],[6517,"C,T"],[6520,"C"],[6523,""],[6529,"T"],[6535,"WpParam,T"],[6538,"C,T"],[6541,""],[6542,"T"],[6551,""],[6554,"T"],[6557,""],[6558,"T"],[6561,"U,T"],[6564,""],[6567,"U"],[6573,"T"],[6582,"WpParam,T"],[6585,"U"],[6591,"I"],[6593,"T"],[6596,"S"],[6601,""],[6602,"C"],[6605,"U,T"],[6608,"U"],[6614,""],[6617,"C,U"],[6620,"C"],[6623,"T"],[6626,"V"],[6632,"Segment::Scalar"],[6645,"S"],[6647,"Segment::Scalar"],[6649,"S"],[6660,"T,M,D"],[6664,"C,T"],[6668,"C"],[6672,""],[6680,"T"],[6688,"WpParam,T"],[6692,"Iter"],[6693,"C,T"],[6697,"T"],[6709,""],[6715,"T"],[6723,"U,T"],[6727,""],[6731,"U"],[6739,"T"],[6751,"WpParam,T"],[6755,"U"],[6763,"I"],[6767,"T"],[6771,"Iter"],[6772,"T,I"],[6773,"Iter"],[6776,"I,T"],[6777,"Iter"],[6780,"T"],[6782,"C"],[6786,"U,T"],[6790,"U"],[6798,""],[6802,"C,U"],[6806,"C"],[6810,"T"],[6814,"V"],[6818,"Iter"],[6828,""],[6863,"T,M,D"],[6866,"C,T"],[6869,"C"],[6872,""],[6882,"T"],[6888,""],[6892,"WpParam,T"],[6895,""],[6896,"T"],[6897,""],[6898,"C,T"],[6901,""],[6905,"T"],[6914,""],[6921,"T"],[6927,"U,T"],[6930,""],[6933,"U"],[6939,"T"],[6948,"WpParam,T"],[6951,"U"],[6957,"I"],[6958,"T"],[6961,""],[6979,"T"],[6980,"C"],[6983,"U,T"],[6986,"U"],[6992,""],[6995,"C,U"],[6998,"C"],[7001,"T"],[7004,"V"],[7007,""],[7014,"T,M,D"],[7018,"C,T"],[7022,"C"],[7026,""],[7034,"T"],[7042,"WpParam,T"],[7046,""],[7047,"T"],[7049,""],[7050,"T"],[7054,""],[7060,"C,T"],[7064,"T"],[7076,""],[7080,"T"],[7088,"U,T"],[7092,""],[7096,"U"],[7104,"T"],[7116,"WpParam,T"],[7120,"U"],[7128,"I"],[7132,"T"],[7136,""],[7138,"T"],[7140,""],[7141,"T"],[7142,""],[7144,"T"],[7148,"C"],[7152,"U,T"],[7156,"U"],[7164,""],[7168,"C,U"],[7172,"C"],[7176,"T"],[7180,"V"],[7189,""],[7191,"Build::PathType"],[7192,""]]}],["iced_runtime",{"t":"GPFPPPEPEEPPNNNNNNNNNNNNCNNENNNNNHNNCNNNNNNENNNNNNNNNNNNCNNNCNNCNCNNNNCCNNNNNNNNNNNNNNNNNCNNNNNCOOGPPNNNNNNNNNNNNNNNNNHHNNNNNNNNHHOOOOGNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNTTTPGGPPTPGFPPPPTPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOOOOOPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPGPGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNEECCRKRRMMFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNRKRFRNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNMNGFPNNNNNNNNNNNNNNNNNOONNNNNNNNOONNNNNNNNNNNNOOOOOONNNNNNNNNNNNNNNNNFFNNNNNNNNNNNNNNNNNNNHNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNHNNNHNNNNNNNNNNNNNNNNNNNNNHFPGPFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPNNNNNNHHHNHHHHHHNNNHHHHHHHHHHNNNNNNHHHHHEHHHHHHHHHHHHHHHNNNNNNNN","n":["Action","Clipboard","Debug","Exit","LoadFont","Output","Program","System","Task","UserInterface","Widget","Window","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","clipboard","components_from","","core","default","draw_finished","draw_started","event_processing_finished","event_processing_started","exit","fmt","","font","from","","from_angle","","from_stimulus","","futures","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","keyboard","layout_finished","layout_started","log_message","multi_window","new","null_value","overlay","","program","render_finished","render_started","startup_finished","startup_started","system","task","toggle","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","update_finished","update_started","user_interface","view_finished","view_started","vzip","","widget","window","bytes","channel","Action","Read","Write","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","components_from","fmt","from","from_angle","from_stimulus","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","read","read_primary","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vzip","write","write_primary","channel","contents","target","","Error","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","eq","fmt","from","from_angle","from_stimulus","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","load","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vzip","ALT","COMMAND","CTRL","Character","Event","Key","KeyPressed","KeyReleased","LOGO","Left","Location","Modifiers","ModifiersChanged","Named","Numpad","Right","SHIFT","Standard","Unidentified","adapt_into_using","","","","all","alt","arrays_from","","","","arrays_into","","","","as_ref","bitand","bitand_assign","bitor","bitor_assign","bits","","bitxor","bitxor_assign","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","clone","","","","clone_into","","","","clone_to_uninit","","","","cmp","","command","complement","components_from","","","","contains","control","default","difference","empty","eq","","","","extend","fmt","","","","","","","","from","","","","","from_angle","","","","from_bits","from_bits_retain","","from_bits_truncate","from_iter","from_name","from_stimulus","","","","hash","","insert","intersection","intersects","into","","","","into_angle","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_iter","into_stimulus","","","","is_all","is_empty","iter","iter_names","jump","key","logo","macos_command","not","null_value","partial_cmp","","remove","set","shift","sub","sub_assign","symmetric_difference","to_owned","","","","toggle","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","union","vzip","","","","key","","location","","modified_key","","modifiers","","physical_key","","text","AVRInput","AVRPower","Abort","Accept","Again","","AllCandidates","Alphanumeric","Alt","AltGraph","AltLeft","AltRight","Android","AppSwitch","ArrowDown","","ArrowLeft","","ArrowRight","","ArrowUp","","Attn","AudioBalanceLeft","AudioBalanceRight","AudioBassBoostDown","AudioBassBoostToggle","AudioBassBoostUp","AudioFaderFront","AudioFaderRear","AudioSurroundModeNext","AudioTrebleDown","AudioTrebleUp","AudioVolumeDown","","AudioVolumeMute","","AudioVolumeUp","","Backquote","Backslash","Backspace","","BracketLeft","BracketRight","BrightnessDown","BrightnessUp","BrowserBack","","BrowserFavorites","","BrowserForward","","BrowserHome","","BrowserRefresh","","BrowserSearch","","BrowserStop","","Call","Camera","CameraFocus","Cancel","CapsLock","","ChannelDown","ChannelUp","Character","Clear","Close","ClosedCaptionToggle","Code","","CodeInput","ColorF0Red","ColorF1Green","ColorF2Yellow","ColorF3Blue","ColorF4Grey","ColorF5Brown","Comma","Compose","ContextMenu","","Control","ControlLeft","ControlRight","Convert","","Copy","","CrSel","Cut","","DVR","Delete","","Digit0","Digit1","Digit2","Digit3","Digit4","Digit5","Digit6","Digit7","Digit8","Digit9","Dimmer","DisplaySwap","Eisu","Eject","","End","","EndCall","Enter","","Equal","EraseEof","Escape","","ExSel","Execute","Exit","F1","","F10","","F11","","F12","","F13","","F14","","F15","","F16","","F17","","F18","","F19","","F2","","F20","","F21","","F22","","F23","","F24","","F25","","F26","","F27","","F28","","F29","","F3","","F30","","F31","","F32","","F33","","F34","","F35","","F4","","F5","","F6","","F7","","F8","","F9","","FavoriteClear0","FavoriteClear1","FavoriteClear2","FavoriteClear3","FavoriteRecall0","FavoriteRecall1","FavoriteRecall2","FavoriteRecall3","FavoriteStore0","FavoriteStore1","FavoriteStore2","FavoriteStore3","FinalMode","Find","","Fn","","FnLock","","GoBack","GoHome","GroupFirst","GroupLast","GroupNext","GroupPrevious","Guide","GuideNextDay","GuidePreviousDay","HangulMode","HanjaMode","Hankaku","HeadsetHook","Help","","Hibernate","Hiragana","","HiraganaKatakana","Home","","Hyper","","Info","Insert","","InstantReplay","IntlBackslash","IntlRo","IntlYen","JunjaMode","KanaMode","","KanjiMode","Katakana","","Key","Key11","Key12","KeyA","KeyB","KeyC","KeyD","KeyE","KeyF","KeyG","KeyH","KeyI","KeyJ","KeyK","KeyL","KeyM","KeyN","KeyO","KeyP","KeyQ","KeyR","KeyS","KeyT","KeyU","KeyV","KeyW","KeyX","KeyY","KeyZ","Lang1","Lang2","Lang3","Lang4","Lang5","LastNumberRedial","LaunchApp1","LaunchApp2","LaunchApplication1","LaunchApplication2","LaunchCalendar","LaunchContacts","LaunchMail","","LaunchMediaPlayer","LaunchMusicPlayer","LaunchPhone","LaunchScreenSaver","LaunchSpreadsheet","LaunchWebBrowser","LaunchWebCam","LaunchWordProcessor","Link","ListProgram","LiveContent","Lock","LogOff","MacOS","MailForward","MailReply","MailSend","MannerMode","MediaApps","MediaAudioTrack","MediaClose","MediaFastForward","MediaLast","MediaPause","MediaPlay","MediaPlayPause","","MediaRecord","MediaRewind","MediaSelect","MediaSkipBackward","MediaSkipForward","MediaStepBackward","MediaStepForward","MediaStop","","MediaTopMenu","MediaTrackNext","","MediaTrackPrevious","","Meta","","MicrophoneToggle","MicrophoneVolumeDown","MicrophoneVolumeMute","MicrophoneVolumeUp","Minus","ModeChange","Named","","NativeCode","NavigateIn","NavigateNext","NavigateOut","NavigatePrevious","New","NextCandidate","NextFavoriteChannel","NextUserProfile","NonConvert","","Notification","NumLock","","Numpad0","Numpad1","Numpad2","Numpad3","Numpad4","Numpad5","Numpad6","Numpad7","Numpad8","Numpad9","NumpadAdd","NumpadBackspace","NumpadClear","NumpadClearEntry","NumpadComma","NumpadDecimal","NumpadDivide","NumpadEnter","NumpadEqual","NumpadHash","NumpadMemoryAdd","NumpadMemoryClear","NumpadMemoryRecall","NumpadMemoryStore","NumpadMemorySubtract","NumpadMultiply","NumpadParenLeft","NumpadParenRight","NumpadStar","NumpadSubtract","OnDemand","Open","","PageDown","","PageUp","","Pairing","Paste","","Pause","","Period","Physical","PinPDown","PinPMove","PinPToggle","PinPUp","Play","PlaySpeedDown","PlaySpeedReset","PlaySpeedUp","Power","","PowerOff","PreviousCandidate","Print","PrintScreen","","Process","Props","","Quote","RandomToggle","RcLowBattery","RecordSpeedNext","Redo","Resume","RfBypass","Romaji","STBInput","STBPower","Save","ScanChannelsToggle","ScreenModeNext","ScrollLock","","Select","","Semicolon","Settings","Shift","ShiftLeft","ShiftRight","SingleCandidate","Slash","Sleep","Soft1","Soft2","Soft3","Soft4","Space","","SpeechCorrectionList","SpeechInputToggle","SpellCheck","SplitScreenToggle","Standby","Subtitle","Super","SuperLeft","SuperRight","Suspend","Symbol","SymbolLock","TV","TV3DMode","TVAntennaCable","TVAudioDescription","TVAudioDescriptionMixDown","TVAudioDescriptionMixUp","TVContentsMenu","TVDataService","TVInput","TVInputComponent1","TVInputComponent2","TVInputComposite1","TVInputComposite2","TVInputHDMI1","TVInputHDMI2","TVInputHDMI3","TVInputHDMI4","TVInputVGA1","TVMediaContext","TVNetwork","TVNumberEntry","TVPower","TVRadioService","TVSatellite","TVSatelliteBS","TVSatelliteCS","TVSatelliteToggle","TVTerrestrialAnalog","TVTerrestrialDigital","TVTimer","Tab","","Teletext","Turbo","Undo","","Unidentified","","","VideoModeNext","VoiceDial","WakeUp","","Windows","Wink","Xkb","Zenkaku","ZenkakuHankaku","ZoomIn","ZoomOut","ZoomToggle","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","clone","","","","clone_into","","","","clone_to_uninit","","","","cmp","","","","components_from","","","","eq","","","","","","","","fmt","","","","from","","","","from_angle","","","","from_stimulus","","","","hash","","","","into","","","","into_angle","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_stimulus","","","","partial_cmp","","","","to_owned","","","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","vzip","","","","Program","State","program","state","Message","Program","Renderer","Theme","update","view","State","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","components_from","from","from_angle","from_stimulus","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","is_queue_empty","mouse_interaction","new","operate","program","queue_event","queue_message","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","update","vzip","Nested","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","components_from","draw","from","from_angle","from_stimulus","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","is_over","layout","mouse_interaction","new","operate","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","update","vzip","Message","Program","Renderer","State","Theme","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","components_from","from","from_angle","from_stimulus","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","is_queue_empty","mouse_interaction","new","operate","program","queue_event","queue_message","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","update","","view","vzip","Action","Information","QueryInformation","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","clone_into","clone_to_uninit","components_from","","cpu_brand","cpu_cores","fmt","","from","","from_angle","","from_stimulus","","graphics_adapter","graphics_backend","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","memory_total","memory_used","system_kernel","system_name","system_short_version","system_version","to_owned","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","Handle","Task","abort","abort_on_drop","abortable","adapt_into_using","","and_then","","arrays_from","","arrays_into","","batch","borrow","","borrow_mut","","cam16_into_unclamped","","chain","channel","clone","clone_into","clone_to_uninit","collect","components_from","","discard","done","drop","effect","fmt","from","","","from_angle","","from_stimulus","","future","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","into_stream","is_aborted","map","none","oneshot","perform","run","stream","then","to_owned","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","widget","Cache","Outdated","State","Updated","UserInterface","adapt_into_using","","","arrays_from","","","arrays_into","","","borrow","","","borrow_mut","","","build","cam16_into_unclamped","","","clone","clone_into","clone_to_uninit","components_from","","","default","draw","fmt","","from","","","from_angle","","","from_stimulus","","","into","","","into_angle","","","into_cache","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","new","null_value","operate","relayout","to_owned","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","update","vzip","","","input_method","redraw_request","Action","Close","DisableMousePassthrough","Drag","DragResize","EnableMousePassthrough","GainFocus","GetLatest","GetMaximized","GetMinimized","GetMode","GetOldest","GetPosition","GetRawId","GetScaleFactor","GetSize","Maximize","Minimize","Move","Open","RequestUserAttention","Resize","RunWithHandle","Screenshot","SetIcon","SetLevel","SetMaxSize","SetMinSize","SetMode","SetResizable","SetResizeIncrements","ShowSystemMenu","ToggleDecorations","ToggleMaximize","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","close","close_events","close_requests","components_from","disable_mouse_passthrough","drag","drag_resize","enable_mouse_passthrough","events","frames","from","from_angle","from_stimulus","gain_focus","get_latest","get_maximized","get_minimized","get_mode","get_oldest","get_position","get_raw_id","get_scale_factor","get_size","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","maximize","minimize","move_to","open","open_events","raw_window_handle","request_user_attention","resize","resize_events","run_with_handle","screenshot","set_icon","set_level","set_max_size","set_min_size","set_mode","set_resizable","set_resize_increments","show_system_menu","toggle_decorations","toggle_maximize","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vzip"],"q":[[0,"iced_runtime"],[96,"iced_runtime::Action"],[98,"iced_runtime::clipboard"],[130,"iced_runtime::clipboard::Action"],[134,"iced_runtime::font"],[166,"iced_runtime::keyboard"],[363,"iced_runtime::keyboard::Event"],[374,"iced_runtime::keyboard::key"],[443,"iced_runtime::keyboard"],[444,"iced_runtime::keyboard::key"],[718,"iced_runtime::keyboard"],[719,"iced_runtime::keyboard::key"],[874,"iced_runtime::keyboard"],[875,"iced_runtime::keyboard::key"],[1025,"iced_runtime::multi_window"],[1029,"iced_runtime::multi_window::program"],[1035,"iced_runtime::multi_window::state"],[1068,"iced_runtime::overlay"],[1100,"iced_runtime::program"],[1139,"iced_runtime::system"],[1206,"iced_runtime::task"],[1286,"iced_runtime::user_interface"],[1378,"iced_runtime::user_interface::State"],[1380,"iced_runtime::window"],[1478,"palette::chromatic_adaptation"],[1479,"palette::cam16::parameters"],[1480,"iced_runtime::debug"],[1481,"core::fmt"],[1482,"alloc::string"],[1483,"alloc::vec"],[1484,"core::result"],[1485,"palette::convert::try_from_into_color"],[1486,"core::any"],[1487,"iced_core::widget::operation"],[1488,"alloc::borrow"],[1489,"futures_channel::oneshot"],[1490,"core::option"],[1491,"iced_core::clipboard"],[1492,"core::convert"],[1493,"iced_core::keyboard::modifiers"],[1494,"iced_core::keyboard::key"],[1495,"core::clone"],[1496,"iced_core::keyboard::event"],[1497,"iced_core::keyboard::location"],[1498,"core::cmp"],[1499,"core::iter::traits::collect"],[1500,"core::hash"],[1501,"bitflags::iter"],[1502,"iced_core::renderer"],[1503,"iced_core::text"],[1504,"core::marker"],[1505,"iced_core::window::id"],[1506,"iced_core::element"],[1507,"iced_core::mouse::interaction"],[1508,"iced_core::size"],[1509,"alloc::boxed"],[1510,"core::iter::traits::iterator"],[1511,"iced_core::event"],[1512,"iced_core::mouse::cursor"],[1513,"iced_runtime::overlay::nested"],[1514,"iced_core::layout"],[1515,"iced_core::point"],[1516,"iced_core::layout::node"],[1517,"iced_core::rectangle"],[1518,"iced_core::overlay::element"],[1519,"iced_core::shell"],[1520,"iced_runtime::program::state"],[1521,"iced_futures::maybe::platform"],[1522,"core::ops::function"],[1523,"futures_channel::mpsc"],[1524,"futures_util::never"],[1525,"core::future::future"],[1526,"iced_futures::platform"],[1527,"futures_core::stream"],[1528,"iced_core::input_method"],[1529,"iced_core::window::redraw_request"],[1530,"iced_futures::subscription"],[1531,"iced_core::window::direction"],[1532,"iced_core::window::event"],[1533,"std::time"],[1534,"iced_core::window::mode"],[1535,"iced_core::window::settings"],[1536,"iced_core::window::user_attention"],[1537,"raw_window_handle::borrowed"],[1538,"iced_core::window::screenshot"],[1539,"iced_core::window::icon"],[1540,"iced_core::window::level"],[1541,"iced_core::keyboard"]],"i":"`A``000`0``000j1010101010`10`00000`10`101010`101010101010`000`00`0`0000``01010101010101000`00101`Bd0`Bj000000000000000000``00000000``BnC`10`Cd00000000000000000000`000000000Cn00D```Dh02Dj``12003022103332103210323333333321032103210321032103210323332103333332103321033333221032103333333210323333210321032103210321033210333333`33332333333321033210321032103210321032103210332103FdFf101010101Eh0Fj110111100Fl221212121222222222222121211121112221212121212121222221227222`Fh33333332332322323233233222222222223333232332233233332323232323232323232323232323232323232323232323232323232323232323232323333333333333323232333333333333332332332323323222332332`3322222222222222222222222222222223223333323333333333333133333333333323323333323323232333323`8`33333333323322222222222222222222222222222223323232332322`33333333323333233223333233333333232233223223333323333333222333333333333333333333333333333333232328103332131333333210321032103210321032103210321032103210321032211000321032103210321032103210321032103210321032103210321032103210321032103210321032103210````Gd`0000`H`0000000000000000000000000000000`If000000000000000000000000000000Hb`0`0Jd000000000000000000000000000001010``Jh0Jf10101010100001000101010100010101010101000000001010101010101010``Jl0n0100010100101010`111001001`100101010010101010101`100`000010101010101010101``Lf`0`LdLb2102102102102110222210201021021021021021021102102102102001121021021021021021021021102Lj0`Nh00000000000000000000000000000000000000```0``````000``````````000000`````````````````````00000000","f":"````````````{eg{}{{b{c}}}{}}0{ce{}{}}0{{}c{}}0{d{{d{c}}}{}}0{{{d{f}}}{{d{fc}}}{}}0{{{h{c}}}e{}{}}0`44`{{}j}{{{d{fj}}}l}000{{}{{n{c}}}{}}{{{d{{A`{c}}}}{d{fAb}}}AdAf}{{{d{j}}{d{fAb}}}Ad}`{cc{}}000{ce{}{}}0`{{}c{}}000880000{{}c{}}0`77{{{d{fj}}{d{c}}}lAf}`91`{{{d{j}}}{{Aj{Ah}}}}`9999``9{{}{{Al{c}}}{}}0{c{{Al{e}}}{}{}}0{{}{{Al{c}}}{}}0{{}{{Al{c{An{c}}}}}{}}0{dB`}0{ce{}{}}0{{}c{}}0{{{d{fj}}}l}0`00{{}c{}}0{c{{A`{e}}}Bb{}}`{BdBf}{BdBh}```{eg{}{{b{c}}}{}}{ce{}{}}7{d{{d{c}}}{}}{{{d{f}}}{{d{fc}}}{}}{{{h{c}}}e{}{}}3{{{d{Bj}}{d{fAb}}}Ad}{cc{}}0{ce{}{}}{{}c{}}0400{{}c{}}{{}{{n{{Bl{Ah}}}}}}0{{}{{Al{c}}}{}}{c{{Al{e}}}{}{}}{{}{{Al{c}}}{}}{{}{{Al{c{An{c}}}}}{}}{dB`}{ce{}{}}{{}c{}}{{}c{}}{Ah{{n{c}}}{}}{Ah{{n{c}}}{}}{BnBh}{C`Ah}{BnCb}{C`Cb}`{eg{}{{b{c}}}{}}{ce{}{}}9{d{{d{c}}}{}}{{{d{f}}}{{d{fc}}}{}}{{{h{c}}}e{}{}}{{{d{Cd}}}Cd}{{d{d{fc}}}l{}}{{dCf}l}6{{{d{Cd}}{d{Cd}}}Ch}{{{d{Cd}}{d{fAb}}}Ad}{cc{}}0{ce{}{}}{{}c{}}0800{{}c{}}{c{{n{{Al{lCd}}}}}{{Cl{{Bf{{Cj{Cf}}}}}}}}{dc{}}{{}{{Al{c}}}{}}{c{{Al{e}}}{}{}}{{}{{Al{c}}}{}}{{}{{Al{c{An{c}}}}}{}}{dB`}{ce{}{}}{{}c{}}{{}c{}}```````````````````{eg{}{{b{c}}}{}}000{{}Cn}{CnCh}{ce{}{}}0005555{{{d{D`}}}{{D`{{d{Db}}}}}}{{CnCn}Cn}{{{d{fCn}}Cn}l}10{{{d{Cn}}}Dd}021{d{{d{c}}}{}}000{{{d{f}}}{{d{fc}}}{}}000{{{h{c}}}e{}{}}000{{{d{{D`{c}}}}}{{D`{c}}}Df}{{{d{Dh}}}Dh}{{{d{Dj}}}Dj}{{{d{Cn}}}Cn}{{d{d{fc}}}l{}}000{{dCf}l}000{{{d{{D`{c}}}}{d{{D`{c}}}}}DlDn}{{{d{Cn}}{d{Cn}}}Dl}{CnCh}{CnCn}{ce{}{}}000{{{d{Cn}}Cn}Ch}3{{}Cn}{{CnCn}Cn}1{{{d{{D`{c}}}}{d{{D`{c}}}}}ChE`}{{{d{Dh}}{d{Dh}}}Ch}{{{d{Dj}}{d{Dj}}}Ch}{{{d{Cn}}{d{Cn}}}Ch}{{{d{fCn}}c}l{{Ed{}{{Eb{Cn}}}}}}{{{d{{D`{c}}}}{d{fAb}}}{{Al{lEf}}}Af}{{{d{Dh}}{d{fAb}}}{{Al{lEf}}}}{{{d{Dj}}{d{fAb}}}{{Al{lEf}}}}{{{d{Cn}}{d{fAb}}}{{Al{lEf}}}}0000{EhD`}{cc{}}0000000{Dd{{Bl{Cn}}}}{DdCn}00{cCn{{Ed{}{{Eb{Cn}}}}}}{{{d{Db}}}{{Bl{Cn}}}}{ce{}{}}000{{{d{{D`{c}}}}{d{fe}}}lEjEl}{{{d{Cn}}{d{fc}}}lEl}{{{d{fCn}}Cn}l}{{CnCn}Cn}{{{d{Cn}}Cn}Ch}{{}c{}}0000000{{{h{c}}}e{}{}}00011111111{Cn}{{}c{}}000{{{d{Cn}}}Ch}0{{{d{Cn}}}{{En{Cn}}}}{{{d{Cn}}}{{F`{Cn}}}}{CnCh}`00{CnCn}5{{{d{{D`{c}}}}{d{{D`{c}}}}}{{Bl{Dl}}}Fb}{{{d{Cn}}{d{Cn}}}{{Bl{Dl}}}}={{{d{fCn}}CnCh}l}4=>={dc{}}000?{{}{{Al{c}}}{}}000{c{{Al{e}}}{}{}}000{{}{{Al{c}}}{}}000{{}{{Al{c{An{c}}}}}{}}000{dB`}000{ce{}{}}000{{}c{}}000{{CnCn}Cn}{{}c{}}000{FdD`}{FfD`}{FdDj}{FfDj}32{FdCn}{FfCn}{FdFh}{FfFh}{FdBl}```````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````{eg{}{{b{c}}}{}}000{ce{}{}}000===={d{{d{c}}}{}}000{{{d{f}}}{{d{fc}}}{}}000{{{h{c}}}e{}{}}000{{{d{Eh}}}Eh}{{{d{Fj}}}Fj}{{{d{Fl}}}Fl}{{{d{Fh}}}Fh}{{d{d{fc}}}l{}}000{{dCf}l}000{{{d{Eh}}{d{Eh}}}Dl}{{{d{Fj}}{d{Fj}}}Dl}{{{d{Fl}}{d{Fl}}}Dl}{{{d{Fh}}{d{Fh}}}Dl}===={{{d{Eh}}{d{Eh}}}Ch}{{{d{Fj}}{d{Fj}}}Ch}{{{d{Fj}}{d{Fh}}}Ch}{{{d{Fl}}{d{Fl}}}Ch}{{{d{Fl}}{d{Fh}}}Ch}{{{d{Fh}}{d{Fl}}}Ch}{{{d{Fh}}{d{Fj}}}Ch}{{{d{Fh}}{d{Fh}}}Ch}{{{d{Eh}}{d{fAb}}}{{Al{lEf}}}}{{{d{Fj}}{d{fAb}}}{{Al{lEf}}}}{{{d{Fl}}{d{fAb}}}{{Al{lEf}}}}{{{d{Fh}}{d{fAb}}}{{Al{lEf}}}}{cc{}}0000000{ce{}{}}000{{{d{Eh}}{d{fc}}}lEl}{{{d{Fj}}{d{fc}}}lEl}{{{d{Fl}}{d{fc}}}lEl}{{{d{Fh}}{d{fc}}}lEl}{{}c{}}0000000{{{h{c}}}e{}{}}00011111111{{}c{}}000{{{d{Eh}}{d{Eh}}}{{Bl{Dl}}}}{{{d{Fj}}{d{Fj}}}{{Bl{Dl}}}}{{{d{Fl}}{d{Fl}}}{{Bl{Dl}}}}{{{d{Fh}}{d{Fh}}}{{Bl{Dl}}}}{dc{}}000{{}{{Al{c}}}{}}000{c{{Al{e}}}{}{}}000{{}{{Al{c}}}{}}000{{}{{Al{c{An{c}}}}}{}}000{dB`}000{ce{}{}}000{{}c{}}000{{}c{}}000````````{{{d{f{Gd{}{{Fn{c}}{G`{e}}{Gb{g}}}}}}e}{{n{e}}}{GfGh}{AfGj}{}}{{{d{{Gd{}{{Fn{c}}{G`{e}}{Gb{g}}}}}}Gl}{{Gn{egc}}}{GfGh}{AfGj}{}}`{eg{}{{b{c}}}{}}{ce{}{}}5{d{{d{c}}}{}}{{{d{f}}}{{d{fc}}}{}}{{{h{c}}}e{}{}}3{cc{}}0{ce{}{}}{{}c{}}0300{{}c{}}{{{d{{H`{c}}}}}ChHb}{{{d{{H`{c}}}}}HdHb}{{cHf{d{f}}{d{fj}}}{{H`{c}}}Hb}{{{d{f{H`{c}}}}{d{f}}eHf{d{fj}}}lHb{{Hj{}{{Eb{{Hh{Bb}}}}}}}}{{{d{{H`{c}}}}}{{d{c}}}Hb}{{{d{f{H`{c}}}}Hl}lHb}{{{d{f{H`{c}}}}}lHb}{{}{{Al{c}}}{}}{c{{Al{e}}}{}{}}{{}{{Al{c}}}{}}{{}{{Al{c{An{c}}}}}{}}{dB`}{ce{}{}}{{}c{}}{{{d{f{H`{c}}}}HfHn{d{f}}d{d{I`}}{d{fIb}}{d{fj}}}{{Id{{Aj{Hl}}{Bl{n}}}}}Hb}{{}c{}}`{eg{}{{b{c}}}{}}{ce{}{}}4{d{{d{c}}}{}}{{{d{f}}}{{d{fc}}}{}}{{{h{c}}}e{}{}}3{{{d{f{If{ceg}}}}{d{fg}}{d{e}}{d{I`}}IhHn}l{}{}Gf}{cc{}}0{ce{}{}}{{}c{}}0400{{}c{}}{{{d{f{If{ceg}}}}Ih{d{g}}Ij}Ch{}{}Gf}{{{d{f{If{ceg}}}}{d{g}}Hf}Il{}{}Gf}{{{d{f{If{ceg}}}}IhHn{d{In}}{d{g}}}Hd{}{}Gf}{{{J`{ceg}}}{{If{ceg}}}{}{}Gf}{{{d{f{If{ceg}}}}Ih{d{g}}{d{fBb}}}l{}{}Gf}{{}{{Al{c}}}{}}{c{{Al{e}}}{}{}}{{}{{Al{c}}}{}}{{}{{Al{c{An{c}}}}}{}}{dB`}{ce{}{}}{{}c{}}{{{d{f{If{ceg}}}}{d{Hl}}IhHn{d{g}}{d{fIb}}{d{f{Jb{c}}}}}l{}{}Gf}{{}c{}}`````{eg{}{{b{c}}}{}}{ce{}{}}4{d{{d{c}}}{}}{{{d{f}}}{{d{fc}}}{}}{{{h{c}}}e{}{}}3{cc{}}0{ce{}{}}{{}c{}}0300{{}c{}}{{{d{{Jd{c}}}}}ChHb}{{{d{{Jd{c}}}}}HdHb}{{cHf{d{f}}{d{fj}}}{{Jd{c}}}Hb}{{{d{f{Jd{c}}}}{d{f}}eHf{d{fj}}}lHb{{Hj{}{{Eb{{Hh{Bb}}}}}}}}{{{d{{Jd{c}}}}}{{d{c}}}Hb}{{{d{f{Jd{c}}}}Hl}lHb}{{{d{f{Jd{c}}}}}lHb}{{}{{Al{c}}}{}}{c{{Al{e}}}{}{}}{{}{{Al{c}}}{}}{{}{{Al{c{An{c}}}}}{}}{dB`}{ce{}{}}{{}c{}}{{{d{f{Hb{}{{Fn{c}}{Gb{e}}{G`{g}}}}}}g}{{n{g}}}Gh{}{AfGj}}{{{d{f{Jd{c}}}}HfHn{d{f}}d{d{I`}}{d{fIb}}{d{fj}}}{{Id{{Aj{Hl}}{Bl{n}}}}}Hb}{{{d{{Hb{}{{Fn{c}}{Gb{e}}{G`{g}}}}}}}{{Gn{gec}}}Gh{}{AfGj}}{{}c{}}```{eg{}{{b{c}}}{}}0{ce{}{}}066{d{{d{c}}}{}}0{{{d{f}}}{{d{fc}}}{}}0{{{h{c}}}e{}{}}0{{{d{Jf}}}Jf}{{d{d{fc}}}l{}}{{dCf}l}66{JfAh}{JfBl}{{{d{Jh}}{d{fAb}}}Ad}{{{d{Jf}}{d{fAb}}}Ad}{cc{}}000{ce{}{}}055{{}c{}}000::0000{{}c{}}0{JfJj}77777{dc{}}{{}{{Al{c}}}{}}0{c{{Al{e}}}{}{}}0{{}{{Al{c}}}{}}0{{}{{Al{c{An{c}}}}}{}}0{dB`}0{ce{}{}}0{{}c{}}0{{}c{}}0``{{{d{Jl}}}l}{JlJl}{{{n{c}}}{{Id{{n{c}}Jl}}}{}}{eg{}{{b{c}}}{}}0{{{n{{Bl{c}}}}g}{{n{e}}}JnJn{{Kb{c}{{K`{{n{e}}}}}}Jn}}{{{n{{Al{ce}}}}i}{{n{g}}}JnJnJn{{Kb{c}{{K`{{n{g}}}}}}Jn}}{ce{}{}}088{e{{n{c}}}{}{{Ed{}{{Eb{{n{c}}}}}}}}{d{{d{c}}}{}}0{{{d{f}}}{{d{fc}}}{}}0{{{h{c}}}e{}{}}0{{{n{c}}{n{c}}}{{n{c}}}{}}{e{{n{c}}}Jn{{Kf{{Kd{c}}}{{K`{{A`{c}}}}}}}}{{{d{Jl}}}Jl}{{d{d{fc}}}l{}}{{dCf}l}{{{n{c}}}{{n{{Aj{c}}}}}Jn}::{{{n{c}}}{{n{e}}}JnJn}{c{{n{c}}}Jn}{{{d{fJl}}}l}{c{{n{e}}}{{Cl{{A`{Kh}}}}}{}}{{{d{Jl}}{d{fAb}}}Ad}{cc{}}{l{{n{c}}}{}}111{ce{}{}}0{e{{n{c}}}{}{{Kj{}{{K`{c}}}}Jn}}{{}c{}}000{{{h{c}}}e{}{}}01111{{}c{}}0{{{n{c}}}{{Bl{{Kl{{A`{c}}}}}}}{}}{{{d{Jl}}}Ch}{{{n{c}}g}{{n{e}}}JnJn{{Kn{c}{{K`{e}}}}Jn}}{{}{{n{c}}}{}}{e{{n{c}}}Jn{{Kf{{Bh{c}}}{{K`{{A`{c}}}}}}}}{{ei}{{n{g}}}Jn{{Kj{}{{K`{c}}}}Jn}Jn{{Kb{c}{{K`{g}}}}Jn}}{{ei}{{n{g}}}{}{{L`{}{{Eb{c}}}}Jn}{}{{Kb{c}{{K`{g}}}}Jn}}{e{{n{c}}}{}{{L`{}{{Eb{c}}}}Jn}}{{{n{c}}g}{{n{e}}}JnJn{{Kn{c}{{K`{{n{e}}}}}}Jn}}{dc{}}{{}{{Al{c}}}{}}0{c{{Al{e}}}{}{}}0{{}{{Al{c}}}{}}0{{}{{Al{c{An{c}}}}}{}}0{dB`}0{ce{}{}}0{{}c{}}0{{}c{}}0{e{{n{c}}}Gj{{Bb{c}}}}`````{eg{}{{b{c}}}{}}00{ce{}{}}00444{d{{d{c}}}{}}00{{{d{f}}}{{d{fc}}}{}}00{{iHfLb{d{fg}}}{{Ld{ceg}}}{}{}Gf{{Cl{{Gn{ceg}}}}}}{{{h{c}}}e{}{}}00{{{d{Lf}}}Lf}{{d{d{fc}}}l{}}{{dCf}l}777{{}Lb}{{{d{f{Ld{ceg}}}}{d{fg}}{d{e}}{d{I`}}Hn}Hd{}{}Gf}{{{d{Lb}}{d{fAb}}}Ad}{{{d{Lf}}{d{fAb}}}Ad}{cc{}}00000{ce{}{}}00{{}c{}}00000{{{Ld{ceg}}}Lb{}{}Gf};;;111111{{}c{}}0080{{{d{f{Ld{ceg}}}}{d{g}}{d{fBb}}}l{}{}Gf}{{{Ld{ceg}}Hf{d{fg}}}{{Ld{ceg}}}{}{}Gf}{dc{}}{{}{{Al{c}}}{}}00{c{{Al{e}}}{}{}}00{{}{{Al{c}}}{}}00{{}{{Al{c{An{c}}}}}{}}00{dB`}00{ce{}{}}00{{}c{}}00{{{d{f{Ld{ceg}}}}{d{{Cj{Hl}}}}Hn{d{fg}}{d{fIb}}{d{f{Aj{c}}}}}{{Id{Lf{Aj{Lh}}}}}{}{}Gf}{{}c{}}00{LjLl}{LjLn}``````````````````````````````````{eg{}{{b{c}}}{}}{ce{}{}}6{d{{d{c}}}{}}{{{d{f}}}{{d{fc}}}{}}{{{h{c}}}e{}{}}{Gl{{n{c}}}{}}{{}{{M`{Gl}}}}05{Gl{{n{c}}}{}}2{{GlMb}{{n{c}}}{}}1{{}{{M`{{Id{GlMd}}}}}}{{}{{M`{Mf}}}}{cc{}}0{ce{}{}}7{{}{{n{{Bl{Gl}}}}}}{Gl{{n{Ch}}}}{Gl{{n{{Bl{Ch}}}}}}{Gl{{n{Mh}}}}3{Gl{{n{{Bl{Ij}}}}}}{Gl{{n{Jj}}}}{Gl{{n{Mj}}}}{Gl{{n{Hf}}}}{{}c{}}0{{{h{c}}}e{}{}}11{{}c{}}{{GlCh}{{n{c}}}{}}0{{GlIj}{{n{c}}}{}}{Ml{{Id{Gl{n{Gl}}}}}}{{}{{M`{Gl}}}}`{{Gl{Bl{Mn}}}{{n{c}}}{}}{{GlHf}{{n{c}}}{}}{{}{{M`{{Id{GlHf}}}}}}{{Gle}{{n{c}}}Gj{{Kf{N`}{{K`{c}}}}Gj}}{Gl{{n{Nb}}}}{{GlNd}{{n{c}}}{}}{{GlNf}{{n{c}}}{}}{{Gl{Bl{Hf}}}{{n{c}}}{}}0{{GlMh}{{n{c}}}{}}<1{Gl{{n{c}}}{}}00{{}{{Al{c}}}{}}{c{{Al{e}}}{}{}}{{}{{Al{c}}}{}}{{}{{Al{c{An{c}}}}}{}}{dB`}{ce{}{}}{{}c{}}{{}c{}}","D":"FBn","p":[[10,"TransformMatrix",1478],[1,"reference",null,null,1],[0,"mut"],[5,"BakedParameters",1479],[5,"Debug",0,1480],[1,"unit"],[5,"Task",1206],[6,"Action",0],[5,"Formatter",1481],[8,"Result",1481],[10,"Debug",1481],[5,"String",1482],[5,"Vec",1483],[6,"Result",1484,null,1],[5,"OutOfBounds",1485],[5,"TypeId",1486],[10,"Operation",1487],[15,"LoadFont",96],[6,"Cow",1488],[5,"Sender",1489],[6,"Action",98],[6,"Option",1490,null,1],[15,"Read",130],[15,"Write",130],[6,"Kind",1491],[6,"Error",134],[1,"u8"],[1,"bool"],[1,"slice"],[10,"Into",1492,null,1],[5,"Modifiers",874,1493],[6,"Key",874,1494],[1,"str"],[1,"u32"],[10,"Clone",1495],[6,"Event",874,1496],[6,"Location",874,1497],[6,"Ordering",1498],[10,"Ord",1498],[10,"PartialEq",1498],[17,"Item"],[10,"IntoIterator",1499],[5,"Error",1481],[6,"Named",875,1494],[10,"Hash",1500],[10,"Hasher",1500],[5,"Iter",1501],[5,"IterNames",1501],[10,"PartialOrd",1498],[15,"KeyPressed",363],[15,"KeyReleased",363],[6,"Physical",875,1494],[6,"Code",875,1494],[6,"NativeCode",875,1494],[17,"Renderer"],[17,"Message"],[17,"Theme"],[10,"Program",1029],[10,"Renderer",1502],[10,"Renderer",1503],[10,"Send",1504],[5,"Id",1505],[5,"Element",1506],[5,"State",1035],[10,"Program",1100],[6,"Interaction",1507],[5,"Size",1508],[5,"Box",1509,null,1],[10,"Iterator",1510],[6,"Event",1511],[6,"Cursor",1512],[5,"Style",1502],[10,"Clipboard",1491],[1,"tuple",null,null,1],[5,"Nested",1068,1513],[5,"Layout",1514],[5,"Point",1515],[5,"Node",1516],[5,"Rectangle",1517],[5,"Element",1518],[5,"Shell",1519],[5,"State",1100,1520],[5,"Information",1139],[6,"Action",1139],[1,"u64"],[5,"Handle",1206],[10,"MaybeSend",1521],[17,"Output"],[10,"Fn",1522],[5,"Sender",1523],[10,"FnOnce",1522],[8,"Never",1524],[10,"Future",1525,null,1],[8,"BoxStream",1526],[10,"FnMut",1522],[10,"Stream",1527],[5,"Cache",1286],[5,"UserInterface",1286],[6,"State",1286],[6,"Status",1511],[15,"Updated",1378],[6,"InputMethod",1528],[6,"RedrawRequest",1529],[5,"Subscription",1530],[6,"Direction",1531],[6,"Event",1532],[5,"Instant",1533],[6,"Mode",1534],[1,"f32"],[5,"Settings",1535],[6,"UserAttention",1536],[5,"WindowHandle",1537],[5,"Screenshot",1538],[5,"Icon",1539],[6,"Level",1540],[6,"Action",1380]],"r":[[2,1480],[6,1100],[8,1206],[9,1286],[13,1480],[15,1480],[17,1480],[19,1480],[21,1480],[23,1480],[26,1480],[28,1480],[29,1480],[30,1480],[31,1480],[32,1480],[35,1480],[38,1480],[40,1480],[42,1480],[45,1480],[47,1480],[49,1480],[51,1480],[53,1480],[55,1480],[57,1480],[58,1480],[59,1480],[61,1480],[62,1480],[64,1480],[66,1480],[67,1480],[68,1480],[69,1480],[72,1480],[74,1480],[76,1480],[78,1480],[80,1480],[82,1480],[84,1480],[86,1480],[87,1480],[88,1480],[90,1480],[91,1480],[93,1480],[166,1493],[167,1493],[168,1493],[169,1494],[170,1496],[171,1494],[172,1496],[173,1496],[174,1493],[175,1497],[176,1497],[177,1493],[178,1496],[179,1494],[180,1497],[181,1497],[182,1493],[183,1497],[184,1494],[185,1494],[186,1496],[187,1497],[188,1493],[189,1493],[190,1493],[191,1494],[192,1496],[193,1497],[194,1493],[195,1494],[196,1496],[197,1497],[198,1493],[199,1494],[200,1493],[201,1493],[202,1493],[203,1493],[204,1493],[205,1493],[206,1493],[207,1493],[208,1494],[209,1496],[210,1497],[211,1493],[212,1494],[213,1496],[214,1497],[215,1493],[216,1494],[217,1496],[218,1497],[219,1493],[220,1494],[221,1496],[222,1497],[223,1493],[224,1494],[225,1496],[226,1497],[227,1493],[228,1494],[229,1496],[230,1497],[231,1493],[232,1494],[233,1493],[234,1493],[235,1493],[236,1494],[237,1496],[238,1497],[239,1493],[240,1493],[241,1493],[242,1493],[243,1493],[244,1493],[245,1494],[246,1496],[247,1497],[248,1493],[249,1493],[250,1494],[251,1496],[252,1497],[253,1493],[254,1493],[255,1493],[256,1493],[257,1493],[258,1494],[259,1494],[260,1496],[261,1497],[262,1493],[263,1494],[264,1496],[265,1497],[266,1493],[267,1493],[268,1493],[269,1493],[270,1493],[271,1493],[272,1493],[273,1494],[274,1496],[275,1497],[276,1493],[277,1494],[278,1493],[279,1493],[280,1493],[281,1493],[282,1494],[283,1496],[284,1497],[285,1493],[286,1494],[287,1496],[288,1497],[289,1493],[290,1494],[291,1496],[292,1497],[293,1493],[294,1494],[295,1496],[296,1497],[297,1493],[298,1494],[299,1496],[300,1497],[301,1493],[302,1493],[303,1494],[304,1496],[305,1497],[306,1493],[307,1493],[308,1493],[309,1493],[310,1493],[311,1493],[312,1541],[313,1493],[314,1493],[315,1493],[316,1493],[317,1494],[318,1493],[319,1493],[320,1493],[321,1493],[322,1493],[323,1493],[324,1493],[325,1494],[326,1496],[327,1497],[328,1493],[329,1493],[330,1494],[331,1496],[332,1497],[333,1493],[334,1494],[335,1496],[336,1497],[337,1493],[338,1494],[339,1496],[340,1497],[341,1493],[342,1494],[343,1496],[344,1497],[345,1493],[346,1494],[347,1496],[348,1497],[349,1493],[350,1494],[351,1496],[352,1497],[353,1493],[354,1494],[355,1496],[356,1497],[357,1493],[358,1493],[359,1494],[360,1496],[361,1497],[362,1493],[374,1494],[375,1494],[376,1494],[377,1494],[378,1494],[379,1494],[380,1494],[381,1494],[382,1494],[383,1494],[384,1494],[385,1494],[386,1494],[387,1494],[388,1494],[389,1494],[390,1494],[391,1494],[392,1494],[393,1494],[394,1494],[395,1494],[396,1494],[397,1494],[398,1494],[399,1494],[400,1494],[401,1494],[402,1494],[403,1494],[404,1494],[405,1494],[406,1494],[407,1494],[408,1494],[409,1494],[410,1494],[411,1494],[412,1494],[413,1494],[414,1494],[415,1494],[416,1494],[417,1494],[418,1494],[419,1494],[420,1494],[421,1494],[422,1494],[423,1494],[424,1494],[425,1494],[426,1494],[427,1494],[428,1494],[429,1494],[430,1494],[431,1494],[432,1494],[433,1494],[434,1494],[435,1494],[436,1494],[437,1494],[438,1494],[439,1494],[440,1494],[441,1494],[442,1494],[443,1494],[444,1494],[445,1494],[446,1494],[447,1494],[448,1494],[449,1494],[450,1494],[451,1494],[452,1494],[453,1494],[454,1494],[455,1494],[456,1494],[457,1494],[458,1494],[459,1494],[460,1494],[461,1494],[462,1494],[463,1494],[464,1494],[465,1494],[466,1494],[467,1494],[468,1494],[469,1494],[470,1494],[471,1494],[472,1494],[473,1494],[474,1494],[475,1494],[476,1494],[477,1494],[478,1494],[479,1494],[480,1494],[481,1494],[482,1494],[483,1494],[484,1494],[485,1494],[486,1494],[487,1494],[488,1494],[489,1494],[490,1494],[491,1494],[492,1494],[493,1494],[494,1494],[495,1494],[496,1494],[497,1494],[498,1494],[499,1494],[500,1494],[501,1494],[502,1494],[503,1494],[504,1494],[505,1494],[506,1494],[507,1494],[508,1494],[509,1494],[510,1494],[511,1494],[512,1494],[513,1494],[514,1494],[515,1494],[516,1494],[517,1494],[518,1494],[519,1494],[520,1494],[521,1494],[522,1494],[523,1494],[524,1494],[525,1494],[526,1494],[527,1494],[528,1494],[529,1494],[530,1494],[531,1494],[532,1494],[533,1494],[534,1494],[535,1494],[536,1494],[537,1494],[538,1494],[539,1494],[540,1494],[541,1494],[542,1494],[543,1494],[544,1494],[545,1494],[546,1494],[547,1494],[548,1494],[549,1494],[550,1494],[551,1494],[552,1494],[553,1494],[554,1494],[555,1494],[556,1494],[557,1494],[558,1494],[559,1494],[560,1494],[561,1494],[562,1494],[563,1494],[564,1494],[565,1494],[566,1494],[567,1494],[568,1494],[569,1494],[570,1494],[571,1494],[572,1494],[573,1494],[574,1494],[575,1494],[576,1494],[577,1494],[578,1494],[579,1494],[580,1494],[581,1494],[582,1494],[583,1494],[584,1494],[585,1494],[586,1494],[587,1494],[588,1494],[589,1494],[590,1494],[591,1494],[592,1494],[593,1494],[594,1494],[595,1494],[596,1494],[597,1494],[598,1494],[599,1494],[600,1494],[601,1494],[602,1494],[603,1494],[604,1494],[605,1494],[606,1494],[607,1494],[608,1494],[609,1494],[610,1494],[611,1494],[612,1494],[613,1494],[614,1494],[615,1494],[616,1494],[617,1494],[618,1494],[619,1494],[620,1494],[621,1494],[622,1494],[623,1494],[624,1494],[625,1494],[626,1494],[627,1494],[628,1494],[629,1494],[630,1494],[631,1494],[632,1494],[633,1494],[634,1494],[635,1494],[636,1494],[637,1494],[638,1494],[639,1494],[640,1494],[641,1494],[642,1494],[643,1494],[644,1494],[645,1494],[646,1494],[647,1494],[648,1494],[649,1494],[650,1494],[651,1494],[652,1494],[653,1494],[654,1494],[655,1494],[656,1494],[657,1494],[658,1494],[659,1494],[660,1494],[661,1494],[662,1494],[663,1494],[664,1494],[665,1494],[666,1494],[667,1494],[668,1494],[669,1494],[670,1494],[671,1494],[672,1494],[673,1494],[674,1494],[675,1494],[676,1494],[677,1494],[678,1494],[679,1494],[680,1494],[681,1494],[682,1494],[683,1494],[684,1494],[685,1494],[686,1494],[687,1494],[688,1494],[689,1494],[690,1494],[691,1494],[692,1494],[693,1494],[694,1494],[695,1494],[696,1494],[697,1494],[698,1494],[699,1494],[700,1494],[701,1494],[702,1494],[703,1494],[704,1494],[705,1494],[706,1494],[707,1494],[708,1494],[709,1494],[710,1494],[711,1494],[712,1494],[713,1494],[714,1494],[715,1494],[716,1494],[717,1494],[718,1494],[719,1494],[720,1494],[721,1494],[722,1494],[723,1494],[724,1494],[725,1494],[726,1494],[727,1494],[728,1494],[729,1494],[730,1494],[731,1494],[732,1494],[733,1494],[734,1494],[735,1494],[736,1494],[737,1494],[738,1494],[739,1494],[740,1494],[741,1494],[742,1494],[743,1494],[744,1494],[745,1494],[746,1494],[747,1494],[748,1494],[749,1494],[750,1494],[751,1494],[752,1494],[753,1494],[754,1494],[755,1494],[756,1494],[757,1494],[758,1494],[759,1494],[760,1494],[761,1494],[762,1494],[763,1494],[764,1494],[765,1494],[766,1494],[767,1494],[768,1494],[769,1494],[770,1494],[771,1494],[772,1494],[773,1494],[774,1494],[775,1494],[776,1494],[777,1494],[778,1494],[779,1494],[780,1494],[781,1494],[782,1494],[783,1494],[784,1494],[785,1494],[786,1494],[787,1494],[788,1494],[789,1494],[790,1494],[791,1494],[792,1494],[793,1494],[794,1494],[795,1494],[796,1494],[797,1494],[798,1494],[799,1494],[800,1494],[801,1494],[802,1494],[803,1494],[804,1494],[805,1494],[806,1494],[807,1494],[808,1494],[809,1494],[810,1494],[811,1494],[812,1494],[813,1494],[814,1494],[815,1494],[816,1494],[817,1494],[818,1494],[819,1494],[820,1494],[821,1494],[822,1494],[823,1494],[824,1494],[825,1494],[826,1494],[827,1494],[828,1494],[829,1494],[830,1494],[831,1494],[832,1494],[833,1494],[834,1494],[835,1494],[836,1494],[837,1494],[838,1494],[839,1494],[840,1494],[841,1494],[842,1494],[843,1494],[844,1494],[845,1494],[846,1494],[847,1494],[848,1494],[849,1494],[850,1494],[851,1494],[852,1494],[853,1494],[854,1494],[855,1494],[856,1494],[857,1494],[858,1494],[859,1494],[860,1494],[861,1494],[862,1494],[863,1494],[864,1494],[865,1494],[866,1494],[867,1494],[868,1494],[869,1494],[870,1494],[871,1494],[872,1494],[873,1494],[874,1494],[875,1494],[876,1494],[877,1494],[878,1494],[879,1494],[880,1494],[881,1494],[882,1494],[883,1494],[884,1494],[885,1494],[886,1494],[887,1494],[888,1494],[889,1494],[890,1494],[891,1494],[892,1494],[893,1494],[894,1494],[895,1494],[896,1494],[897,1494],[898,1494],[899,1494],[900,1494],[901,1494],[902,1494],[903,1494],[904,1494],[905,1494],[906,1494],[907,1494],[908,1494],[909,1494],[910,1494],[911,1494],[912,1494],[913,1494],[914,1494],[915,1494],[916,1494],[917,1494],[918,1494],[919,1494],[920,1494],[921,1494],[922,1494],[923,1494],[924,1494],[925,1494],[926,1494],[927,1494],[928,1494],[929,1494],[930,1494],[931,1494],[932,1494],[933,1494],[934,1494],[935,1494],[936,1494],[937,1494],[938,1494],[939,1494],[940,1494],[941,1494],[942,1494],[943,1494],[944,1494],[945,1494],[946,1494],[947,1494],[948,1494],[949,1494],[950,1494],[951,1494],[952,1494],[953,1494],[954,1494],[955,1494],[956,1494],[957,1494],[958,1494],[959,1494],[960,1494],[961,1494],[962,1494],[963,1494],[964,1494],[965,1494],[966,1494],[967,1494],[968,1494],[969,1494],[970,1494],[971,1494],[972,1494],[973,1494],[974,1494],[975,1494],[976,1494],[977,1494],[978,1494],[979,1494],[980,1494],[981,1494],[982,1494],[983,1494],[984,1494],[985,1494],[986,1494],[987,1494],[988,1494],[989,1494],[990,1494],[991,1494],[992,1494],[993,1494],[994,1494],[995,1494],[996,1494],[997,1494],[998,1494],[999,1494],[1000,1494],[1001,1494],[1002,1494],[1003,1494],[1004,1494],[1005,1494],[1006,1494],[1007,1494],[1008,1494],[1009,1494],[1010,1494],[1011,1494],[1012,1494],[1013,1494],[1014,1494],[1015,1494],[1016,1494],[1017,1494],[1018,1494],[1019,1494],[1020,1494],[1021,1494],[1022,1494],[1023,1494],[1024,1494],[1025,1029],[1026,1035],[1068,1513],[1069,1513],[1070,1513],[1071,1513],[1072,1513],[1073,1513],[1074,1513],[1075,1513],[1076,1513],[1077,1513],[1078,1513],[1079,1513],[1080,1513],[1081,1513],[1082,1513],[1083,1513],[1084,1513],[1085,1513],[1086,1513],[1087,1513],[1088,1513],[1089,1513],[1090,1513],[1091,1513],[1092,1513],[1093,1513],[1094,1513],[1095,1513],[1096,1513],[1097,1513],[1098,1513],[1099,1513],[1103,1520],[1105,1520],[1106,1520],[1107,1520],[1108,1520],[1109,1520],[1110,1520],[1111,1520],[1112,1520],[1113,1520],[1114,1520],[1115,1520],[1116,1520],[1117,1520],[1118,1520],[1119,1520],[1120,1520],[1121,1520],[1122,1520],[1123,1520],[1124,1520],[1125,1520],[1126,1520],[1127,1520],[1128,1520],[1129,1520],[1130,1520],[1131,1520],[1132,1520],[1133,1520],[1134,1520],[1136,1520],[1138,1520]],"b":[[204,"impl-Flags-for-Modifiers"],[205,"impl-Modifiers"],[253,"impl-LowerHex-for-Modifiers"],[254,"impl-Debug-for-Modifiers"],[255,"impl-Binary-for-Modifiers"],[256,"impl-Octal-for-Modifiers"],[257,"impl-UpperHex-for-Modifiers"],[268,"impl-Modifiers"],[269,"impl-Flags-for-Modifiers"],[934,"impl-PartialEq-for-Code"],[935,"impl-PartialEq%3CPhysical%3E-for-Code"],[936,"impl-PartialEq-for-NativeCode"],[937,"impl-PartialEq%3CPhysical%3E-for-NativeCode"],[938,"impl-PartialEq%3CNativeCode%3E-for-Physical"],[939,"impl-PartialEq%3CCode%3E-for-Physical"],[940,"impl-PartialEq-for-Physical"],[1213,"impl-Task%3COption%3CT%3E%3E"],[1214,"impl-Task%3CResult%3CT,+E%3E%3E"]],"c":"OjAAAAAAAAA=","e":"OzAAAAEAAK8CegAHAAAACQABAA0ACwAaAAcAIwABACgABAAvAAkAOgACAD8AAABBAAAAQwADAEkAEABbAAMAZgAHAG8AAQByAAQAeQAHAIgACwCVAAEAmAAEAJ4ACAC6AAMAwAAHAM0AAADRABkA7QADAPMAAAD2AAMA+wAIAAgBAwAOAQAAEgEFAB8BFAA9AQIARgEDAEsBGwBoAQMAeQEAAH4BAACZAQAAmwEAAJ0BAACpAQAArwEAALEBAACzAQAAtwEAAPMBAABYAgAAYwIBAGwCAACUAgAAnAIAAJ4CBgCpAgAAtwIAALoCAADAAgAAwwIAAMUCAgDWAgAA7wIAABUDAAAZAwAAIQMAACsDAAAyAwAANAMAAEQDAABGAwAAaAMAAG8DAABxAwAAegM3ALYDCwDGAz0ADQQGABUEAQAYBAQAJAQGACwEAAAuBAYANwQBADoEBABEBAYATAQAAFIEBgBaBAEAXQQEAGkEBgBzBAAAdwQQAIoEAQCOBAMAlgQJAKYEEAC8BAEAwAQDAMUEBQDNBAIA0QQBANUEAADXBAAA2QQAANsEAwDiBAkA9QQQAAwFDgAcBQkAJwUBACwFBQA1BQIAOQULAEYFAABJBRUAYAUCAIcFBQCQBQAAmAUBAKUFBACvBQAAvwUHAA==","P":[[12,"T,M,D"],[14,"C,T"],[16,"C"],[18,"T"],[22,"WpParam,T"],[25,"C,T"],[28,""],[33,"T"],[35,""],[37,"T"],[41,"U,T"],[44,"U"],[48,"WpParam,T"],[50,"U"],[54,"T"],[57,""],[59,"Message"],[61,""],[62,"T"],[64,""],[73,"C"],[75,"U,T"],[77,"U"],[81,""],[83,"C,U"],[85,"C"],[87,""],[92,"V"],[94,",T"],[96,""],[101,"T,M,D"],[102,"C,T"],[103,"C"],[104,"T"],[106,"WpParam,T"],[107,"C,T"],[108,""],[109,"T"],[111,"U,T"],[112,"U"],[114,"WpParam,T"],[115,"U"],[117,"T"],[118,""],[120,"C"],[121,"U,T"],[122,"U"],[124,""],[125,"C,U"],[126,"C"],[127,"V"],[128,"T"],[129,"Message"],[130,""],[135,"T,M,D"],[136,"C,T"],[137,"C"],[138,"T"],[140,"WpParam,T"],[141,""],[142,"T"],[143,""],[144,"C,T"],[145,""],[147,"T"],[149,"U,T"],[150,"U"],[152,"WpParam,T"],[153,"U"],[155,"T"],[156,""],[157,"T"],[158,"C"],[159,"U,T"],[160,"U"],[162,""],[163,"C,U"],[164,"C"],[165,"V"],[185,"T,M,D"],[189,""],[191,"C,T"],[195,"C"],[199,""],[208,"T"],[216,"WpParam,T"],[220,"C"],[221,""],[224,"T"],[228,""],[232,"C"],[233,""],[236,"C,T"],[240,""],[245,"C"],[246,""],[249,"T"],[250,"C"],[251,""],[259,"T"],[267,""],[271,"T"],[272,""],[273,"U,T"],[277,"C,__H"],[278,"__H"],[279,""],[282,"U"],[290,"WpParam,T"],[294,"U"],[302,""],[303,"T"],[307,""],[316,"T"],[317,"C"],[318,""],[325,"T"],[329,""],[330,"C"],[334,"U,T"],[338,"U"],[346,""],[350,"C,U"],[354,"C"],[358,""],[359,"V"],[363,""],[889,"T,M,D"],[893,"C,T"],[897,"C"],[901,"T"],[909,"WpParam,T"],[913,""],[917,"T"],[921,""],[929,"C,T"],[933,""],[945,"T"],[953,"U,T"],[957,"__H"],[961,"U"],[969,"WpParam,T"],[973,"U"],[981,"T"],[985,""],[989,"T"],[993,"C"],[997,"U,T"],[1001,"U"],[1009,""],[1013,"C,U"],[1017,"C"],[1021,"V"],[1033,"Program::Renderer,Program::Message,Program::Theme"],[1036,"T,M,D"],[1037,"C,T"],[1038,"C"],[1039,"T"],[1041,"WpParam,T"],[1042,"C,T"],[1043,"T"],[1045,"U,T"],[1046,"U"],[1048,"WpParam,T"],[1049,"U"],[1051,"T"],[1052,"P"],[1055,"P,"],[1056,"P"],[1059,"C"],[1060,"U,T"],[1061,"U"],[1063,""],[1064,"C,U"],[1065,"C"],[1066,"P"],[1067,"V"],[1069,"T,M,D"],[1070,"C,T"],[1071,"C"],[1072,"T"],[1074,"WpParam,T"],[1075,"C,T"],[1076,"Message,Theme,Renderer"],[1077,"T"],[1079,"U,T"],[1080,"U"],[1082,"WpParam,T"],[1083,"U"],[1085,"T"],[1086,"Message,Theme,Renderer"],[1091,"C"],[1092,"U,T"],[1093,"U"],[1095,""],[1096,"C,U"],[1097,"C"],[1098,"Message,Theme,Renderer"],[1099,"V"],[1105,"T,M,D"],[1106,"C,T"],[1107,"C"],[1108,"T"],[1110,"WpParam,T"],[1111,"C,T"],[1112,"T"],[1114,"U,T"],[1115,"U"],[1117,"WpParam,T"],[1118,"U"],[1120,"T"],[1121,"P"],[1124,"P,"],[1125,"P"],[1128,"C"],[1129,"U,T"],[1130,"U"],[1132,""],[1133,"C,U"],[1134,"C"],[1135,"Program::Renderer,Program::Theme,Program::Message"],[1136,"P"],[1137,"Program::Renderer,Program::Theme,Program::Message"],[1138,"V"],[1142,"T,M,D"],[1144,"C,T"],[1146,"C"],[1148,"T"],[1152,"WpParam,T"],[1154,""],[1155,"T"],[1156,""],[1157,"C,T"],[1159,""],[1163,"T"],[1167,"U,T"],[1169,""],[1171,"U"],[1175,"WpParam,T"],[1177,"U"],[1181,"T"],[1183,""],[1189,"T"],[1190,"C"],[1192,"U,T"],[1194,"U"],[1198,""],[1200,"C,U"],[1202,"C"],[1204,"V"],[1208,""],[1210,"T"],[1211,"T,M,D"],[1213,"T,A,"],[1214,"T,E,A,"],[1215,"C,T"],[1217,"C"],[1219,"T,"],[1220,"T"],[1224,"WpParam,T"],[1226,"T"],[1227,"T,"],[1228,""],[1229,"T"],[1230,""],[1231,"T"],[1232,"C,T"],[1234,"T,O"],[1235,"T"],[1236,""],[1237,",T"],[1238,""],[1239,"T"],[1244,"U,T"],[1246,"T,"],[1247,"U"],[1251,"WpParam,T"],[1253,"U"],[1257,"T"],[1260,""],[1261,"T,O,"],[1262,"T"],[1263,"T,"],[1264,"A,,T,"],[1266,"T,"],[1267,"T,O,"],[1268,"T"],[1269,"C"],[1271,"U,T"],[1273,"U"],[1277,""],[1279,"C,U"],[1281,"C"],[1283,"V"],[1285,"T,"],[1291,"T,M,D"],[1294,"C,T"],[1297,"C"],[1300,"T"],[1306,"Message,Theme,Renderer,E"],[1307,"WpParam,T"],[1310,""],[1311,"T"],[1312,""],[1313,"C,T"],[1316,""],[1317,"Message,Theme,Renderer"],[1318,""],[1320,"T"],[1326,"U,T"],[1329,"U"],[1335,"Message,Theme,Renderer"],[1336,"WpParam,T"],[1339,"U"],[1345,"T"],[1348,""],[1349,"T"],[1350,"Message,Theme,Renderer"],[1352,"T"],[1353,"C"],[1356,"U,T"],[1359,"U"],[1365,""],[1368,"C,U"],[1371,"C"],[1374,"Message,Theme,Renderer"],[1375,"V"],[1378,""],[1414,"T,M,D"],[1415,"C,T"],[1416,"C"],[1417,"T"],[1419,"WpParam,T"],[1420,"T"],[1421,""],[1423,"C,T"],[1424,"Message"],[1425,"T"],[1427,"Message"],[1428,""],[1430,"T"],[1432,"U,T"],[1433,"T"],[1434,""],[1443,"U"],[1445,"WpParam,T"],[1446,"U"],[1448,"T"],[1452,""],[1455,"T"],[1457,""],[1458,"T,"],[1459,""],[1460,"T"],[1470,"C"],[1471,"U,T"],[1472,"U"],[1474,""],[1475,"C,U"],[1476,"C"],[1477,"V"]]}],["iced_tiny_skia",{"t":"PEFGFFPNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNENNNNONONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCEONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNOOOOOOFPFGPNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNHNHNNNHNNNNONNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOEECFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHNHNNNNNNNNNNNNNNNNNN","n":["Fill","Geometry","Layer","Primitive","Renderer","Settings","Stroke","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","as_any","","","","as_any_mut","","","","borrow","","","","borrow_mut","","","","bounds","cam16_into_unclamped","","","","clear","clone","","","clone_into","","","clone_to_uninit","","","components_from","","","","core","damage","default","","default_font","","default_size","default_text_size","deref","","","","deref_mut","","","","draw","draw_editor","draw_geometry","draw_image","","draw_mesh","draw_paragraph","draw_primitive_cache","draw_primitive_group","draw_quad","draw_raster","draw_svg","","draw_text","draw_text_cache","draw_text_group","drop","","","","end_layer","end_transformation","eq","","fill_editor","fill_paragraph","fill_quad","fill_text","flush","fmt","","","","from","","","","","from_angle","","","","from_stimulus","","","","geometry","graphics","images","init","","","","into","","","","into_angle","","","","into_any","","","","into_any_arc","","into_any_rc","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_stimulus","","","","layers","measure_image","measure_svg","new","","new_frame","null_value","","primitives","quads","reset","resize","screenshot","start_layer","start_transformation","text","to_owned","","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","visible_bounds","vzip","","","","window","with_bounds","paint","","path","","rule","stroke","Cache","","Frame","Geometry","Live","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","borrow","","","borrow_mut","","","cache","cam16_into_unclamped","","","center","clip_bounds","clone","clone_into","clone_to_uninit","components_from","","","deref","","","deref_mut","","","draft","draw_image","draw_svg","drop","","","fill","fill_rectangle","fill_text","fmt","","","from","","","from_angle","","","from_stimulus","","","height","images","init","","","into","","","into_angle","","","into_any","","","into_any_arc","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_fill_rule","into_geometry","into_paint","into_stimulus","","","into_stroke","load","new","paste","pop_transform","primitives","push_transform","rotate","scale","scale_nonuniform","size","stroke","stroke_rectangle","text","to_owned","translate","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","vzip","","","width","with_clip","clip_bounds","images","primitives","text","Compositor","Surface","compositor","Compositor","Surface","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","components_from","","configure_surface","create_renderer","create_surface","deref","","deref_mut","","drop","","fetch_information","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","new","present","","screenshot","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","with_backend"],"q":[[0,"iced_tiny_skia"],[211,"iced_tiny_skia::Primitive"],[217,"iced_tiny_skia::geometry"],[357,"iced_tiny_skia::geometry::Geometry"],[361,"iced_tiny_skia::window"],[364,"iced_tiny_skia::window::compositor"],[441,"palette::chromatic_adaptation"],[442,"core::any"],[443,"iced_tiny_skia::layer"],[444,"iced_core::rectangle"],[445,"palette::cam16::parameters"],[446,"iced_tiny_skia::primitive"],[447,"iced_tiny_skia::settings"],[448,"alloc::vec"],[449,"iced_core::font"],[450,"iced_core::pixels"],[451,"tiny_skia::pixmap"],[452,"tiny_skia::mask"],[453,"iced_graphics::viewport"],[454,"iced_core::color"],[455,"core::convert"],[456,"iced_graphics::text::editor"],[457,"iced_core::point"],[458,"iced_core::transformation"],[459,"iced_graphics::image"],[460,"iced_core::image"],[461,"iced_graphics::mesh"],[462,"iced_graphics::text::paragraph"],[463,"alloc::rc"],[464,"iced_core::renderer"],[465,"iced_core::background"],[466,"iced_core::svg"],[467,"iced_core::text"],[468,"iced_graphics::text"],[469,"core::fmt"],[470,"iced_graphics::settings"],[471,"alloc::boxed"],[472,"alloc::sync"],[473,"iced_core::size"],[474,"core::result"],[475,"palette::convert::try_from_into_color"],[476,"tiny_skia::painter"],[477,"tiny_skia_path::path"],[478,"tiny_skia_path::stroker"],[479,"iced_graphics::cache"],[480,"core::option"],[481,"iced_graphics::geometry::path"],[482,"iced_graphics::geometry::fill"],[483,"iced_graphics::geometry::text"],[484,"iced_graphics::geometry::style"],[485,"iced_graphics::geometry::stroke"],[486,"iced_core::angle"],[487,"iced_core::vector"],[488,"iced_graphics::compositor"],[489,"core::clone"],[490,"iced_graphics::error"]],"i":"Ad`````0j1AfA`2310231023102310231023102231002312312312310`2210101231023100202002222220222231000310000223102311023102310``2231023102310231031231023102310231023100000002122220002231231023102310231023102310231032310`2FfFj1010`Gb``00GfGj210210210210210210221001111210210210000210000210210210210012102102102100210210210210`0`210`20001000000011021021021021021021021021000Hl000`````HnIf101010101010101011110101011010101010101011010101010``1`110101010101010101","f":"```````{eg{}{{b{c}}}{}}000{ce{}{}}000{{}c{}}000{d{{d{f}}}}000{{{d{h}}}{{d{hf}}}}000{d{{d{c}}}{}}000{{{d{h}}}{{d{hc}}}{}}000{jl}{{{n{c}}}e{}{}}000{{{d{hA`}}}Ab}{{{d{j}}}j}{{{d{Ad}}}Ad}{{{d{Af}}}Af}{{d{d{hc}}}Ab{}}00{{dAh}Ab}00====`{{{d{j}}{d{j}}}{{Aj{l}}}}{{}j}{{}Af}{{{d{A`}}}c{}}{AfAl}{{{d{A`}}}An}{AfAn}{B`{{d{c}}}{}}000{B`{{d{hc}}}{}}000{{{d{hA`}}{d{hBb}}{d{hBd}}{d{Bf}}{d{{Bh{l}}}}Bj{d{{Bh{c}}}}}Ab{{Bn{Bl}}}}{{{d{hj}}{d{C`}}CbBjlCd}Ab}{{{d{hA`}}c}Ab{}}{{{d{hj}}CfCd}Ab}{{{d{hA`}}Chl}Ab}{{{d{hA`}}Cj}Ab}{{{d{hj}}{d{Cl}}CbBjlCd}Ab}{{{d{hj}}{Cn{{Bh{Ad}}}}lCd}Ab}{{{d{hj}}{Aj{Ad}}lCd}Ab}{{{d{hj}}D`DbCd}Ab}{{{d{hj}}ChlCd}Ab}{{{d{hj}}DdlCd}Ab}{{{d{hA`}}Ddl}Ab}{{{d{hj}}DfCbBjlCd}Ab}{{{d{hj}}{Cn{{Bh{Dh}}}}lCd}Ab}{{{d{hj}}{Aj{Dh}}lCd}Ab}{B`Ab}000{{{d{hA`}}}Ab}0{{{d{Ad}}{d{Ad}}}Dj}{{{d{Af}}{d{Af}}}Dj}{{{d{hA`}}{d{c}}CbBjl}Ab{}}{{{d{hA`}}{d{c}}CbBjl}Ab{}}{{{d{hA`}}D`c}Ab{{Dl{Db}}}}{{{d{hA`}}DfCbBjl}Ab}{{{d{hj}}}Ab}{{{d{j}}{d{hDn}}}E`}{{{d{Ad}}{d{hDn}}}E`}{{{d{Af}}{d{hDn}}}E`}{{{d{A`}}{d{hDn}}}E`}{cc{}}00{EbAf}11111{ce{}{}}000``{jAj}{{}B`}000{{}c{}}0000000{{{Ed{c}}}{{Ed{f}}}{}}000{{{Ef{c}}}{{Ef{f}}}{}}0{{{Cn{c}}}{{Cn{f}}}{}}000{{{n{c}}}e{}{}}00044444444{{}c{}}000{{{d{hA`}}}{{d{{Bh{j}}}}}}{{{d{A`}}{d{c}}}{{Ej{Eh}}}{}}{{{d{A`}}{d{El}}}{{Ej{Eh}}}}{{AlAn}A`}0{{{d{A`}}Ej}c{}}55<<{{{d{hj}}}Ab}{{{d{hj}}l}Ab}{{{d{hA`}}{Ej{Eh}}EnBj}{{Aj{Ah}}}}{{{d{hA`}}l}Ab}{{{d{hA`}}Cd}Ab}{jAj}{dc{}}00{{}{{F`{c}}}{}}000{c{{F`{e}}}{}{}}000{{}{{F`{c}}}{}}000{{}{{F`{c{Fb{c}}}}}{}}000{dFd}000{ce{}{}}000{{}c{}}000{{{d{Ad}}}l}{{}c{}}000`{lj}{FfFh}{FjFh}{FfFl}{FjFl}{FfFn}{FjG`}`````{eg{}{{b{c}}}{}}00{ce{}{}}00;;;{d{{d{f}}}}00{{{d{h}}}{{d{hf}}}}00{d{{d{c}}}{}}00{{{d{h}}}{{d{hc}}}{}}00{{GbGd{Gh{Gf}}}Gf}{{{n{c}}}e{}{}}00{{{d{Gj}}}Cb}{Gfl}{{{d{Gf}}}Gf}{{d{d{hc}}}Ab{}}{{dAh}Ab};;;{B`{{d{c}}}{}}00{B`{{d{hc}}}{}}00{{{d{hGj}}l}Gj}{{{d{hGj}}lc}Ab{{Dl{Ch}}}}{{{d{hGj}}lc}Ab{{Dl{Dd}}}}{B`Ab}00{{{d{hGj}}{d{Gl}}c}Ab{{Dl{Gn}}}}{{{d{hGj}}CbEjc}Ab{{Dl{Gn}}}}{{{d{hGj}}c}Ab{{Dl{H`}}}}{{{d{Gb}}{d{hDn}}}E`}{{{d{Gf}}{d{hDn}}}E`}{{{d{Gj}}{d{hDn}}}E`}{cc{}}00000{ce{}{}}00{{{d{Gj}}}En}{GfCn}{{}B`}00{{}c{}}00000{{{Ed{c}}}{{Ed{f}}}{}}00{{{Ef{c}}}{{Ef{f}}}{}}{{{Cn{c}}}{{Cn{f}}}{}}00{{{n{c}}}e{}{}}00444444{HbFn}{GjGb}{HdFh}{{}c{}}00{{{d{Hf}}}G`}{{{d{Gf}}}Gb}{EjGj}{{{d{hGj}}Gj}Ab}{{{d{hGj}}}Ab}?0{{{d{hGj}}c}Ab{{Dl{Hh}}}}{{{d{hGj}}c}Ab{{Dl{En}}}}{{{d{hGj}}c}Ab{{Dl{Hj}}}}{{{d{Gj}}}Ej}{{{d{hGj}}{d{Gl}}c}Ab{{Dl{Hf}}}}{{{d{hGj}}CbEjc}Ab{{Dl{Hf}}}}{GfCn}{dc{}}{{{d{hGj}}Hj}Ab}{{}{{F`{c}}}{}}00{c{{F`{e}}}{}{}}00{{}{{F`{c}}}{}}00{{}{{F`{c{Fb{c}}}}}{}}00{dFd}00{ce{}{}}00{{}c{}}00{{}c{}}00{{{d{Gj}}}En}{lGj}{Hll}{HlAj}00`````{eg{}{{b{c}}}{}}0{ce{}{}}077{d{{d{f}}}}0{{{d{h}}}{{d{hf}}}}0{d{{d{c}}}{}}0{{{d{h}}}{{d{hc}}}{}}0{{{n{c}}}e{}{}}055{{{d{hHn}}{d{hc}}EhEh}Ab{}}{{{d{Hn}}}c{}}{{{d{hHn}}cEhEh}e{I`Ib}{}}{B`{{d{c}}}{}}0{B`{{d{hc}}}{}}0{B`Ab}0{{{d{Hn}}}Id}{cc{}}000{ce{}{}}0{{}B`}0{{}c{}}000{{{Ed{c}}}{{Ed{f}}}{}}0{{{Ef{c}}}{{Ef{f}}}{}}{{{Cn{c}}}{{Cn{f}}}{}}0>>3333{{}c{}}0{{Afc}HnI`}{{{d{hA`}}{d{hIf}}{d{Bf}}Bj{d{{Bh{c}}}}}{{F`{AbIh}}}{{Bn{Bl}}}}{{{d{hHn}}{d{hc}}{d{he}}{d{Bf}}Bj{d{{Bh{g}}}}}{{F`{AbIh}}}{}{}{{Bn{Bl}}}}{{{d{hA`}}{d{Bf}}Bj{d{{Bh{c}}}}}{{Aj{Ah}}}{{Bn{Bl}}}}{{{d{hHn}}{d{hc}}{d{Bf}}Bj{d{{Bh{e}}}}}{{Aj{Ah}}}{}{{Bn{Bl}}}}{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{{}{{F`{c}}}{}}0{{}{{F`{c{Fb{c}}}}}{}}0{dFd}0{ce{}{}}0{{}c{}}0{{}c{}}0{{Ebc{Gh{{d{Bl}}}}}{{F`{HnIj}}}I`}","D":"Cn","p":[[10,"TransformMatrix",441],[1,"reference",null,null,1],[10,"Any",442],[0,"mut"],[5,"Layer",0,443],[5,"Rectangle",444],[5,"BakedParameters",445],[5,"Renderer",0],[1,"unit"],[6,"Primitive",0,446],[5,"Settings",0,447],[1,"u8"],[5,"Vec",448],[5,"Font",449],[5,"Pixels",450],[1,"usize"],[5,"PixmapMut",451],[5,"Mask",452],[5,"Viewport",453],[1,"slice"],[5,"Color",454],[1,"str"],[10,"AsRef",455],[5,"Editor",456],[5,"Point",457],[5,"Transformation",458],[6,"Image",459],[5,"Image",460],[6,"Mesh",461],[5,"Paragraph",462],[5,"Rc",463,null,1],[5,"Quad",464],[6,"Background",465],[5,"Svg",466],[5,"Text",467],[6,"Text",468],[1,"bool"],[10,"Into",455,null,1],[5,"Formatter",469],[8,"Result",469],[5,"Settings",470],[5,"Box",471,null,1],[5,"Arc",472,null,1],[1,"u32"],[5,"Size",473],[5,"Handle",466],[1,"f32"],[6,"Result",474,null,1],[5,"OutOfBounds",475],[5,"TypeId",442],[15,"Fill",211],[5,"Paint",476],[15,"Stroke",211],[5,"Path",477],[6,"FillRule",476],[5,"Stroke",478],[6,"Geometry",217],[5,"Group",479],[5,"Cache",217],[6,"Option",480,null,1],[5,"Frame",217],[5,"Path",481],[5,"Fill",482],[5,"Text",483],[6,"Rule",482],[6,"Style",484],[5,"Stroke",485],[5,"Radians",486],[5,"Vector",487],[15,"Live",357],[5,"Compositor",364],[10,"Window",488],[10,"Clone",489],[5,"Information",488],[5,"Surface",364],[6,"SurfaceError",488],[6,"Error",490]],"r":[[0,446],[1,217],[2,443],[3,446],[5,447],[6,446],[7,443],[8,446],[9,447],[11,443],[12,446],[13,447],[15,443],[16,446],[17,447],[19,443],[20,446],[21,447],[23,443],[24,446],[25,447],[27,443],[28,446],[29,447],[31,443],[32,446],[33,447],[35,443],[36,443],[37,446],[38,447],[41,443],[42,446],[43,447],[44,443],[45,446],[46,447],[47,443],[48,446],[49,447],[50,443],[51,446],[52,447],[55,443],[56,443],[57,447],[59,447],[61,447],[62,443],[63,446],[64,447],[66,443],[67,446],[68,447],[71,443],[73,443],[76,443],[77,443],[78,443],[79,443],[80,443],[81,443],[83,443],[84,443],[85,443],[86,443],[87,446],[88,447],[92,446],[93,447],[98,443],[99,443],[100,446],[101,447],[103,443],[104,446],[105,447],[106,447],[108,443],[109,446],[110,447],[112,443],[113,446],[114,447],[118,443],[119,443],[120,446],[121,447],[123,443],[124,446],[125,447],[127,443],[128,446],[129,447],[131,443],[132,446],[133,447],[135,446],[136,447],[137,443],[138,446],[139,447],[141,443],[142,446],[143,447],[145,443],[146,446],[147,447],[149,443],[150,446],[151,447],[153,443],[154,446],[155,447],[163,443],[164,447],[165,443],[166,443],[167,443],[168,443],[172,443],[173,443],[174,446],[175,447],[176,443],[177,446],[178,447],[180,443],[181,446],[182,447],[184,443],[185,446],[186,447],[188,443],[189,446],[190,447],[192,443],[193,446],[194,447],[196,443],[197,446],[198,447],[200,443],[201,446],[202,447],[204,446],[205,443],[206,446],[207,447],[210,443],[361,364],[362,364]],"b":[[160,"impl-Renderer"],[161,"impl-Headless-for-Renderer"]],"c":"OjAAAAAAAAA=","e":"OzAAAAEAAJoBDgAAAAAAAgACAAgAMwA9AAAAPwAoAGsAAABtAA4AgABMAM4ABQDaADcAFQEKACMBZwCNAQUAlQEkAA==","P":[[7,"T,M,D"],[11,"C,T"],[15,"C"],[19,""],[27,"T"],[35,""],[36,"WpParam,T"],[40,""],[44,"T"],[47,""],[50,"C,T"],[55,""],[58,"Renderer::Font"],[59,""],[62,"T"],[71,""],[72,"Renderer::Geometry"],[73,""],[94,"Renderer::Editor"],[95,"Renderer::Paragraph"],[96,""],[97,""],[103,"T"],[106,""],[107,"T"],[112,"U,T"],[118,""],[123,"U"],[131,"T"],[141,"WpParam,T"],[145,"U"],[153,"T"],[157,""],[158,"Renderer::Handle"],[159,""],[162,"Renderer::Frame"],[163,"T"],[165,""],[173,"T"],[176,"C"],[180,"U,T"],[184,"U"],[192,""],[196,"C,U"],[200,"C"],[204,""],[205,"V"],[210,""],[222,"T,M,D"],[225,"C,T"],[228,"C"],[231,""],[237,"T"],[243,""],[244,"WpParam,T"],[247,""],[250,"T"],[251,""],[252,"C,T"],[255,"T"],[261,""],[262,""],[264,""],[267,""],[270,""],[273,"T"],[279,"U,T"],[282,""],[287,"U"],[293,"T"],[300,"WpParam,T"],[303,"U"],[309,""],[312,"T"],[315,""],[322,""],[325,""],[326,""],[328,""],[329,"T"],[330,""],[331,"C"],[334,"U,T"],[337,"U"],[343,""],[346,"C,U"],[349,"C"],[352,"V"],[355,""],[366,"T,M,D"],[368,"C,T"],[370,"C"],[372,""],[376,"T"],[380,"WpParam,T"],[382,"C,T"],[384,"Compositor::Surface"],[385,"Compositor::Renderer"],[386,"W,Compositor::Surface"],[387,"T"],[391,""],[394,"T"],[398,"U,T"],[400,""],[402,"U"],[406,"T"],[411,"WpParam,T"],[413,"U"],[417,"T"],[419,"W"],[420,"T"],[421,"Compositor::Renderer,Compositor::Surface,T"],[422,"T"],[423,"Compositor::Renderer,T"],[424,"C"],[426,"U,T"],[428,"U"],[432,""],[434,"C,U"],[436,"C"],[438,"V"],[440,"W"]]}],["iced_wgpu",{"t":"FEEEFENNNNNNNNNNNNNNNENNNNNNNNNNNNNNNNNNNNNNNNNNNNCENNNNNNNNNNNNNNCNNNNNNCCNNNNNNNNNNNNNNNNNNNNNECFPFGPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOFINNNNNONNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNOONNOONNNNNNNNNNIFKKFNNNNNNNNNNONNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMOMNNNNNNNNNNNNNNNNNNNFNONNONNNNNNNNOONNNNNNNNNNNNNNNNNNOHNNNNNNNNNNEFNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFGPPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHNNHNNNNNNNNNNNNNNNNNNNNNNNN","n":["Engine","Geometry","Layer","Primitive","Renderer","Settings","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","clear","components_from","","core","create_image_cache","default_font","default_size","deref","","deref_mut","","downcast","","draw_geometry","draw_image","draw_mesh","draw_primitive","draw_svg","drop","","end_layer","end_transformation","fill_editor","fill_paragraph","fill_quad","fill_text","from","","from_angle","","from_stimulus","","geometry","graphics","init","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","layer","measure_image","measure_svg","new","","new_frame","present","primitive","settings","start_layer","start_transformation","submit","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","wgpu","window","Cache","Cached","Frame","Geometry","Live","adapt_into_using","","","arrays_from","","","arrays_into","","","borrow","","","borrow_mut","","","cache","cam16_into_unclamped","","","center","clone","clone_into","clone_to_uninit","components_from","","","default","deref","","","deref_mut","","","downcast","","","draft","draw_image","draw_svg","drop","","","fill","fill_rectangle","fill_text","fmt","","from","","","from_angle","","","from_stimulus","","","height","images","init","","","into","","","into_angle","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_geometry","into_stimulus","","","load","meshes","new","null_value","paste","pop_transform","push_transform","rotate","scale","scale_nonuniform","size","stroke","stroke_rectangle","text","to_owned","translate","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","width","with_clip","images","meshes","text","Layer","Stack","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","bounds","cam16_into_unclamped","components_from","default","deref","deref_mut","downcast","draw_editor","draw_image","draw_mesh","draw_mesh_cache","draw_mesh_group","draw_paragraph","draw_primitive","draw_quad","draw_raster","draw_svg","draw_text","draw_text_cache","draw_text_group","drop","flush","fmt","from","from_angle","from_stimulus","images","init","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","null_value","primitives","quads","reset","resize","text","triangles","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","with_bounds","Batch","Instance","Primitive","Renderer","Storage","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","bounds","cam16_into_unclamped","","components_from","","default","deref","","deref_mut","","downcast","","draw_primitive","drop","","fmt","","from","","from_angle","","from_stimulus","","get","get_mut","has","init","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","new","null_value","prepare","primitive","render","store","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","Settings","adapt_into_using","antialiasing","arrays_from","arrays_into","backends","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","default","default_font","default_text_size","deref","deref_mut","downcast","drop","eq","fmt","from","","from_angle","from_stimulus","init","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","null_value","present_mode","present_mode_from_env","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Compositor","Surface","adapt_into_using","arrays_from","arrays_into","as_hal","borrow","borrow_mut","cam16_into_unclamped","components_from","compositor","configure","deref","deref_mut","downcast","drop","","fmt","from","from_angle","from_stimulus","get_capabilities","get_current_texture","get_default_config","init","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Compositor","Error","IncompatibleSurface","NoAdapterFound","RequestDeviceFailed","SurfaceCreationFailed","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","clone_into","clone_to_uninit","components_from","","configure_surface","create_renderer","create_surface","deref","","deref_mut","","downcast","","drop","","fetch_information","fmt","","from","","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","new","present","","request","screenshot","","source","to_owned","to_smolstr","to_string","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","with_backend"],"q":[[0,"iced_wgpu"],[98,"iced_wgpu::geometry"],[228,"iced_wgpu::geometry::Geometry"],[231,"iced_wgpu::layer"],[289,"iced_wgpu::primitive"],[368,"iced_wgpu::settings"],[414,"iced_wgpu::window"],[454,"iced_wgpu::window::compositor"],[541,"palette::chromatic_adaptation"],[542,"palette::cam16::parameters"],[543,"iced_wgpu::engine"],[544,"wgpu::api::device"],[545,"iced_core::pixels"],[546,"iced_core::image"],[547,"iced_core::rectangle"],[548,"iced_graphics::mesh"],[549,"iced_core::svg"],[550,"iced_core::point"],[551,"iced_core::color"],[552,"iced_core::renderer"],[553,"iced_core::background"],[554,"core::convert"],[555,"iced_core::text"],[556,"iced_core::size"],[557,"wgpu::api::adapter"],[558,"wgpu::api::queue"],[559,"wgpu_types"],[560,"iced_graphics::antialiasing"],[561,"core::option"],[562,"iced_core::font"],[563,"wgpu::api::command_encoder"],[564,"wgpu::api::texture_view"],[565,"iced_graphics::viewport"],[566,"iced_core::transformation"],[567,"core::result"],[568,"palette::convert::try_from_into_color"],[569,"core::any"],[570,"iced_graphics::cache"],[571,"iced_graphics::geometry::path"],[572,"iced_graphics::geometry::fill"],[573,"iced_graphics::geometry::text"],[574,"core::fmt"],[575,"iced_core::angle"],[576,"iced_core::vector"],[577,"iced_graphics::geometry::stroke"],[578,"alloc::vec"],[579,"iced_graphics::text::editor"],[580,"iced_graphics::image"],[581,"iced_graphics::text::paragraph"],[582,"alloc::boxed"],[583,"iced_graphics::text"],[584,"core::marker"],[585,"iced_graphics::settings"],[586,"wgpu::api::surface"],[587,"core::ops::function"],[588,"wgpu::api::surface_texture"],[589,"iced_graphics::compositor"],[590,"core::error"],[591,"smol_str"],[592,"alloc::string"],[593,"iced_graphics::error"]],"i":"``````nj1010101010010`1001010100000010000000101010``10101010101010`001000``001101010101010101010```Ed``0Eh1Ej12012012012021201000120012012012011112011120120120120101201201201201201201120201011111111100112012012012012012012012012011G`00``Gd0000000000000000000000000000000000000000000000000000000`````HbHd10101010110100101010Hf21212121211112121212121212121Al302323232323232323232`Hl000000000000000000000000000000000`0000000000``Id0000000`00000000000000000000000000000``Jd000Jf101010101011110100001010101011011010101010101010101``00`011110101010101010101010","f":"``````{eg{}{{b{c}}}{}}0{ce{}{}}0{{}c{}}0{d{{d{c}}}{}}0{{{d{f}}}{{d{fc}}}{}}0{{{h{c}}}e{}{}}0{{{d{fj}}}l}55``{{{d{j}}}c{}}{{{d{j}}}Ab}{Ad{{d{c}}}{}}0{Ad{{d{fc}}}{}}077{{{d{fj}}c}l{}}{{{d{fj}}AfAh}l}{{{d{fj}}Aj}l}{{{d{fj}}Ahc}lAl}{{{d{fj}}AnAh}l}{Adl}0::{{{d{fj}}{d{c}}B`BbAh}l{}}{{{d{fj}}{d{c}}B`BbAh}l{}}{{{d{fj}}Bdc}l{{Bh{Bf}}}}{{{d{fj}}BjB`BbAh}l}{cc{}}000{ce{}{}}0``{{}Ad}0{{}c{}}000{{{h{c}}}e{}{}}01111{{}c{}}0`{{{d{j}}{d{c}}}{{Bn{Bl}}}{}}{{{d{j}}{d{C`}}}{{Bn{Bl}}}}{{{d{Cb}}{d{A`}}{d{Cd}}Cf{Cj{Ch}}}n}{{{d{A`}}{d{n}}ClAb}j}{{{d{j}}Bn}c{}}{{{d{fj}}{d{fn}}{d{A`}}{d{Cd}}{d{fCn}}{Cj{Bb}}Cf{d{D`}}{d{Db}}{d{{Dd{c}}}}}l{{Dh{Df}}}}``{{{d{fj}}Ah}l}{{{d{fj}}Dj}l}{{{d{fn}}{d{Cd}}Cn}Dl}{{}{{Dn{c}}}{}}0{c{{Dn{e}}}{}{}}0{{}{{Dn{c}}}{}}0{{}{{Dn{c{E`{c}}}}}{}}0{dEb}0{ce{}{}}0{{}c{}}0{d{{Cj{{d{c}}}}}{}}0{{}c{}}0```````{eg{}{{b{c}}}{}}00{ce{}{}}00444{d{{d{c}}}{}}00{{{d{f}}}{{d{fc}}}{}}00{{EdEf{Cj{c}}}c{}}{{{h{c}}}e{}{}}00{{{d{Eh}}}B`}{{{d{Ej}}}Ej}{{d{d{fc}}}l{}}{{dEl}l}888{{}Ej}{Ad{{d{c}}}{}}00{Ad{{d{fc}}}{}}00:::{{{d{fEh}}Ah}Eh}{{{d{fEh}}Ahc}l{{Bh{Af}}}}{{{d{fEh}}Ahc}l{{Bh{An}}}}{Adl}00{{{d{fEh}}{d{En}}c}l{{Bh{F`}}}}{{{d{fEh}}B`Bnc}l{{Bh{F`}}}}{{{d{fEh}}c}l{{Bh{Fb}}}}{{{d{Ed}}{d{fFd}}}Ff}{{{d{Ej}}{d{fFd}}}Ff}{cc{}}00000{ce{}{}}00{{{d{Eh}}}Fh}{EjCj}{{}Ad}00{{}c{}}00000{{{h{c}}}e{}{}}00111111{Ehc{}}{{}c{}}00{{{d{c}}}Ed{}}6{BnEh}2{{{d{fEh}}Eh}l}{{{d{fEh}}}l}0{{{d{fEh}}c}l{{Bh{Fj}}}}{{{d{fEh}}c}l{{Bh{Fh}}}}{{{d{fEh}}c}l{{Bh{Fl}}}}{{{d{Eh}}}Bn}{{{d{fEh}}{d{En}}c}l{{Bh{Fn}}}}{{{d{fEh}}B`Bnc}l{{Bh{Fn}}}}?{dc{}}{{{d{fEh}}Fl}l}{{}{{Dn{c}}}{}}00{c{{Dn{e}}}{}{}}00{{}{{Dn{c}}}{}}00{{}{{Dn{c{E`{c}}}}}{}}00{dEb}00{ce{}{}}00{{}c{}}00{d{{Cj{{d{c}}}}}{}}00{{}c{}}00{{{d{Eh}}}Fh}{AhEh}{G`Gb}00``{eg{}{{b{c}}}{}}{ce{}{}}7{d{{d{c}}}{}}{{{d{f}}}{{d{fc}}}{}}{GdAh}{{{h{c}}}e{}{}}4{{}Gd}{Ad{{d{c}}}{}}{Ad{{d{fc}}}{}}6{{{d{fGd}}{d{Gf}}B`BbAhDj}l}{{{d{fGd}}GhDj}l}{{{d{fGd}}AjDj}l}`{{{d{fGd}}{Gb{Aj}}Dj}l}{{{d{fGd}}{d{Gj}}B`BbAhDj}l}{{{d{fGd}}Ah{Gl{Al}}Dj}l}{{{d{fGd}}BdBfDj}l}{{{d{fGd}}AfAhDj}l}{{{d{fGd}}AnAhDj}l}{{{d{fGd}}BjB`BbAhDj}l}`{{{d{fGd}}{Gb{Gn}}Dj}l}{Adl}{{{d{fGd}}}l}{{{d{Gd}}{d{fFd}}}Ff}{cc{}}0{ce{}{}}{GdGb}{{}Ad}{{}c{}}0{{{h{c}}}e{}{}}11{{}c{}}0{GdH`}`9{{{d{fGd}}Ah}l}66{{}{{Dn{c}}}{}}{c{{Dn{e}}}{}{}}{{}{{Dn{c}}}{}}{{}{{Dn{c{E`{c}}}}}{}}{dEb}{ce{}{}}{{}c{}}{d{{Cj{{d{c}}}}}{}}{{}c{}}{AhGd}`````{eg{}{{b{c}}}{}}0{ce{}{}}055{d{{d{c}}}{}}0{{{d{f}}}{{d{fc}}}{}}0{HbAh}{{{h{c}}}e{}{}}044{{}Hd}{Ad{{d{c}}}{}}0{Ad{{d{fc}}}{}}066{{{d{fHf}}Ahc}lAl}{Adl}0{{{d{Hb}}{d{fFd}}}Ff}{{{d{Hd}}{d{fFd}}}Ff}{cc{}}000{ce{}{}}0{{{d{Hd}}}{{Cj{{d{c}}}}}{}}{{{d{fHd}}}{{Cj{{d{fc}}}}}{}}{{{d{Hd}}}Hh}{{}Ad}0{{}c{}}000>>0000{{}c{}}0{{Ahc}HbAl}1{{{d{Al}}{d{A`}}{d{Cd}}Cf{d{fHd}}{d{Ah}}{d{Db}}}l}{HbGl}{{{d{Al}}{d{fCn}}{d{Hd}}{d{D`}}{d{{Ah{Bl}}}}}l}{{{d{fHd}}c}lHj}{{}{{Dn{c}}}{}}0{c{{Dn{e}}}{}{}}0{{}{{Dn{c}}}{}}0{{}{{Dn{c{E`{c}}}}}{}}0{dEb}0{ce{}{}}0{{}c{}}0{d{{Cj{{d{c}}}}}{}}0{{}c{}}0`{eg{}{{b{c}}}{}}{HlCj}{ce{}{}}5{HlHn}{d{{d{c}}}{}}{{{d{f}}}{{d{fc}}}{}}{{{h{c}}}e{}{}}{{{d{Hl}}}Hl}{{d{d{fc}}}l{}}{{dEl}l}7{{}Hl}{HlCl}{HlAb}{Ad{{d{c}}}{}}{Ad{{d{fc}}}{}}:{Adl}{{{d{Hl}}{d{Hl}}}Hh}{{{d{Hl}}{d{fFd}}}Ff}{cc{}}{I`Hl}1{ce{}{}}{{}Ad}{{}c{}}0{{{h{c}}}e{}{}}11{{}c{}}0{HlIb}{{}{{Cj{Ib}}}}{dc{}}{{}{{Dn{c}}}{}}{c{{Dn{e}}}{}{}}{{}{{Dn{c}}}{}}{{}{{Dn{c{E`{c}}}}}{}}{dEb}{ce{}{}}{{}c{}}{d{{Cj{{d{c}}}}}{}}{{}c{}}``{eg{}{{b{c}}}{}}{ce{}{}}4{{{d{fId}}e}{{Cj{c}}}{}{{Ih{{Cj{d}}}{{If{c}}}}}}{d{{d{c}}}{}}{{{d{f}}}{{d{fc}}}{}}{{{h{c}}}e{}{}}4`{{{d{Id}}{d{A`}}{d{{Ij{{Gb{Cf}}}}}}}l}{Ad{{d{c}}}{}}{Ad{{d{fc}}}{}}5{{{d{fId}}}l}{Adl}{{{d{Id}}{d{fFd}}}{{Dn{lIl}}}}{cc{}}0{ce{}{}}{{{d{Id}}{d{Cb}}}In}{{{d{Id}}}{{Dn{J`Jb}}}}{{{d{Id}}{d{Cb}}BlBl}{{Cj{{Ij{{Gb{Cf}}}}}}}}{{}Ad}{{}c{}}0=00{{}c{}}{{}{{Dn{c}}}{}}{c{{Dn{e}}}{}{}}{{}{{Dn{c}}}{}}{{}{{Dn{c{E`{c}}}}}{}}{dEb}{ce{}{}}{{}c{}}{d{{Cj{{d{c}}}}}{}}{{}c{}}``````{eg{}{{b{c}}}{}}0{ce{}{}}044{d{{d{c}}}{}}0{{{d{f}}}{{d{fc}}}{}}0{{{h{c}}}e{}{}}0{{{d{Jd}}}Jd}{{d{d{fc}}}l{}}{{dEl}l}66{{{d{fJf}}{d{fc}}BlBl}l{}}{{{d{Jf}}}c{}}{{{d{fJf}}cBlBl}eJh{}}{Ad{{d{c}}}{}}0{Ad{{d{fc}}}{}}0::{Adl}0{{{d{Jf}}}Jj}{{{d{Jd}}{d{fFd}}}Ff}0{cc{}}0{JlJd}11{ce{}{}}0{{}Ad}0{{}c{}}000{{{h{c}}}e{}{}}01111{{}c{}}0{{Hlc}{{Dn{JfJd}}}Jh}{{{d{fJf}}{d{fj}}{d{fId}}{d{Db}}Bb{d{{Dd{c}}}}}{{Dn{lJn}}}{{Dh{Df}}}}{{{d{fJf}}{d{fc}}{d{fe}}{d{Db}}Bb{d{{Dd{g}}}}}{{Dn{lJn}}}{}{}{{Dh{Df}}}}{{Hl{Cj{c}}}{{Dn{JfJd}}}Jh}{{{d{fJf}}{d{fj}}{d{Db}}Bb{d{{Dd{c}}}}}{{Gb{El}}}{{Dh{Df}}}}{{{d{fJf}}{d{fc}}{d{Db}}Bb{d{{Dd{e}}}}}{{Gb{El}}}{}{{Dh{Df}}}}{{{d{Jd}}}{{Cj{{d{K`}}}}}}{dc{}}{dKb}{dKd}{{}{{Dn{c}}}{}}0{c{{Dn{e}}}{}{}}0{{}{{Dn{c}}}{}}0{{}{{Dn{c{E`{c}}}}}{}}0{dEb}0{ce{}{}}0{{}c{}}0{d{{Cj{{d{c}}}}}{}}0{{}c{}}0{{I`c{Cj{{d{Df}}}}}{{Dn{JfKf}}}Jh}","D":"I`","p":[[10,"TransformMatrix",541],[1,"reference",null,null,1],[0,"mut"],[5,"BakedParameters",542],[5,"Renderer",0],[1,"unit"],[5,"Engine",0,543],[5,"Device",544],[5,"Pixels",545],[1,"usize"],[5,"Image",546],[5,"Rectangle",547],[6,"Mesh",548],[10,"Primitive",289],[5,"Svg",549],[5,"Point",550],[5,"Color",551],[5,"Quad",552],[6,"Background",553],[10,"Into",554,null,1],[5,"Text",555],[1,"u32"],[5,"Size",556],[5,"Handle",549],[5,"Adapter",557],[5,"Queue",558],[6,"TextureFormat",559],[6,"Antialiasing",560],[6,"Option",561,null,1],[5,"Font",562],[5,"CommandEncoder",563],[5,"TextureView",564],[5,"Viewport",565],[1,"slice"],[1,"str"],[10,"AsRef",554],[5,"Transformation",566],[5,"SubmissionIndex",558],[6,"Result",567,null,1],[5,"OutOfBounds",568],[5,"TypeId",569],[6,"Geometry",98],[5,"Group",570],[5,"Frame",98],[5,"Cache",98],[1,"u8"],[5,"Path",571],[5,"Fill",572],[5,"Text",573],[5,"Formatter",574],[8,"Result",574],[1,"f32"],[5,"Radians",575],[5,"Vector",576],[5,"Stroke",577],[15,"Live",228],[5,"Vec",578],[5,"Layer",231],[5,"Editor",579],[6,"Image",580],[5,"Paragraph",581],[5,"Box",582,null,1],[6,"Text",583],[8,"Batch",289],[5,"Instance",289],[5,"Storage",289],[10,"Renderer",289],[1,"bool"],[10,"Send",584],[5,"Settings",368],[5,"Backends",559],[5,"Settings",585],[6,"PresentMode",559],[5,"Surface",414,586],[17,"Output"],[10,"FnOnce",587],[5,"SurfaceConfiguration",559],[5,"Error",574],[5,"SurfaceCapabilities",559],[5,"SurfaceTexture",588],[6,"SurfaceError",588],[6,"Error",454],[5,"Compositor",454],[10,"Window",589],[5,"Information",589],[5,"CreateSurfaceError",586],[6,"SurfaceError",589],[10,"Error",590],[5,"SmolStr",591],[5,"String",592],[6,"Error",593]],"r":[[0,543],[1,98],[2,231],[3,289],[5,368],[6,543],[8,543],[10,543],[12,543],[14,543],[16,543],[19,543],[22,543],[25,543],[27,543],[29,543],[36,543],[44,543],[46,543],[48,543],[52,543],[54,543],[56,543],[58,543],[60,543],[62,543],[64,543],[69,543],[77,543],[78,543],[80,543],[82,543],[84,543],[86,543],[88,543],[90,543],[92,543],[94,543],[414,454],[415,586],[416,586],[417,586],[418,586],[419,586],[420,586],[421,586],[422,586],[423,586],[425,586],[426,586],[427,586],[428,586],[429,586],[430,586],[431,586],[432,586],[433,586],[434,586],[435,586],[436,586],[437,586],[438,586],[439,586],[440,586],[441,586],[442,586],[443,586],[444,586],[445,586],[446,586],[447,586],[448,586],[449,586],[450,586],[451,586],[452,586],[453,586]],"b":[[489,"impl-Display-for-Error"],[490,"impl-Debug-for-Error"]],"c":"OjAAAAAAAAA=","e":"OzAAAAEAANUBKAABAAMABgAmAC8AAwA0AAIAOQAQAEwAFQBjAAEAZgAwAJoACgCoABEAuwAoAOUAIAAHAQMADAEVACcBCQAyAQoAPgEDAEQBAwBLAQEATwEJAFoBAABfAREAcgEAAHQBAQB3AQcAgQEFAIgBAwCNAQUAlQEKAKEBAgClAQMAqwEFALIBAQC3AQAAuQENAM0BHgDuAQYA9wEJAAMCAAAGAhcA","P":[[6,"T,M,D"],[8,"C,T"],[10,"C"],[12,"T"],[16,"WpParam,T"],[18,""],[19,"C,T"],[22,""],[23,"Renderer::Font"],[24,""],[25,"T"],[31,"Renderer::Geometry"],[32,""],[34,""],[35,""],[40,"Renderer::Editor"],[41,"Renderer::Paragraph"],[42,""],[43,""],[44,"T"],[48,"U,T"],[52,""],[54,"U"],[58,"WpParam,T"],[60,"U"],[64,"T"],[67,"Renderer::Handle"],[68,""],[71,"Renderer::Frame"],[72,"T"],[75,""],[78,"C"],[80,"U,T"],[82,"U"],[86,""],[88,"C,U"],[90,"C"],[92,"T"],[94,"V"],[103,"T,M,D"],[106,"C,T"],[109,"C"],[112,"T"],[118,"Cached::Cache"],[119,"WpParam,T"],[122,""],[124,"T"],[125,""],[126,"C,T"],[129,""],[130,"T"],[139,""],[140,""],[142,""],[145,""],[148,""],[150,"T"],[156,"U,T"],[159,""],[164,"U"],[170,"WpParam,T"],[173,"U"],[179,"Backend::Geometry"],[180,"T"],[183,"Cached::Cache"],[184,""],[186,"T"],[187,""],[190,""],[193,""],[194,""],[196,""],[197,"T"],[198,""],[199,"C"],[202,"U,T"],[205,"U"],[211,""],[214,"C,U"],[217,"C"],[220,"T"],[223,"V"],[226,""],[233,"T,M,D"],[234,"C,T"],[235,"C"],[236,"T"],[238,""],[239,"WpParam,T"],[240,"C,T"],[241,""],[242,"T"],[245,""],[261,"T"],[263,"U,T"],[264,""],[266,"U"],[268,"WpParam,T"],[269,"U"],[271,"T"],[273,""],[279,"C"],[280,"U,T"],[281,"U"],[283,""],[284,"C,U"],[285,"C"],[286,"T"],[287,"V"],[288,""],[294,"T,M,D"],[296,"C,T"],[298,"C"],[300,"T"],[304,""],[305,"WpParam,T"],[307,"C,T"],[309,""],[310,"T"],[316,""],[317,""],[321,"T"],[325,"U,T"],[327,"T"],[329,""],[332,"U"],[336,"WpParam,T"],[338,"U"],[342,"T"],[344,""],[345,"T"],[346,""],[349,"T"],[350,"C"],[352,"U,T"],[354,"U"],[358,""],[360,"C,U"],[362,"C"],[364,"T"],[366,"V"],[369,"T,M,D"],[370,""],[371,"C,T"],[372,"C"],[373,""],[374,"T"],[376,"WpParam,T"],[377,""],[378,"T"],[379,""],[380,"C,T"],[381,""],[384,"T"],[387,""],[390,"T"],[391,""],[392,"T"],[393,"U,T"],[394,""],[395,"U"],[397,"WpParam,T"],[398,"U"],[400,"T"],[402,""],[404,"T"],[405,"C"],[406,"U,T"],[407,"U"],[409,""],[410,"C,U"],[411,"C"],[412,"T"],[413,"V"],[416,"T,M,D"],[417,"C,T"],[418,"C"],[419,"R,F"],[420,"T"],[422,"WpParam,T"],[423,"C,T"],[425,""],[426,"T"],[429,""],[432,"T"],[434,"U,T"],[435,""],[439,"U"],[441,"WpParam,T"],[442,"U"],[444,"T"],[445,"C"],[446,"U,T"],[447,"U"],[449,""],[450,"C,U"],[451,"C"],[452,"T"],[453,"V"],[460,"T,M,D"],[462,"C,T"],[464,"C"],[466,"T"],[470,"WpParam,T"],[472,""],[473,"T"],[474,""],[475,"C,T"],[477,"Compositor::Surface"],[478,"Compositor::Renderer"],[479,"W,Compositor::Surface"],[480,"T"],[486,""],[491,"T"],[493,""],[494,"T"],[496,"U,T"],[498,""],[500,"U"],[504,"WpParam,T"],[506,"U"],[510,"T"],[512,"W"],[513,"T"],[514,"Compositor::Renderer,Compositor::Surface,T"],[515,"W"],[516,"T"],[517,"Compositor::Renderer,T"],[518,""],[519,"T"],[520,""],[522,"C"],[524,"U,T"],[526,"U"],[530,""],[532,"C,U"],[534,"C"],[536,"T"],[538,"V"],[540,"W"]]}],["iced_widget",{"t":"TFEEPPPPEEEKEPPPRPPPEPPPFPPEPPPEEEEPEEEIFEEEPEEPPEEREEEEGEEPPPEENNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHHCHNNNNCHNHHHCHNNNNNNNNHQQCHHNNNNCHENNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHNNNNNNNNNNNNEHHHHCHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCHQNNHCHHNNNNNHNNNNCNNNCHCHHCHCHNCHCHENNHHQQHHHQQCECHCHNNNNNCHHHQQNNNNNNNNNNNNNNNNNNNCHNNCHQQCHCHCHNNNNCHCHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNHHCHHMNNNNPFKRPPPGFINNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHONNMNHNHONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNEPPIFGFIIGPFFPPGFGPPPFKPPPPRFGFPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNCNONNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCONNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOONNNNNNNNNNNNONONNCONNNONOOONONONCOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNONNNNPFPPGPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNGFPFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNOONNNNNNNNNNNNNNNNNNNNFFFNNCNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNONNNNNNNNNNNNNNNNNNNFFNNNNNNNNOONNNNNNNNOONNNNNNNNNNNNNNNOOOOONNNNNNNNNNFIFKIPPPPIFFPFPPPPPPFPGFGTTTIFFFFPPPGGPPSPPPFFFFFIFFKKPPPPPFPPGPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNMNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCONNNNNNNCNNNNNNNNNNNNNNNNNMNNNNNNNNNCCNNNOOCMNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOFKFFKRKFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNOOMNNNNNNNNNNNNNNNNNNMNNNNNNNNNNMMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMMNNNNNNMNNNNNNNNNMNNNNNNNMMNNNNNNMNMNMNMNMNMNMNNNNNNNNNNNNNNMNMNMNMNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNFFFFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFFFIFTTTTTTFFFTTTTIFITTKRIKIFTTTIIFITNONNNNNNNNNNNNNNMNNNNNNNNONNNMNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOCNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNMNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNOOOONNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNOOOOOOONONNNNNNNNNNNNNHONNCNNNOOOMNNNNNNNNNNNNNNHNNNNNNNNMNNNNNNNNNMNNNNNNNNNNNNONNNNOONMNNNNNNNNOOOONNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCMHONNNNNNNNNNNONNNNNNNNNOOONNNNOONNNNNNNNNOOONNNNNFFFFNNNNNNNNONNNNNONONNNNNNNNNNNNNONOOOOOONNNNNNNNNOOFFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFFNNNNNNNNNOONNNNNONNNNNNNNNNNNNNNONNNNNNNNNFFFFFFFFFFFFFFFFFFFFFKFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNCCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOHHHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNCNNNNNNNNNNNNNNNNNMNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOONNNNNNNNNNNNNNNNNOOOOOOOOOOOOOOOOOOOOOONNNNNNNNNNNNNOONNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNONNNNNNNNNNNNHHNNNNNNNNNNNONOMHNNNNONNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNOHHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNOONNNNNNNNNOOOOOOOOONNNNNNNNNNNOOOOOOOOONNNNNNNNNOOOOONNNNNNNNNNNNNNNNNNNNNNKMNMHHIIIIIIIIIIIIIIIIIIIIOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOKKKKKMMMMMFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNRKKMMMMNNMMMMMMMMMNNHHHHHHFFFKFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNIIIIIIIIIOOOOOOOOOOHOHHOOOOOOOIFFFFFFFFFFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFFFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNKKKRKMMMMMMMMMMMMMMMMMMMMMMMMMMPPPGFGPPPPPFGOOOOOOOPKFRPPFGFINNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNONNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNHHONNONNMNHNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOKFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNKRFFFINNNNNNNNNNNNNNNNNNNNNHNONOHNNNNNNNNNNNNNNNNNNNNNNNNNHHMNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNHHHNONNMNHNONNHNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNPGGFPPPPENNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCHNNNNOOOOFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNECFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNKPFPPPPPPPGFPGPPFFFFKNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHMNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOONNNNHNNNNNNNNNNNNNNNNNOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNONNNMNHNNHNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNHHNNNNNNNNNNOOOOOOOOCKRFFFINNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOMONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGPPKPRGFFGPGKPGPPFPPPFGFPPPFPGFPPFPPEFIGFPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNONNNCNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOOOOOOOOGPPFPFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOPPKRPGPFPPFPGFINNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNOONONMNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNKRTFFINNNNNNNNNNOOONNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHNMNHNNNNNNNNNNNNNNNNNNNNHKRFPGGPPPPPPPPFPFIPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNPKRTTPFGFINNNNNNNNNNNNNNNOOONNNNNNNNNNNNNNNNNNNHMNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOPKRGPPPFFINNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNHMNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOFPGPKRGPTPPPFFFTFFFPGFIPFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNONHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHONNHNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNOOOOOOOOOOOOOOOOEKRKFRFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNPKPRTPFGPFPFGFINNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONOOOKRFPPGFIFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNPPPPKRIPRKKRGPPPFRGFFFIIPPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNOONNNNNNNNNMHHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNHNNNONONNMNNNNNNNNNNNOHHNNNONNOMNHNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNMNNNNNNNNNNNGPPPGKRPFPPPPPPPPPPPPGPPPPPPPPPFPPPFGGPPPPPPPPPPPPPPPPPPFGFIFPPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNONNNNNNNNNNNONONNNOMNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNOOPKRESPPPFFPPGFGFIFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNCNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNHNNHNNNNNNNNNNNNNNNNONNNNNNHNNOONNOONMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNOFPPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOKTTTTPPPPFPTTPPTPTTPPTTTPPPTPTPTTPPTPFTTPPFTTTGPPPNNNNNNNNNNNNNNNOOMNNNNNNNNNNNNNNNNNNNNNOHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCOOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONFFJJJJJJJJJJJJJJJJJJJJJJFFFFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNOOOOOOOOOOOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOOPKRTPPGFIFNNNNNNNNNNNNNNNOOONNNNNNNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOPPPGPFPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNETEEEEEFNNNNNNNNNNENNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN","n":["ALL","Action","Button","Canvas","CatppuccinFrappe","CatppuccinLatte","CatppuccinMacchiato","CatppuccinMocha","Checkbox","Column","ComboBox","Component","Container","Custom","Dark","Dracula","Event","Ferra","GruvboxDark","GruvboxLight","Image","KanagawaDragon","KanagawaLotus","KanagawaWave","Lazy","Light","Moonfly","MouseArea","Nightfly","Nord","Oxocarbon","PaneGrid","PickList","Pin","Pop","Primary","ProgressBar","QRCode","Radio","Renderer","Responsive","Row","Rule","Scrollable","Secondary","Shader","Slider","SolarizedDark","SolarizedLight","Space","Stack","State","Svg","Text","TextEditor","TextInput","Theme","Themer","Toggler","TokyoNight","TokyoNightLight","TokyoNightStorm","Tooltip","VerticalSlider","adapt_into_using","","","","and_capture","arrays_from","","","","arrays_into","","","","as_any","","","","as_any_mut","","","","base","borrow","","","","borrow_mut","","","","bottom","bottom_center","bottom_right","button","","cam16_into_unclamped","","","","canvas","","capture","center","center_x","center_y","checkbox","","children","clone","","clone_into","","clone_to_uninit","","code_block","column","","","combo_box","","component","components_from","","","","container","","core","custom","custom_with_fn","default","","","","","","","","","","","","","","","","","","deref","","","","deref_mut","","","","diff","downcast","","","","draw","","drop","","","","eq","extended_palette","fmt","","","focus_next","focus_previous","from","","","","from_angle","","","","from_stimulus","","","","graphics","horizontal_rule","horizontal_space","hover","iced","image","","init","","","","into","","","","into_angle","","","","into_any","","","","into_any_arc","","into_any_rc","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_inner","into_stimulus","","","","keyed","keyed_column","","layout","","lazy","markdown","","mouse_area","mouse_interaction","","new","","null_value","opaque","operate","","","","overlay","","","palette","pane_grid","","pick_list","","pin","pop","","progress_bar","","publish","qr_code","","radio","","renderer","request_redraw","request_redraw_at","responsive","rich_text","","","right","right_center","row","","","rule","runtime","scrollable","","shader","","size","","size_hint","","","slider","","span","stack","","","state","","style","","","","","","","","","","","","","","","","","svg","","tag","","text","","","","text_editor","","text_input","","theme","themer","to_owned","","to_smolstr","to_string","toggler","","tooltip","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","upcast","","","","update","","","value","vertical_rule","vertical_slider","","vertical_space","view","vzip","","","","Active","Button","Catalog","Class","Disabled","Hovered","Pressed","Status","Style","StyleFn","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","background","border","borrow","","","borrow_mut","","","cam16_into_unclamped","","","children","class","clip","clone","","clone_into","","clone_to_uninit","","components_from","","","danger","default","","deref","","","deref_mut","","","diff","downcast","","","draw","drop","","","eq","","equivalent","","","fmt","","from","","","from_angle","","","from_stimulus","","","height","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","layout","mouse_interaction","new","null_value","on_press","on_press_maybe","on_press_with","operate","overlay","padding","primary","secondary","shadow","size","state","style","","success","tag","text","text_color","to_owned","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","update","vzip","","","warning","width","with_background","Action","Bevel","Butt","Cache","Canvas","Event","Fill","Frame","Geometry","Gradient","","Group","Image","InputMethod","Keyboard","LineCap","LineDash","LineJoin","Linear","Miter","Mouse","Path","Program","Round","","Solid","Square","State","Stroke","Style","Text","Touch","Window","adapt_into_using","","","","","","","","","","","","","arrays_from","","","","","","","","","","","","","arrays_into","","","","","","","","","","","","","as_any","","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","","borrow","","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","","cam16_into_unclamped","","","","","","","","","","","","","circle","clone","","","","","","","","","","","","clone_into","","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","","cmp","color","compare","components_from","","","","","","","","","","","","","content","default","","","","","","deref","","","","","","","","","","","","","deref_mut","","","","","","","","","","","","","downcast","","","","","","","","","","","","","draw","","draw_with","drop","","","","","","","","","","","","","eq","","","","","equivalent","","","fill","filter_method","","fmt","","","","","","","","","","","","","font","from","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","","","","from_stimulus","","","","","","","","","","","","","gradient","handle","hash","height","horizontal_alignment","init","","","","","","","","","","","","","into","","","","","","","","","","","","","into_angle","","","","","","","","","","","","","into_any","","","","","","","","","","","","","into_any_arc","","","","","","","","","","","","","into_any_rc","","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","","into_color","","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","","into_stimulus","","","","","","","","","","","","","is_singleton","layout","line","line_cap","line_dash","line_height","line_join","mouse_interaction","","","new","","","null_value","","","","","","offset","opacity","","pack","partial_cmp","path","position","raw","rectangle","rotation","","rounded_rectangle","rule","segments","shaping","size","","snap","","state","stroke","style","","tag","to_owned","","","","","","","","","","","","transform","try_components_into","","","","","","","","","","","","","try_from","","","","","","","","","","","","","try_into","","","","","","","","","","","","","try_into_color","","","","","","","","","","","","","type_id","","","","","","","","","","","","","uints_from","","","","","","","","","","","","","uints_into","","","","","","","","","","","","","unique","upcast","","","","","","","","","","","","","update","","","vertical_alignment","vzip","","","","","","","","","","","","","width","","with_color","with_line_cap","with_line_join","with_width","EvenOdd","Fill","Gradient","NonZero","Rule","Solid","Style","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","deref","deref_mut","downcast","drop","eq","equivalent","","","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","rule","style","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Gradient","Linear","","Packed","adapt_into_using","","add_stop","add_stops","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","deref","","deref_mut","","downcast","","drop","","end","eq","","fmt","","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","is_valid_bit_pattern","new","pack","","start","stops","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","Arc","Builder","Path","adapt_into_using","","arc","","arc_to","arrays_from","","arrays_into","","as_any","","as_any_mut","","bezier_curve_to","borrow","","borrow_mut","","build","cam16_into_unclamped","","center","circle","clone","clone_into","clone_to_uninit","close","components_from","","default","deref","","deref_mut","","downcast","","drop","","ellipse","end_angle","fmt","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","line_to","move_to","new","null_value","quadratic_curve_to","radius","rectangle","rounded_rectangle","start_angle","to_owned","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","Arc","Elliptical","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","center","","clone","clone_into","clone_to_uninit","components_from","deref","deref_mut","downcast","drop","end_angle","","fmt","from","","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","radii","radius","rotation","start_angle","","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","ArcFlags","AttributeIndex","AttributeSlice","AttributeStore","Attributes","Begin","","","Bevel","Builder","BuilderImpl","BuilderWithAttributes","Butt","ControlPointId","Cubic","","","End","","","EndpointId","EvenOdd","Event","EventId","FillRule","INVALID","","","IdEvent","IdIter","IdPolygon","Iter","IterWithAttributes","Line","","","LineCap","LineJoin","Miter","MiterClip","NO_ATTRIBUTES","Negative","","NonZero","Path","PathBuffer","PathBufferSlice","PathCommands","PathCommandsSlice","PathEvent","PathSlice","Polygon","Position","PositionStore","Positive","","Quadratic","","","Reversed","Round","","Side","Square","Winding","adapt_into_using","","","","","","","","","","","","","","","","","","","","","","","","","arrays_from","","","","","","","","","","","","","","","","","","","","","","","","","arrays_into","","","","","","","","","","","","","","","","","","","","","","","","","as_any","","","","","","","","","","","","","","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","","","","","","","","","","","","","","as_slice","","","attributes","","begin","","","borrow","","","","","","","","","","","","","","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","","","","","","","","","","","","","","build","","","builder","","","","builder_with_attributes","cam16_into_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","clear","clone","","","","","","","","","","","","","","","","","","","","","","","clone_into","","","","","","","","","","","","","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","","","","","","","","","","","","","closed","","commands","components_from","","","","","","","","","","","","","","","","","","","","","","","","","cubic_bezier_to","","","default","","","","deref","","","","","","","","","","","","","","","","","","","","","","","","","deref_mut","","","","","","","","","","","","","","","","","","","","","","","","","downcast","","","","","","","","","","","","","","","","","","","","","","","","","drop","","","","","","","","","","","","","","","","","","","","","","","","","end","","","eq","","","","","","","","","","equivalent","","","","","","","","","","","","","","","event","","","","events","extend_from_paths","","first_endpoint","","fmt","","","","","","","","","","","","","","","","","for_each_flattened","from","","","","","","","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","","","","","","","","","","","","","","","","from_iter","","from_stimulus","","","","","","","","","","","","","","","","","","","","","","","","","from_usize","","get","","","","","","get_control_point","","","","get_endpoint","","","","hash","","","","","id_iter","","","index","","","","","indices","","init","","","","","","","","","","","","","","","","","","","","","","","","","into","","","","","","","","","","","","","","","","","","","","","","","","","into_angle","","","","","","","","","","","","","","","","","","","","","","","","","into_any","","","","","","","","","","","","","","","","","","","","","","","","","into_any_arc","","","","","","","","","","","","","","","","","","","","","","","into_any_rc","","","","","","","","","","","","","","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","into_color","","","","","","","","","","","","","","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","into_iter","","","","","","","","into_path","into_stimulus","","","","","","","","","","","","","","","","","","","","","","","","","is_edge","is_empty","","","is_in","is_negative","is_out","is_positive","iter","","","","","","","","iter_with_attributes","","iterator","large_arc","last_endpoint","","len","","line_to","","","math","new","","","","","next","","","","next_event_id_in_path","","next_event_id_in_sub_path","","null_value","","","","num_attributes","","","","","","","offset","","opposite","path","path_buffer","path_events","path_slice","points","","","polygon","position","quadratic_bezier_to","","","reserve","","","","reversed","","svg_builder","sweep","to","to_f32","to_owned","","","","","","","","","","","","","","","","","","","","","","","to_usize","","","traits","transformed","","try_components_into","","","","","","","","","","","","","","","","","","","","","","","","","try_from","","","","","","","","","","","","","","","","","","","","","","","","","try_into","","","","","","","","","","","","","","","","","","","","","","","","","try_into_color","","","","","","","","","","","","","","","","","","","","","","","","","type_id","","","","","","","","","","","","","","","","","","","","","","","","","uints_from","","","","","","","","","","","","","","","","","","","","","","","","","uints_into","","","","","","","","","","","","","","","","","","","","","","","","","upcast","","","","","","","","","","","","","","","","","","","","","","","","","vzip","","","","","","","","","","","","","","","","","","","","","","","","","with_attributes","with_capacity","","with_points","with_svg","at","close","ctrl","ctrl1","ctrl2","first","from","","","last","to","","","at","close","ctrl","ctrl1","ctrl2","first","from","","","last","to","","","at","close","ctrl","ctrl1","ctrl2","first","from","","","last","to","","","BorderRadii","Build","Flattened","NoAttributes","PathBuilder","PathType","SvgPathBuilder","Transformed","WithSvg","adapt_into_using","","","","","add_circle","","","add_ellipse","","","add_line_segment","","","add_point","","","add_polygon","","","","","add_rectangle","","","add_rounded_rectangle","","","arc","arc_to","","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","begin","","","","","borrow","","","","","borrow_mut","","","","","bottom_left","bottom_right","build","","","","","","","","cam16_into_unclamped","","","","","clone","","clone_into","","clone_to_uninit","","close","","","","","","components_from","","","","","cubic_bezier_to","","","","","","","","current_position","default","","deref","","","","","deref_mut","","","","","downcast","","","","","drop","","","","","end","","","","","eq","","event","","extend_from_paths","flattened","","","","fmt","","","from","","","","","from_angle","","","","","from_stimulus","","","","","hash","horizontal_line_to","","init","","","","","inner","inner_mut","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","","","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_inner","into_stimulus","","","","","line_to","","","","","","","","move_to","","","new","","","","","null_value","","num_attributes","","","","partial_cmp","path_event","","","quadratic_bezier_to","","","","","","","","relative_arc_to","","relative_cubic_bezier_to","","relative_horizontal_line_to","","relative_line_to","","relative_move_to","","relative_quadratic_bezier_to","","relative_vertical_line_to","","reserve","","","","","","","","","","set_tolerance","set_transform","","smooth_cubic_bezier_to","","smooth_quadratic_bezier_to","","smooth_relative_cubic_bezier_to","","smooth_relative_quadratic_bezier_to","","to_owned","","to_smolstr","to_string","top_left","top_right","transformed","","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","vertical_line_to","","vzip","","","","","with_capacity","with_svg","","","wrap","CommandsPathSlice","Events","Iter","PathCommands","PathCommandsBuilder","PathCommandsSlice","PointEvents","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","begin","borrow","","","","","borrow_mut","","","","","build","cam16_into_unclamped","","","","","clone","","","","","clone_into","","","","","clone_to_uninit","","","","","components_from","","","","","cubic_bezier_to","default","deref","","","","","deref_mut","","","","","downcast","","","","","drop","","","","","end","events","fmt","","from","","","","","from_angle","","","","","from_stimulus","","","","","get_control_point","get_endpoint","index","","init","","","","","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_iter","","","into_stimulus","","","","","iter","line_to","new","next","","","null_value","points","quadratic_bezier_to","to_owned","","","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","vzip","","","","","with_capacity","Angle","Arc","ArcFlags","Box2D","CubicBezierSegment","DIV_EPSILON","EIGHT","EPSILON","FIVE","FOUR","HALF","Line","LineEquation","LineSegment","MAX","MIN","NINE","ONE","Point","QuadraticBezierSegment","Rotation","SEVEN","SIX","Scalar","","Scale","Segment","Size","SvgArc","TEN","THREE","TWO","Transform","Translation","Triangle","Vector","ZERO","a","","ab","ac","adapt_into_using","","","","","","","","","add","","add_assign","after_split","","","","","","","","","angle","angle_to","approx_epsilon","approx_eq_eps","approximate_length","","","","","","","arc","arrays_from","","","","","","","","","arrays_into","","","","","","","","","as_any","","","","","","","","","as_any_mut","","","","","","","","","b","","ba","baseline","","bc","before_split","","","","","","","","","borrow","","","","","","","","","borrow_mut","","","","","","","","","bounding_box","","","","","bounding_range_x","","","","bounding_range_y","","","","bounding_triangle","c","","ca","cam16_into_unclamped","","","","","","","","","cast","","","cb","center","circle","clipped","clipped_x","clipped_y","clone","","","","","","","","","clone_into","","","","","","","","","clone_to_uninit","","","","","","","","","closest_point","","components_from","","","","","","","","","contains_point","contains_segment","ctrl","ctrl1","ctrl2","cubic_bezier","cubic_intersections","cubic_intersections_t","default","degrees","deref","","","","","","","","","deref_mut","","","","","","","","","derivative","","","","","","","distance_to_point","","","","div","","div_assign","downcast","","","","","","","","","drag","","drag_with_weight","drop","","","","","","","","","dx","","","","","","dy","","","","","","end_angle","epsilon_for","eq","","","","","","","","equation","equivalent","","","","","","fast_bounding_box","","","fast_bounding_range_x","","","fast_bounding_range_y","","","fat_line","","flags","flattened","","","flattened_t","flattening_step","flip","","","","","","","","","fmt","","","","","","","","","for_each_cubic_bezier","","for_each_flattened","","","","for_each_flattened_with_t","","","","","","","","","for_each_inflection_t","for_each_local_x_extremum_t","","for_each_local_y_extremum_t","","for_each_monotonic","","for_each_monotonic_range","","for_each_quadratic_bezier","","","for_each_quadratic_bezier_with_t","","","for_each_x_monotonic","","for_each_x_monotonic_range","","for_each_y_monotonic","","for_each_y_monotonic_range","","frac_pi_2","frac_pi_3","frac_pi_4","from","","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","from_stimulus","","","","","","","","","from_svg_arc","get","get_angle","hash","height","horizontal_line_intersection","horizontal_line_intersection_t","init","","","","","","","","","intersection","","intersection_t","intersects","","intersects_box","intersects_line","intersects_line_segment","into","","","","","","","","","into_angle","","","","","","","","","into_any","","","","","","","","","into_any_arc","","","","","","","","","into_any_rc","","","","","","","","","into_cam16_unclamped","","","","","","","","","into_color","","","","","","","","","into_color_unclamped","","","","","","","","","into_stimulus","","","","","","","","","invert","is_a_point","is_finite","is_horizontal","is_linear","","is_monotonic","","is_quadratic","is_straight_line","is_vertical","is_x_monotonic","","is_y_monotonic","","large_arc","length","","lerp","line_intersection","line_intersection_t","line_intersections","","line_intersections_t","","line_segment_intersections","","line_segment_intersections_t","","local_x_extremum_t","local_y_extremum_t","m11","m12","m21","m22","m31","m32","max","mid_point","min","mul","mul_assign","neg","new","normal","null_value","num_quadratics","offset","overlaps_line","overlaps_segment","parallel_line","partial_cmp","pi","point","","positive","project_point","quadratic_bezier","quadratic_intersections","quadratic_intersections_t","radians","","radii","","sample","","","","","","","","","sample_tangent","set_length","signed","signed_distance_to_point","","sin_cos","size","solve_t_for_x","","solve_t_for_y","","solve_x_for_y","","solve_y_for_x","","split","","","","","","","","","split_at_x","split_range","","","","","","","","","square_distance_to_point","","","square_length","start_angle","sub","sub_assign","sum","","sweep","sweep_angle","tangent","to","","","","","","","","","","","","","to_arc","to_cubic","to_degrees","to_f32","","","","","to_f64","","","","","to_line","to_owned","","","","","","","","","to_quadratic","to_quadratic_error","to_svg_arc","to_vector","traits","transform","transformed","","","translate","try_cast","try_components_into","","","","","","","","","try_from","","","","","","","","","try_into","","","","","","","","","try_into_color","","","","","","","","","two_pi","type_id","","","","","","","","","uints_from","","","","","","","","","uints_into","","","","","","","","","upcast","","","","","","","","","utils","value","vector","","vertical_line_intersection","vertical_line_intersection_t","vzip","","","","","","","","","width","x","","","","","","","","","","","","x_maximum_t","","x_minimum_t","","x_rotation","","y","","","","","","","","","","","","y_maximum_t","","y_minimum_t","","zero","Arc","ArcFlags","Flattened","SvgArc","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","center","components_from","deref","deref_mut","downcast","drop","flags","from","","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_iter","into_stimulus","large_arc","next","radii","","start_angle","sweep","sweep_angle","to","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","x_rotation","","ArrayString","ArrayVec","CapacityError","Drain","IntoIter","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","as_mut","as_mut_ptr","","as_mut_slice","","as_mut_str","as_ptr","","as_ref","","","as_slice","","as_str","borrow","","","","","","","borrow_mut","","","","","","","cam16_into_unclamped","","","","","capacity","","clear","","clone","","","","clone_from","","clone_into","","","","clone_to_uninit","","","","cmp","","","compare","","","components_from","","","","","default","","deref","","","","","","","deref_mut","","","","","","","downcast","","","","","drain","drop","","","","","","","","element","encode_hex","encode_hex_upper","eq","","","","","equivalent","","","","","","","","","extend","flush","fmt","","","","","","from","","","","","","","from_angle","","","","","from_byte_string","from_iter","from_stimulus","","","","","from_str","ge","","","gt","","","hash","","init","","","","","insert","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","","","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_inner","into_inner_unchecked","into_iter","","","","","into_stimulus","","","","","is_empty","","is_full","","le","","","len","","","limit_ptr","lt","","","multiunzip","","","","","","","","","","","","","","","","","","","","","","","","","","new","","","new_const","","next","","next_back","","null_value","","partial_cmp","","","","pop","","pop_at","push","","push_str","push_unchecked","remaining_capacity","","remove","","retain","set_len","","simplify","size_hint","","start_ptr","swap_pop","swap_remove","take","to_owned","","","","to_smolstr","","to_string","","truncate","","try_components_into","","","","","try_extend_from_slice","try_from","","","","","","","","try_insert","try_into","","","","","try_into_color","","","","","try_push","","try_push_str","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","vzip","","","","","write","write_as_big_endian","","","","","","","","","","","","","","","","","","","","","","","","write_as_little_endian","","","","","","","","","","","","","","","","","","","","","","","","write_char","write_f32","write_f64","write_i128","write_i16","write_i32","write_i64","write_i8","write_str","write_u128","write_u16","write_u32","write_u64","write_u8","zero_filled","CubicBezierSegment","Flattened","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","components_from","ctrl1","ctrl2","deref","deref_mut","downcast","drop","from","","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_iter","into_stimulus","next","size_hint","to","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Angle","BoolVector2D","BoolVector3D","Box2D","Box3D","HomogeneousVector","Length","Point2D","Point3D","Rect","RigidTransform3D","Rotation2D","Rotation3D","Scale","SideOffsets2D","Size2D","Size3D","Transform2D","Transform3D","Translation2D","Translation3D","Trig","UnknownUnit","Vector2D","Vector3D","abs","","","","adapt_into_using","","","","","","","","","","","","","","","","","","","","","","","add","","","","","","","","","","","","","","","","","","add_assign","","","","","","","","","","","","add_size","","all","","and","","angle","angle_from_x_axis","angle_to","","any","","approx_epsilon","","","","","","","","","approx_eq","","approx_eq_eps","","","","","","","","","","","approxeq","approxord","area","","","around_axis","around_x","around_y","around_z","arrays_from","","","","","","","","","","","","","","","","","","","","","","","arrays_into","","","","","","","","","","","","","","","","","","","","","","","as_any","","","","","","","","","","","","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","","","","","","","","","","","","borrow","","","","","","","","","","","","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","","","","","","","","","","","","bottom","box3d","bvec2","bvec3","cam16_into_unclamped","","","","","","","","","","","","","","","","","","","","","","","cast","","","","","","","","","","","","","","","cast_unit","","","","","","","","","","","","","ceil","","","","","","","","","","","","center","","","clamp","","","","","","","clamp_length","","clone","","","","","","","","","","","","","","","","","","","","","","","clone_into","","","","","","","","","","","","","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","","","","","","","","","","","","","cmp","","","compare","","","component_div","","component_mul","","components_from","","","","","","","","","","","","","","","","","","","","","","","contains","","","","","contains_box","","contains_inclusive","","contains_rect","cos","cross","","decompose_reversed","default","","","","","","","","","","","","","","","","","","degrees_to_radians","depth","","deref","","","","","","","","","","","","","","","","","","","","","","","deref_mut","","","","","","","","","","","","","","","","","","","","","","","determinant","","distance_to","","div","","","","","","","","","","","","","","","","","","","","","","","div_assign","","","","","","","","","","","","","","","","","","","","","div_euclid","","dot","","downcast","","","","","","","","","","","","","","","","","","","","","","","drop","","","","","","","","","","","","","","","","","","","","","","","eq","","","","","","","","","","","","","","","","","","","","","","","equal","","","","equivalent","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","euler","extend","","fast_atan2","floor","","","","","","","","","","","","fmt","","","","","","","","","","","","","","","","","","","","","","","from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","","","","","","","","","","","","","","from_angle_and_length","from_array","","from_arrays","","from_length_all_same","from_lengths","","","","","","","from_origin_and_size","","from_points","","","from_rotation","from_scale","from_size","","","from_stimulus","","","","","","","","","","","","","","","","","","","","","","","from_translation","from_untyped","","","","","","","","","","","","","","","","from_vectors_inner","from_vectors_outer","get","","get_angle","greater_than","","","","hash","","","","","","","","","","","","","","","","","","","","","","","height","","","","","horizontal","i","identity","","","","","","","","inflate","","","init","","","","","","","","","","","","","","","","","","","","","","","inner_box","inner_rect","intersection","","","intersection_unchecked","","intersects","","","into","","","","","","","","","","","","","","","","","","","","","","","into_angle","","","","","","","","","","","","","","","","","","","","","","","into_any","","","","","","","","","","","","","","","","","","","","","","","into_any_arc","","","","","","","","","","","","","","","","","","","","","","","into_any_rc","","","","","","","","","","","","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","","","","","","","","","","","","into_color","","","","","","","","","","","","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","","","","","","","","","","","","into_stimulus","","","","","","","","","","","","","","","","","","","","","","","inverse","","","","","","","","is_2d","is_backface_visible","is_empty","","","","","is_finite","","","","","","","","","is_identity","","","is_invertible","","is_negative","","is_normalized","is_positive","","is_zero","j","k","left","length","","lerp","","","","","","","","","","","lower_than","","","","m11","","m12","","m13","m14","m21","","m22","","m23","m24","m31","","m32","","m33","m34","m41","m42","m43","m44","map","","","","max","","","","","","","","","","","max_x","max_y","min","","","","","","","","","","","min_x","min_y","mul","","","","","","","","","","","","","","","","","","","","","","","mul_assign","","","","","","","","","","","","","","","","","","","","","mul_s","neg","","","","","","","","new","","","","","","","","","","","","","","","","","","","new_2d","new_all_same","new_from_reversed","none","","norm","normalize","","","not","","not_equal","","","","null_value","","","","","","","","","","","","","","","","","num","one","","","or","","origin","","","ortho","outer_box","outer_rect","outer_transformed_box","outer_transformed_box2d","outer_transformed_box3d","outer_transformed_rect","","partial_cmp","","","perspective","point2","point3","position","pre_rotate","","pre_scale","","pre_translate","","project_onto_vector","","project_to_2d","quaternion","r","radians","","radians_to_degrees","rect","reflect","","rem_euclid","","right","robust_normalize","","rotation","","","round","","","","","","","","","","","","","","","round_in","","","round_out","","","saturating_add","saturating_sub","scale","","","","","select_point","","select_size","","select_vector","","set_size","sin","size","","","size2","size3","skew","slerp","splat","","","","","","","","square_length","","square_norm","sub","","","","","","","","","","","","","","","sub_assign","","","","","","","","","","","","sum","","","","","","","","","","tan","then","","","","","then_rotate","","then_scale","","then_translate","","to_2d","","","to_3d","","","","to_array","","","","","","","","","","to_array_4d","","to_array_transposed","","to_arrays","","to_arrays_transposed","to_box2d","to_f32","","","","","","","","","","","to_f64","","","","","","","","","","","to_i32","","","","","","","","","","","to_i64","","","","","","","","","","","to_non_empty","","","to_owned","","","","","","","","","","","","","","","","","","","","","","","to_point","","to_point2d","to_point3d","to_rect","to_size","to_transform","","","","","","","to_tuple","","","","","","","","to_tuple_4d","","to_u32","","","","","","","","","","","to_u64","","to_untyped","","","","","","","","","","","","","","","","to_usize","","","","","","","","","","","to_vector","","","","","","top","transform_box","transform_box2d","","transform_box3d","","transform_point","","","","","","","","transform_point2d","","","transform_point2d_homogeneous","transform_point3d","","","","transform_point3d_homogeneous","transform_rect","","","transform_size","","","transform_vector","","","","","","","transform_vector2d","","transform_vector3d","","translate","","","translation","","","try_cast","","","","","","","","","","","","","","","try_components_into","","","","","","","","","","","","","","","","","","","","","","","try_from","","","","","","","","","","","","","","","","","","","","","","","try_into","","","","","","","","","","","","","","","","","","","","","","","try_into_color","","","","","","","","","","","","","","","","","","","","","","","try_normalize","","type_id","","","","","","","","","","","","","","","","","","","","","","","uints_from","","","","","","","","","","","","","","","","","","","","","","","uints_into","","","","","","","","","","","","","","","","","","","","","","","union","","","unit_quaternion","upcast","","","","","","","","","","","","","","","","","","","","","","","vec2","vec3","vector_part","vertical","volume","","vzip","","","","","","","","","","","","","","","","","","","","","","","w","width","","","","","with_destination","","with_length","with_max_length","","with_min_length","","with_source","","x","","","","","","","","","x_range","","","xy","","","xy_area","xz","","","xz_area","y","","","","","","","","","y_range","","","yx","","yz","","","yz_area","z","","","","","z_range","zero","","","","","","","","","","","","","","","","","zip","","","","ApproxEq","approx_epsilon","approx_eq","approx_eq_eps","max","min","Box2D","Box3D","HomogeneousVector","Length","Point2D","Point3D","Rect","RigidTransform3D","Rotation2D","Rotation3D","Scale","SideOffsets2D","Size2D","Size3D","Transform2D","Transform3D","Translation2D","Translation3D","Vector2D","Vector3D","angle","bottom","depth","height","","i","j","k","left","m11","","m12","","m13","m14","m21","","m22","","m23","m24","m31","","m32","","m33","m34","m41","m42","m43","m44","max","","min","","origin","r","right","rotation","size","top","translation","w","width","","x","","","","","","","y","","","","","","","z","","","","Ceil","Floor","One","Round","Zero","ceil","floor","one","round","zero","Flattened","FlattenedT","FlatteningParameters","QuadraticBezierSegment","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","components_from","","","ctrl","deref","","","deref_mut","","","downcast","","","drop","","","from","","","","from_angle","","","from_stimulus","","","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_iter","","into_stimulus","","","new","next","","size_hint","","to","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","Scalar","Segment","Transformation","after_split","approximate_length","before_split","derivative","dx","dy","flip","for_each_flattened_with_t","from","sample","split","split_range","to","transform_point","transform_vector","x","y","cubic_polynomial_roots","directed_angle","directed_angle2","min_max","normalized_tangent","tangent","Flattened","FromPolyline","NoAttributes","PathIterator","Transformed","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","as_any","","","","as_any_mut","","","","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","closed","components_from","","","","deref","","","","deref_mut","","","","downcast","","","","drop","","","","flattened","","from","","","","from_angle","","","","from_stimulus","","","","init","","","","into","","","","into_angle","","","","into_any","","","","into_any_arc","","","","into_any_rc","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_iter","","","","into_stimulus","","","","new","","","next","","","","open","size_hint","transformed","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","upcast","","","","vzip","","","","with_attributes","Angle","Box2D","Point","Rotation","Scale","Size","Transform","Translation","Vector","angle","height","m11","m12","m21","m22","m31","m32","max","min","point","radians","size","vector","width","x","","","y","","","Builder","BuilderImpl","BuilderWithAttributes","IdIter","Iter","IterWithAttributes","Path","PathSlice","Reversed","Builder","BuilderWithAttributes","Iter","PathBuffer","PathBufferSlice","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","begin","","","","borrow","","","borrow_mut","","","build","","","","cam16_into_unclamped","","","clone","clone_into","clone_to_uninit","components_from","","","cubic_bezier_to","","","","deref","","","deref_mut","","","downcast","","","drop","","","end","","","","from","","","from_angle","","","from_stimulus","","","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_iter","into_stimulus","","","line_to","","","","new","next","next_back","num_attributes","","quadratic_bezier_to","","","","reserve","","","","size_hint","to_owned","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","with_attributes","IdPolygon","IdPolygonIter","PathEvents","Polygon","PolygonIdIter","PolygonIter","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","as_any","","","","as_any_mut","","","","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","clone","","","","clone_into","","","","clone_to_uninit","","","","closed","","components_from","","","","deref","","","","deref_mut","","","","downcast","","","","drop","","","","from","","","","from_angle","","","","from_stimulus","","","","init","","","","into","","","","into_angle","","","","into_any","","","","into_any_arc","","","","into_any_rc","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_iter","","","","into_stimulus","","","","new","next","","","","par_bridge","points","","to_owned","","","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","upcast","","","","vzip","","","","Build","PathBuilder","PathIterator","PathType","SvgPathBuilder","arc_to","begin","build","close","cubic_bezier_to","","end","horizontal_line_to","line_to","","move_to","num_attributes","quadratic_bezier_to","","relative_arc_to","relative_cubic_bezier_to","relative_horizontal_line_to","relative_line_to","relative_move_to","relative_quadratic_bezier_to","relative_vertical_line_to","smooth_cubic_bezier_to","smooth_quadratic_bezier_to","smooth_relative_cubic_bezier_to","smooth_relative_quadratic_bezier_to","vertical_line_to","Bevel","Butt","Gradient","LineCap","LineDash","LineJoin","Miter","Round","","Solid","Square","Stroke","Style","line_cap","line_dash","line_join","offset","segments","style","width","Active","Catalog","Checkbox","Class","Disabled","Hovered","Icon","Status","Style","StyleFn","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","as_any","","","","as_any_mut","","","","background","border","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","class","clone","","","clone_into","","","clone_to_uninit","","","code_point","components_from","","","","danger","default","deref","","","","deref_mut","","","","downcast","","","","draw","drop","","","","eq","","","equivalent","","","fmt","","","font","","from","","","","from_angle","","","","from_stimulus","","","","icon","icon_color","init","","","","into","","","","into_angle","","","","into_any","","","","into_any_arc","","","into_any_rc","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_stimulus","","","","layout","line_height","mouse_interaction","new","on_toggle","on_toggle_maybe","operate","primary","secondary","shaping","size","","","spacing","state","style","","success","tag","text_color","text_line_height","text_shaping","text_size","text_wrapping","to_owned","","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","upcast","","","","update","vzip","","","","width","is_checked","","","Catalog","ComboBox","State","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","children","clone","clone_into","clone_to_uninit","components_from","","default","default_input","default_menu","deref","","deref_mut","","downcast","","draw","drop","","fmt","font","from","","from_angle","","from_stimulus","","icon","init","","input_class","input_style","into","","into_angle","","into_any","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","layout","line_height","menu_class","menu_style","mouse_interaction","new","","null_value","on_close","on_input","on_open","on_option_hovered","options","overlay","padding","size","","state","tag","to_owned","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","update","vzip","","width","with_selection","Catalog","Class","Container","Id","Style","StyleFn","adapt_into_using","","","align_bottom","align_left","align_right","align_top","align_x","align_y","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","background","","","border","","bordered_box","borrow","","","borrow_mut","","","cam16_into_unclamped","","","center","center_x","center_y","children","class","clip","clone","","clone_into","","clone_to_uninit","","color","components_from","","","danger","dark","default","","deref","","","deref_mut","","","diff","downcast","","","draw","draw_background","drop","","","eq","","equivalent","","","fmt","","from","","","","","","","","from_angle","","","from_stimulus","","","hash","height","id","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","layout","","max_height","max_width","mouse_interaction","new","","null_value","operate","overlay","padding","primary","rounded_box","secondary","shadow","","size","state","style","","success","tag","text_color","to_owned","","transparent","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","unique","upcast","","","update","visible_bounds","vzip","","","width","Bytes","FilterMethod","Handle","Image","Linear","Nearest","Path","Rgba","Viewer","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","","clone_into","","clone_to_uninit","","components_from","","","content_fit","default","deref","","","deref_mut","","","downcast","","","draw","","drop","","","eq","","equivalent","","","","","","filter_method","fmt","","","from","","","","","from_angle","","","from_bytes","from_path","from_rgba","from_stimulus","","","hash","height","id","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","layout","","new","null_value","opacity","rotation","scale","size","to_owned","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","viewer","","vzip","","","width","height","id","pixels","width","State","Viewer","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","clone_into","clone_to_uninit","components_from","","content_fit","default","deref","","deref_mut","","downcast","","draw","drop","","filter_method","fmt","from","","from_angle","","from_stimulus","","height","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","is_cursor_grabbed","layout","max_scale","min_scale","mouse_interaction","new","","null_value","padding","scale_step","scaled_image_size","size","state","tag","to_owned","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","update","vzip","","width","Column","column","Column","adapt_into_using","align_items","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","children","components_from","default","deref","deref_mut","diff","downcast","draw","drop","extend","from","from_angle","from_stimulus","from_vecs","height","init","into","into_angle","into_any","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","layout","max_width","mouse_interaction","new","null_value","operate","overlay","padding","push","push_maybe","size","spacing","state","tag","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","update","vzip","width","with_capacity","with_children","Catalog","CodeBlock","Content","H1","H2","H3","H4","H5","H6","Heading","HeadingLevel","Highlight","Image","Item","List","Paragraph","Settings","Style","Text","Url","Viewer","adapt_into_using","","","","","","","","arrays_from","","","","","","","","arrays_into","","","","","","","","as_any","","","","","","","","as_any_mut","","","","","","","","as_ref","as_str","authority","background","border","borrow","","","","","","","","borrow_mut","","","","","","","","cam16_into_unclamped","","","","","","","","cannot_be_a_base","clone","","","","","","","clone_into","","","","","","","clone_to_uninit","","","","","","","cmp","","code_block","","","code_size","compare","","components_from","","","","","","","","default","deref","","","","","","","","deref_mut","","","","","","","","deserialize","deserialize_internal","deserializer_for_signature","domain","downcast","","","","","","","","drop","","","","","","","","eq","","","","equivalent","","","","","","fmt","","","","","","","","","","fragment","from","","","","","","","","","","","","","from_angle","","","","","","","","from_directory_path","from_file_path","from_palette","from_stimulus","","","","","","","","from_str","h1_size","h2_size","h3_size","h4_size","h5_size","h6_size","has_authority","has_host","hash","","heading","","host","host_str","image","images","index","","","","init","","","","","","","","inline_code_color","inline_code_highlight","inline_code_padding","into","","","","","","","","into_angle","","","","","","","","into_any","","","","","","","","into_any_arc","","","","","into_any_rc","","","","","","","","into_cam16_unclamped","","","","","","","","into_color","","","","","","","","into_color_unclamped","","","","","","","","into_stimulus","","","","","","","","into_string","is_special","item","items","join","len","limit_ptr","link_color","make_relative","new","null_value","on_link_click","options","ordered_list","","origin","paragraph","","parse","","","parse_with_params","partial_cmp","","password","path","path_segments","path_segments_mut","port","port_or_known_default","push_str","query","query_pairs","query_pairs_mut","scheme","serialize","serialize_internal","set_fragment","set_host","set_ip_host","set_password","set_path","set_port","set_query","set_scheme","set_username","signature","socket_addrs","spacing","spans","start_ptr","style","text_size","to_file_path","to_owned","","","","","","","to_smolstr","","to_string","","try_components_into","","","","","","","","try_from","","","","","","","","","","try_into","","","","","","","","try_into_color","","","","","","","","type_id","","","","","","","","uints_from","","","","","","","","uints_into","","","","","","","","unordered_list","","upcast","","","","","","","","username","view","view_with","vzip","","","","","","","","with_style","with_text_size","alt","code","items","language","lines","start","title","url","menu","Catalog","Class","Menu","State","Style","StyleFn","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","background","border","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","clone_into","clone_to_uninit","components_from","","","default","","","default_scrollable","deref","","","deref_mut","","","downcast","","","drop","","","eq","fmt","","font","from","","","from_angle","","","from_stimulus","","","init","","","into","","","into_angle","","","into_any","","","into_any_arc","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","new","","null_value","overlay","padding","selected_background","selected_text_color","style","text_color","text_line_height","text_shaping","text_size","to_owned","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","width","Axis","Bottom","Canceled","Catalog","Center","Class","Configuration","Content","Controls","Direction","Down","DragEvent","Draggable","Dropped","Edge","","","Highlight","Horizontal","Left","","Line","Node","Pane","","","","PaneGrid","Picked","Region","ResizeEvent","Right","","Split","","","State","Style","StyleFn","Target","TitleBar","Top","Up","Vertical","adapt_into_using","","","","","","","","","","","","","","","","","","always_show_controls","arrays_from","","","","","","","","","","","","","","","","","","arrays_into","","","","","","","","","","","","","","","","","","as_any","","","","","","","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","","","","","","","background","border","borrow","","","","","","","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","","","","","","","cam16_into_unclamped","","","","","","","","","","","","","","","","","","can_be_dragged_at","","children","class","","","clone","","","","","","","","","","","","","","clone_into","","","","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","","","","cmp","","color","compare","","components_from","","","","","","","","","","","","","","","","","","controls","default","","","deref","","","","","","","","","","","","","","","","","","deref_mut","","","","","","","","","","","","","","","","","","diff","downcast","","","","","","","","","","","","","","","","","","draw","","","drop","","","","","","","","","","","","","","","","","","dynamic","eq","","","","","","","equivalent","","","","","","","","","","","","fmt","","","","","","","","","","","","","","from","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","","","","","","","","","from_stimulus","","","","","","","","","","","","","","","","","","hash","","","","height","hovered_region","hovered_split","init","","","","","","","","","","","","","","","","","","into","","","","","","","","","","","","","","","","","","into_angle","","","","","","","","","","","","","","","","","","into_any","","","","","","","","","","","","","","","","","","into_any_arc","","","","","","","","","","","","","","into_any_rc","","","","","","","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","","","","","","","into_color","","","","","","","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","","","","","","","into_stimulus","","","","","","","","","","","","","","","","","","is_over_pick_area","layout","mouse_interaction","new","","","","null_value","on_click","on_drag","on_resize","operate","overlay","padding","pane_regions","partial_cmp","","picked_split","ratio","size","spacing","split","","split_line_bounds","split_regions","splits","state","","style","","","","tag","title_bar","to_owned","","","","","","","","","","","","","","try_components_into","","","","","","","","","","","","","","","","","","try_from","","","","","","","","","","","","","","","","","","try_into","","","","","","","","","","","","","","","","","","try_into_color","","","","","","","","","","","","","","","","","","type_id","","","","","","","","","","","","","","","","","","uints_from","","","","","","","","","","","","","","","","","","uints_into","","","","","","","","","","","","","","","","","","upcast","","","","","","","","","","","","","","","","","","update","vzip","","","","","","","","","","","","","","","","","","width","","a","axis","b","ratio","pane","","","target","a","axis","b","id","ratio","Action","Dragging","Idle","Internal","Resizing","State","adapt_into_using","","","adjacent","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","","","clone_into","","","clone_to_uninit","","","close","components_from","","","default","deref","","","deref_mut","","","downcast","","","drop","","","","eq","fmt","","","from","","","from_angle","","","from_configuration","from_stimulus","","","get","get_mut","init","","","internal","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","is_empty","iter","iter_mut","layout","len","maximize","maximized","move_to_edge","new","null_value","panes","picked_pane","picked_split","resize","restore","split","split_with","swap","to_owned","","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","with_configuration","axis","origin","pane","split","Active","Arrow","Catalog","Class","Dynamic","Handle","Hovered","Icon","None","Opened","PickList","Static","Status","Style","StyleFn","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","background","border","borrow","","","","","borrow_mut","","","","","cam16_into_unclamped","","","","","class","clone","","","","clone_into","","","","clone_to_uninit","","","","code_point","components_from","","","","","default","","","default_menu","deref","","","","","deref_mut","","","","","downcast","","","","","draw","drop","","","","","eq","","","","equivalent","","","fmt","","","","font","","from","","","","","from_angle","","","","","from_stimulus","","","","","handle","handle_color","init","","","","","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_stimulus","","","","","layout","line_height","menu_class","menu_style","mouse_interaction","new","null_value","on_close","on_open","overlay","padding","placeholder","placeholder_color","shaping","size","","state","style","","tag","text_color","text_line_height","text_shaping","text_size","to_owned","","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","update","vzip","","","","","width","closed","open","size","is_hovered","Pop","adapt_into_using","anticipate","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","children","components_from","deref","deref_mut","diff","downcast","draw","drop","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","key","layout","mouse_interaction","new","on_hide","on_resize","on_show","operate","overlay","size","size_hint","state","tag","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","update","vzip","Catalog","Class","DEFAULT_GIRTH","ProgressBar","Style","StyleFn","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","background","bar","border","borrow","","borrow_mut","","cam16_into_unclamped","","class","clone","clone_into","clone_to_uninit","components_from","","danger","default","deref","","deref_mut","","downcast","","draw","drop","","eq","fmt","from","","from_angle","","from_stimulus","","girth","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","layout","length","new","primary","secondary","size","style","","success","to_owned","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vertical","vzip","","warning","Catalog","Class","Data","DataTooLong","Error","ErrorCorrection","High","InvalidCharacter","InvalidEciDesignator","InvalidVersion","Low","Medium","Micro","Normal","QRCode","Quartile","Style","StyleFn","UnsupportedCharacterSet","Version","adapt_into_using","","","","","","arrays_from","","","","","","arrays_into","","","","","","as_any","","","","","","as_any_mut","","","","","","background","borrow","","","","","","borrow_mut","","","","","","cam16_into_unclamped","","","","","","cell","cell_size","class","clone","","","","clone_into","","","","clone_to_uninit","","","","components_from","","","","","","default","","deref","","","","","","deref_mut","","","","","","downcast","","","","","","draw","drop","","","","","","eq","","","","equivalent","","","","","","","","","fmt","","","","","","from","","","","","","","from_angle","","","","","","from_stimulus","","","","","","init","","","","","","into","","","","","","into_angle","","","","","","into_any","","","","","","into_any_arc","","","","into_any_rc","","","","","","into_cam16_unclamped","","","","","","into_color","","","","","","into_color_unclamped","","","","","","into_stimulus","","","","","","layout","new","","size","state","style","","tag","to_owned","","","","to_smolstr","to_string","total_size","try_components_into","","","","","","try_from","","","","","","try_into","","","","","","try_into_color","","","","","","type_id","","","","","","uints_from","","","","","","uints_into","","","","","","upcast","","","","","","vzip","","","","","","with_error_correction","with_version","Active","Catalog","Class","DEFAULT_SIZE","DEFAULT_SPACING","Hovered","Radio","Status","Style","StyleFn","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","background","border_color","border_width","borrow","","","borrow_mut","","","cam16_into_unclamped","","","class","clone","","clone_into","","clone_to_uninit","","components_from","","","default","","deref","","","deref_mut","","","dot_color","downcast","","","draw","drop","","","eq","","equivalent","","","fmt","","font","from","","","from_angle","","","from_stimulus","","","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","layout","mouse_interaction","new","size","","spacing","state","style","","tag","text_color","text_line_height","text_shaping","text_size","text_wrapping","to_owned","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","update","vzip","","","width","is_selected","","AsymmetricPadding","Catalog","Class","FillMode","Full","Padded","Percent","Rule","Style","StyleFn","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","class","clone","","clone_into","","clone_to_uninit","","color","components_from","","","default","","deref","","","deref_mut","","","downcast","","","draw","drop","","","eq","","fill","fill_mode","fmt","","from","","","from_angle","","","from_stimulus","","","horizontal","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","layout","radius","size","style","","to_owned","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vertical","vzip","","","width","AbsoluteOffset","Active","Anchor","Both","Catalog","Class","Direction","Dragged","END","End","Horizontal","Hovered","Id","Rail","RelativeOffset","START","Scrollable","Scrollbar","Scroller","Start","Status","Style","StyleFn","Vertical","Viewport","absolute_offset","absolute_offset_reversed","adapt_into_using","","","","","","","","","","","","anchor","anchor_bottom","anchor_left","anchor_right","anchor_top","anchor_x","anchor_y","arrays_from","","","","","","","","","","","","arrays_into","","","","","","","","","","","","as_any","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","background","border","","borrow","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","bounds","cam16_into_unclamped","","","","","","","","","","","","children","class","clone","","","","","","","","","","","clone_into","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","color","components_from","","","","","","","","","","","","container","content_bounds","default","","","","","","","deref","","","","","","","","","","","","deref_mut","","","","","","","","","","","","diff","direction","downcast","","","","","","","","","","","","draw","drop","","","","","","","","","","","","eq","","","","","","","","","","equivalent","","","","","","","","","fmt","","","","","","","","","","","from","","","","","","","","","","","","","from_angle","","","","","","","","","","","","from_stimulus","","","","","","","","","","","","gap","hash","height","horizontal","","horizontal_rail","id","init","","","","","","","","","","","","into","","","","","","","","","","","","into_angle","","","","","","","","","","","","into_any","","","","","","","","","","","","into_any_arc","","","","","","","","","","","into_any_rc","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","into_color","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","into_stimulus","","","","","","","","","","","","layout","margin","mouse_interaction","new","","","null_value","","","","","on_scroll","operate","overlay","relative_offset","scroll_by","scroll_to","scroller","scroller_width","size","snap_to","spacing","","state","style","","tag","to_owned","","","","","","","","","","","try_components_into","","","","","","","","","","","","try_from","","","","","","","","","","","","try_into","","","","","","","","","","","","try_into_color","","","","","","","","","","","","type_id","","","","","","","","","","","","uints_from","","","","","","","","","","","","uints_into","","","","","","","","","","","","unique","upcast","","","","","","","","","","","","update","vertical","vertical_rail","vzip","","","","","","","","","","","","width","","with_direction","x","","y","","horizontal","vertical","is_horizontal_scrollbar_disabled","","","is_horizontal_scrollbar_dragged","is_horizontal_scrollbar_hovered","is_vertical_scrollbar_disabled","","","is_vertical_scrollbar_dragged","is_vertical_scrollbar_hovered","Action","Primitive","","Program","Shader","State","Storage","Viewport","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","clone_into","clone_to_uninit","components_from","","","default","deref","","","deref_mut","","","downcast","","","draw","","drop","","","fmt","","from","","","from_angle","","","from_stimulus","","","get","get_mut","has","height","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","layout","logical_size","mouse_interaction","","","new","null_value","physical_height","physical_size","physical_width","prepare","projection","render","scale_factor","size","state","store","tag","to_owned","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","update","","","vzip","","","width","with_physical_size","Active","Catalog","Circle","Class","DEFAULT_HEIGHT","Dragged","Handle","HandleShape","Hovered","Rail","Rectangle","Slider","Status","Style","StyleFn","adapt_into_using","","","","","","arrays_from","","","","","","arrays_into","","","","","","as_any","","","","","","as_any_mut","","","","","","background","backgrounds","border","border_color","border_width","borrow","","","","","","borrow_mut","","","","","","cam16_into_unclamped","","","","","","class","clone","","","","","clone_into","","","","","clone_to_uninit","","","","","components_from","","","","","","default","","","deref","","","","","","deref_mut","","","","","","downcast","","","","","","draw","drop","","","","","","eq","","","","","equivalent","","","fmt","","","","","from","","","","","","from_angle","","","","","","from_stimulus","","","","","","handle","height","init","","","","","","into","","","","","","into_angle","","","","","","into_any","","","","","","into_any_arc","","","","","into_any_rc","","","","","","into_cam16_unclamped","","","","","","into_color","","","","","","into_color_unclamped","","","","","","into_stimulus","","","","","","layout","mouse_interaction","new","on_release","rail","shape","shift_step","size","state","step","style","","tag","to_owned","","","","","try_components_into","","","","","","try_from","","","","","","try_into","","","","","","try_into_color","","","","","","type_id","","","","","","uints_from","","","","","","uints_into","","","","","","upcast","","","","","","update","vzip","","","","","","width","","with_circular_handle","border_radius","radius","width","Catalog","Class","Handle","Hovered","Idle","Status","Style","StyleFn","Svg","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","as_any","","","","as_any_mut","","","","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","class","clone","","","clone_into","","","clone_to_uninit","","","color","components_from","","","","content_fit","data","default","","deref","","","","deref_mut","","","","downcast","","","","draw","drop","","","","eq","","","equivalent","","","","","","fmt","","","from","","","","","","from_angle","","","","from_memory","from_path","","from_stimulus","","","","hash","height","id","init","","","","into","","","","into_angle","","","","into_any","","","","into_any_arc","","","","into_any_rc","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_stimulus","","","","layout","new","null_value","opacity","rotation","size","style","","to_owned","","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","upcast","","","","vzip","","","","width","Absolute","Advanced","Basic","Borrowed","Catalog","Class","Fragment","Glyph","Highlight","Highlighter","IntoFragment","Iterator","LineHeight","None","Owned","Relative","Rich","Settings","Shaping","Span","State","Style","StyleFn","Text","Word","WordOrGlyph","Wrapping","adapt_into_using","","","","","","","align_x","align_y","arrays_from","","","","","","","arrays_into","","","","","","","as_any","","","","","","","as_any_mut","","","","","","","background","background_maybe","base","border","border_maybe","borrow","","","","","","","borrow_mut","","","","","","","cam16_into_unclamped","","","","","","","center","change_line","class","clone","","","","","clone_into","","","","","clone_to_uninit","","","","","color","","","","color_maybe","","components_from","","","","","","","current_line","danger","default","","","","","","","","","deref","","","","","","","deref_mut","","","","","","","downcast","","","","","","","draw","","drop","","","","","","","eq","","","","","equivalent","","","","","","fmt","","","","","","font","","","font_maybe","from","","","","","","","","","","from_angle","","","","","","","from_iter","from_stimulus","","","","","","","hash","","","height","highlight","highlight_line","init","","","","","","","into","","","","","","","into_angle","","","","","","","into_any","","","","","","","into_any_arc","","","","","","into_any_rc","","","","","","","into_cam16_unclamped","","","","","","","into_color","","","","","","","into_color_unclamped","","","","","","","into_fragment","into_stimulus","","","","","","","layout","","line_height","","","link","","link_maybe","mouse_interaction","new","","","null_value","","","","","","","on_link_click","padding","","primary","secondary","size","","","","state","strikethrough","","style","","success","tag","text","to_absolute","to_owned","","","","","to_static","try_components_into","","","","","","","try_from","","","","","","","try_into","","","","","","","try_into_color","","","","","","","type_id","","","","","","","uints_from","","","","","","","uints_into","","","","","","","underline","","upcast","","","","","","","update","","vzip","","","","","","","width","with_spans","wrapping","Action","Active","Backspace","","Binding","Catalog","Class","Click","Content","Copy","Cr","CrLf","Custom","Cut","Delete","","Disabled","DocumentEnd","DocumentStart","Down","Drag","Edit","","End","Enter","","Focused","Home","Hovered","Insert","","KeyPress","Left","Lf","LfCr","Line","LineEnding","Motion","Move","","None","PageDown","PageUp","Paste","","Right","Scroll","Select","","SelectAll","","SelectLine","","SelectWord","","Sequence","State","Status","Style","StyleFn","TextEditor","Unfocus","Up","WordLeft","WordRight","adapt_into_using","","","","","","","","","","","","arrays_from","","","","","","","","","","","","arrays_into","","","","","","","","","","","","as_any","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","as_str","background","border","borrow","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","cam16_into_unclamped","","","","","","","","","","","","class","clone","","","","","","","","","clone_into","","","","","","","","","clone_to_uninit","","","","","","","","","components_from","","","","","","","","","","","","cursor_position","default","","","","","deref","","","","","","","","","","","","deref_mut","","","","","","","","","","","","direction","downcast","","","","","","","","","","","","draw","drop","","","","","","","","","","","","ending","eq","","","","","","","","","equivalent","","","","","","","","","","","","fmt","","","","","","","","","","","focus","font","from","","","","","","","","","","","","from_angle","","","","","","","","","","","","from_key_press","from_stimulus","","","","","","","","","","","","height","highlight","highlight_with","icon","init","","","","","","","","","","","","into","","","","","","","","","","","","into_angle","","","","","","","","","","","","into_any","","","","","","","","","","","","into_any_arc","","","","","","","","","into_any_rc","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","into_color","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","into_stimulus","","","","","","","","","","","","is_edit","is_focused","","key","key_binding","layout","line","line_count","line_ending","line_height","lines","max_height","min_height","modifiers","mouse_interaction","new","","null_value","","","on_action","operate","padding","perform","placeholder","","selection","","size","","state","status","style","","tag","text","","","to_owned","","","","","","","","","try_components_into","","","","","","","","","","","","try_from","","","","","","","","","","","","try_into","","","","","","","","","","","","try_into_color","","","","","","","","","","","","type_id","","","","","","","","","","","","uints_from","","","","","","","","","","","","uints_into","","","","","","","","","","","","unfocus","upcast","","","","","","","","","","","","update","value","vzip","","","","","","","","","","","","widen","width","with_text","wrapping","lines","is_hovered","Active","Catalog","Class","Cursor","DEFAULT_PADDING","Disabled","Focused","Hovered","Icon","Id","Left","Right","Side","State","Status","Style","StyleFn","TextInput","Value","adapt_into_using","","","","","","","","align_x","arrays_from","","","","","","","","arrays_into","","","","","","","","as_any","","","","","","","","as_any_mut","","","","","","","","background","border","borrow","","","","","","","","borrow_mut","","","","","","","","cam16_into_unclamped","","","","","","","","class","clone","","","","","","","clone_into","","","","","","","clone_to_uninit","","","","","","","code_point","components_from","","","","","","","","cursor","","default","","","deref","","","","","","","","deref_mut","","","","","","","","diff","downcast","","","","","","","","draw","","drop","","","","","","","","eq","","","equivalent","","","","","","fmt","","","","","","","","focus","","","font","","from","","","","","","","","","","from_angle","","","","","","","","from_stimulus","","","","","","","","hash","icon","","id","init","","","","","","","","insert","insert_many","into","","","","","","","","into_angle","","","","","","","","into_any","","","","","","","","into_any_arc","","","","","","","into_any_rc","","","","","","","","into_cam16_unclamped","","","","","","","","into_color","","","","","","","","into_color_unclamped","","","","","","","","into_stimulus","","","","","","","","is_empty","is_focused","","layout","","len","line_height","mouse_interaction","move_cursor_to","","","move_cursor_to_end","","","move_cursor_to_front","","","new","","","","next_end_of_word","null_value","on_input","on_input_maybe","on_paste","on_paste_maybe","on_submit","on_submit_maybe","operate","padding","placeholder","previous_start_of_word","remove","remove_many","secure","","select","select_all","","","selection","side","size","","","spacing","state","style","","tag","to_owned","","","","","","","to_smolstr","to_string","try_components_into","","","","","","","","try_from","","","","","","","","try_into","","","","","","","","try_into_color","","","","","","","","type_id","","","","","","","","uints_from","","","","","","","","uints_into","","","","","","","","unfocus","","unique","until","upcast","","","","","","","","update","value","vzip","","","","","","","","width","is_hovered","Cursor","Index","Selection","State","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","default","deref","","deref_mut","","downcast","","drop","","eq","","equivalent","","","","","","fmt","","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","null_value","selection","state","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","end","start","Base","CATPPUCCIN_FRAPPE","CATPPUCCIN_LATTE","CATPPUCCIN_MACCHIATO","CATPPUCCIN_MOCHA","CatppuccinFrappe","CatppuccinLatte","CatppuccinMacchiato","CatppuccinMocha","Custom","","DARK","DRACULA","Dark","Dracula","FERRA","Ferra","GRUVBOX_DARK","GRUVBOX_LIGHT","GruvboxDark","GruvboxLight","KANAGAWA_DRAGON","KANAGAWA_LOTUS","KANAGAWA_WAVE","KanagawaDragon","KanagawaLotus","KanagawaWave","LIGHT","Light","MOONFLY","Moonfly","NIGHTFLY","NORD","Nightfly","Nord","OXOCARBON","Oxocarbon","Palette","SOLARIZED_DARK","SOLARIZED_LIGHT","SolarizedDark","SolarizedLight","Style","TOKYO_NIGHT","TOKYO_NIGHT_LIGHT","TOKYO_NIGHT_STORM","Theme","TokyoNight","TokyoNightLight","TokyoNightStorm","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","background","background_color","base","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","","","clone_into","","","clone_to_uninit","","","components_from","","","danger","default","deref","","","deref_mut","","","downcast","","","drop","","","eq","","","fmt","","","","from","","","from_angle","","","from_stimulus","","","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","new","palette","primary","success","text","text_color","to_owned","","","to_smolstr","to_string","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","warning","with_fn","Background","Danger","EXTENDED_CATPPUCCIN_FRAPPE","EXTENDED_CATPPUCCIN_LATTE","EXTENDED_CATPPUCCIN_MACCHIATO","EXTENDED_CATPPUCCIN_MOCHA","EXTENDED_DARK","EXTENDED_DRACULA","EXTENDED_FERRA","EXTENDED_GRUVBOX_DARK","EXTENDED_GRUVBOX_LIGHT","EXTENDED_KANAGAWA_DRAGON","EXTENDED_KANAGAWA_LOTUS","EXTENDED_KANAGAWA_WAVE","EXTENDED_LIGHT","EXTENDED_MOONFLY","EXTENDED_NIGHTFLY","EXTENDED_NORD","EXTENDED_OXOCARBON","EXTENDED_SOLARIZED_DARK","EXTENDED_SOLARIZED_LIGHT","EXTENDED_TOKYO_NIGHT","EXTENDED_TOKYO_NIGHT_LIGHT","EXTENDED_TOKYO_NIGHT_STORM","Extended","Pair","Palette","Primary","Secondary","Success","Warning","adapt_into_using","","","","","","","","arrays_from","","","","","","","","arrays_into","","","","","","","","as_any","","","","","","","","as_any_mut","","","","","","","","background","","base","","","","","","borrow","","","","","","","","borrow_mut","","","","","","","","cam16_into_unclamped","","","","","","","","clone","","","","","","","","clone_into","","","","","","","","clone_to_uninit","","","","","","","","color","components_from","","","","","","","","danger","","deref","","","","","","","","deref_mut","","","","","","","","downcast","","","","","","","","drop","","","","","","","","eq","","","","","","","","fmt","","","","","","","","from","","","","","","","","from_angle","","","","","","","","from_stimulus","","","","","","","","generate","","","","","","init","","","","","","","","into","","","","","","","","into_angle","","","","","","","","into_any","","","","","","","","into_any_arc","","","","","","","","into_any_rc","","","","","","","","into_cam16_unclamped","","","","","","","","into_color","","","","","","","","into_color_unclamped","","","","","","","","into_stimulus","","","","","","","","is_dark","new","","primary","","secondary","strong","","","","","","success","","text","","to_owned","","","","","","","","try_components_into","","","","","","","","try_from","","","","","","","","try_into","","","","","","","","try_into_color","","","","","","","","type_id","","","","","","","","uints_from","","","","","","","","uints_into","","","","","","","","upcast","","","","","","","","vzip","","","","","","","","warning","","weak","","","","","","Active","Catalog","Class","DEFAULT_SIZE","Disabled","Hovered","Status","Style","StyleFn","Toggler","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","background","background_border_color","background_border_width","borrow","","","borrow_mut","","","cam16_into_unclamped","","","class","clone","","clone_into","","clone_to_uninit","","components_from","","","default","","deref","","","deref_mut","","","downcast","","","draw","drop","","","eq","","equivalent","","","fmt","","font","foreground","foreground_border_color","foreground_border_width","from","","","from_angle","","","from_stimulus","","","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","label","layout","mouse_interaction","new","on_toggle","on_toggle_maybe","size","","spacing","state","style","","tag","text_alignment","text_line_height","text_shaping","text_size","text_wrapping","to_owned","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","update","vzip","","","width","is_toggled","","Bottom","FollowCursor","Left","Position","Right","Tooltip","Top","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","children","class","clone","clone_into","clone_to_uninit","components_from","","default","deref","","deref_mut","","diff","downcast","","draw","drop","","eq","equivalent","","","fmt","from","","from_angle","","from_stimulus","","gap","init","","into","","into_angle","","into_any","","into_any_arc","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","layout","mouse_interaction","new","null_value","overlay","padding","size","size_hint","snap_within_viewport","state","style","tag","to_owned","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","update","vzip","","Catalog","DEFAULT_WIDTH","Handle","HandleShape","Status","Style","StyleFn","VerticalSlider","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","class","components_from","default","","deref","deref_mut","downcast","draw","drop","from","from_angle","from_stimulus","height","init","into","into_angle","into_any","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","layout","mouse_interaction","new","on_release","shift_step","size","state","step","style","tag","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","update","vzip","width"],"q":[[0,"iced_widget"],[388,"iced_widget::button"],[553,"iced_widget::canvas"],[1197,"iced_widget::canvas::fill"],[1199,"iced_widget::canvas"],[1200,"iced_widget::canvas::fill"],[1202,"iced_widget::canvas"],[1203,"iced_widget::canvas::fill"],[1238,"iced_widget::canvas"],[1240,"iced_widget::canvas::fill"],[1250,"iced_widget::canvas::gradient"],[1252,"iced_widget::canvas"],[1253,"iced_widget::canvas::gradient"],[1345,"iced_widget::canvas::path"],[1443,"iced_widget::canvas::path::arc"],[1453,"iced_widget::canvas::path"],[1454,"iced_widget::canvas::path::arc"],[1463,"iced_widget::canvas::path"],[1464,"iced_widget::canvas::path::arc"],[1481,"iced_widget::canvas::path"],[1482,"iced_widget::canvas::path::arc"],[1483,"iced_widget::canvas::path"],[1484,"iced_widget::canvas::path::arc"],[1495,"iced_widget::canvas::path::lyon_path"],[2740,"iced_widget::canvas::path::lyon_path::Event"],[2779,"iced_widget::canvas::path::lyon_path::builder"],[3136,"iced_widget::canvas::path::lyon_path::commands"],[3360,"iced_widget::canvas::path::lyon_path::geom"],[3905,"iced_widget::canvas::path::lyon_path"],[3906,"iced_widget::canvas::path::lyon_path::geom"],[4006,"iced_widget::canvas::path::lyon_path"],[4007,"iced_widget::canvas::path::lyon_path::geom"],[4180,"iced_widget::canvas::path::lyon_path::geom::arc"],[4192,"iced_widget::canvas::path::lyon_path::geom"],[4193,"iced_widget::canvas::path::lyon_path::geom::arc"],[4198,"iced_widget::canvas::path::lyon_path::geom"],[4199,"iced_widget::canvas::path::lyon_path::geom::arc"],[4200,"iced_widget::canvas::path::lyon_path::geom"],[4201,"iced_widget::canvas::path::lyon_path::geom::arc"],[4214,"iced_widget::canvas::path::lyon_path"],[4215,"iced_widget::canvas::path::lyon_path::geom::arc"],[4216,"iced_widget::canvas::path::lyon_path::geom"],[4219,"iced_widget::canvas::path::lyon_path"],[4220,"iced_widget::canvas::path::lyon_path::geom"],[4222,"iced_widget::canvas::path::lyon_path::geom::arc"],[4231,"iced_widget::canvas::path::lyon_path::geom"],[4233,"iced_widget::canvas::path::lyon_path::geom::arrayvec"],[4669,"iced_widget::canvas::path::lyon_path::geom::cubic_bezier"],[4680,"iced_widget::canvas::path::lyon_path::geom"],[4682,"iced_widget::canvas::path::lyon_path::geom::cubic_bezier"],[4687,"iced_widget::canvas::path::lyon_path::geom"],[4688,"iced_widget::canvas::path::lyon_path::geom::cubic_bezier"],[4703,"iced_widget::canvas::path::lyon_path::geom"],[4704,"iced_widget::canvas::path::lyon_path::geom::cubic_bezier"],[4713,"iced_widget::canvas::path::lyon_path::geom::euclid"],[6147,"iced_widget::canvas::path::lyon_path::geom"],[6148,"iced_widget::canvas::path::lyon_path::geom::euclid"],[6787,"iced_widget::canvas::path::lyon_path::geom::euclid::approxeq"],[6791,"iced_widget::canvas::path::lyon_path::geom::euclid::approxord"],[6793,"iced_widget::canvas::path::lyon_path::geom::euclid::default"],[6816,"iced_widget::canvas::path::lyon_path::geom"],[6817,"iced_widget::canvas::path::lyon_path::geom::euclid::default"],[6844,"iced_widget::canvas::path::lyon_path::geom"],[6845,"iced_widget::canvas::path::lyon_path::geom::euclid::default"],[6846,"iced_widget::canvas::path::lyon_path::geom"],[6847,"iced_widget::canvas::path::lyon_path::geom::euclid::default"],[6856,"iced_widget::canvas::path::lyon_path::geom"],[6857,"iced_widget::canvas::path::lyon_path::geom::euclid::default"],[6858,"iced_widget::canvas::path::lyon_path::geom"],[6859,"iced_widget::canvas::path::lyon_path::geom::euclid::default"],[6860,"iced_widget::canvas::path::lyon_path::geom"],[6861,"iced_widget::canvas::path::lyon_path::geom::euclid::default"],[6865,"iced_widget::canvas::path::lyon_path::geom"],[6866,"iced_widget::canvas::path::lyon_path::geom::euclid::default"],[6867,"iced_widget::canvas::path::lyon_path::geom"],[6868,"iced_widget::canvas::path::lyon_path::geom::euclid::default"],[6876,"iced_widget::canvas::path::lyon_path::geom::euclid::num"],[6886,"iced_widget::canvas::path::lyon_path::geom::quadratic_bezier"],[6917,"iced_widget::canvas::path::lyon_path::geom"],[6918,"iced_widget::canvas::path::lyon_path::geom::quadratic_bezier"],[6933,"iced_widget::canvas::path::lyon_path::geom"],[6934,"iced_widget::canvas::path::lyon_path::geom::quadratic_bezier"],[6977,"iced_widget::canvas::path::lyon_path::geom"],[6978,"iced_widget::canvas::path::lyon_path::geom::quadratic_bezier"],[7005,"iced_widget::canvas::path::lyon_path::geom"],[7006,"iced_widget::canvas::path::lyon_path::geom::traits"],[7008,"iced_widget::canvas::path::lyon_path::geom"],[7021,"iced_widget::canvas::path::lyon_path::geom::traits"],[7023,"iced_widget::canvas::path::lyon_path::geom"],[7025,"iced_widget::canvas::path::lyon_path::geom::utils"],[7031,"iced_widget::canvas::path::lyon_path::iterator"],[7195,"iced_widget::canvas::path::lyon_path::math"],[7225,"iced_widget::canvas::path::lyon_path::path"],[7234,"iced_widget::canvas::path::lyon_path::path_buffer"],[7384,"iced_widget::canvas::path::lyon_path::polygon"],[7434,"iced_widget::canvas::path::lyon_path"],[7436,"iced_widget::canvas::path::lyon_path::polygon"],[7518,"iced_widget::canvas::path::lyon_path"],[7520,"iced_widget::canvas::path::lyon_path::polygon"],[7560,"iced_widget::canvas::path::lyon_path::traits"],[7563,"iced_widget::canvas::path::lyon_path::builder"],[7564,"iced_widget::canvas::path::lyon_path::traits"],[7565,"iced_widget::canvas::path::lyon_path::builder"],[7591,"iced_widget::canvas"],[7594,"iced_widget::canvas::stroke"],[7597,"iced_widget::canvas"],[7602,"iced_widget::canvas::stroke"],[7604,"iced_widget::canvas"],[7611,"iced_widget::checkbox"],[7818,"iced_widget::checkbox::Status"],[7821,"iced_widget::combo_box"],[7928,"iced_widget::container"],[8115,"iced_widget::image"],[8272,"iced_widget::image::Handle"],[8276,"iced_widget::image::viewer"],[8374,"iced_widget::keyed"],[8376,"iced_widget::keyed::column"],[8437,"iced_widget::markdown"],[8902,"iced_widget::markdown::Item"],[8910,"iced_widget::overlay"],[8911,"iced_widget::overlay::menu"],[9047,"iced_widget::pane_grid"],[9875,"iced_widget::pane_grid::Configuration"],[9879,"iced_widget::pane_grid::DragEvent"],[9883,"iced_widget::pane_grid::Node"],[9888,"iced_widget::pane_grid::state"],[10042,"iced_widget::pane_grid::state::Action"],[10046,"iced_widget::pick_list"],[10301,"iced_widget::pick_list::Handle"],[10304,"iced_widget::pick_list::Status"],[10305,"iced_widget::pop"],[10358,"iced_widget::progress_bar"],[10459,"iced_widget::qr_code"],[10743,"iced_widget::radio"],[10899,"iced_widget::radio::Status"],[10901,"iced_widget::rule"],[11043,"iced_widget::scrollable"],[11635,"iced_widget::scrollable::Direction"],[11637,"iced_widget::scrollable::Status"],[11647,"iced_widget::shader"],[11795,"iced_widget::slider"],[12081,"iced_widget::slider::HandleShape"],[12084,"iced_widget::svg"],[12281,"iced_widget::text"],[12678,"iced_widget::text_editor"],[13293,"iced_widget::text_editor::Action"],[13294,"iced_widget::text_editor::Status"],[13295,"iced_widget::text_input"],[13724,"iced_widget::text_input::Status"],[13725,"iced_widget::text_input::cursor"],[13821,"iced_widget::text_input::cursor::State"],[13823,"iced_widget::theme"],[13828,"iced_widget"],[13832,"iced_widget::theme"],[13833,"iced_widget"],[13834,"iced_widget::theme"],[13836,"iced_widget"],[13838,"iced_widget::theme"],[13839,"iced_widget"],[13840,"iced_widget::theme"],[13842,"iced_widget"],[13844,"iced_widget::theme"],[13847,"iced_widget"],[13850,"iced_widget::theme"],[13851,"iced_widget"],[13852,"iced_widget::theme"],[13853,"iced_widget"],[13854,"iced_widget::theme"],[13856,"iced_widget"],[13858,"iced_widget::theme"],[13859,"iced_widget"],[13860,"iced_widget::theme"],[13863,"iced_widget"],[13865,"iced_widget::theme"],[13870,"iced_widget"],[13873,"iced_widget::theme"],[14012,"iced_widget::theme::palette"],[14083,"iced_widget::theme"],[14084,"iced_widget::theme::palette"],[14148,"iced_widget::theme"],[14149,"iced_widget::theme::palette"],[14311,"iced_widget::theme"],[14312,"iced_widget::theme::palette"],[14320,"iced_widget::theme"],[14321,"iced_widget::theme::palette"],[14322,"iced_widget::theme"],[14323,"iced_widget::theme::palette"],[14404,"iced_widget::theme"],[14405,"iced_widget::theme::palette"],[14412,"iced_widget::toggler"],[14572,"iced_widget::toggler::Status"],[14574,"iced_widget::tooltip"],[14678,"iced_widget::vertical_slider"],[14737,"palette::chromatic_adaptation"],[14738,"iced_widget::action"],[14739,"core::any"],[14740,"iced_core::theme"],[14741,"iced_core::renderer"],[14742,"iced_core::element"],[14743,"core::convert"],[14744,"palette::cam16::parameters"],[14745,"iced_graphics::geometry"],[14746,"iced_widget::canvas::program"],[14747,"alloc::string"],[14748,"iced_core::text"],[14749,"iced_widget::lazy"],[14750,"iced_core::widget::tree"],[14751,"alloc::vec"],[14752,"core::hash"],[14753,"core::clone"],[14754,"core::iter::traits::collect"],[14755,"core::option"],[14756,"core::fmt"],[14757,"core::ops::function"],[14758,"iced_widget::lazy::component"],[14759,"iced_core::theme::palette"],[14760,"iced_widget::lazy::responsive"],[14761,"iced_core::layout"],[14762,"iced_core::mouse::cursor"],[14763,"iced_core::rectangle"],[14764,"core::result"],[14765,"iced_runtime::task"],[14766,"iced_core::pixels"],[14767,"iced_core::widget::text"],[14768,"iced_core::font"],[14769,"iced_core::svg"],[14770,"alloc::boxed"],[14771,"alloc::sync"],[14772,"alloc::rc"],[14773,"iced_core::window::redraw_request"],[14774,"iced_core::event"],[14775,"core::marker"],[14776,"core::cmp"],[14777,"iced_core::layout::limits"],[14778,"iced_core::layout::node"],[14779,"url"],[14780,"iced_core::mouse::interaction"],[14781,"iced_core::size"],[14782,"iced_core::widget::operation"],[14783,"core::default"],[14784,"iced_core::vector"],[14785,"iced_core::overlay::element"],[14786,"iced_widget::pane_grid::pane"],[14787,"iced_widget::pane_grid::content"],[14788,"core::borrow"],[14789,"core::ops::range"],[14790,"std::time"],[14791,"iced_widget::text::rich"],[14792,"iced_widget::shader::program"],[14793,"iced_core::length"],[14794,"iced_core::text::highlighter"],[14795,"smol_str"],[14796,"palette::convert::try_from_into_color"],[14797,"iced_core::clipboard"],[14798,"iced_core::shell"],[14799,"iced_core::border"],[14800,"iced_core::padding"],[14801,"iced_core::shadow"],[14802,"iced_core::color"],[14803,"iced_core::background"],[14804,"iced_core::point"],[14805,"iced_graphics::geometry::path"],[14806,"iced_graphics::cache"],[14807,"iced_graphics::gradient"],[14808,"iced_graphics::geometry::fill"],[14809,"iced_graphics::geometry::stroke"],[14810,"iced_graphics::geometry::style"],[14811,"iced_graphics::geometry::text"],[14812,"iced_core::image"],[14813,"iced_core::alignment"],[14814,"iced_graphics::geometry::path::builder"],[14815,"lyon_path::path"],[14816,"iced_core::angle"],[14817,"euclid"],[14818,"euclid::transform2d"],[14819,"iced_core::gradient"],[14820,"iced_graphics::geometry::path::arc"],[14821,"lyon_path::commands"],[14822,"lyon_path::path_buffer"],[14823,"lyon_path"],[14824,"euclid::point"],[14825,"lyon_path::builder"],[14826,"lyon_geom::arc"],[14827,"lyon_path::events"],[14828,"lyon_path::polygon"],[14829,"lyon_path::iterator"],[14830,"lyon_geom::traits"],[14831,"euclid::vector"],[14832,"euclid::angle"],[14833,"lyon_geom::line"],[14834,"euclid::box2d"],[14835,"lyon_geom::scalar"],[14836,"lyon_geom::triangle"],[14837,"core::ops::arith"],[14838,"lyon_geom::segment"],[14839,"lyon_geom::cubic_bezier"],[14840,"lyon_geom::quadratic_bezier"],[14841,"lyon_geom"],[14842,"num_traits::identities"],[14843,"num_traits::float"],[14844,"euclid::approxeq"],[14845,"num_traits::cast"],[14846,"arrayvec::arrayvec"],[14847,"euclid::trig"],[14848,"euclid::default"],[14849,"num_traits::real"],[14850,"euclid::size"],[14851,"core::iter::traits::iterator"],[14852,"arrayvec::array_string"],[14853,"std::path"],[14854,"arrayvec::errors"],[14855,"std::io::error"],[14856,"core::str::error"],[14857,"endi::endian"],[14858,"num_traits::sign"],[14859,"euclid::length"],[14860,"euclid::scale"],[14861,"euclid::side_offsets"],[14862,"euclid::translation"],[14863,"euclid::rotation"],[14864,"euclid::transform3d"],[14865,"euclid::rect"],[14866,"euclid::box3d"],[14867,"euclid::rigid"],[14868,"euclid::num"],[14869,"euclid::homogen"],[14870,"num_traits::ops::euclid"],[14871,"num_traits::ops::saturating"],[14872,"lyon_path::math"],[14873,"rayon::iter::par_bridge"],[14874,"alloc::borrow"],[14875,"iced_core::content_fit"],[14876,"iced_core::rotation"],[14877,"bytes::bytes"],[14878,"pulldown_cmark"],[14879,"serde::de"],[14880,"zvariant_utils::signature"],[14881,"zvariant::error"],[14882,"url::parser"],[14883,"url::host"],[14884,"std::collections::hash::set"],[14885,"url::slicing"],[14886,"url::origin"],[14887,"core::str::iter"],[14888,"url::path_segments"],[14889,"form_urlencoded"],[14890,"serde::ser"],[14891,"core::net::ip_addr"],[14892,"core::net::socket_addr"],[14893,"iced_widget::pane_grid::title_bar"],[14894,"iced_widget::pane_grid::draggable"],[14895,"iced_widget::pane_grid::axis"],[14896,"iced_widget::pane_grid::configuration"],[14897,"iced_widget::pane_grid::direction"],[14898,"iced_widget::pane_grid::node"],[14899,"iced_widget::pane_grid::split"],[14900,"iced_widget::pane_grid::controls"],[14901,"alloc::collections::btree::map"],[14902,"iced_renderer"],[14903,"qrcode::types"],[14904,"iced_core::widget::operation::scrollable"],[14905,"iced_graphics::viewport"],[14906,"iced_wgpu::primitive"],[14907,"wgpu::api::device"],[14908,"wgpu::api::queue"],[14909,"wgpu_types"],[14910,"iced_core::transformation"],[14911,"wgpu::api::command_encoder"],[14912,"wgpu::api::texture_view"],[14913,"iced_core::text::paragraph"],[14914,"iced_core::text::editor"],[14915,"iced_highlighter"],[14916,"iced_core::keyboard::key"],[14917,"iced_core::keyboard::modifiers"],[14918,"iced_widget::text_input::value"],[14919,"std::sync::lazy_lock"],[14920,"iced_widget::column"],[14921,"iced_widget::mouse_area"],[14922,"iced_widget::pin"],[14923,"iced_widget::row"],[14924,"iced_widget::space"],[14925,"iced_widget::stack"],[14926,"iced_widget::themer"],[14927,"iced_widget::helpers"],[14928,"iced_widget::lazy::helpers"],[14929,"iced_core"],[14930,"iced_graphics"],[14931,"euclid::approxord"],[14932,"lyon_geom::utils"]],"i":"l```0000`````000Eb111`111`11`111````CLf````````0``22``1```````222``FbC`4d02150215021502150521502150`````2150``0`````15050505``````2150```55555555555555555555215021501215021215055550``215021502150```````215021502150215050215021502150215002150```21````21215`4421`215`````````0`````00```````````````21441``````2155555555555555555``21``````````5055````21502150215021502150215021502150421`````42150AB```Al111```Aj2ABb13013013013000130130130111303030130`201301301130113030333301301301301130130130130301301301301301301110111111``01121`1`0301301301301301301301301301130`10`AGlAGj```````AH```AEj0```AGd41``3423Bd```22AGb2AGfAG`AGh89AGn8AHb8AHdB`79654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:10579654<=3;2:179654<=3;2:179654<=3;2:172779654<=3;2:10264<=3279654<=3;2:1079654<=3;2:1079654<=3;2:1080279654<=3;2:1079;:1777`1179654<=3;2:102799666654<=3;;;222:11079654<=3;2:1079654<=3;2:10`170279654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:10705442488051064<=3231197`25511563202110`64079654<=3;2:1579654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:10779654<=3;2:10880279654<=3;2:10044444AJb`<0`<`0000000000000000000000000000000000770000000000``:`AHnAIj11101010101010101010101010101010110101010101010101010101010101001`11110101010101010101010```AIhAKb`11101010101101011001000110110101010100101010101010101010101010101111101100101010101010101010``AKd0000000100000000010000000000000000010100000000000`````DFhDFjAM`AMn```AMl`432432`ANb```ANfAL`ANh`````876``55`AN`ANd5``````````10:98`67`6`AOjALnANnAKfAKh=AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAKfAIl=0AKjALbALf0AOjALnANn7AKhAM`8765AMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhALbALf0`AKfAIl?0AOjALnANn4AKhAM`5AKj98AMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANh;ALnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhALnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhALnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANh98`AOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhALbALf0ALnAIl3?AOj2ANnAKfAKhAM`5AKj98AMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhALbALf0ALnAM`;:987654000777666555444AKfAKh?>154AIlAKj532410AMfAKlAKnAMlAMnAN`ANbANdANfAL`ANhAMdAOjALnANnAKfAKh0AM`0AIlAKj0ALbALfAMb;AMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAIlAO`21>021>AM`987632?3322?AKlAKnAOjALn8AKfAKh698ALbALfAMbAMdAMf:9AMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjAKfAIlAKj0AMbAMdAMf66ALnANn7AKhAM`87ALbALf876AKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANh>AKj<;5656AKfAKhAIl3?>=<03`ALn14AKlAKnALbALf0`ANn6214AOjAMbAMdAMf<;<;9:68ANl5;>766ANfAL`AN```AMhAKf71AMj`AOb>==>==AKlAIlAKj1ALnAM`917AKh143ALbALfAMbAMdAMf:AKn?=AMlAMnAN`ANbANdANfAL`ANh210`?AIlAOjALnANnAKfAKhAM`6AKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAIlALb=AM`1B@nBA`BAbBAd02BAf21302143211302130214321130213021`````BBl```BBfBBhB@jBBdALjBAh0100100100100BB`0211211240465432654326543265432165226543265432337665442265432323232011442654321065442243265432654326543265432165223211211423326543265432654322046543222654326543265432654326543265432654326543226543210654422044654323216523112106544220404040404040411006544226540404040432333311426543265432654326543265432654326543265432046543221122```````B@fALhANjAOhBBn43210432104321043210343210432103432104321043210432104321033432104321043210432103443432104321043210444443210432104321043210434321043210432104321021043210433210323432104321043210432104321043210432104321043210432103`````BCb00000```0000```00`BCl````111````1BC`BCd00BCnBEdBD`BAnBEf6BDb6BAl000966443311BDd111:775542`765439281765439281765439281765439281988528:77554422765439281765439281754287528752829887654392817218774447654392817654392817654392814276543928184255`5511765439281765439281:7554224392111765439281525765439281:55422:554227;76549281399911175275275252675222:77554422765439281767652:7765542257575525276576552525252111:77776555444392228165427654392817654392817171BFh5587654:3925455945987654:39287654:39287654:39287654:39287654:39287654:39287654:39287654:39287654:392:32:636367:6363ALn643667474747444BFl00000BFn80555==59=88=55`75=`9955;:>;;998866;857=5`98988=8=>;;9988668>;;9988668768;55552;=>;;998866:986:6598765987658;:987=6<599;8`<98685;:987=6<5;:987=6<5;:987=6<5;:987=6<55;:987=6<5;:987=6<5;:987=6<5;:987=6<5`?`788;:987=6<53>;;998866BHbBHdBHf<9<9>=BCl??==<<::321=:=:9````BF`0000000BCn11111BEd2022222222222229210191022222222210`````BEhBHjBIbBHhBHn432104321043210432104414314141143144321104432110432104141431041431043104104104321041443211044321104321044433221004444110444111000444311004432110432101443210141141141432104432104321043210432104321043210432104321044444324321041414114111411333333333333322222222222224104132324141104144114414144103214444310101041432104443211104432104321041143210432104321043210432104444444444444444444444444444444444444444444444444144444441444441``BFb00000000BD`01111101111111111111110111111111`````````````````````````BGjBKbBAjBKdBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKl?>BKnBL`?>AJhBLhBLbBLdAJf??>>==87BGj0BKb087BAj0BKd0BKfALd0BKh0>65=<43109898BLf554:93210BLj65=<=<4321065==<<``BBbBLl:22221BLnBMf8762BM`65BKjBKl?>BKnBL`?>AJhBLhBLbBLdAJf=;:BKfALdBKh?=<54321BKl<;BKnBL`<;AJhBLhBLbBLdAJf?>8BKfALdBKhBLlBM`BLfBLjBKj?BGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBKf=10=17676BBbBLnBMf3ALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBLl=<21210BEj:9BM``43BKfALdBKh5BKjBKlBGjBKbBKnBL`BAjBKdAJhBLhAJf?BLn8BBb1BMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJf43ALdBKhBBb0BLn0BKf004433BLl0BKl0BGj0BKb0??>>66554887733221100??>>87?>65BMf5984BM`BLfBLjBKj765BKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLn?BKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJf:965BBb00BLn00BMf00BKf00ALd00BKh00BLl00BM`00BLf00BLj00BKj00BKl00BGj00BKb00BKn00BL`00BAj00BKd00AJh00BLh00BLb00BLd00AJf00=ALd7BEj11BKh0==<<9988BBbBLnBMfBKf64BLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBb0BLn0BMf0000BKfALd00BKh00BLl0BM`00BLfBLjBKjBKlBGj000BKb000BKn0BL`0BAj0000BKd000AJh0BLh0BLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJf64343;ALdBKh=<;87BBbBLn10BLlBM`932132BMfBKf7632BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBM`BBbBLnALdBKhBLl5BLfBLjBGjBKbBKnBL`BAjBKdAJhBLhBKl0BKfBKj<:965BBbBLnBMf4ALdBKhBLlBM`BLfBLj9;BGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBLl==98798BMfBKfALdBKh;9876:BGjBKb76BAjBKdAJhBLhBLbBLdAJfBBbBLl1BLn12020120?>=<1BM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJf?>=<874333BBbBLnBLl=<21ALdBKh2?>;:BKj>=:954BLjBGjBKbBKl330BAjBKd;:BKf98:654215421AJhBLh10001010001010000000;:432;:<97643>=<<2;:<97643>=<<>>==22;;::<<95577664433>>==2;;::<<557766443302;:57643>=BMf3<;=BM`BLf<8:9BKnBL`98655:3BLbBLd??;:10>=;:BBbBLn;ALdBKhBLlBKjBKlBGjBKb<;BAjBKdAJhBLhAJf`843?>;:91=921121BKf912``<323232542BLj0BLfBAlBEj`98ALdBKh>;:98BM`BBbBLn4433BLlBGj0BKb0BAj0BKd0654654>>654AJhBLhBLbBLd1010:>:98``2BLj>=87BKnBL`87872BKfALd00BKh00BKjBKl?>65=<433220?>65=<44??>>==<=>=>=>=5?=60BAj?76BGjBKb<;2BKdAJhBLh;210100BLlBBbBLn?>276BKnBL`:732ALdBKh6;:32<954106;:32<954106;:32<954654BMfBKf328BM`BLfBLjBKjBKlBGjBKb<;BAjBKdAJhBLhBLbBLdAJf65??BBb7>=54=<0?61320BM`BLfBLjBGjBKb:9BAjBKdAJhBLh?:<;954>=32<;54>=BKl?BKj?0?9900BKn0449BL`44:2044210210;;22155:4:4BBb?>65=0?BKfALdBKhBLl7>=65<;:94BLnBMf5432BM`BLfBLj<=BGjBKb==BKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJf65BBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBLlBLj32BMfBKfALdBKh5BM`BLf6BKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJf``BLj=87::9:9873ALdBKh>=<;874320;730;73510>=<;874321<0;7350=;7343BKf22113BKlBGj0BKb0BAj0BKd07610`BE`00``````````````````````BNbBNdBNfBFh1BNh003BNjBNl10001010001010000000BFnBNn10BO`58BOb190BOd89BHdBOfBHfBOh4BOjBOl54326104260`````BMbBMlBMdBMnBMh````BOnBFdBFf210210210210210210210210BDb321321321321321032132132132132132132132132132132121321321210321321321321321321321321321BCl``0000000000000B@l011```````````B@hC@dC@fC@`3210321032103210321032103210032103210321032103210C@b043214321432143214321432143214321432143214321432143214321321432113004321432143214321432143214321432143214`````````C@hC@jC@l00000C@n0`CA```3CAbCAdCAf210``````````````ALlCAhAOn2102102102102211210210221121000021022112102102102102211210210210210210210210210210210210210021022111002122112211002102102102102102102102102102``````B@bB@`B@dAOd3210321032103210321032103210321032103210AMhAMj5432543254325432543254325432543254325432543254325432543254325432543254325432254322105432543254325432543254325432543254325432```BBl`BB`BAh210101011001111111111111AGlAGjAH````21201``AGh00AGn011ABj``Bl11````BhCAl3ABl214021402140214000214021402140214014014012140`32140214021402214014044414021214021402140202140214021402140140214021402140214021402122222``12212232`20222214021402140214021402140214021402140221402CB`CBbCBd```DhDb101010101010101000100E`02121212211221212122122212121212121212122222211222212222221212121212121212122121`Ab````A`CBhACb222222210210210210`0000`2102102102222221010100210``3021021022102`21010111102CBj22111132132123332132132132121321321321321321`3333321333```113343`3121`32132132132132132132123213`3213AI````AHl011`10Hh21021021021021021021021212121001210210210`021021222111021022210210222210102210210210210210210210210210210`001000021210210210210210210210210``2100CD`000``CCnCDb101010101010100001010101010110101010101101010101010101010100111110011`111010101010101010101101```If00000000000000000000000000000000000000000000000000000000000`Jb`CDh000001``1`11`````J`1CDfCE`4CDjJdCDl5643721056437210564372105643721055544564372105643721056437210556472105647210564721056`JfCDn3787865943257865943278659432777778659432786594327862777888778865943277865943332222786594327727865943273333337778`0770577777865943222278659432786594327865943278632786594327865943278659432786594327865943277`5777275507`07`0`75778777777577777777777777777347337786943278787865943277886594327865943278659432786594327865943278659432`0786594327``7865943233CGjCGlCGn11022``Ll````CHbCH`A@b21021021021000210210210000210`3132102102102100102210210210210210210210021021021021021021122003022202102102102102102102102102102`CIjCId`CIhKl````CHn``3`CIf3`CHj26```CHlCI`3`7``48`10`````842L`CJ`CHdKj6584KnCIb=9<>CIlA@dCHfCIn79876<;>:54CId>CIhCIj6543<;:9?>CHn>983CIf328765>=<;CHjCHl3CI`=<7365;:98L`CJ`CHdKj6584KnCIb=9<;CIlA@dCHfCIn119876<;>:54CId>CIhCIj6543<;:9?>CHn>983CIf328765>=<;CHjCHl3CI`=<7365;:98CHhL`Kj1CHd16584KnCIb=9<;CIlA@dCHfCIn<;>:54CId>CIhCIj6543?>CHn>983CIf328765:95:9=CJ`<=CHjCHl4CI`>=8476<;:9?`Kl8L`5CHdKj6594KnCIb>:==;54210===;;;555444=<;:54CId:CIhCIj6543;;CJ`0;:CHjCHlCHnCI`=<7CIf76<;:9L`6CHdKj7654KnCIb=5<;CIlA@dCHfCIn8>76=<;:54CId:CIhCIj6543CHj>98:66<;:54CId:CIhCIj6543;CJ`;:CHjCHlCHnCI`=<7CIf76<;:94321>=8076<;:9L`6CHdKj7654KnCIb=5<;CIlA@dCHfCIn8>76=<;:54CId:CIhCIj6543;CJ`;:CHjCHlCHnCI`=<7CIf76<;:9L`6CHdKj7654KnCIb=5<;CIlA@dCHfCIn8>76=<;:54CId:CIhCIj6543:99;CJ`;:2:::::;>9867::CHj80??`;Kl>=<<>1CHlCHnCI`>=8CIf87=<;:L`7CHdKj8654KnCIb>5=<;:54CId:CIhCIj6543;CJ`;:CHjCHlCHnCI`=<7CIf76<;:9L`6CHdKj7654KnCIb=5<;CIlA@dCHfCIn8>76=<;:54CId:CIhCIj6543;CJ`;:CHjCHlCHnCI`=<7CIf76<;:9L`6CHdKj7654KnCIb=5<;CIlA@dCHfCIn8>76=<;:54CId:CIhCIj65439;CJ`;:CHjCHlCHnCI`=<7CIf76<;:9?9CJd000CJfCJhCJj1CJl0000`CK`0`0`KhCJn21102102102102102102102102102102110221021021021102210210210201021110211021021021021021021021021021111111112122111111021021021021021021021021021021CKbCKd01ACdCKf`Lj1`2`12`1```Lb2CKh4ACf24150241502415024150002415024150241502415041504150124150`3432415024150241502241504150555415021241502415024150202415024150241502415041502415024150241502415024150212222422222012123220222415024150241502415024150241502415024150241502241502CKj0CKlCKn`Ln000000000000000000000000000000000000000000000000000`MfMd```0ABd10101010000101010100010`210101011000101010110101010101010101010111``121`01010101010101010110``Ml`CLd``CLb11100CL`0`1``2`MjMh234A@j2134502134502134502134500213450213450213450022345034503450213450`6213450213450213450221345034503334445551345502134550213450213450213450213450213450213450345021345021345021345021345021345022122622345055221345021345021345021345021345021345021345021345021345011AAl`NbMn02````02AAn1301301301300001301301301303030130`213013001301130303333011301301301301301301301301301301301301301111111211011113013013013013013013013013011301CLjCLlCLn`Gl`111```GhAAj310310310310310310310310303030103`210310310311030330031031031031103103103103103103103103103103101210310310310310310310310310311030`AAf`CMn`Nn`2CMlCMf34```1```0```3`CM`0NlCMb46CMd4CN`49AAhCMhCMj4666666659;4837<210659;4837<210659;4837<210659;4837<210110659;4837<210659;4837<2107659;4837<2106659;4837<21059;4837<21059;4837<2100659;4837<21027`:59;48659;4837<210659;4837<21066659;4837<2106659;4837<21059;483<210888333<<<59;4837<210659;48337<210659;4837<210659;4837<2102366;26659;4837<210659;4837<210659;4837<210659;4837<21059;4837<210659;4837<210659;4837<210659;4837<210659;4837<210659;4837<21064664359;486667``146`646:6659;4837<210659;4837<210659;4837<210659;4837<210659;4837<210659;4837<210659;4837<210659;4837<2103659;4837<2106;2659;4837<2106465959CNb0CNdCNfCNh0121001``Ob``0``CNjCNlO`210210210210210210210222210121021021030210212102102101110210210210210202102102102102100233001222CO`3031121332132132132132132132132144132113AA``D@fOlOf3``3`2````03AAbD@dD@b5362105362105362105362105011003621053621053621053621056210562105362105`433621053621053621053362105621056666210536210536210536210523362105362105362105362105621053621053621053621053621053621053333203333433621053621053621053621053621053621053621053621053621053362105312D@jD@l1`H``A@f0````ACjACh2A@h2130213021302130213021302130123023023002130124021302130213012130230222333230221DA`41324133232413233241324132413241324132413241324132413241221222523413241324132413241324132413241324132412AIfAJd0DFl`Gn`CAnDAh``0`135`0``````11`Nf526NhDAjAAd33385921038592103859210385921022`2238592103859210385921034385920859208592032203238592104``63859210385921038592103859210`33859210859208885558592103222385999221038592103385921085932438592103859210385921038592108592103859210385921038592103859210On496:321`44333334543496:321433``443343374`43:96:313496:321496:321496:321496:321496:321496:321496:32133496:32154496:321444`A@lDBbDBh``ADfDB``2DAn033435DBd002`205460654`011```241005402242424244`````4000ADdAD`472DBf4DBn8DBj;A@n548;6372:1<0548;6372:1<0548;6372:1<0548;6372:1<0700548;6372:1<0548;6372:1<0548;6372:1<058;637:1<08;637:1<08;637:1<0548;6372:1<04`9437548;6372:1<0548;6372:1<06548;6372:1<05548;6372:1<038;637:1<0333777111<<<48;6372:1<025548;6372:1<0548;6372:1<0:548;6372:1<05550548;6372:1<0548;6372:1<0548;6372:1<0548;6372:1<08;637:1<0548;6372:1<0548;6372:1<0548;6372:1<0548;6372:1<0548;6372:1<0822155444545515544375554504055519554318;637:1<0548;6372:1<0548;6372:1<0548;6372:1<0548;6372:1<0548;6372:1<0548;6372:1<0548;6372:1<02548;6372:1<050548;6372:1<06545DClDCnABf`ADj``111``DDb0```````ADhDD`CBf3DDdDDf7ABh554362180543621805436218054362180005436218054362180543621805436218043621804362180354362180`1`715436218054362180554362180555436218028022288844362180`115354362221805436218054362180250554362180445436218054362180543621804362180543621805436218054362180543621805436218041155455`11`11`11542141555555550444544`1103553357554362180445436218054362180543621805436218054362180543621805436218011245436218050543621805DDj`DDl0`DDh1010101010101010101010100101010101000111010101010101010101010101010100001010101010101010101DDn0`Ed000l000`011001011001110001010110010`1100`111`0001DEbn31031031031030DE`4214214214214214214214`42142142142142142214214214214214214214214214214214214214212`44414212242142142142142142142142142142```````````````````````````````EfDEhDEfDEjDElDEnDF`DFb76543210765432107654321076543210<7543210765432107654321076543210765432107654321076543210676543210<776543210765432107654321076543210765432107654321076543210765432107654321074321076543210765432107654321076543210765432107654321076543210765432107654321076543210765<77543210<7<676543210765432107654321076543210765432107654321076543210765432107654321076543210<7543210ABn`AE`ADn22````02AC`1301301301300001301301301303030130`2130130130113030333301000130130130130130130130301301301301301301111111111211111113013013013013013013013013011301DFdDFfAEb00`0`0AEd101010101010101001110110101001001111110101010010101011010101010100010000000010101010101010101001`AF```````0000000000`0000000000000000000000000000000000000000","f":"````````````````````````````````````````````````````````````````{eg{}{{b{c}}}{}}000{{{d{c}}}{{d{c}}}{}}{ce{}{}}000{{}c{}}000{f{{f{h}}}}000{{{f{j}}}{{f{jh}}}}000{{{f{l}}}n}{f{{f{c}}}{}}000{{{f{j}}}{{f{jc}}}{}}000{i{{A`{ceg}}}{}AbAd{{Ah{{Af{ceg}}}}}}00`{i{{Aj{ceg}}}{}AlAd{{Ah{{Af{ceg}}}}}}{{{An{c}}}e{}{}}000`{i{{B`{iceg}}}{}{}Bb{{Bd{ceg}}}}{{}{{d{c}}}{}}444`{{cBf}{{Bh{egi}}}{{Ah{Bj}}}{}BlBn}{{{f{{C`{cegik}}}}}{{Cd{Cb}}}{}{}AdCf{{Ah{{Af{ceg}}}}}}{{{f{l}}}l}{{{f{{d{c}}}}}{{d{c}}}Ch}{{f{f{jc}}}Cj{}}0{{fCl}Cj}0{{}c{}}{i{{`{ceg}}}{}{}Ad{{D`{}{{Cn{{Af{ceg}}}}}}}}```{{{f{{Db{c}}}}{f{Dd}}{Df{{f{c}}}}g}{{Dh{ceik}}}{DjCh}{}{{Dn{c}{{Dl{e}}}}}E`Bn}{i{{Af{ceg}}}{}{}Ad{{Eb{ceg}}}}{ce{}{}}000`?`{{BjEd}l}{{BjEdc}l{{Eh{Ed}{{Dl{Ef}}}}}}6666666{{}{{Ej{l}}}}{{}{{El{l}}}}{{}{{En{l}}}}9999{{}l}{{}};;{F`{{f{c}}}{}}000{F`{{f{jc}}}{}}000{{{f{{C`{cegik}}}}{f{jCb}}}Cj{}{}AdCf{{Ah{{Af{ceg}}}}}}{f{{f{c}}}{}}000{{{f{{Fb{ceg}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}}Cj{}{}Ad}{{{f{{C`{cegik}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}}Cj{}{}AdCf{{Ah{{Af{ceg}}}}}}{F`Cj}000{{{f{l}}{f{l}}}Bf}{{{f{l}}}{{f{Ef}}}}{{{f{l}}{f{jFl}}}{{G`{CjFn}}}}0{{{f{{d{c}}}}{f{jFl}}}GbGd}{{}{{Gf{c}}}{}}0{cc{}}0000000{ce{}{}}000`{c{{Gh{e}}}{{Ah{Gj}}}Gl}`{{ik}{{Af{ceg}}}{}{}Ad{{Ah{{Af{ceg}}}}}{{Ah{{Af{ceg}}}}}}{c{{Af{egi}}}{{Ah{Gj}}}{}{GnH`}{Ad{Bn{}{{Hb{Hd}}}}Hf}}`{e{{Hh{c}}}{}{{Ah{c}}}}{{}F`}000{{}c{}}0000000{{{Hj{c}}}{{Hj{h}}}{}}000{{{Hl{c}}}{{Hl{h}}}{}}0{{{Hn{c}}}{{Hn{h}}}{}}000{{{An{c}}}e{}{}}00044444444{{{d{c}}}{{Id{{Df{c}}I`Ib}}}{}}{{}c{}}000`{k{{If{cegi}}}{IhIj}{}{}Ad{{D`{}{{Cn{{Id{c{Af{egi}}}}}}}}}}`{{{f{{Fb{ceg}}}}{f{jCb}}{f{g}}{f{Il}}}In{}{}Ad}{{{f{{C`{cegik}}}}{f{jCb}}{f{g}}{f{Il}}}In{}{}AdCf{{Ah{{Af{ceg}}}}}}{{cm}{{C`{egick}}}Cf{}{}{}{{Ah{{Af{egi}}}}}{{Dn{{f{c}}}{{Dl{k}}}}}}`{{ce}{{Af{J`gi}}}{{D`{}{{Cn{{f{Jb}}}}}}}{{Ah{Jd}}}Jf{{Bn{}{{Hb{Hd}}}}}}{i{{`{ceg}}}{}{}Ad{{Ah{{Af{ceg}}}}}}{{{f{{Fb{ceg}}}}{f{Cb}}FfFh{f{Fj}}{f{g}}}Jh{}{}Ad}{{{f{{C`{cegik}}}}{f{Cb}}FfFh{f{Fj}}{f{g}}}Jh{}{}AdCf{{Ah{{Af{ceg}}}}}}{i{{Fb{ceg}}}{}{}Ad{{Dn{Jj}{{Dl{{Af{ceg}}}}}}}}59{i{{Af{ceg}}}{}{}Ad{{Ah{{Af{ceg}}}}}}{{{f{{Eb{}{{Jl{c}}{Jn{e}}}}}}{f{jc}}{f{jK`}}}CjKb{}}0{{{f{{Fb{ceg}}}}{f{jCb}}Ff{f{g}}{f{jK`}}}Cj{}{}Ad}{{{f{{C`{cegik}}}}{f{jCb}}Ff{f{g}}{f{jK`}}}Cj{}{}AdCf{{Ah{{Af{ceg}}}}}}`{{{f{j{Fb{ceg}}}}{f{jCb}}Ff{f{g}}Kd}{{Df{{Kf{ceg}}}}}{}{}Ad}{{{f{j{C`{cegik}}}}{f{jCb}}Ff{f{g}}Kd}{{Df{{Kf{ceg}}}}}{}{}AdCf{{Ah{{Af{ceg}}}}}}{{{f{l}}}Ed}`{{{f{{Kh{c}}}}k}{{Kj{egi}}}{}{}KlAd{{Dn{Kn{f{c}}Bf}{{Dl{{L`{egi}}}}}}}}`{{e{Df{g}}k}{{Lb{cegimo}}}{LdIjCh}{{Lh{{Lf{c}}}}}{{Lh{c}}}Ch{{Dn{c}{{Dl{i}}}}}{LjLl}Bn}<`{i{{Ln{ceg}}}Ch{}Ad{{Ah{{Af{ceg}}}}}}`{{{Mb{M`}}M`}{{Md{c}}}Mf}{c{{d{c}}}{}}`{{{f{Mh}}}{{Mj{c}}}Ml}`{{ce{Df{e}}i}{{Mn{gkm}}}{{Ah{Bj}}}{IhN`}Ch{{Eh{e}{{Dl{g}}}}}NbBn}`{{}{{d{c}}}{}}{Nd{{d{c}}}{}}{i{{Fb{ceg}}}{}{}Ad{{Dn{Jj}{{Dl{{Af{ceg}}}}}}}}{e{{Nf{cgik}}}Ch{{Nj{{Lf{{Nh{c}}}}}}}{}GnBn}``{i{{A`{ceg}}}{}AbAd{{Ah{{Af{ceg}}}}}}0{i{{`{ceg}}}{}{}Ad{{D`{}{{Cn{{Af{ceg}}}}}}}}`````{i{{Nl{ceg}}}{}NnAd{{Ah{{Af{ceg}}}}}}`{e{{O`{ce}}}{}{{Ob{c}}}}{{{f{{Fb{ceg}}}}}{{Jj{Od}}}{}{}Ad}{{{f{{C`{cegik}}}}}{{Jj{Od}}}{}{}AdCf{{Ah{{Af{ceg}}}}}}{{{f{{Eb{}{{Jl{c}}{Jn{e}}}}}}}{{Jj{Od}}}Kb{}}01`{{{Mb{c}}cg}{{Of{cei}}}{Ih{Oh{Cl}}Oj}Ch{{Dn{c}{{Dl{e}}}}}Ol}{c{{Nh{eg}}}On{}{}}7``{{{f{{Fb{ceg}}}}}A@`{}{}Ad}{{{f{{C`{cegik}}}}}A@`{}{}AdCf{{Ah{{Af{ceg}}}}}}{{{f{l}}{f{{Ej{l}}}}}A@b}{{{f{l}}{f{{El{l}}}}}A@d}{{{f{l}}{f{c}}A@f}A@h{}}{{{f{l}}{f{c}}}A@j{}}{{{f{l}}{f{c}}A@l}A@n{}}{{{f{l}}{f{c}}AA`}AAb{}}{{{f{l}}f}AAd}{{{f{l}}{f{c}}AAf}AAh{}}{{{f{l}}{f{c}}}AAj{}}{{{f{l}}{f{c}}AAl}AAn{}}{{{f{l}}{f{c}}AB`}ABb{}}{{{f{l}}{f{c}}}ABd{}}{{{f{l}}{f{c}}ABf}ABh{}}{{{f{l}}{f{c}}ABj}ABl{}}{{{f{l}}{f{c}}ABn}AC`{}}{{{f{l}}{f{c}}}ACb{}}{{{f{l}}{f{{En{l}}}}ACd}ACf}`{c{{ACh{e}}}{{Ah{ACj}}}H`}{{{f{{Fb{ceg}}}}}ACl{}{}Ad}{{{f{{C`{cegik}}}}}ACl{}{}AdCf{{Ah{{Af{ceg}}}}}}`{c{{ACn{eg}}}OnGnBn}```{{{f{{AD`{c}}}}}{{ADd{ADbegc}}}BnChADf}`{{{f{Dd}}{f{Dd}}}{{ADh{ceg}}}ChADjBn}`{{ci}{{`{ekc{`{{Dn{{f{k}}}{{Dl{c}}}}}}g}}}Ch{}Ad{{Ah{{Af{ecg}}}}}{}}{fc{}}0{fADl}{fBj}`{Bf{{ADn{ceg}}}{}AE`Bn}`{{ikAEb}{{AEd{ceg}}}{}AbBn{{Ah{{Af{ceg}}}}}{{Ah{{Af{ceg}}}}}}{{}{{G`{c}}}{}}000{c{{G`{e}}}{}{}}000{{}{{G`{c}}}{}}000{{}{{G`{c{AEf{c}}}}}{}}000{fAEh}000{ce{}{}}000{{}c{}}000{f{{Df{{f{c}}}}}{}}000{{{f{j{Eb{}{{Jl{c}}{Jn{e}}}}}}{f{jc}}e}{{Df{g}}}Kb{}{}}{{{f{j{Fb{ceg}}}}{f{jCb}}{f{AEj}}FfFh{f{g}}{f{jAEl}}{f{j{AEn{c}}}}{f{Fj}}}Cj{}{}Ad}{{{f{j{C`{cegik}}}}{f{jCb}}{f{AEj}}FfFh{f{g}}{f{jAEl}}{f{j{AEn{c}}}}{f{Fj}}}Cj{}{}AdCf{{Ah{{Af{ceg}}}}}}{c{{ACn{eg}}}LdGnBn}{c{{Gh{e}}}{{Ah{Gj}}}Gl}`{{{Mb{c}}cg}{{AF`{cei}}}{Ih{Oh{Cl}}Oj}Ch{{Dn{c}{{Dl{e}}}}}Ol}`{{{f{{Eb{}{{Jl{c}}{Jn{e}}}}}}{f{c}}}{{Af{egi}}}Kb{}{}{}}{{}c{}}000``````````{eg{}{{b{c}}}{}}00{ce{}{}}00;;;{f{{f{h}}}}00{{{f{j}}}{{f{jh}}}}00{ABbDf}{ABbAFb}{f{{f{c}}}{}}00{{{f{j}}}{{f{jc}}}{}}00{{{An{c}}}e{}{}}00{{{f{{Aj{ceg}}}}}{{Cd{Cb}}}ChAlAd}{{{Aj{ceg}}i}{{Aj{ceg}}}{}AlAdAh}{{{Aj{ceg}}Bf}{{Aj{ceg}}}{}AlAd}{{{f{AB`}}}AB`}{{{f{ABb}}}ABb}{{f{f{jc}}}Cj{}}0{{fCl}Cj}0>>>{{{f{l}}AB`}ABb}{{}c{}}{{}ABb}{F`{{f{c}}}{}}00{F`{{f{jc}}}{}}00{{{f{{Aj{ceg}}}}{f{jCb}}}CjChAlAd}???{{{f{{Aj{ceg}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}}CjChAlAd}{F`Cj}00{{{f{AB`}}{f{AB`}}}Bf}{{{f{ABb}}{f{ABb}}}Bf}{{f{f{c}}}Bf{}}00{{{f{AB`}}{f{jFl}}}Gb}{{{f{ABb}}{f{jFl}}}Gb}{cc{}}00000{ce{}{}}00{{{Aj{ceg}}i}{{Aj{ceg}}}{}AlAd{{Ah{Od}}}}{{}F`}00{{}c{}}00000{{{Hj{c}}}{{Hj{h}}}{}}00{{{Hl{c}}}{{Hl{h}}}{}}0{{{Hn{c}}}{{Hn{h}}}{}}00{{{An{c}}}e{}{}}00444444{{}c{}}00{{{f{{Aj{ceg}}}}{f{jCb}}{f{g}}{f{Il}}}InChAlAd}{{{f{{Aj{ceg}}}}{f{Cb}}FfFh{f{Fj}}{f{g}}}JhChAlAd}{i{{Aj{ceg}}}{}AlAd{{Ah{{Af{ceg}}}}}}3{{{Aj{ceg}}c}{{Aj{ceg}}}{}AlAd}{{{Aj{ceg}}{Df{c}}}{{Aj{ceg}}}{}AlAd}{{{Aj{ceg}}i}{{Aj{ceg}}}{}AlAd{{Dn{}{{Dl{c}}}}}}{{{f{{Aj{ceg}}}}{f{jCb}}Ff{f{g}}{f{jK`}}}CjChAlAd}{{{f{j{Aj{ceg}}}}{f{jCb}}Ff{f{g}}Kd}{{Df{{Kf{ceg}}}}}ChAlAd}{{{Aj{ceg}}i}{{Aj{ceg}}}{}AlAd{{Ah{AFd}}}}{{{f{l}}AB`}ABb}0{ABbAFf}{{{f{{Aj{ceg}}}}}{{Jj{Od}}}ChAlAd}{{{f{{Aj{ceg}}}}}A@`ChAlAd}{{{f{{Al{}{{AFh{c}}}}}}{f{c}}AB`}ABb{}}{{{Aj{ceg}}i}{{Aj{ceg}}}{}AlAd{{Dn{{f{e}}AB`}{{Dl{ABb}}}}}}5{{{f{{Aj{ceg}}}}}AClChAlAd}6{ABbAFj}{fc{}}0{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{AEf{c}}}}}{}}00{fAEh}00{ce{}{}}00{{}c{}}00{f{{Df{{f{c}}}}}{}}00{{{f{j{Aj{ceg}}}}{f{jCb}}{f{AEj}}FfFh{f{g}}{f{jAEl}}{f{j{AEn{c}}}}{f{Fj}}}CjChAlAd}{{}c{}}00{{{f{l}}AB`}ABb}{{{Aj{ceg}}i}{{Aj{ceg}}}{}AlAd{{Ah{Od}}}}{{ABbc}ABb{{Ah{AFl}}}}`````````````````````````````````{eg{}{{b{c}}}{}}000000000000{ce{}{}}0000000000008888888888888{f{{f{h}}}}000000000000{{{f{j}}}{{f{jh}}}}000000000000{f{{f{c}}}{}}000000000000{{{f{j}}}{{f{jc}}}{}}000000000000{{{An{c}}}e{}{}}000000000000{{AFnM`}AG`}{{{f{AGb}}}AGb}{{{f{AGd}}}AGd}{{{f{AGf}}}AGf}{{{f{AG`}}}AG`}{{{f{AGh}}}AGh}{{{f{AGj}}}AGj}{{{f{AGl}}}AGl}{{{f{AGn}}}AGn}{{{f{AH`}}}AH`}{{{f{AHb}}}AHb}{{{f{AEj}}}AEj}{{{f{{AHd{c}}}}}{{AHd{c}}}Ch}{{f{f{jc}}}Cj{}}00000000000{{fCl}Cj}00000000000{{{f{AGb}}{f{AGb}}}AHf}{AHbAFj}{{f{f{c}}}AHf{}}{ce{}{}}000000000000{AHbBj}{{}AGf}{{}AGh}{{}AGj}{{}AGl}{{}AGn}{{}AHb}{F`{{f{c}}}{}}000000000000{F`{{f{jc}}}{}}000000000000{f{{f{c}}}{}}000000000000{{{f{{Bd{}{{Jl{c}}}}}}{f{c}}{f{e}}{f{g}}FjFh}{{Cd{{AHh{e}}}}}KbBb{}}{{{f{{B`{iceg}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}}Cj{}{}Bb{{Bd{ceg}}}}{{{f{AHb}}c}Cj{{AHj{AG`AFj}}}}{F`Cj}000000000000{{{f{AGb}}{f{AGb}}}Bf}{{{f{AGd}}{f{AGd}}}Bf}{{{f{AH`}}{f{AH`}}}Bf}{{{f{AEj}}{f{AEj}}}Bf}{{{f{{AHd{c}}}}{f{{AHd{c}}}}}BfIj}{{f{f{c}}}Bf{}}00`{{AHdAHl}AHd}{AHdAHl}{{{f{AGb}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AGd}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AGf}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AG`}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AGh}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AGj}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AGl}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AGn}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AH`}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AHb}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AEj}}{f{jFl}}}{{G`{CjFn}}}}{{{f{{AHd{c}}}}{f{jFl}}}{{G`{CjFn}}}Gd}{{{f{{B`{iceg}}}}{f{jFl}}}GbGdGd{BbGd}{{Bd{ceg}}Gd}}{AHbHd}{cc{}}0{AHnAGd}{AFjAGf}{AHnAGf}{AGdAGf}4444444{AFjAH`}{AGdAH`}{{{f{Dd}}}AHb}7{BjAHb}8{{{f{AI`}}}AHd}999999999999999{ce{}{}}000000000000`{AHd}{{{f{AGb}}{f{jc}}}CjAIb}{{{B`{iceg}}k}{{B`{iceg}}}{}{}Bb{{Bd{ceg}}}{{Ah{Od}}}}{AHbAId}{{}F`}000000000000{{}c{}}0000000000000000000000000{{{Hj{c}}}{{Hj{h}}}{}}000000000000{{{Hl{c}}}{{Hl{h}}}{}}000000000000{{{Hn{c}}}{{Hn{h}}}{}}000000000000{{{An{c}}}e{}{}}00000000000044444444444444444444444444{{}c{}}000000000000{AGbBf}{{{f{{B`{iceg}}}}{f{jCb}}{f{g}}{f{Il}}}In{}{}Bb{{Bd{ceg}}}}{{AFnAFn}AG`}{AGhAGj}{AGhAGn}{AHbAIf}{AGhAGl}{{{f{{Bd{}{{Jl{c}}}}}}{f{c}}FjFh}JhKb}0{{{f{{B`{iceg}}}}{f{Cb}}FfFh{f{Fj}}{f{g}}}Jh{}{}Bb{{Bd{ceg}}}}{cAG`{{Eh{{f{jAIh}}}}}}{cAHd{{Ah{AI`}}}}{i{{B`{iceg}}}{}{}Bb{{Bd{ceg}}}}<<<<<<{AGnF`}{{AHdc}AHd{{Ah{M`}}}}{AHdM`}{{{f{AGd}}}AIj}{{{f{AGb}}{f{AGb}}}{{Df{AHf}}}}`{AHbAFn}{{{f{AG`}}}{{f{AIl}}}}{{AFnJj}AG`}{{AHdc}AHd{{Ah{AIn}}}}{AHdAIn}{{AFnJjAJ`}AG`}{AGfAJb}{AGnf}{AHbAJd}{{{f{{B`{iceg}}}}}{{Jj{Od}}}{}{}Bb{{Bd{ceg}}}}{AHbGj}{{AHdBf}AHd}{AHdBf}{{{f{{B`{iceg}}}}}A@`{}{}Bb{{Bd{ceg}}}}`{AGfAH`}{AGhAH`}{{{f{{B`{iceg}}}}}ACl{}{}Bb{{Bd{ceg}}}}{fc{}}00000000000{{{f{AG`}}{f{{AJh{M`AJfAJf}}}}}AG`}{{}{{G`{c}}}{}}000000000000{c{{G`{e}}}{}{}}000000000000{{}{{G`{c}}}{}}000000000000{{}{{G`{c{AEf{c}}}}}{}}000000000000{fAEh}000000000000{ce{}{}}000000000000{{}c{}}000000000000{{}AGb}{f{{Df{{f{c}}}}}{}}000000000000{{{f{{Bd{}{{Jl{c}}}}}}{f{jc}}{f{AEj}}FjFh}{{Df{{d{e}}}}}Kb{}}0{{{f{j{B`{iceg}}}}{f{jCb}}{f{AEj}}FfFh{f{g}}{f{jAEl}}{f{j{AEn{c}}}}{f{Fj}}}Cj{}{}Bb{{Bd{ceg}}}}{AHbAJj}{{}c{}}000000000000{{{B`{iceg}}k}{{B`{iceg}}}{}{}Bb{{Bd{ceg}}}{{Ah{Od}}}}{AGhM`}{{AGhAFj}AGh}{{AGhAGj}AGh}{{AGhAGl}AGh}{{AGhM`}AGh}```````{eg{}{{b{c}}}{}}{ce{}{}}>{f{{f{h}}}}{{{f{j}}}{{f{jh}}}}{f{{f{c}}}{}}{{{f{j}}}{{f{jc}}}{}}{{{An{c}}}e{}{}}{{{f{AJb}}}AJb}{{f{f{jc}}}Cj{}}{{fCl}Cj}8{F`{{f{c}}}{}}{F`{{f{jc}}}{}}7{F`Cj}{{{f{AJb}}{f{AJb}}}Bf}{{f{f{c}}}Bf{}}00{{{f{AJb}}{f{jFl}}}{{G`{CjFn}}}}{cc{}}0{ce{}{}}{{}F`}{{}c{}}0{{{Hj{c}}}{{Hj{h}}}{}}{{{Hl{c}}}{{Hl{h}}}{}}{{{Hn{c}}}{{Hn{h}}}{}}{{{An{c}}}e{}{}}44{{}c{}}{AGfAJb}{AGfAH`}{fc{}}{{}{{G`{c}}}{}}{c{{G`{e}}}{}{}}{{}{{G`{c}}}{}}{{}{{G`{c{AEf{c}}}}}{}}{fAEh}{ce{}{}}{{}c{}}{f{{Df{{f{c}}}}}{}}{{}c{}}````{eg{}{{b{c}}}{}}0{{AHnM`AFj}AHn}{{AHnc}AHn{{D`{}{{Cn{AJl}}}}}}{ce{}{}}066{f{{f{h}}}}0{{{f{j}}}{{f{jh}}}}0{f{{f{c}}}{}}0{{{f{j}}}{{f{jc}}}{}}0{{{An{c}}}e{}{}}0{{{f{AHn}}}AHn}{{{f{AIj}}}AIj}{{f{f{jc}}}Cj{}}0{{fCl}Cj}099{F`{{f{c}}}{}}0{F`{{f{jc}}}{}}088{F`Cj}0{AHnAFn}{{{f{AHn}}{f{AHn}}}Bf}{{{f{AIj}}{f{AIj}}}Bf}{{{f{AHn}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AIj}}{f{jFl}}}{{G`{CjFn}}}}{cc{}}000{ce{}{}}0{{}F`}0{{}c{}}000{{{Hj{c}}}{{Hj{h}}}{}}0{{{Hl{c}}}{{Hl{h}}}{}}0{{{Hn{c}}}{{Hn{h}}}{}}0{{{An{c}}}e{}{}}04444{{}c{}}0{{{f{c}}}Bf{}}{{AFnAFn}AHn}{{{f{AJn}}Fj}AIj}{{{f{AHn}}}AIj}{AHnAFn}{AHnAK`}{fc{}}0{{}{{G`{c}}}{}}0{c{{G`{e}}}{}{}}0{{}{{G`{c}}}{}}0{{}{{G`{c{AEf{c}}}}}{}}0{fAEh}0{ce{}{}}0{{}c{}}0{f{{Df{{f{c}}}}}{}}0{{}c{}}0```{eg{}{{b{c}}}{}}0`{{{f{jAIh}}AKb}Cj}{{{f{jAIh}}AFnAFnM`}Cj}{ce{}{}}066{f{{f{h}}}}0{{{f{j}}}{{f{jh}}}}0{{{f{jAIh}}AFnAFnAFn}Cj}{f{{f{c}}}{}}0{{{f{j}}}{{f{jc}}}{}}0{AIhAG`}{{{An{c}}}e{}{}}0{AKbAFn}{{{f{jAIh}}AFnM`}Cj}{{{f{AKb}}}AKb}{{f{f{jc}}}Cj{}}{{fCl}Cj}{{{f{jAIh}}}Cj}=={{}AIh}{F`{{f{c}}}{}}0{F`{{f{jc}}}{}}0<<{F`Cj}0{{{f{jAIh}}AKd}Cj}{AKbAIn}{{{f{AKb}}{f{jFl}}}{{G`{CjFn}}}}{cc{}}000{ce{}{}}0{{}F`}0{{}c{}}000{{{Hj{c}}}{{Hj{h}}}{}}0{{{Hl{c}}}{{Hl{h}}}{}}0{{{Hn{c}}}{{Hn{h}}}{}}0{{{An{c}}}e{}{}}04444{{}c{}}0{{{f{jAIh}}AFn}Cj}0{{}AIh}2{{{f{jAIh}}AFnAFn}Cj}{AKbM`}{{{f{jAIh}}AFnJj}Cj}{{{f{jAIh}}AFnJjAJ`}Cj}{AKbAIn}{fc{}}{{}{{G`{c}}}{}}0{c{{G`{e}}}{}{}}0{{}{{G`{c}}}{}}0{{}{{G`{c{AEf{c}}}}}{}}0{fAEh}0{ce{}{}}0{{}c{}}0{f{{Df{{f{c}}}}}{}}0{{}c{}}0``{eg{}{{b{c}}}{}}{ce{}{}}4{f{{f{h}}}}{{{f{j}}}{{f{jh}}}}{f{{f{c}}}{}}{{{f{j}}}{{f{jc}}}{}}{{{An{c}}}e{}{}}{AKbAFn}{AKdAFn}{{{f{AKd}}}AKd}{{f{f{jc}}}Cj{}}{{fCl}Cj}:{F`{{f{c}}}{}}{F`{{f{jc}}}{}}9{F`Cj}{AKbAIn}{AKdAIn}{{{f{AKd}}{f{jFl}}}{{G`{CjFn}}}}{cc{}}{AKbAKd}1{ce{}{}}{{}F`}{{}c{}}0{{{Hj{c}}}{{Hj{h}}}{}}{{{Hl{c}}}{{Hl{h}}}{}}{{{Hn{c}}}{{Hn{h}}}{}}{{{An{c}}}e{}{}}44{{}c{}}{AKdKd}{AKbM`}=>={fc{}}{{}{{G`{c}}}{}}{c{{G`{e}}}{}{}}{{}{{G`{c}}}{}}{{}{{G`{c{AEf{c}}}}}{}}{fAEh}{ce{}{}}{{}c{}}{f{{Df{{f{c}}}}}{}}{{}c{}}````````````````````````````````````````{{}f}````````````````````````{eg{}{{b{c}}}{}}000000000000000000000000{ce{}{}}0000000000000000000000005555555555555555555555555{f{{f{h}}}}000000000000000000000000{{{f{j}}}{{f{jh}}}}000000000000000000000000{{{f{AKf}}}AKh}{{{f{AIl}}}AKj}{{{f{AKl}}}AKn}{{{f{AIl}}AL`}{{f{{Lf{M`}}}}}}{{{f{AKj}}AL`}{{f{{Lf{M`}}}}}}{{{f{jALb}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}{{{f{jALf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}0{f{{f{c}}}{}}000000000000000000000000{{{f{j}}}{{f{jc}}}{}}000000000000000000000000{ALbAIl}{ALfAIl}0`{{}ALh}{{}{{ALj{ALb}}}}{{{f{jAKl}}}ALl}{F`ALf}{{{An{c}}}e{}{}}000000000000000000000000{{{f{jAKl}}}Cj}{{{f{ALn}}}ALn}{{{f{AKf}}}AKf}{{{f{AKh}}}AKh}{{{f{{AM`{ce}}}}}{{AM`{ce}}}ChCh}{{{f{AIl}}}AIl}{{{f{AKj}}}AKj}{{{f{ALb}}}ALb}{{{f{ALf}}}ALf}{{{f{AMb}}}AMb}{{{f{AMd}}}AMd}{{{f{AMf}}}AMf}{{{f{AKl}}}AKl}{{{f{AKn}}}AKn}{{{f{{AMh{c}}}}}{{AMh{c}}}Ch}{{{f{AMj}}}AMj}{{{f{AMl}}}AMl}{{{f{AMn}}}AMn}{{{f{AN`}}}AN`}{{{f{ANb}}}ANb}{{{f{ANd}}}ANd}{{{f{ANf}}}ANf}{{{f{AL`}}}AL`}{{{f{ANh}}}ANh}{{f{f{jc}}}Cj{}}0000000000000000000000{{fCl}Cj}0000000000000000000000{AMhBf}{AMjBf}`{ce{}{}}000000000000000000000000{{{f{jALb}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}{{{f{jALf}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}0{{}ALn}{{}AIl}{{}ALb}{{}AKl}{F`{{f{c}}}{}}000000000000000000000000{F`{{f{jc}}}{}}000000000000000000000000{f{{f{c}}}{}}000000000000000000000000{F`Cj}000000000000000000000000{{{f{jALb}}Bf}Cj}{{{f{jALf}}Bf}Cj}0{{{f{ALn}}{f{ALn}}}Bf}{{{f{{AM`{ce}}}}{f{{AM`{ce}}}}}BfIjIj}{{{f{AMl}}{f{AMl}}}Bf}{{{f{AMn}}{f{AMn}}}Bf}{{{f{AN`}}{f{AN`}}}Bf}{{{f{ANb}}{f{ANb}}}Bf}{{{f{ANd}}{f{ANd}}}Bf}{{{f{ANf}}{f{ANf}}}Bf}{{{f{AL`}}{f{AL`}}}Bf}{{{f{ANh}}{f{ANh}}}Bf}{{f{f{c}}}Bf{}}00000000000000{{{f{AKf}}ANh}{{AM`{AL`ANf}}}}{{{f{AKh}}ANh}{{AM`{AL`ANf}}}}{{{f{{AMh{c}}}}ANh}{{AM`{{f{c}}Cj}}}{}}{{{f{AMj}}ANh}{{AM`{AL`ANf}}}}{{{f{AKf}}{f{{Lf{c}}}}{f{{Lf{e}}}}}{{ANj{ce}}}{}{}}{{{f{jALb}}{f{{Lf{AKj}}}}}Cj}{{{f{jALf}}{f{{Lf{AKj}}}}}Cj}{{{f{AIl}}}{{Df{{Id{{ALd{M`AJf}}{f{{Lf{M`}}}}}}}}}}{{{f{AKj}}}{{Df{{Id{{ALd{M`AJf}}{f{{Lf{M`}}}}}}}}}}{{{f{ALn}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AKf}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AKh}}{f{jFl}}}{{G`{CjFn}}}}{{{f{{AM`{ce}}}}{f{jFl}}}{{G`{CjFn}}}GdGd}{{{f{AIl}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AKj}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AMf}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AKl}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AKn}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AMl}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AMn}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AN`}}{f{jFl}}}{{G`{CjFn}}}}{{{f{ANb}}{f{jFl}}}{{G`{CjFn}}}}{{{f{ANd}}{f{jFl}}}{{G`{CjFn}}}}{{{f{ANf}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AL`}}{f{jFl}}}{{G`{CjFn}}}}{{{f{ANh}}{f{jFl}}}{{G`{CjFn}}}}{{AMdM`{f{jc}}}Cj{{AHj{{f{{AM`{{Id{{ALd{M`AJf}}{f{{Lf{M`}}}}}}{ALd{M`AJf}}}}}}}}}}{cc{}}0000{{{f{AKf}}}AKh}1{{{f{{AM`{ce}}}}}cCh{}}22{{{f{AIl}}}AKj}333333333333333333333333333333333333333333{cAIl{{D`{}{{Cn{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}}}}}}{cAKl{{D`{}{{Cn{AKj}}}}}}{ce{}{}}000000000000000000000000{F`ANf}{F`AL`}{{{f{ANl}}AL`}{{f{{Lf{M`}}}}}}{{{f{ANn}}AL`}{{f{{Lf{M`}}}}}}{{{f{AIl}}AL`}{{f{{Lf{M`}}}}}}{{{f{AKj}}AL`}{{f{{Lf{M`}}}}}}{{{f{AKl}}F`}AKj}{{{f{AKn}}F`}AKj}{{{f{AO`}}ANf}{{ALd{M`AJf}}}}{{{f{AIl}}ANf}{{ALd{M`AJf}}}}{{{f{AKj}}ANf}{{ALd{M`AJf}}}}{{{f{{AMh{c}}}}ANf}{{ALd{M`AJf}}}AOb}{{{f{AO`}}AL`}{{ALd{M`AJf}}}}{{{f{AIl}}AL`}{{ALd{M`AJf}}}}{{{f{AKj}}AL`}{{ALd{M`AJf}}}}{{{f{{AMh{c}}}}AL`}{{ALd{M`AJf}}}AOb}{{{f{{AM`{ce}}}}{f{jg}}}CjCfCfAIb}{{{f{ANd}}{f{jc}}}CjAIb}{{{f{ANf}}{f{jc}}}CjAIb}{{{f{AL`}}{f{jc}}}CjAIb}{{{f{ANh}}{f{jc}}}CjAIb}{{{f{AIl}}}AMf}{{{f{AKj}}}AMf}{{{f{{AMh{c}}}}}AOd{}}{{{f{AIl}}AL`}{{f{{ALd{M`AJf}}}}}}{{{f{AIl}}ANf}{{f{{ALd{M`AJf}}}}}}{{{f{AKj}}ANf}{{f{{ALd{M`AJf}}}}}}{{{f{AKj}}AL`}{{f{{ALd{M`AJf}}}}}}{{{f{{AMh{c}}}}AL`}{{f{c}}}{}}{{{f{AKl}}}{{AOf{F`}}}}{{{f{AKn}}}{{AOf{F`}}}}{{}F`}000000000000000000000000{{}c{}}0000000000000000000000000000000000000000000000000{{{Hj{c}}}{{Hj{h}}}{}}000000000000000000000000{{{Hl{c}}}{{Hl{h}}}{}}0000000000000000000000{{{Hn{c}}}{{Hn{h}}}{}}000000000000000000000000{{{An{c}}}e{}{}}00000000000000000000000044444444444444444444444444444444444444444444444444{{}c{}}{{{f{AKf}}}AOh}{{{f{AIl}}}AMb}{AKjAMb}{{{f{AKj}}}AMb}444{AOjAIl}{{}c{}}000000000000000000000000{{{f{{AM`{ce}}}}}Bf{}{}}{{{f{AKj}}}Bf}{{{f{AKl}}}Bf}{{{f{AKn}}}Bf}{{{f{ANb}}AOl}Bf}{AN`Bf}10;{{{f{AKh}}}AOh};9{{{f{AKl}}}AOn}{{{f{AKn}}}AOn}{{{f{{AMh{c}}}}}{{B@`{c}}}{}}{{{f{AMj}}}B@b}{{{f{AIl}}}AMd}{{{f{AKj}}}AMd}`{ALnBf}{{{f{AIl}}}{{Df{{Id{{ALd{M`AJf}}{f{{Lf{M`}}}}}}}}}}{{{f{AKj}}}{{Df{{Id{{ALd{M`AJf}}{f{{Lf{M`}}}}}}}}}}{{{f{AKl}}}F`}{{{f{AKn}}}F`}{{{f{jALb}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}{{{f{jALf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}0`{{{f{{Lf{M`}}}}F`}ANn}{{}AIl}{{}ALb}{F`ALf}{{}AKl}{{{f{jAOj}}}Df}{{{f{jAMb}}}{{Df{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}}}}{{{f{jAMd}}}Df}{{{f{jAMf}}}{{Df{{AM`{AL`ANf}}}}}}{{{f{AKf}}ANh}{{Df{ANh}}}}{{{f{AKh}}ANh}{{Df{ANh}}}}{{{f{AKf}}ANh}ANh}{{{f{AKh}}ANh}ANh}{{}c{}}000{{{f{ANl}}}F`}{{{f{ANn}}}F`}{{{f{AIl}}}F`}{{{f{AKj}}}F`}{{{f{ALb}}}F`}{{{f{ALf}}}F`}0{ANfF`}{AL`F`}{AN`AN`}``{{{f{{AMh{c}}}}}{{B@d{c}}}AOb}{{{f{AKf}}{f{{Lf{c}}}}{f{{Lf{e}}}}}{{B@f{ce}}}{}{}}{AMdAMb}{AMhf}{AMjf}`{{{f{AOb}}}{{ALd{M`AJf}}}}{{{f{jALb}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}{{{f{jALf}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}0{{{f{jALb}}F`F`}Cj}{{{f{jALf}}F`F`}Cj}0{{{f{jAKl}}F`F`F`}Cj}{{{f{AIl}}}{{B@h{AOj}}}}{{{f{AKj}}}{{B@h{AOj}}}}{{}{{B@j{ALb}}}}{ALnBf}{{{f{{AM`{ce}}}}}cCh{}}{AN`M`}{fc{}}0000000000000000000000{ANfF`}{AL`F`}{ANhF`}`{{{f{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}}{f{c}}}{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}{{B@l{M`}}}}{{AIl{f{c}}}AIl{{B@l{M`}}}}{{}{{G`{c}}}{}}000000000000000000000000{c{{G`{e}}}{}{}}000000000000000000000000{{}{{G`{c}}}{}}000000000000000000000000{{}{{G`{c{AEf{c}}}}}{}}000000000000000000000000{fAEh}000000000000000000000000{ce{}{}}000000000000000000000000{{}c{}}000000000000000000000000{f{{Df{{f{c}}}}}{}}000000000000000000000000{{}c{}}000000000000000000000000{F`AIl}{{F`F`}ALb}{{F`F`F`}AKl}{{{f{{AM`{ce}}}}}{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}AObAOb}{ALb{{B@j{ALb}}}}{B@n}{BA`Bf}{BAb}{BAd}0{BA`}{BAf}321032{B@nAL`}5{BAbANf}{BAdANf}0{BA`AL`}{BAfAL`}{BAbAL`}{BAdAL`}3210{B@nALd}<{BAbALd}{BAdALd}0{BA`ALd}{BAfALd}321032`````````{eg{}{{b{c}}}{}}0000{{{f{jBAh}}{ALd{M`AJf}}M`ANd{f{{Lf{M`}}}}}Cj}0{{{f{j{ALj{c}}}}{ALd{M`AJf}}M`ANd}CjBAh}{{{f{jBAh}}{ALd{M`AJf}}{BAj{M`AJf}}{BAl{M`}}ANd{f{{Lf{M`}}}}}Cj}0{{{f{j{ALj{c}}}}{ALd{M`AJf}}{BAj{M`AJf}}{BAl{M`}}ANd}CjBAh}{{{f{jBAh}}{f{{BAn{M`}}}}{f{{Lf{M`}}}}}{{Id{AL`AL`}}}}0{{{f{j{ALj{c}}}}{f{{BAn{M`}}}}}{{Id{AL`AL`}}}BAh}{{{f{jBAh}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}0{{{f{j{ALj{c}}}}{ALd{M`AJf}}}AL`BAh}{{{f{jBAh}}{AMh{{ALd{M`AJf}}}}{f{{Lf{M`}}}}}Cj}0{{{f{jBB`}}{AMh{{ALd{M`AJf}}}}}Cj}0{{{f{j{ALj{c}}}}{AMh{{ALd{M`AJf}}}}}CjBAh}{{{f{jBAh}}{f{{BBb{M`AJf}}}}ANd{f{{Lf{M`}}}}}Cj}0{{{f{j{ALj{c}}}}{f{{BBb{M`AJf}}}}ANd}CjBAh}{{{f{jBAh}}{f{{BBb{M`AJf}}}}{f{BBd}}ANd{f{{Lf{M`}}}}}Cj}0{{{f{j{ALj{c}}}}{f{{BBb{M`AJf}}}}{f{BBd}}ANd}CjBAh}{{{f{j{B@j{c}}}}{ALd{M`AJf}}{BAj{M`AJf}}{BAl{M`}}{BAl{M`}}}CjBAh}{{{f{jBB`}}{BAj{M`AJf}}{BAl{M`}}ALn{ALd{M`AJf}}}Cj}{{{f{j{B@j{c}}}}{BAj{M`AJf}}{BAl{M`}}ALn{ALd{M`AJf}}}CjBAh}{ce{}{}}0000{{}c{}}0000{f{{f{h}}}}0000{{{f{j}}}{{f{jh}}}}0000?{{{f{j{BBf{c}}}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`BAh}{{{f{j{BBh{ce}}}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`BAh{{B@l{M`}}}}{{{f{j{ALj{c}}}}{ALd{M`AJf}}}AL`BAh}{{{f{j{ALj{c}}}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`BAh}{f{{f{c}}}{}}0000{{{f{j}}}{{f{jc}}}{}}0000{BBdM`}0{{{BBl{}{{BBj{c}}}}}c{}}{{{BBf{c}}}{}BBl}{{{BBf{c}}}{}{BBlBAh}}{{{BBh{ce}}}{}BBl{}}{{{B@j{c}}}{}{BBlBAh}}{{{B@j{c}}}{}{BAhBBl}}{{{ALj{c}}}{}{BAhBBl}}{{{ALj{e}}}c{}{{BBl{}{{BBj{c}}}}BAh}}{{{An{c}}}e{}{}}0000{{{f{BBd}}}BBd}{{{f{{ALj{c}}}}}{{ALj{c}}}{ChBAh}}{{f{f{jc}}}Cj{}}0{{fCl}Cj}0{{{f{jBB`}}}Cj}{{{f{jBAh}}}Cj}0{{{f{j{B@j{c}}}}}CjBAh}0{{{f{j{ALj{c}}}}}CjBAh}{ce{}{}}0000{{{f{jBAh}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}{{{f{jBB`}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}}Cj}{{{f{j{BBf{c}}}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`BAh}{{{f{j{BBh{ce}}}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`BAh{{B@l{M`}}}}{{{f{j{B@j{c}}}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}}CjBAh}{{{f{j{B@j{c}}}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}}AL`BAh}{{{f{j{ALj{c}}}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`BAh}{{{f{j{ALj{c}}}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}}AL`BAh}{{{f{{B@j{c}}}}}{{ALd{M`AJf}}}BAh}{{}BBd}{{}{{ALj{c}}}{BAhKb}}{F`{{f{c}}}{}}0000{F`{{f{jc}}}{}}0000{f{{f{c}}}{}}0000{F`Cj}0000{{{f{jBAh}}Bf}Cj}{{{f{j{BBf{c}}}}Bf}CjBAh}{{{f{j{BBh{ce}}}}Bf}CjBAh{{B@l{M`}}}}{{{f{j{ALj{c}}}}Bf}CjBAh}0{{{f{BBd}}{f{BBd}}}Bf}{{{f{{ALj{c}}}}{f{{ALj{c}}}}}Bf{IjBAh}}{{{f{jBAh}}{AM`{{Id{{ALd{M`AJf}}{f{{Lf{M`}}}}}}{ALd{M`AJf}}}}}Cj}0{{{f{j{ALj{ALb}}}}{f{{Lf{AKj}}}}}Cj}{{BAhM`}{{BBf{BAh}}}}0{{{B@j{c}}M`}{{B@j{{BBf{c}}}}}BAh}{{{ALj{c}}M`}{{ALj{{BBf{c}}}}}BAh}{{{f{BBd}}{f{jFl}}}{{G`{CjFn}}}}0{{{f{{ALj{c}}}}{f{jFl}}}{{G`{CjFn}}}{GdBAh}}{cc{}}000000000{ce{}{}}0000{{{f{{ALj{c}}}}{f{je}}}Cj{CfBAh}AIb}{{{f{jBB`}}M`}Cj}{{{f{j{B@j{c}}}}M`}CjBAh}{{}F`}0000{{{f{{ALj{c}}}}}{{f{c}}}BAh}{{{f{j{ALj{c}}}}}{{f{jc}}}BAh}{{}c{}}000000000{{{Hj{c}}}{{Hj{h}}}{}}0000{{{Hl{c}}}{{Hl{h}}}{}}0000{{{Hn{c}}}{{Hn{h}}}{}}0000{{{An{c}}}e{}{}}00004444444444{{{ALj{c}}}cBAh}{{}c{}}0000{{{f{jBAh}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}{{{f{jBB`}}{ALd{M`AJf}}}Cj}{{{f{j{BBf{c}}}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`BAh}{{{f{j{BBh{ce}}}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`BAh{{B@l{M`}}}}{{{f{j{B@j{c}}}}{ALd{M`AJf}}}CjBAh}{{{f{j{B@j{c}}}}{ALd{M`AJf}}}AL`BAh}{{{f{j{ALj{c}}}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`BAh}{{{f{j{ALj{c}}}}{ALd{M`AJf}}}AL`BAh}632{{cM`}{{BBf{c}}}BAh}{{ce}{{BBh{ce}}}{}{}}{c{{B@j{c}}}BAh}{M`BBd}{{}{{ALj{c}}}{KbBAh}}=={{{f{BAh}}}F`}{{{f{{BBf{c}}}}}F`BAh}{{{f{{BBh{ce}}}}}F`BAh{{B@l{M`}}}}{{{f{{ALj{c}}}}}F`BAh}{{{f{BBd}}{f{BBd}}}{{Df{AHf}}}}{{{f{jBAh}}{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}{f{{Lf{M`}}}}}Cj}0{{{f{j{ALj{c}}}}{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}CjBAh}{{{f{jBAh}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}{{{f{jBB`}}{ALd{M`AJf}}{ALd{M`AJf}}}Cj}{{{f{j{BBf{c}}}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`BAh}{{{f{j{BBh{ce}}}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`BAh{{B@l{M`}}}}{{{f{j{B@j{c}}}}{ALd{M`AJf}}{ALd{M`AJf}}}CjBAh}{{{f{j{B@j{c}}}}{ALd{M`AJf}}{ALd{M`AJf}}}AL`BAh}{{{f{j{ALj{c}}}}{ALd{M`AJf}}{ALd{M`AJf}}}AL`BAh}{{{f{j{ALj{c}}}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`BAh}{{{f{jBB`}}{BAj{M`AJf}}{BAl{M`}}ALn{BAj{M`AJf}}}Cj}{{{f{j{B@j{c}}}}{BAj{M`AJf}}{BAl{M`}}ALn{BAj{M`AJf}}}CjBAh}{{{f{jBB`}}{BAj{M`AJf}}{BAj{M`AJf}}{BAj{M`AJf}}}Cj}{{{f{j{B@j{c}}}}{BAj{M`AJf}}{BAj{M`AJf}}{BAj{M`AJf}}}CjBAh}{{{f{jBB`}}M`}Cj}{{{f{j{B@j{c}}}}M`}CjBAh}{{{f{jBB`}}{BAj{M`AJf}}}Cj}{{{f{j{B@j{c}}}}{BAj{M`AJf}}}CjBAh}10{{{f{jBB`}}{BAj{M`AJf}}{BAj{M`AJf}}}Cj}{{{f{j{B@j{c}}}}{BAj{M`AJf}}{BAj{M`AJf}}}CjBAh}54{{{f{jBAh}}F`F`}Cj}0{{{f{jBB`}}F`F`}Cj}0{{{f{j{BBf{c}}}}F`F`}CjBAh}{{{f{j{BBh{ce}}}}F`F`}CjBAh{{B@l{M`}}}}{{{f{j{B@j{c}}}}F`F`}CjBAh}0{{{f{j{ALj{c}}}}F`F`}CjBAh}0{{{f{j{BBf{c}}}}M`}CjBAh}{{{f{j{BBh{ce}}}}e}Cj{}{}}{{{f{j{B@j{{BBh{ce}}}}}}e}CjBAh{{B@l{M`}}}}{{{f{jBB`}}{ALd{M`AJf}}{ALd{M`AJf}}}Cj}{{{f{j{B@j{c}}}}{ALd{M`AJf}}{ALd{M`AJf}}}CjBAh}{{{f{jBB`}}{ALd{M`AJf}}}Cj}{{{f{j{B@j{c}}}}{ALd{M`AJf}}}CjBAh}>={{{f{jBB`}}{BAj{M`AJf}}}Cj}{{{f{j{B@j{c}}}}{BAj{M`AJf}}}CjBAh}{fc{}}0{fADl}{fBj}{BBdM`}0{{BAhc}{{BBh{BAhc}}}{{B@l{M`}}}}0{{{B@j{c}}e}{{B@j{{BBh{ce}}}}}BAh{{B@l{M`}}}}{{{ALj{c}}e}{{ALj{{BBh{ce}}}}}BAh{{B@l{M`}}}}{{}{{G`{c}}}{}}0000{c{{G`{e}}}{}{}}0000{{}{{G`{c}}}{}}0000{{}{{G`{c{AEf{c}}}}}{}}0000{fAEh}0000{ce{}{}}0000{{}c{}}0000{f{{Df{{f{c}}}}}{}}0000{{{f{jBB`}}M`}Cj}{{{f{j{B@j{c}}}}M`}CjBAh}{{}c{}}0000{{F`F`}{{ALj{c}}}{KbBAh}}{BAh{{B@j{BAh}}}}0{{{ALj{c}}}{{B@j{c}}}BAh}{c{{ALj{c}}}BAh}```````{eg{}{{b{c}}}{}}0000{ce{}{}}0000:::::{f{{f{h}}}}0000{{{f{j}}}{{f{jh}}}}0000{{{f{jALh}}AL`}ANh}{f{{f{c}}}{}}0000{{{f{j}}}{{f{jc}}}{}}0000{ALhAKf}{{{An{c}}}e{}{}}0000{{{f{{B@f{ce}}}}}{{B@f{ce}}}ChCh}{{{f{ALh}}}ALh}{{{f{{ANj{ce}}}}}{{ANj{ce}}}ChCh}{{{f{AOh}}}AOh}{{{f{{BBn{ce}}}}}{{BBn{ce}}}ChCh}{{f{f{jc}}}Cj{}}0000{{fCl}Cj}0000>>>>>{{{f{jALh}}ANfANfAL`}ANh}{{}ALh}{F`{{f{c}}}{}}0000{F`{{f{jc}}}{}}0000>>>>>{F`Cj}0000{{{f{jALh}}Bf}{{Df{ANh}}}}{{{f{{B@f{ce}}}}}{{ANj{ce}}}{}{}}{{{f{{B@f{ce}}}}{f{jFl}}}{{G`{CjFn}}}GdGd}{{{f{ALh}}{f{jFl}}}{{G`{CjFn}}}}{cc{}}000000000{ce{}{}}0000{{{f{{B@f{ce}}}}ANf}{{ALd{M`AJf}}}AObAOb}{{{f{{B@f{ce}}}}AL`}{{ALd{M`AJf}}}AObAOb}{{{f{{B@f{ce}}}}ANf}{{f{e}}}{}{}}{{{f{{B@f{ce}}}}AL`}{{f{c}}}{}{}}{{}F`}0000{{}c{}}000000000{{{Hj{c}}}{{Hj{h}}}{}}0000{{{Hl{c}}}{{Hl{h}}}{}}0{{{Hn{c}}}{{Hn{h}}}{}}0000{{{An{c}}}e{}{}}00004444444444{{}c{}}00{{}c{}}0000{{{f{{B@f{ce}}}}}AOh{}{}}{{{f{jALh}}AL`}ANh}{{}ALh}{{{f{j{ANj{ce}}}}}{{Df{{AM`{{f{c}}{f{e}}}}}}}{}{}}{{{f{jAOh}}}{{Df{{AM`{AL`ANf}}}}}}{{{f{j{BBn{ce}}}}}{{Df{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}}}AObAOb}6{{{ANj{ce}}}{{BBn{ce}}}AObAOb}{{{f{jALh}}ANfAL`}ANh}{fc{}}0000{{}{{G`{c}}}{}}0000{c{{G`{e}}}{}{}}0000{{}{{G`{c}}}{}}0000{{}{{G`{c{AEf{c}}}}}{}}0000{fAEh}0000{ce{}{}}0000{{}c{}}0000{f{{Df{{f{c}}}}}{}}0000{{}c{}}0000{F`ALh}`````````````````````````````````````{{{f{{BC`{c}}}}}cBCb}{BCdALd}{{{f{{BCd{c}}}}}{{BAn{c}}}BCb}0{eg{}{{b{c}}}{}}00000000{{{BAl{c}}{BAl{c}}}{{BAl{c}}}{{BCf{}{{Dl{}}}}}}{{{BAl{c}}{f{{BAl{c}}}}}{{BAl{c}}}{Ih{BCf{}{{Dl{}}}}}}{{{f{j{BAl{c}}}}{BAl{c}}}CjBCh}{{{f{{BCl{}{{BCj{c}}}}}}c}{{BCl{}{{BCj{c}}}}}BCb}{{{f{{BCn{c}}}}c}{{BCn{c}}}BCb}0{{{f{{BD`{c}}}}c}{{BD`{c}}}BCb}0{{{f{{BAn{c}}}}c}{{BAn{c}}}BCb}0{{{f{{BDb{c}}}}c}{{BDb{c}}}BCb}0{BDd}{{{f{{BAl{c}}}}{BAl{c}}}{{BAl{c}}}{{BDf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}BDlBDnIh}}{{}cBE`}{{{f{{BAl{c}}}}{f{{BAl{c}}}}{f{c}}}BfBE`}{{{f{{BCl{}{{BCj{c}}}}}}c}cBCb}{{{f{{BCn{c}}}}c}cBCb}0{{{f{{BD`{c}}}}c}cBCb}0{{{f{{BAn{c}}}}c}cBCb}{{{f{{BDb{c}}}}c}cBCb}`{ce{}{}}00000000{{}c{}}00000000{f{{f{h}}}}00000000{{{f{j}}}{{f{jh}}}}00000000{{{f{{BC`{c}}}}}cBCb}{BCdALd}{{{f{{BCd{c}}}}}{{BAn{c}}}BCb}{{{f{{BD`{c}}}}}{{BAn{c}}}BCb}{{{f{{BDb{c}}}}}{{BAn{c}}}BCb}2{{{f{{BCl{}{{BCj{c}}}}}}c}{{BCl{}{{BCj{c}}}}}BCb}{{{f{{BCn{c}}}}c}{{BCn{c}}}BCb}0{{{f{{BD`{c}}}}c}{{BD`{c}}}BCb}0{{{f{{BAn{c}}}}c}{{BAn{c}}}BCb}0{{{f{{BDb{c}}}}c}{{BDb{c}}}BCb}0{f{{f{c}}}{}}00000000{{{f{j}}}{{f{jc}}}{}}00000000{{{f{{BCn{c}}}}}{{BBb{cAJf}}}BCb}{{{f{{BD`{c}}}}}{{BBb{cAJf}}}BCb}{{{f{{BAn{c}}}}}{{BBb{cAJf}}}BCb}{{{f{{BDb{c}}}}}{{BBb{cAJf}}}BCb}{{{f{{BCd{c}}}}}{{BBb{cAJf}}}BCb}{{{f{{BCn{c}}}}}{{Id{cc}}}BCb}{{{f{{BD`{c}}}}}{{Id{cc}}}BCb}{{{f{{BDb{c}}}}}{{Id{cc}}}BCb}{{{f{{BCd{c}}}}}{{Id{cc}}}BCb}3210{{{f{{BDb{c}}}}}{{BCd{c}}}BCb}{{{f{{BC`{c}}}}}cBCb}{BCdALd}{{{f{{BCd{c}}}}}{{BAn{c}}}BCb}{{{An{c}}}e{}{}}00000000{{{BCn{c}}}{{BCn{e}}}BCbBEb}{{{BDb{c}}}{{BDb{e}}}BCbBEb}{{{f{{BAl{c}}}}}{{BAl{e}}}{BEbIh}BEb}4{BCnALd}{{{ALd{cAJf}}c}{{BCn{c}}}BCb}{{{f{{BAn{c}}}}{f{{BBb{cAJf}}}}}{{Df{{BAn{c}}}}}BCb}{{{f{{BAn{c}}}}{AOf{c}}}{{Df{{BAn{c}}}}}BCb}0{{{f{{BCn{c}}}}}{{BCn{c}}}Ch}{{{f{{BEd{c}}}}}{{BEd{c}}}Ch}{{{f{{BD`{c}}}}}{{BD`{c}}}Ch}{{{f{{BAn{c}}}}}{{BAn{c}}}Ch}{{{f{{BEf{c}}}}}{{BEf{c}}}Ch}{{{f{{BC`{c}}}}}{{BC`{c}}}Ch}{{{f{{BDb{c}}}}}{{BDb{c}}}Ch}{{{f{{BCd{c}}}}}{{BCd{c}}}Ch}{{{f{{BAl{c}}}}}{{BAl{c}}}Ch}{{f{f{jc}}}Cj{}}00000000{{fCl}Cj}00000000{{{f{{BAn{c}}}}{ALd{cAJf}}}{{ALd{cAJf}}}BCb}{{{f{{BDb{c}}}}{ALd{cAJf}}}cBCb}{ce{}{}}00000000{{{f{{BCd{c}}}}{ALd{cAJf}}}BfBCb}{{{f{{BAn{c}}}}{f{{BAn{c}}}}}BfBCb}{BDbALd}{BD`ALd}0`{{{f{{BD`{c}}}}{f{{BD`{c}}}}}{{BEh{{ALd{cAJf}}}}}BCb}{{{f{{BD`{c}}}}{f{{BD`{c}}}}}{{BEh{{Id{cc}}}}}BCb}{{}{{BAl{c}}}Kb}{c{{BAl{c}}}BEj}{F`{{f{c}}}{}}00000000{F`{{f{jc}}}{}}00000000{{{f{{BCl{}{{BCj{c}}}}}}c}{{BAj{cAJf}}}BCb}{{{f{{BCn{c}}}}c}{{BAj{cAJf}}}BCb}{{{f{{BD`{c}}}}c}{{BAj{cAJf}}}BCb}0{{{f{{BAn{c}}}}c}{{BAj{cAJf}}}BCb}{{{f{{BDb{c}}}}c}{{BAj{cAJf}}}BCb}0{{{f{{BAn{c}}}}{ALd{cAJf}}}cBCb}{{{f{{BEf{c}}}}{f{{ALd{cAJf}}}}}cBCb}{{{f{{BC`{c}}}}{f{{ALd{cAJf}}}}}cBCb}{{{f{{BDb{c}}}}{ALd{cAJf}}}cBCb}{{{BAl{c}}c}{{BAl{c}}}{{BEl{}{{Dl{}}}}}}{{{BAl{c}}{BAl{c}}}c{{BEl{}{{Dl{}}}}}}{{{f{j{BAl{c}}}}c}CjBEn}{f{{f{c}}}{}}00000000{{{f{{BD`{c}}}}c{ALd{cAJf}}}{{BD`{c}}}BCb}{{{f{{BDb{c}}}}c{ALd{cAJf}}}{{BDb{c}}}BCb}{{{f{{BD`{c}}}}c{ALd{cAJf}}c}{{BD`{c}}}BCb}{F`Cj}00000000{{{f{{BCl{}{{BCj{c}}}}}}c}cBCb}{{{f{{BD`{c}}}}c}cBCb}0{{{f{{BAn{c}}}}c}cBCb}{{{f{{BDb{c}}}}c}cBCb}0322100{{{f{{BCn{c}}}}}{{BAl{c}}}BCb}{BCbBCb}{{{f{{BCn{c}}}}{f{{BCn{c}}}}}BfIj}{{{f{{BEd{c}}}}{f{{BEd{c}}}}}BfIj}{{{f{{BD`{c}}}}{f{{BD`{c}}}}}BfIj}{{{f{{BAn{c}}}}{f{{BAn{c}}}}}BfIj}{{{f{{BC`{c}}}}{f{{BC`{c}}}}}BfIj}{{{f{{BDb{c}}}}{f{{BDb{c}}}}}BfIj}{{{f{{BCd{c}}}}{f{{BCd{c}}}}}BfIj}{{{f{{BAl{c}}}}{f{{BAl{c}}}}}BfIj}{{{f{{BEf{c}}}}}{{BC`{c}}}BCb}{{f{f{c}}}Bf{}}00000{{{f{{BCn{c}}}}}{{BBb{cAJf}}}BCb}{{{f{{BD`{c}}}}}{{BBb{cAJf}}}BCb}{{{f{{BDb{c}}}}}{{BBb{cAJf}}}BCb}{{{f{{BCn{c}}}}}{{Id{cc}}}BCb}{{{f{{BD`{c}}}}}{{Id{cc}}}BCb}{{{f{{BDb{c}}}}}{{Id{cc}}}BCb}210{{{f{{BD`{c}}}}}{{Id{{BC`{c}}{BC`{c}}}}}BCb}{{{f{{BDb{c}}}}}{{Id{{BC`{c}}{BC`{c}}}}}BCb}{BEdALn}{{{f{{BCn{c}}}}c}{{BF`{c}}}BCb}{{{f{{BD`{c}}}}c}{{BFb{c}}}BCb}{{{f{{BDb{c}}}}c}{{BFd{c}}}BCb}{{{f{{BDb{c}}}}c}{{BFf{c}}}BCb}{{{f{{BDb{c}}}}c}cBCb}{{{f{{BCl{}{{BCj{c}}}}}}}{{BCl{}{{BCj{c}}}}}BCb}{{{f{{BCn{c}}}}}{{BCn{c}}}BCb}0{{{f{{BD`{c}}}}}{{BD`{c}}}BCb}0{{{f{{BAn{c}}}}}{{BAn{c}}}BCb}0{{{f{{BDb{c}}}}}{{BDb{c}}}BCb}0{{{f{{BCn{c}}}}{f{jFl}}}{{G`{CjFn}}}Gd}{{{f{{BEd{c}}}}{f{jFl}}}{{G`{CjFn}}}Gd}{{{f{{BD`{c}}}}{f{jFl}}}{{G`{CjFn}}}Gd}{{{f{{BAn{c}}}}{f{jFl}}}{{G`{CjFn}}}Gd}{{{f{{BEf{c}}}}{f{jFl}}}{{G`{CjFn}}}Gd}{{{f{{BC`{c}}}}{f{jFl}}}{{G`{CjFn}}}Gd}{{{f{{BDb{c}}}}{f{jFl}}}{{G`{CjFn}}}Gd}{{{f{{BCd{c}}}}{f{jFl}}}{{G`{CjFn}}}Gd}{{{f{{BAl{c}}}}{f{jFl}}}{{G`{CjFn}}}Gd}{{{f{{BCn{c}}}}{f{je}}}CjBCb{{AHj{{f{{BD`{c}}}}}}}}{{{f{{BEd{c}}}}{f{je}}}CjBCb{{AHj{{f{{BD`{c}}}}}}}}{{{f{{BCn{c}}}}c{f{je}}}CjBCb{{AHj{{f{{BAn{c}}}}}}}}{{{f{{BEd{c}}}}c{f{je}}}CjBCb{{AHj{{f{{BAn{c}}}}}}}}{{{f{{BD`{c}}}}c{f{je}}}CjBCb{{AHj{{f{{BAn{c}}}}}}}}{{{f{{BDb{c}}}}c{f{je}}}CjBCb{{AHj{{f{{BAn{c}}}}}}}}{{{f{{BCl{}{{BCj{c}}}}}}c{f{jAHj}}}CjBCb}{{{f{{BCn{c}}}}{f{jAHj}}}CjBCb}{{{f{{BCn{c}}}}c{f{je}}}CjBCb{{AHj{{f{{BAn{c}}}}{AOf{c}}}}}}{{{f{{BEd{c}}}}c{f{je}}}CjBCb{{AHj{{f{{BAn{c}}}}{AOf{c}}}}}}{{{f{{BD`{c}}}}c{f{je}}}CjBCb{{AHj{{f{{BAn{c}}}}{AOf{c}}}}}}{{{f{{BD`{c}}}}{f{jAHj}}}CjBCb}{{{f{{BAn{c}}}}{f{jAHj}}}CjBCb}{{{f{{BDb{c}}}}c{f{je}}}CjBCb{{AHj{{f{{BAn{c}}}}{AOf{c}}}}}}{{{f{{BDb{c}}}}{f{jAHj}}}CjBCb}{{{f{{BD`{c}}}}{f{je}}}CjBCb{{AHj{c}}}}{{{f{{BCn{c}}}}{f{je}}}CjBCb{{AHj{c}}}}101{{{f{{BD`{c}}}}{f{je}}}CjBCb{{AHj{{f{{BD`{c}}}}}}}}{{{f{{BDb{c}}}}{f{je}}}CjBCb{{AHj{{f{{BDb{c}}}}}}}}{{{f{{BD`{c}}}}{f{je}}}CjBCb{{AHj{{AOf{c}}}}}}{{{f{{BDb{c}}}}{f{je}}}CjBCb{{AHj{{AOf{c}}}}}}{{{f{{BCn{c}}}}{f{je}}}CjBCb{{AHj{{f{{BDb{c}}}}}}}}{{{f{{BEd{c}}}}{f{je}}}CjBCb{{AHj{{f{{BDb{c}}}}}}}}{{{f{{BD`{c}}}}c{f{je}}}CjBCb{{AHj{{f{{BDb{c}}}}}}}}{{{f{{BCn{c}}}}{f{je}}}CjBCb{{AHj{{f{{BDb{c}}}}{AOf{c}}}}}}{{{f{{BEd{c}}}}{f{je}}}CjBCb{{AHj{{f{{BDb{c}}}}{AOf{c}}}}}}{{{f{{BD`{c}}}}c{f{je}}}CjBCb{{AHj{{f{{BDb{c}}}}{AOf{c}}}}}}98769876{{}{{BAl{c}}}{BDn{BCf{}{{Dl{}}}}}}00{{{f{{BCl{}{{BCj{c}}}}}}}{{ALd{cAJf}}}BCb}{{{BEd{c}}}{{BCn{c}}}BCb}{{{f{{BCn{c}}}}}{{ALd{cAJf}}}BCb}0{cc{}}0{{{f{{BD`{c}}}}}{{ALd{cAJf}}}BCb}01{{{f{{BAn{c}}}}}{{ALd{cAJf}}}BCb}20222{{{f{{BDb{c}}}}}{{ALd{cAJf}}}BCb}033{BEdALd}{BD`ALd}{BAnALd}{BDbALd}777777777{ce{}{}}00000000{{{f{{BEd{c}}}}}{{BCn{c}}}BCb}{{{BAl{c}}}c{}}{{{f{{BCn{c}}}}c}{{BAl{c}}}BCb}{{{f{{BAl{c}}}}{f{je}}}CjCfAIb}{BFh}{{{f{{BAn{c}}}}c}{{Df{{ALd{cAJf}}}}}BCb}{{{f{{BAn{c}}}}c}{{Df{c}}}BCb}{{}F`}00000000{{{f{{BAn{c}}}}{f{{BAn{c}}}}}{{Df{{ALd{cAJf}}}}}BCb}{{{f{{BEf{c}}}}{f{{BEf{c}}}}}{{Df{{ALd{cAJf}}}}}BCb}{{{f{{BAn{c}}}}{f{{BAn{c}}}}}{{Df{{Id{cc}}}}}BCb}{{{f{{BAn{c}}}}{f{{BAn{c}}}}}BfBCb}{{{f{{BCd{c}}}}{f{{BCd{c}}}}}BfBCb}{{{f{{BEf{c}}}}{f{{BBb{cAJf}}}}}BfBCb}{{{f{{BAn{c}}}}{f{{BEf{c}}}}}BfBCb}{{{f{{BCd{c}}}}{f{{BAn{c}}}}}BfBCb}{{}c{}}00000000000000000{{{Hj{c}}}{{Hj{h}}}{}}00000000{{{Hl{c}}}{{Hl{h}}}{}}00000000{{{Hn{c}}}{{Hn{h}}}{}}00000000{{{An{c}}}e{}{}}00000000444444444444444444{{}c{}}00000000{{{f{{BC`{c}}}}}{{BC`{c}}}BCb}{{{f{{BDb{c}}}}c}BfBCb}{{{BAl{c}}}BfBFj}{{{f{{BC`{c}}}}}BfBCb}{{{f{{BD`{c}}}}c}BfBCb}3{{{f{{BD`{c}}}}}BfBCb}{{{f{{BDb{c}}}}}BfBCb}2{{{f{{BEd{c}}}}}BfBCb}42121{ALnBf}{{{f{{BAn{c}}}}}cBCb}{{{f{{BDb{c}}}}}cBCb}{{{f{{BAl{c}}}}{BAl{c}}c}{{BAl{c}}}{{BDf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}BDlBDnIh}}{{{f{{BAn{c}}}}{f{{BEf{c}}}}}{{Df{{ALd{cAJf}}}}}BCb}{{{f{{BAn{c}}}}{f{{BEf{c}}}}}{{Df{c}}}BCb}{{{f{{BD`{c}}}}{f{{BEf{c}}}}}{{BEh{{ALd{cAJf}}}}}BCb}{{{f{{BDb{c}}}}{f{{BEf{c}}}}}{{BEh{{ALd{cAJf}}}}}BCb}{{{f{{BD`{c}}}}{f{{BEf{c}}}}}{{BEh{c}}}BCb}{{{f{{BDb{c}}}}{f{{BEf{c}}}}}{{BEh{c}}}BCb}{{{f{{BD`{c}}}}{f{{BAn{c}}}}}{{BEh{{ALd{cAJf}}}}}BCb}{{{f{{BDb{c}}}}{f{{BAn{c}}}}}{{BEh{{ALd{cAJf}}}}}BCb}{{{f{{BD`{c}}}}{f{{BAn{c}}}}}{{BEh{{Id{cc}}}}}BCb}{{{f{{BDb{c}}}}{f{{BAn{c}}}}}{{BEh{{Id{cc}}}}}BCb}{{{f{{BDb{c}}}}}{{Df{c}}}BCb}0{BFl}00000{BFnALd}{{{f{j{BAn{c}}}}}{{ALd{cAJf}}}BCb}1{{{BAl{c}}c}{{BAl{c}}}{{BDj{}{{Dl{}}}}}}{{{f{j{BAl{c}}}}c}CjBG`}{{{BAl{c}}}{{BAl{c}}}{{BGb{}{{Dl{}}}}}}{{ccc}{{BC`{c}}}BCb}{{{f{{BC`{c}}}}}{{BAj{cAJf}}}BCb}{{}c{}}{{{f{{BD`{c}}}}c}BGdBCb}{{{f{{BC`{c}}}}c}{{BC`{c}}}BCb}{{{f{{BAn{c}}}}{f{{BEf{c}}}}}BfBCb}{{{f{{BAn{c}}}}{f{{BAn{c}}}}}BfBCb}{{{f{{BC`{c}}}}{f{{ALd{cAJf}}}}}{{BC`{c}}}BCb}{{{f{{BAl{c}}}}{f{{BAl{c}}}}}{{Df{AHf}}}Oj}{{}{{BAl{c}}}{BDn{BCf{}{{Dl{}}}}}}{{cc}{{ALd{cAJf}}}{}}{BEfALd}{{{f{{BAl{c}}}}}{{BAl{c}}}{{BDh{}{{Dl{}}}}{BDf{}{{Dl{}}}}{BCf{}{{Dl{}}}}BGfBDnOjIh}}{{{f{{BC`{c}}}}{f{{ALd{cAJf}}}}}{{ALd{cAJf}}}BCb}`{{{f{{BD`{c}}}}{f{{BDb{c}}}}}{{BEh{{ALd{cAJf}}}}}BCb}{{{f{{BD`{c}}}}{f{{BDb{c}}}}}{{BEh{{Id{cc}}}}}BCb}{c{{BAl{c}}}{}}{BAl}{BCnBAj}{BEdBAj}{{{f{{BCl{}{{BCj{c}}}}}}c}{{ALd{cAJf}}}BCb}{{{f{{BCn{c}}}}c}{{ALd{cAJf}}}BCb}0{{{f{{BD`{c}}}}c}{{ALd{cAJf}}}BCb}0{{{f{{BAn{c}}}}c}{{ALd{cAJf}}}BCb}0{{{f{{BDb{c}}}}c}{{ALd{cAJf}}}BCb}0{{{f{{BCn{c}}}}c}{{BAj{cAJf}}}BCb}{{{f{j{BAn{c}}}}c}CjBCb}>{{{f{{BEf{c}}}}{f{{ALd{cAJf}}}}}cBCb}{{{f{{BC`{c}}}}{f{{ALd{cAJf}}}}}cBCb}{{{BAl{c}}}{{Id{cc}}}BGh}{{cc}{{BGj{cAJf}}}{}}{{{f{{BD`{c}}}}c}{{BEh{c}}}BCb}{{{f{{BAn{c}}}}c}cBCb}100{{{f{{BC`{c}}}}c}{{Df{c}}}BCb}10{{{f{{BCl{}{{BCj{c}}}}}}c}{{Id{{BCl{}{{BCj{c}}}}{BCl{}{{BCj{c}}}}}}}BCb}{{{f{{BCn{c}}}}c}{{Id{{BCn{c}}{BCn{c}}}}}BCb}0{{{f{{BD`{c}}}}c}{{Id{{BD`{c}}{BD`{c}}}}}BCb}0{{{f{{BAn{c}}}}c}{{Id{{BAn{c}}{BAn{c}}}}}BCb}0{{{f{{BDb{c}}}}c}{{Id{{BDb{c}}{BDb{c}}}}}BCb}01{{{f{{BCl{}{{BCj{c}}}}}}{AOf{c}}}{{BCl{}{{BCj{c}}}}}BCb}{{{f{{BCn{c}}}}{AOf{c}}}{{BCn{c}}}BCb}0{{{f{{BD`{c}}}}{AOf{c}}}{{BD`{c}}}BCb}0{{{f{{BAn{c}}}}{AOf{c}}}{{BAn{c}}}BCb}0{{{f{{BDb{c}}}}{AOf{c}}}{{BDb{c}}}BCb}0{{{f{{BAn{c}}}}{ALd{cAJf}}}cBCb}{{{f{{BEf{c}}}}{ALd{cAJf}}}cBCb}{{{f{{BDb{c}}}}{ALd{cAJf}}}cBCb}{{{f{{BAn{c}}}}}cBCb}{BCnBAl}{{{BAl{c}}{BAl{c}}}{}{{BDh{}{{Dl{}}}}}}{{{f{j{BAl{c}}}}{BAl{c}}}CjBGl}{e{{BAl{c}}}{BCfIhBGf}{{BGn{}{{Cn{{f{{BAl{c}}}}}}}}}}{e{{BAl{c}}}{BCfBGf}{{BGn{}{{Cn{{BAl{c}}}}}}}}{ALnBf}5{{{f{{BC`{c}}}}}{{BAj{cAJf}}}BCb}{{{f{{BCl{}{{BCj{c}}}}}}}{{ALd{cAJf}}}BCb}{{{f{{BCn{c}}}}}{{ALd{cAJf}}}BCb}0{{{f{{BD`{c}}}}}{{ALd{cAJf}}}BCb}0{{{f{{BAn{c}}}}}{{ALd{cAJf}}}BCb}0{{{f{{BDb{c}}}}}{{ALd{cAJf}}}BCb}0{BEdALd}{BD`ALd}{BAnALd}{BDbALd}{{{f{{BEd{c}}}}}{{BCn{c}}}BCb}{{{f{{BDb{c}}}}}{{BD`{c}}}BCb}{{{BAl{c}}}cBEj}{{{f{{BD`{c}}}}}{{BD`{M`}}}BCb}{{{f{{BAn{c}}}}}{{BAn{M`}}}BCb}{{{f{{BEf{c}}}}}{{BEf{M`}}}BCb}{{{f{{BDb{c}}}}}{{BDb{M`}}}BCb}{{{f{{BAl{c}}}}}{{BAl{M`}}}{BEbIh}}{{{f{{BD`{c}}}}}{{BD`{BH`}}}BCb}{{{f{{BAn{c}}}}}{{BAn{BH`}}}BCb}{{{f{{BEf{c}}}}}{{BEf{BH`}}}BCb}{{{f{{BDb{c}}}}}{{BDb{BH`}}}BCb}{{{f{{BAl{c}}}}}{{BAl{BH`}}}{BEbIh}}{{{f{{BAn{c}}}}}{{BEf{c}}}BCb}{fc{}}00000000{{{f{{BD`{c}}}}}{{BDb{c}}}BCb}{{{f{{BD`{c}}}}}cBCb}{{{f{{BCn{c}}}}}{{BEd{c}}}BCb}{{{f{{BAn{c}}}}}{{BAj{cAJf}}}BCb}`{{{f{{BCd{c}}}}{f{e}}}{{BCd{c}}}BCb{{B@l{c}}}}{{{f{{BD`{c}}}}{f{e}}}{{BD`{c}}}BCb{{B@l{c}}}}{{{f{{BAn{c}}}}{f{e}}}{{BAn{c}}}BCb{{B@l{c}}}}{{{f{{BDb{c}}}}{f{e}}}{{BDb{c}}}BCb{{B@l{c}}}}{{{f{j{BAn{c}}}}{BAj{cAJf}}}{{BAn{c}}}BCb}{{{f{{BAl{c}}}}}{{Df{{BAl{e}}}}}{BEbIh}BEb}{{}{{G`{c}}}{}}00000000{c{{G`{e}}}{}{}}00000000{{}{{G`{c}}}{}}00000000{{}{{G`{c{AEf{c}}}}}{}}00000000{{}{{BAl{c}}}{BDn{BCf{}{{Dl{}}}}}}{fAEh}00000000{ce{}{}}00000000{{}c{}}00000000{f{{Df{{f{c}}}}}{}}00000000`{M`BCb}{{cc}{{BAj{cAJf}}}{}}{BEfBAj}{{{f{{BAn{c}}}}c}{{Df{{ALd{cAJf}}}}}BCb}{{{f{{BAn{c}}}}c}{{Df{c}}}BCb}{{}c{}}00000000{BFh}{{{f{{BCl{}{{BCj{c}}}}}}c}cBCb}{{{f{{BCn{c}}}}c}cBCb}0{{{f{{BD`{c}}}}c}cBCb}0{{{f{{BAn{c}}}}c}cBCb}0{{{f{{BDb{c}}}}c}cBCb}0{BHb}{BHd}{BHf}{{{f{{BD`{c}}}}}cBCb}{{{f{{BDb{c}}}}}cBCb}10{BCnBAl}{BEdBAl};::9988776543232{{}{{BAl{c}}}BGf}````{eg{}{{b{c}}}{}}{ce{}{}}{{}c{}}{f{{f{h}}}}{{{f{j}}}{{f{jh}}}}{f{{f{c}}}{}}{{{f{j}}}{{f{jc}}}{}}{{{An{c}}}e{}{}}{BCnALd}7{F`{{f{c}}}{}}{F`{{f{jc}}}{}}5{F`Cj}{BEdALn}{cc{}}{BEdALd}1{ce{}{}}{{}F`}{{}c{}}0{{{Hj{c}}}{{Hj{h}}}{}}{{{Hl{c}}}{{Hl{h}}}{}}{{{Hn{c}}}{{Hn{h}}}{}}=33{{}c{}}{{}c{}}{ALnBf}{{{f{j{BF`{c}}}}}{{Df{{ALd{cAJf}}}}}BCb}{BCnBAj}{BEdBAj}{BCnBAl}40={{}{{G`{c}}}{}}{c{{G`{e}}}{}{}}{{}{{G`{c}}}{}}{{}{{G`{c{AEf{c}}}}}{}}{fAEh}{ce{}{}}{{}c{}}{f{{Df{{f{c}}}}}{}}{{}c{}}9{BEdBAl}`````{eg{}{{b{c}}}{}}0000{ce{}{}}000055555{f{{f{h}}}}0000{{{f{j}}}{{f{jh}}}}0000{{{f{j{BEh{c}}}}}{{f{j{Lf{c}}}}}{}}{{{f{j{BEh{c}}}}}{}{}}{{{f{jBHh}}}Cl}2{{{f{j{BHj{c}}}}}{{f{j{Lf{c}}}}}{}}{{{f{jBHh}}}{{f{jDd}}}}{{{f{{BEh{c}}}}}{}{}}{{{f{BHh}}}Cl}{{{f{{BEh{c}}}}}{{f{{Lf{c}}}}}{}}{{{f{BHh}}}{{f{BHl}}}}{{{f{BHh}}}{{f{Dd}}}}2{{{f{{BHj{c}}}}}{{f{{Lf{c}}}}}{}}13{f{{f{c}}}{}}00200;{{{f{j}}}{{f{jc}}}{}}00080{{{An{c}}}e{}{}}0000{{{f{{BEh{c}}}}}F`{}}{{{f{BHh}}}F`}{{{f{j{BEh{c}}}}}Cj{}}{{{f{jBHh}}}Cj}{{{f{{BEh{c}}}}}{{BEh{c}}}Ch}{{{f{{BHj{c}}}}}{{BHj{c}}}Ch}{{{f{BHh}}}BHh}{{{f{{BHn{c}}}}}{{BHn{c}}}Ch}{{{f{j{BEh{c}}}}{f{{BEh{c}}}}}CjCh}{{{f{jBHh}}{f{BHh}}}Cj}{{f{f{jc}}}Cj{}}000{{fCl}Cj}000{{{f{{BEh{c}}}}{f{{BEh{c}}}}}AHfBI`}{{{f{BHh}}{f{BHh}}}AHf}{{{f{{BHn{c}}}}{f{{BHn{c}}}}}AHfBI`}{{f{f{c}}}AHf{}}00{ce{}{}}0000{{}{{BEh{c}}}{}}{{}BHh}{F`{{f{c}}}{}}{{{f{{BEh{c}}}}}f{}}111{{{f{BHh}}}{{f{Dd}}}}2{{{f{j{BEh{c}}}}}{{f{j}}}{}}{F`{{f{jc}}}{}}00{{{f{jBHh}}}{{f{jDd}}}}11{f{{f{c}}}{}}0000{{{f{j{BEh{c}}}}e}{{BIb{c}}}{}{{BId{F`}}}}{F`Cj}{{{f{j{BEh{c}}}}}Cj{}}{{{f{j{BHj{c}}}}}Cj{}}2{{{f{j{BIb{c}}}}}Cj{}}333{{{BHn{c}}}c{}}{fc{{BIh{BIf}}}}0{{{f{{BEh{c}}}}{f{{BEh{c}}}}}BfIj}{{{f{{BEh{c}}}}{f{{Lf{c}}}}}BfIj}{{{f{BHh}}{f{BHh}}}Bf}{{{f{BHh}}{f{Dd}}}Bf}{{{f{{BHn{c}}}}{f{{BHn{c}}}}}BfIj}{{f{f{c}}}Bf{}}00000000{{{f{j{BEh{c}}}}e}Cj{}{{D`{}{{Cn{c}}}}}}{{{f{j{BEh{Cl}}}}}{{G`{CjBIj}}}}{{{f{{BEh{c}}}}{f{jFl}}}{{G`{CjFn}}}Gd}{{{f{{BHj{c}}}}{f{jFl}}}{{G`{CjFn}}}Gd}{{{f{BHh}}{f{jFl}}}{{G`{CjFn}}}}0{{{f{{BHn{c}}}}{f{jFl}}}{{G`{CjFn}}}{}}0{cc{}}{{{AK`{c}}}{{BEh{c}}}{}}11{{{f{Dd}}}{{G`{BHh{BHn{{f{Dd}}}}}}}}2222222{{{f{{AK`{Cl}}}}}{{G`{BHhBIl}}}}{e{{BEh{c}}}{}{{D`{}{{Cn{c}}}}}}{ce{}{}}0000{{{f{Dd}}}{{G`{BHh}}}}{{{f{{BEh{c}}}}{f{{BEh{c}}}}}BfOj}{{{f{BHh}}{f{Dd}}}Bf}{{{f{BHh}}{f{BHh}}}Bf}201{{{f{{BEh{c}}}}{f{je}}}CjCfAIb}{{{f{BHh}}{f{jc}}}CjAIb}{{}F`}0000{{{f{j{BEh{c}}}}F`c}Cj{}}{{}c{}}000000000{{{Hj{c}}}{{Hj{h}}}{}}0000{{{Hl{c}}}{{Hl{h}}}{}}0000{{{Hn{c}}}{{Hn{h}}}{}}0000{{{An{c}}}e{}{}}00004444444444{{{BEh{c}}}{{G`{{AK`{c}}{BEh{c}}}}}{}}{{{BEh{c}}}{{AK`{c}}}{}}{{{BEh{c}}}{{BHj{c}}}{}}{{{f{j{BEh{c}}}}}{}{}}{{{f{{BEh{c}}}}}{}{}}{{}c{}}0{{}c{}}0000{{{f{{BEh{c}}}}}Bf{}}{{{f{BHh}}}Bf}10{{{f{{BEh{c}}}}{f{{BEh{c}}}}}BfOj}{{{f{BHh}}{f{BHh}}}Bf}{{{f{BHh}}{f{Dd}}}Bf}{{{f{{BEh{c}}}}}F`{}}{{{f{BHh}}}F`}{fF`}{fCl}645{{}{{Id{cegikmoAaAcAeAg}}}{}{}{}{}{}{}{}{}{}{}{}}{{}{{Id{cegikmoAaAcAeAgAi}}}{}{}{}{}{}{}{}{}{}{}{}{}}{{}{{Id{cegikmoAaAcAe}}}{}{}{}{}{}{}{}{}{}{}}{{}{{Id{cegikmoAaAc}}}{}{}{}{}{}{}{}{}{}}{{}Cj}{{}{{Id{c}}}{}}{{}{{Id{ce}}}{}{}}{{}{{Id{ceg}}}{}{}{}}{{}{{Id{cegikmo}}}{}{}{}{}{}{}{}}{{}{{Id{cegikmoAa}}}{}{}{}{}{}{}{}{}}{{}{{Id{cegi}}}{}{}{}{}}{{}{{Id{cegik}}}{}{}{}{}{}}{{}{{Id{cegikm}}}{}{}{}{}{}{}}0;398:76541<2{{}{{BEh{c}}}{}}{{}BHh}{c{{BHn{c}}}{}}21{{{f{j{BHj{c}}}}}Df{}}{{{f{j{BIb{c}}}}}Df{}}10{{}c{}}0{{{f{{BEh{c}}}}{f{{BEh{c}}}}}{{Df{AHf}}}Oj}{{{f{BHh}}{f{BHh}}}{{Df{AHf}}}}{{{f{BHh}}{f{Dd}}}{{Df{AHf}}}}{{{f{{BHn{c}}}}{f{{BHn{c}}}}}{{Df{AHf}}}Oj}{{{f{j{BEh{c}}}}}{{Df{c}}}{}}{{{f{jBHh}}}{{Df{BIf}}}}{{{f{j{BEh{c}}}}F`}{{Df{c}}}{}}{{{f{j{BEh{c}}}}c}Cj{}}{{{f{jBHh}}BIf}Cj}{{{f{jBHh}}{f{Dd}}}Cj}2{{{f{{BEh{c}}}}}F`{}}{{{f{BHh}}}F`}{{{f{j{BEh{c}}}}F`}c{}}{{{f{jBHh}}F`}BIf}{{{f{j{BEh{c}}}}e}Cj{}{{AHj{{f{jc}}}{{Dl{Bf}}}}}}{{{f{j{BEh{c}}}}F`}Cj{}}{{{f{jBHh}}F`}Cj}{{{BHn{c}}}BHn{}}{{{f{{BHj{c}}}}}{{Id{F`{Df{F`}}}}}{}}{{{f{{BIb{c}}}}}{{Id{F`{Df{F`}}}}}{}}{fCl}>8{{{f{j{BEh{c}}}}}{{BEh{c}}}{}}{fc{}}000{fADl}0{fBj}098{{}{{G`{c}}}{}}0000{{{f{j{BEh{c}}}}{f{{Lf{c}}}}}{{G`{CjBHn}}}Ih}{c{{G`{e}}}{}{}}{{{f{{Lf{c}}}}}{{G`{{BEh{c}}}}}Ch}11{{{f{Dd}}}{{G`{BHh}}}}2{BIn{{G`{BHh}}}}3{{{f{j{BEh{c}}}}F`c}{{G`{Cj{BHn{c}}}}}{}}{{}{{G`{c}}}{}}0000{{}{{G`{c{AEf{c}}}}}{}}0000{{{f{j{BEh{c}}}}c}{{G`{Cj{BHn{c}}}}}{}}{{{f{jBHh}}BIf}{{G`{Cj{BHn{BIf}}}}}}{{{f{jBHh}}{f{Dd}}}{{G`{Cj{BHn{{f{Dd}}}}}}}}{fAEh}0000{ce{}{}}0000{{}c{}}0000{f{{Df{{f{c}}}}}{}}0000{{}c{}}0000{{{f{j{BEh{Cl}}}}{f{{Lf{Cl}}}}}{{G`{F`BIj}}}}{{{f{j}}{f{BJ`}}}{{G`{CjBIj}}}}{{{f{j}}{f{BJb}}}{{G`{CjBIj}}}}{{{f{j}}{f{BJd}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{BJf}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{BJd}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{BJf}}}{{G`{CjBIj}}}}{{{f{j}}{f{M`}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{BJh}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{BJh}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{BJb}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{M`}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{BH`}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{BH`}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{Cl}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{BJj}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{BJj}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{BGd}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{AOl}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{BGd}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{BJ`}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{BJl}}}{{G`{CjBIj}}}}{{{f{j}}{f{AOl}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{BJl}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{Cl}}}{{G`{CjBIj}}}}>{{{f{j}}{f{{Lf{BJf}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{BJd}}}}}{{G`{CjBIj}}}}483{{{f{j}}{f{BJb}}}{{G`{CjBIj}}}}{{{f{j}}{f{BJh}}}{{G`{CjBIj}}}}879{{{f{j}}{f{BJ`}}}{{G`{CjBIj}}}}={{{f{j}}{f{BJf}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{Cl}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{BJj}}}{{G`{CjBIj}}}}{{{f{j}}{f{BH`}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{M`}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{BH`}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{BJh}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{BJd}}}{{G`{CjBIj}}}}{{{f{j}}{f{M`}}}{{G`{CjBIj}}}}>{{{f{j}}{f{BGd}}}{{G`{CjBIj}}}}{{{f{jBHh}}BIf}{{G`{CjFn}}}}{{{f{j}}BJnM`}{{G`{CjBIj}}}}{{{f{j}}BJnBH`}{{G`{CjBIj}}}}{{{f{j}}BJnBJf}{{G`{CjBIj}}}}{{{f{j}}BJnAOl}{{G`{CjBIj}}}}{{{f{j}}BJnBJh}{{G`{CjBIj}}}}{{{f{j}}BJnBJd}{{G`{CjBIj}}}}{{{f{j}}BJnBJb}{{G`{CjBIj}}}}{{{f{jBHh}}{f{Dd}}}{{G`{CjFn}}}}{{{f{j}}BJnBJl}{{G`{CjBIj}}}}{{{f{j}}BJnBJj}{{G`{CjBIj}}}}{{{f{j}}BJnBGd}{{G`{CjBIj}}}}{{{f{j}}BJnBJ`}{{G`{CjBIj}}}}{{{f{j}}BJnCl}{{G`{CjBIj}}}}{{}BHh}``{eg{}{{b{c}}}{}}{ce{}{}}{{}c{}}{f{{f{h}}}}{{{f{j}}}{{f{jh}}}}{f{{f{c}}}{}}{{{f{j}}}{{f{jc}}}{}}{{{An{c}}}e{}{}}6{BD`ALd}0{F`{{f{c}}}{}}{F`{{f{jc}}}{}}5{F`Cj}{cc{}}40{ce{}{}}{{}F`}{{}c{}}0{{{Hj{c}}}{{Hj{h}}}{}}{{{Hl{c}}}{{Hl{h}}}{}}{{{Hn{c}}}{{Hn{h}}}{}};33{{}c{}}{{}c{}}{{{f{j{BFb{c}}}}}{{Df{{ALd{cAJf}}}}}BCb}{{{f{{BFb{c}}}}}{{Id{F`{Df{F`}}}}}BCb}>{{}{{G`{c}}}{}}{c{{G`{e}}}{}{}}{{}{{G`{c}}}{}}{{}{{G`{c{AEf{c}}}}}{}}{fAEh}{ce{}{}}{{}c{}}{f{{Df{{f{c}}}}}{}}{{}c{}}`````````````````````````{{{BGj{ce}}}{{BGj{ce}}}BK`{}}{{{BKb{ce}}}{{BKb{ce}}}BK`{}}{{{BAj{ce}}}{{BAj{ce}}}BK`{}}{{{BKd{ce}}}{{BKd{ce}}}BK`{}}{eg{}{{b{c}}}{}}0000000000000000000000{{{BKf{ce}}{BKf{ce}}}{}BCf{}}{{{BKf{ce}}{f{{BKf{ce}}}}}{}{BCfIh}{}}{{{ALd{ce}}{BGj{ce}}}{}BCf{}}{{{ALd{ce}}{BAj{ce}}}{}BCf{}}{{{BKh{ce}}{BKb{ce}}}{}BCf{}}{{{BKh{ce}}{BKd{ce}}}{}BCf{}}{{{BKj{ceg}}{BKj{ceg}}}{}BCf{}{}}{{{BKl{ce}}{BKl{ce}}}{{BKl{ce}}}{{BCf{}{{Dl{}}}}}{}}{{{BGj{ce}}{f{{BGj{ce}}}}}{{BGj{ce}}}{Ih{BCf{}{{Dl{}}}}}{}}{{{BGj{ce}}{BGj{ce}}}{}BCf{}}{{{BKb{ce}}{BKb{ce}}}{}BCf{}}{{{BKb{ce}}{f{{BKb{ce}}}}}{{BKb{ce}}}{Ih{BCf{}{{Dl{}}}}}{}}{{{BKn{ceg}}{BKn{cgi}}}{}BCf{}{}{}}{{{BL`{ceg}}{BL`{cgi}}}{}BCf{}{}{}}{{{BAj{ce}}{f{{BAj{ce}}}}}{}{BCfIh}{}}{{{BAj{ce}}{BAj{ce}}}{}BCf{}}{{{BKd{ce}}{f{{BKd{ce}}}}}{}{BCfIh}{}}{{{BKd{ce}}{BKd{ce}}}{}BCf{}}{{{f{j{BKf{ce}}}}{BKf{ce}}}CjBCh{}}{{{f{j{ALd{ce}}}}{BGj{ce}}}CjBCh{}}{{{f{j{ALd{ce}}}}{BAj{ce}}}Cj{Ih{BCf{}{{Dl{}}}}}{}}{{{f{j{BKh{ce}}}}{BKb{ce}}}CjBCh{}}{{{f{j{BKh{ce}}}}{BKd{ce}}}Cj{Ih{BCf{}{{Dl{}}}}}{}}{{{f{j{BKl{ce}}}}{BKl{ce}}}CjBCh{}}{{{f{j{BGj{ce}}}}{BGj{ce}}}CjBCh{}}{{{f{j{BKb{ce}}}}{BKb{ce}}}CjBCh{}}{{{f{j{BKn{ceg}}}}{BKn{cgg}}}CjBCh{}{}}{{{f{j{BL`{ceg}}}}{BL`{cgg}}}CjBCh{}{}}{{{f{j{BAj{ce}}}}{BAj{ce}}}Cj{Ih{BCf{}{{Dl{}}}}}{}}{{{f{j{BKd{ce}}}}{BKd{ce}}}Cj{Ih{BCf{}{{Dl{}}}}}{}}{{{ALd{ce}}{f{{BGj{ce}}}}}{{ALd{ce}}}{Ih{BCf{}{{Dl{}}}}}{}}{{{BKh{ce}}{BKb{ce}}}{{BKh{ce}}}{Ih{BCf{}{{Dl{}}}}}{}}{BLbBf}{BLdBf}{{BLbBLb}BLb}{{BLdBLd}BLd}{BLf}{{{BAj{ce}}}{{BAl{c}}}{BEjIh}{}}{{{BAj{ce}}{BAj{ce}}}{{BAl{c}}}{{BDh{}{{Dl{}}}}BEjIh{BDj{}{{Dl{}}}}{BCf{}{{Dl{}}}}}{}}{{{BKd{ce}}{BKd{ce}}}{{BAl{c}}}{BEjBGh}{}}76{{}cBE`}{{}{{ALd{ce}}}{}{}}{{}{{BKh{ce}}}{}{}}{{}c{}}0{{}{{BAj{ce}}}{}{}}{{}{{BKd{ce}}}{}{}}55{{{f{{AJh{ceg}}}}{f{{AJh{ceg}}}}}BfBE`{}{}}{{{f{{BLh{ceg}}}}{f{{BLh{ceg}}}}}BfBE`{}{}}{{{f{{BKf{ce}}}}{f{{BKf{ce}}}}{f{c}}}BfBE`{}}{{{f{{ALd{ce}}}}{f{{ALd{ce}}}}{f{{ALd{ce}}}}}BfBE`{}}{{{f{{BKh{ce}}}}{f{{BKh{ce}}}}{f{{BKh{ce}}}}}BfBE`{}}{{{f{{BLf{ceg}}}}{f{{BLf{ceg}}}}{f{c}}}Bf{Ih{BGb{}{{Dl{}}}}BE`}{}{}}{{{f{{BLj{ceg}}}}{f{{BLj{ceg}}}}{f{c}}}Bf{Ih{BGb{}{{Dl{}}}}BE`}{}{}}{{{f{{BAj{ce}}}}{f{{BAj{ce}}}}{f{{BAj{ce}}}}}BfBE`{}}{{{f{{BKd{ce}}}}{f{{BKd{ce}}}}{f{{BKd{ce}}}}}BfBE`{}}{{{f{{AJh{ceg}}}}{f{{AJh{ceg}}}}{f{c}}}BfBE`{}{}}0{{{f{{BLh{ceg}}}}{f{{BLh{ceg}}}}{f{c}}}BfBE`{}{}}0``{{{f{{BBb{ce}}}}}c{Ih{BDj{}{{Dl{}}}}{BDh{}{{Dl{}}}}}{}}{{{f{{BLl{ce}}}}}c{Ih{BDj{}{{Dl{}}}}}{}}{{{BGj{ce}}}{}{BDjIh}{}}{{{BKd{ce}}{BAl{c}}}{{BLj{ceg}}}BGh{}{}}{{{BAl{c}}}{{BLj{ceg}}}BGh{}{}}00{ce{}{}}0000000000000000000000{{}c{}}0000000000000000000000{f{{f{h}}}}0000000000000000000000{{{f{j}}}{{f{jh}}}}0000000000000000000000{f{{f{c}}}{}}0000000000000000000000{{{f{j}}}{{f{jc}}}{}}0000000000000000000000{BKl}{{cccccc}{{BLn{ce}}}Ih{}}{{BfBf}BLb}{{BfBfBf}BLd}{{{An{c}}}e{}{}}0000000000000000000000{{{f{{BBb{ce}}}}}{{BBb{ge}}}{BEbIh}{}BEb}{{{f{{BLn{ce}}}}}{{BLn{ge}}}{BEbIh}{}BEb}{{{BKf{ce}}}{{BKf{ge}}}{BEbCh}{}BEb}{{{ALd{ce}}}{{ALd{ge}}}{BEbIh}{}BEb}{{{BKh{ce}}}{{BKh{ge}}}{BEbIh}{}BEb}{{{f{{BLl{ce}}}}}{{BLl{ge}}}{BEbIh}{}BEb}{{{BKj{ceg}}}{{BKj{ieg}}}BEb{}{}BEb}{{{BGj{ce}}}{{BGj{ge}}}{BEbIh}{}BEb}{{{BKb{ce}}}{{BKb{ge}}}{BEbIh}{}BEb}{{{BKn{ceg}}}{{BKn{ieg}}}{BEbIh}{}{}BEb}{{{BL`{ceg}}}{{BL`{ieg}}}{BEbIh}{}{}BEb}{{{BAj{ce}}}{{BAj{ge}}}{BEbIh}{}BEb}{{{BKd{ce}}}{{BKd{ge}}}{BEbIh}{}BEb}{{{f{{AJh{ceg}}}}}{{AJh{ieg}}}{BEbIh}{}{}BEb}{{{f{{BLh{ceg}}}}}{{BLh{ieg}}}{BEbIh}{}{}BEb}{{{f{{BBb{ce}}}}}{{BBb{cg}}}Ih{}{}}{{{f{{BLn{ce}}}}}{{BLn{cg}}}Ih{}{}}{{{BKf{ce}}}{{BKf{cg}}}Ch{}{}}{{{ALd{ce}}}{{ALd{cg}}}Ih{}{}}{{{BKh{ce}}}{{BKh{cg}}}Ih{}{}}{{{f{{BLl{ce}}}}}{{BLl{cg}}}Ih{}{}}{{{f{{BM`{ceg}}}}}{{BM`{cik}}}Ih{}{}{}{}}{{{f{{BLf{ceg}}}}}{{BLf{cik}}}Ih{}{}{}{}}{{{f{{BLj{ceg}}}}}{{BLj{cik}}}Ih{}{}{}{}}{{{BGj{ce}}}{{BGj{cg}}}Ih{}{}}{{{BKb{ce}}}{{BKb{cg}}}Ih{}{}}{{{BAj{ce}}}{{BAj{cg}}}Ih{}{}}{{{BKd{ce}}}{{BKd{cg}}}Ih{}{}}{{{ALd{ce}}}{{ALd{ce}}}{BMbIh}{}}{{{ALd{ce}}}{{ALd{ce}}}BMb{}}{{{BKh{ce}}}{{BKh{ce}}}BMb{}}{{{BKh{ce}}}{{BKh{ce}}}{BMbIh}{}}{{{BGj{ce}}}{{BGj{ce}}}{BMbIh}{}}{{{BGj{ce}}}{{BGj{ce}}}BMb{}}{{{BKb{ce}}}{{BKb{ce}}}{BMbIh}{}}{{{BKb{ce}}}{{BKb{ce}}}BMb{}}{{{BAj{ce}}}{{BAj{ce}}}{BMbIh}{}}{{{BAj{ce}}}{{BAj{ce}}}BMb{}}{{{BKd{ce}}}{{BKd{ce}}}{BMbIh}{}}{{{BKd{ce}}}{{BKd{ce}}}BMb{}}{{{f{{BBb{ce}}}}}{{ALd{ce}}}{IhBMd{BCf{}{{Dl{}}}}{BEl{}{{Dl{}}}}}{}}{{{f{{BLn{ce}}}}}{{BKh{ce}}}{IhBMd{BCf{}{{Dl{}}}}{BEl{}{{Dl{}}}}}{}}{{{f{{BLl{ce}}}}}{{ALd{ce}}}{IhBMd{BCf{}{{Dl{}}}}{BEl{}{{Dl{}}}}}{}}{{{ALd{ce}}{ALd{ce}}{ALd{ce}}}{{ALd{ce}}}{IhOj}{}}{{{BKh{ce}}{BKh{ce}}{BKh{ce}}}{{BKh{ce}}}{IhOj}{}}{{{BKj{ceg}}{BKj{ceg}}{BKj{ceg}}}{{BKj{ceg}}}{IhOj}{}{}}{{{BGj{ce}}{BGj{ce}}{BGj{ce}}}{{BGj{ce}}}{IhOj}{}}{{{BKb{ce}}{BKb{ce}}{BKb{ce}}}{{BKb{ce}}}{IhOj}{}}{{{BAj{ce}}{BAj{ce}}{BAj{ce}}}{{BAj{ce}}}{IhOj}{}}{{{BKd{ce}}{BKd{ce}}{BKd{ce}}}{{BKd{ce}}}{IhOj}{}}{{{BAj{ce}}cc}{{BAj{ce}}}BGh{}}{{{BKd{ce}}cc}{{BKd{ce}}}BGh{}}{{{f{{BBb{ce}}}}}{{BBb{ce}}}Ch{}}{{{f{{BLn{ce}}}}}{{BLn{ce}}}Ch{}}{{{f{{BMf{ce}}}}}{{BMf{ce}}}Ch{}}{{{f{{BKf{ce}}}}}{{BKf{ce}}}Ch{}}{{{f{{ALd{ce}}}}}{{ALd{ce}}}Ch{}}{{{f{{BKh{ce}}}}}{{BKh{ce}}}Ch{}}{{{f{{BLl{ce}}}}}{{BLl{ce}}}Ch{}}{{{f{{BM`{ceg}}}}}{{BM`{ceg}}}Ch{}{}}{{{f{{BLf{ceg}}}}}{{BLf{ceg}}}Ch{}{}}{{{f{{BLj{ceg}}}}}{{BLj{ceg}}}Ch{}{}}{{{f{{BKj{ceg}}}}}{{BKj{ceg}}}Ch{}{}}{{{f{{BKl{ce}}}}}{{BKl{ce}}}Ch{}}{{{f{{BGj{ce}}}}}{{BGj{ce}}}Ch{}}{{{f{{BKb{ce}}}}}{{BKb{ce}}}Ch{}}{{{f{{BKn{ceg}}}}}{{BKn{ceg}}}Ch{}{}}{{{f{{BL`{ceg}}}}}{{BL`{ceg}}}Ch{}{}}{{{f{{BAj{ce}}}}}{{BAj{ce}}}Ch{}}{{{f{{BKd{ce}}}}}{{BKd{ce}}}Ch{}}{{{f{{AJh{ceg}}}}}{{AJh{ceg}}}Ch{}{}}{{{f{{BLh{ceg}}}}}{{BLh{ceg}}}Ch{}{}}{{{f{BLb}}}BLb}{{{f{BLd}}}BLd}{{{f{AJf}}}AJf}{{f{f{jc}}}Cj{}}0000000000000000000000{{fCl}Cj}0000000000000000000000{{{f{{BKf{ce}}}}{f{{BKf{ce}}}}}AHfBI`{}}{{{f{{BKj{ceg}}}}{f{{BKj{ceg}}}}}AHfBI`{}{}}{{{f{AJf}}{f{AJf}}}AHf}{{f{f{c}}}AHf{}}00{{{BAj{ce}}{BAj{ce}}}{{BAj{ce}}}{{BEl{}{{Dl{}}}}}{}}{{{BKd{ce}}{BKd{ce}}}{{BKd{ce}}}{{BEl{}{{Dl{}}}}Ih}{}}{{{BAj{ce}}{BAj{ce}}}{{BAj{ce}}}{{BDj{}{{Dl{}}}}}{}}{{{BKd{ce}}{BKd{ce}}}{{BKd{ce}}}{{BDj{}{{Dl{}}}}Ih}{}}{ce{}{}}0000000000000000000000{{{f{{BBb{ce}}}}{ALd{ce}}}BfOj{}}{{{f{{BLn{ce}}}}{BKh{ce}}}BfOj{}}{{{f{{BLl{ce}}}}{ALd{ce}}}Bf{IhOj{BCf{}{{Dl{}}}}}{}}{{{BGj{ce}}{BGj{ce}}}BfOj{}}{{{BKb{ce}}{BKb{ce}}}BfOj{}}{{{f{{BBb{ce}}}}{f{{BBb{ce}}}}}BfOj{}}{{{f{{BLn{ce}}}}{f{{BLn{ce}}}}}BfOj{}}65{{{f{{BLl{ce}}}}{f{{BLl{ce}}}}}Bf{IhBMhOj{BCf{}{{Dl{}}}}}{}}{BEjBEj}{{{BAj{ce}}{BAj{ce}}}c{{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}}{{{BKd{ce}}{BKd{ce}}}{{BKd{ce}}}{{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}Ih}{}}{{{f{{BM`{ceg}}}}}{{Id{{BKd{ce}}{BLj{ceg}}}}}{BGhBE`}{}{}}`{{}{{BBb{ce}}}Kb{}}{{}{{BLn{ce}}}Kb{}}{{}{{BKf{ce}}}Kb{}}{{}{{ALd{ce}}}Kb{}}{{}{{BKh{ce}}}Kb{}}{{}{{BLl{ce}}}Kb{}}{{}{{BKj{ceg}}}Kb{}{}}{{}{{BKl{ce}}}Kb{}}{{}{{BGj{ce}}}Kb{}}{{}{{BKb{ce}}}Kb{}}{{}{{BKn{ceg}}}BMh{}{}}{{}{{BL`{ceg}}}BMh{}{}}{{}{{BAj{ce}}}Kb{}}{{}{{BKd{ce}}}Kb{}}{{}{{AJh{ceg}}}{BMhBMd}{}{}}{{}{{BLh{ceg}}}{BMhBMd}{}{}}{{}AJf}{BEjBEj}{{{f{{BLn{ce}}}}}c{Ih{BDh{}{{Dl{}}}}}{}}{BKb}{F`{{f{c}}}{}}0000000000000000000000{F`{{f{jc}}}{}}0000000000000000000000{{{f{{AJh{ceg}}}}}c{Ih{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BEl{}{{Dl{}}}}IjBMhBMd}{}{}}{{{f{{BLh{ceg}}}}}c{{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BEl{}{{Dl{}}}}Ih{BGb{}{{Dl{}}}}{BCf{}{{Dl{}}}}OjBMdBMh}{}{}}{{{ALd{ce}}{ALd{ce}}}c{{BGh{}{{Dl{}}}}BDh}{}}{{{BKh{ce}}{BKh{ce}}}c{{BGh{}{{Dl{}}}}BDh}{}}{{{BBb{ce}}c}{}{IhBEl}{}}{{{BBb{ce}}{BKj{cge}}}{}{IhBEl}{}{}}{{{BLn{ce}}c}{}{IhBEl}{}}{{{BLn{ce}}{BKj{cge}}}{}{IhBEl}{}{}}{{{BKf{ce}}{BKj{cge}}}{}BEl{}{}}{{{BKf{ce}}{BKf{cg}}}{}BEl{}{}}{{{BKf{ce}}c}{}BEl{}}{{{ALd{ce}}{BKj{cge}}}{}{IhBEl}{}{}}{{{ALd{ce}}c}{}{IhBEl}{}}{{{BKh{ce}}{BKj{cge}}}{}{IhBEl}{}{}}{{{BKh{ce}}c}{}{IhBEl}{}}{{{BLl{ce}}{BKj{cge}}}{}{IhBEl}{}{}}{{{BLl{ce}}c}{}{IhBEl}{}}{{{BKl{ce}}{BKj{cge}}}{}{IhBEl}{}{}}{{{BKl{ce}}c}{}{IhBEl}{}}{{{BGj{ce}}{BKj{cge}}}{}{IhBEl}{}{}}{{{BGj{ce}}c}{}{IhBEl}{}}{{{BKb{ce}}c}{}{IhBEl}{}}{{{BKb{ce}}{BKj{cge}}}{}{IhBEl}{}{}}{{{BAj{ce}}c}{}{IhBEl}{}}{{{BAj{ce}}{BKj{cge}}}{}{IhBEl}{}{}}{{{BKd{ce}}{BKj{cge}}}{}{IhBEl}{}{}}{{{BKd{ce}}c}{}{IhBEl}{}}{{{f{j{BBb{ce}}}}{BKj{cee}}}Cj{IhBEn}{}}{{{f{j{BBb{ce}}}}c}Cj{IhBEn}{}}{{{f{j{BLn{ce}}}}{BKj{cee}}}Cj{IhBEn}{}}{{{f{j{BLn{ce}}}}c}Cj{IhBEn}{}}{{{f{j{BKf{ce}}}}c}Cj{Ih{BEl{}{{Dl{}}}}}{}}{{{f{j{ALd{ce}}}}c}Cj{Ih{BEl{}{{Dl{}}}}}{}}{{{f{j{ALd{ce}}}}{BKj{cee}}}Cj{IhBEn}{}}{{{f{j{BKh{ce}}}}{BKj{cee}}}Cj{IhBEn}{}}{{{f{j{BKh{ce}}}}c}Cj{IhBEn}{}}{{{f{j{BLl{ce}}}}c}Cj{IhBEn}{}}{{{f{j{BLl{ce}}}}{BKj{cee}}}Cj{IhBEn}{}}{{{f{j{BKl{ce}}}}c}Cj{IhBEn}{}}{{{f{j{BKl{ce}}}}{BKj{cee}}}Cj{IhBEn}{}}{{{f{j{BGj{ce}}}}c}Cj{IhBEn}{}}{{{f{j{BGj{ce}}}}{BKj{cee}}}Cj{IhBEn}{}}{{{f{j{BKb{ce}}}}{BKj{cee}}}Cj{IhBEn}{}}{{{f{j{BKb{ce}}}}c}Cj{IhBEn}{}}{{{f{j{BAj{ce}}}}c}Cj{Ih{BEl{}{{Dl{}}}}}{}}{{{f{j{BAj{ce}}}}{BKj{cee}}}Cj{IhBEn}{}}{{{f{j{BKd{ce}}}}{BKj{cee}}}Cj{IhBEn}{}}{{{f{j{BKd{ce}}}}c}Cj{Ih{BEl{}{{Dl{}}}}}{}}{{{f{{ALd{ce}}}}{f{{BGj{ce}}}}}{{ALd{ce}}}BMj{}}{{{f{{BKh{ce}}}}{f{{BKb{ce}}}}}{{BKh{ce}}}BMj{}}{{{BAj{ce}}{BAj{ce}}}c{{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}}{{{BKd{ce}}{BKd{ce}}}c{{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}}{f{{f{c}}}{}}0000000000000000000000{F`Cj}0000000000000000000000{{{f{{BBb{ce}}}}{f{{BBb{ce}}}}}BfIj{}}{{{f{{BLn{ce}}}}{f{{BLn{ce}}}}}BfIj{}}{{{f{{BMf{ce}}}}{f{{BMf{ce}}}}}BfIj{}}{{{f{{BKf{ce}}}}{f{{BKf{ce}}}}}BfIj{}}{{{f{{ALd{ce}}}}{f{{ALd{ce}}}}}BfIj{}}{{{f{{BKh{ce}}}}{f{{BKh{ce}}}}}BfIj{}}{{{f{{BLl{ce}}}}{f{{BLl{ce}}}}}BfIj{}}{{{f{{BM`{ceg}}}}{f{{BM`{ceg}}}}}BfIj{}{}}{{{f{{BLf{ceg}}}}{f{{BLf{ceg}}}}}BfIj{}{}}{{{f{{BLj{ceg}}}}{f{{BLj{ceg}}}}}BfIj{}{}}{{{f{{BKj{ceg}}}}{f{{BKj{ceg}}}}}BfIj{}{}}{{{f{{BKl{ce}}}}{f{{BKl{ce}}}}}BfIj{}}{{{f{{BGj{ce}}}}{f{{BGj{ce}}}}}BfIj{}}{{{f{{BKb{ce}}}}{f{{BKb{ce}}}}}BfIj{}}{{{f{{BKn{ceg}}}}{f{{BKn{ceg}}}}}BfIj{}{}}{{{f{{BL`{ceg}}}}{f{{BL`{ceg}}}}}BfIj{}{}}{{{f{{BAj{ce}}}}{f{{BAj{ce}}}}}BfIj{}}{{{f{{BKd{ce}}}}{f{{BKd{ce}}}}}BfIj{}}{{{f{{AJh{ceg}}}}{f{{AJh{ceg}}}}}BfIj{}{}}{{{f{{BLh{ceg}}}}{f{{BLh{ceg}}}}}BfIj{}{}}{{{f{BLb}}{f{BLb}}}Bf}{{{f{BLd}}{f{BLd}}}Bf}{{{f{AJf}}{f{AJf}}}Bf}{{{BGj{ce}}{BGj{ce}}}BLbIj{}}{{{BKb{ce}}{BKb{ce}}}BLdIj{}}{{{BAj{ce}}{BAj{ce}}}BLbIj{}}{{{BKd{ce}}{BKd{ce}}}BLdIj{}}{{f{f{c}}}Bf{}}00000000000000000000000000000000000000000000000000000000000000000000{{{BAl{c}}{BAl{c}}{BAl{c}}}{{BLj{ceg}}}BGh{}{}}{{{ALd{ce}}c}{{BKh{ce}}}Ih{}}{{{BAj{ce}}c}{{BKd{ce}}}Ih{}}{{BEjBEj}BEj}{{{ALd{ce}}}{{ALd{ce}}}BMl{}}{{{ALd{ce}}}{{ALd{ce}}}{BMlIh}{}}{{{BKh{ce}}}{{BKh{ce}}}{BMlIh}{}}{{{BKh{ce}}}{{BKh{ce}}}BMl{}}{{{BGj{ce}}}{{BGj{ce}}}{BMlIh}{}}{{{BGj{ce}}}{{BGj{ce}}}BMl{}}{{{BKb{ce}}}{{BKb{ce}}}BMl{}}{{{BKb{ce}}}{{BKb{ce}}}{BMlIh}{}}{{{BAj{ce}}}{{BAj{ce}}}{BMlIh}{}}{{{BAj{ce}}}{{BAj{ce}}}BMl{}}{{{BKd{ce}}}{{BKd{ce}}}{BMlIh}{}}{{{BKd{ce}}}{{BKd{ce}}}BMl{}}{{{f{{BBb{ce}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}}{{{f{{BLn{ce}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}}{{{f{{BMf{ce}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}}{{{f{{BKf{ce}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}}{{{f{{ALd{ce}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}}{{{f{{BKh{ce}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}}{{{f{{BLl{ce}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}}{{{f{{BM`{ceg}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}{}}{{{f{{BLf{ceg}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}{}}{{{f{{BLj{ceg}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}{}}{{{f{{BKj{ceg}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}{}}{{{f{{BKl{ce}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}}{{{f{{BGj{ce}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}}{{{f{{BKb{ce}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}}{{{f{{BKn{ceg}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}{}}{{{f{{BL`{ceg}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}{}}{{{f{{BAj{ce}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}}{{{f{{BKd{ce}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}}{{{f{{AJh{ceg}}}}{f{jFl}}}{{G`{CjFn}}}{IhGdIjBMdBMh}{}{}}{{{f{{BLh{ceg}}}}{f{jFl}}}{{G`{CjFn}}}{IhGdIjBMdBMh}{}{}}{{{f{BLb}}{f{jFl}}}{{G`{CjFn}}}}{{{f{BLd}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AJf}}{f{jFl}}}{{G`{CjFn}}}}{cc{}}{{{BGj{ce}}}{{BBb{ce}}}{IhBMhOj}{}}{{{BKb{ce}}}{{BLn{ce}}}{IhBMhOj}{}}2{{{BAj{ce}}}{{BMf{ce}}}BMh{}}{{{ALd{ce}}}{{BMf{ce}}}{BMhBMd}{}}4{{{BKd{ce}}}{{BMf{ce}}}BMh{}}{{{BKh{ce}}}{{BMf{ce}}}BMd{}}6{{{AK`{c}}}{{ALd{ce}}}{}{}}7{{{Id{cc}}}{{ALd{ce}}}{}{}}8{{{Id{ccc}}}{{BKh{ce}}}{}{}}{{{AK`{c}}}{{BKh{ce}}}{}{}}:{{{BGj{ce}}}{{BLl{ce}}}BMh{}};{{{BKd{ce}}}{{BM`{cge}}}{}{}{}}{{{BLj{ceg}}}{{BM`{ceg}}}{}{}{}}====={{{BAj{ce}}}{{BGj{ce}}}{}{}}{{{AK`{c}}}{{BGj{ce}}}{}{}}{{{Id{cc}}}{{BGj{ce}}}{}{}}{cc{}}{{{BKd{ce}}}{{BKb{ce}}}{}{}}{{{AK`{c}}}{{BKb{ce}}}{}{}}{{{Id{ccc}}}{{BKb{ce}}}{}{}}3{{{BAj{ce}}}{{BKn{ceg}}}{}{}{}}{{{BKd{ce}}}{{BL`{ceg}}}{}{}{}}5{{{BGj{ce}}}{{BAj{ce}}}{}{}}6{{{Id{cc}}}{{BAj{ce}}}{}{}}{{{AK`{c}}}{{BAj{ce}}}{}{}}{{{BKn{ceg}}}{{BAj{ce}}}{}{}{}}{{{Id{ccc}}}{{BKd{ce}}}{}{}}{{{BL`{ceg}}}{{BKd{ce}}}{}{}{}};{{{AK`{c}}}{{BKd{ce}}}{}{}}<{{{BKn{ceg}}}{{AJh{ceg}}}{BMhBMd}{}{}}={{{BL`{ceg}}}{{BLh{ceg}}}{BMhBMd}{}{}}>>>>>>>>>>>>>>>>>>>>>>>>>>{{{BAl{c}}c}{{BAj{ce}}}{BEj{BDj{}{{Dl{}}}}Ih}{}}{{{AK`{c}}}{{AJh{ceg}}}Ih{}{}}{{{AK`{c}}}{{BLh{ceg}}}Ih{}{}}{{{AK`{{AK`{c}}}}}{{AJh{ceg}}}Ih{}{}}{{{AK`{{AK`{c}}}}}{{BLh{ceg}}}Ih{}{}}{{{BKf{ce}}}{{BKl{ce}}}Ih{}}{{{BKf{ce}}{BKf{ce}}}{{ALd{ce}}}{}{}}{{{BKf{ce}}{BKf{ce}}{BKf{ce}}}{{BKh{ce}}}{}{}}{{{BKf{ce}}{BKf{ce}}{BKf{ce}}{BKf{ce}}}{{BKl{ce}}}{}{}}{{{BKf{ce}}{BKf{ce}}}{{BGj{ce}}}{}{}}{{{BKf{ce}}{BKf{ce}}{BKf{ce}}}{{BKb{ce}}}{}{}}{{{BKf{ce}}{BKf{ce}}}{{BAj{ce}}}{}{}}{{{BKf{ce}}{BKf{ce}}{BKf{ce}}}{{BKd{ce}}}{}{}}{{{ALd{ce}}{BGj{ce}}}{{BBb{ce}}}{Ih{BCf{}{{Dl{}}}}}{}}{{{BKh{ce}}{BKb{ce}}}{{BLn{ce}}}{Ih{BCf{}{{Dl{}}}}}{}}{c{{BBb{eg}}}D`{IhBMhOj}{}}{c{{BLn{eg}}}D`{IhBMhOj}{}}{c{{BLl{eg}}}D`{IhBMhOj{BDh{}{{Dl{}}}}}{}}{{{BLj{ceg}}}{{BM`{ceg}}}{}{}{}}{{{BKj{ceg}}}{{BLh{ceg}}}{{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BEl{}{{Dl{}}}}Ih{BGb{}{{Dl{}}}}{BCf{}{{Dl{}}}}OjBMdBMh}{}{}}{{{BGj{ce}}}{{BBb{ce}}}BMh{}}{{{BKb{ce}}}{{BLn{ce}}}BMh{}}{{{BGj{ce}}}{{BLl{ce}}}BMh{}}{ce{}{}}0000000000000000000000{{{BKd{ce}}}{{BM`{cge}}}{}{}{}}{{{f{{BBb{cAJf}}}}}{{BBb{ce}}}Ih{}}{{{f{{BLn{cAJf}}}}}{{BLn{ce}}}Ih{}}{{{ALd{cAJf}}}{{ALd{ce}}}{}{}}{{{BKh{cAJf}}}{{BKh{ce}}}{}{}}{{{f{{BLl{cAJf}}}}}{{BLl{ce}}}Ih{}}{{{f{{BM`{cAJfAJf}}}}}{{BM`{ceg}}}{BGhBE`}{}{}}{{{f{{BLf{cAJfAJf}}}}}{{BLf{ceg}}}Ih{}{}}{{{f{{BLj{cAJfAJf}}}}}{{BLj{ceg}}}Ih{}{}}{{{BGj{cAJf}}}{{BGj{ce}}}{}{}}{{{BKb{cAJf}}}{{BKb{ce}}}{}{}}{{{f{{BKn{cAJfAJf}}}}}{{BKn{ceg}}}Ih{}{}}{{{f{{BL`{cAJfAJf}}}}}{{BL`{ceg}}}Ih{}{}}{{{BAj{cAJf}}}{{BAj{ce}}}{}{}}{{{BKd{cAJf}}}{{BKd{ce}}}{}{}}{{{f{{AJh{cAJfAJf}}}}}{{AJh{ceg}}}Ih{}{}}{{{f{{BLh{cAJfAJf}}}}}{{BLh{ceg}}}Ih{}{}}{{{BAj{ce}}{BAj{ce}}}{{BKl{ce}}}{{BGb{}{{Dl{}}}}}{}}0{{{BKf{ce}}}cCh{}}{{{BKj{ceg}}}c{}{}{}}{{{f{{BLf{ceg}}}}}{{BAl{c}}}Ih{}{}}{{{BGj{ce}}{BGj{ce}}}BLbOj{}}{{{BKb{ce}}{BKb{ce}}}BLdOj{}}{{{BAj{ce}}{BAj{ce}}}BLbOj{}}{{{BKd{ce}}{BKd{ce}}}BLdOj{}}{{{f{{BBb{ce}}}}{f{jg}}}CjCf{}AIb}{{{f{{BLn{ce}}}}{f{jg}}}CjCf{}AIb}{{{f{{BMf{ce}}}}{f{jg}}}CjCf{}AIb}{{{f{{BKf{ce}}}}{f{jg}}}CjCf{}AIb}{{{f{{ALd{ce}}}}{f{jg}}}CjCf{}AIb}{{{f{{BKh{ce}}}}{f{jg}}}CjCf{}AIb}{{{f{{BLl{ce}}}}{f{jg}}}CjCf{}AIb}{{{f{{BM`{ceg}}}}{f{ji}}}CjCf{}{}AIb}{{{f{{BLf{ceg}}}}{f{ji}}}CjCf{}{}AIb}{{{f{{BLj{ceg}}}}{f{ji}}}CjCf{}{}AIb}{{{f{{BKj{ceg}}}}{f{ji}}}CjCf{}{}AIb}{{{f{{BKl{ce}}}}{f{jg}}}CjCf{}AIb}{{{f{{BGj{ce}}}}{f{jg}}}CjCf{}AIb}{{{f{{BKb{ce}}}}{f{jg}}}CjCf{}AIb}{{{f{{BKn{ceg}}}}{f{ji}}}CjCf{}{}AIb}{{{f{{BL`{ceg}}}}{f{ji}}}CjCf{}{}AIb}{{{f{{BAj{ce}}}}{f{jg}}}CjCf{}AIb}{{{f{{BKd{ce}}}}{f{jg}}}CjCf{}AIb}{{{f{{AJh{ceg}}}}{f{ji}}}CjCf{}{}AIb}{{{f{{BLh{ceg}}}}{f{ji}}}CjCf{}{}AIb}{{{f{BLb}}{f{jc}}}CjAIb}{{{f{BLd}}{f{jc}}}CjAIb}{{{f{AJf}}{f{jc}}}CjAIb}{{{f{{BBb{ce}}}}}c{Ih{BDh{}{{Dl{}}}}}{}}{{{f{{BLn{ce}}}}}c{Ih{BDh{}{{Dl{}}}}}{}}{{{f{{BLl{ce}}}}}c{Ih{BCf{}{{Dl{}}}}}{}}{BGj}{BKb}{{{f{{BKl{ce}}}}}c{Ih{BCf{}{{Dl{}}}}}{}}{BLj}{{}{{BM`{ceg}}}{}{}{}}{{}{{BLf{ceg}}}BGf{}{}}{{}{{BLj{ceg}}}{BGfBDl}{}{}}{{}{{BKj{ceg}}}BMd{}{}}{{}{{BKn{ceg}}}BMh{}{}}{{}{{BL`{ceg}}}BMh{}{}}{{}{{AJh{ceg}}}{BMhBMd}{}{}}{{}{{BLh{ceg}}}{BMhBMd}{}{}}{{{f{{BBb{ce}}}}cc}{{BBb{ce}}}{Ih{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}}{}}{{{f{{BLn{ce}}}}ccc}{{BLn{ce}}}{Ih{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}}{}}{{{f{{BLl{ce}}}}cc}{{BLl{ce}}}{Ih{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}}{}}{{}F`}0000000000000000000000{{{f{{BBb{ce}}}}{BKl{ce}}}{{BBb{ce}}}{Ih{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}}{}}{{{f{{BLl{ce}}}}{BKl{ce}}}{{BLl{ce}}}{IhBMhOj{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}}{}}{{{f{{BBb{ce}}}}{f{{BBb{ce}}}}}{{Df{{BBb{ce}}}}}{IhOj}{}}{{{f{{BLn{ce}}}}{f{{BLn{ce}}}}}{{Df{{BLn{ce}}}}}{IhOj}{}}{{{f{{BLl{ce}}}}{f{{BLl{ce}}}}}{{Df{{BLl{ce}}}}}{IhOj{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}}{}}{{{f{{BBb{ce}}}}{f{{BBb{ce}}}}}{{BBb{ce}}}{IhOj}{}}{{{f{{BLn{ce}}}}{f{{BLn{ce}}}}}{{BLn{ce}}}{IhOj}{}}{{{f{{BBb{ce}}}}{f{{BBb{ce}}}}}BfOj{}}{{{f{{BLn{ce}}}}{f{{BLn{ce}}}}}BfOj{}}{{{f{{BLl{ce}}}}{f{{BLl{ce}}}}}Bf{IhOj{BCf{}{{Dl{}}}}}{}}{{}c{}}000000000000000000000000000000000000000000000{{{Hj{c}}}{{Hj{h}}}{}}0000000000000000000000{{{Hl{c}}}{{Hl{h}}}{}}0000000000000000000000{{{Hn{c}}}{{Hn{h}}}{}}0000000000000000000000{{{An{c}}}e{}{}}00000000000000000000004444444444444444444444444444444444444444444444{{}c{}}0000000000000000000000{{{f{{BM`{ceg}}}}}{{BM`{cge}}}{BGhBE`}{}{}}{{{f{{BLf{ceg}}}}}{{BLf{cge}}}BGh{}{}}{{{f{{BLj{ceg}}}}}{{BLj{cge}}}BGh{}{}}{{{BKj{ceg}}}{{BKj{ge}}}{BMdBEl}{}{}}{{{f{{BKn{ceg}}}}}{{BKn{ge}}}{BGbIh}{}{}}{{{f{{BL`{ceg}}}}}{{BL`{ge}}}{BGbIh}{}{}}{{{f{{AJh{ceg}}}}}{{Df{{AJh{cge}}}}}{Ih{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BEl{}{{Dl{}}}}IjBMhBMd}{}{}}{{{f{{BLh{ceg}}}}}{{Df{{BLh{cge}}}}}{{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BEl{}{{Dl{}}}}Ih{BGb{}{{Dl{}}}}{BCf{}{{Dl{}}}}OjBMdBMh}{}{}}{{{f{{BLh{ceg}}}}}Bf{BMhBMdIj}{}{}}{{{f{{BLh{ceg}}}}}Bf{{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BEl{}{{Dl{}}}}Ih{BGb{}{{Dl{}}}}{BCf{}{{Dl{}}}}OjBMdBMh}{}{}}{{{f{{BBb{ce}}}}}BfOj{}}{{{f{{BLn{ce}}}}}BfOj{}}{{{f{{BLl{ce}}}}}Bf{IhBMhOj}{}}{{{BGj{ce}}}Bf{BMhOj}{}}{{{BKb{ce}}}Bf{BMhOj}{}}{{{BBb{ce}}}BfBFj{}}{{{BLn{ce}}}BfBFj{}}{{{ALd{ce}}}BfBFj{}}{{{BKh{ce}}}BfBFj{}}{{{BLl{ce}}}BfBFj{}}{{{BGj{ce}}}BfBFj{}}{{{BKb{ce}}}BfBFj{}}{{{BAj{ce}}}BfBFj{}}{{{BKd{ce}}}BfBFj{}}{{{BKj{ceg}}}Bf{IjBMd}{}{}}{{{f{{BKn{ceg}}}}}Bf{BMhIj}{}{}}{{{f{{BL`{ceg}}}}}Bf{BMhIj}{}{}}{{{f{{AJh{ceg}}}}}Bf{Ih{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BEl{}{{Dl{}}}}IjBMhBMd}{}{}}{{{f{{BLh{ceg}}}}}Bf{{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BEl{}{{Dl{}}}}Ih{BGb{}{{Dl{}}}}{BCf{}{{Dl{}}}}OjBMdBMh}{}{}}{{{f{{BBb{ce}}}}}BfOj{}}{{{f{{BLn{ce}}}}}BfOj{}}{{{f{{BLj{ceg}}}}}Bf{BE`BGh}{}{}}{{{BGj{ce}}}BfBK`{}}{{{BKb{ce}}}BfBK`{}}{{{f{{BKl{ce}}}}}Bf{BMhIj}{}}{BLj}0{BKl}{{{BAj{ce}}}cBGh{}}{{{BKd{ce}}}cBGh{}}{{{f{{BBb{ce}}}}{BBb{ce}}c}{{BBb{ce}}}{BMd{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}Ih}{}}{{{f{{BLn{ce}}}}{BLn{ce}}c}{{BLn{ce}}}{BMd{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}Ih}{}}{{{BKf{ce}}{BKf{ce}}c}{{BKf{ce}}}{BMd{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BCf{}{{Dl{}}}}Ch}{}}{{{ALd{ce}}{ALd{ce}}c}{{ALd{ce}}}{BMd{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BCf{}{{Dl{}}}}Ih}{}}{{{BKh{ce}}{BKh{ce}}c}{{BKh{ce}}}{BMd{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BCf{}{{Dl{}}}}Ih}{}}{{{f{{BLl{ce}}}}{BLl{ce}}c}{{BLl{ce}}}{BMd{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}Ih}{}}{{{f{{BLj{ceg}}}}{f{{BLj{ceg}}}}c}{{BLj{ceg}}}BGh{}{}}{{{BGj{ce}}{BGj{ce}}c}{{BGj{ce}}}{BMd{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BCf{}{{Dl{}}}}Ih}{}}{{{BKb{ce}}{BKb{ce}}c}{{BKb{ce}}}{BMd{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BCf{}{{Dl{}}}}Ih}{}}{{{BAj{ce}}{BAj{ce}}c}{{BAj{ce}}}{BMd{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}Ih}{}}{{{BKd{ce}}{BKd{ce}}c}{{BKd{ce}}}{BMd{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}Ih}{}}{{{BGj{ce}}{BGj{ce}}}BLbOj{}}{{{BKb{ce}}{BKb{ce}}}BLdOj{}}{{{BAj{ce}}{BAj{ce}}}BLbOj{}}{{{BKd{ce}}{BKd{ce}}}BLdOj{}}{AJh}{BLh}10001010001010000000{{{ALd{ce}}i}{{ALd{ge}}}{}{}{}{{AHj{c}{{Dl{g}}}}}}{{{BKh{ce}}i}{{BKh{ge}}}{}{}{}{{AHj{c}{{Dl{g}}}}}}{{{BAj{ce}}i}{{BAj{ge}}}{}{}{}{{AHj{c}{{Dl{g}}}}}}{{{BKd{ce}}i}{{BKd{ge}}}{}{}{}{{AHj{c}{{Dl{g}}}}}}{{{BKf{ce}}{BKf{ce}}}{{BKf{ce}}}Oj{}}{{{ALd{ce}}{ALd{ce}}}{{ALd{ce}}}Oj{}}{{{BKh{ce}}{BKh{ce}}}{{BKh{ce}}}Oj{}}{{{f{{BLl{ce}}}}}{{ALd{ce}}}{Ih{BCf{}{{Dl{}}}}}{}}{{{BKj{ceg}}{BKj{ceg}}}{{BKj{ceg}}}Oj{}{}}{{{BGj{ce}}{BGj{ce}}}{{BGj{ce}}}Oj{}}{{{BKb{ce}}{BKb{ce}}}{{BKb{ce}}}Oj{}}{{{BAj{ce}}{BAj{ce}}}{{BAj{ce}}}Oj{}}{{{BKd{ce}}{BKd{ce}}}{{BKd{ce}}}Oj{}}{BBbALd}{BLnBKh}{{{f{{BLl{ce}}}}}c{Ih{BCf{}{{Dl{}}}}}{}}0;:98765432100{{{BBb{ce}}c}{}{IhBDj}{}}{{{BBb{ce}}{BKj{ceg}}}{}{IhBDj}{}{}}{{{BLn{ce}}c}{}{IhBDj}{}}{{{BLn{ce}}{BKj{ceg}}}{}{IhBDj}{}{}}{{{BKf{ce}}{BKj{ceg}}}{}BDj{}{}}{{{BKf{ce}}c}{}BDj{}}{{{ALd{ce}}c}{}{IhBDj}{}}{{{ALd{ce}}{BKj{ceg}}}{}{IhBDj}{}{}}{{{BKh{ce}}c}{}{IhBDj}{}}{{{BKh{ce}}{BKj{ceg}}}{}{IhBDj}{}{}}{{{BLl{ce}}c}{}{IhBDj}{}}{{{BLl{ce}}{BKj{ceg}}}{}{IhBDj}{}{}}{{{BKj{ceg}}{BKj{cgi}}}{}BDj{}{}{}}{{{BKl{ce}}{BKj{ceg}}}{}{IhBDj}{}{}}{{{BKl{ce}}c}{}{IhBDj}{}}{{{BGj{ce}}{BKj{ceg}}}{}{IhBDj}{}{}}{{{BGj{ce}}c}{}{IhBDj}{}}{{{BKb{ce}}c}{}{IhBDj}{}}{{{BKb{ce}}{BKj{ceg}}}{}{IhBDj}{}{}}{{{BAj{ce}}c}{}{IhBDj}{}}{{{BAj{ce}}{BKj{ceg}}}{}{IhBDj}{}{}}{{{BKd{ce}}c}{}{IhBDj}{}}{{{BKd{ce}}{BKj{ceg}}}{}{IhBDj}{}{}}{{{f{j{BBb{ce}}}}c}Cj{IhBG`}{}}{{{f{j{BBb{ce}}}}{BKj{cee}}}Cj{IhBG`}{}}{{{f{j{BLn{ce}}}}{BKj{cee}}}Cj{IhBG`}{}}{{{f{j{BLn{ce}}}}c}Cj{IhBG`}{}}{{{f{j{BKf{ce}}}}c}Cj{Ih{BDj{}{{Dl{}}}}}{}}{{{f{j{ALd{ce}}}}{BKj{cee}}}Cj{IhBG`}{}}{{{f{j{ALd{ce}}}}c}Cj{Ih{BDj{}{{Dl{}}}}}{}}{{{f{j{BKh{ce}}}}{BKj{cee}}}Cj{IhBG`}{}}{{{f{j{BKh{ce}}}}c}Cj{IhBG`}{}}{{{f{j{BLl{ce}}}}{BKj{cee}}}Cj{IhBG`}{}}{{{f{j{BLl{ce}}}}c}Cj{IhBG`}{}}{{{f{j{BKl{ce}}}}{BKj{cee}}}Cj{IhBG`}{}}{{{f{j{BKl{ce}}}}c}Cj{IhBG`}{}}{{{f{j{BGj{ce}}}}{BKj{cee}}}Cj{IhBG`}{}}{{{f{j{BGj{ce}}}}c}Cj{IhBG`}{}}{{{f{j{BKb{ce}}}}c}Cj{IhBG`}{}}{{{f{j{BKb{ce}}}}{BKj{cee}}}Cj{IhBG`}{}}{{{f{j{BAj{ce}}}}c}Cj{Ih{BDj{}{{Dl{}}}}}{}}{{{f{j{BAj{ce}}}}{BKj{cee}}}Cj{IhBG`}{}}{{{f{j{BKd{ce}}}}{BKj{cee}}}Cj{IhBG`}{}}{{{f{j{BKd{ce}}}}c}Cj{Ih{BDj{}{{Dl{}}}}}{}}{{{f{{BLh{ceg}}}}c}{{BLh{ceg}}}{{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BEl{}{{Dl{}}}}Ih{BGb{}{{Dl{}}}}{BCf{}{{Dl{}}}}OjBMdBMh}{}{}}{{{BKf{ce}}}{}BGb{}}{{{ALd{ce}}}{}BGb{}}{{{BKh{ce}}}{}BGb{}}{{{BKl{ce}}}{{BKl{ce}}}{{BGb{}{{Dl{}}}}}{}}{{{BGj{ce}}}{}BGb{}}{{{BKb{ce}}}{}BGb{}}{{{BAj{ce}}}{}BGb{}}{{{BKd{ce}}}{}BGb{}}{{{ALd{ce}}{ALd{ce}}}{{BBb{ce}}}{}{}}{{{BKh{ce}}{BKh{ce}}}{{BLn{ce}}}{}{}}{{cccc}{{BMf{ce}}}{}{}}{c{{BKf{ce}}}{}{}}{{cc}{{ALd{ce}}}{}{}}{{ccc}{{BKh{ce}}}{}{}}{{{ALd{ce}}{BGj{ce}}}{{BLl{ce}}}{}{}}{{{BLj{ceg}}{BKd{cg}}}{{BM`{ceg}}}{}{}{}}{{{BAl{c}}}{{BLf{ceg}}}{}{}{}}{c{{BKj{ceg}}}{}{}{}}{{cccc}{{BKl{ce}}}{}{}}{{cc}{{BGj{ce}}}{}{}}{{ccc}{{BKb{ce}}}{}{}}{{cc}{{BKn{ceg}}}{}{}{}}{{ccc}{{BL`{ceg}}}{}{}{}}{{cc}{{BAj{ce}}}{}{}}{{ccc}{{BKd{ce}}}{}{}}{{cccccc}{{AJh{ceg}}}{}{}{}}{{cccccccccccccccc}{{BLh{ceg}}}{}{}{}}{{cccccc}{{BLh{ceg}}}{BMhBMd}{}{}}{c{{BKl{ce}}}Ih{}}{{{BKd{ce}}{BLj{ceg}}}{{BM`{ceg}}}{}{}{}}{BLbBf}{BLdBf}{{{f{{BLj{ceg}}}}}cBGh{}{}}{{{f{{BLj{ceg}}}}}{{BLj{ceg}}}BGh{}{}}{{{BAj{ce}}}{{BAj{ce}}}BGh{}}{{{BKd{ce}}}{{BKd{ce}}}BGh{}}{BLbBLb}{BLdBLd}{{{BGj{ce}}{BGj{ce}}}BLbIj{}}{{{BKb{ce}}{BKb{ce}}}BLdIj{}}{{{BAj{ce}}{BAj{ce}}}BLbIj{}}{{{BKd{ce}}{BKd{ce}}}BLdIj{}}{{}c{}}0000000000000000`{{}{{BKj{ceg}}}BMd{}{}}{{}{{BAj{ce}}}BMd{}}{{}{{BKd{ce}}}BMd{}}{{BLbBLb}BLb}{{BLdBLd}BLd}{{}{{ALd{ce}}}BMh{}}{{}{{BKh{ce}}}BMh{}}{BLlALd}{{cccccc}{{BLh{ceg}}}{}{}{}}{{{f{{BBb{ce}}}}{BKl{ce}}}{{BBb{ce}}}{Ih{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}}{}}{{{f{{BLl{ce}}}}{BKl{ce}}}{{BLl{ce}}}{Ih{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}}{}}{{{f{{AJh{ceg}}}}{f{{BBb{ce}}}}}{{BBb{cg}}}{{BDh{}{{Dl{}}}}BMhOjIh{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}}{{{f{{BLh{ceg}}}}{f{{BBb{ce}}}}}{{Df{{BBb{cg}}}}}{{BDh{}{{Dl{}}}}{BEl{}{{Dl{}}}}BMhOjIh{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}}{{{f{{BLh{ceg}}}}{f{{BLn{ce}}}}}{{Df{{BLn{cg}}}}}{{BDh{}{{Dl{}}}}{BEl{}{{Dl{}}}}BMhOjIh{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}}{{{f{{AJh{ceg}}}}{f{{BLl{ce}}}}}{{BLl{cg}}}{{BDh{}{{Dl{}}}}BMhOjIh{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}}{{{f{{BLh{ceg}}}}{f{{BLl{ce}}}}}{{Df{{BLl{cg}}}}}{{BDh{}{{Dl{}}}}{BEl{}{{Dl{}}}}BMhOjIh{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}}{{{f{{BKf{ce}}}}{f{{BKf{ce}}}}}{{Df{AHf}}}Oj{}}{{{f{{BKj{ceg}}}}{f{{BKj{ceg}}}}}{{Df{AHf}}}Oj{}{}}{{{f{AJf}}{f{AJf}}}{{Df{AHf}}}}{c{{BLh{ceg}}}{}{}{}}{{cc}{{ALd{ce}}}{}{}}{{ccc}{{BKh{ce}}}{}{}}{{{f{{ALd{M`c}}}}}{{ALd{M`AJf}}}{}}{{{f{{AJh{ceg}}}}{BAl{c}}}{{AJh{ceg}}}{Ih{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}BMhBEj}{}{}}{{{f{{BLh{ceg}}}}ccc{BAl{c}}}{{BLh{ceg}}}{{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BEl{}{{Dl{}}}}IhBMhBMdBEj}{}{}}{{{f{{AJh{ceg}}}}cc}{{AJh{ceg}}}{Ih{BDj{}{{Dl{}}}}}{}{}}{{{f{{BLh{ceg}}}}ccc}{{BLh{ceg}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}BMhBMd}{}{}}{{{f{{AJh{ceg}}}}{BAj{ce}}}{{AJh{ceg}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}BMhBMd}{}{}}{{{f{{BLh{ceg}}}}{BKd{ce}}}{{BLh{ceg}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}BMhBMd}{}{}}{{{BAj{ce}}{BAj{ce}}}{{BAj{ce}}}{{BDh{}{{Dl{}}}}{BEl{}{{Dl{}}}}Ih{BDj{}{{Dl{}}}}{BCf{}{{Dl{}}}}}{}}{{{BKd{ce}}{BKd{ce}}}{{BKd{ce}}}{{BDh{}{{Dl{}}}}{BEl{}{{Dl{}}}}Ih{BDj{}{{Dl{}}}}{BCf{}{{Dl{}}}}}{}}{{{f{{BLh{ceg}}}}}{{BLh{ceg}}}{Ih{BDj{}{{Dl{}}}}{BEl{}{{Dl{}}}}BMhBMdIj}{}{}}{{cccc}{{BLj{ceg}}}{}{}{}}{BLj}{c{{BLf{ceg}}}{}{}{}}{BAl}{BEjBEj}{{cccc}{{BLl{ce}}}{}{}}{{{BAj{ce}}{BAj{ce}}}{{BAj{ce}}}{BMd{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}Ih}{}}{{{BKd{ce}}{BKd{ce}}}{{BKd{ce}}}{BMd{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}Ih}{}}{{{f{{ALd{ce}}}}{f{{BGj{ce}}}}}{{ALd{ce}}}BMj{}}{{{f{{BKh{ce}}}}{f{{BKb{ce}}}}}{{BKh{ce}}}BMj{}}{BKl}{{{BAj{ce}}}{{BAj{ce}}}BFj{}}{{{BKd{ce}}}{{BKd{ce}}}BFj{}}{{{BAl{c}}}{{AJh{ceg}}}{Ih{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}BMhBEj}{}{}}{{ccc{BAl{c}}}{{BLh{ceg}}}{}{}{}}{BM`BLj}{{{f{{BBb{ce}}}}}{{BBb{ce}}}BMn{}}{{{f{{BLn{ce}}}}}{{BLn{ce}}}BMn{}}{{{ALd{ce}}}{{ALd{ce}}}{BMnIh}{}}{{{ALd{ce}}}{{ALd{ce}}}BMn{}}{{{BKh{ce}}}{{BKh{ce}}}{BMnIh}{}}{{{BKh{ce}}}{{BKh{ce}}}BMn{}}{{{f{{BLl{ce}}}}}{{BLl{ce}}}{BMlBMbBMn{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}}{}}{{{BGj{ce}}}{{BGj{ce}}}BMn{}}{{{BGj{ce}}}{{BGj{ce}}}{BMnIh}{}}{{{BKb{ce}}}{{BKb{ce}}}BMn{}}{{{BKb{ce}}}{{BKb{ce}}}{BMnIh}{}}{{{BAj{ce}}}{{BAj{ce}}}BMn{}}{{{BAj{ce}}}{{BAj{ce}}}{BMnIh}{}}{{{BKd{ce}}}{{BKd{ce}}}BMn{}}{{{BKd{ce}}}{{BKd{ce}}}{BMnIh}{}}{{{f{{BBb{ce}}}}}{{BBb{ce}}}{BMlBMb}{}}{{{f{{BLn{ce}}}}}{{BLn{ce}}}{BMlBMb}{}}:10:{{{BKf{ce}}{BKf{ce}}}{{BKf{ce}}}BN`{}}0{{{f{{BBb{eg}}}}cc}{{BBb{eg}}}Ih{{BDj{}{{Dl{}}}}Ih}{}}{{{f{{BLn{eg}}}}ccc}{{BLn{eg}}}Ih{{BDj{}{{Dl{}}}}Ih}{}}{{{f{{BLl{eg}}}}cc}{{BLl{eg}}}Ih{Ih{BDj{}{{Dl{}}}}}{}}{{cc}{{AJh{ceg}}}BMh{}{}}{{ccc}{{BLh{ceg}}}{BMhBMd}{}{}}{{BLb{ALd{ce}}{ALd{ce}}}{{ALd{ce}}}{}{}}{{BLd{BKh{ce}}{BKh{ce}}}{{BKh{ce}}}{}{}}{{BLb{BGj{ce}}{BGj{ce}}}{{BGj{ce}}}{}{}}{{BLd{BKb{ce}}{BKb{ce}}}{{BKb{ce}}}{}{}}{{BLb{BAj{ce}}{BAj{ce}}}{{BAj{ce}}}{}{}}{{BLd{BKd{ce}}{BKd{ce}}}{{BKd{ce}}}{}{}}{{{f{j{BBb{ce}}}}{BGj{ce}}}Cj{Ih{BDh{}{{Dl{}}}}}{}}{BEjBEj}{{{f{{BBb{ce}}}}}{{BGj{ce}}}{Ih{BDh{}{{Dl{}}}}}{}}{{{f{{BLn{ce}}}}}{{BKb{ce}}}{Ih{BDh{}{{Dl{}}}}}{}}{BLlBGj}{{cc}{{BGj{ce}}}{}{}}{{ccc}{{BKb{ce}}}{}{}}{{{BAl{c}}{BAl{c}}}{{BLh{ceg}}}{BEjBMhBMd}{}{}}{{{f{{BLj{ceg}}}}{f{{BLj{ceg}}}}c}{{BLj{ceg}}}{BE`BGh}{}{}}{c{{ALd{ce}}}Ch{}}{c{{BKh{ce}}}Ch{}}{c{{BGj{ce}}}Ch{}}{c{{BKb{ce}}}Ch{}}{c{{BKn{ceg}}}Ch{}{}}{c{{BL`{ceg}}}Ch{}{}}{c{{BAj{ce}}}Ch{}}{c{{BKd{ce}}}Ch{}}{{{BAj{ce}}}c{Ih{BDj{}{{Dl{}}}}{BCf{}{{Dl{}}}}}{}}{{{BKd{ce}}}c{Ih{BDj{}{{Dl{}}}}{BCf{}{{Dl{}}}}}{}}{{{f{{BLj{ceg}}}}}cBGh{}{}}{{{BKf{ce}}{BKf{ce}}}{}BDh{}}{{{ALd{ce}}{BAj{ce}}}{}BDh{}}{{{ALd{ce}}{ALd{ce}}}{}BDh{}}{{{ALd{ce}}{BGj{ce}}}{}BDh{}}{{{BKh{ce}}{BKd{ce}}}{}BDh{}}{{{BKh{ce}}{BKb{ce}}}{}BDh{}}{{{BKh{ce}}{BKh{ce}}}{}BDh{}}{{{BKj{ceg}}{BKj{ceg}}}{}BDh{}{}}{{{BKl{ce}}{BKl{ce}}}{{BKl{ce}}}{{BDh{}{{Dl{}}}}}{}}{{{BGj{ce}}{BGj{ce}}}{}BDh{}}{{{BKb{ce}}{BKb{ce}}}{}BDh{}}{{{BKn{ceg}}{BKn{cig}}}{}BDh{}{}{}}{{{BL`{ceg}}{BL`{cig}}}{}BDh{}{}{}}{{{BAj{ce}}{BAj{ce}}}{}BDh{}}{{{BKd{ce}}{BKd{ce}}}{}BDh{}}{{{f{j{BKf{ce}}}}{BKf{ce}}}CjBGl{}}{{{f{j{ALd{ce}}}}{BGj{ce}}}CjBGl{}}{{{f{j{ALd{ce}}}}{BAj{ce}}}Cj{Ih{BDh{}{{Dl{}}}}}{}}{{{f{j{BKh{ce}}}}{BKb{ce}}}CjBGl{}}{{{f{j{BKh{ce}}}}{BKd{ce}}}Cj{Ih{BDh{}{{Dl{}}}}}{}}{{{f{j{BKl{ce}}}}{BKl{ce}}}CjBGl{}}{{{f{j{BGj{ce}}}}{BGj{ce}}}CjBGl{}}{{{f{j{BKb{ce}}}}{BKb{ce}}}CjBGl{}}{{{f{j{BKn{ceg}}}}{BKn{cgg}}}CjBGl{}{}}{{{f{j{BL`{ceg}}}}{BL`{cgg}}}CjBGl{}{}}{{{f{j{BAj{ce}}}}{BAj{ce}}}Cj{Ih{BDh{}{{Dl{}}}}}{}}{{{f{j{BKd{ce}}}}{BKd{ce}}}Cj{Ih{BDh{}{{Dl{}}}}}{}}{g{{BKf{ce}}}{{BCf{}{{Dl{}}}}IhBMh}{}{{BGn{}{{Cn{{f{{BKf{ce}}}}}}}}}}{g{{BKf{ce}}}{{BCf{}{{Dl{}}}}BMh}{}{{BGn{}{{Cn{{BKf{ce}}}}}}}}{g{{BGj{ce}}}{{BCf{}{{Dl{}}}}BMh}{}{{BGn{}{{Cn{{BGj{ce}}}}}}}}{g{{BGj{ce}}}{{BCf{}{{Dl{}}}}IhBMh}{}{{BGn{}{{Cn{{f{{BGj{ce}}}}}}}}}}{g{{BKb{ce}}}{{BCf{}{{Dl{}}}}BMh}{}{{BGn{}{{Cn{{BKb{ce}}}}}}}}{g{{BKb{ce}}}{{BCf{}{{Dl{}}}}IhBMh}{}{{BGn{}{{Cn{{f{{BKb{ce}}}}}}}}}}{g{{BAj{ce}}}{{BCf{}{{Dl{}}}}BMh}{}{{BGn{}{{Cn{{BAj{ce}}}}}}}}{g{{BAj{ce}}}{{BCf{}{{Dl{}}}}IhBMh}{}{{BGn{}{{Cn{{f{{BAj{ce}}}}}}}}}}{g{{BKd{ce}}}{{BCf{}{{Dl{}}}}BMh}{}{{BGn{}{{Cn{{BKd{ce}}}}}}}}{g{{BKd{ce}}}{{BCf{}{{Dl{}}}}IhBMh}{}{{BGn{}{{Cn{{f{{BKd{ce}}}}}}}}}}{BEjBEj}{{{f{{BM`{ceg}}}}{f{{BM`{cgi}}}}}{{BM`{cei}}}{BGhBE`}{}{}{}}{{{f{{BLf{ceg}}}}{f{{BLf{cie}}}}}{{BLf{cig}}}BGh{}{}{}}{{{f{{BLj{ceg}}}}{f{{BLj{cgi}}}}}{{BLj{cei}}}{BE`BGh}{}{}{}}{{{f{{AJh{ceg}}}}{f{{AJh{cgi}}}}}{{AJh{cei}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}{}}{{{f{{BLh{ceg}}}}{f{{BLh{cgi}}}}}{{BLh{cei}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}{}}{{{f{{AJh{ceg}}}}{BAl{c}}}{{AJh{ceg}}}{Ih{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}BMhBEj}{}{}}{{{f{{BLh{ceg}}}}ccc{BAl{c}}}{{BLh{ceg}}}{{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BEl{}{{Dl{}}}}IhBMhBMdBEj}{}{}}{{{f{{AJh{ceg}}}}cc}{{AJh{ceg}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}BMh}{}{}}{{{f{{BLh{ceg}}}}ccc}{{BLh{ceg}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}BMhBMd}{}{}}{{{f{{AJh{ceg}}}}{BAj{cg}}}{{AJh{ceg}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}BMhBMd}{}{}}{{{f{{BLh{ceg}}}}{BKd{cg}}}{{BLh{ceg}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}BMhBMd}{}{}}{{{BKh{ce}}}{{ALd{ce}}}Ih{}}{{{BKd{ce}}}{{BAj{ce}}}Ih{}}{{{f{{BLh{ceg}}}}}{{AJh{ceg}}}Ih{}{}}{{{ALd{ce}}}{{BKh{ce}}}{BMhIh}{}}{{{f{{BLf{ceg}}}}}{{BLj{ceg}}}BGh{}{}}{{{BAj{ce}}}{{BKd{ce}}}{BMhIh}{}}{{{f{{AJh{ceg}}}}}{{BLh{ceg}}}{BMhBMdIh}{}{}}{{{ALd{ce}}}{{AK`{c}}}Ih{}}{{{BKh{ce}}}{{AK`{c}}}Ih{}}{{{BGj{ce}}}{{AK`{c}}}Ih{}}{{{BKb{ce}}}{{AK`{c}}}Ih{}}{{{f{{BKn{ceg}}}}}{{AK`{c}}}Ih{}{}}{{{f{{BL`{ceg}}}}}{{AK`{c}}}Ih{}{}}{{{BAj{ce}}}{{AK`{c}}}Ih{}}{{{BKd{ce}}}{{AK`{c}}}Ih{}}{{{f{{AJh{ceg}}}}}{{AK`{c}}}Ih{}{}}{{{f{{BLh{ceg}}}}}{{AK`{c}}}Ih{}{}}{{{BKh{ce}}}{{AK`{c}}}{BMdIh}{}}{{{BKd{ce}}}{{AK`{c}}}{BMhIh}{}}32{{{f{{AJh{ceg}}}}}{{AK`{{AK`{c}}}}}Ih{}{}}{{{f{{BLh{ceg}}}}}{{AK`{{AK`{c}}}}}Ih{}{}}0{{{f{{BLl{ce}}}}}{{BBb{ce}}}{Ih{BCf{}{{Dl{}}}}}{}}{{{f{{BBb{ce}}}}}{{BBb{M`e}}}{BEbIh}{}}{{{f{{BLn{ce}}}}}{{BLn{M`e}}}{BEbIh}{}}{{{ALd{ce}}}{{ALd{M`e}}}{BEbIh}{}}{{{BKh{ce}}}{{BKh{M`e}}}{BEbIh}{}}{{{f{{BLl{ce}}}}}{{BLl{M`e}}}{BEbIh}{}}{{{BGj{ce}}}{{BGj{M`e}}}{BEbIh}{}}{{{BKb{ce}}}{{BKb{M`e}}}{BEbIh}{}}{{{BKn{ceg}}}{{BKn{M`eg}}}{BEbIh}{}{}}{{{BL`{ceg}}}{{BL`{M`eg}}}{BEbIh}{}{}}{{{BAj{ce}}}{{BAj{M`e}}}{BEbIh}{}}{{{BKd{ce}}}{{BKd{M`e}}}{BEbIh}{}}{{{f{{BBb{ce}}}}}{{BBb{BH`e}}}{BEbIh}{}}{{{f{{BLn{ce}}}}}{{BLn{BH`e}}}{BEbIh}{}}{{{ALd{ce}}}{{ALd{BH`e}}}{BEbIh}{}}{{{BKh{ce}}}{{BKh{BH`e}}}{BEbIh}{}}{{{f{{BLl{ce}}}}}{{BLl{BH`e}}}{BEbIh}{}}{{{BGj{ce}}}{{BGj{BH`e}}}{BEbIh}{}}{{{BKb{ce}}}{{BKb{BH`e}}}{BEbIh}{}}{{{BKn{ceg}}}{{BKn{BH`eg}}}{BEbIh}{}{}}{{{BL`{ceg}}}{{BL`{BH`eg}}}{BEbIh}{}{}}{{{BAj{ce}}}{{BAj{BH`e}}}{BEbIh}{}}{{{BKd{ce}}}{{BKd{BH`e}}}{BEbIh}{}}{{{f{{BBb{ce}}}}}{{BBb{BJhe}}}{BEbIh}{}}{{{f{{BLn{ce}}}}}{{BLn{BJhe}}}{BEbIh}{}}{{{ALd{ce}}}{{ALd{BJhe}}}{BEbIh}{}}{{{BKh{ce}}}{{BKh{BJhe}}}{BEbIh}{}}{{{f{{BLl{ce}}}}}{{BLl{BJhe}}}{BEbIh}{}}{{{BGj{ce}}}{{BGj{BJhe}}}{BEbIh}{}}{{{BKb{ce}}}{{BKb{BJhe}}}{BEbIh}{}}{{{BKn{ceg}}}{{BKn{BJheg}}}{BEbIh}{}{}}{{{BL`{ceg}}}{{BL`{BJheg}}}{BEbIh}{}{}}{{{BAj{ce}}}{{BAj{BJhe}}}{BEbIh}{}}{{{BKd{ce}}}{{BKd{BJhe}}}{BEbIh}{}}{{{f{{BBb{ce}}}}}{{BBb{BJde}}}{BEbIh}{}}{{{f{{BLn{ce}}}}}{{BLn{BJde}}}{BEbIh}{}}{{{ALd{ce}}}{{ALd{BJde}}}{BEbIh}{}}{{{BKh{ce}}}{{BKh{BJde}}}{BEbIh}{}}{{{f{{BLl{ce}}}}}{{BLl{BJde}}}{BEbIh}{}}{{{BGj{ce}}}{{BGj{BJde}}}{BEbIh}{}}{{{BKb{ce}}}{{BKb{BJde}}}{BEbIh}{}}{{{BKn{ceg}}}{{BKn{BJdeg}}}{BEbIh}{}{}}{{{BL`{ceg}}}{{BL`{BJdeg}}}{BEbIh}{}{}}{{{BAj{ce}}}{{BAj{BJde}}}{BEbIh}{}}{{{BKd{ce}}}{{BKd{BJde}}}{BEbIh}{}}{{{f{{BBb{ce}}}}}{{Df{{BBb{ce}}}}}{IhOj}{}}{{{f{{BLn{ce}}}}}{{Df{{BLn{ce}}}}}{IhOj}{}}{{{f{{BLl{ce}}}}}{{Df{{BLl{ce}}}}}{IhBMhOj}{}}{fc{}}0000000000000000000000{{{BAj{ce}}}{{ALd{ce}}}Ih{}}{{{BKd{ce}}}{{BKh{ce}}}Ih{}}{{{BMf{ce}}}{{Df{{ALd{ce}}}}}{Ih{BEl{}{{Dl{}}}}BMhOj}{}}{{{BMf{ce}}}{{Df{{BKh{ce}}}}}{Ih{BEl{}{{Dl{}}}}BMhOj}{}}{{{f{{BBb{ce}}}}}{{BLl{ce}}}{Ih{BDh{}{{Dl{}}}}}{}}{{{BAj{ce}}}{{BGj{ce}}}Ih{}}{{{f{{BM`{ceg}}}}}{{BLh{ceg}}}{BEjBGhBE`}{}{}}{{{f{{BLf{ceg}}}}}{{AJh{ceg}}}{Ih{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}BGfBEj}{}{}}{{{f{{BLj{ceg}}}}}{{BLh{ceg}}}{BE`BGh}{}{}}{{{f{{BKn{ceg}}}}}{{AJh{ceg}}}{BMhBMdIh}{}{}}{{{f{{BL`{ceg}}}}}{{BLh{ceg}}}{BMhBMdIh}{}{}}{{{BAj{ce}}}{{AJh{cee}}}{BMhBMdIh}{}}{{{BKd{ce}}}{{BLh{cee}}}{BMhBMdIh}{}}{{{ALd{ce}}}{{Id{cc}}}Ih{}}{{{BKh{ce}}}{{Id{ccc}}}Ih{}}{{{BGj{ce}}}{{Id{cc}}}Ih{}}{{{BKb{ce}}}{{Id{ccc}}}Ih{}}{{{f{{BKn{ceg}}}}}{{Id{cc}}}Ih{}{}}{{{f{{BL`{ceg}}}}}{{Id{ccc}}}Ih{}{}}{{{BAj{ce}}}{{Id{cc}}}Ih{}}{{{BKd{ce}}}{{Id{ccc}}}Ih{}}{{{BKh{ce}}}{{Id{cccc}}}{BMdIh}{}}{{{BKd{ce}}}{{Id{cccc}}}{BMhIh}{}}{{{f{{BBb{ce}}}}}{{BBb{BGde}}}{BEbIh}{}}{{{f{{BLn{ce}}}}}{{BLn{BGde}}}{BEbIh}{}}{{{ALd{ce}}}{{ALd{BGde}}}{BEbIh}{}}{{{BKh{ce}}}{{BKh{BGde}}}{BEbIh}{}}{{{f{{BLl{ce}}}}}{{BLl{BGde}}}{BEbIh}{}}{{{BGj{ce}}}{{BGj{BGde}}}{BEbIh}{}}{{{BKb{ce}}}{{BKb{BGde}}}{BEbIh}{}}{{{BKn{ceg}}}{{BKn{BGdeg}}}{BEbIh}{}{}}{{{BL`{ceg}}}{{BL`{BGdeg}}}{BEbIh}{}{}}{{{BAj{ce}}}{{BAj{BGde}}}{BEbIh}{}}{{{BKd{ce}}}{{BKd{BGde}}}{BEbIh}{}}{{{f{{BLl{ce}}}}}{{BLl{BJ`e}}}{BEbIh}{}}{{{BGj{ce}}}{{BGj{BJ`e}}}{BEbIh}{}}{{{f{{BBb{ce}}}}}{{BBb{cAJf}}}Ih{}}{{{f{{BLn{ce}}}}}{{BLn{cAJf}}}Ih{}}{{{ALd{ce}}}{{ALd{cAJf}}}Ih{}}{{{BKh{ce}}}{{BKh{cAJf}}}Ih{}}{{{f{{BLl{ce}}}}}{{BLl{cAJf}}}Ih{}}{{{f{{BM`{ceg}}}}}{{BM`{cAJfAJf}}}{BGhBE`}{}{}}{{{f{{BLf{ceg}}}}}{{BLf{cAJfAJf}}}Ih{}{}}{{{f{{BLj{ceg}}}}}{{BLj{cAJfAJf}}}Ih{}{}}{{{BGj{ce}}}{{BGj{cAJf}}}Ih{}}{{{BKb{ce}}}{{BKb{cAJf}}}Ih{}}{{{f{{BKn{ceg}}}}}{{BKn{cAJfAJf}}}Ih{}{}}{{{f{{BL`{ceg}}}}}{{BL`{cAJfAJf}}}Ih{}{}}{{{BAj{ce}}}{{BAj{cAJf}}}Ih{}}{{{BKd{ce}}}{{BKd{cAJf}}}Ih{}}{{{f{{AJh{ceg}}}}}{{AJh{cAJfAJf}}}Ih{}{}}{{{f{{BLh{ceg}}}}}{{BLh{cAJfAJf}}}Ih{}{}}{{{f{{BBb{ce}}}}}{{BBb{F`e}}}{BEbIh}{}}{{{f{{BLn{ce}}}}}{{BLn{F`e}}}{BEbIh}{}}{{{ALd{ce}}}{{ALd{F`e}}}{BEbIh}{}}{{{BKh{ce}}}{{BKh{F`e}}}{BEbIh}{}}{{{f{{BLl{ce}}}}}{{BLl{F`e}}}{BEbIh}{}}{{{BGj{ce}}}{{BGj{F`e}}}{BEbIh}{}}{{{BKb{ce}}}{{BKb{F`e}}}{BEbIh}{}}{{{BKn{ceg}}}{{BKn{F`eg}}}{BEbIh}{}{}}{{{BL`{ceg}}}{{BL`{F`eg}}}{BEbIh}{}{}}{{{BAj{ce}}}{{BAj{F`e}}}{BEbIh}{}}{{{BKd{ce}}}{{BKd{F`e}}}{BEbIh}{}}{{{ALd{ce}}}{{BAj{ce}}}Ih{}}{{{BKh{ce}}}{{BKd{ce}}}Ih{}}{{{BGj{ce}}}{{BAj{ce}}}Ih{}}{{{BKb{ce}}}{{BKd{ce}}}Ih{}}{{{f{{BKn{ceg}}}}}{{BAj{ce}}}Ih{}{}}{{{f{{BL`{ceg}}}}}{{BKd{ce}}}Ih{}{}}{BKl}{{{f{{BKn{ceg}}}}{f{{BBb{ce}}}}}{{BBb{g}}}{BCfIh}{}{}}{{{BKj{ceg}}{f{{BBb{ce}}}}}{{BBb{g}}}{IhBDj}{}{}}{{{f{{BL`{ceg}}}}{f{{BBb{ce}}}}}{{BBb{g}}}{BCfIh}{}{}}{{{BKj{ceg}}{f{{BLn{ce}}}}}{{BLn{g}}}{IhBDj}{}{}}{{{f{{BL`{ceg}}}}{f{{BLn{ce}}}}}{{BLn{g}}}{BCfIh}{}{}}{{{f{{BLf{ceg}}}}{ALd{ce}}}{{ALd{cg}}}BGh{}{}}{{{f{{BLf{cAJfAJf}}}}{ALd{cAJf}}}{{ALd{cAJf}}}BCb}{{{f{{BKj{cAJfAJf}}}}{ALd{cAJf}}}{{ALd{cAJf}}}BCb}{{{BKj{ceg}}{ALd{ce}}}{{ALd{g}}}{IhBDj}{}{}}{{{f{{BKn{ceg}}}}{ALd{ce}}}{{ALd{g}}}{BCfIh}{}{}}{{{f{{BKn{cAJfAJf}}}}{ALd{cAJf}}}{{ALd{cAJf}}}BCb}{{{f{{AJh{ceg}}}}{ALd{ce}}}{{ALd{cg}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}}{{{f{{AJh{cAJfAJf}}}}{ALd{cAJf}}}{{ALd{cAJf}}}BCb}{{{f{{BLj{ceg}}}}{ALd{ce}}}{{ALd{cg}}}{BE`BGh}{}{}}{{{f{{BL`{ceg}}}}{f{{ALd{ce}}}}}{{ALd{g}}}{BCfIh}{}{}}{{{f{{BLh{ceg}}}}{ALd{ce}}}{{Df{{ALd{cg}}}}}{{BEl{}{{Dl{}}}}BMhOjIh{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}}{{{f{{BLh{ceg}}}}{ALd{ce}}}{{BMf{cg}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}}{{{f{{BLj{ceg}}}}{BKh{ce}}}{{BKh{cg}}}{BE`BGh}{}{}}{{{BKj{ceg}}{BKh{ce}}}{{BKh{g}}}{IhBDj}{}{}}{{{f{{BL`{ceg}}}}{f{{BKh{ce}}}}}{{BKh{g}}}{BCfIh}{}{}}{{{f{{BLh{ceg}}}}{BKh{ce}}}{{Df{{BKh{cg}}}}}{{BEl{}{{Dl{}}}}BMhOjIh{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}}{{{f{{BLh{ceg}}}}{BKh{ce}}}{{BMf{cg}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}}{{{BKj{ceg}}{f{{BLl{ce}}}}}{{BLl{g}}}{IhBDj}{}{}}{{{f{{BKn{ceg}}}}{f{{BLl{ce}}}}}{{BLl{g}}}{{BCf{}{{Dl{}}}}Ih}{}{}}{{{f{{BL`{ceg}}}}{f{{BLl{ce}}}}}{{BLl{cg}}}{{BCf{}{{Dl{}}}}Ih}{}{}}{{{BKj{ceg}}{BGj{ce}}}{{BGj{g}}}{IhBDj}{}{}}{{{f{{BKn{ceg}}}}{BGj{ce}}}{{BGj{cg}}}{}{}{}}{{{BL`{ceg}}{BGj{ce}}}{{BGj{cg}}}{}{}{}}{{{f{{BLf{cAJfAJf}}}}{BAj{cAJf}}}{{BAj{cAJf}}}BCb}{{{f{{BLf{ceg}}}}{BAj{ce}}}{{BAj{cg}}}BGh{}{}}{{{BKj{ceg}}{BAj{ce}}}{{BAj{g}}}{IhBDj}{}{}}{{{f{{BKj{cAJfAJf}}}}{BAj{cAJf}}}{{BAj{cAJf}}}BCb}{{{f{{BKn{cAJfAJf}}}}{BAj{cAJf}}}{{BAj{cAJf}}}BCb}{{{f{{AJh{ceg}}}}{BAj{ce}}}{{BAj{cg}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}}{{{f{{AJh{cAJfAJf}}}}{BAj{cAJf}}}{{BAj{cAJf}}}BCb}{{{f{{BLj{ceg}}}}{BAj{ce}}}{{BAj{cg}}}{BE`BGh}{}{}}{{{f{{BLh{ceg}}}}{BAj{ce}}}{{BAj{cg}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}}{{{f{{BLj{ceg}}}}{BKd{ce}}}{{BKd{cg}}}{BE`BGh}{}{}}{{{f{{BLh{ceg}}}}{BKd{ce}}}{{BKd{cg}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}}{{{f{{BBb{ce}}}}{BAj{ce}}}{{BBb{ce}}}{Ih{BCf{}{{Dl{}}}}}{}}{{{f{{BLn{ce}}}}{BKd{ce}}}{{BLn{ce}}}{Ih{BCf{}{{Dl{}}}}}{}}{{{f{{BLl{ce}}}}{BAj{ce}}}{{BLl{ce}}}{Ih{BCf{}{{Dl{}}}}}{}}{{cc}{{AJh{ceg}}}{BMhBMd}{}{}}{{ccc}{{BLh{ceg}}}{BMhBMd}{}{}}{BM`BKd}{{{f{{BBb{ce}}}}}{{Df{{BBb{ge}}}}}{BEbIh}{}BEb}{{{f{{BLn{ce}}}}}{{Df{{BLn{ge}}}}}{BEbIh}{}BEb}{{{BKf{ce}}}{{Df{{BKf{ge}}}}}{BEbCh}{}BEb}{{{ALd{ce}}}{{Df{{ALd{ge}}}}}{BEbIh}{}BEb}{{{BKh{ce}}}{{Df{{BKh{ge}}}}}{BEbIh}{}BEb}{{{f{{BLl{ce}}}}}{{Df{{BLl{ge}}}}}{BEbIh}{}BEb}{{{BKj{ceg}}}{{Df{{BKj{ieg}}}}}BEb{}{}BEb}{{{BGj{ce}}}{{Df{{BGj{ge}}}}}{BEbIh}{}BEb}{{{BKb{ce}}}{{Df{{BKb{ge}}}}}{BEbIh}{}BEb}{{{BKn{ceg}}}{{Df{{BKn{ieg}}}}}{BEbIh}{}{}BEb}{{{BL`{ceg}}}{{Df{{BL`{ieg}}}}}{BEbIh}{}{}BEb}{{{BAj{ce}}}{{Df{{BAj{ge}}}}}{BEbIh}{}BEb}{{{BKd{ce}}}{{Df{{BKd{ge}}}}}{BEbIh}{}BEb}{{{f{{AJh{ceg}}}}}{{Df{{AJh{ieg}}}}}{BEbIh}{}{}BEb}{{{f{{BLh{ceg}}}}}{{Df{{BLh{ieg}}}}}{BEbIh}{}{}BEb}{{}{{G`{c}}}{}}0000000000000000000000{c{{G`{e}}}{}{}}0000000000000000000000{{}{{G`{c}}}{}}0000000000000000000000{{}{{G`{c{AEf{c}}}}}{}}0000000000000000000000{{{BAj{ce}}}{{Df{{BAj{ce}}}}}BGh{}}{{{BKd{ce}}}{{Df{{BKd{ce}}}}}BGh{}}{fAEh}0000000000000000000000{ce{}{}}0000000000000000000000{{}c{}}0000000000000000000000{{{f{{BBb{ce}}}}{f{{BBb{ce}}}}}{{BBb{ce}}}{IhOj}{}}{{{f{{BLn{ce}}}}{f{{BLn{ce}}}}}{{BLn{ce}}}{IhOj}{}}{{{f{{BLl{ce}}}}{f{{BLl{ce}}}}}{{BLl{ce}}}{IhOj{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}BMh}{}}{{cccc}{{BLj{ceg}}}BGh{}{}}{f{{Df{{f{c}}}}}{}}0000000000000000000000{{cc}{{BAj{ce}}}{}{}}{{ccc}{{BKd{ce}}}{}{}}{{{f{{BLj{ceg}}}}}{{BKd{cAJf}}}Ih{}{}}{{{f{{BKl{ce}}}}}c{Ih{BCf{}{{Dl{}}}}}{}}{{{f{{BLn{ce}}}}}c{Ih{BDj{}{{Dl{}}}}{BDh{}{{Dl{}}}}}{}}{{{BKb{ce}}}c{{BDj{}{{Dl{}}}}Ih}{}}{{}c{}}0000000000000000000000{BMf}{{{f{{BBb{ce}}}}}c{Ih{BDh{}{{Dl{}}}}}{}}{{{f{{BLn{ce}}}}}c{Ih{BDh{}{{Dl{}}}}}{}}{{{f{{BLl{ce}}}}}c{Ih{BCf{}{{Dl{}}}}}{}}{BGj}{BKb}{{{f{{AJh{ceg}}}}}{{AJh{cei}}}Ih{}{}{}}{{{f{{BLh{ceg}}}}}{{BLh{cei}}}Ih{}{}{}}{{{BAj{ce}}c}{{BAj{ce}}}BGh{}}0{{{BKd{ce}}c}{{BKd{ce}}}BGh{}}10{{{f{{AJh{ceg}}}}}{{AJh{cig}}}Ih{}{}{}}{{{f{{BLh{ceg}}}}}{{BLh{cig}}}Ih{}{}{}};{ALd}{BKh}{BKn}{BL`}{BAj}{BKd}{BLbBf}{BLdBf}{{{f{{BBb{ce}}}}}{{AOf{c}}}Ih{}}{{{f{{BLn{ce}}}}}{{AOf{c}}}Ih{}}{{{f{{BLl{ce}}}}}{{AOf{c}}}{Ih{BCf{}{{Dl{}}}}}{}}{{{BKh{ce}}}{{ALd{ce}}}Ih{}}{{{BKd{ce}}}{{BAj{ce}}}Ih{}}{BLdBLb}{{{f{{BLn{ce}}}}}c{Ih{BDj{}{{Dl{}}}}{BDh{}{{Dl{}}}}}{}}3210{BMf}?>=<;:98765{{{ALd{ce}}}{{ALd{ce}}}Ih{}}{{{BAj{ce}}}{{BAj{ce}}}Ih{}}65432{BKh}?=;9{{}{{BBb{ce}}}BMh{}}{{}{{BLn{ce}}}BMh{}}{{}{{BKf{ce}}}BMh{}}{{}{{ALd{ce}}}BMh{}}0{{}{{BKh{ce}}}BMh{}}0{{}{{BLl{ce}}}BMh{}}{{}{{BKl{ce}}}BMh{}}{{}{{BGj{ce}}}BMh{}}0{{}{{BKb{ce}}}BMh{}}0{{}{{BAj{ce}}}BMh{}}0{{}{{BKd{ce}}}BMh{}}0{{{ALd{ce}}{ALd{ce}}i}{{BAj{ge}}}{}{}{}{{AHj{cc}{{Dl{g}}}}}}{{{BKh{ce}}{BKh{ce}}i}{{BKd{ge}}}{}{}{}{{AHj{cc}{{Dl{g}}}}}}{{{BAj{ce}}{BAj{ce}}i}{{BAj{ge}}}{}{}{}{{AHj{cc}{{Dl{g}}}}}}{{{BKd{ce}}{BKd{ce}}i}{{BKd{ge}}}{}{}{}{{AHj{cc}{{Dl{g}}}}}}`{{}c{}}{{{f{BE`}}{f{BE`}}}Bf}{{{f{BE`}}{f{BE`}}{f{c}}}Bf{}}{{cc}cOj}0````````````````````{BNb}{BNd}{BNf}{BFh}1{BNh}003{BNj}{BNl}10001010001010000000{BFnALd}{BNnBKh}10{BO`ALd}58{BObBLj}{BO`BGj}:{BObBKd}{BOd}:;{BHd}{BOf}{BHf}{BOh}4{BOj}{BOl}54326104260`````{BMbBMb}{BMlBMl}{{}BMd}{BMnBMn}{{}BMh}````{eg{}{{b{c}}}{}}00{ce{}{}}00{{}c{}}00{f{{f{h}}}}00{{{f{j}}}{{f{jh}}}}00{f{{f{c}}}{}}00{{{f{j}}}{{f{jc}}}{}}00{{{An{c}}}e{}{}}00666{BDbALd}{F`{{f{c}}}{}}00{F`{{f{jc}}}{}}00555{F`Cj}00{cc{}}004000{ce{}{}}00{{}F`}00{{}c{}}00000{{{Hj{c}}}{{Hj{h}}}{}}00{{{Hl{c}}}{{Hl{h}}}{}}00{{{Hn{c}}}{{Hn{h}}}{}}00;;;333333{{}c{}}0{{}c{}}00{{{f{{BDb{c}}}}c}{{BOn{c}}}BCb}{{{f{j{BFd{c}}}}}{{Df{{ALd{cAJf}}}}}BCb}{{{f{j{BFf{c}}}}}{{Df{c}}}BCb}{{{f{{BFd{c}}}}}{{Id{F`{Df{F`}}}}}BCb}{{{f{{BFf{c}}}}}{{Id{F`{Df{F`}}}}}BCb}{BDbALd}{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{AEf{c}}}}}{}}00{fAEh}00{ce{}{}}00{{}c{}}00{f{{Df{{f{c}}}}}{}}00{{}c{}}00```{{{f{{BCl{}{{BCj{c}}}}}}c}{{BCl{}{{BCj{c}}}}}BCb}{{{f{{BCl{}{{BCj{c}}}}}}c}cBCb}1{{{f{{BCl{}{{BCj{c}}}}}}c}{{BAj{cAJf}}}BCb}11{{{f{{BCl{}{{BCj{c}}}}}}}{{BCl{}{{BCj{c}}}}}BCb}{{{f{{BCl{}{{BCj{c}}}}}}c{f{jAHj}}}CjBCb}{{{f{{BCl{}{{BCj{c}}}}}}}{{ALd{cAJf}}}BCb}{{{f{{BCl{}{{BCj{c}}}}}}c}{{ALd{cAJf}}}BCb}{{{f{{BCl{}{{BCj{c}}}}}}c}{{Id{{BCl{}{{BCj{c}}}}{BCl{}{{BCj{c}}}}}}}BCb}{{{f{{BCl{}{{BCj{c}}}}}}{AOf{c}}}{{BCl{}{{BCj{c}}}}}BCb}3{{{f{B@l}}{ALd{cAJf}}}{{ALd{cAJf}}}{}}{{{f{B@l}}{BAj{cAJf}}}{{BAj{cAJf}}}{}}99{{cccc}{{BEh{c}}}BCb}{{{BAj{cAJf}}{BAj{cAJf}}}cBCb}{{{ALd{cAJf}}{ALd{cAJf}}{ALd{cAJf}}}cBCb}{{cc}{{Id{cc}}}BFj}{{{BAj{cAJf}}}{{BAj{cAJf}}}BCb}{{{BAj{cAJf}}}{{BAj{cAJf}}}BFj}`````{eg{}{{b{c}}}{}}000{ce{}{}}000{{}c{}}000{f{{f{h}}}}000{{{f{j}}}{{f{jh}}}}000{f{{f{c}}}{}}000{{{f{j}}}{{f{jc}}}{}}000{{{An{c}}}e{}{}}000{c{{C@`{c}}}{{BGn{}{{Cn{{ALd{M`AJf}}}}}}}}7777{F`{{f{c}}}{}}000{F`{{f{jc}}}{}}0005555{F`Cj}000{{C@bM`}{{C@d{C@b}}}}0{cc{}}0000000{ce{}{}}000{{}F`}000{{}c{}}0000000{{{Hj{c}}}{{Hj{h}}}{}}000{{{Hl{c}}}{{Hl{h}}}{}}000{{{Hn{c}}}{{Hn{h}}}{}}000<<<<33333333{{}c{}}000{{}c{}}000{{M`c}{{C@d{c}}}{{BGn{}{{Cn{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}}}}}}{{{f{c}}e}{{C@f{ec}}}{{B@l{M`}}}{{BGn{}{{Cn{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}}}}}}{{Bfc}{{C@`{c}}}{{BGn{}{{Cn{{ALd{M`AJf}}}}}}}}{{{f{j{B@h{c}}}}}{{Df{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}}}{{BGn{}{{Cn{{AM`{{Id{{ALd{M`AJf}}{f{{Lf{M`}}}}}}{ALd{M`AJf}}}}}}}}}}{{{f{j{C@d{c}}}}}{{Df{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}}}{{BGn{}{{Cn{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}}}}}}{{{f{j{C@f{ce}}}}}{{Df{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}}}{{BGn{}{{Cn{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}}}}}{{B@l{M`}}}}{{{f{j{C@`{c}}}}}{{Df{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}}}{{BGn{}{{Cn{{ALd{M`AJf}}}}}}}}{c{{C@`{c}}}{{BGn{}{{Cn{{ALd{M`AJf}}}}}}}}{{{f{{C@d{c}}}}}{{Id{F`{Df{F`}}}}}{{BGn{}{{Cn{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}}}}}}{{C@b{f{c}}}{{C@f{C@bc}}}{{B@l{M`}}}}0{{}{{G`{c}}}{}}000{c{{G`{e}}}{}{}}000{{}{{G`{c}}}{}}000{{}{{G`{c{AEf{c}}}}}{}}000{fAEh}000{ce{}{}}000{{}c{}}000{f{{Df{{f{c}}}}}{}}000{{}c{}}000{{{B@h{c}}}c{{BGn{}{{Cn{{AM`{{Id{{ALd{M`AJf}}{f{{Lf{M`}}}}}}{ALd{M`AJf}}}}}}}}}}`````````{C@hM`}{C@jM`}{C@lM`}00000{C@nALd}0{{M`M`}{{ALd{M`AJf}}}}{CA`M`}{{M`M`}{{BGj{M`AJf}}}}{{M`M`}{{BAj{M`AJf}}}}6{CAbM`}{CAdM`}{CAfM`}210``````````````{eg{}{{b{c}}}{}}00{ce{}{}}00{{}c{}}00{f{{f{h}}}}00{{{f{j}}}{{f{jh}}}}00{{{f{jALl}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}{{{f{jALl}}{ALd{M`AJf}}}AL`}{{{f{jCAh}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}0{f{{f{c}}}{}}00{{{f{j}}}{{f{jc}}}{}}00{ALlF`}0{CAhF`}0{{{An{c}}}e{}{}}00{{{f{AOn}}}AOn}{{f{f{jc}}}Cj{}}{{fCl}Cj}>>>{{{f{jALl}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}{{{f{jALl}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}}AL`}{{{f{jCAh}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}0{F`{{f{c}}}{}}00{F`{{f{jc}}}{}}00<<<{F`Cj}00{{{f{jALl}}Bf}Cj}0{{{f{jCAh}}Bf}Cj}0{cc{}}00000{ce{}{}}00{{}F`}00{{}c{}}00000{{{Hj{c}}}{{Hj{h}}}{}}00{{{Hl{c}}}{{Hl{h}}}{}}00{{{Hn{c}}}{{Hn{h}}}{}}00{{{An{c}}}e{}{}}00444444{{}c{}}{{}c{}}00{{{f{jALl}}{ALd{M`AJf}}}AL`}{{{f{jALl}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}{{{f{jCAh}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}0{{{f{jAKl}}F`}CAh}{{{f{jAOn}}}{{Df{AKj}}}}0{{{f{ALl}}}F`}{{{f{CAh}}}F`}{{{f{jALl}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}{{{f{jALl}}{ALd{M`AJf}}{ALd{M`AJf}}}AL`}{{{f{jCAh}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}0{{{f{jALl}}F`F`}Cj}0{{{f{jCAh}}F`F`}Cj}0{{{f{AOn}}}{{Id{F`{Df{F`}}}}}}{fc{}}{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{AEf{c}}}}}{}}00{fAEh}00{ce{}{}}00{{}c{}}00{f{{Df{{f{c}}}}}{}}00{{}c{}}00{{ALlF`}CAh}``````{eg{}{{b{c}}}{}}000{ce{}{}}0005555{f{{f{h}}}}000{{{f{j}}}{{f{jh}}}}000{f{{f{c}}}{}}000{{{f{j}}}{{f{jc}}}{}}000{{{An{c}}}e{}{}}000{{{f{B@b}}}B@b}{{{f{{B@`{c}}}}}{{B@`{c}}}Ch}{{{f{{B@d{c}}}}}{{B@d{c}}}Ch}{{{f{AOd}}}AOd}{{f{f{jc}}}Cj{}}000{{fCl}Cj}000{AMhBf}{AMjBf}===={F`{{f{c}}}{}}000{F`{{f{jc}}}{}}000<<<<{F`Cj}000{cc{}}0000000{ce{}{}}000{{}F`}000{{}c{}}0000000{{{Hj{c}}}{{Hj{h}}}{}}000{{{Hl{c}}}{{Hl{h}}}{}}000{{{Hn{c}}}{{Hn{h}}}{}}000{{{An{c}}}e{}{}}00044444444{{}c{}}000{{}c{}}000{{{AOf{BGd}}Bf}AOd}{{{f{jB@b}}}{{Df{{AM`{AL`ANf}}}}}}{{{f{j{B@`{c}}}}}{{Df{{AM`{{f{c}}Cj}}}}}{}}{{{f{j{B@d{c}}}}}{{Df{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}}}AOb}{{{f{jAOd}}}{{Df{{AM`{AL`ANf}}}}}}{{}{{CAj{c}}}{}}{AMhf}{AMjf}{fc{}}000{{}{{G`{c}}}{}}000{c{{G`{e}}}{}{}}000{{}{{G`{c}}}{}}000{{}{{G`{c{AEf{c}}}}}{}}000{fAEh}000{ce{}{}}000{{}c{}}000{f{{Df{{f{c}}}}}{}}000{{}c{}}000`````{{{f{jBB`}}{BAj{M`AJf}}{BAl{M`}}ALn{ALd{M`AJf}}}Cj}{{{f{jBAh}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}{{{BBl{}{{BBj{c}}}}}c{}}{{{f{jBB`}}}Cj}{{{f{jBAh}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}{{{f{jBB`}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}}Cj}{{{f{jBAh}}Bf}Cj}{{{f{jBB`}}M`}Cj}6{{{f{jBB`}}{ALd{M`AJf}}}Cj}0{{{f{BAh}}}F`}{{{f{jBAh}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}{{{f{jBB`}}{ALd{M`AJf}}{ALd{M`AJf}}}Cj}{{{f{jBB`}}{BAj{M`AJf}}{BAl{M`}}ALn{BAj{M`AJf}}}Cj}{{{f{jBB`}}{BAj{M`AJf}}{BAj{M`AJf}}{BAj{M`AJf}}}Cj}6{{{f{jBB`}}{BAj{M`AJf}}}Cj}0{{{f{jBB`}}{BAj{M`AJf}}{BAj{M`AJf}}}Cj}847018`````````````{AGhAGj}{AGhAGn}{AGhAGl}{AGnF`}{AGnf}{AGhAH`}{AGhM`}``````````{eg{}{{b{c}}}{}}000{ce{}{}}000{{}c{}}000{f{{f{h}}}}000{{{f{j}}}{{f{jh}}}}000{ABlAFl}{ABlAFb}{f{{f{c}}}{}}000{{{f{j}}}{{f{jc}}}{}}000{{{An{c}}}e{}{}}000{{{Bh{ceg}}i}{{Bh{ceg}}}{}BlBnAh}{{{f{{CAl{c}}}}}{{CAl{c}}}Ch}{{{f{ABj}}}ABj}{{{f{ABl}}}ABl}{{f{f{jc}}}Cj{}}00{{fCl}Cj}00{CAlBIf}????{{{f{l}}ABj}ABl}{{}c{}}{F`{{f{c}}}{}}000{F`{{f{jc}}}{}}000===={{{f{{Bh{ceg}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}}Cj{}BlBn}{F`Cj}000{{{f{{CAl{c}}}}{f{{CAl{c}}}}}BfIj}{{{f{ABj}}{f{ABj}}}Bf}{{{f{ABl}}{f{ABl}}}Bf}{{f{f{c}}}Bf{}}00{{{f{{CAl{c}}}}{f{jFl}}}GbGd}{{{f{ABj}}{f{jFl}}}Gb}{{{f{ABl}}{f{jFl}}}Gb}{{{Bh{ceg}}i}{{Bh{ceg}}}{}BlBnAh}{CAl}{cc{}}0000000{ce{}{}}000{{{Bh{ceg}}CAl}{{Bh{ceg}}}{}BlBn}{ABlAFj}{{}F`}000{{}c{}}0000000{{{Hj{c}}}{{Hj{h}}}{}}000{{{Hl{c}}}{{Hl{h}}}{}}00{{{Hn{c}}}{{Hn{h}}}{}}000{{{An{c}}}e{}{}}00044444444{{}c{}}000{{{f{{Bh{ceg}}}}{f{jCb}}{f{g}}{f{Il}}}In{}BlBn}{CAlAIf}{{{f{{Bh{ceg}}}}{f{Cb}}FfFh{f{Fj}}{f{g}}}Jh{}BlBn}{{cBf}{{Bh{egi}}}{{Ah{Bj}}}{}BlBn}{{{Bh{ceg}}i}{{Bh{ceg}}}{}BlBn{{Dn{Bf}{{Dl{c}}}}}}{{{Bh{ceg}}{Df{i}}}{{Bh{ceg}}}{}BlBn{{Dn{Bf}{{Dl{c}}}}}}{{{f{{Bh{ceg}}}}{f{jCb}}Ff{f{g}}{f{jK`}}}Cj{}BlBn}{{{f{l}}ABj}ABl}0{CAlAJd}{{{Bh{ceg}}i}{{Bh{ceg}}}{}BlBn{{Ah{Gj}}}}{{{f{{Bh{ceg}}}}}{{Jj{Od}}}{}BlBn}{CAlDf}2{{{f{{Bh{ceg}}}}}A@`{}BlBn}{{{f{{Bl{}{{AFh{c}}}}}}{f{c}}ABj}ABl{}}{{{Bh{ceg}}i}{{Bh{ceg}}}{}BlBn{{Dn{{f{e}}ABj}{{Dl{ABl}}}}}}7{{{f{{Bh{ceg}}}}}ACl{}BlBn}{ABlDf}{{{Bh{ceg}}i}{{Bh{ceg}}}{}BlBn{{Ah{AIf}}}}{{{Bh{ceg}}AJd}{{Bh{ceg}}}{}BlBn}9{{{Bh{ceg}}CAn}{{Bh{ceg}}}{}BlBn}{fc{}}00{{}{{G`{c}}}{}}000{c{{G`{e}}}{}{}}000{{}{{G`{c}}}{}}000{{}{{G`{c{AEf{c}}}}}{}}000{fAEh}000{ce{}{}}000{{}c{}}000{f{{Df{{f{c}}}}}{}}000{{{f{j{Bh{ceg}}}}{f{jCb}}{f{AEj}}FfFh{f{g}}{f{jAEl}}{f{j{AEn{c}}}}{f{Fj}}}Cj{}BlBn}{{}c{}}000{{{Bh{ceg}}i}{{Bh{ceg}}}{}BlBn{{Ah{Od}}}}{CB`Bf}{CBbBf}{CBdBf}```{eg{}{{b{c}}}{}}0{ce{}{}}099{f{{f{h}}}}0{{{f{j}}}{{f{jh}}}}0{f{{f{c}}}{}}0{{{f{j}}}{{f{jc}}}{}}0{{{An{c}}}e{}{}}0{{{f{{Dh{cegi}}}}}{{Cd{Cb}}}{DjCh}ChE`Bn}{{{f{{Db{c}}}}}{{Db{c}}}Ch}{{f{f{jc}}}Cj{}}{{fCl}Cj}99{{}{{Db{c}}}{DjCh}}{{}c{}}0{F`{{f{c}}}{}}0{F`{{f{jc}}}{}}0::{{{f{{Dh{cegi}}}}{f{Cb}}{f{ji}}{f{g}}{f{Fd}}FfFh{f{Fj}}}Cj{DjCh}ChE`Bn}{F`Cj}0{{{f{{Db{c}}}}{f{jFl}}}GbGd}{{{Dh{cegi}}}{{Dh{cegi}}}{DjCh}{}E`Bn}{cc{}}000{ce{}{}}0{{{Dh{cegi}}CBf}{{Dh{cegi}}}{DjCh}{}E`Bn}{{}F`}0{{{Dh{cegi}}k}{{Dh{cegi}}}{DjCh}{}E`BnAh}{{{Dh{cegi}}k}{{Dh{cegi}}}{DjCh}{}E`Bn{{Dn{{f{g}}ABf}{{Dl{ABh}}}}}}{{}c{}}000{{{Hj{c}}}{{Hj{h}}}{}}0{{{Hn{c}}}{{Hn{h}}}{}}0{{{An{c}}}e{}{}}03333{{}c{}}0{{{f{{Dh{cegi}}}}{f{jCb}}{f{i}}{f{Il}}}In{DjCh}ChE`Bn}{{{Dh{cegi}}k}{{Dh{cegi}}}{DjCh}{}E`Bn{{Ah{AIf}}}}8{{{Dh{cegi}}k}{{Dh{cegi}}}{DjCh}{}E`Bn{{Dn{{f{g}}}{{Dl{A@b}}}}}}{{{f{{Dh{cegi}}}}{f{Cb}}FfFh{f{Fj}}{f{i}}}Jh{DjCh}ChE`Bn}{{{f{{Db{c}}}}{f{Dd}}{Df{{f{c}}}}g}{{Dh{ceik}}}{DjCh}{}{{Dn{c}{{Dl{e}}}}}E`Bn}{{{Cd{c}}}{{Db{c}}}{DjCh}}6{{{Dh{cegi}}e}{{Dh{cegi}}}{DjCh}{}E`Bn}{{{Dh{cegi}}k}{{Dh{cegi}}}{DjCh}{}E`Bn{{Dn{Bj}{{Dl{e}}}}}}1{{{Dh{cegi}}k}{{Dh{cegi}}}{DjCh}{}E`Bn{{Dn{c}{{Dl{e}}}}}}{{{f{{Db{c}}}}}{{f{{Lf{c}}}}}{DjCh}}{{{f{j{Dh{cegi}}}}{f{jCb}}Ff{f{i}}Kd}{{Df{{Kf{egi}}}}}{DjCh}ChE`Bn}{{{Dh{cegi}}k}{{Dh{cegi}}}{DjCh}{}E`Bn{{Ah{AFd}}}}{{{f{{Dh{cegi}}}}}{{Jj{Od}}}{DjCh}ChE`Bn}{{{Dh{cegi}}M`}{{Dh{cegi}}}{DjCh}{}E`Bn}{{{f{{Dh{cegi}}}}}A@`{DjCh}ChE`Bn}{{{f{{Dh{cegi}}}}}ACl{DjCh}ChE`Bn}{fc{}}{{}{{G`{c}}}{}}0{c{{G`{e}}}{}{}}0{{}{{G`{c}}}{}}0{{}{{G`{c{AEf{c}}}}}{}}0{fAEh}0{ce{}{}}0{{}c{}}0{f{{Df{{f{c}}}}}{}}0{{{f{j{Dh{cegi}}}}{f{jCb}}{f{AEj}}FfFh{f{i}}{f{jAEl}}{f{j{AEn{e}}}}{f{Fj}}}Cj{DjCh}ChE`Bn}{{}c{}}0{{{Dh{cegi}}k}{{Dh{cegi}}}{DjCh}{}E`Bn{{Ah{Od}}}}{{{Cd{c}}{Df{{f{c}}}}}{{Db{c}}}{DjCh}}``````{eg{}{{b{c}}}{}}00{{{A`{ceg}}i}{{A`{ceg}}}{}AbAd{{Ah{Od}}}}000{{{A`{ceg}}i}{{A`{ceg}}}{}AbAd{{Ah{AId}}}}{{{A`{ceg}}i}{{A`{ceg}}}{}AbAd{{Ah{AJj}}}}{ce{}{}}00:::{f{{f{h}}}}00{{{f{j}}}{{f{jh}}}}00{cACb{{Ah{AFl}}}}{{ACbc}ACb{{Ah{AFl}}}}{ACbDf}{{ACbc}ACb{{Ah{AFb}}}}{ACbAFb}{{{f{l}}}ACb}{f{{f{c}}}{}}00{{{f{j}}}{{f{jc}}}{}}00{{{An{c}}}e{}{}}00>>>{{{f{{A`{ceg}}}}}{{Cd{Cb}}}{}AbAd}{{{A`{ceg}}i}{{A`{ceg}}}{}AbAdAh}{{{A`{ceg}}Bf}{{A`{ceg}}}{}AbAd}{{{f{CBh}}}CBh}{{{f{ACb}}}ACb}{{f{f{jc}}}Cj{}}0{{fCl}Cj}0{{ACbc}ACb{{Ah{AFj}}}}{ce{}{}}00<<{{}c{}}{{}ACb}{F`{{f{c}}}{}}00{F`{{f{jc}}}{}}00{{{f{{A`{ceg}}}}{f{jCb}}}Cj{}AbAd}{f{{f{c}}}{}}00{{{f{{A`{ceg}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}}Cj{}AbAd}{{{f{jc}}{f{ACb}}Fj}CjAd}{F`Cj}00{{{f{CBh}}{f{CBh}}}Bf}{{{f{ACb}}{f{ACb}}}Bf}{{f{f{c}}}Bf{}}00{{{f{CBh}}{f{jFl}}}Gb}{{{f{ACb}}{f{jFl}}}Gb}{cc{}}{ACb{{CBj{c}}}{}}{{{f{Dd}}}CBh}22{CBlACb}{AJnACb}{AFjACb}555{ce{}{}}00{{{f{CBh}}{f{jc}}}CjAIb}{{{A`{ceg}}i}{{A`{ceg}}}{}AbAd{{Ah{Od}}}}{{{A`{ceg}}i}{{A`{ceg}}}{}AbAd{{Ah{CBh}}}}{{}F`}00{{}c{}}00000{{{Hj{c}}}{{Hj{h}}}{}}00{{{Hl{c}}}{{Hl{h}}}{}}0{{{Hn{c}}}{{Hn{h}}}{}}00{{{An{c}}}e{}{}}00444444{{}c{}}00{{{f{Il}}OdOdM`M`AFdAIdAJjc}In{{Eh{{f{Il}}}{{Dl{In}}}}}}{{{f{{A`{ceg}}}}{f{jCb}}{f{g}}{f{Il}}}In{}AbAd}{{{A`{ceg}}i}{{A`{ceg}}}{}AbAd{{Ah{Gj}}}}0{{{f{{A`{ceg}}}}{f{Cb}}FfFh{f{Fj}}{f{g}}}Jh{}AbAd}{i{{A`{ceg}}}{}AbAd{{Ah{{Af{ceg}}}}}}{cCBh{{Ah{{CBn{Dd}}}}}}6{{{f{{A`{ceg}}}}{f{jCb}}Ff{f{g}}{f{jK`}}}Cj{}AbAd}{{{f{j{A`{ceg}}}}{f{jCb}}Ff{f{g}}Kd}{{Df{{Kf{ceg}}}}}{}AbAd}{{{A`{ceg}}i}{{A`{ceg}}}{}AbAd{{Ah{AFd}}}}{{{f{l}}}ACb}00{{ACbc}ACb{{Ah{AFf}}}}{ACbAFf}{{{f{{A`{ceg}}}}}{{Jj{Od}}}{}AbAd}{{{f{{A`{ceg}}}}}A@`{}AbAd}{{{f{{Ab{}{{AFh{c}}}}}}{f{c}}}ACb{}}{{{A`{ceg}}i}{{A`{ceg}}}{}AbAd{{Dn{{f{e}}}{{Dl{ACb}}}}}}6{{{f{{A`{ceg}}}}}ACl{}AbAd}{ACbDf}{fc{}}0{{{f{c}}}ACb{}}{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{AEf{c}}}}}{}}00{fAEh}00{ce{}{}}00{{}c{}}00{{}CBh}{f{{Df{{f{c}}}}}{}}00{{{f{j{A`{ceg}}}}{f{jCb}}{f{AEj}}FfFh{f{g}}{f{jAEl}}{f{j{AEn{c}}}}{f{Fj}}}Cj{}AbAd}{c{{Gf{{Df{Fj}}}}}{{Ah{CBh}}}}{{}c{}}00{{{A`{ceg}}i}{{A`{ceg}}}{}AbAd{{Ah{Od}}}}`````````{eg{}{{b{c}}}{}}00{ce{}{}}00888{f{{f{h}}}}00{{{f{j}}}{{f{jh}}}}00{f{{f{c}}}{}}00{{{f{j}}}{{f{jc}}}{}}00{{{An{c}}}e{}{}}00{{{f{AI`}}}AI`}{{{f{AHl}}}AHl}{{f{f{jc}}}Cj{}}0{{fCl}Cj}0999{{{Hh{c}}CC`}{{Hh{c}}}{}}{{}AHl}{F`{{f{c}}}{}}00{F`{{f{jc}}}{}}00:::{{{f{je}}Ff{f{Fj}}{f{c}}CC`AHlCCbM`M`}CjCh{{CCf{}{{CCd{c}}}}}}{{{f{{Hh{c}}}}{f{Cb}}{f{je}}{f{g}}{f{Fd}}FfFh{f{Fj}}}CjCh{{CCf{}{{CCd{c}}}}}{}}{F`Cj}00{{{f{AI`}}{f{AI`}}}Bf}{{{f{AHl}}{f{AHl}}}Bf}{{f{f{c}}}Bf{}}00000{{{Hh{c}}AHl}{{Hh{c}}}{}}{{{f{AI`}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AHl}}{f{jFl}}}{{G`{CjFn}}}}{{{f{{Hh{c}}}}{f{jFl}}}GbGd}{cc{}}{{{f{AI`}}}AI`}{cAI`{{Ah{CCh}}}}22222{cAI`{{Ah{CCj}}}}1{{BGdBGdc}AI`{{Ah{CCj}}}}{ce{}{}}00{{{f{AHl}}{f{jc}}}CjAIb}{{{Hh{c}}e}{{Hh{c}}}{}{{Ah{Od}}}}{{{f{AI`}}}CCl}{{}F`}00{{}c{}}00000{{{Hj{c}}}{{Hj{h}}}{}}00{{{Hl{c}}}{{Hl{h}}}{}}00{{{Hn{c}}}{{Hn{h}}}{}}00{{{An{c}}}e{}{}}00444444{{}c{}}00{{{f{e}}{f{Il}}{f{c}}OdOdCC`CCb}In{}{{CCf{}{{CCd{c}}}}}}{{{f{{Hh{c}}}}{f{jCb}}{f{e}}{f{Il}}}InCh{{CCf{}{{CCd{c}}}}}}{e{{Hh{c}}}{}{{Ah{c}}}}3{{{Hh{c}}e}{{Hh{c}}}{}{{Ah{M`}}}}{{{Hh{c}}e}{{Hh{c}}}{}{{Ah{CCb}}}}1{{{f{{Hh{c}}}}}{{Jj{Od}}}Ch}{fc{}}0{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{AEf{c}}}}}{}}00{fAEh}00{ce{}{}}00{{}c{}}00{f{{Df{{f{c}}}}}{}}00`{c{{CCn{c}}}{}}{{}c{}}00{{{Hh{c}}e}{{Hh{c}}}{}{{Ah{Od}}}}{CD`BGd}{CD`CCl}{CD`CCj}2``{eg{}{{b{c}}}{}}0{ce{}{}}099{f{{f{h}}}}0{{{f{j}}}{{f{jh}}}}0{f{{f{c}}}{}}0{{{f{j}}}{{f{jc}}}{}}0{{{An{c}}}e{}{}}0{{{f{CDb}}}CDb}{{f{f{jc}}}Cj{}}{{fCl}Cj}88{{{CCn{c}}CC`}{{CCn{c}}}{}}{{}CDb}{F`{{f{c}}}{}}0{F`{{f{jc}}}{}}099{{{f{{CCn{c}}}}{f{Cb}}{f{je}}{f{g}}{f{Fd}}FfFh{f{Fj}}}CjCh{{CCf{}{{CCd{c}}}}}{}}{F`Cj}0{{{CCn{c}}AHl}{{CCn{c}}}{}}{{{f{CDb}}{f{jFl}}}Gb}{cc{}}000{ce{}{}}0{{{CCn{c}}e}{{CCn{c}}}{}{{Ah{Od}}}}{{}F`}0{{}c{}}000{{{Hj{c}}}{{Hj{h}}}{}}0{{{Hl{c}}}{{Hl{h}}}{}}0{{{Hn{c}}}{{Hn{h}}}{}}0{{{An{c}}}e{}{}}04444{{}c{}}0{{{f{CDb}}}Bf}{{{f{{CCn{c}}}}{f{jCb}}{f{e}}{f{Il}}}InCh{{CCf{}{{CCd{c}}}}}}{{{CCn{c}}M`}{{CCn{c}}}{}}0{{{f{{CCn{c}}}}{f{Cb}}FfFh{f{Fj}}{f{e}}}JhCh{{CCf{}{{CCd{c}}}}}}{e{{CCn{c}}}{}{{Ah{c}}}}{{}CDb}6{{{CCn{c}}e}{{CCn{c}}}{}{{Ah{Gj}}}}4{{{f{c}}f{f{CDb}}JjCC`}JjCCf}{{{f{{CCn{c}}}}}{{Jj{Od}}}Ch}{{{f{{CCn{c}}}}}A@`Ch}{{{f{{CCn{c}}}}}AClCh}{fc{}}{{}{{G`{c}}}{}}0{c{{G`{e}}}{}{}}0{{}{{G`{c}}}{}}0{{}{{G`{c{AEf{c}}}}}{}}0{fAEh}0{ce{}{}}0{{}c{}}0{f{{Df{{f{c}}}}}{}}0{{{f{j{CCn{c}}}}{f{jCb}}{f{AEj}}FfFh{f{e}}{f{jAEl}}{f{j{AEn{g}}}}{f{Fj}}}CjCh{{CCf{}{{CCd{c}}}}}{}}{{}c{}}0{{{CCn{c}}e}{{CCn{c}}}{}{{Ah{Od}}}}```{eg{}{{b{c}}}{}}{{{If{cegi}}CDd}{{If{cegi}}}{IhIj}{}{}Ad}{ce{}{}}7{f{{f{h}}}}{{{f{j}}}{{f{jh}}}}{f{{f{c}}}{}}{{{f{j}}}{{f{jc}}}{}}{{{An{c}}}e{}{}}{{{f{{If{cegi}}}}}{{Cd{Cb}}}{IhIj}{}{}Ad}6{{}{{If{ceg}}}{IhIj}{}Ad}{F`{{f{c}}}{}}{F`{{f{jc}}}{}}{{{f{{If{cegi}}}}{f{jCb}}}Cj{IhIj}{}{}Ad}7{{{f{{If{cegi}}}}{f{Cb}}{f{ji}}{f{g}}{f{Fd}}FfFh{f{Fj}}}Cj{IhIj}{}{}Ad}{F`Cj}{{{If{cegi}}k}{{If{cegi}}}{IhIj}{}{}Ad{{D`{}{{Cn{{Id{c{Af{egi}}}}}}}}}}{cc{}}0{ce{}{}}{{{Cd{c}}{Cd{{Af{egi}}}}}{{If{cegi}}}{IhIj}{}{}Ad}{{{If{cegi}}k}{{If{cegi}}}{IhIj}{}{}Ad{{Ah{Od}}}}{{}F`}{{}c{}}0{{{Hj{c}}}{{Hj{h}}}{}}{{{Hn{c}}}{{Hn{h}}}{}}{{{An{c}}}e{}{}}33{{}c{}}{{{f{{If{cegi}}}}{f{jCb}}{f{i}}{f{Il}}}In{IhIj}{}{}Ad}{{{If{cegi}}k}{{If{cegi}}}{IhIj}{}{}Ad{{Ah{Gj}}}}{{{f{{If{cegi}}}}{f{Cb}}FfFh{f{Fj}}{f{i}}}Jh{IhIj}{}{}Ad}{{}{{If{cegi}}}{IhIj}{}{}Ad}4{{{f{{If{cegi}}}}{f{jCb}}Ff{f{i}}{f{jK`}}}Cj{IhIj}{}{}Ad}{{{f{j{If{cegi}}}}{f{jCb}}Ff{f{i}}Kd}{{Df{{Kf{egi}}}}}{IhIj}{}{}Ad}{{{If{cegi}}k}{{If{cegi}}}{IhIj}{}{}Ad{{Ah{AFd}}}}{{{If{cegi}}ck}{{If{cegi}}}{IhIj}{}{}Ad{{Ah{{Af{egi}}}}}}{{{If{cegi}}c{Df{k}}}{{If{cegi}}}{IhIj}{}{}Ad{{Ah{{Af{egi}}}}}}{{{f{{If{cegi}}}}}{{Jj{Od}}}{IhIj}{}{}Ad}8{{{f{{If{cegi}}}}}A@`{IhIj}{}{}Ad}{{{f{{If{cegi}}}}}ACl{IhIj}{}{}Ad}{{}{{G`{c}}}{}}{c{{G`{e}}}{}{}}{{}{{G`{c}}}{}}{{}{{G`{c{AEf{c}}}}}{}}{fAEh}{ce{}{}}{{}c{}}{f{{Df{{f{c}}}}}{}}{{{f{j{If{cegi}}}}{f{jCb}}{f{AEj}}FfFh{f{i}}{f{jAEl}}{f{j{AEn{e}}}}{f{Fj}}}Cj{IhIj}{}{}Ad}{{}c{}}{{{If{cegi}}k}{{If{cegi}}}{IhIj}{}{}Ad{{Ah{Od}}}}{F`{{If{cegi}}}{IhIj}{}{}Ad}{k{{If{cegi}}}{IhIj}{}{}Ad{{D`{}{{Cn{{Id{c{Af{egi}}}}}}}}}}`````````````````````{eg{}{{b{c}}}{}}0000000{ce{}{}}000000088888888{f{{f{h}}}}0000000{{{f{j}}}{{f{jh}}}}0000000{{{f{J`}}}{{f{Dd}}}}00{CDfAFl}{CDfAFb}{f{{f{c}}}{}}0000000{{{f{j}}}{{f{jc}}}{}}0000000{{{An{c}}}e{}{}}0000000{{{f{J`}}}Bf}{{{f{J`}}}J`}{{{f{CDh}}}CDh}{{{f{CDf}}}CDf}{{{f{Jb}}}Jb}{{{f{CDj}}}CDj}{{{f{Jd}}}Jd}{{{f{CDl}}}CDl}{{f{f{jc}}}Cj{}}000000{{fCl}Cj}000000{{{f{J`}}{f{J`}}}AHf}{{{f{CDh}}{f{CDh}}}AHf}{{Jd{f{{Lf{CDj}}}}e}{{Af{cgi}}}{}{{Dn{J`}{{Dl{c}}}}Ch}Jf{{Bn{}{{Hb{Hd}}}}}}{{}c{}}{{{f{CDn}}Jd{Df{{f{Dd}}}}{f{Dd}}{f{{Lf{CDj}}}}}{{Af{ceg}}}{}Jf{{Bn{}{{Hb{Hd}}}}}}{JdGj}{{f{f{c}}}AHf{}}0{ce{}{}}0000000{{}CE`}{F`{{f{c}}}{}}0000000{F`{{f{jc}}}{}}0000000{c{{G`{J`}}}CEb}0{{{f{CEd}}}{{G`{CEf}}}}{{{f{J`}}}{{Df{{f{Dd}}}}}}{f{{f{c}}}{}}0000000{F`Cj}0000000{{{f{J`}}{f{J`}}}Bf}{{{f{CDh}}{f{CDh}}}Bf}{{{f{CDf}}{f{CDf}}}Bf}{{{f{CDl}}{f{CDl}}}Bf}{{f{f{c}}}Bf{}}00000{{{f{J`}}{f{jFl}}}{{G`{CjFn}}}}0{{{f{CDh}}{f{jFl}}}{{G`{CjFn}}}}0{{{f{CDf}}{f{jFl}}}{{G`{CjFn}}}}{{{f{CE`}}{f{jFl}}}Gb}{{{f{Jb}}{f{jFl}}}Gb}{{{f{CDj}}{f{jFl}}}Gb}{{{f{Jd}}{f{jFl}}}Gb}{{{f{CDl}}{f{jFl}}}Gb}?{cc{}}000000{{{f{l}}}Jd}{lJd}2{EdCDl}{{{f{l}}}CDl}{lCDl}55555555{c{{G`{J`Cj}}}{{Nj{BHl}}}}03{ce{}{}}0000000{{{f{Dd}}}{{G`{J`CEh}}}}{JdGj}00000{{{f{J`}}}Bf}0{{{f{J`}}{f{jc}}}CjAIb}{{{f{CDh}}{f{jc}}}CjAIb}{{Jd{f{CDh}}{f{CDj}}F`e}{{Af{cgi}}}{}{{Dn{J`}{{Dl{c}}}}}Jf{{Bn{}{{Hb{Hd}}}}}}{{{f{CDn}}Jd{f{CDh}}{f{CDj}}F`}{{Af{ceg}}}{}Jf{{Bn{}{{Hb{Hd}}}}}}{{{f{J`}}}{{Df{{CEj{{f{Dd}}}}}}}}{{{f{J`}}}{{Df{{f{Dd}}}}}}{{{f{CDn}}Jd{f{J`}}{f{Dd}}{f{CDj}}}{{Af{ceg}}}{}Jf{{Bn{}{{Hb{Hd}}}}}}{{{f{CE`}}}{{f{{CEl{J`}}}}}}{{{f{J`}}{AOf{CEn}}}{{f{Dd}}}}{{{f{J`}}{CF`{CEn}}}{{f{Dd}}}}{{{f{J`}}{CFb{CEn}}}{{f{Dd}}}}{{{f{J`}}CFd}{{f{Dd}}}}{{}F`}0000000{CDlAFj}{CDlCDf}{CDlAFd}{{}c{}}000000000000000{{{Hj{c}}}{{Hj{h}}}{}}0000000{{{Hl{c}}}{{Hl{h}}}{}}0000{{{Hn{c}}}{{Hn{h}}}{}}0000000{{{An{c}}}e{}{}}00000004444444444444444{{}c{}}0000000{J`Bj}{{{f{J`}}}Bf}{{{f{i}}Jd{f{Jb}}F`}{{Af{ceg}}}{}Jf{{Bn{}{{Hb{Hd}}}}}{{CDn{ceg}}}}{{{f{CE`}}}{{f{{Lf{Jb}}}}}}{{{f{J`}}{f{Dd}}}{{G`{J`CEh}}}}{fF`}{fCl}?{{{f{J`}}{f{J`}}}{{Df{Bj}}}}{{}CE`}9{J`c{}}{{}CFf}{{{f{i}}JdBJ`{f{{Lf{{Cd{Jb}}}}}}}{{Af{ceg}}}{}Jf{{Bn{}{{Hb{Hd}}}}}{{CDn{ceg}}}}{{{f{CDn}}JdBJ`{f{{Lf{{Cd{Jb}}}}}}}{{Af{ceg}}}{}Jf{{Bn{}{{Hb{Hd}}}}}}{{{f{J`}}}CFh}{{Jd{f{CDj}}e}{{Af{cgi}}}{}{{Dn{J`}{{Dl{c}}}}}Jf{{Bn{}{{Hb{Hd}}}}}}{{{f{CDn}}Jd{f{CDj}}}{{Af{ceg}}}{}Jf{{Bn{}{{Hb{Hd}}}}}}{{{f{Dd}}}{{`{{BGn{}{{Cn{Jb}}}}}}}}{{{f{Dd}}}{{G`{J`CEh}}}}{{{f{Dd}}}CE`}{{{f{Dd}}c}{{G`{J`CEh}}}D`}{{{f{J`}}{f{J`}}}{{Df{AHf}}}}{{{f{CDh}}{f{CDh}}}{{Df{AHf}}}}{{{f{J`}}}{{Df{{f{Dd}}}}}}{{{f{J`}}}{{f{Dd}}}}{{{f{J`}}}{{Df{{CFj{BIf}}}}}}{{{f{jJ`}}}{{G`{CFlCj}}}}{{{f{J`}}}{{Df{BJj}}}}0{{{f{jCE`}}{f{Dd}}}Cj}5{{{f{J`}}}CFn}{{{f{jJ`}}}{{CGb{CG`}}}}6{{{f{J`}}c}G`CGd}0{{{f{jJ`}}{Df{{f{Dd}}}}}Cj}{{{f{jJ`}}{Df{{f{Dd}}}}}{{G`{CjCEh}}}}{{{f{jJ`}}CGf}{{G`{CjCj}}}}{{{f{jJ`}}{Df{{f{Dd}}}}}{{G`{CjCj}}}}{{{f{jJ`}}{f{Dd}}}Cj}{{{f{jJ`}}{Df{BJj}}}{{G`{CjCj}}}}5{{{f{jJ`}}{f{Dd}}}{{G`{CjCj}}}}0{fCEd}{{{f{J`}}c}{{G`{{Cd{CGh}}BIj}}}{{Dn{}{{Dl{{Df{BJj}}}}}}}}{JdGj}{{{f{CDj}}CDl}{{Hl{{Lf{{Nh{J`}}}}}}}}{fCl}{JdCDl}3{{{f{J`}}}{{G`{CChCj}}}}{fc{}}000000{fADl}0{fBj}0{{}{{G`{c}}}{}}0000000{{{f{Dd}}}{{G`{J`}}}}{c{{G`{e}}}{}{}}0{F`{{G`{CDh}}}}111111{{}{{G`{c}}}{}}0000000{{}{{G`{c{AEf{c}}}}}{}}0000000{fAEh}0000000{ce{}{}}0000000{{}c{}}0000000{{{f{i}}Jd{f{{Lf{{Cd{Jb}}}}}}}{{Af{ceg}}}{}Jf{{Bn{}{{Hb{Hd}}}}}{{CDn{ceg}}}}{{{f{CDn}}Jd{f{{Lf{{Cd{Jb}}}}}}}{{Af{ceg}}}{}Jf{{Bn{}{{Hb{Hd}}}}}}{f{{Df{{f{c}}}}}{}}0000000{{{f{J`}}}{{f{Dd}}}}{{ce}{{Af{J`gi}}}{{D`{}{{Cn{{f{Jb}}}}}}}{{Ah{Jd}}}Jf{{Bn{}{{Hb{Hd}}}}}}{{ce{f{m}}}{{Af{gik}}}{{D`{}{{Cn{{f{Jb}}}}}}}{{Ah{Jd}}}{}Jf{{Bn{}{{Hb{Hd}}}}}{{CDn{gik}}}}{{}c{}}0000000{cJd{{Ah{CDl}}}}{{ce}Jd{{Ah{Gj}}}{{Ah{CDl}}}}{CGjCDj}{CGlBj}{CGnCd}{CGlDf}{CGlCd}{CGnDf}{CGjBj}{CGjJ`}```````{eg{}{{b{c}}}{}}00{ce{}{}}00{{}c{}}00{f{{f{h}}}}00{{{f{j}}}{{f{jh}}}}00{A@bAFl}{A@bAFb}{f{{f{c}}}{}}00{{{f{j}}}{{f{jc}}}{}}00{{{An{c}}}e{}{}}00{{{f{A@b}}}A@b}{{f{f{jc}}}Cj{}}{{fCl}Cj};;;{{{f{l}}}A@b}{{}c{}}{{}CH`}1{F`{{f{c}}}{}}00{F`{{f{jc}}}{}}00:::{F`Cj}00{{{f{A@b}}{f{A@b}}}Bf}{{{f{CH`}}{f{jFl}}}Gb}{{{f{A@b}}{f{jFl}}}Gb}{{{CHb{cegi}}k}{{CHb{cegi}}}{LdCh}{}LlBnAh}{cc{}}00000{ce{}{}}00{{}F`}00{{}c{}}00000{{{Hj{c}}}{{Hj{h}}}{}}00{{{Hl{c}}}{{Hl{h}}}{}}{{{Hn{c}}}{{Hn{h}}}{}}00{{{An{c}}}e{}{}}00444444{{}c{}}00{{{f{jCH`}}{f{{Lf{c}}}}{f{j{Df{F`}}}}g{Df{{f{Dn}}}}f}{{CHb{ceik}}}{LdCh}{}{{AHj{c}{{Dl{e}}}}}LlBn}{{}CH`}2{{{CHb{cegi}}AFnM`}{{Kf{egi}}}{LdCh}{}LlBn}{{{CHb{cegi}}k}{{CHb{cegi}}}{LdCh}{}LlBn{{Ah{AFd}}}}{A@bAFl}{A@bAFj}{{{f{{Ll{}{{AFh{c}}}}}}{f{c}}}A@b{}}1{{{CHb{cegi}}k}{{CHb{cegi}}}{LdCh}{}LlBn{{Ah{AIf}}}}{{{CHb{cegi}}AJd}{{CHb{cegi}}}{LdCh}{}LlBn}{{{CHb{cegi}}k}{{CHb{cegi}}}{LdCh}{}LlBn{{Ah{Gj}}}}{fc{}}{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{AEf{c}}}}}{}}00{fAEh}00{ce{}{}}00{{}c{}}00{f{{Df{{f{c}}}}}{}}00{{}c{}}00{{{CHb{cegi}}M`}{{CHb{cegi}}}{LdCh}{}LlBn}````````````````````````````````````````````{eg{}{{b{c}}}{}}00000000000000000{{{CHd{ceg}}}{{CHd{ceg}}}{}AbAd}{ce{}{}}00000000000000000666666666666666666{f{{f{h}}}}00000000000000000{{{f{j}}}{{f{jh}}}}00000000000000000{CHfAFl}{CHfAFb}{f{{f{c}}}{}}00000000000000000{{{f{j}}}{{f{jc}}}{}}00000000000000000{{{An{c}}}e{}{}}00000000000000000{{{f{CHh}}FfAFn}Bf}{{{f{{f{{L`{ceg}}}}}}FfAFn}Bf{}AbAd}{{{f{{Kj{ceg}}}}}{{Cd{Cb}}}{}KlAd}{{{L`{ceg}}i}{{L`{ceg}}}{}AbAdAh}{{{CHd{ceg}}i}{{CHd{ceg}}}{}AbAdAh}{{{Kj{ceg}}i}{{Kj{ceg}}}{}KlAdAh}{{{f{CHj}}}CHj}{{{f{{CHl{c}}}}}{{CHl{c}}}Ch}{{{f{CHn}}}CHn}{{{f{CI`}}}CI`}{{{f{Kn}}}Kn}{{{f{CIb}}}CIb}{{{f{CId}}}CId}{{{f{CIf}}}CIf}{{{f{CIh}}}CIh}{{{f{CIj}}}CIj}{{{f{CIl}}}CIl}{{{f{A@d}}}A@d}{{{f{CHf}}}CHf}{{{f{CIn}}}CIn}{{f{f{jc}}}Cj{}}0000000000000{{fCl}Cj}0000000000000{{{f{Kn}}{f{Kn}}}AHf}{{{f{CIb}}{f{CIb}}}AHf}{CInAFj}{{f{f{c}}}AHf{}}0{ce{}{}}00000000000000000{{{CHd{ceg}}i}{{CHd{ceg}}}{}AbAd{{Ah{{CJ`{ceg}}}}}}{{{f{l}}}A@d}{{}c{}}{{}CIh}{F`{{f{c}}}{}}00000000000000000{F`{{f{jc}}}{}}00000000000000000{{{f{{Kj{ceg}}}}{f{jCb}}}Cj{}KlAd}{f{{f{c}}}{}}00000000000000000{{{f{{L`{ceg}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}}Cj{}AbAd}{{{f{{CHd{ceg}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}Bf}Cj{}AbAd}{{{f{{Kj{ceg}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}}Cj{}KlAd}{F`Cj}00000000000000000{{ik}{{CJ`{ceg}}}{}AbAd{{Ah{{Af{ceg}}}}}{{Ah{{Af{ceg}}}}}}{{{f{CHj}}{f{CHj}}}Bf}{{{f{CHn}}{f{CHn}}}Bf}{{{f{Kn}}{f{Kn}}}Bf}{{{f{CIb}}{f{CIb}}}Bf}{{{f{A@d}}{f{A@d}}}Bf}{{{f{CHf}}{f{CHf}}}Bf}{{{f{CIn}}{f{CIn}}}Bf}{{f{f{c}}}Bf{}}00000000000{{{f{CHj}}{f{jFl}}}Gb}{{{f{{CHl{c}}}}{f{jFl}}}GbGd}{{{f{CHn}}{f{jFl}}}Gb}{{{f{CI`}}{f{jFl}}}Gb}{{{f{Kn}}{f{jFl}}}Gb}{{{f{CIb}}{f{jFl}}}Gb}{{{f{CId}}{f{jFl}}}Gb}{{{f{CIf}}{f{jFl}}}Gb}{{{f{CIh}}{f{jFl}}}Gb}{{{f{CIj}}{f{jFl}}}Gb}{{{f{CIl}}{f{jFl}}}Gb}{{{f{A@d}}{f{jFl}}}Gb}{{{f{CHf}}{f{jFl}}}Gb}{{{f{CIn}}{f{jFl}}}Gb}{cc{}}{i{{L`{ceg}}}{}AbAd{{Ah{{Af{ceg}}}}}}{{{Af{ceg}}}{{CJ`{ceg}}}{}AbAd}22222222222222222222222222222222222{ce{}{}}00000000000000000{{{f{CHj}}{f{jc}}}CjAIb}{{{f{CI`}}{f{jc}}}CjAIb}{{{f{Kn}}{f{jc}}}CjAIb}{{{f{CIb}}{f{jc}}}CjAIb}{{{Kj{ceg}}i}{{Kj{ceg}}}{}KlAd{{Ah{Od}}}}{A@dCHf}{A@dCIn}{{}F`}00000000000000000{{}c{}}00000000000000000000000000000000000{{{Hj{c}}}{{Hj{h}}}{}}00000000000000000{{{Hl{c}}}{{Hl{h}}}{}}0000000000000{{{Hn{c}}}{{Hn{h}}}{}}00000000000000000{{{An{c}}}e{}{}}00000000000000000444444444444444444444444444444444444{{}c{}}00000000000000000{{{f{{CHd{ceg}}}}FfAFn}Bf{}AbAd}{{{f{{Kj{ceg}}}}{f{jCb}}{f{g}}{f{Il}}}In{}KlAd}{{{f{{Kj{ceg}}}}{f{Cb}}FfFh{f{Fj}}{f{g}}}Jh{}KlAd}{i{{L`{ceg}}}{}AbAd{{Ah{{Af{ceg}}}}}}{i{{CJ`{ceg}}}{}AbAd{{Ah{{Af{ceg}}}}}}{i{{CHd{ceg}}}{}AbAd{{Ah{{Af{ceg}}}}}}{{{f{{Kh{c}}}}k}{{Kj{egi}}}{}{}KlAd{{Dn{Kn{f{c}}Bf}{{Dl{{L`{egi}}}}}}}}7{{{Kj{ceg}}i}{{Kj{ceg}}}{}KlAd{{Dn{Kn}{{Dl{c}}}}}}{{{Kj{ceg}}i}{{Kj{ceg}}}{}KlAd{{Dn{CId}{{Dl{c}}}}}}{{{Kj{ceg}}ik}{{Kj{ceg}}}{}KlAd{{Ah{Gj}}}{{Dn{CIl}{{Dl{c}}}}}}{{{f{{Kj{ceg}}}}{f{jCb}}Ff{f{g}}{f{jK`}}}Cj{}KlAd}{{{f{j{Kj{ceg}}}}{f{jCb}}Ff{f{g}}Kd}{{Df{{Kf{ceg}}}}}{}KlAd}{{{CHd{ceg}}i}{{CHd{ceg}}}{}AbAd{{Ah{AFd}}}}{{{f{CI`}}M`Jj}{{CJb{KnFj}}}}{{{f{Kn}}{f{Kn}}}{{Df{AHf}}}}{{{f{CIb}}{f{CIb}}}{{Df{AHf}}}}{A@dCIn}{CIlM`}{{{f{{Kj{ceg}}}}}{{Jj{Od}}}{}KlAd}{{{Kj{ceg}}i}{{Kj{ceg}}}{}KlAd{{Ah{Gj}}}}{{{f{CHj}}{f{Fj}}M`M`}{{Id{FjFj}}}}{CIlCIb}{{{f{CHj}}FjM`M`}Fj}{{{f{CI`}}M`Jj}{{CJb{CIb{Id{CHjFjM`}}}}}}{{{f{CI`}}}{{`{{BGn{}{{Cn{{f{CIb}}}}}}}}}}`{{{f{{Kj{ceg}}}}}A@`{}KlAd}{{{f{{Kl{}{{AFh{c}}}}}}{f{c}}}A@d{}}{{{L`{ceg}}i}{{L`{ceg}}}{}AbAd{{Dn{{f{e}}}{{Dl{ACb}}}}}}{{{CHd{ceg}}i}{{CHd{ceg}}}{}AbAd{{Dn{{f{e}}}{{Dl{ACb}}}}}}{{{Kj{ceg}}i}{{Kj{ceg}}}{}KlAd{{Dn{{f{e}}}{{Dl{A@d}}}}}}{{{f{{Kj{ceg}}}}}ACl{}KlAd}{{{L`{ceg}}{CHd{ceg}}}{{L`{ceg}}}{}AbAd}{fc{}}0000000000000{{}{{G`{c}}}{}}00000000000000000{c{{G`{e}}}{}{}}00000000000000000{{}{{G`{c}}}{}}00000000000000000{{}{{G`{c{AEf{c}}}}}{}}00000000000000000{fAEh}00000000000000000{ce{}{}}00000000000000000{{}c{}}00000000000000000{f{{Df{{f{c}}}}}{}}00000000000000000{{{f{j{Kj{ceg}}}}{f{jCb}}{f{AEj}}FfFh{f{g}}{f{jAEl}}{f{j{AEn{c}}}}{f{Fj}}}Cj{}KlAd}{{}c{}}00000000000000000{{{Kj{ceg}}i}{{Kj{ceg}}}{}KlAd{{Ah{Od}}}}{CInM`}{CJdHj}{CJdCHj}1{CJdM`}{CJfKn}{CJhKn}{CJjKn}{CJhCIf}{CJlHj}{CJlCHj}1{CJlCIb}{CJlM`}``````{eg{}{{b{c}}}{}}00{{{f{{Kh{c}}}}KnCHn}{{Df{Kn}}}{}}{ce{}{}}00{{}c{}}00{f{{f{h}}}}00{{{f{j}}}{{f{jh}}}}00{f{{f{c}}}{}}00{{{f{j}}}{{f{jc}}}{}}00{{{An{c}}}e{}{}}00{{{f{{Kh{c}}}}}{{Kh{c}}}Ch}{{{f{CJn}}}CJn}{{{f{CK`}}}CK`}{{f{f{jc}}}Cj{}}00{{fCl}Cj}00{{{f{j{Kh{c}}}}Kn}{{Df{{Id{cKn}}}}}{}}<<<{{}CK`}{F`{{f{c}}}{}}00{F`{{f{jc}}}{}}00;;;{F`Cj}{{{f{j{Kh{c}}}}KnCIf}Cj{}}11{{{f{CK`}}{f{CK`}}}Bf}{{{f{{Kh{c}}}}{f{jFl}}}GbGd}{{{f{CJn}}{f{jFl}}}Gb}{{{f{CK`}}{f{jFl}}}Gb}{cc{}}00000{{{f{j{CJb{Knc}}}}{CHl{c}}F`}CJn{}}{ce{}{}}00{{{f{{Kh{c}}}}Kn}{{Df{{f{c}}}}}{}}{{{f{j{Kh{c}}}}Kn}{{Df{{f{jc}}}}}{}}{{}F`}00{KhCJn}{{}c{}}00000{{{Hj{c}}}{{Hj{h}}}{}}00{{{Hl{c}}}{{Hl{h}}}{}}00{{{Hn{c}}}{{Hn{h}}}{}}00{{{An{c}}}e{}{}}00444444{{}c{}}00{{{f{{Kh{c}}}}}Bf{}}{{{f{{Kh{c}}}}}{{`{{BGn{}{{Cn{{Id{{f{Kn}}{f{c}}}}}}}}}}}{}}{{{f{j{Kh{c}}}}}{{`{{BGn{}{{Cn{{Id{{f{Kn}}{f{jc}}}}}}}}}}}{}}{{{f{{Kh{c}}}}}{{f{CI`}}}{}}{{{f{{Kh{c}}}}}F`{}}{{{f{j{Kh{c}}}}Kn}Cj{}}{{{f{{Kh{c}}}}}{{Df{Kn}}}{}}{{{f{j{Kh{c}}}}KnCIj}Cj{}}{c{{Id{{Kh{c}}Kn}}}{}}9{KhCJb}{{{f{CK`}}}{{Df{{Id{KnAFn}}}}}}{{{f{CK`}}}{{Df{{Id{CIbCHj}}}}}}{{{f{j{Kh{c}}}}CIbM`}Cj{}}{{{f{j{Kh{c}}}}}Cj{}}{{{f{j{Kh{c}}}}CHjKnc}{{Df{{Id{KnCIb}}}}}{}}{{{f{j{Kh{c}}}}KnKnCIh}Cj{}}{{{f{j{Kh{c}}}}KnKn}Cj{}}{fc{}}00{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{AEf{c}}}}}{}}00{fAEh}00{ce{}{}}00{{}c{}}00{f{{Df{{f{c}}}}}{}}00{{}c{}}00{e{{Kh{c}}}{}{{Ah{{CHl{c}}}}}}{CKbCHj}{CKdAFn}{CKdKn}{CKbCIb}```````````````{eg{}{{b{c}}}{}}0000{ce{}{}}000099999{f{{f{h}}}}0000{{{f{j}}}{{f{jh}}}}0000{ACfAFl}{ACfAFb}{f{{f{c}}}{}}0000{{{f{j}}}{{f{jc}}}{}}0000{{{An{c}}}e{}{}}0000{{{Lb{cegikm}}o}{{Lb{cegikm}}}{LdIjCh}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBnAh}{{{f{{CKf{c}}}}}{{CKf{c}}}Ch}{{{f{{CKh{c}}}}}{{CKh{c}}}Ch}{{{f{ACd}}}ACd}{{{f{ACf}}}ACf}{{f{f{jc}}}Cj{}}000{{fCl}Cj}000{CKhBIf}?????{{{f{l}}ACd}ACf}{{}c{}}{{}{{CKf{c}}}{}}1{F`{{f{c}}}{}}0000{F`{{f{jc}}}{}}0000?????{{{f{{Lb{cegikm}}}}{f{Cb}}{f{jm}}{f{k}}{f{Fd}}FfFh{f{Fj}}}Cj{ChLdIj}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn}{F`Cj}0000{{{f{{CKf{c}}}}{f{{CKf{c}}}}}BfIj}{{{f{{CKh{c}}}}{f{{CKh{c}}}}}BfIj}{{{f{ACd}}{f{ACd}}}Bf}{{{f{ACf}}{f{ACf}}}Bf}{{f{f{c}}}Bf{}}00{{{f{{CKf{c}}}}{f{jFl}}}GbGd}{{{f{{CKh{c}}}}{f{jFl}}}GbGd}{{{f{ACd}}{f{jFl}}}Gb}{{{f{ACf}}{f{jFl}}}Gb}{{{Lb{cegikm}}o}{{Lb{cegikm}}}{LdIjCh}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBnAh}{CKh}{cc{}}000000000{ce{}{}}0000{{{Lb{cegikm}}CKf}{{Lb{cegikm}}}{LdIjCh}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn}{ACfAFj}{{}F`}0000{{}c{}}000000000{{{Hj{c}}}{{Hj{h}}}{}}0000{{{Hl{c}}}{{Hl{h}}}{}}000{{{Hn{c}}}{{Hn{h}}}{}}0000{{{An{c}}}e{}{}}00004444444444{{}c{}}0000{{{f{{Lb{cegikm}}}}{f{jCb}}{f{m}}{f{Il}}}In{ChLdIj}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn}{CKhAIf}>{{{Lb{cegikm}}o}{{Lb{cegikm}}}{LdIjCh}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn{{Dn{{f{k}}}{{Dl{A@b}}}}}}{{{f{{Lb{cegikm}}}}{f{Cb}}FfFh{f{Fj}}{f{m}}}Jh{ChLdIj}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn}{{e{Df{g}}k}{{Lb{cegimo}}}{LdIjCh}{{Lh{{Lf{c}}}}}{{Lh{c}}}Ch{{Dn{c}{{Dl{i}}}}}LjBn}5{{{Lb{cegikm}}i}{{Lb{cegikm}}}{LdIjCh}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn}0{{{f{j{Lb{cegikm}}}}{f{jCb}}Ff{f{m}}Kd}{{Df{{Kf{ikm}}}}}{ChLdIj}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn}{{{Lb{cegikm}}o}{{Lb{cegikm}}}{LdIjCh}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn{{Ah{AFd}}}}{{{Lb{cegikm}}o}{{Lb{cegikm}}}{LdIjCh}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn{{Ah{Bj}}}}{ACfAFj}{CKhAJd}{{{f{{Lb{cegikm}}}}}{{Jj{Od}}}{ChLdIj}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn}{CKhDf}{{{f{{Lb{cegikm}}}}}A@`{ChLdIj}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn}{{{f{{Lj{}{{AFh{c}}}}}}{f{c}}ACd}ACf{}}{{{Lb{cegikm}}o}{{Lb{cegikm}}}{LdIjCh}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn{{Dn{{f{k}}ACd}{{Dl{ACf}}}}}}{{{f{{Lb{cegikm}}}}}ACl{ChLdIj}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn}7{{{Lb{cegikm}}o}{{Lb{cegikm}}}{LdIjCh}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn{{Ah{AIf}}}}{{{Lb{cegikm}}AJd}{{Lb{cegikm}}}{LdIjCh}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn}{{{Lb{cegikm}}o}{{Lb{cegikm}}}{LdIjCh}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn{{Ah{Gj}}}}{fc{}}000{{}{{G`{c}}}{}}0000{c{{G`{e}}}{}{}}0000{{}{{G`{c}}}{}}0000{{}{{G`{c{AEf{c}}}}}{}}0000{fAEh}0000{ce{}{}}0000{{}c{}}0000{f{{Df{{f{c}}}}}{}}0000{{{f{j{Lb{cegikm}}}}{f{jCb}}{f{AEj}}FfFh{f{m}}{f{jAEl}}{f{j{AEn{i}}}}{f{Fj}}}Cj{ChLdIj}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn}{{}c{}}0000{{{Lb{cegikm}}o}{{Lb{cegikm}}}{LdIjCh}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn{{Ah{Od}}}}{CKjCKh}0{CKlDf}{CKnBf}`{eg{}{{b{c}}}{}}{{{Ln{ceg}}i}{{Ln{ceg}}}Ch{}Ad{{Ah{Gj}}}}{ce{}{}}:{f{{f{h}}}}{{{f{j}}}{{f{jh}}}}{f{{f{c}}}{}}{{{f{j}}}{{f{jc}}}{}}{{{An{c}}}e{}{}}{{{f{{Ln{ceg}}}}}{{Cd{Cb}}}Ch{}Ad}6{F`{{f{c}}}{}}{F`{{f{jc}}}{}}{{{f{{Ln{ceg}}}}{f{jCb}}}CjCh{}Ad}6{{{f{{Ln{ceg}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}}CjCh{}Ad}{F`Cj}{cc{}}0{ce{}{}}{{}F`}{{}c{}}0{{{Hj{c}}}{{Hj{h}}}{}}{{{Hn{c}}}{{Hn{h}}}{}}<22{{}c{}}{{{Ln{ceg}}i}{{Ln{ceg}}}Ch{}AdOn}{{{f{{Ln{ceg}}}}{f{jCb}}{f{g}}{f{Il}}}InCh{}Ad}{{{f{{Ln{ceg}}}}{f{Cb}}FfFh{f{Fj}}{f{g}}}JhCh{}Ad}{i{{Ln{ceg}}}Ch{}Ad{{Ah{{Af{ceg}}}}}}{{{Ln{ceg}}c}{{Ln{ceg}}}Ch{}Ad}{{{Ln{ceg}}i}{{Ln{ceg}}}Ch{}Ad{{Dn{Jj}{{Dl{c}}}}}}0{{{f{{Ln{ceg}}}}{f{jCb}}Ff{f{g}}{f{jK`}}}CjCh{}Ad}{{{f{j{Ln{ceg}}}}{f{jCb}}Ff{f{g}}Kd}{{Df{{Kf{ceg}}}}}Ch{}Ad}{{{f{{Ln{ceg}}}}}{{Jj{Od}}}Ch{}Ad}0{{{f{{Ln{ceg}}}}}A@`Ch{}Ad}{{{f{{Ln{ceg}}}}}AClCh{}Ad}{{}{{G`{c}}}{}}{c{{G`{e}}}{}{}}{{}{{G`{c}}}{}}{{}{{G`{c{AEf{c}}}}}{}}{fAEh}{ce{}{}}{{}c{}}{f{{Df{{f{c}}}}}{}}{{{f{j{Ln{ceg}}}}{f{jCb}}{f{AEj}}FfFh{f{g}}{f{jAEl}}{f{j{AEn{c}}}}{f{Fj}}}CjCh{}Ad}{{}c{}}``````{eg{}{{b{c}}}{}}0{ce{}{}}055{f{{f{h}}}}0{{{f{j}}}{{f{jh}}}}0{ABdAFl}0{ABdAFb}{f{{f{c}}}{}}0{{{f{j}}}{{f{jc}}}{}}0{{{An{c}}}e{}{}}0{{{Md{c}}e}{{Md{c}}}MfAh}{{{f{ABd}}}ABd}{{f{f{jc}}}Cj{}}{{fCl}Cj};;{{{f{l}}}ABd}{{}c{}}{F`{{f{c}}}{}}0{F`{{f{jc}}}{}}0::{{{f{{Md{c}}}}{f{Cb}}{f{je}}{f{c}}{f{Fd}}FfFh{f{Fj}}}CjMfAd}{F`Cj}0{{{f{ABd}}{f{ABd}}}Bf}{{{f{ABd}}{f{jFl}}}Gb}{cc{}}000{ce{}{}}0{{{Md{c}}e}{{Md{c}}}Mf{{Ah{Od}}}}{{}F`}0{{}c{}}000{{{Hj{c}}}{{Hj{h}}}{}}0{{{Hl{c}}}{{Hl{h}}}{}}0{{{Hn{c}}}{{Hn{h}}}{}}0{{{An{c}}}e{}{}}04444{{}c{}}0{{{f{{Md{c}}}}{f{jCb}}{f{e}}{f{Il}}}InMfAd}8{{{Mb{M`}}M`}{{Md{c}}}Mf}{{{f{l}}}ABd}0{{{f{{Md{c}}}}}{{Jj{Od}}}Mf}{{{f{{Mf{}{{AFh{c}}}}}}{f{c}}}ABd{}}{{{Md{c}}e}{{Md{c}}}Mf{{Dn{{f{c}}}{{Dl{ABd}}}}}}3{fc{}}{{}{{G`{c}}}{}}0{c{{G`{e}}}{}{}}0{{}{{G`{c}}}{}}0{{}{{G`{c{AEf{c}}}}}{}}0{fAEh}0{ce{}{}}0{{}c{}}0{f{{Df{{f{c}}}}}{}}0{{{Md{c}}}{{Md{c}}}Mf}{{}c{}}0>````````````````````{eg{}{{b{c}}}{}}00000{ce{}{}}00000555555{f{{f{h}}}}00000{{{f{j}}}{{f{jh}}}}00000{A@jAFj}{f{{f{c}}}{}}00000{{{f{j}}}{{f{jc}}}{}}00000{{{An{c}}}e{}{}}000003{{{Mj{c}}e}{{Mj{c}}}Ml{{Ah{Gj}}}}{{{Mj{c}}e}{{Mj{c}}}MlAh}{{{f{CL`}}}CL`}{{{f{CLb}}}CLb}{{{f{CLd}}}CLd}{{{f{A@j}}}A@j}{{f{f{jc}}}Cj{}}000{{fCl}Cj}000>>>>>>{{{f{l}}}A@j}{{}c{}}{F`{{f{c}}}{}}00000{F`{{f{jc}}}{}}00000>>>>>>{{{f{{Mj{c}}}}{f{Cb}}{f{jCLf}}{f{c}}{f{Fd}}FfFh{f{Fj}}}CjMl}{F`Cj}00000{{{f{CL`}}{f{CL`}}}Bf}{{{f{CLb}}{f{CLb}}}Bf}{{{f{CLd}}{f{CLd}}}Bf}{{{f{A@j}}{f{A@j}}}Bf}{{f{f{c}}}Bf{}}00000000{{{f{Mh}}{f{jFl}}}Gb}{{{f{CL`}}{f{jFl}}}Gb}{{{f{CLb}}{f{jFl}}}Gb}{{{f{CLd}}{f{jFl}}}Gb}0{{{f{A@j}}{f{jFl}}}Gb}{cc{}}000{CLhCLd}11111111{ce{}{}}00000{{}F`}00000{{}c{}}00000000000{{{Hj{c}}}{{Hj{h}}}{}}00000{{{Hl{c}}}{{Hl{h}}}{}}000{{{Hn{c}}}{{Hn{h}}}{}}00000{{{An{c}}}e{}{}}00000444444444444{{}c{}}00000{{{f{{Mj{c}}}}{f{jCb}}{f{CLf}}{f{Il}}}InMl}{{{f{Mh}}}{{Mj{c}}}Ml}{c{{G`{MhCLd}}}{{Nj{{Lf{Cl}}}}}}{{{f{{Mj{c}}}}}{{Jj{Od}}}Ml}{{{f{{Mj{c}}}}}A@`Ml}{{{f{{Ml{}{{AFh{c}}}}}}{f{c}}}A@j{}}{{{Mj{c}}e}{{Mj{c}}}Ml{{Dn{{f{c}}}{{Dl{A@j}}}}}}{{{f{{Mj{c}}}}}AClMl}{fc{}}000{fADl}{fBj}{{{Mj{c}}e}{{Mj{c}}}Ml{{Ah{Gj}}}}{{}{{G`{c}}}{}}00000{c{{G`{e}}}{}{}}00000{{}{{G`{c}}}{}}00000{{}{{G`{c{AEf{c}}}}}{}}00000{fAEh}00000{ce{}{}}00000{{}c{}}00000{f{{Df{{f{c}}}}}{}}00000{{}c{}}00000{{cCLb}{{G`{MhCLd}}}{{Nj{{Lf{Cl}}}}}}{{cCL`CLb}{{G`{MhCLd}}}{{Nj{{Lf{Cl}}}}}}``````````{eg{}{{b{c}}}{}}00{ce{}{}}00666{f{{f{h}}}}00{{{f{j}}}{{f{jh}}}}00{AAnAFl}{AAnAFj}{AAnM`}{f{{f{c}}}{}}00{{{f{j}}}{{f{jc}}}{}}00{{{An{c}}}e{}{}}00{{{Mn{ceg}}i}{{Mn{ceg}}}ChNbBnAh}{{{f{AAl}}}AAl}{{{f{AAn}}}AAn}{{f{f{jc}}}Cj{}}0{{fCl}Cj}0==={{{f{l}}AAl}AAn}{{}c{}}{F`{{f{c}}}{}}00{F`{{f{jc}}}{}}00=;;;{{{f{{Mn{ceg}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}}CjChNbBn}{F`Cj}00{{{f{AAl}}{f{AAl}}}Bf}{{{f{AAn}}{f{AAn}}}Bf}{{f{f{c}}}Bf{}}00{{{f{AAl}}{f{jFl}}}Gb}{{{f{AAn}}{f{jFl}}}Gb}?{cc{}}00000{ce{}{}}00{{}F`}00{{}c{}}00000{{{Hj{c}}}{{Hj{h}}}{}}00{{{Hl{c}}}{{Hl{h}}}{}}00{{{Hn{c}}}{{Hn{h}}}{}}00{{{An{c}}}e{}{}}00444444{{}c{}}00{{{f{{Mn{ceg}}}}{f{jCb}}{f{g}}{f{Il}}}InChNbBn}{{{f{{Mn{ceg}}}}{f{Cb}}FfFh{f{Fj}}{f{g}}}JhChNbBn}{{ce{Df{e}}i}{{Mn{gkm}}}{{Ah{Bj}}}{N`Ih}Ch{{Eh{e}{{Dl{g}}}}}NbBn}{{{Mn{ceg}}i}{{Mn{ceg}}}ChNbBn{{Ah{Gj}}}}{{{f{{Mn{ceg}}}}}{{Jj{Od}}}ChNbBn}1{{{f{{Mn{ceg}}}}}A@`ChNbBn}{{{f{{Nb{}{{AFh{c}}}}}}{f{c}}AAl}AAn{}}{{{Mn{ceg}}i}{{Mn{ceg}}}ChNbBn{{Dn{{f{e}}AAl}{{Dl{AAn}}}}}}{{{f{{Mn{ceg}}}}}AClChNbBn}{AAnDf}{{{Mn{ceg}}i}{{Mn{ceg}}}ChNbBn{{Ah{AIf}}}}{{{Mn{ceg}}AJd}{{Mn{ceg}}}ChNbBn}8{{{Mn{ceg}}CAn}{{Mn{ceg}}}ChNbBn}{fc{}}0{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{AEf{c}}}}}{}}00{fAEh}00{ce{}{}}00{{}c{}}00{f{{Df{{f{c}}}}}{}}00{{{f{j{Mn{ceg}}}}{f{jCb}}{f{AEj}}FfFh{f{g}}{f{jAEl}}{f{j{AEn{c}}}}{f{Fj}}}CjChNbBn}{{}c{}}00{{{Mn{ceg}}i}{{Mn{ceg}}}ChNbBn{{Ah{Od}}}}{CLjBf}{CLlBf}``````````{eg{}{{b{c}}}{}}00{ce{}{}}00888{f{{f{h}}}}00{{{f{j}}}{{f{jh}}}}00{f{{f{c}}}{}}00{{{f{j}}}{{f{jc}}}{}}00{{{An{c}}}e{}{}}00{{{Gh{c}}e}{{Gh{c}}}GlAh}{{{f{AAj}}}AAj}{{{f{CLn}}}CLn}{{f{f{jc}}}Cj{}}0{{fCl}Cj}0{AAjAFj};;;{{{f{l}}}AAj}{{}c{}}{F`{{f{c}}}{}}00{F`{{f{jc}}}{}}00<<<{{{f{{Gh{c}}}}{f{Cb}}{f{je}}{f{c}}{f{Fd}}FfFh{f{Fj}}}CjGlAd}{F`Cj}00{{{f{AAj}}{f{AAj}}}Bf}{{{f{CLn}}{f{CLn}}}Bf}{{{f{CLn}}M`}{{Id{M`M`}}}}{AAjCLn}{{{f{AAj}}{f{jFl}}}Gb}{{{f{CLn}}{f{jFl}}}Gb}{cc{}}00000{ce{}{}}00{c{{Gh{e}}}{{Ah{Gj}}}Gl}{{}F`}00{{}c{}}00000{{{Hj{c}}}{{Hj{h}}}{}}00{{{Hl{c}}}{{Hl{h}}}{}}00{{{Hn{c}}}{{Hn{h}}}{}}00{{{An{c}}}e{}{}}00444444{{}c{}}00{{{f{{Gh{c}}}}{f{jCb}}{f{e}}{f{Il}}}InGlAd}{AAjAJ`}{{{f{{Gh{c}}}}}{{Jj{Od}}}Gl}{{{f{{Gl{}{{AFh{c}}}}}}{f{c}}}AAj{}}{{{Gh{c}}e}{{Gh{c}}}Gl{{Dn{{f{c}}}{{Dl{AAj}}}}}}{fc{}}0{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{AEf{c}}}}}{}}00{fAEh}00{ce{}{}}00{{}c{}}00{f{{Df{{f{c}}}}}{}}00{c{{Gh{e}}}{{Ah{Gj}}}Gl}{{}c{}}00{AAjBJj}`````````````````````````{{{f{CM`}}}CMb}0{eg{}{{b{c}}}{}}00000000000{{CMdCMf}CMd}{{{Nl{ceg}}}{{Nl{ceg}}}{}NnAd}000{{{Nl{ceg}}CMf}{{Nl{ceg}}}{}NnAd}0{ce{}{}}00000000000::::::::::::{f{{f{h}}}}00000000000{{{f{j}}}{{f{jh}}}}00000000000{CMhDf}{CMhAFb}{CMjAFb}{f{{f{c}}}{}}00000000000{{{f{j}}}{{f{jc}}}{}}00000000000{{{f{CM`}}}Fj}{{{An{c}}}e{}{}}00000000000{{{f{{Nl{ceg}}}}}{{Cd{Cb}}}{}NnAd}{{{Nl{ceg}}i}{{Nl{ceg}}}{}NnAdAh}{{{f{CMb}}}CMb}{{{f{CMl}}}CMl}{{{f{CMn}}}CMn}{{{f{CMd}}}CMd}{{{f{CMf}}}CMf}{{{f{CN`}}}CN`}{{{f{CM`}}}CM`}{{{f{AAf}}}AAf}{{{f{AAh}}}AAh}{{{f{CMh}}}CMh}{{{f{CMj}}}CMj}{{f{f{jc}}}Cj{}}0000000000{{fCl}Cj}0000000000{CMjAFj}{ce{}{}}00000000000{AAhACb}{{{f{CM`}}}Fj}{{{f{l}}AAf}AAh}{{}c{}}{{}CMb}{{}CMl}{{}CMn}{{}CMd}{{}CMf}{F`{{f{c}}}{}}00000000000{F`{{f{jc}}}{}}00000000000{{{f{{Nl{ceg}}}}{f{jCb}}}Cj{}NnAd}{{{Nl{ceg}}i}{{Nl{ceg}}}{}NnAd{{Ah{CMn}}}}{f{{f{c}}}{}}00000000000{{{f{{Nl{ceg}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}}Cj{}NnAd}{F`Cj}00000000000{{{f{CMb}}{f{CMb}}}Bf}{{{f{CMl}}{f{CMl}}}Bf}{{{f{CMn}}{f{CMn}}}Bf}{{{f{CMd}}{f{CMd}}}Bf}{{{f{CMf}}{f{CMf}}}Bf}{{{f{CN`}}{f{CN`}}}Bf}{{{f{AAf}}{f{AAf}}}Bf}{{{f{AAh}}{f{AAh}}}Bf}{{{f{CMh}}{f{CMh}}}Bf}{{{f{CMj}}{f{CMj}}}Bf}{{f{f{c}}}Bf{}}00000000{{{f{CMb}}{f{jFl}}}{{G`{CjFn}}}}{{{f{CMl}}{f{jFl}}}{{G`{CjFn}}}}{{{f{CMn}}{f{jFl}}}Gb}{{{f{CMd}}{f{jFl}}}Gb}{{{f{CMf}}{f{jFl}}}Gb}{{{f{CN`}}{f{jFl}}}Gb}{{{f{CM`}}{f{jFl}}}Gb}{{{f{AAf}}{f{jFl}}}Gb}{{{f{AAh}}{f{jFl}}}Gb}{{{f{CMh}}{f{jFl}}}Gb}{{{f{CMj}}{f{jFl}}}Gb}{cc{}}00000{{{f{Dd}}}CN`}111111111111111111{ce{}{}}00000000000{AAhDf}{{{f{CN`}}{f{jc}}}CjAIb}{{{Nl{ceg}}i}{{Nl{ceg}}}{}NnAd{{Ah{Od}}}}{{{Nl{ceg}}}{{Nl{ceg}}}{}NnAd}{{{f{CMn}}}{{Df{{f{CMd}}}}}}{AAhCMh}{{{Nl{ceg}}i}{{Nl{ceg}}}{}NnAd{{Ah{CN`}}}}{{}F`}00000000000{{}c{}}00000000000000000000000{{{Hj{c}}}{{Hj{h}}}{}}00000000000{{{Hl{c}}}{{Hl{h}}}{}}0000000000{{{Hn{c}}}{{Hn{h}}}{}}00000000000{{{An{c}}}e{}{}}00000000000444444444444444444444444{{}c{}}00000000000{{{f{{Nl{ceg}}}}{f{jCb}}{f{g}}{f{Il}}}In{}NnAd}{{CMdc}CMd{{Ah{Gj}}}}{{{f{{Nl{ceg}}}}{f{Cb}}FfFh{f{Fj}}{f{g}}}Jh{}NnAd}{i{{Nl{ceg}}}{}NnAd{{Ah{{Af{ceg}}}}}}{{}CMd}{cCN`{{Ah{{CBn{Dd}}}}}}66666{{{Nl{ceg}}i}{{Nl{ceg}}}{}NnAd{{Dn{CM`}{{Dl{c}}}}}}{{{f{{Nl{ceg}}}}{f{jCb}}Ff{f{g}}{f{jK`}}}Cj{}NnAd}{{{f{j{Nl{ceg}}}}{f{jCb}}Ff{f{g}}Kd}{{Df{{Kf{ceg}}}}}{}NnAd}{{{f{CM`}}}CMl}{{cCMb}{{Gf{e}}}{{Ah{CN`}}}{}}0{CMhCMj}:{{{f{{Nl{ceg}}}}}{{Jj{Od}}}{}NnAd}{{cCMl}{{Gf{e}}}{{Ah{CN`}}}{}}{{{Nl{ceg}}i}{{Nl{ceg}}}{}NnAd{{Ah{Gj}}}}={{{f{{Nl{ceg}}}}}A@`{}NnAd}{{{f{{Nn{}{{AFh{c}}}}}}{f{c}}AAf}AAh{}}{{{Nl{ceg}}i}{{Nl{ceg}}}{}NnAd{{Dn{{f{e}}AAf}{{Dl{AAh}}}}}}{{{f{{Nl{ceg}}}}}ACl{}NnAd}{fc{}}0000000000{{}{{G`{c}}}{}}00000000000{c{{G`{e}}}{}{}}00000000000{{}{{G`{c}}}{}}00000000000{{}{{G`{c{AEf{c}}}}}{}}00000000000{fAEh}00000000000{ce{}{}}00000000000{{}c{}}00000000000{{}CN`}{f{{Df{{f{c}}}}}{}}00000000000{{{f{j{Nl{ceg}}}}{f{jCb}}{f{AEj}}FfFh{f{g}}{f{jAEl}}{f{j{AEn{c}}}}{f{Fj}}}Cj{}NnAd}{{{f{CMn}}}{{Df{{f{CMd}}}}}}{AAhCMh}{{}c{}}00000000000{{{Nl{ceg}}i}{{Nl{ceg}}}{}NnAd{{Ah{Od}}}}{{CMdc}CMd{{Ah{Gj}}}}{{ik}{{Nl{ceg}}}{}NnAd{{Ah{{Af{ceg}}}}}{{Ah{CMn}}}}{CMbM`}{CMlM`}10{CNbCMd}0{CNdBf}{CNfBf}{CNhBf}0121001````````{eg{}{{b{c}}}{}}00{ce{}{}}00{{}c{}}00{f{{f{h}}}}00{{{f{j}}}{{f{jh}}}}00{f{{f{c}}}{}}00{{{f{j}}}{{f{jc}}}{}}00{{{An{c}}}e{}{}}00{{{f{CNj}}}CNj}{{f{f{jc}}}Cj{}}{{fCl}Cj}999{{}CNl}{F`{{f{c}}}{}}00{F`{{f{jc}}}{}}00888{{{f{{Ob{}{{Jl{c}}{CNn{e}}}}}}{f{c}}FhFj}eKbCO`}{{{f{{O`{ce}}}}{f{Cb}}{f{jg}}{f{i}}{f{Fd}}FfFh{f{Fj}}}Cj{}{{Ob{c}}}COb{}}{F`Cj}00{{{f{CNj}}{f{jFl}}}{{G`{CjFn}}}}{{{f{CNl}}{f{jFl}}}{{G`{CjFn}}}}{cc{}}00000{ce{}{}}00{{{f{CNl}}}{{Df{{f{c}}}}}{}}{{{f{jCNl}}}{{Df{{f{jc}}}}}{}}{{{f{CNl}}}Bf}{{{O`{ce}}g}{{O`{ce}}}{}{{Ob{c}}}{{Ah{Od}}}}{{}F`}00{{}c{}}00000{{{Hj{c}}}{{Hj{h}}}{}}00{{{Hl{c}}}{{Hl{h}}}{}}0{{{Hn{c}}}{{Hn{h}}}{}}00{{{An{c}}}e{}{}}00444444{{}c{}}00{{{f{{O`{ce}}}}{f{jCb}}{f{g}}{f{Il}}}In{}{{Ob{c}}}COb}{{{f{CNj}}}Jj}{{{f{{Ob{}{{Jl{c}}{CNn{e}}}}}}{f{c}}FjFh}JhKbCO`}0{{{f{{O`{ce}}}}{f{Cb}}FfFh{f{Fj}}{f{g}}}Jh{}{{Ob{c}}}COb}{e{{O`{ce}}}{}{{Ob{c}}}}5{{{f{CNj}}}BGd}{{{f{CNj}}}{{Jj{BGd}}}}1{{{f{CO`}}{f{COd}}{f{COf}}COh{f{jCNl}}{f{Fj}}{f{CNj}}}Cj}{{{f{CNj}}}COj}{{{f{CO`}}{f{jCOl}}{f{CNl}}{f{COn}}{f{{Fj{BGd}}}}}Cj}{{{f{CNj}}}BH`}{{{f{{O`{ce}}}}}{{Jj{Od}}}{}{{Ob{c}}}}{{{f{{O`{ce}}}}}A@`{}{{Ob{c}}}}{{{f{jCNl}}c}CjD@`}{{{f{{O`{ce}}}}}ACl{}{{Ob{c}}}}{fc{}}{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{AEf{c}}}}}{}}00{fAEh}00{ce{}{}}00{{}c{}}00{f{{Df{{f{c}}}}}{}}00{{{f{{Ob{}{{Jl{c}}{CNn{e}}}}}}{f{jc}}{f{AEj}}FjFh}{{Df{{d{g}}}}}KbCO`{}}0{{{f{j{O`{ce}}}}{f{jCb}}{f{AEj}}FfFh{f{g}}{f{jAEl}}{f{j{AEn{c}}}}{f{Fj}}}Cj{}{{Ob{c}}}COb}{{}c{}}00{{{O`{ce}}g}{{O`{ce}}}{}{{Ob{c}}}{{Ah{Od}}}}{{{Jj{BGd}}BH`}CNj}```````````````{eg{}{{b{c}}}{}}00000{ce{}{}}00000888888{f{{f{h}}}}00000{{{f{j}}}{{f{jh}}}}00000{D@bAFl}{D@dId}{D@dAFb}{D@bAFj}{D@bM`}{f{{f{c}}}{}}00000{{{f{j}}}{{f{jc}}}{}}00000{{{An{c}}}e{}{}}00000{{{Of{ceg}}i}{{Of{ceg}}}{Ih{Oh{Cl}}Oj}ChOlAh}{{{f{AA`}}}AA`}{{{f{AAb}}}AAb}{{{f{D@d}}}D@d}{{{f{D@b}}}D@b}{{{f{D@f}}}D@f}{{f{f{jc}}}Cj{}}0000{{fCl}Cj}0000{ce{}{}}00000{{{f{l}}AA`}AAb}{{}c{}}{{{Of{ceg}}i}{{Of{ceg}}}{Ih{Oh{Cl}}Oj}ChOl{{Ah{c}}}}{F`{{f{c}}}{}}00000{F`{{f{jc}}}{}}00000{f{{f{c}}}{}}00000{{{f{{Of{ceg}}}}{f{Cb}}{f{ji}}{f{g}}{f{Fd}}FfFh{f{Fj}}}Cj{Ih{Ah{BH`}}D@h}ChOlAd}{F`Cj}00000{{{f{AA`}}{f{AA`}}}Bf}{{{f{AAb}}{f{AAb}}}Bf}{{{f{D@d}}{f{D@d}}}Bf}{{{f{D@b}}{f{D@b}}}Bf}{{{f{D@f}}{f{D@f}}}Bf}{{f{f{c}}}Bf{}}00{{{f{AA`}}{f{jFl}}}Gb}{{{f{AAb}}{f{jFl}}}Gb}{{{f{D@d}}{f{jFl}}}Gb}{{{f{D@b}}{f{jFl}}}Gb}{{{f{D@f}}{f{jFl}}}Gb}{cc{}}00000000000{ce{}{}}00000{AAbD@b}{{{Of{ceg}}i}{{Of{ceg}}}{Ih{Oh{Cl}}Oj}ChOl{{Ah{Gj}}}}{{}F`}00000{{}c{}}00000000000{{{Hj{c}}}{{Hj{h}}}{}}00000{{{Hl{c}}}{{Hl{h}}}{}}0000{{{Hn{c}}}{{Hn{h}}}{}}00000{{{An{c}}}e{}{}}00000444444444444{{}c{}}00000{{{f{{Of{ceg}}}}{f{jCb}}{f{i}}{f{Il}}}In{Ih{Ah{BH`}}D@h}ChOlAd}{{{f{{Of{ceg}}}}{f{Cb}}FfFh{f{Fj}}{f{i}}}Jh{Ih{Ah{BH`}}D@h}ChOlAd}{{{Mb{c}}cg}{{Of{cei}}}{Ih{Oh{Cl}}Oj}Ch{{Dn{c}{{Dl{e}}}}}Ol}{{{Of{ceg}}e}{{Of{ceg}}}{Ih{Oh{Cl}}Oj}ChOl}{AAbD@d}{D@bD@f}{{{Of{ceg}}i}{{Of{ceg}}}{Ih{Oh{Cl}}Oj}ChOl{{Ah{c}}}}{{{f{{Of{ceg}}}}}{{Jj{Od}}}{Ih{Ah{BH`}}D@h}ChOl}{{{f{{Of{ceg}}}}}A@`{Ih{Ah{BH`}}D@h}ChOl}2{{{f{{Ol{}{{AFh{c}}}}}}{f{c}}AA`}AAb{}}{{{Of{ceg}}i}{{Of{ceg}}}{Ih{Oh{Cl}}Oj}ChOl{{Dn{{f{g}}AA`}{{Dl{AAb}}}}}}{{{f{{Of{ceg}}}}}ACl{Ih{Ah{BH`}}D@h}ChOl}{fc{}}0000{{}{{G`{c}}}{}}00000{c{{G`{e}}}{}{}}00000{{}{{G`{c}}}{}}00000{{}{{G`{c{AEf{c}}}}}{}}00000{fAEh}00000{ce{}{}}00000{{}c{}}00000{f{{Df{{f{c}}}}}{}}00000{{{f{j{Of{ceg}}}}{f{jCb}}{f{AEj}}FfFh{f{i}}{f{jAEl}}{f{j{AEn{e}}}}{f{Fj}}}Cj{Ih{Ah{BH`}}D@h}ChOlAd}{{}c{}}00000{{{Of{ceg}}i}{{Of{ceg}}}{Ih{Oh{Cl}}Oj}ChOl{{Ah{Od}}}}{D@dM`}{{AAbc}AAb{{Ah{Gj}}}}{D@jAJ`}{D@lM`}{D@jBJj}`````````{eg{}{{b{c}}}{}}000{ce{}{}}000;;;;{f{{f{h}}}}000{{{f{j}}}{{f{jh}}}}000{f{{f{c}}}{}}000{{{f{j}}}{{f{jc}}}{}}000{{{An{c}}}e{}{}}000{{{ACh{c}}e}{{ACh{c}}}H`Ah}{{{f{ACj}}}ACj}{{{f{A@f}}}A@f}{{{f{A@h}}}A@h}{{f{f{jc}}}Cj{}}00{{fCl}Cj}00{A@hDf}<<<<{{{ACh{c}}CC`}{{ACh{c}}}H`}{{{f{ACj}}}{{f{D@n}}}}{{}c{}}{{}A@h}{F`{{f{c}}}{}}000{F`{{f{jc}}}{}}000????{{{f{{ACh{c}}}}{f{Cb}}{f{je}}{f{c}}{f{Fd}}FfFh{f{Fj}}}CjH`Hf}{F`Cj}000{{{f{ACj}}{f{ACj}}}Bf}{{{f{A@f}}{f{A@f}}}Bf}{{{f{A@h}}{f{A@h}}}Bf}{{f{f{c}}}Bf{}}00000{{{f{ACj}}{f{jFl}}}{{G`{CjFn}}}}{{{f{A@f}}{f{jFl}}}Gb}{{{f{A@h}}{f{jFl}}}Gb}{cc{}}{cACj{{Ah{CCh}}}}1{A@h{{DA`{c}}}{}}222222{cACj{{Ah{{CBn{{Lf{Cl}}}}}}}}{cACj{{Ah{CCh}}}}{c{{ACh{e}}}{{Ah{CCh}}}H`}{ce{}{}}000{{{f{ACj}}{f{jc}}}CjAIb}{{{ACh{c}}e}{{ACh{c}}}H`{{Ah{Od}}}}{{{f{ACj}}}BJ`}{{}F`}000{{}c{}}0000000{{{Hj{c}}}{{Hj{h}}}{}}000{{{Hl{c}}}{{Hl{h}}}{}}000{{{Hn{c}}}{{Hn{h}}}{}}000{{{An{c}}}e{}{}}00044444444{{}c{}}000{{{f{{ACh{c}}}}{f{jCb}}{f{e}}{f{Il}}}InH`Hf}{c{{ACh{e}}}{{Ah{ACj}}}H`}2{{{ACh{c}}e}{{ACh{c}}}H`{{Ah{M`}}}}{{{ACh{c}}e}{{ACh{c}}}H`{{Ah{CCb}}}}{{{f{{ACh{c}}}}}{{Jj{Od}}}H`}{{{f{{H`{}{{AFh{c}}}}}}{f{c}}A@f}A@h{}}{{{ACh{c}}e}{{ACh{c}}}H`{{Dn{{f{c}}A@f}{{Dl{A@h}}}}}}{fc{}}00{{}{{G`{c}}}{}}000{c{{G`{e}}}{}{}}000{{}{{G`{c}}}{}}000{{}{{G`{c{AEf{c}}}}}{}}000{fAEh}000{ce{}{}}000{{}c{}}000{f{{Df{{f{c}}}}}{}}000{{}c{}}000{{{ACh{c}}e}{{ACh{c}}}H`{{Ah{Od}}}}```````````````````````````{eg{}{{b{c}}}{}}000000{{{Nf{cegi}}k}{{Nf{cegi}}}Ch{}GnBn{{Ah{AId}}}}{{{Nf{cegi}}k}{{Nf{cegi}}}Ch{}GnBn{{Ah{AJj}}}}{ce{}{}}0000007777777{f{{f{h}}}}000000{{{f{j}}}{{f{jh}}}}000000{{{Nh{ce}}g}{{Nh{ce}}}{}{}{{Ah{AFl}}}}{{{Nh{ce}}{Df{g}}}{{Nh{ce}}}{}{}{{Ah{AFl}}}}{{{f{l}}}AAd}{{{Nh{ce}}g}{{Nh{ce}}}{}{}{{Ah{AFb}}}}{{{Nh{ce}}{Df{g}}}{{Nh{ce}}}{}{}{{Ah{AFb}}}}{f{{f{c}}}{}}000000{{{f{j}}}{{f{jc}}}{}}000000{{{An{c}}}e{}{}}000000{{{Nf{cegi}}}{{Nf{cegi}}}Ch{}GnBn}{{{f{j{DAh{}{{DAb{c}}{DAd{e}}{DAf{g}}}}}}F`}Cj{IjCh}{}{{BGn{}{{Cn{{Id{{AOf{F`}}e}}}}}}}}{{{Nf{cegi}}k}{{Nf{cegi}}}Ch{}GnBnAh}{{{f{AJd}}}AJd}{{{f{CAn}}}CAn}{{{f{AIf}}}AIf}{{{f{{Nh{ce}}}}}{{Nh{ce}}}ChCh}{{{f{AAd}}}AAd}{{f{f{jc}}}Cj{}}0000{{fCl}Cj}0000{{{Nf{cegi}}k}{{Nf{cegi}}}Ch{}GnBn{{Ah{AFj}}}}{{{Nh{ce}}g}{{Nh{ce}}}{}{}{{Ah{AFj}}}}{NhDf}{AAdDf}{{{Nf{cegi}}{Df{k}}}{{Nf{cegi}}}Ch{}GnBn{{Ah{AFj}}}}{{{Nh{ce}}{Df{g}}}{{Nh{ce}}}{}{}{{Ah{AFj}}}}{ce{}{}}000000{{{f{{DAh{}{{DAb{c}}{DAd{e}}{DAf{g}}}}}}}F`{IjCh}{}{{BGn{}{{Cn{{Id{{AOf{F`}}e}}}}}}}}{{{f{l}}}AAd}0{{}c{}}{{}{{Nf{cegi}}}Ch{}GnBn}{{}AJd}{{}CAn}{{}AIf}{{}{{Nh{ce}}}{}{}}{{}{{DAj{c}}}{KbDAl}}{{}AAd}{F`{{f{c}}}{}}000000{F`{{f{jc}}}{}}000000{f{{f{c}}}{}}000000{{{f{jc}}{f{Fd}}FffAAd{f{Fj}}}CjBn}{{{f{{Nf{cegi}}}}{f{Cb}}{f{ji}}{f{g}}{f{Fd}}FfFh{f{Fj}}}CjCh{}GnBn}{F`Cj}000000{{{f{AJd}}{f{AJd}}}Bf}{{{f{CAn}}{f{CAn}}}Bf}{{{f{AIf}}{f{AIf}}}Bf}{{{f{{Nh{ce}}}}{f{{Nh{ce}}}}}Bf{}Ij}{{{f{AAd}}{f{AAd}}}Bf}{{f{f{c}}}Bf{}}00000{{{f{AJd}}{f{jFl}}}{{G`{CjFn}}}}{{{f{CAn}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AIf}}{f{jFl}}}{{G`{CjFn}}}}{{{f{{Nh{ce}}}}{f{jFl}}}{{G`{CjFn}}}GdGd}{{{f{{DAj{c}}}}{f{jFl}}}{{G`{CjFn}}}{GdDAl}}{{{f{AAd}}{f{jFl}}}{{G`{CjFn}}}}{{{Nf{cegi}}k}{{Nf{cegi}}}Ch{}GnBnAh}{{{Nh{ce}}g}{{Nh{ce}}}{}{}{{Ah{e}}}}{NhDf}{{{Nh{ce}}{Df{g}}}{{Nh{ce}}}{}{}{{Ah{e}}}}{cc{}}000{M`AIf}{GjAIf}2{{{f{Dd}}}{{Nh{ce}}}{}{}}333333333{e{{Nf{cgik}}}Ch{{D`{}{{Cn{{Nh{c}}}}}}}{}GnBn}{ce{}{}}000000{{{f{AJd}}{f{jc}}}CjAIb}{{{f{CAn}}{f{jc}}}CjAIb}{{{f{AIf}}{f{jc}}}CjAIb}{{{Nf{cegi}}k}{{Nf{cegi}}}Ch{}GnBn{{Ah{Od}}}};{{{f{j{DAh{}{{DAb{c}}{DAd{e}}{DAf{g}}}}}}{f{Dd}}}g{IjCh}{}{{BGn{}{{Cn{{Id{{AOf{F`}}e}}}}}}}}{{}F`}000000{{}c{}}0000000000000{{{Hj{c}}}{{Hj{h}}}{}}000000{{{Hl{c}}}{{Hl{h}}}{}}00000{{{Hn{c}}}{{Hn{h}}}{}}000000{{{An{c}}}e{}{}}00000044444444444444{On{{CBn{Dd}}}}{{}c{}}000000{{{f{jDAj}}{f{c}}{f{Il}}OdOd{f{Dd}}AIf{Df{Gj}}DfAIdAJjAJdCAn}InBn}{{{f{{Nf{cegi}}}}{f{jCb}}{f{i}}{f{Il}}}InCh{}GnBn}{{{Nf{cegi}}k}{{Nf{cegi}}}Ch{}GnBn{{Ah{AIf}}}}{{{Nh{ce}}g}{{Nh{ce}}}{}{}{{Ah{AIf}}}}{NhDf}{{{Nh{ce}}g}{{Nh{ce}}}{}{}{{Ah{c}}}}1{{{Nh{ce}}{Df{g}}}{{Nh{ce}}}{}{}{{Ah{c}}}}{{{f{{Nf{cegi}}}}{f{Cb}}FfFh{f{Fj}}{f{i}}}JhCh{}GnBn}{{{f{c}}}{{DAh{}{{DAb{c}}{DAd{e}}{DAf{g}}}}}{IjCh}{}{{BGn{}{{Cn{{Id{{AOf{F`}}e}}}}}}}}{{}{{Nf{cegi}}}Ch{}GnBn}{c{{Nh{eg}}}On{}{}};;;;;;;{{{Nf{cegi}}k}{{Nf{cegi}}}Ch{}GnBn{{Dn{c}{{Dl{e}}}}}}{{{Nh{ce}}g}{{Nh{ce}}}{}{}{{Ah{AFd}}}}{NhAFd}{{{f{l}}}AAd}0{{{Nf{cegi}}k}{{Nf{cegi}}}Ch{}GnBn{{Ah{Gj}}}}{{{f{{Nf{cegi}}}}}{{Jj{Od}}}Ch{}GnBn}{{{Nh{ce}}g}{{Nh{ce}}}{}{}{{Ah{Gj}}}}={{{f{{Nf{cegi}}}}}A@`Ch{}GnBn}{{{Nh{ce}}Bf}{{Nh{ce}}}{}{}}{NhBf}{{{f{{Gn{}{{AFh{c}}}}}}{f{c}}}AAd{}}{{{Nf{cegi}}k}{{Nf{cegi}}}Ch{}GnBn{{Dn{{f{g}}}{{Dl{AAd}}}}}}8{{{f{{Nf{cegi}}}}}AClCh{}GnBn}{NhCBn}{{AIfGj}Gj}{fc{}}0000{{{Nh{ce}}}{{Nh{ce}}}{}{}}{{}{{G`{c}}}{}}000000{c{{G`{e}}}{}{}}000000{{}{{G`{c}}}{}}000000{{}{{G`{c{AEf{c}}}}}{}}000000{fAEh}000000{ce{}{}}000000{{}c{}}000000?>{f{{Df{{f{c}}}}}{}}000000{{{f{j{DAh{}{{DAb{c}}{DAd{e}}{DAf{g}}}}}}{f{c}}}Cj{IjCh}{}{{BGn{}{{Cn{{Id{{AOf{F`}}e}}}}}}}}{{{f{j{Nf{cegi}}}}{f{jCb}}{f{AEj}}FfFh{f{i}}{f{jAEl}}{f{j{AEn{e}}}}{f{Fj}}}CjCh{}GnBn}{{}c{}}000000{{{Nf{cegi}}k}{{Nf{cegi}}}Ch{}GnBn{{Ah{Od}}}}{e{{Nf{cgik}}}Ch{{Nj{{Lf{{Nh{c}}}}}}}{}GnBn}{{{Nf{cegi}}CAn}{{Nf{cegi}}}Ch{}GnBn}`````````````````````````````````````````````````````````````````{eg{}{{b{c}}}{}}00000000000{ce{}{}}00000000000999999999999{f{{f{h}}}}00000000000{{{f{j}}}{{f{jh}}}}00000000000{DAn{{f{Dd}}}}{A@nAFl}{A@nAFb}{f{{f{c}}}{}}00000000000{{{f{j}}}{{f{jc}}}{}}00000000000{{{An{c}}}e{}{}}00000000000{{{ADd{cegi}}k}{{ADd{cegi}}}DAh{}ADfBnAh}{{{f{DB`}}}DB`}{{{f{DBb}}}DBb}{{{f{DBd}}}DBd}{{{f{DBf}}}DBf}{{{f{DAn}}}DAn}{{{f{{DBh{c}}}}}{{DBh{c}}}Ch}{{{f{DBj}}}DBj}{{{f{A@l}}}A@l}{{{f{A@n}}}A@n}{{f{f{jc}}}Cj{}}00000000{{fCl}Cj}00000000{ce{}{}}00000000000{{{f{{AD`{c}}}}}{{Id{F`F`}}}Bn}{{{f{l}}A@l}A@n}{{}c{}}{{}{{AD`{c}}}Bn}{{}DBf}{{}DAn}{F`{{f{c}}}{}}00000000000{F`{{f{jc}}}{}}00000000000{{{f{DBd}}}DBl}{f{{f{c}}}{}}00000000000{{{f{{ADd{cegi}}}}{f{Cb}}{f{ji}}{f{g}}{f{Fd}}FfFh{f{Fj}}}CjDAh{}ADfBn}{F`Cj}00000000000{DBfDAn}{{{f{DB`}}{f{DB`}}}Bf}{{{f{DBb}}{f{DBb}}}Bf}{{{f{DBd}}{f{DBd}}}Bf}{{{f{DBf}}{f{DBf}}}Bf}{{{f{DAn}}{f{DAn}}}Bf}{{{f{{DBh{c}}}}{f{{DBh{c}}}}}BfIj}{{{f{DBj}}{f{DBj}}}Bf}{{{f{A@l}}{f{A@l}}}Bf}{{{f{A@n}}{f{A@n}}}Bf}{{f{f{c}}}Bf{}}00000000000{{{f{{AD`{c}}}}{f{jFl}}}GbBn}{{{f{DB`}}{f{jFl}}}{{G`{CjFn}}}}{{{f{DBb}}{f{jFl}}}{{G`{CjFn}}}}{{{f{DBd}}{f{jFl}}}{{G`{CjFn}}}}{{{f{DBf}}{f{jFl}}}{{G`{CjFn}}}}{{{f{DAn}}{f{jFl}}}{{G`{CjFn}}}}{{{f{{DBn{c}}}}{f{jFl}}}Gb{GdDAh}}{{{f{{DBh{c}}}}{f{jFl}}}GbGd}{{{f{DBj}}{f{jFl}}}Gb}{{{f{A@l}}{f{jFl}}}Gb}{{{f{A@n}}{f{jFl}}}Gb}{{{f{j{DBn{c}}}}}CjDAh}{{{ADd{cegi}}k}{{ADd{cegi}}}DAh{}ADfBnAh}{cc{}}00000000000000000000000{DBj{{Df{{DBh{c}}}}}{}}{ce{}{}}00000000000{{{ADd{cegi}}k}{{ADd{cegi}}}DAh{}ADfBn{{Ah{Od}}}}{{{ADd{cegi}}{f{Dd}}DC`}{{ADd{DCbegi}}}DAh{}ADf{{Bn{}{{Hb{Hd}}}}Bn}}{{{ADd{cegi}}{DCf{f{f{g}}}{{Dl{DCd}}}}}{{ADd{kegi}}}DAh{}ADfBnDAh}{A@nAFj}{{}F`}00000000000{{}c{}}00000000000000000000000{{{Hj{c}}}{{Hj{h}}}{}}00000000000{{{Hl{c}}}{{Hl{h}}}{}}00000000{{{Hn{c}}}{{Hn{h}}}{}}00000000000{{{An{c}}}e{}{}}00000000000444444444444444444444444{{}c{}}00000000000{{{f{DB`}}}Bf}{{{f{{DBn{c}}}}}BfDAh}0{DBjDCh}{{{ADd{cegi}}k}{{ADd{cegi}}}DAh{}ADfBn{{Dn{DBj}{{Dl{{Df{{DBh{e}}}}}}}}}}{{{f{{ADd{cegi}}}}{f{jCb}}{f{i}}{f{Il}}}InDAh{}ADfBn}{{{f{{AD`{c}}}}F`}{{Df{DBf}}}Bn}{{{f{{AD`{c}}}}}F`Bn}{{{f{{AD`{c}}}}}{{Df{DAn}}}Bn}{{{ADd{cegi}}k}{{ADd{cegi}}}DAh{}ADfBn{{Ah{AIf}}}}{{{f{{AD`{c}}}}}{{`{{BGn{}{{Cn{DBf}}}}}}}Bn}{{{ADd{cegi}}k}{{ADd{cegi}}}DAh{}ADfBn{{Ah{Gj}}}}0{DBjDCj}{{{f{{ADd{cegi}}}}{f{Cb}}FfFh{f{Fj}}{f{i}}}JhDAh{}ADfBn}{{{f{{AD`{c}}}}}{{ADd{ADbegc}}}Bn{}ADf}{{}{{AD`{c}}}Bn}???{{{ADd{cegi}}k}{{ADd{cegi}}}DAh{}ADfBn{{Dn{DB`}{{Dl{e}}}}}}{{{f{{ADd{cegi}}}}{f{jCb}}Ff{f{i}}{f{jK`}}}CjDAh{}ADfBn}{{{ADd{cegi}}k}{{ADd{cegi}}}DAh{}ADfBn{{Ah{AFd}}}}{{{f{j{AD`{c}}}}DB`}CjBn}{{{ADd{cegi}}k}{{ADd{cegi}}}DAh{}ADfBnOn}{A@nAFj}{{{f{{AD`{c}}}}}{{Df{Bj}}}Bn}1{{{f{{ADd{cegi}}}}}{{Jj{Od}}}DAh{}ADfBn}<{{{f{{ADd{cegi}}}}}A@`DAh{}ADfBn}{DBjA@l}{{{f{{ADf{}{{AFh{c}}}}}}{f{c}}A@l}A@n{}}{{{ADd{cegi}}k}{{ADd{cegi}}}DAh{}ADfBn{{Dn{{f{g}}A@l}{{Dl{A@n}}}}}}{{{f{{ADd{cegi}}}}}AClDAh{}ADfBn}{{{f{{AD`{c}}}}}BjBn}{DBfCBn}{DBjDf}{fc{}}00000000{{}{{G`{c}}}{}}00000000000{c{{G`{e}}}{}{}}00000000000{{}{{G`{c}}}{}}00000000000{{}{{G`{c{AEf{c}}}}}{}}00000000000{fAEh}00000000000{ce{}{}}00000000000{{}c{}}00000000000{{{f{j{DBn{c}}}}}CjDAh}{f{{Df{{f{c}}}}}{}}00000000000{{{f{j{ADd{cegi}}}}{f{jCb}}{f{AEj}}FfFh{f{i}}{f{jAEl}}{f{j{AEn{e}}}}{f{Fj}}}CjDAh{}ADfBn}{A@nAFj}{{}c{}}00000000000{DBdDBd}{{{ADd{cegi}}k}{{ADd{cegi}}}DAh{}ADfBn{{Ah{Gj}}}}{{{f{Dd}}}{{AD`{c}}}Bn}{{{ADd{cegi}}CAn}{{ADd{cegi}}}DAh{}ADfBn}{DClBJh}{DCnBf}````{{}AFd}``````````````{eg{}{{b{c}}}{}}0000000{{{ADh{ceg}}i}{{ADh{ceg}}}ChADjBn{{Ah{AId}}}}{ce{}{}}0000000????????{f{{f{h}}}}0000000{{{f{j}}}{{f{jh}}}}0000000{ABhAFl}{ABhAFb}{f{{f{c}}}{}}0000000{{{f{j}}}{{f{jc}}}{}}0000000{{{An{c}}}e{}{}}0000000{{{ADh{ceg}}i}{{ADh{ceg}}}ChADjBnAh}{{{f{DD`}}}DD`}{{{f{{CBf{c}}}}}{{CBf{c}}}Ch}{{{f{DDb}}}DDb}{{{f{DDd}}}DDd}{{{f{{DDf{c}}}}}{{DDf{c}}}{ChDAl}}{{{f{ABf}}}ABf}{{{f{ABh}}}ABh}{{f{f{jc}}}Cj{}}000000{{fCl}Cj}000000{CBfBIf}{ce{}{}}0000000`{{{f{{DDf{c}}}}}DDhDAl}{{{f{l}}ABf}ABh}{{}c{}}{{}{{DDf{c}}}{KbDAl}}{F`{{f{c}}}{}}0000000{F`{{f{jc}}}{}}0000000{{{f{{ADh{ceg}}}}{f{jCb}}}CjChADjBn}{f{{f{c}}}{}}0000000{{{f{{ADh{ceg}}}}{f{Cb}}{f{jg}}{f{e}}FfFh{Df{{f{DD`}}}}{f{Fj}}}CjChADjBn}{{{f{{ADh{ceg}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}}CjChADjBn}{F`Cj}0000000{{{f{DDd}}{f{DDd}}}Bf}{{{f{ABf}}{f{ABf}}}Bf}{{{f{ABh}}{f{ABh}}}Bf}{{f{f{c}}}Bf{}}00000{{{f{DD`}}{f{jFl}}}Gb}0{{{f{{CBf{c}}}}{f{jFl}}}GbGd}{{{f{DDb}}{f{jFl}}}Gb}{{{f{DDd}}{f{jFl}}}Gb}{{{f{{DDf{c}}}}{f{jFl}}}Gb{GdDAl}}{{{f{ABf}}{f{jFl}}}Gb}{{{f{ABh}}{f{jFl}}}Gb}{c{{Gf{e}}}{{Ah{DDd}}}{}}{{{f{j{DDf{c}}}}}CjDAl}0{{{ADh{ceg}}}{{ADh{ceg}}}ChADjBn}{CBf}{cc{}}0000{BjDDd}{{{f{Dd}}}DDd}22222222222{ce{}{}}0000000{{{f{DDd}}{f{jc}}}CjAIb}{{{ADh{ceg}}CBf}{{ADh{ceg}}}ChADjBn}{ABhAFj}{{{ADh{ceg}}i}{{ADh{ceg}}}ChADjBn{{Ah{DDd}}}}{{}F`}0000000{{{f{jDD`}}F`BIf}Cj}{{{f{jDD`}}F`DD`}Cj}{{}c{}}000000000000000{{{Hj{c}}}{{Hj{h}}}{}}0000000{{{Hl{c}}}{{Hl{h}}}{}}000000{{{Hn{c}}}{{Hn{h}}}{}}0000000{{{An{c}}}e{}{}}00000004444444444444444{{}c{}}0000000{{{f{DD`}}}Bf}{{{f{{DDf{c}}}}}BfDAl}0{{{f{{ADh{ceg}}}}{f{jCb}}{f{g}}{f{Il}}}InChADjBn}{{{f{{ADh{ceg}}}}{f{jCb}}{f{g}}{f{Il}}{Df{{f{DD`}}}}}InChADjBn}{{{f{DD`}}}F`}{{{ADh{ceg}}i}{{ADh{ceg}}}ChADjBn{{Ah{AIf}}}}{{{f{{ADh{ceg}}}}{f{Cb}}FfFh{f{Fj}}{f{g}}}JhChADjBn}{{cF`}{{Gf{e}}}{{Ah{DDd}}}{}}{{{f{j{DDf{c}}}}F`}CjDAl}0{c{{Gf{e}}}{{Ah{DDd}}}{}}{{{f{j{DDf{c}}}}}CjDAl}0100{{{f{Dd}}{f{Dd}}}{{ADh{ceg}}}ChADjBn}{{{f{Dd}}}DD`}{cDDd{{Ah{{CBn{Dd}}}}}}{{}{{DDf{c}}}DAl}{{{f{DD`}}F`}F`}{{}c{}}{{{ADh{ceg}}i}{{ADh{ceg}}}ChADjBn{{Dn{Bj}{{Dl{c}}}}}}{{{ADh{ceg}}{Df{i}}}{{ADh{ceg}}}ChADjBn{{Dn{Bj}{{Dl{c}}}}}}10{{{ADh{ceg}}c}{{ADh{ceg}}}ChADjBn}{{{ADh{ceg}}{Df{c}}}{{ADh{ceg}}}ChADjBn}{{{f{{ADh{ceg}}}}{f{jCb}}Ff{f{g}}{f{jK`}}}CjChADjBn}{{{ADh{ceg}}i}{{ADh{ceg}}}ChADjBn{{Ah{AFd}}}}{ABhAFj}8{{{f{jDD`}}F`}Cj}{{{f{jDD`}}F`F`}Cj}{{{ADh{ceg}}Bf}{{ADh{ceg}}}ChADjBn}{{{f{DD`}}}DD`}{{{f{DD`}}F`F`}DD`}{c{{Gf{e}}}{{Ah{DDd}}}{}}{{{f{j{DDf{c}}}}}CjDAl}07{CBfDDb}{{{f{{ADh{ceg}}}}}{{Jj{Od}}}ChADjBn}{{{ADh{ceg}}i}{{ADh{ceg}}}ChADjBn{{Ah{Gj}}}}{CBfDf}{CBfM`}{{{f{{ADh{ceg}}}}}A@`ChADjBn}{{{f{{ADj{}{{AFh{c}}}}}}{f{c}}ABf}ABh{}}{{{ADh{ceg}}i}{{ADh{ceg}}}ChADjBn{{Dn{{f{e}}ABf}{{Dl{ABh}}}}}}{{{f{{ADh{ceg}}}}}AClChADjBn}{fc{}}000000{fADl}{fBj}{{}{{G`{c}}}{}}0000000{c{{G`{e}}}{}{}}0000000{{}{{G`{c}}}{}}0000000{{}{{G`{c{AEf{c}}}}}{}}0000000{fAEh}0000000{ce{}{}}0000000{{}c{}}0000000{{{f{j{DDf{c}}}}}CjDAl}0{{}DDd}{{{f{DD`}}F`}DD`}{f{{Df{{f{c}}}}}{}}0000000{{{f{j{ADh{ceg}}}}{f{jCb}}{f{AEj}}FfFh{f{g}}{f{jAEl}}{f{j{AEn{c}}}}{f{Fj}}}CjChADjBn}{ABhAFj}{{}c{}}0000000{{{ADh{ceg}}i}{{ADh{ceg}}}ChADjBn{{Ah{Od}}}}{DDjBf}````{eg{}{{b{c}}}{}}0{ce{}{}}0;;{f{{f{h}}}}0{{{f{j}}}{{f{jh}}}}0{f{{f{c}}}{}}0{{{f{j}}}{{f{jc}}}{}}0{{{An{c}}}e{}{}}0{{{f{DDh}}}DDh}{{{f{DDl}}}DDl}{{f{f{jc}}}Cj{}}0{{fCl}Cj}099{{}DDh}{F`{{f{c}}}{}}0{F`{{f{jc}}}{}}099{F`Cj}0{{{f{DDh}}{f{DDh}}}Bf}{{{f{DDl}}{f{DDl}}}Bf}{{f{f{c}}}Bf{}}00000{{{f{DDh}}{f{jFl}}}Gb}{{{f{DDl}}{f{jFl}}}Gb}{cc{}}000{ce{}{}}0{{}F`}0{{}c{}}000{{{Hj{c}}}{{Hj{h}}}{}}0{{{Hl{c}}}{{Hl{h}}}{}}0{{{Hn{c}}}{{Hn{h}}}{}}0{{{An{c}}}e{}{}}04444{{}c{}}00{{{f{DDh}}{f{DD`}}}{{Df{{Id{F`F`}}}}}}{{{f{DDh}}{f{DD`}}}DDl}{fc{}}0{{}{{G`{c}}}{}}0{c{{G`{e}}}{}{}}0{{}{{G`{c}}}{}}0{{}{{G`{c{AEf{c}}}}}{}}0{fAEh}0{ce{}{}}0{{}c{}}0{f{{Df{{f{c}}}}}{}}0{{}c{}}0{DDnF`}0``````````````````````````````````````````````````{eg{}{{b{c}}}{}}00{ce{}{}}00555{f{{f{h}}}}00{{{f{j}}}{{f{jh}}}}00{EdAFj}{nAFj}{{{f{DE`}}}n}{f{{f{c}}}{}}00{{{f{j}}}{{f{jc}}}{}}00{{{An{c}}}e{}{}}00{{{f{Ed}}}Ed}{{{f{DEb}}}DEb}{{{f{n}}}n}{{f{f{jc}}}Cj{}}00{{fCl}Cj}00===:{{{f{l}}}n}{F`{{f{c}}}{}}00{F`{{f{jc}}}{}}00:::{F`Cj}00{{{f{Ed}}{f{Ed}}}Bf}{{{f{DEb}}{f{DEb}}}Bf}{{{f{n}}{f{n}}}Bf}{{{f{Ed}}{f{jFl}}}{{G`{CjFn}}}}{{{f{DEb}}{f{jFl}}}{{G`{CjFn}}}}0{{{f{n}}{f{jFl}}}{{G`{CjFn}}}}{cc{}}00000{ce{}{}}00{{}F`}00{{}c{}}00000{{{Hj{c}}}{{Hj{h}}}{}}00{{{Hl{c}}}{{Hl{h}}}{}}00{{{Hn{c}}}{{Hn{h}}}{}}00{{{An{c}}}e{}{}}00444444{{}c{}}00{{BjEd}DEb}`{EdAFj}00{nAFj}{fc{}}00{fADl}{fBj}{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{AEf{c}}}}}{}}00{fAEh}00{ce{}{}}00{{}c{}}00{f{{Df{{f{c}}}}}{}}00{{}c{}}00={{BjEdc}DEb{{Eh{Ed}{{Dl{Ef}}}}}}``{{}DEd}000000000000000000000```````{eg{}{{b{c}}}{}}0000000{ce{}{}}000000066666666{f{{f{h}}}}0000000{{{f{j}}}{{f{jh}}}}0000000{EdAFj}{EfDEf}{DEfDEh}{DEjDEh}{DElDEh}{DEnDEh}{DF`DEh}{DFbDEh}{f{{f{c}}}{}}0000000{{{f{j}}}{{f{jc}}}{}}0000000{{{An{c}}}e{}{}}0000000{{{f{Ef}}}Ef}{{{f{DEh}}}DEh}{{{f{DEf}}}DEf}{{{f{DEj}}}DEj}{{{f{DEl}}}DEl}{{{f{DEn}}}DEn}{{{f{DF`}}}DF`}{{{f{DFb}}}DFb}{{f{f{jc}}}Cj{}}0000000{{fCl}Cj}0000000{DEhAFj}{ce{}{}}0000000{EdAFj}{EfDFb}{F`{{f{c}}}{}}0000000{F`{{f{jc}}}{}}0000000{f{{f{c}}}{}}0000000{F`Cj}0000000{{{f{Ef}}{f{Ef}}}Bf}{{{f{DEh}}{f{DEh}}}Bf}{{{f{DEf}}{f{DEf}}}Bf}{{{f{DEj}}{f{DEj}}}Bf}{{{f{DEl}}{f{DEl}}}Bf}{{{f{DEn}}{f{DEn}}}Bf}{{{f{DF`}}{f{DF`}}}Bf}{{{f{DFb}}{f{DFb}}}Bf}{{{f{Ef}}{f{jFl}}}{{G`{CjFn}}}}{{{f{DEh}}{f{jFl}}}{{G`{CjFn}}}}{{{f{DEf}}{f{jFl}}}{{G`{CjFn}}}}{{{f{DEj}}{f{jFl}}}{{G`{CjFn}}}}{{{f{DEl}}{f{jFl}}}{{G`{CjFn}}}}{{{f{DEn}}{f{jFl}}}{{G`{CjFn}}}}{{{f{DF`}}{f{jFl}}}{{G`{CjFn}}}}{{{f{DFb}}{f{jFl}}}{{G`{CjFn}}}}{cc{}}000000000000000{ce{}{}}0000000{EdEf}{{AFjAFjAFj}DEj}{{AFjAFj}DEl}{{AFjAFjAFj}DEn}{{AFjAFjAFj}DF`}{{AFjAFjAFj}DFb}{{}F`}0000000{{}c{}}000000000000000{{{Hj{c}}}{{Hj{h}}}{}}0000000{{{Hl{c}}}{{Hl{h}}}{}}0000000{{{Hn{c}}}{{Hn{h}}}{}}0000000{{{An{c}}}e{}{}}00000004444444444444444{{}c{}}0000000{EfBf}{{AFjAFj}DEh}{{AFjAFj}DEf}{EdAFj}{EfDEj}{EfDEl}{DEfDEh}{DEjDEh}{DElDEh}{DEnDEh}{DF`DEh}{DFbDEh}8{EfDEn}9{DEhAFj}{fc{}}0000000{{}{{G`{c}}}{}}0000000{c{{G`{e}}}{}{}}0000000{{}{{G`{c}}}{}}0000000{{}{{G`{c{AEf{c}}}}}{}}0000000{fAEh}0000000{ce{}{}}0000000{{}c{}}0000000{f{{Df{{f{c}}}}}{}}0000000{{}c{}}0000000{EdAFj}{EfDF`}{DEfDEh}{DEjDEh}{DElDEh}{DEnDEh}{DF`DEh}{DFbDEh}``````````{eg{}{{b{c}}}{}}00{ce{}{}}00<<<{f{{f{h}}}}00{{{f{j}}}{{f{jh}}}}00{AC`AFj}0{AC`M`}{f{{f{c}}}{}}00{{{f{j}}}{{f{jc}}}{}}00{{{An{c}}}e{}{}}00{{{ADn{ceg}}i}{{ADn{ceg}}}{}AE`BnAh}{{{f{ABn}}}ABn}{{{f{AC`}}}AC`}{{f{f{jc}}}Cj{}}0{{fCl}Cj}0<<<{{{f{l}}ABn}AC`}{{}c{}}{F`{{f{c}}}{}}00{F`{{f{jc}}}{}}00;;;{{{f{{ADn{ceg}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}}Cj{}AE`Bn}{F`Cj}00{{{f{ABn}}{f{ABn}}}Bf}{{{f{AC`}}{f{AC`}}}Bf}{{f{f{c}}}Bf{}}00{{{f{ABn}}{f{jFl}}}Gb}{{{f{AC`}}{f{jFl}}}Gb}?{AC`AFj}0{AC`M`}{cc{}}00000{ce{}{}}00{{}F`}00{{}c{}}00000{{{Hj{c}}}{{Hj{h}}}{}}00{{{Hl{c}}}{{Hl{h}}}{}}0{{{Hn{c}}}{{Hn{h}}}{}}00{{{An{c}}}e{}{}}00444444{{}c{}}00{{{ADn{ceg}}i}{{ADn{ceg}}}{}AE`BnOn}{{{f{{ADn{ceg}}}}{f{jCb}}{f{g}}{f{Il}}}In{}AE`Bn}{{{f{{ADn{ceg}}}}{f{Cb}}FfFh{f{Fj}}{f{g}}}Jh{}AE`Bn}{Bf{{ADn{ceg}}}{}AE`Bn}{{{ADn{ceg}}i}{{ADn{ceg}}}{}AE`Bn{{Dn{Bf}{{Dl{c}}}}}}{{{ADn{ceg}}{Df{i}}}{{ADn{ceg}}}{}AE`Bn{{Dn{Bf}{{Dl{c}}}}}}{{{ADn{ceg}}i}{{ADn{ceg}}}{}AE`Bn{{Ah{Gj}}}}{{{f{{ADn{ceg}}}}}{{Jj{Od}}}{}AE`Bn}1{{{f{{ADn{ceg}}}}}A@`{}AE`Bn}{{{f{{AE`{}{{AFh{c}}}}}}{f{c}}ABn}AC`{}}{{{ADn{ceg}}i}{{ADn{ceg}}}{}AE`Bn{{Dn{{f{e}}ABn}{{Dl{AC`}}}}}}{{{f{{ADn{ceg}}}}}ACl{}AE`Bn}{{{ADn{ceg}}AId}{{ADn{ceg}}}{}AE`Bn}{{{ADn{ceg}}i}{{ADn{ceg}}}{}AE`Bn{{Ah{AIf}}}}{{{ADn{ceg}}AJd}{{ADn{ceg}}}{}AE`Bn}8{{{ADn{ceg}}CAn}{{ADn{ceg}}}{}AE`Bn}{fc{}}0{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{AEf{c}}}}}{}}00{fAEh}00{ce{}{}}00{{}c{}}00{f{{Df{{f{c}}}}}{}}00{{{f{j{ADn{ceg}}}}{f{jCb}}{f{AEj}}FfFh{f{g}}{f{jAEl}}{f{j{AEn{c}}}}{f{Fj}}}Cj{}AE`Bn}{{}c{}}00{{{ADn{ceg}}i}{{ADn{ceg}}}{}AE`Bn{{Ah{Od}}}}{DFdBf}{DFfBf}```````{eg{}{{b{c}}}{}}0{ce{}{}}088{f{{f{h}}}}0{{{f{j}}}{{f{jh}}}}0{f{{f{c}}}{}}0{{{f{j}}}{{f{jc}}}{}}0{{{An{c}}}e{}{}}0{{{f{{AEd{ceg}}}}}{{Cd{Cb}}}{}AbBn}{{{AEd{ceg}}i}{{AEd{ceg}}}{}AbBnAh}{{{f{AEb}}}AEb}{{f{f{jc}}}Cj{}}{{fCl}Cj}::{{}AEb}{F`{{f{c}}}{}}0{F`{{f{jc}}}{}}0{{{f{{AEd{ceg}}}}{f{jCb}}}Cj{}AbBn};;{{{f{{AEd{ceg}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}}Cj{}AbBn}{F`Cj}0{{{f{AEb}}{f{AEb}}}Bf}{{f{f{c}}}Bf{}}00{{{f{AEb}}{f{jFl}}}Gb}{cc{}}000{ce{}{}}0{{{AEd{ceg}}i}{{AEd{ceg}}}{}AbBn{{Ah{Gj}}}}{{}F`}0{{}c{}}000{{{Hj{c}}}{{Hj{h}}}{}}0{{{Hl{c}}}{{Hl{h}}}{}}{{{Hn{c}}}{{Hn{h}}}{}}0{{{An{c}}}e{}{}}04444{{}c{}}0{{{f{{AEd{ceg}}}}{f{jCb}}{f{g}}{f{Il}}}In{}AbBn}{{{f{{AEd{ceg}}}}{f{Cb}}FfFh{f{Fj}}{f{g}}}Jh{}AbBn}{{ikAEb}{{AEd{ceg}}}{}AbBn{{Ah{{Af{ceg}}}}}{{Ah{{Af{ceg}}}}}}3{{{f{j{AEd{ceg}}}}{f{jCb}}Ff{f{g}}Kd}{{Df{{Kf{ceg}}}}}{}AbBn};{{{f{{AEd{ceg}}}}}{{Jj{Od}}}{}AbBn}0{{{AEd{ceg}}Bf}{{AEd{ceg}}}{}AbBn}{{{f{{AEd{ceg}}}}}A@`{}AbBn}{{{AEd{ceg}}i}{{AEd{ceg}}}{}AbBn{{Dn{{f{e}}}{{Dl{ACb}}}}}}{{{f{{AEd{ceg}}}}}ACl{}AbBn}{fc{}}{{}{{G`{c}}}{}}0{c{{G`{e}}}{}{}}0{{}{{G`{c}}}{}}0{{}{{G`{c{AEf{c}}}}}{}}0{fAEh}0{ce{}{}}0{{}c{}}0{f{{Df{{f{c}}}}}{}}0{{{f{j{AEd{ceg}}}}{f{jCb}}{f{AEj}}FfFh{f{g}}{f{jAEl}}{f{j{AEn{c}}}}{f{Fj}}}Cj{}AbBn}{{}c{}}0````````{eg{}{{b{c}}}{}}{ce{}{}}5{f{{f{h}}}}{{{f{j}}}{{f{jh}}}}{f{{f{c}}}{}}{{{f{j}}}{{f{jc}}}{}}{{{An{c}}}e{}{}}{{{AF`{ceg}}i}{{AF`{ceg}}}{Ih{Oh{Cl}}Oj}ChOlAh}6`{{{AF`{ceg}}i}{{AF`{ceg}}}{Ih{Oh{Cl}}Oj}ChOl{{Ah{c}}}}{F`{{f{c}}}{}}{F`{{f{jc}}}{}}6{{{f{{AF`{ceg}}}}{f{Cb}}{f{ji}}{f{g}}{f{Fd}}FfFh{f{Fj}}}Cj{Ih{Ah{BH`}}D@h}ChOlAd}{F`Cj}{cc{}}0{ce{}{}}{{{AF`{ceg}}i}{{AF`{ceg}}}{Ih{Oh{Cl}}Oj}ChOl{{Ah{Od}}}}{{}F`}{{}c{}}0{{{Hj{c}}}{{Hj{h}}}{}}{{{Hn{c}}}{{Hn{h}}}{}}=22{{}c{}}{{{f{{AF`{ceg}}}}{f{jCb}}{f{i}}{f{Il}}}In{Ih{Ah{BH`}}D@h}ChOlAd}{{{f{{AF`{ceg}}}}{f{Cb}}FfFh{f{Fj}}{f{i}}}Jh{Ih{Ah{BH`}}D@h}ChOlAd}{{{Mb{c}}cg}{{AF`{cei}}}{Ih{Oh{Cl}}Oj}Ch{{Dn{c}{{Dl{e}}}}}Ol}{{{AF`{ceg}}e}{{AF`{ceg}}}{Ih{Oh{Cl}}Oj}ChOl}{{{AF`{ceg}}i}{{AF`{ceg}}}{Ih{Oh{Cl}}Oj}ChOl{{Ah{c}}}}{{{f{{AF`{ceg}}}}}{{Jj{Od}}}{Ih{Ah{BH`}}D@h}ChOl}{{{f{{AF`{ceg}}}}}A@`{Ih{Ah{BH`}}D@h}ChOl}{{{AF`{ceg}}c}{{AF`{ceg}}}{Ih{Oh{Cl}}Oj}ChOl}{{{AF`{ceg}}i}{{AF`{ceg}}}{Ih{Oh{Cl}}Oj}ChOl{{Dn{{f{g}}AA`}{{Dl{AAb}}}}}}{{{f{{AF`{ceg}}}}}ACl{Ih{Ah{BH`}}D@h}ChOl}{{}{{G`{c}}}{}}{c{{G`{e}}}{}{}}{{}{{G`{c}}}{}}{{}{{G`{c{AEf{c}}}}}{}}{fAEh}{ce{}{}}{{}c{}}{f{{Df{{f{c}}}}}{}}{{{f{j{AF`{ceg}}}}{f{jCb}}{f{AEj}}FfFh{f{i}}{f{jAEl}}{f{j{AEn{e}}}}{f{Fj}}}Cj{Ih{Ah{BH`}}D@h}ChOlAd}{{}c{}}{{{AF`{ceg}}i}{{AF`{ceg}}}{Ih{Oh{Cl}}Oj}ChOl{{Ah{Gj}}}}","D":"ADLhEEd","p":[[10,"TransformMatrix",14737],[5,"Action",13870,14738],[1,"reference",null,null,1],[10,"Any",14739],[0,"mut"],[6,"Theme",13870,14740],[5,"Style",14404,14740],[5,"Container",7928],[10,"Catalog",7928],[10,"Renderer",14741],[5,"Element",14742],[10,"Into",14743,null,1],[5,"Button",388],[10,"Catalog",388],[5,"BakedParameters",14744],[5,"Canvas",7604],[10,"Renderer",14745],[10,"Program",7604,14746],[1,"bool"],[5,"Checkbox",7611],[5,"String",14747],[10,"Catalog",7611],[10,"Renderer",14748],[5,"Lazy",13870,14749],[5,"Tree",14750],[5,"Vec",14751],[10,"Hash",14752],[10,"Clone",14753],[1,"unit"],[1,"u8"],[17,"Item"],[10,"IntoIterator",14754],[5,"State",7821],[1,"str"],[6,"Option",14755,null,1],[5,"ComboBox",7821],[10,"Display",14756],[17,"Output"],[10,"Fn",14757],[10,"Catalog",7821],[10,"Component",13870,14758],[5,"Palette",14404,14759],[5,"Extended",14405,14759],[10,"FnOnce",14757],[8,"StyleFn",8911],[8,"StyleFn",9047],[8,"StyleFn",10046],[1,"usize"],[5,"Responsive",13870,14760],[5,"Style",14741],[5,"Layout",14761],[6,"Cursor",14762],[5,"Rectangle",14763],[5,"Formatter",14756],[5,"Error",14756],[6,"Result",14764,null,1],[8,"Result",14756],[10,"Debug",14756],[5,"Task",14765],[5,"Rule",10901],[5,"Pixels",14766],[10,"Catalog",10901],[10,"Catalog",12281,14767],[10,"Catalog",12084],[17,"Font"],[5,"Font",14768],[10,"Renderer",14769],[5,"Image",8115],[5,"Box",14770,null,1],[5,"Arc",14771,null,1],[5,"Rc",14772,null,1],[6,"RedrawRequest",14773],[6,"Status",14774],[1,"tuple",null,null,1],[5,"Column",8376],[10,"Copy",14775],[10,"PartialEq",14776],[5,"Limits",14777],[5,"Node",14778],[5,"Url",8437,14779],[6,"Item",8437],[5,"Settings",8437],[10,"Catalog",8437],[6,"Interaction",14780],[5,"Size",14781],[17,"State"],[17,"Event"],[10,"Operation",14782],[10,"Default",14783],[5,"Vector",14784],[5,"Element",14785],[5,"State",9888],[5,"PaneGrid",9047],[10,"Catalog",9047],[5,"Pane",9047,14786],[5,"Content",9047,14787],[5,"PickList",10046],[10,"ToString",14747],[1,"slice"],[10,"Borrow",14788],[10,"Catalog",10046],[10,"Catalog",8911],[5,"Pop",10305],[1,"f32"],[5,"RangeInclusive",14789],[5,"ProgressBar",10358],[10,"Catalog",10358],[5,"Data",10459],[5,"QRCode",10459],[10,"Catalog",10459],[5,"Radio",10743],[10,"Eq",14776],[10,"Catalog",10743],[5,"Instant",14790],[5,"Rich",12281,14791],[5,"Span",12281,14748],[10,"AsRef",14743],[5,"Scrollable",11043],[10,"Catalog",11043],[5,"Shader",11647],[10,"Program",11647,14792],[6,"Length",14793],[5,"Slider",11795],[10,"From",14743,null,1],[10,"PartialOrd",14776],[10,"Catalog",11795],[10,"IntoFragment",12281,14748],[6,"State",14750],[5,"Style",8911],[5,"Style",9047],[6,"Status",12084],[5,"Style",12084],[5,"Style",10459],[6,"Status",12678],[5,"Style",12678],[6,"Status",11795],[5,"Style",11795],[5,"Style",12281,14767],[6,"Status",11043],[5,"Style",11043],[5,"Style",10901],[6,"Status",10743],[5,"Style",10743],[6,"Status",388],[5,"Style",388],[5,"Style",10358],[6,"Status",13295],[5,"Style",13295],[6,"Status",7611],[5,"Style",7611],[6,"Status",14412],[5,"Style",14412],[5,"Style",7928],[6,"Status",10046],[5,"Style",10046],[5,"Svg",12084],[5,"Handle",12084,14769],[5,"Tag",14750],[8,"Text",12281],[5,"Content",12678],[5,"PlainText",14794],[5,"TextEditor",12678],[10,"Catalog",12678],[5,"TextInput",13295],[10,"Catalog",13295],[5,"SmolStr",14795],[5,"Toggler",14412],[10,"Catalog",14412],[6,"Position",14574],[5,"Tooltip",14574],[5,"OutOfBounds",14796],[5,"TypeId",14739],[6,"Event",7604,14774],[10,"Clipboard",14797],[5,"Shell",14798],[5,"VerticalSlider",14678],[5,"Border",14799],[5,"Padding",14800],[5,"Shadow",14801],[17,"Class"],[5,"Color",14802],[6,"Background",14803],[5,"Point",14804],[5,"Path",7604,14805],[5,"Group",7604,14806],[6,"Gradient",7604,14807],[5,"Fill",7604,14808],[5,"Stroke",7604,14809],[6,"LineCap",7604,14809],[6,"LineJoin",7604,14809],[5,"LineDash",7604,14809],[6,"Style",7604,14810],[5,"Text",7604,14811],[5,"Image",7604,14812],[6,"Ordering",14776],[8,"Geometry",7604],[10,"FnMut",14757],[6,"FilterMethod",8115,14812],[5,"Linear",1253,14807],[6,"Handle",8115,14812],[10,"Hasher",14752],[6,"Horizontal",14813],[6,"LineHeight",12281,14748],[5,"Builder",1483,14814],[5,"Packed",1253,14807],[5,"Path",7518,14815],[5,"Radians",14816],[5,"Radius",14799],[6,"Rule",1240,14808],[6,"Shaping",12281,14748],[5,"UnknownUnit",6148,14817],[5,"Transform2D",6148,14818],[6,"Vertical",14813],[5,"ColorStop",14819],[6,"Gradient",14819],[1,"array"],[5,"Arc",1483,14820],[5,"Elliptical",1484,14820],[5,"PathCommands",7518,14821],[5,"PathCommandsSlice",7518,14821],[5,"PathSlice",7518,14815],[5,"PathBuffer",7518,14822],[5,"PathBufferSlice",7518,14822],[5,"EndpointId",7518,14823],[5,"BuilderImpl",7518,14815],[5,"Point2D",6148,14824],[5,"BuilderWithAttributes",7518,14815],[5,"PathCommandsBuilder",3136,14821],[5,"NoAttributes",7565,14825],[5,"Builder",7234,14822],[5,"ArcFlags",7518,14826],[6,"Event",7518,14827],[5,"Iter",7518,14815],[5,"IterWithAttributes",7518,14815],[5,"IdIter",7518,14815],[5,"Polygon",7518,14828],[5,"IdPolygon",7518,14828],[6,"LineCap",7518,14823],[6,"LineJoin",7518,14823],[6,"Side",7518,14823],[6,"FillRule",7518,14823],[6,"Winding",7518,14823],[5,"ControlPointId",7518,14823],[5,"EventId",7518,14823],[5,"Events",3136,14821],[10,"AttributeStore",7518,14823],[5,"AttributeSlice",7518,14823],[10,"PositionStore",7518,14823],[10,"Position",7518,14823],[5,"PolygonIdIter",7520,14828],[5,"Range",14789],[5,"Iter",3136,14821],[5,"Reversed",7518,14815],[1,"i16"],[5,"Iter",7234,14822],[5,"PolygonIter",7520,14828],[5,"IdPolygonIter",7520,14828],[5,"PathEvents",7520,14828],[5,"CommandsPathSlice",3136,14821],[5,"NoAttributes",7031,14829],[5,"WithSvg",7565,14825],[10,"Transformation",7021,14830],[15,"Begin",2740],[15,"End",2740],[15,"Quadratic",2740],[15,"Cubic",2740],[15,"Line",2740],[10,"PathBuilder",7565,14825],[5,"Vector2D",6148,14831],[5,"Angle",7023,14832],[5,"LineSegment",7023,14833],[10,"SvgPathBuilder",7565,14825],[5,"Box2D",6148,14834],[5,"BorderRadii",7565,14825],[5,"Flattened",7565,14825],[5,"Transformed",7565,14825],[17,"PathType"],[10,"Build",7565,14825],[5,"PointEvents",3136,14821],[5,"LineEquation",7023,14833],[10,"Scalar",7023,14835],[5,"Triangle",7023,14836],[10,"Add",14837],[10,"AddAssign",14837],[17,"Scalar"],[10,"Segment",7023,14838],[5,"Arc",7023,14826],[5,"CubicBezierSegment",7023,14839],[5,"QuadraticBezierSegment",7023,14840],[8,"Rotation",7023,14841],[10,"Rem",14837],[10,"Sub",14837],[10,"Mul",14837],[10,"One",14842],[10,"FloatConst",14843],[10,"ApproxEq",6787,14844],[10,"NumCast",14845],[5,"SvgArc",7023,14826],[5,"Line",7023,14833],[5,"ArrayVec",4233,14846],[10,"Trig",6148,14847],[10,"Div",14837],[10,"DivAssign",14837],[5,"Flattened",4222,14826],[5,"Flattened",4704,14839],[5,"Flattened",6978,14840],[5,"FlattenedT",6978,14840],[8,"Size",7023],[10,"Float",14843],[8,"Transform",7023,14841],[8,"Box2D",7023,14848],[10,"MulAssign",14837],[10,"Neg",14837],[1,"u32"],[10,"Zero",14842],[10,"Real",14849],[5,"Size2D",6148,14850],[10,"SubAssign",14837],[10,"Iterator",14851],[1,"f64"],[8,"Translation",7023,14841],[8,"Point",7023],[8,"Vector",7023],[5,"ArrayString",4233,14852],[5,"IntoIter",4233,14846],[5,"Path",14853],[5,"CapacityError",4233,14854],[10,"Ord",14776],[5,"Drain",4233,14846],[10,"RangeBounds",14789],[1,"char"],[10,"FromIterator",14754],[5,"Error",14855],[5,"Utf8Error",14856],[5,"Arguments",14756],[1,"u64"],[1,"i8"],[1,"i64"],[1,"i128"],[1,"i32"],[1,"u16"],[1,"u128"],[6,"Endian",14857],[10,"Signed",14858],[5,"Size3D",6148,14850],[5,"Vector3D",6148,14831],[5,"Length",6148,14859],[5,"Point3D",6148,14824],[5,"Scale",6148,14860],[5,"SideOffsets2D",6148,14861],[5,"Translation2D",6148,14862],[5,"Translation3D",6148,14862],[5,"BoolVector2D",6148,14831],[5,"BoolVector3D",6148,14831],[5,"Rotation2D",6148,14863],[5,"Transform3D",6148,14864],[5,"Rotation3D",6148,14863],[5,"Rect",6148,14865],[5,"Box3D",6148,14866],[5,"RigidTransform3D",6148,14867],[10,"Ceil",6876,14868],[10,"One",6876,14868],[5,"HomogeneousVector",6148,14869],[10,"Zero",6876,14868],[10,"Euclid",14870],[10,"Floor",6876,14868],[10,"Round",6876,14868],[10,"Saturating",14871],[8,"Rotation2D",6868,14848],[8,"SideOffsets2D",6868,14848],[8,"Size3D",6868,14848],[8,"Rotation3D",6868,14848],[8,"Transform2D",6868,14848],[8,"Transform3D",6868,14848],[8,"Box3D",6868,14848],[8,"Rect",6868,14848],[8,"RigidTransform3D",6868,14848],[8,"HomogeneousVector",6868,14848],[8,"Point3D",6868,14848],[8,"Vector3D",6868,14848],[8,"Translation2D",6868,14848],[8,"Translation3D",6868,14848],[5,"FlatteningParameters",6978,14840],[5,"FromPolyline",7031,14829],[10,"PathIterator",7031,14829],[5,"Flattened",7031,14829],[5,"Transformed",7031,14829],[8,"Rotation",7195,14872],[8,"Size",7195,14872],[8,"Transform",7195,14872],[8,"Box2D",7195,14872],[8,"Angle",7195,14872],[8,"Point",7195,14872],[8,"Vector",7195,14872],[8,"Translation",7195,14872],[5,"BuilderWithAttributes",7234,14822],[5,"IterBridge",14873],[5,"Icon",7611],[6,"Wrapping",12281,14748],[15,"Active",7818],[15,"Hovered",7818],[15,"Disabled",7818],[5,"Icon",13295],[5,"Id",7928],[8,"StyleFn",7928],[5,"Linear",14819],[6,"Cow",14874],[6,"ContentFit",14875],[6,"Rotation",14876],[17,"Handle"],[10,"Renderer",14812],[5,"PathBuf",14853],[5,"Bytes",14877],[5,"Id",14812],[5,"Viewer",8276],[15,"Rgba",8272],[5,"State",8276],[6,"Alignment",14813],[5,"Highlight",8437,14748],[6,"HeadingLevel",8437,14878],[5,"Text",8437],[5,"Style",8437],[10,"Viewer",8437],[5,"Content",8437],[10,"Deserializer",14879],[6,"Signature",14880],[6,"Error",14881],[6,"ParseError",14882],[6,"Host",14883],[5,"HashSet",14884],[6,"Position",14885],[5,"RangeTo",14789],[5,"RangeFrom",14789],[5,"RangeFull",14789],[5,"ParseOptions",14779],[6,"Origin",14886],[5,"Split",14887],[5,"PathSegmentsMut",14888],[5,"Parse",14889],[5,"UrlQuery",14779],[5,"Serializer",14889],[10,"Serializer",14890],[6,"IpAddr",14891],[6,"SocketAddr",14892],[15,"Image",8902],[15,"CodeBlock",8902],[15,"List",8902],[5,"State",8911],[5,"Menu",8911],[5,"TitleBar",9047,14893],[5,"Highlight",9047],[10,"Draggable",9047,14894],[6,"Axis",9047,14895],[6,"Configuration",9047,14896],[6,"Direction",9047,14897],[6,"Node",9047,14898],[5,"Split",9047,14899],[6,"DragEvent",9047],[6,"Target",9047],[6,"Region",9047],[6,"Edge",9047],[5,"ResizeEvent",9047],[5,"Line",9047],[5,"Controls",9047,14900],[5,"BTreeMap",14901],[15,"Split",9875],[15,"Picked",9879],[15,"Dropped",9879],[15,"Canceled",9879],[15,"Split",9883],[5,"Internal",9888],[6,"Action",9888],[15,"Resizing",10042],[15,"Dragging",10042],[6,"Handle",10046],[5,"Icon",10046],[15,"Dynamic",10301],[15,"Arrow",10301],[15,"Opened",10304],[6,"Version",10459],[6,"ErrorCorrection",10459],[6,"Error",10459],[8,"Renderer",13870,14902],[6,"QrError",14903],[15,"Active",10899],[15,"Hovered",10899],[6,"FillMode",10901],[5,"Viewport",11043],[5,"AbsoluteOffset",11043,14904],[5,"Scrollbar",11043],[6,"Anchor",11043],[5,"Rail",11043],[5,"Scroller",11043],[5,"RelativeOffset",11043,14904],[6,"Direction",11043],[5,"Id",11043],[15,"Both",11635],[15,"Active",11637],[15,"Hovered",11637],[15,"Dragged",11637],[5,"Viewport",11647,14905],[5,"Storage",11647,14906],[17,"Primitive"],[10,"Primitive",11647,14906],[10,"Renderer",14906],[5,"Device",14907],[5,"Queue",14908],[6,"TextureFormat",14909],[5,"Transformation",14910],[5,"CommandEncoder",14911],[5,"TextureView",14912],[10,"Send",14775],[5,"Handle",11795],[5,"Rail",11795],[6,"HandleShape",11795],[10,"FromPrimitive",14845],[15,"Rectangle",12081],[15,"Circle",12081],[6,"Data",14769],[8,"StyleFn",12084],[17,"Settings"],[17,"Highlight"],[17,"Iterator"],[10,"Highlighter",12281,14794],[5,"State",12281,14767],[10,"Paragraph",14913],[6,"LineEnding",12678,14914],[6,"Action",12678,14914],[6,"Edit",12678,14914],[6,"Motion",12678,14914],[5,"Line",12678,14914],[6,"Binding",12678],[5,"KeyPress",12678],[6,"Direction",14914],[5,"State",12678],[6,"Theme",14915],[5,"Highlighter",14915],[5,"Format",14794],[1,"fn"],[6,"Key",14916],[5,"Modifiers",14917],[15,"Scroll",13293],[15,"Focused",13294],[5,"Value",13295,14918],[6,"Side",13295],[5,"Id",13295],[5,"State",13295],[5,"Cursor",13725],[15,"Focused",13724],[6,"State",13725],[15,"Selection",13821],[10,"Base",14404,14740],[5,"Custom",14404,14740],[5,"LazyLock",14919],[5,"Background",14405,14759],[5,"Pair",14405,14759],[5,"Primary",14405,14759],[5,"Secondary",14405,14759],[5,"Success",14405,14759],[5,"Warning",14405,14759],[5,"Danger",14405,14759],[15,"Active",14572],[15,"Hovered",14572],[8,"PathEvent",7518],[8,"IdEvent",7518],[8,"Fragment",12281]],"r":[[0,14740],[1,14738],[2,388],[3,7604],[4,14740],[5,14740],[6,14740],[7,14740],[8,7611],[9,14920],[10,7821],[11,14758],[12,7928],[13,14740],[14,14740],[15,14740],[16,14758],[17,14740],[18,14740],[19,14740],[20,8115],[21,14740],[22,14740],[23,14740],[24,14749],[25,14740],[26,14740],[27,14921],[28,14740],[29,14740],[30,14740],[31,9047],[32,10046],[33,14922],[34,10305],[35,14902],[36,10358],[37,10459],[38,10743],[39,14902],[40,14760],[41,14923],[42,10901],[43,11043],[44,14902],[45,11647],[46,11795],[47,14740],[48,14740],[49,14924],[50,14925],[51,14758],[52,12084],[53,12281],[54,12678],[55,13295],[56,14740],[57,14926],[58,14412],[59,14740],[60,14740],[61,14740],[62,14574],[63,14678],[64,14760],[65,14749],[66,14740],[67,14738],[68,14738],[69,14760],[70,14749],[71,14740],[72,14738],[73,14760],[74,14749],[75,14740],[76,14738],[77,14760],[78,14749],[79,14740],[80,14738],[81,14760],[82,14749],[83,14740],[84,14738],[85,14740],[86,14760],[87,14749],[88,14740],[89,14738],[90,14760],[91,14749],[92,14740],[93,14738],[94,14927],[95,14927],[96,14927],[98,14927],[99,14760],[100,14749],[101,14740],[102,14738],[104,14927],[105,14738],[106,14927],[107,14927],[108,14927],[110,14927],[111,14749],[112,14740],[113,14738],[114,14740],[115,14738],[116,14740],[117,14738],[118,14740],[119,14927],[123,14927],[124,14928],[125,14760],[126,14749],[127,14740],[128,14738],[130,14927],[132,14740],[133,14740],[134,14740],[135,14740],[136,14740],[137,14740],[138,14740],[139,14740],[140,14740],[141,14740],[142,14740],[143,14740],[144,14740],[145,14740],[146,14740],[147,14740],[148,14740],[149,14740],[150,14740],[151,14740],[152,14760],[153,14749],[154,14740],[155,14738],[156,14760],[157,14749],[158,14740],[159,14738],[160,14749],[161,14760],[162,14749],[163,14740],[164,14738],[165,14760],[166,14749],[167,14760],[168,14749],[169,14740],[170,14738],[171,14740],[172,14740],[173,14740],[174,14740],[175,14738],[176,14927],[177,14927],[178,14760],[179,14749],[180,14740],[181,14738],[182,14760],[183,14749],[184,14740],[185,14738],[186,14760],[187,14749],[188,14740],[189,14738],[191,14927],[192,14927],[193,14927],[194,14927],[196,14927],[197,14760],[198,14749],[199,14740],[200,14738],[201,14760],[202,14749],[203,14740],[204,14738],[205,14760],[206,14749],[207,14740],[208,14738],[209,14760],[210,14749],[211,14740],[212,14738],[213,14740],[214,14738],[215,14760],[216,14749],[217,14740],[218,14738],[219,14760],[220,14749],[221,14740],[222,14738],[223,14760],[224,14749],[225,14740],[226,14738],[227,14760],[228,14749],[229,14740],[230,14738],[231,14738],[232,14760],[233,14749],[234,14740],[235,14738],[237,14927],[239,14760],[240,14749],[241,14928],[244,14927],[245,14760],[246,14749],[247,14760],[248,14749],[249,14740],[250,14927],[251,14758],[252,14758],[253,14760],[254,14749],[256,14760],[257,14749],[258,14740],[260,14927],[262,14927],[263,14927],[265,14927],[267,14927],[268,14738],[270,14927],[272,14927],[274,14738],[275,14738],[276,14928],[277,14927],[280,14927],[281,14927],[282,14927],[288,14927],[290,14927],[291,14760],[292,14749],[293,14758],[294,14758],[295,14749],[297,14927],[298,14927],[299,14927],[302,14760],[303,14749],[304,14740],[305,14740],[306,14740],[307,14740],[308,14740],[309,14740],[310,14740],[311,14740],[312,14740],[313,14740],[314,14740],[315,14740],[316,14740],[317,14740],[318,14740],[319,14740],[320,14740],[322,14927],[323,14760],[324,14749],[326,14927],[330,14927],[332,14927],[333,14929],[334,14927],[335,14740],[336,14738],[337,14740],[338,14740],[340,14927],[342,14927],[343,14760],[344,14749],[345,14740],[346,14738],[347,14760],[348,14749],[349,14740],[350,14738],[351,14760],[352,14749],[353,14740],[354,14738],[355,14760],[356,14749],[357,14740],[358,14738],[359,14760],[360,14749],[361,14740],[362,14738],[363,14760],[364,14749],[365,14740],[366,14738],[367,14760],[368,14749],[369,14740],[370,14738],[371,14760],[372,14749],[373,14740],[374,14738],[375,14758],[376,14760],[377,14749],[378,14927],[379,14927],[381,14927],[382,14927],[383,14758],[384,14760],[385,14749],[386,14740],[387,14738],[553,14738],[554,14809],[555,14809],[558,14774],[559,14808],[562,14807],[563,14810],[564,14806],[565,14812],[566,14774],[567,14774],[568,14809],[569,14809],[570,14809],[571,14807],[572,14809],[573,14774],[574,14805],[575,14746],[576,14809],[577,14809],[578,14810],[579,14809],[580,14746],[581,14809],[582,14810],[583,14811],[584,14774],[585,14774],[586,14806],[587,14807],[588,14808],[589,14805],[590,14809],[591,14809],[592,14809],[593,14809],[594,14810],[595,14811],[596,14774],[597,14812],[599,14806],[600,14807],[601,14808],[602,14805],[603,14809],[604,14809],[605,14809],[606,14809],[607,14810],[608,14811],[609,14774],[610,14812],[612,14806],[613,14807],[614,14808],[615,14805],[616,14809],[617,14809],[618,14809],[619,14809],[620,14810],[621,14811],[622,14774],[623,14812],[625,14806],[626,14807],[627,14808],[628,14805],[629,14809],[630,14809],[631,14809],[632,14809],[633,14810],[634,14811],[635,14774],[636,14812],[638,14806],[639,14807],[640,14808],[641,14805],[642,14809],[643,14809],[644,14809],[645,14809],[646,14810],[647,14811],[648,14774],[649,14812],[651,14806],[652,14807],[653,14808],[654,14805],[655,14809],[656,14809],[657,14809],[658,14809],[659,14810],[660,14811],[661,14774],[662,14812],[664,14806],[665,14807],[666,14808],[667,14805],[668,14809],[669,14809],[670,14809],[671,14809],[672,14810],[673,14811],[674,14774],[675,14812],[677,14806],[678,14807],[679,14808],[680,14805],[681,14809],[682,14809],[683,14809],[684,14809],[685,14810],[686,14811],[687,14774],[688,14812],[690,14805],[691,14806],[692,14807],[693,14808],[694,14805],[695,14809],[696,14809],[697,14809],[698,14809],[699,14810],[700,14811],[701,14774],[702,14812],[703,14806],[704,14807],[705,14808],[706,14805],[707,14809],[708,14809],[709,14809],[710,14809],[711,14810],[712,14811],[713,14774],[714,14812],[715,14806],[716,14807],[717,14808],[718,14805],[719,14809],[720,14809],[721,14809],[722,14809],[723,14810],[724,14811],[725,14774],[726,14812],[727,14806],[728,14811],[729,14806],[730,14806],[731,14807],[732,14808],[733,14805],[734,14809],[735,14809],[736,14809],[737,14809],[738,14810],[739,14811],[740,14774],[741,14812],[743,14811],[744,14808],[745,14809],[746,14809],[747,14809],[748,14809],[749,14811],[750,14806],[751,14807],[752,14808],[753,14805],[754,14809],[755,14809],[756,14809],[757,14809],[758,14810],[759,14811],[760,14774],[761,14812],[763,14806],[764,14807],[765,14808],[766,14805],[767,14809],[768,14809],[769,14809],[770,14809],[771,14810],[772,14811],[773,14774],[774,14812],[776,14806],[777,14807],[778,14808],[779,14805],[780,14809],[781,14809],[782,14809],[783,14809],[784,14810],[785,14811],[786,14774],[787,14812],[789,14746],[791,14811],[792,14806],[793,14807],[794,14808],[795,14805],[796,14809],[797,14809],[798,14809],[799,14809],[800,14810],[801,14811],[802,14774],[803,14812],[805,14806],[806,14807],[807,14810],[808,14774],[809,14812],[810,14806],[811,14806],[812,14806],[813,14745],[814,14812],[815,14812],[816,14806],[817,14807],[818,14808],[819,14805],[820,14809],[821,14809],[822,14809],[823,14809],[824,14810],[825,14811],[826,14774],[827,14812],[829,14811],[830,14806],[831,14807],[832,14807],[833,14808],[834,14808],[835,14808],[836,14808],[837,14805],[838,14809],[839,14809],[840,14809],[841,14809],[842,14810],[843,14810],[844,14810],[845,14811],[846,14811],[847,14811],[848,14774],[849,14812],[850,14812],[852,14806],[853,14807],[854,14808],[855,14805],[856,14809],[857,14809],[858,14809],[859,14809],[860,14810],[861,14811],[862,14774],[863,14812],[865,14806],[866,14807],[867,14808],[868,14805],[869,14809],[870,14809],[871,14809],[872,14809],[873,14810],[874,14811],[875,14774],[876,14812],[878,14930],[879,14812],[880,14806],[882,14811],[883,14806],[884,14807],[885,14808],[886,14805],[887,14809],[888,14809],[889,14809],[890,14809],[891,14810],[892,14811],[893,14774],[894,14812],[896,14806],[897,14807],[898,14808],[899,14805],[900,14809],[901,14809],[902,14809],[903,14809],[904,14810],[905,14811],[906,14774],[907,14812],[909,14806],[910,14807],[911,14808],[912,14805],[913,14809],[914,14809],[915,14809],[916,14809],[917,14810],[918,14811],[919,14774],[920,14812],[922,14806],[923,14807],[924,14808],[925,14805],[926,14809],[927,14809],[928,14809],[929,14809],[930,14810],[931,14811],[932,14774],[933,14812],[935,14806],[936,14807],[937,14808],[938,14805],[939,14809],[940,14809],[941,14809],[942,14809],[943,14810],[944,14811],[945,14774],[946,14812],[948,14806],[949,14807],[950,14808],[951,14805],[952,14809],[953,14809],[954,14809],[955,14809],[956,14810],[957,14811],[958,14774],[959,14812],[961,14806],[962,14807],[963,14808],[964,14805],[965,14809],[966,14809],[967,14809],[968,14809],[969,14810],[970,14811],[971,14774],[972,14812],[974,14806],[975,14807],[976,14808],[977,14805],[978,14809],[979,14809],[980,14809],[981,14809],[982,14810],[983,14811],[984,14774],[985,14812],[987,14806],[988,14807],[989,14808],[990,14805],[991,14809],[992,14809],[993,14809],[994,14809],[995,14810],[996,14811],[997,14774],[998,14812],[1000,14806],[1001,14807],[1002,14808],[1003,14805],[1004,14809],[1005,14809],[1006,14809],[1007,14809],[1008,14810],[1009,14811],[1010,14774],[1011,14812],[1013,14806],[1015,14805],[1016,14809],[1017,14809],[1018,14811],[1019,14809],[1020,14746],[1021,14746],[1023,14805],[1024,14812],[1026,14808],[1027,14809],[1028,14809],[1029,14809],[1030,14809],[1031,14811],[1032,14809],[1033,14812],[1034,14812],[1035,14807],[1036,14806],[1037,14745],[1038,14811],[1039,14805],[1040,14805],[1041,14812],[1042,14812],[1043,14805],[1044,14808],[1045,14809],[1046,14811],[1048,14811],[1049,14812],[1050,14812],[1052,14745],[1053,14808],[1054,14809],[1056,14806],[1057,14807],[1058,14808],[1059,14805],[1060,14809],[1061,14809],[1062,14809],[1063,14809],[1064,14810],[1065,14811],[1066,14774],[1067,14812],[1068,14805],[1069,14806],[1070,14807],[1071,14808],[1072,14805],[1073,14809],[1074,14809],[1075,14809],[1076,14809],[1077,14810],[1078,14811],[1079,14774],[1080,14812],[1082,14806],[1083,14807],[1084,14808],[1085,14805],[1086,14809],[1087,14809],[1088,14809],[1089,14809],[1090,14810],[1091,14811],[1092,14774],[1093,14812],[1095,14806],[1096,14807],[1097,14808],[1098,14805],[1099,14809],[1100,14809],[1101,14809],[1102,14809],[1103,14810],[1104,14811],[1105,14774],[1106,14812],[1108,14806],[1109,14807],[1110,14808],[1111,14805],[1112,14809],[1113,14809],[1114,14809],[1115,14809],[1116,14810],[1117,14811],[1118,14774],[1119,14812],[1121,14806],[1122,14807],[1123,14808],[1124,14805],[1125,14809],[1126,14809],[1127,14809],[1128,14809],[1129,14810],[1130,14811],[1131,14774],[1132,14812],[1134,14806],[1135,14807],[1136,14808],[1137,14805],[1138,14809],[1139,14809],[1140,14809],[1141,14809],[1142,14810],[1143,14811],[1144,14774],[1145,14812],[1147,14806],[1148,14807],[1149,14808],[1150,14805],[1151,14809],[1152,14809],[1153,14809],[1154,14809],[1155,14810],[1156,14811],[1157,14774],[1158,14812],[1160,14806],[1161,14806],[1162,14807],[1163,14808],[1164,14805],[1165,14809],[1166,14809],[1167,14809],[1168,14809],[1169,14810],[1170,14811],[1171,14774],[1172,14812],[1174,14746],[1175,14746],[1177,14811],[1178,14806],[1179,14807],[1180,14808],[1181,14805],[1182,14809],[1183,14809],[1184,14809],[1185,14809],[1186,14810],[1187,14811],[1188,14774],[1189,14812],[1192,14809],[1193,14809],[1194,14809],[1195,14809],[1196,14809],[1197,14808],[1198,14808],[1199,14810],[1200,14808],[1201,14808],[1202,14810],[1203,14810],[1204,14808],[1205,14808],[1206,14808],[1207,14808],[1208,14808],[1209,14808],[1210,14808],[1211,14808],[1212,14808],[1213,14808],[1214,14808],[1215,14808],[1216,14808],[1217,14808],[1218,14808],[1219,14808],[1220,14808],[1221,14808],[1222,14808],[1223,14808],[1224,14808],[1225,14808],[1226,14808],[1227,14808],[1228,14808],[1229,14808],[1230,14808],[1231,14808],[1232,14808],[1233,14808],[1234,14808],[1235,14808],[1236,14808],[1237,14808],[1238,14808],[1239,14808],[1240,14808],[1241,14808],[1242,14808],[1243,14808],[1244,14808],[1245,14808],[1246,14808],[1247,14808],[1248,14808],[1249,14808],[1250,14807],[1251,14807],[1252,14807],[1253,14807],[1254,14807],[1255,14807],[1256,14807],[1257,14807],[1258,14807],[1259,14807],[1260,14807],[1261,14807],[1262,14807],[1263,14807],[1264,14807],[1265,14807],[1266,14807],[1267,14807],[1268,14807],[1269,14807],[1270,14807],[1271,14807],[1272,14807],[1273,14807],[1274,14807],[1275,14807],[1276,14807],[1277,14807],[1278,14807],[1279,14807],[1280,14807],[1281,14807],[1282,14807],[1283,14807],[1284,14807],[1285,14807],[1286,14807],[1287,14807],[1288,14807],[1289,14807],[1290,14807],[1291,14807],[1292,14807],[1293,14807],[1294,14807],[1295,14807],[1296,14807],[1297,14807],[1298,14807],[1299,14807],[1300,14807],[1301,14807],[1302,14807],[1303,14807],[1304,14807],[1305,14807],[1306,14807],[1307,14807],[1308,14807],[1309,14807],[1310,14807],[1311,14807],[1312,14807],[1313,14807],[1314,14807],[1315,14807],[1316,14807],[1317,14807],[1318,14807],[1319,14807],[1320,14807],[1321,14807],[1322,14807],[1323,14807],[1324,14807],[1325,14807],[1326,14807],[1327,14807],[1328,14807],[1329,14807],[1330,14807],[1331,14807],[1332,14807],[1333,14807],[1334,14807],[1335,14807],[1336,14807],[1337,14807],[1338,14807],[1339,14807],[1340,14807],[1341,14807],[1342,14807],[1343,14807],[1344,14807],[1345,14820],[1346,14814],[1347,14805],[1348,14814],[1349,14820],[1350,14805],[1351,14814],[1352,14814],[1353,14814],[1354,14820],[1355,14814],[1356,14820],[1357,14814],[1358,14820],[1359,14814],[1360,14820],[1361,14814],[1362,14814],[1363,14820],[1364,14814],[1365,14820],[1366,14814],[1367,14814],[1368,14820],[1369,14820],[1370,14814],[1371,14820],[1372,14820],[1373,14820],[1374,14814],[1375,14814],[1376,14820],[1377,14814],[1378,14814],[1379,14820],[1380,14814],[1381,14820],[1382,14814],[1383,14820],[1384,14814],[1385,14820],[1386,14814],[1387,14820],[1388,14820],[1389,14814],[1390,14820],[1391,14814],[1392,14820],[1393,14814],[1394,14820],[1395,14814],[1396,14820],[1397,14814],[1398,14820],[1399,14814],[1400,14820],[1401,14814],[1402,14820],[1403,14814],[1404,14820],[1405,14814],[1406,14820],[1407,14814],[1408,14820],[1409,14814],[1410,14820],[1411,14814],[1412,14820],[1413,14814],[1414,14820],[1415,14814],[1416,14814],[1417,14814],[1418,14814],[1419,14814],[1420,14820],[1421,14814],[1422,14814],[1423,14820],[1424,14820],[1425,14814],[1426,14820],[1427,14814],[1428,14820],[1429,14814],[1430,14820],[1431,14814],[1432,14820],[1433,14814],[1434,14820],[1435,14814],[1436,14820],[1437,14814],[1438,14820],[1439,14814],[1440,14820],[1441,14814],[1442,14820],[1443,14820],[1444,14820],[1445,14820],[1446,14820],[1447,14820],[1448,14820],[1449,14820],[1450,14820],[1451,14820],[1452,14820],[1453,14820],[1454,14820],[1455,14820],[1456,14820],[1457,14820],[1458,14820],[1459,14820],[1460,14820],[1461,14820],[1462,14820],[1463,14820],[1464,14820],[1465,14820],[1466,14820],[1467,14820],[1468,14820],[1469,14820],[1470,14820],[1471,14820],[1472,14820],[1473,14820],[1474,14820],[1475,14820],[1476,14820],[1477,14820],[1478,14820],[1479,14820],[1480,14820],[1481,14820],[1482,14820],[1483,14820],[1484,14820],[1485,14820],[1486,14820],[1487,14820],[1488,14820],[1489,14820],[1490,14820],[1491,14820],[1492,14820],[1493,14820],[1494,14820],[1495,14826],[1496,14823],[1497,14823],[1498,14823],[1499,14823],[1502,14827],[1503,14823],[1504,14815],[1505,14815],[1506,14815],[1507,14823],[1508,14823],[1511,14827],[1514,14827],[1515,14823],[1516,14823],[1517,14827],[1518,14823],[1519,14823],[1520,14823],[1521,14823],[1522,14823],[1523,14827],[1524,14815],[1525,14828],[1526,14815],[1527,14815],[1530,14827],[1531,14823],[1532,14823],[1533,14823],[1534,14823],[1535,14823],[1536,14823],[1537,14823],[1538,14823],[1539,14815],[1540,14822],[1541,14822],[1542,14821],[1543,14821],[1544,14827],[1545,14815],[1546,14828],[1547,14823],[1548,14823],[1549,14823],[1550,14823],[1553,14827],[1554,14815],[1555,14823],[1556,14823],[1557,14823],[1558,14823],[1559,14823],[1560,14815],[1561,14826],[1562,14823],[1563,14821],[1564,14821],[1565,14827],[1566,14815],[1567,14815],[1568,14815],[1569,14815],[1570,14815],[1571,14815],[1572,14815],[1573,14822],[1574,14822],[1575,14828],[1576,14828],[1577,14823],[1578,14823],[1579,14823],[1580,14823],[1581,14823],[1582,14823],[1583,14823],[1584,14823],[1585,14815],[1586,14826],[1587,14823],[1588,14821],[1589,14821],[1590,14827],[1591,14815],[1592,14815],[1593,14815],[1594,14815],[1595,14815],[1596,14815],[1597,14815],[1598,14822],[1599,14822],[1600,14828],[1601,14828],[1602,14823],[1603,14823],[1604,14823],[1605,14823],[1606,14823],[1607,14823],[1608,14823],[1609,14823],[1610,14815],[1611,14826],[1612,14823],[1613,14821],[1614,14821],[1615,14827],[1616,14815],[1617,14815],[1618,14815],[1619,14815],[1620,14815],[1621,14815],[1622,14815],[1623,14822],[1624,14822],[1625,14828],[1626,14828],[1627,14823],[1628,14823],[1629,14823],[1630,14823],[1631,14823],[1632,14823],[1633,14823],[1634,14823],[1635,14815],[1636,14826],[1637,14823],[1638,14821],[1639,14821],[1640,14827],[1641,14815],[1642,14815],[1643,14815],[1644,14815],[1645,14815],[1646,14815],[1647,14815],[1648,14822],[1649,14822],[1650,14828],[1651,14828],[1652,14823],[1653,14823],[1654,14823],[1655,14823],[1656,14823],[1657,14823],[1658,14823],[1659,14823],[1660,14815],[1661,14826],[1662,14823],[1663,14821],[1664,14821],[1665,14827],[1666,14815],[1667,14815],[1668,14815],[1669,14815],[1670,14815],[1671,14815],[1672,14815],[1673,14822],[1674,14822],[1675,14828],[1676,14828],[1677,14823],[1678,14823],[1679,14823],[1680,14823],[1681,14823],[1682,14823],[1683,14823],[1684,14823],[1685,14821],[1686,14815],[1687,14822],[1688,14815],[1689,14815],[1690,14815],[1691,14815],[1692,14815],[1693,14815],[1694,14826],[1695,14823],[1696,14821],[1697,14821],[1698,14827],[1699,14815],[1700,14815],[1701,14815],[1702,14815],[1703,14815],[1704,14815],[1705,14815],[1706,14822],[1707,14822],[1708,14828],[1709,14828],[1710,14823],[1711,14823],[1712,14823],[1713,14823],[1714,14823],[1715,14823],[1716,14823],[1717,14823],[1718,14815],[1719,14826],[1720,14823],[1721,14821],[1722,14821],[1723,14827],[1724,14815],[1725,14815],[1726,14815],[1727,14815],[1728,14815],[1729,14815],[1730,14815],[1731,14822],[1732,14822],[1733,14828],[1734,14828],[1735,14823],[1736,14823],[1737,14823],[1738,14823],[1739,14823],[1740,14823],[1741,14823],[1742,14823],[1743,14815],[1744,14815],[1745,14815],[1746,14823],[1747,14821],[1748,14815],[1749,14822],[1750,14815],[1751,14815],[1752,14826],[1753,14823],[1754,14821],[1755,14821],[1756,14827],[1757,14815],[1758,14815],[1759,14815],[1760,14815],[1761,14815],[1762,14815],[1763,14815],[1764,14822],[1765,14822],[1766,14828],[1767,14828],[1768,14823],[1769,14823],[1770,14823],[1771,14823],[1772,14823],[1773,14823],[1774,14823],[1775,14823],[1776,14822],[1777,14826],[1778,14821],[1779,14821],[1780,14827],[1781,14815],[1782,14815],[1783,14815],[1784,14815],[1785,14815],[1786,14815],[1787,14815],[1788,14822],[1789,14822],[1790,14828],[1791,14828],[1792,14823],[1793,14823],[1794,14823],[1795,14823],[1796,14823],[1797,14823],[1798,14823],[1799,14823],[1800,14826],[1801,14821],[1802,14821],[1803,14827],[1804,14815],[1805,14815],[1806,14815],[1807,14815],[1808,14815],[1809,14815],[1810,14815],[1811,14822],[1812,14822],[1813,14828],[1814,14828],[1815,14823],[1816,14823],[1817,14823],[1818,14823],[1819,14823],[1820,14823],[1821,14823],[1822,14823],[1823,14826],[1824,14821],[1825,14821],[1826,14827],[1827,14815],[1828,14815],[1829,14815],[1830,14815],[1831,14815],[1832,14815],[1833,14815],[1834,14822],[1835,14822],[1836,14828],[1837,14828],[1838,14823],[1839,14823],[1840,14823],[1841,14823],[1842,14823],[1843,14823],[1844,14823],[1845,14823],[1846,14828],[1847,14828],[1848,14823],[1849,14815],[1850,14826],[1851,14823],[1852,14821],[1853,14821],[1854,14827],[1855,14815],[1856,14815],[1857,14815],[1858,14815],[1859,14815],[1860,14815],[1861,14815],[1862,14822],[1863,14822],[1864,14828],[1865,14828],[1866,14823],[1867,14823],[1868,14823],[1869,14823],[1870,14823],[1871,14823],[1872,14823],[1873,14823],[1874,14815],[1875,14815],[1876,14815],[1877,14826],[1878,14815],[1879,14815],[1880,14822],[1881,14815],[1882,14826],[1883,14823],[1884,14821],[1885,14821],[1886,14827],[1887,14815],[1888,14815],[1889,14815],[1890,14815],[1891,14815],[1892,14815],[1893,14815],[1894,14822],[1895,14822],[1896,14828],[1897,14828],[1898,14823],[1899,14823],[1900,14823],[1901,14823],[1902,14823],[1903,14823],[1904,14823],[1905,14823],[1906,14815],[1907,14826],[1908,14823],[1909,14821],[1910,14821],[1911,14827],[1912,14815],[1913,14815],[1914,14815],[1915,14815],[1916,14815],[1917,14815],[1918,14815],[1919,14822],[1920,14822],[1921,14828],[1922,14828],[1923,14823],[1924,14823],[1925,14823],[1926,14823],[1927,14823],[1928,14823],[1929,14823],[1930,14823],[1931,14815],[1932,14826],[1933,14823],[1934,14821],[1935,14821],[1936,14827],[1937,14815],[1938,14815],[1939,14815],[1940,14815],[1941,14815],[1942,14815],[1943,14815],[1944,14822],[1945,14822],[1946,14828],[1947,14828],[1948,14823],[1949,14823],[1950,14823],[1951,14823],[1952,14823],[1953,14823],[1954,14823],[1955,14823],[1956,14815],[1957,14826],[1958,14823],[1959,14821],[1960,14821],[1961,14827],[1962,14815],[1963,14815],[1964,14815],[1965,14815],[1966,14815],[1967,14815],[1968,14815],[1969,14822],[1970,14822],[1971,14828],[1972,14828],[1973,14823],[1974,14823],[1975,14823],[1976,14823],[1977,14823],[1978,14823],[1979,14823],[1980,14823],[1981,14815],[1982,14815],[1983,14815],[1984,14826],[1985,14827],[1986,14823],[1987,14823],[1988,14823],[1989,14823],[1990,14823],[1991,14823],[1992,14823],[1993,14823],[1994,14827],[1995,14827],[1996,14827],[1997,14823],[1998,14823],[1999,14823],[2000,14823],[2001,14823],[2002,14823],[2003,14823],[2004,14823],[2005,14823],[2006,14823],[2007,14823],[2008,14823],[2009,14821],[2010,14821],[2011,14828],[2012,14828],[2013,14821],[2014,14815],[2015,14815],[2016,14815],[2017,14815],[2018,14826],[2019,14821],[2020,14821],[2021,14827],[2022,14815],[2023,14815],[2024,14815],[2025,14822],[2026,14822],[2027,14823],[2028,14823],[2029,14823],[2030,14823],[2031,14823],[2032,14823],[2033,14823],[2034,14823],[2035,14815],[2036,14815],[2037,14826],[2038,14823],[2039,14821],[2040,14821],[2041,14821],[2042,14827],[2043,14827],[2044,14815],[2045,14815],[2046,14815],[2047,14815],[2048,14815],[2049,14815],[2050,14815],[2051,14815],[2052,14822],[2053,14822],[2054,14828],[2055,14828],[2056,14823],[2057,14823],[2058,14823],[2059,14823],[2060,14823],[2061,14823],[2062,14823],[2063,14823],[2064,14815],[2065,14826],[2066,14823],[2067,14821],[2068,14821],[2069,14827],[2070,14815],[2071,14815],[2072,14815],[2073,14815],[2074,14815],[2075,14815],[2076,14815],[2077,14822],[2078,14822],[2079,14828],[2080,14828],[2081,14823],[2082,14823],[2083,14823],[2084,14823],[2085,14823],[2086,14823],[2087,14823],[2088,14823],[2089,14815],[2090,14822],[2091,14815],[2092,14826],[2093,14823],[2094,14821],[2095,14821],[2096,14827],[2097,14815],[2098,14815],[2099,14815],[2100,14815],[2101,14815],[2102,14815],[2103,14815],[2104,14822],[2105,14822],[2106,14828],[2107,14828],[2108,14823],[2109,14823],[2110,14823],[2111,14823],[2112,14823],[2113,14823],[2114,14823],[2115,14823],[2116,14823],[2117,14823],[2118,14823],[2119,14823],[2120,14815],[2121,14815],[2122,14822],[2123,14822],[2124,14823],[2125,14815],[2126,14815],[2127,14828],[2128,14823],[2129,14815],[2130,14815],[2131,14828],[2132,14827],[2133,14823],[2134,14823],[2135,14823],[2136,14823],[2137,14815],[2138,14815],[2139,14828],[2140,14815],[2141,14815],[2142,14815],[2143,14815],[2144,14828],[2145,14822],[2146,14822],[2147,14815],[2148,14826],[2149,14823],[2150,14821],[2151,14821],[2152,14827],[2153,14815],[2154,14815],[2155,14815],[2156,14815],[2157,14815],[2158,14815],[2159,14815],[2160,14822],[2161,14822],[2162,14828],[2163,14828],[2164,14823],[2165,14823],[2166,14823],[2167,14823],[2168,14823],[2169,14823],[2170,14823],[2171,14823],[2172,14815],[2173,14826],[2174,14823],[2175,14821],[2176,14821],[2177,14827],[2178,14815],[2179,14815],[2180,14815],[2181,14815],[2182,14815],[2183,14815],[2184,14815],[2185,14822],[2186,14822],[2187,14828],[2188,14828],[2189,14823],[2190,14823],[2191,14823],[2192,14823],[2193,14823],[2194,14823],[2195,14823],[2196,14823],[2197,14815],[2198,14826],[2199,14823],[2200,14821],[2201,14821],[2202,14827],[2203,14815],[2204,14815],[2205,14815],[2206,14815],[2207,14815],[2208,14815],[2209,14815],[2210,14822],[2211,14822],[2212,14828],[2213,14828],[2214,14823],[2215,14823],[2216,14823],[2217,14823],[2218,14823],[2219,14823],[2220,14823],[2221,14823],[2222,14815],[2223,14826],[2224,14823],[2225,14821],[2226,14821],[2227,14827],[2228,14815],[2229,14815],[2230,14815],[2231,14815],[2232,14815],[2233,14815],[2234,14815],[2235,14822],[2236,14822],[2237,14828],[2238,14828],[2239,14823],[2240,14823],[2241,14823],[2242,14823],[2243,14823],[2244,14823],[2245,14823],[2246,14823],[2247,14815],[2248,14826],[2249,14823],[2250,14821],[2251,14821],[2252,14827],[2253,14815],[2254,14815],[2255,14815],[2256,14815],[2257,14815],[2258,14822],[2259,14822],[2260,14828],[2261,14828],[2262,14823],[2263,14823],[2264,14823],[2265,14823],[2266,14823],[2267,14823],[2268,14823],[2269,14823],[2270,14815],[2271,14826],[2272,14823],[2273,14821],[2274,14821],[2275,14827],[2276,14815],[2277,14815],[2278,14815],[2279,14815],[2280,14815],[2281,14815],[2282,14815],[2283,14822],[2284,14822],[2285,14828],[2286,14828],[2287,14823],[2288,14823],[2289,14823],[2290,14823],[2291,14823],[2292,14823],[2293,14823],[2294,14823],[2295,14815],[2296,14826],[2297,14823],[2298,14821],[2299,14821],[2300,14827],[2301,14815],[2302,14815],[2303,14815],[2304,14815],[2305,14815],[2306,14815],[2307,14815],[2308,14822],[2309,14822],[2310,14828],[2311,14828],[2312,14823],[2313,14823],[2314,14823],[2315,14823],[2316,14823],[2317,14823],[2318,14823],[2319,14823],[2320,14815],[2321,14826],[2322,14823],[2323,14821],[2324,14821],[2325,14827],[2326,14815],[2327,14815],[2328,14815],[2329,14815],[2330,14815],[2331,14815],[2332,14815],[2333,14822],[2334,14822],[2335,14828],[2336,14828],[2337,14823],[2338,14823],[2339,14823],[2340,14823],[2341,14823],[2342,14823],[2343,14823],[2344,14823],[2345,14815],[2346,14826],[2347,14823],[2348,14821],[2349,14821],[2350,14827],[2351,14815],[2352,14815],[2353,14815],[2354,14815],[2355,14815],[2356,14815],[2357,14815],[2358,14822],[2359,14822],[2360,14828],[2361,14828],[2362,14823],[2363,14823],[2364,14823],[2365,14823],[2366,14823],[2367,14823],[2368,14823],[2369,14823],[2370,14815],[2371,14821],[2372,14815],[2373,14815],[2374,14815],[2375,14815],[2376,14815],[2377,14815],[2378,14815],[2379,14815],[2380,14826],[2381,14823],[2382,14821],[2383,14821],[2384,14827],[2385,14815],[2386,14815],[2387,14815],[2388,14815],[2389,14815],[2390,14815],[2391,14815],[2392,14822],[2393,14822],[2394,14828],[2395,14828],[2396,14823],[2397,14823],[2398,14823],[2399,14823],[2400,14823],[2401,14823],[2402,14823],[2403,14823],[2404,14827],[2405,14815],[2406,14822],[2407,14822],[2408,14823],[2409,14823],[2410,14823],[2411,14823],[2412,14821],[2413,14821],[2414,14815],[2415,14815],[2416,14822],[2417,14822],[2418,14828],[2419,14828],[2420,14815],[2421,14815],[2422,14823],[2423,14826],[2424,14815],[2425,14815],[2426,14822],[2427,14822],[2428,14815],[2429,14815],[2430,14815],[2431,14823],[2432,14823],[2433,14815],[2434,14815],[2435,14815],[2436,14822],[2437,14815],[2438,14815],[2439,14815],[2440,14815],[2441,14821],[2442,14821],[2443,14821],[2444,14821],[2445,14826],[2446,14815],[2447,14815],[2448,14822],[2449,14823],[2450,14823],[2451,14815],[2452,14815],[2453,14815],[2454,14815],[2455,14815],[2456,14823],[2457,14823],[2458,14823],[2459,14823],[2460,14823],[2461,14828],[2462,14821],[2463,14815],[2464,14828],[2465,14828],[2466,14823],[2467,14823],[2468,14815],[2469,14815],[2470,14815],[2471,14815],[2472,14815],[2473,14815],[2474,14822],[2475,14815],[2476,14815],[2477,14815],[2478,14826],[2479,14827],[2480,14823],[2481,14826],[2482,14821],[2483,14821],[2484,14827],[2485,14815],[2486,14815],[2487,14815],[2488,14815],[2489,14815],[2490,14815],[2491,14815],[2492,14822],[2493,14822],[2494,14828],[2495,14828],[2496,14823],[2497,14823],[2498,14823],[2499,14823],[2500,14823],[2501,14823],[2502,14823],[2503,14823],[2504,14823],[2505,14823],[2506,14823],[2507,14823],[2508,14827],[2509,14815],[2510,14815],[2511,14826],[2512,14823],[2513,14821],[2514,14821],[2515,14827],[2516,14815],[2517,14815],[2518,14815],[2519,14815],[2520,14815],[2521,14815],[2522,14815],[2523,14822],[2524,14822],[2525,14828],[2526,14828],[2527,14823],[2528,14823],[2529,14823],[2530,14823],[2531,14823],[2532,14823],[2533,14823],[2534,14823],[2535,14815],[2536,14826],[2537,14823],[2538,14821],[2539,14821],[2540,14827],[2541,14815],[2542,14815],[2543,14815],[2544,14815],[2545,14815],[2546,14815],[2547,14815],[2548,14822],[2549,14822],[2550,14828],[2551,14828],[2552,14823],[2553,14823],[2554,14823],[2555,14823],[2556,14823],[2557,14823],[2558,14823],[2559,14823],[2560,14815],[2561,14826],[2562,14823],[2563,14821],[2564,14821],[2565,14827],[2566,14815],[2567,14815],[2568,14815],[2569,14815],[2570,14815],[2571,14815],[2572,14815],[2573,14822],[2574,14822],[2575,14828],[2576,14828],[2577,14823],[2578,14823],[2579,14823],[2580,14823],[2581,14823],[2582,14823],[2583,14823],[2584,14823],[2585,14815],[2586,14826],[2587,14823],[2588,14821],[2589,14821],[2590,14827],[2591,14815],[2592,14815],[2593,14815],[2594,14815],[2595,14815],[2596,14815],[2597,14815],[2598,14822],[2599,14822],[2600,14828],[2601,14828],[2602,14823],[2603,14823],[2604,14823],[2605,14823],[2606,14823],[2607,14823],[2608,14823],[2609,14823],[2610,14815],[2611,14826],[2612,14823],[2613,14821],[2614,14821],[2615,14827],[2616,14815],[2617,14815],[2618,14815],[2619,14815],[2620,14815],[2621,14815],[2622,14815],[2623,14822],[2624,14822],[2625,14828],[2626,14828],[2627,14823],[2628,14823],[2629,14823],[2630,14823],[2631,14823],[2632,14823],[2633,14823],[2634,14823],[2635,14815],[2636,14826],[2637,14823],[2638,14821],[2639,14821],[2640,14827],[2641,14815],[2642,14815],[2643,14815],[2644,14815],[2645,14815],[2646,14815],[2647,14815],[2648,14822],[2649,14822],[2650,14828],[2651,14828],[2652,14823],[2653,14823],[2654,14823],[2655,14823],[2656,14823],[2657,14823],[2658,14823],[2659,14823],[2660,14815],[2661,14826],[2662,14823],[2663,14821],[2664,14821],[2665,14827],[2666,14815],[2667,14815],[2668,14815],[2669,14815],[2670,14815],[2671,14815],[2672,14815],[2673,14822],[2674,14822],[2675,14828],[2676,14828],[2677,14823],[2678,14823],[2679,14823],[2680,14823],[2681,14823],[2682,14823],[2683,14823],[2684,14823],[2685,14815],[2686,14826],[2687,14823],[2688,14821],[2689,14821],[2690,14827],[2691,14815],[2692,14815],[2693,14815],[2694,14815],[2695,14815],[2696,14815],[2697,14815],[2698,14822],[2699,14822],[2700,14828],[2701,14828],[2702,14823],[2703,14823],[2704,14823],[2705,14823],[2706,14823],[2707,14823],[2708,14823],[2709,14823],[2710,14815],[2711,14826],[2712,14823],[2713,14821],[2714,14821],[2715,14827],[2716,14815],[2717,14815],[2718,14815],[2719,14815],[2720,14815],[2721,14815],[2722,14815],[2723,14822],[2724,14822],[2725,14828],[2726,14828],[2727,14823],[2728,14823],[2729,14823],[2730,14823],[2731,14823],[2732,14823],[2733,14823],[2734,14823],[2735,14815],[2736,14815],[2737,14822],[2738,14827],[2739,14815],[2779,14825],[2780,14825],[2781,14825],[2782,14825],[2783,14825],[2784,14825],[2785,14825],[2786,14825],[2787,14825],[2788,14825],[2789,14825],[2790,14825],[2791,14825],[2792,14825],[2793,14825],[2794,14825],[2795,14825],[2796,14825],[2797,14825],[2798,14825],[2799,14825],[2800,14825],[2801,14825],[2802,14825],[2803,14825],[2804,14825],[2805,14825],[2806,14825],[2807,14825],[2808,14825],[2809,14825],[2810,14825],[2811,14825],[2812,14825],[2813,14825],[2814,14825],[2815,14825],[2816,14825],[2817,14825],[2818,14825],[2819,14825],[2820,14825],[2821,14825],[2822,14825],[2823,14825],[2824,14825],[2825,14825],[2826,14825],[2827,14825],[2828,14825],[2829,14825],[2830,14825],[2831,14825],[2832,14825],[2833,14825],[2834,14825],[2835,14825],[2836,14825],[2837,14825],[2838,14825],[2839,14825],[2840,14825],[2841,14825],[2842,14825],[2843,14825],[2844,14825],[2845,14825],[2846,14825],[2847,14825],[2848,14825],[2849,14825],[2850,14825],[2851,14825],[2852,14825],[2853,14825],[2854,14825],[2855,14825],[2856,14825],[2857,14825],[2858,14825],[2859,14825],[2860,14825],[2861,14825],[2862,14825],[2863,14825],[2864,14825],[2865,14825],[2866,14825],[2867,14825],[2868,14825],[2869,14825],[2870,14825],[2871,14825],[2872,14825],[2873,14825],[2874,14825],[2875,14825],[2876,14825],[2877,14825],[2878,14825],[2879,14825],[2880,14825],[2881,14825],[2882,14825],[2883,14825],[2884,14825],[2885,14825],[2886,14825],[2887,14825],[2888,14825],[2889,14825],[2890,14825],[2891,14825],[2892,14825],[2893,14825],[2894,14825],[2895,14825],[2896,14825],[2897,14825],[2898,14825],[2899,14825],[2900,14825],[2901,14825],[2902,14825],[2903,14825],[2904,14825],[2905,14825],[2906,14825],[2907,14825],[2908,14825],[2909,14825],[2910,14825],[2911,14825],[2912,14825],[2913,14825],[2914,14825],[2915,14825],[2916,14825],[2917,14825],[2918,14825],[2919,14825],[2920,14825],[2921,14825],[2922,14825],[2923,14825],[2924,14825],[2925,14825],[2926,14825],[2927,14825],[2928,14825],[2929,14825],[2930,14825],[2931,14825],[2932,14825],[2933,14825],[2934,14825],[2935,14825],[2936,14825],[2937,14825],[2938,14825],[2939,14825],[2940,14825],[2941,14825],[2942,14825],[2943,14825],[2944,14825],[2945,14825],[2946,14825],[2947,14825],[2948,14825],[2949,14825],[2950,14825],[2951,14825],[2952,14825],[2953,14825],[2954,14825],[2955,14825],[2956,14825],[2957,14825],[2958,14825],[2959,14825],[2960,14825],[2961,14825],[2962,14825],[2963,14825],[2964,14825],[2965,14825],[2966,14825],[2967,14825],[2968,14825],[2969,14825],[2970,14825],[2971,14825],[2972,14825],[2973,14825],[2974,14825],[2975,14825],[2976,14825],[2977,14825],[2978,14825],[2979,14825],[2980,14825],[2981,14825],[2982,14825],[2983,14825],[2984,14825],[2985,14825],[2986,14825],[2987,14825],[2988,14825],[2989,14825],[2990,14825],[2991,14825],[2992,14825],[2993,14825],[2994,14825],[2995,14825],[2996,14825],[2997,14825],[2998,14825],[2999,14825],[3000,14825],[3001,14825],[3002,14825],[3003,14825],[3004,14825],[3005,14825],[3006,14825],[3007,14825],[3008,14825],[3009,14825],[3010,14825],[3011,14825],[3012,14825],[3013,14825],[3014,14825],[3015,14825],[3016,14825],[3017,14825],[3018,14825],[3019,14825],[3020,14825],[3021,14825],[3022,14825],[3023,14825],[3024,14825],[3025,14825],[3026,14825],[3027,14825],[3028,14825],[3029,14825],[3030,14825],[3031,14825],[3032,14825],[3033,14825],[3034,14825],[3035,14825],[3036,14825],[3037,14825],[3038,14825],[3039,14825],[3040,14825],[3041,14825],[3042,14825],[3043,14825],[3044,14825],[3045,14825],[3046,14825],[3047,14825],[3048,14825],[3049,14825],[3050,14825],[3051,14825],[3052,14825],[3053,14825],[3054,14825],[3055,14825],[3056,14825],[3057,14825],[3058,14825],[3059,14825],[3060,14825],[3061,14825],[3062,14825],[3063,14825],[3064,14825],[3065,14825],[3066,14825],[3067,14825],[3068,14825],[3069,14825],[3070,14825],[3071,14825],[3072,14825],[3073,14825],[3074,14825],[3075,14825],[3076,14825],[3077,14825],[3078,14825],[3079,14825],[3080,14825],[3081,14825],[3082,14825],[3083,14825],[3084,14825],[3085,14825],[3086,14825],[3087,14825],[3088,14825],[3089,14825],[3090,14825],[3091,14825],[3092,14825],[3093,14825],[3094,14825],[3095,14825],[3096,14825],[3097,14825],[3098,14825],[3099,14825],[3100,14825],[3101,14825],[3102,14825],[3103,14825],[3104,14825],[3105,14825],[3106,14825],[3107,14825],[3108,14825],[3109,14825],[3110,14825],[3111,14825],[3112,14825],[3113,14825],[3114,14825],[3115,14825],[3116,14825],[3117,14825],[3118,14825],[3119,14825],[3120,14825],[3121,14825],[3122,14825],[3123,14825],[3124,14825],[3125,14825],[3126,14825],[3127,14825],[3128,14825],[3129,14825],[3130,14825],[3131,14825],[3132,14825],[3133,14825],[3134,14825],[3135,14825],[3136,14821],[3137,14821],[3138,14821],[3139,14821],[3140,14821],[3141,14821],[3142,14821],[3143,14821],[3144,14821],[3145,14821],[3146,14821],[3147,14821],[3148,14821],[3149,14821],[3150,14821],[3151,14821],[3152,14821],[3153,14821],[3154,14821],[3155,14821],[3156,14821],[3157,14821],[3158,14821],[3159,14821],[3160,14821],[3161,14821],[3162,14821],[3163,14821],[3164,14821],[3165,14821],[3166,14821],[3167,14821],[3168,14821],[3169,14821],[3170,14821],[3171,14821],[3172,14821],[3173,14821],[3174,14821],[3175,14821],[3176,14821],[3177,14821],[3178,14821],[3179,14821],[3180,14821],[3181,14821],[3182,14821],[3183,14821],[3184,14821],[3185,14821],[3186,14821],[3187,14821],[3188,14821],[3189,14821],[3190,14821],[3191,14821],[3192,14821],[3193,14821],[3194,14821],[3195,14821],[3196,14821],[3197,14821],[3198,14821],[3199,14821],[3200,14821],[3201,14821],[3202,14821],[3203,14821],[3204,14821],[3205,14821],[3206,14821],[3207,14821],[3208,14821],[3209,14821],[3210,14821],[3211,14821],[3212,14821],[3213,14821],[3214,14821],[3215,14821],[3216,14821],[3217,14821],[3218,14821],[3219,14821],[3220,14821],[3221,14821],[3222,14821],[3223,14821],[3224,14821],[3225,14821],[3226,14821],[3227,14821],[3228,14821],[3229,14821],[3230,14821],[3231,14821],[3232,14821],[3233,14821],[3234,14821],[3235,14821],[3236,14821],[3237,14821],[3238,14821],[3239,14821],[3240,14821],[3241,14821],[3242,14821],[3243,14821],[3244,14821],[3245,14821],[3246,14821],[3247,14821],[3248,14821],[3249,14821],[3250,14821],[3251,14821],[3252,14821],[3253,14821],[3254,14821],[3255,14821],[3256,14821],[3257,14821],[3258,14821],[3259,14821],[3260,14821],[3261,14821],[3262,14821],[3263,14821],[3264,14821],[3265,14821],[3266,14821],[3267,14821],[3268,14821],[3269,14821],[3270,14821],[3271,14821],[3272,14821],[3273,14821],[3274,14821],[3275,14821],[3276,14821],[3277,14821],[3278,14821],[3279,14821],[3280,14821],[3281,14821],[3282,14821],[3283,14821],[3284,14821],[3285,14821],[3286,14821],[3287,14821],[3288,14821],[3289,14821],[3290,14821],[3291,14821],[3292,14821],[3293,14821],[3294,14821],[3295,14821],[3296,14821],[3297,14821],[3298,14821],[3299,14821],[3300,14821],[3301,14821],[3302,14821],[3303,14821],[3304,14821],[3305,14821],[3306,14821],[3307,14821],[3308,14821],[3309,14821],[3310,14821],[3311,14821],[3312,14821],[3313,14821],[3314,14821],[3315,14821],[3316,14821],[3317,14821],[3318,14821],[3319,14821],[3320,14821],[3321,14821],[3322,14821],[3323,14821],[3324,14821],[3325,14821],[3326,14821],[3327,14821],[3328,14821],[3329,14821],[3330,14821],[3331,14821],[3332,14821],[3333,14821],[3334,14821],[3335,14821],[3336,14821],[3337,14821],[3338,14821],[3339,14821],[3340,14821],[3341,14821],[3342,14821],[3343,14821],[3344,14821],[3345,14821],[3346,14821],[3347,14821],[3348,14821],[3349,14821],[3350,14821],[3351,14821],[3352,14821],[3353,14821],[3354,14821],[3355,14821],[3356,14821],[3357,14821],[3358,14821],[3359,14821],[3360,14832],[3361,14826],[3362,14826],[3363,14848],[3364,14839],[3365,14835],[3366,14835],[3367,14835],[3368,14835],[3369,14835],[3370,14835],[3371,14833],[3372,14833],[3373,14833],[3374,14835],[3375,14835],[3376,14835],[3377,14835],[3379,14840],[3380,14841],[3381,14835],[3382,14835],[3383,14835],[3384,14838],[3385,14848],[3386,14838],[3388,14826],[3389,14835],[3390,14835],[3391,14835],[3392,14841],[3393,14841],[3394,14836],[3396,14835],[3397,14833],[3398,14836],[3399,14836],[3400,14836],[3401,14826],[3402,14826],[3403,14839],[3404,14833],[3405,14833],[3406,14833],[3407,14840],[3408,14836],[3409,14832],[3410,14832],[3411,14832],[3412,14832],[3413,14838],[3414,14826],[3415,14826],[3416,14839],[3417,14839],[3418,14833],[3419,14833],[3420,14840],[3421,14840],[3422,14841],[3423,14832],[3424,14832],[3425,14832],[3426,14838],[3427,14826],[3428,14826],[3429,14839],[3430,14839],[3431,14833],[3432,14840],[3433,14841],[3434,14826],[3435,14826],[3436,14839],[3437,14833],[3438,14833],[3439,14833],[3440,14840],[3441,14836],[3442,14832],[3443,14826],[3444,14826],[3445,14839],[3446,14833],[3447,14833],[3448,14833],[3449,14840],[3450,14836],[3451,14832],[3452,14826],[3453,14826],[3454,14839],[3455,14833],[3456,14833],[3457,14833],[3458,14840],[3459,14836],[3460,14832],[3461,14826],[3462,14826],[3463,14839],[3464,14833],[3465,14833],[3466,14833],[3467,14840],[3468,14836],[3469,14832],[3470,14833],[3471,14836],[3472,14836],[3473,14839],[3474,14840],[3475,14836],[3476,14838],[3477,14826],[3478,14826],[3479,14839],[3480,14839],[3481,14833],[3482,14833],[3483,14840],[3484,14840],[3485,14826],[3486,14826],[3487,14839],[3488,14833],[3489,14833],[3490,14833],[3491,14840],[3492,14836],[3493,14832],[3494,14826],[3495,14826],[3496,14839],[3497,14833],[3498,14833],[3499,14833],[3500,14840],[3501,14836],[3502,14832],[3503,14826],[3504,14839],[3505,14833],[3506,14840],[3507,14836],[3508,14826],[3509,14839],[3510,14840],[3511,14836],[3512,14826],[3513,14839],[3514,14840],[3515,14836],[3516,14840],[3517,14833],[3518,14836],[3519,14836],[3520,14826],[3521,14826],[3522,14839],[3523,14833],[3524,14833],[3525,14833],[3526,14840],[3527,14836],[3528,14832],[3529,14826],[3530,14840],[3531,14832],[3532,14836],[3533,14826],[3534,14826],[3535,14833],[3536,14833],[3537,14833],[3538,14826],[3539,14826],[3540,14839],[3541,14833],[3542,14833],[3543,14833],[3544,14840],[3545,14836],[3546,14832],[3547,14826],[3548,14826],[3549,14839],[3550,14833],[3551,14833],[3552,14833],[3553,14840],[3554,14836],[3555,14832],[3556,14826],[3557,14826],[3558,14839],[3559,14833],[3560,14833],[3561,14833],[3562,14840],[3563,14836],[3564,14832],[3565,14833],[3566,14840],[3567,14826],[3568,14826],[3569,14839],[3570,14833],[3571,14833],[3572,14833],[3573,14840],[3574,14836],[3575,14832],[3576,14836],[3577,14833],[3578,14840],[3579,14839],[3580,14839],[3581,14841],[3582,14839],[3583,14839],[3584,14832],[3585,14832],[3586,14826],[3587,14826],[3588,14839],[3589,14833],[3590,14833],[3591,14833],[3592,14840],[3593,14836],[3594,14832],[3595,14826],[3596,14826],[3597,14839],[3598,14833],[3599,14833],[3600,14833],[3601,14840],[3602,14836],[3603,14832],[3604,14838],[3605,14826],[3606,14839],[3607,14839],[3608,14833],[3609,14840],[3610,14840],[3611,14833],[3612,14833],[3613,14833],[3614,14840],[3615,14832],[3616,14832],[3617,14832],[3618,14826],[3619,14826],[3620,14839],[3621,14833],[3622,14833],[3623,14833],[3624,14840],[3625,14836],[3626,14832],[3627,14839],[3628,14840],[3629,14839],[3630,14826],[3631,14826],[3632,14839],[3633,14833],[3634,14833],[3635,14833],[3636,14840],[3637,14836],[3638,14832],[3639,14838],[3640,14839],[3641,14839],[3642,14833],[3643,14840],[3644,14840],[3645,14838],[3646,14839],[3647,14839],[3648,14833],[3649,14840],[3650,14840],[3651,14826],[3652,14835],[3653,14826],[3654,14826],[3655,14839],[3656,14833],[3657,14833],[3658,14840],[3659,14836],[3660,14832],[3661,14833],[3662,14833],[3663,14833],[3664,14833],[3665,14832],[3666,14832],[3667,14832],[3668,14826],[3669,14839],[3670,14840],[3671,14826],[3672,14839],[3673,14840],[3674,14826],[3675,14839],[3676,14840],[3677,14839],[3678,14840],[3679,14826],[3680,14826],[3681,14839],[3682,14840],[3683,14840],[3684,14840],[3685,14838],[3686,14826],[3687,14826],[3688,14839],[3689,14839],[3690,14833],[3691,14833],[3692,14840],[3693,14840],[3694,14826],[3695,14826],[3696,14839],[3697,14833],[3698,14833],[3699,14833],[3700,14840],[3701,14836],[3702,14832],[3703,14826],[3704,14826],[3705,14826],[3706,14826],[3707,14839],[3708,14840],[3709,14838],[3710,14826],[3711,14826],[3712,14826],[3713,14839],[3714,14839],[3715,14833],[3716,14840],[3717,14840],[3718,14839],[3719,14826],[3720,14839],[3721,14826],[3722,14839],[3723,14839],[3724,14840],[3725,14839],[3726,14840],[3727,14826],[3728,14826],[3729,14839],[3730,14826],[3731,14826],[3732,14839],[3733,14839],[3734,14840],[3735,14839],[3736,14840],[3737,14839],[3738,14840],[3739,14839],[3740,14840],[3741,14832],[3742,14832],[3743,14832],[3744,14838],[3745,14826],[3746,14826],[3747,14826],[3748,14826],[3749,14826],[3750,14839],[3751,14839],[3752,14839],[3753,14833],[3754,14833],[3755,14833],[3756,14833],[3757,14833],[3758,14840],[3759,14840],[3760,14840],[3761,14836],[3762,14832],[3763,14826],[3764,14839],[3765,14833],[3766,14840],[3767,14826],[3768,14826],[3769,14839],[3770,14833],[3771,14833],[3772,14833],[3773,14840],[3774,14836],[3775,14832],[3776,14826],[3777,14826],[3778,14839],[3779,14833],[3780,14833],[3781,14833],[3782,14840],[3783,14836],[3784,14832],[3785,14826],[3786,14832],[3787,14826],[3788,14832],[3790,14833],[3791,14833],[3792,14826],[3793,14826],[3794,14839],[3795,14833],[3796,14833],[3797,14833],[3798,14840],[3799,14836],[3800,14832],[3801,14833],[3802,14833],[3803,14833],[3804,14833],[3805,14836],[3806,14833],[3807,14833],[3808,14836],[3809,14826],[3810,14826],[3811,14839],[3812,14833],[3813,14833],[3814,14833],[3815,14840],[3816,14836],[3817,14832],[3818,14826],[3819,14826],[3820,14839],[3821,14833],[3822,14833],[3823,14833],[3824,14840],[3825,14836],[3826,14832],[3827,14826],[3828,14826],[3829,14839],[3830,14833],[3831,14833],[3832,14833],[3833,14840],[3834,14836],[3835,14832],[3836,14826],[3837,14826],[3838,14839],[3839,14833],[3840,14833],[3841,14833],[3842,14840],[3843,14836],[3844,14832],[3845,14826],[3846,14826],[3847,14839],[3848,14833],[3849,14833],[3850,14833],[3851,14840],[3852,14836],[3853,14832],[3854,14826],[3855,14826],[3856,14839],[3857,14833],[3858,14833],[3859,14833],[3860,14840],[3861,14836],[3862,14832],[3863,14826],[3864,14826],[3865,14839],[3866,14833],[3867,14833],[3868,14833],[3869,14840],[3870,14836],[3871,14832],[3872,14826],[3873,14826],[3874,14839],[3875,14833],[3876,14833],[3877,14833],[3878,14840],[3879,14836],[3880,14832],[3881,14826],[3882,14826],[3883,14839],[3884,14833],[3885,14833],[3886,14833],[3887,14840],[3888,14836],[3889,14832],[3890,14833],[3891,14840],[3892,14832],[3893,14833],[3894,14839],[3895,14840],[3896,14839],[3897,14840],[3898,14839],[3899,14826],[3900,14833],[3901,14839],[3902,14840],[3903,14839],[3904,14840],[3905,14826],[3906,14833],[3907,14840],[3908,14832],[3909,14833],[3910,14833],[3911,14839],[3912,14840],[3913,14839],[3914,14840],[3915,14839],[3916,14840],[3917,14839],[3918,14840],[3919,14840],[3920,14840],[3921,14841],[3922,14841],[3923,14841],[3924,14841],[3925,14841],[3926,14841],[3927,14848],[3928,14833],[3929,14848],[3930,14832],[3931,14832],[3932,14832],[3933,14833],[3934,14833],[3935,14832],[3936,14839],[3937,14833],[3938,14833],[3939,14833],[3940,14833],[3941,14832],[3942,14832],[3943,14841],[3944,14833],[3945,14832],[3946,14833],[3947,14841],[3948,14839],[3949,14839],[3950,14832],[3951,14832],[3952,14826],[3953,14826],[3954,14838],[3955,14826],[3956,14826],[3957,14839],[3958,14839],[3959,14833],[3960,14833],[3961,14840],[3962,14840],[3963,14826],[3964,14833],[3965,14832],[3966,14833],[3967,14833],[3968,14832],[3969,14841],[3970,14839],[3971,14833],[3972,14839],[3973,14833],[3974,14833],[3975,14833],[3976,14833],[3977,14833],[3978,14838],[3979,14826],[3980,14826],[3981,14839],[3982,14839],[3983,14833],[3984,14833],[3985,14840],[3986,14840],[3987,14833],[3988,14838],[3989,14826],[3990,14826],[3991,14839],[3992,14839],[3993,14833],[3994,14833],[3995,14840],[3996,14840],[3997,14833],[3998,14833],[3999,14840],[4000,14833],[4001,14826],[4002,14832],[4003,14832],[4004,14832],[4005,14832],[4006,14826],[4007,14826],[4008,14833],[4009,14838],[4010,14826],[4011,14826],[4012,14839],[4013,14839],[4014,14833],[4015,14833],[4016,14840],[4017,14840],[4018,14826],[4019,14839],[4020,14833],[4021,14840],[4022,14826],[4023,14840],[4024,14832],[4025,14839],[4026,14833],[4027,14833],[4028,14840],[4029,14832],[4030,14839],[4031,14833],[4032,14833],[4033,14840],[4034,14832],[4035,14833],[4036,14826],[4037,14826],[4038,14839],[4039,14833],[4040,14833],[4041,14833],[4042,14840],[4043,14836],[4044,14832],[4045,14839],[4046,14839],[4047,14826],[4048,14833],[4049,14841],[4050,14836],[4051,14839],[4052,14833],[4053,14840],[4054,14833],[4055,14832],[4056,14826],[4057,14826],[4058,14839],[4059,14833],[4060,14833],[4061,14833],[4062,14840],[4063,14836],[4064,14832],[4065,14826],[4066,14826],[4067,14839],[4068,14833],[4069,14833],[4070,14833],[4071,14840],[4072,14836],[4073,14832],[4074,14826],[4075,14826],[4076,14839],[4077,14833],[4078,14833],[4079,14833],[4080,14840],[4081,14836],[4082,14832],[4083,14826],[4084,14826],[4085,14839],[4086,14833],[4087,14833],[4088,14833],[4089,14840],[4090,14836],[4091,14832],[4092,14832],[4093,14826],[4094,14826],[4095,14839],[4096,14833],[4097,14833],[4098,14833],[4099,14840],[4100,14836],[4101,14832],[4102,14826],[4103,14826],[4104,14839],[4105,14833],[4106,14833],[4107,14833],[4108,14840],[4109,14836],[4110,14832],[4111,14826],[4112,14826],[4113,14839],[4114,14833],[4115,14833],[4116,14833],[4117,14840],[4118,14836],[4119,14832],[4120,14826],[4121,14826],[4122,14839],[4123,14833],[4124,14833],[4125,14833],[4126,14840],[4127,14836],[4128,14832],[4129,14841],[4130,14835],[4131,14841],[4132,14833],[4133,14833],[4134,14833],[4135,14826],[4136,14826],[4137,14839],[4138,14833],[4139,14833],[4140,14833],[4141,14840],[4142,14836],[4143,14832],[4145,14838],[4146,14826],[4147,14826],[4148,14839],[4149,14839],[4150,14833],[4151,14833],[4152,14840],[4153,14840],[4154,14841],[4157,14839],[4158,14840],[4159,14839],[4160,14840],[4161,14826],[4162,14826],[4163,14838],[4164,14826],[4165,14826],[4166,14839],[4167,14839],[4168,14833],[4169,14833],[4170,14840],[4171,14840],[4172,14841],[4175,14839],[4176,14840],[4177,14839],[4178,14840],[4179,14832],[4180,14826],[4181,14826],[4182,14826],[4183,14826],[4184,14826],[4185,14826],[4186,14826],[4187,14826],[4188,14826],[4189,14826],[4190,14826],[4191,14826],[4192,14826],[4193,14826],[4194,14826],[4195,14826],[4196,14826],[4197,14826],[4198,14826],[4199,14826],[4200,14826],[4201,14826],[4202,14826],[4203,14826],[4204,14826],[4205,14826],[4206,14826],[4207,14826],[4208,14826],[4209,14826],[4210,14826],[4211,14826],[4212,14826],[4213,14826],[4214,14826],[4215,14826],[4216,14826],[4217,14826],[4218,14826],[4219,14826],[4220,14826],[4221,14826],[4222,14826],[4223,14826],[4224,14826],[4225,14826],[4226,14826],[4227,14826],[4228,14826],[4229,14826],[4230,14826],[4231,14826],[4232,14826],[4233,14852],[4234,14846],[4235,14854],[4236,14846],[4237,14846],[4238,14846],[4239,14846],[4240,14846],[4241,14852],[4242,14854],[4243,14846],[4244,14846],[4245,14846],[4246,14852],[4247,14854],[4248,14846],[4249,14846],[4250,14846],[4251,14852],[4252,14854],[4253,14846],[4254,14846],[4255,14846],[4256,14852],[4257,14854],[4258,14846],[4259,14846],[4260,14846],[4261,14852],[4262,14854],[4263,14846],[4264,14846],[4265,14852],[4266,14846],[4267,14846],[4268,14852],[4269,14846],[4270,14852],[4271,14846],[4272,14852],[4273,14852],[4274,14846],[4275,14846],[4276,14852],[4277,14846],[4278,14846],[4279,14846],[4280,14846],[4281,14852],[4282,14852],[4283,14854],[4284,14846],[4285,14846],[4286,14846],[4287,14846],[4288,14852],[4289,14852],[4290,14854],[4291,14846],[4292,14846],[4293,14846],[4294,14852],[4295,14854],[4296,14846],[4297,14852],[4298,14846],[4299,14852],[4300,14846],[4301,14846],[4302,14852],[4303,14854],[4304,14846],[4305,14852],[4306,14846],[4307,14846],[4308,14852],[4309,14854],[4310,14846],[4311,14846],[4312,14852],[4313,14854],[4314,14846],[4315,14852],[4316,14854],[4317,14846],[4318,14852],[4319,14854],[4320,14846],[4321,14846],[4322,14846],[4323,14852],[4324,14854],[4325,14846],[4326,14852],[4327,14846],[4328,14846],[4329,14846],[4330,14846],[4331,14852],[4332,14852],[4333,14854],[4334,14846],[4335,14846],[4336,14846],[4337,14846],[4338,14852],[4339,14852],[4340,14854],[4341,14846],[4342,14846],[4343,14846],[4344,14852],[4345,14854],[4346,14846],[4347,14846],[4348,14846],[4349,14846],[4350,14846],[4351,14846],[4352,14846],[4353,14852],[4354,14854],[4355,14854],[4356,14846],[4357,14846],[4358,14846],[4359,14846],[4360,14852],[4361,14852],[4362,14854],[4363,14846],[4364,14846],[4365,14846],[4366,14852],[4367,14852],[4368,14852],[4369,14854],[4370,14854],[4371,14854],[4372,14846],[4373,14846],[4374,14846],[4375,14846],[4376,14852],[4377,14852],[4378,14854],[4379,14854],[4380,14846],[4381,14846],[4382,14846],[4383,14846],[4384,14852],[4385,14852],[4386,14854],[4387,14846],[4388,14846],[4389,14846],[4390,14852],[4391,14854],[4392,14852],[4393,14846],[4394,14846],[4395,14846],[4396,14846],[4397,14852],[4398,14854],[4399,14852],[4400,14846],[4401,14852],[4402,14852],[4403,14846],[4404,14852],[4405,14852],[4406,14846],[4407,14852],[4408,14846],[4409,14846],[4410,14846],[4411,14852],[4412,14854],[4413,14846],[4414,14846],[4415,14846],[4416,14846],[4417,14852],[4418,14854],[4419,14846],[4420,14846],[4421,14846],[4422,14852],[4423,14854],[4424,14846],[4425,14846],[4426,14846],[4427,14852],[4428,14854],[4429,14846],[4430,14846],[4431,14846],[4432,14852],[4433,14854],[4434,14846],[4435,14846],[4436,14846],[4437,14852],[4438,14854],[4439,14846],[4440,14846],[4441,14846],[4442,14852],[4443,14854],[4444,14846],[4445,14846],[4446,14846],[4447,14852],[4448,14854],[4449,14846],[4450,14846],[4451,14846],[4452,14852],[4453,14854],[4454,14846],[4455,14846],[4456,14846],[4457,14846],[4458,14846],[4459,14846],[4460,14846],[4461,14846],[4462,14846],[4463,14846],[4464,14852],[4465,14854],[4466,14846],[4467,14852],[4468,14846],[4469,14852],[4470,14846],[4471,14852],[4472,14852],[4473,14846],[4474,14852],[4475,14852],[4476,14852],[4477,14846],[4478,14852],[4479,14852],[4480,14846],[4481,14846],[4482,14846],[4483,14846],[4484,14846],[4485,14846],[4486,14846],[4487,14846],[4488,14846],[4489,14846],[4490,14846],[4491,14846],[4492,14846],[4493,14846],[4494,14846],[4495,14846],[4496,14846],[4497,14846],[4498,14846],[4499,14846],[4500,14846],[4501,14846],[4502,14846],[4503,14846],[4504,14846],[4505,14846],[4506,14846],[4507,14852],[4508,14854],[4509,14846],[4510,14852],[4511,14846],[4512,14846],[4513,14846],[4514,14846],[4515,14846],[4516,14852],[4517,14846],[4518,14852],[4519,14852],[4520,14854],[4521,14846],[4522,14852],[4523,14846],[4524,14846],[4525,14852],[4526,14852],[4527,14846],[4528,14846],[4529,14852],[4530,14846],[4531,14852],[4532,14846],[4533,14846],[4534,14852],[4535,14854],[4536,14846],[4537,14846],[4538,14852],[4539,14846],[4540,14846],[4541,14846],[4542,14846],[4543,14846],[4544,14852],[4545,14854],[4546,14852],[4547,14854],[4548,14852],[4549,14854],[4550,14846],[4551,14852],[4552,14846],[4553,14846],[4554,14846],[4555,14852],[4556,14854],[4557,14846],[4558,14846],[4559,14846],[4560,14846],[4561,14846],[4562,14852],[4563,14852],[4564,14852],[4565,14854],[4566,14846],[4567,14846],[4568,14846],[4569,14846],[4570,14852],[4571,14854],[4572,14846],[4573,14846],[4574,14846],[4575,14852],[4576,14854],[4577,14846],[4578,14852],[4579,14852],[4580,14846],[4581,14846],[4582,14846],[4583,14852],[4584,14854],[4585,14846],[4586,14846],[4587,14846],[4588,14852],[4589,14854],[4590,14846],[4591,14846],[4592,14846],[4593,14852],[4594,14854],[4595,14846],[4596,14846],[4597,14846],[4598,14852],[4599,14854],[4600,14846],[4601,14846],[4602,14846],[4603,14852],[4604,14854],[4605,14846],[4606,14846],[4607,14846],[4608,14846],[4609,14846],[4610,14846],[4611,14846],[4612,14846],[4613,14846],[4614,14846],[4615,14846],[4616,14846],[4617,14846],[4618,14846],[4619,14846],[4620,14846],[4621,14846],[4622,14846],[4623,14846],[4624,14846],[4625,14846],[4626,14846],[4627,14846],[4628,14846],[4629,14846],[4630,14846],[4631,14846],[4632,14846],[4633,14846],[4634,14846],[4635,14846],[4636,14846],[4637,14846],[4638,14846],[4639,14846],[4640,14846],[4641,14846],[4642,14846],[4643,14846],[4644,14846],[4645,14846],[4646,14846],[4647,14846],[4648,14846],[4649,14846],[4650,14846],[4651,14846],[4652,14846],[4653,14846],[4654,14852],[4655,14846],[4656,14846],[4657,14846],[4658,14846],[4659,14846],[4660,14846],[4661,14846],[4662,14852],[4663,14846],[4664,14846],[4665,14846],[4666,14846],[4667,14846],[4668,14852],[4669,14839],[4670,14839],[4671,14839],[4672,14839],[4673,14839],[4674,14839],[4675,14839],[4676,14839],[4677,14839],[4678,14839],[4679,14839],[4680,14839],[4681,14839],[4682,14839],[4683,14839],[4684,14839],[4685,14839],[4686,14839],[4687,14839],[4688,14839],[4689,14839],[4690,14839],[4691,14839],[4692,14839],[4693,14839],[4694,14839],[4695,14839],[4696,14839],[4697,14839],[4698,14839],[4699,14839],[4700,14839],[4701,14839],[4702,14839],[4703,14839],[4704,14839],[4705,14839],[4706,14839],[4707,14839],[4708,14839],[4709,14839],[4710,14839],[4711,14839],[4712,14839],[4713,14832],[4714,14831],[4715,14831],[4716,14834],[4717,14866],[4718,14869],[4719,14859],[4720,14824],[4721,14824],[4722,14865],[4723,14867],[4724,14863],[4725,14863],[4726,14860],[4727,14861],[4728,14850],[4729,14850],[4730,14818],[4731,14864],[4732,14862],[4733,14862],[4734,14847],[4735,14817],[4736,14831],[4737,14831],[4738,14850],[4739,14850],[4740,14831],[4741,14831],[4742,14834],[4743,14866],[4744,14869],[4745,14859],[4746,14824],[4747,14824],[4748,14865],[4749,14867],[4750,14863],[4751,14863],[4752,14860],[4753,14861],[4754,14850],[4755,14850],[4756,14862],[4757,14862],[4758,14831],[4759,14831],[4760,14818],[4761,14864],[4762,14831],[4763,14831],[4764,14817],[4765,14859],[4766,14859],[4767,14824],[4768,14824],[4769,14824],[4770,14824],[4771,14860],[4772,14861],[4773,14850],[4774,14850],[4775,14850],[4776,14850],[4777,14862],[4778,14862],[4779,14831],[4780,14831],[4781,14831],[4782,14831],[4783,14859],[4784,14824],[4785,14824],[4786,14824],[4787,14824],[4788,14861],[4789,14850],[4790,14850],[4791,14862],[4792,14862],[4793,14831],[4794,14831],[4795,14824],[4796,14824],[4797,14831],[4798,14831],[4799,14831],[4800,14831],[4801,14863],[4802,14831],[4803,14831],[4804,14831],[4805,14831],[4806,14831],[4807,14859],[4808,14824],[4809,14824],[4810,14863],[4811,14863],[4812,14831],[4813,14831],[4814,14818],[4815,14864],[4816,14818],[4817,14864],[4818,14859],[4819,14824],[4820,14824],[4821,14863],[4822,14863],[4823,14831],[4824,14831],[4825,14818],[4826,14818],[4827,14864],[4828,14864],[4829,14817],[4830,14817],[4831,14834],[4832,14865],[4833,14850],[4834,14863],[4835,14863],[4836,14863],[4837,14863],[4838,14834],[4839,14866],[4840,14869],[4841,14859],[4842,14824],[4843,14824],[4844,14865],[4845,14867],[4846,14863],[4847,14863],[4848,14860],[4849,14861],[4850,14850],[4851,14850],[4852,14862],[4853,14862],[4854,14831],[4855,14831],[4856,14818],[4857,14864],[4858,14831],[4859,14831],[4860,14817],[4861,14834],[4862,14866],[4863,14869],[4864,14859],[4865,14824],[4866,14824],[4867,14865],[4868,14867],[4869,14863],[4870,14863],[4871,14860],[4872,14861],[4873,14850],[4874,14850],[4875,14862],[4876,14862],[4877,14831],[4878,14831],[4879,14818],[4880,14864],[4881,14831],[4882,14831],[4883,14817],[4884,14834],[4885,14866],[4886,14869],[4887,14859],[4888,14824],[4889,14824],[4890,14865],[4891,14867],[4892,14863],[4893,14863],[4894,14860],[4895,14861],[4896,14850],[4897,14850],[4898,14862],[4899,14862],[4900,14831],[4901,14831],[4902,14818],[4903,14864],[4904,14831],[4905,14831],[4906,14817],[4907,14834],[4908,14866],[4909,14869],[4910,14859],[4911,14824],[4912,14824],[4913,14865],[4914,14867],[4915,14863],[4916,14863],[4917,14860],[4918,14861],[4919,14850],[4920,14850],[4921,14862],[4922,14862],[4923,14831],[4924,14831],[4925,14818],[4926,14864],[4927,14831],[4928,14831],[4929,14817],[4930,14834],[4931,14866],[4932,14869],[4933,14859],[4934,14824],[4935,14824],[4936,14865],[4937,14867],[4938,14863],[4939,14863],[4940,14860],[4941,14861],[4942,14850],[4943,14850],[4944,14862],[4945,14862],[4946,14831],[4947,14831],[4948,14818],[4949,14864],[4950,14831],[4951,14831],[4952,14817],[4953,14834],[4954,14866],[4955,14869],[4956,14859],[4957,14824],[4958,14824],[4959,14865],[4960,14867],[4961,14863],[4962,14863],[4963,14860],[4964,14861],[4965,14850],[4966,14850],[4967,14862],[4968,14862],[4969,14831],[4970,14831],[4971,14818],[4972,14864],[4973,14831],[4974,14831],[4975,14817],[4976,14861],[4977,14866],[4978,14831],[4979,14831],[4980,14834],[4981,14866],[4982,14869],[4983,14859],[4984,14824],[4985,14824],[4986,14865],[4987,14867],[4988,14863],[4989,14863],[4990,14860],[4991,14861],[4992,14850],[4993,14850],[4994,14862],[4995,14862],[4996,14831],[4997,14831],[4998,14818],[4999,14864],[5000,14831],[5001,14831],[5002,14817],[5003,14834],[5004,14866],[5005,14859],[5006,14824],[5007,14824],[5008,14865],[5009,14860],[5010,14850],[5011,14850],[5012,14862],[5013,14862],[5014,14831],[5015,14831],[5016,14818],[5017,14864],[5018,14834],[5019,14866],[5020,14859],[5021,14824],[5022,14824],[5023,14865],[5024,14867],[5025,14863],[5026,14863],[5027,14850],[5028,14850],[5029,14831],[5030,14831],[5031,14824],[5032,14824],[5033,14824],[5034,14824],[5035,14850],[5036,14850],[5037,14850],[5038,14850],[5039,14831],[5040,14831],[5041,14831],[5042,14831],[5043,14834],[5044,14866],[5045,14865],[5046,14824],[5047,14824],[5048,14860],[5049,14850],[5050,14850],[5051,14831],[5052,14831],[5053,14831],[5054,14831],[5055,14834],[5056,14866],[5057,14869],[5058,14859],[5059,14824],[5060,14824],[5061,14865],[5062,14867],[5063,14863],[5064,14863],[5065,14860],[5066,14861],[5067,14850],[5068,14850],[5069,14862],[5070,14862],[5071,14831],[5072,14831],[5073,14818],[5074,14864],[5075,14831],[5076,14831],[5077,14817],[5078,14834],[5079,14866],[5080,14869],[5081,14859],[5082,14824],[5083,14824],[5084,14865],[5085,14867],[5086,14863],[5087,14863],[5088,14860],[5089,14861],[5090,14850],[5091,14850],[5092,14862],[5093,14862],[5094,14831],[5095,14831],[5096,14818],[5097,14864],[5098,14831],[5099,14831],[5100,14817],[5101,14834],[5102,14866],[5103,14869],[5104,14859],[5105,14824],[5106,14824],[5107,14865],[5108,14867],[5109,14863],[5110,14863],[5111,14860],[5112,14861],[5113,14850],[5114,14850],[5115,14862],[5116,14862],[5117,14831],[5118,14831],[5119,14818],[5120,14864],[5121,14831],[5122,14831],[5123,14817],[5124,14859],[5125,14860],[5126,14817],[5127,14859],[5128,14860],[5129,14817],[5130,14831],[5131,14831],[5132,14831],[5133,14831],[5134,14834],[5135,14866],[5136,14869],[5137,14859],[5138,14824],[5139,14824],[5140,14865],[5141,14867],[5142,14863],[5143,14863],[5144,14860],[5145,14861],[5146,14850],[5147,14850],[5148,14862],[5149,14862],[5150,14831],[5151,14831],[5152,14818],[5153,14864],[5154,14831],[5155,14831],[5156,14817],[5157,14834],[5158,14866],[5159,14865],[5160,14850],[5161,14850],[5162,14834],[5163,14866],[5164,14834],[5165,14866],[5166,14865],[5167,14847],[5168,14831],[5169,14831],[5170,14867],[5171,14817],[5172,14834],[5173,14866],[5174,14859],[5175,14824],[5176,14824],[5177,14865],[5178,14860],[5179,14861],[5180,14850],[5181,14850],[5182,14862],[5183,14862],[5184,14831],[5185,14831],[5186,14818],[5187,14864],[5188,14817],[5189,14847],[5190,14866],[5191,14850],[5192,14834],[5193,14866],[5194,14869],[5195,14859],[5196,14824],[5197,14824],[5198,14865],[5199,14867],[5200,14863],[5201,14863],[5202,14860],[5203,14861],[5204,14850],[5205,14850],[5206,14862],[5207,14862],[5208,14831],[5209,14831],[5210,14818],[5211,14864],[5212,14831],[5213,14831],[5214,14817],[5215,14834],[5216,14866],[5217,14869],[5218,14859],[5219,14824],[5220,14824],[5221,14865],[5222,14867],[5223,14863],[5224,14863],[5225,14860],[5226,14861],[5227,14850],[5228,14850],[5229,14862],[5230,14862],[5231,14831],[5232,14831],[5233,14818],[5234,14864],[5235,14831],[5236,14831],[5237,14817],[5238,14818],[5239,14864],[5240,14824],[5241,14824],[5242,14834],[5243,14834],[5244,14866],[5245,14866],[5246,14859],[5247,14859],[5248,14859],[5249,14824],[5250,14824],[5251,14824],[5252,14824],[5253,14865],[5254,14865],[5255,14861],[5256,14861],[5257,14850],[5258,14850],[5259,14850],[5260,14850],[5261,14831],[5262,14831],[5263,14831],[5264,14831],[5265,14834],[5266,14834],[5267,14866],[5268,14866],[5269,14859],[5270,14824],[5271,14824],[5272,14824],[5273,14824],[5274,14865],[5275,14865],[5276,14861],[5277,14861],[5278,14850],[5279,14850],[5280,14850],[5281,14850],[5282,14831],[5283,14831],[5284,14831],[5285,14831],[5286,14824],[5287,14824],[5288,14831],[5289,14831],[5290,14834],[5291,14866],[5292,14869],[5293,14859],[5294,14824],[5295,14824],[5296,14865],[5297,14867],[5298,14863],[5299,14863],[5300,14860],[5301,14861],[5302,14850],[5303,14850],[5304,14862],[5305,14862],[5306,14831],[5307,14831],[5308,14818],[5309,14864],[5310,14831],[5311,14831],[5312,14817],[5313,14834],[5314,14866],[5315,14869],[5316,14859],[5317,14824],[5318,14824],[5319,14865],[5320,14867],[5321,14863],[5322,14863],[5323,14860],[5324,14861],[5325,14850],[5326,14850],[5327,14862],[5328,14862],[5329,14831],[5330,14831],[5331,14818],[5332,14864],[5333,14831],[5334,14831],[5335,14817],[5336,14834],[5337,14866],[5338,14869],[5339,14859],[5340,14824],[5341,14824],[5342,14865],[5343,14867],[5344,14863],[5345,14863],[5346,14860],[5347,14861],[5348,14850],[5349,14850],[5350,14862],[5351,14862],[5352,14831],[5353,14831],[5354,14818],[5355,14864],[5356,14831],[5357,14831],[5358,14817],[5359,14850],[5360,14850],[5361,14831],[5362,14831],[5363,14834],[5364,14834],[5365,14834],[5366,14866],[5367,14866],[5368,14866],[5369,14869],[5370,14869],[5371,14869],[5372,14859],[5373,14859],[5374,14859],[5375,14824],[5376,14824],[5377,14824],[5378,14824],[5379,14824],[5380,14824],[5381,14865],[5382,14865],[5383,14865],[5384,14867],[5385,14867],[5386,14867],[5387,14863],[5388,14863],[5389,14863],[5390,14863],[5391,14863],[5392,14863],[5393,14860],[5394,14860],[5395,14860],[5396,14861],[5397,14861],[5398,14861],[5399,14850],[5400,14850],[5401,14850],[5402,14850],[5403,14850],[5404,14850],[5405,14862],[5406,14862],[5407,14862],[5408,14862],[5409,14862],[5410,14862],[5411,14831],[5412,14831],[5413,14831],[5414,14831],[5415,14831],[5416,14831],[5417,14818],[5418,14818],[5419,14818],[5420,14864],[5421,14864],[5422,14864],[5423,14831],[5424,14831],[5425,14831],[5426,14831],[5427,14831],[5428,14831],[5429,14817],[5430,14817],[5431,14817],[5432,14863],[5433,14824],[5434,14831],[5435,14847],[5436,14824],[5437,14824],[5438,14824],[5439,14824],[5440,14850],[5441,14850],[5442,14850],[5443,14850],[5444,14831],[5445,14831],[5446,14831],[5447,14831],[5448,14834],[5449,14866],[5450,14869],[5451,14859],[5452,14824],[5453,14824],[5454,14865],[5455,14867],[5456,14863],[5457,14863],[5458,14860],[5459,14861],[5460,14850],[5461,14850],[5462,14862],[5463,14862],[5464,14831],[5465,14831],[5466,14818],[5467,14864],[5468,14831],[5469,14831],[5470,14817],[5471,14834],[5472,14834],[5473,14866],[5474,14866],[5475,14869],[5476,14869],[5477,14869],[5478,14869],[5479,14869],[5480,14859],[5481,14824],[5482,14824],[5483,14824],[5484,14824],[5485,14824],[5486,14824],[5487,14865],[5488,14865],[5489,14867],[5490,14867],[5491,14867],[5492,14863],[5493,14863],[5494,14860],[5495,14861],[5496,14850],[5497,14850],[5498,14850],[5499,14850],[5500,14850],[5501,14850],[5502,14850],[5503,14850],[5504,14862],[5505,14862],[5506,14862],[5507,14862],[5508,14831],[5509,14831],[5510,14831],[5511,14831],[5512,14831],[5513,14831],[5514,14831],[5515,14831],[5516,14831],[5517,14818],[5518,14818],[5519,14864],[5520,14864],[5521,14831],[5522,14831],[5523,14817],[5524,14834],[5525,14866],[5526,14869],[5527,14859],[5528,14824],[5529,14824],[5530,14865],[5531,14867],[5532,14863],[5533,14863],[5534,14860],[5535,14861],[5536,14850],[5537,14850],[5538,14862],[5539,14862],[5540,14831],[5541,14831],[5542,14818],[5543,14864],[5544,14831],[5545,14831],[5546,14817],[5547,14831],[5548,14818],[5549,14864],[5550,14818],[5551,14864],[5552,14861],[5553,14824],[5554,14824],[5555,14861],[5556,14850],[5557,14850],[5558,14831],[5559,14831],[5560,14834],[5561,14866],[5562,14834],[5563,14866],[5564,14865],[5565,14867],[5566,14864],[5567,14834],[5568,14866],[5569,14865],[5570,14834],[5571,14866],[5572,14869],[5573,14859],[5574,14824],[5575,14824],[5576,14865],[5577,14867],[5578,14863],[5579,14863],[5580,14860],[5581,14861],[5582,14850],[5583,14850],[5584,14862],[5585,14862],[5586,14831],[5587,14831],[5588,14818],[5589,14864],[5590,14831],[5591,14831],[5592,14817],[5593,14867],[5594,14834],[5595,14866],[5596,14824],[5597,14824],[5598,14865],[5599,14867],[5600,14863],[5601,14863],[5602,14850],[5603,14850],[5604,14862],[5605,14862],[5606,14831],[5607,14831],[5608,14818],[5609,14864],[5610,14861],[5611,14861],[5612,14859],[5613,14860],[5614,14863],[5615,14850],[5616,14850],[5617,14831],[5618,14831],[5619,14834],[5620,14866],[5621,14869],[5622,14859],[5623,14824],[5624,14824],[5625,14865],[5626,14867],[5627,14863],[5628,14863],[5629,14860],[5630,14861],[5631,14850],[5632,14850],[5633,14862],[5634,14862],[5635,14831],[5636,14831],[5637,14818],[5638,14864],[5639,14831],[5640,14831],[5641,14817],[5642,14834],[5643,14866],[5644,14865],[5645,14850],[5646,14850],[5647,14861],[5648,14863],[5649,14867],[5650,14863],[5651,14863],[5652,14860],[5653,14862],[5654,14862],[5655,14818],[5656,14864],[5657,14834],[5658,14866],[5659,14865],[5660,14834],[5661,14866],[5662,14869],[5663,14859],[5664,14824],[5665,14824],[5666,14865],[5667,14867],[5668,14863],[5669,14863],[5670,14860],[5671,14861],[5672,14850],[5673,14850],[5674,14862],[5675,14862],[5676,14831],[5677,14831],[5678,14818],[5679,14864],[5680,14831],[5681,14831],[5682,14817],[5683,14834],[5684,14865],[5685,14834],[5686,14866],[5687,14865],[5688,14834],[5689,14866],[5690,14834],[5691,14866],[5692,14865],[5693,14834],[5694,14866],[5695,14869],[5696,14859],[5697,14824],[5698,14824],[5699,14865],[5700,14867],[5701,14863],[5702,14863],[5703,14860],[5704,14861],[5705,14850],[5706,14850],[5707,14862],[5708,14862],[5709,14831],[5710,14831],[5711,14818],[5712,14864],[5713,14831],[5714,14831],[5715,14817],[5716,14834],[5717,14866],[5718,14869],[5719,14859],[5720,14824],[5721,14824],[5722,14865],[5723,14867],[5724,14863],[5725,14863],[5726,14860],[5727,14861],[5728,14850],[5729,14850],[5730,14862],[5731,14862],[5732,14831],[5733,14831],[5734,14818],[5735,14864],[5736,14831],[5737,14831],[5738,14817],[5739,14834],[5740,14866],[5741,14869],[5742,14859],[5743,14824],[5744,14824],[5745,14865],[5746,14867],[5747,14863],[5748,14863],[5749,14860],[5750,14861],[5751,14850],[5752,14850],[5753,14862],[5754,14862],[5755,14831],[5756,14831],[5757,14818],[5758,14864],[5759,14831],[5760,14831],[5761,14817],[5762,14834],[5763,14866],[5764,14869],[5765,14859],[5766,14824],[5767,14824],[5768,14865],[5769,14867],[5770,14863],[5771,14863],[5772,14860],[5773,14861],[5774,14850],[5775,14850],[5776,14862],[5777,14862],[5778,14831],[5779,14831],[5780,14818],[5781,14864],[5782,14831],[5783,14831],[5784,14817],[5785,14834],[5786,14866],[5787,14869],[5788,14859],[5789,14824],[5790,14824],[5791,14865],[5792,14867],[5793,14863],[5794,14863],[5795,14860],[5796,14861],[5797,14850],[5798,14850],[5799,14862],[5800,14862],[5801,14831],[5802,14831],[5803,14818],[5804,14864],[5805,14831],[5806,14831],[5807,14817],[5808,14834],[5809,14866],[5810,14869],[5811,14859],[5812,14824],[5813,14824],[5814,14865],[5815,14867],[5816,14863],[5817,14863],[5818,14860],[5819,14861],[5820,14850],[5821,14850],[5822,14862],[5823,14862],[5824,14831],[5825,14831],[5826,14818],[5827,14864],[5828,14831],[5829,14831],[5830,14817],[5831,14834],[5832,14866],[5833,14869],[5834,14859],[5835,14824],[5836,14824],[5837,14865],[5838,14867],[5839,14863],[5840,14863],[5841,14860],[5842,14861],[5843,14850],[5844,14850],[5845,14862],[5846,14862],[5847,14831],[5848,14831],[5849,14818],[5850,14864],[5851,14831],[5852,14831],[5853,14817],[5854,14834],[5855,14866],[5856,14869],[5857,14859],[5858,14824],[5859,14824],[5860,14865],[5861,14867],[5862,14863],[5863,14863],[5864,14860],[5865,14861],[5866,14850],[5867,14850],[5868,14862],[5869,14862],[5870,14831],[5871,14831],[5872,14818],[5873,14864],[5874,14831],[5875,14831],[5876,14817],[5877,14834],[5878,14866],[5879,14869],[5880,14859],[5881,14824],[5882,14824],[5883,14865],[5884,14867],[5885,14863],[5886,14863],[5887,14860],[5888,14861],[5889,14850],[5890,14850],[5891,14862],[5892,14862],[5893,14831],[5894,14831],[5895,14818],[5896,14864],[5897,14831],[5898,14831],[5899,14817],[5900,14867],[5901,14863],[5902,14863],[5903,14860],[5904,14862],[5905,14862],[5906,14818],[5907,14864],[5908,14864],[5909,14864],[5910,14834],[5911,14866],[5912,14865],[5913,14850],[5914,14850],[5915,14834],[5916,14866],[5917,14824],[5918,14824],[5919,14865],[5920,14850],[5921,14850],[5922,14831],[5923,14831],[5924,14860],[5925,14862],[5926,14862],[5927,14818],[5928,14864],[5929,14834],[5930,14866],[5931,14863],[5932,14850],[5933,14850],[5934,14861],[5935,14863],[5936,14863],[5937,14861],[5938,14831],[5939,14831],[5940,14834],[5941,14866],[5942,14859],[5943,14824],[5944,14824],[5945,14865],[5946,14863],[5947,14850],[5948,14850],[5949,14831],[5950,14831],[5951,14850],[5952,14850],[5953,14831],[5954,14831],[5955,14818],[5956,14864],[5957,14818],[5958,14864],[5959,14864],[5960,14864],[5961,14818],[5962,14864],[5963,14818],[5964,14864],[5965,14864],[5966,14864],[5967,14818],[5968,14864],[5969,14818],[5970,14864],[5971,14864],[5972,14864],[5973,14864],[5974,14864],[5975,14864],[5976,14864],[5977,14824],[5978,14824],[5979,14831],[5980,14831],[5981,14859],[5982,14824],[5983,14824],[5984,14865],[5985,14860],[5986,14850],[5987,14850],[5988,14831],[5989,14831],[5990,14834],[5991,14866],[5992,14865],[5993,14865],[5994,14859],[5995,14824],[5996,14824],[5997,14865],[5998,14860],[5999,14850],[6000,14850],[6001,14831],[6002,14831],[6003,14834],[6004,14866],[6005,14865],[6006,14865],[6007,14834],[6008,14834],[6009,14866],[6010,14866],[6011,14859],[6012,14859],[6013,14824],[6014,14824],[6015,14824],[6016,14824],[6017,14865],[6018,14865],[6019,14860],[6020,14861],[6021,14861],[6022,14850],[6023,14850],[6024,14850],[6025,14850],[6026,14831],[6027,14831],[6028,14831],[6029,14831],[6030,14834],[6031,14834],[6032,14866],[6033,14866],[6034,14859],[6035,14824],[6036,14824],[6037,14824],[6038,14824],[6039,14865],[6040,14865],[6041,14861],[6042,14861],[6043,14850],[6044,14850],[6045,14850],[6046,14850],[6047,14831],[6048,14831],[6049,14831],[6050,14831],[6051,14864],[6052,14859],[6053,14824],[6054,14824],[6055,14861],[6056,14850],[6057,14850],[6058,14831],[6059,14831],[6060,14834],[6061,14866],[6062,14869],[6063,14859],[6064,14824],[6065,14824],[6066,14865],[6067,14867],[6068,14863],[6069,14860],[6070,14861],[6071,14850],[6072,14850],[6073,14862],[6074,14862],[6075,14831],[6076,14831],[6077,14818],[6078,14864],[6079,14864],[6080,14861],[6081,14867],[6082,14831],[6083,14831],[6084,14863],[6085,14863],[6086,14831],[6087,14831],[6088,14831],[6089,14831],[6090,14850],[6091,14850],[6092,14831],[6093,14831],[6094,14834],[6095,14866],[6096,14859],[6097,14824],[6098,14824],[6099,14865],[6100,14860],[6101,14861],[6102,14850],[6103,14850],[6104,14862],[6105,14862],[6106,14831],[6107,14831],[6108,14818],[6109,14864],[6110,14817],[6111,14817],[6112,14860],[6113,14831],[6114,14831],[6115,14831],[6116,14831],[6117,14824],[6118,14824],[6119,14865],[6120,14864],[6121,14834],[6122,14865],[6123,14818],[6124,14864],[6125,14864],[6126,14818],[6127,14864],[6128,14859],[6129,14860],[6130,14817],[6131,14864],[6132,14824],[6133,14824],[6134,14824],[6135,14818],[6136,14864],[6137,14818],[6138,14864],[6139,14818],[6140,14864],[6141,14831],[6142,14831],[6143,14864],[6144,14863],[6145,14863],[6146,14863],[6147,14832],[6148,14847],[6149,14865],[6150,14831],[6151,14831],[6152,14824],[6153,14824],[6154,14861],[6155,14831],[6156,14831],[6157,14818],[6158,14864],[6159,14867],[6160,14834],[6161,14866],[6162,14824],[6163,14824],[6164,14824],[6165,14824],[6166,14865],[6167,14850],[6168,14850],[6169,14850],[6170,14850],[6171,14831],[6172,14831],[6173,14831],[6174,14831],[6175,14834],[6176,14866],[6177,14865],[6178,14834],[6179,14866],[6180,14865],[6181,14859],[6182,14859],[6183,14834],[6184,14866],[6185,14865],[6186,14818],[6187,14864],[6188,14831],[6189,14831],[6190,14831],[6191,14831],[6192,14831],[6193,14831],[6194,14834],[6195,14847],[6196,14834],[6197,14866],[6198,14865],[6199,14850],[6200,14850],[6201,14864],[6202,14863],[6203,14824],[6204,14824],[6205,14850],[6206,14850],[6207,14862],[6208,14862],[6209,14831],[6210,14831],[6211,14831],[6212,14831],[6213,14863],[6214,14859],[6215,14824],[6216,14824],[6217,14824],[6218,14824],[6219,14824],[6220,14824],[6221,14860],[6222,14861],[6223,14850],[6224,14850],[6225,14862],[6226,14862],[6227,14831],[6228,14831],[6229,14859],[6230,14824],[6231,14824],[6232,14824],[6233,14824],[6234,14861],[6235,14850],[6236,14850],[6237,14862],[6238,14862],[6239,14831],[6240,14831],[6241,14859],[6242,14859],[6243,14850],[6244,14850],[6245,14850],[6246,14850],[6247,14831],[6248,14831],[6249,14831],[6250,14831],[6251,14847],[6252,14867],[6253,14863],[6254,14863],[6255,14818],[6256,14864],[6257,14818],[6258,14864],[6259,14818],[6260,14864],[6261,14818],[6262,14864],[6263,14824],[6264,14831],[6265,14864],[6266,14824],[6267,14863],[6268,14831],[6269,14818],[6270,14824],[6271,14824],[6272,14850],[6273,14850],[6274,14862],[6275,14862],[6276,14831],[6277,14831],[6278,14818],[6279,14864],[6280,14824],[6281,14831],[6282,14818],[6283,14864],[6284,14818],[6285,14864],[6286,14864],[6287,14865],[6288,14834],[6289,14866],[6290,14824],[6291,14824],[6292,14865],[6293,14850],[6294,14850],[6295,14862],[6296,14862],[6297,14831],[6298,14831],[6299,14834],[6300,14866],[6301,14824],[6302,14824],[6303,14865],[6304,14850],[6305,14850],[6306,14862],[6307,14862],[6308,14831],[6309,14831],[6310,14834],[6311,14866],[6312,14824],[6313,14824],[6314,14865],[6315,14850],[6316,14850],[6317,14862],[6318,14862],[6319,14831],[6320,14831],[6321,14834],[6322,14866],[6323,14824],[6324,14824],[6325,14865],[6326,14850],[6327,14850],[6328,14862],[6329,14862],[6330,14831],[6331,14831],[6332,14834],[6333,14866],[6334,14865],[6335,14834],[6336,14866],[6337,14869],[6338,14859],[6339,14824],[6340,14824],[6341,14865],[6342,14867],[6343,14863],[6344,14863],[6345,14860],[6346,14861],[6347,14850],[6348,14850],[6349,14862],[6350,14862],[6351,14831],[6352,14831],[6353,14818],[6354,14864],[6355,14831],[6356,14831],[6357,14817],[6358,14831],[6359,14831],[6360,14869],[6361,14869],[6362,14834],[6363,14831],[6364,14867],[6365,14863],[6366,14863],[6367,14862],[6368,14862],[6369,14831],[6370,14831],[6371,14824],[6372,14824],[6373,14850],[6374,14850],[6375,14862],[6376,14862],[6377,14831],[6378,14831],[6379,14824],[6380,14831],[6381,14834],[6382,14866],[6383,14824],[6384,14824],[6385,14865],[6386,14850],[6387,14850],[6388,14862],[6389,14862],[6390,14831],[6391,14831],[6392,14865],[6393,14850],[6394,14834],[6395,14866],[6396,14824],[6397,14824],[6398,14865],[6399,14867],[6400,14863],[6401,14863],[6402,14850],[6403,14850],[6404,14862],[6405,14862],[6406,14831],[6407,14831],[6408,14818],[6409,14864],[6410,14834],[6411,14866],[6412,14824],[6413,14824],[6414,14865],[6415,14850],[6416,14850],[6417,14862],[6418,14862],[6419,14831],[6420,14831],[6421,14824],[6422,14824],[6423,14850],[6424,14850],[6425,14862],[6426,14862],[6427,14861],[6428,14862],[6429,14860],[6430,14862],[6431,14860],[6432,14862],[6433,14863],[6434,14863],[6435,14860],[6436,14860],[6437,14862],[6438,14862],[6439,14818],[6440,14818],[6441,14863],[6442,14862],[6443,14864],[6444,14864],[6445,14863],[6446,14860],[6447,14862],[6448,14864],[6449,14864],[6450,14860],[6451,14862],[6452,14862],[6453,14860],[6454,14862],[6455,14862],[6456,14863],[6457,14863],[6458,14860],[6459,14860],[6460,14862],[6461,14818],[6462,14818],[6463,14863],[6464,14864],[6465,14863],[6466,14864],[6467,14834],[6468,14866],[6469,14865],[6470,14818],[6471,14864],[6472,14867],[6473,14834],[6474,14866],[6475,14859],[6476,14824],[6477,14824],[6478,14865],[6479,14860],[6480,14850],[6481,14850],[6482,14862],[6483,14862],[6484,14831],[6485,14831],[6486,14818],[6487,14864],[6488,14834],[6489,14866],[6490,14869],[6491,14859],[6492,14824],[6493,14824],[6494,14865],[6495,14867],[6496,14863],[6497,14863],[6498,14860],[6499,14861],[6500,14850],[6501,14850],[6502,14862],[6503,14862],[6504,14831],[6505,14831],[6506,14818],[6507,14864],[6508,14831],[6509,14831],[6510,14817],[6511,14834],[6512,14866],[6513,14869],[6514,14859],[6515,14824],[6516,14824],[6517,14865],[6518,14867],[6519,14863],[6520,14863],[6521,14860],[6522,14861],[6523,14850],[6524,14850],[6525,14862],[6526,14862],[6527,14831],[6528,14831],[6529,14818],[6530,14864],[6531,14831],[6532,14831],[6533,14817],[6534,14834],[6535,14866],[6536,14869],[6537,14859],[6538,14824],[6539,14824],[6540,14865],[6541,14867],[6542,14863],[6543,14863],[6544,14860],[6545,14861],[6546,14850],[6547,14850],[6548,14862],[6549,14862],[6550,14831],[6551,14831],[6552,14818],[6553,14864],[6554,14831],[6555,14831],[6556,14817],[6557,14834],[6558,14866],[6559,14869],[6560,14859],[6561,14824],[6562,14824],[6563,14865],[6564,14867],[6565,14863],[6566,14863],[6567,14860],[6568,14861],[6569,14850],[6570,14850],[6571,14862],[6572,14862],[6573,14831],[6574,14831],[6575,14818],[6576,14864],[6577,14831],[6578,14831],[6579,14817],[6580,14831],[6581,14831],[6582,14834],[6583,14866],[6584,14869],[6585,14859],[6586,14824],[6587,14824],[6588,14865],[6589,14867],[6590,14863],[6591,14863],[6592,14860],[6593,14861],[6594,14850],[6595,14850],[6596,14862],[6597,14862],[6598,14831],[6599,14831],[6600,14818],[6601,14864],[6602,14831],[6603,14831],[6604,14817],[6605,14834],[6606,14866],[6607,14869],[6608,14859],[6609,14824],[6610,14824],[6611,14865],[6612,14867],[6613,14863],[6614,14863],[6615,14860],[6616,14861],[6617,14850],[6618,14850],[6619,14862],[6620,14862],[6621,14831],[6622,14831],[6623,14818],[6624,14864],[6625,14831],[6626,14831],[6627,14817],[6628,14834],[6629,14866],[6630,14869],[6631,14859],[6632,14824],[6633,14824],[6634,14865],[6635,14867],[6636,14863],[6637,14863],[6638,14860],[6639,14861],[6640,14850],[6641,14850],[6642,14862],[6643,14862],[6644,14831],[6645,14831],[6646,14818],[6647,14864],[6648,14831],[6649,14831],[6650,14817],[6651,14834],[6652,14866],[6653,14865],[6654,14863],[6655,14834],[6656,14866],[6657,14869],[6658,14859],[6659,14824],[6660,14824],[6661,14865],[6662,14867],[6663,14863],[6664,14863],[6665,14860],[6666,14861],[6667,14850],[6668,14850],[6669,14862],[6670,14862],[6671,14831],[6672,14831],[6673,14818],[6674,14864],[6675,14831],[6676,14831],[6677,14817],[6678,14831],[6679,14831],[6680,14863],[6681,14861],[6682,14866],[6683,14850],[6684,14834],[6685,14866],[6686,14869],[6687,14859],[6688,14824],[6689,14824],[6690,14865],[6691,14867],[6692,14863],[6693,14863],[6694,14860],[6695,14861],[6696,14850],[6697,14850],[6698,14862],[6699,14862],[6700,14831],[6701,14831],[6702,14818],[6703,14864],[6704,14831],[6705,14831],[6706,14817],[6707,14869],[6708,14834],[6709,14866],[6710,14865],[6711,14850],[6712,14850],[6713,14818],[6714,14864],[6715,14831],[6716,14831],[6717,14831],[6718,14831],[6719,14831],[6720,14818],[6721,14864],[6722,14869],[6723,14824],[6724,14824],[6725,14862],[6726,14862],[6727,14831],[6728,14831],[6729,14831],[6730,14831],[6731,14834],[6732,14866],[6733,14865],[6734,14824],[6735,14831],[6736,14831],[6737,14866],[6738,14824],[6739,14831],[6740,14831],[6741,14866],[6742,14869],[6743,14824],[6744,14824],[6745,14862],[6746,14862],[6747,14831],[6748,14831],[6749,14831],[6750,14831],[6751,14834],[6752,14866],[6753,14865],[6754,14824],[6755,14831],[6756,14824],[6757,14831],[6758,14831],[6759,14866],[6760,14869],[6761,14824],[6762,14862],[6763,14831],[6764,14831],[6765,14866],[6766,14834],[6767,14866],[6768,14859],[6769,14824],[6770,14824],[6771,14824],[6772,14824],[6773,14865],[6774,14861],[6775,14850],[6776,14850],[6777,14850],[6778,14850],[6779,14831],[6780,14831],[6781,14831],[6782,14831],[6783,14824],[6784,14824],[6785,14831],[6786,14831],[6787,14844],[6788,14844],[6789,14844],[6790,14844],[6791,14931],[6792,14931],[6793,14848],[6794,14848],[6795,14848],[6796,14848],[6797,14848],[6798,14848],[6799,14848],[6800,14848],[6801,14848],[6802,14848],[6803,14848],[6804,14848],[6805,14848],[6806,14848],[6807,14848],[6808,14848],[6809,14848],[6810,14848],[6811,14848],[6812,14848],[6813,14848],[6814,14848],[6815,14848],[6817,14848],[6818,14848],[6819,14848],[6820,14848],[6821,14848],[6822,14848],[6823,14848],[6824,14848],[6825,14848],[6826,14848],[6827,14848],[6828,14848],[6829,14848],[6830,14848],[6831,14848],[6832,14848],[6833,14848],[6834,14848],[6835,14848],[6836,14848],[6837,14848],[6838,14848],[6839,14848],[6840,14848],[6841,14848],[6842,14848],[6843,14848],[6844,14848],[6845,14848],[6846,14848],[6847,14848],[6848,14848],[6849,14848],[6850,14848],[6851,14848],[6852,14848],[6853,14848],[6854,14848],[6855,14848],[6857,14848],[6859,14848],[6861,14848],[6862,14848],[6863,14848],[6864,14848],[6866,14848],[6868,14848],[6869,14848],[6870,14848],[6871,14848],[6872,14848],[6873,14848],[6874,14848],[6875,14848],[6876,14868],[6877,14868],[6878,14868],[6879,14868],[6880,14868],[6881,14868],[6882,14868],[6883,14868],[6884,14868],[6885,14868],[6886,14840],[6887,14840],[6888,14840],[6889,14840],[6890,14840],[6891,14840],[6892,14840],[6893,14840],[6894,14840],[6895,14840],[6896,14840],[6897,14840],[6898,14840],[6899,14840],[6900,14840],[6901,14840],[6902,14840],[6903,14840],[6904,14840],[6905,14840],[6906,14840],[6907,14840],[6908,14840],[6909,14840],[6910,14840],[6911,14840],[6912,14840],[6913,14840],[6914,14840],[6915,14840],[6916,14840],[6917,14840],[6918,14840],[6919,14840],[6920,14840],[6921,14840],[6922,14840],[6923,14840],[6924,14840],[6925,14840],[6926,14840],[6927,14840],[6928,14840],[6929,14840],[6930,14840],[6931,14840],[6932,14840],[6933,14840],[6934,14840],[6935,14840],[6936,14840],[6937,14840],[6938,14840],[6939,14840],[6940,14840],[6941,14840],[6942,14840],[6943,14840],[6944,14840],[6945,14840],[6946,14840],[6947,14840],[6948,14840],[6949,14840],[6950,14840],[6951,14840],[6952,14840],[6953,14840],[6954,14840],[6955,14840],[6956,14840],[6957,14840],[6958,14840],[6959,14840],[6960,14840],[6961,14840],[6962,14840],[6963,14840],[6964,14840],[6965,14840],[6966,14840],[6967,14840],[6968,14840],[6969,14840],[6970,14840],[6971,14840],[6972,14840],[6973,14840],[6974,14840],[6975,14840],[6976,14840],[6977,14840],[6978,14840],[6979,14840],[6980,14840],[6981,14840],[6982,14840],[6983,14840],[6984,14840],[6985,14840],[6986,14840],[6987,14840],[6988,14840],[6989,14840],[6990,14840],[6991,14840],[6992,14840],[6993,14840],[6994,14840],[6995,14840],[6996,14840],[6997,14840],[6998,14840],[6999,14840],[7000,14840],[7001,14840],[7002,14840],[7003,14840],[7004,14840],[7005,14838],[7006,14838],[7007,14830],[7008,14838],[7009,14838],[7010,14838],[7011,14838],[7012,14838],[7013,14838],[7014,14838],[7015,14838],[7016,14838],[7017,14838],[7018,14838],[7019,14838],[7020,14838],[7021,14830],[7022,14830],[7023,14838],[7024,14838],[7025,14932],[7026,14932],[7027,14932],[7028,14932],[7029,14932],[7030,14932],[7031,14829],[7032,14829],[7033,14829],[7034,14829],[7035,14829],[7036,14829],[7037,14829],[7038,14829],[7039,14829],[7040,14829],[7041,14829],[7042,14829],[7043,14829],[7044,14829],[7045,14829],[7046,14829],[7047,14829],[7048,14829],[7049,14829],[7050,14829],[7051,14829],[7052,14829],[7053,14829],[7054,14829],[7055,14829],[7056,14829],[7057,14829],[7058,14829],[7059,14829],[7060,14829],[7061,14829],[7062,14829],[7063,14829],[7064,14829],[7065,14829],[7066,14829],[7067,14829],[7068,14829],[7069,14829],[7070,14829],[7071,14829],[7072,14829],[7073,14829],[7074,14829],[7075,14829],[7076,14829],[7077,14829],[7078,14829],[7079,14829],[7080,14829],[7081,14829],[7082,14829],[7083,14829],[7084,14829],[7085,14829],[7086,14829],[7087,14829],[7088,14829],[7089,14829],[7090,14829],[7091,14829],[7092,14829],[7093,14829],[7094,14829],[7095,14829],[7096,14829],[7097,14829],[7098,14829],[7099,14829],[7100,14829],[7101,14829],[7102,14829],[7103,14829],[7104,14829],[7105,14829],[7106,14829],[7107,14829],[7108,14829],[7109,14829],[7110,14829],[7111,14829],[7112,14829],[7113,14829],[7114,14829],[7115,14829],[7116,14829],[7117,14829],[7118,14829],[7119,14829],[7120,14829],[7121,14829],[7122,14829],[7123,14829],[7124,14829],[7125,14829],[7126,14829],[7127,14829],[7128,14829],[7129,14829],[7130,14829],[7131,14829],[7132,14829],[7133,14829],[7134,14829],[7135,14829],[7136,14829],[7137,14829],[7138,14829],[7139,14829],[7140,14829],[7141,14829],[7142,14829],[7143,14829],[7144,14829],[7145,14829],[7146,14829],[7147,14829],[7148,14829],[7149,14829],[7150,14829],[7151,14829],[7152,14829],[7153,14829],[7154,14829],[7155,14829],[7156,14829],[7157,14829],[7158,14829],[7159,14829],[7160,14829],[7161,14829],[7162,14829],[7163,14829],[7164,14829],[7165,14829],[7166,14829],[7167,14829],[7168,14829],[7169,14829],[7170,14829],[7171,14829],[7172,14829],[7173,14829],[7174,14829],[7175,14829],[7176,14829],[7177,14829],[7178,14829],[7179,14829],[7180,14829],[7181,14829],[7182,14829],[7183,14829],[7184,14829],[7185,14829],[7186,14829],[7187,14829],[7188,14829],[7189,14829],[7190,14829],[7191,14829],[7192,14829],[7193,14829],[7194,14829],[7195,14872],[7196,14872],[7197,14872],[7198,14872],[7199,14872],[7200,14872],[7201,14872],[7202,14872],[7203,14872],[7204,14872],[7205,14872],[7206,14872],[7207,14872],[7208,14872],[7209,14872],[7210,14872],[7211,14872],[7212,14872],[7213,14872],[7214,14872],[7215,14872],[7216,14872],[7217,14872],[7218,14872],[7219,14872],[7220,14872],[7221,14872],[7222,14872],[7223,14872],[7224,14872],[7225,14815],[7226,14815],[7227,14815],[7228,14815],[7229,14815],[7230,14815],[7231,14815],[7232,14815],[7233,14815],[7234,14822],[7235,14822],[7236,14822],[7237,14822],[7238,14822],[7239,14822],[7240,14822],[7241,14822],[7242,14822],[7243,14822],[7244,14822],[7245,14822],[7246,14822],[7247,14822],[7248,14822],[7249,14822],[7250,14822],[7251,14822],[7252,14822],[7253,14822],[7254,14822],[7255,14822],[7256,14822],[7257,14822],[7258,14822],[7259,14822],[7260,14822],[7261,14822],[7262,14822],[7263,14822],[7264,14822],[7265,14822],[7266,14822],[7267,14822],[7268,14822],[7269,14822],[7270,14822],[7271,14822],[7272,14822],[7273,14822],[7274,14822],[7275,14822],[7276,14822],[7277,14822],[7278,14822],[7279,14822],[7280,14822],[7281,14822],[7282,14822],[7283,14822],[7284,14822],[7285,14822],[7286,14822],[7287,14822],[7288,14822],[7289,14822],[7290,14822],[7291,14822],[7292,14822],[7293,14822],[7294,14822],[7295,14822],[7296,14822],[7297,14822],[7298,14822],[7299,14822],[7300,14822],[7301,14822],[7302,14822],[7303,14822],[7304,14822],[7305,14822],[7306,14822],[7307,14822],[7308,14822],[7309,14822],[7310,14822],[7311,14822],[7312,14822],[7313,14822],[7314,14822],[7315,14822],[7316,14822],[7317,14822],[7318,14822],[7319,14822],[7320,14822],[7321,14822],[7322,14822],[7323,14822],[7324,14822],[7325,14822],[7326,14822],[7327,14822],[7328,14822],[7329,14822],[7330,14822],[7331,14822],[7332,14822],[7333,14822],[7334,14822],[7335,14822],[7336,14822],[7337,14822],[7338,14822],[7339,14822],[7340,14822],[7341,14822],[7342,14822],[7343,14822],[7344,14822],[7345,14822],[7346,14822],[7347,14822],[7348,14822],[7349,14822],[7350,14822],[7351,14822],[7352,14822],[7353,14822],[7354,14822],[7355,14822],[7356,14822],[7357,14822],[7358,14822],[7359,14822],[7360,14822],[7361,14822],[7362,14822],[7363,14822],[7364,14822],[7365,14822],[7366,14822],[7367,14822],[7368,14822],[7369,14822],[7370,14822],[7371,14822],[7372,14822],[7373,14822],[7374,14822],[7375,14822],[7376,14822],[7377,14822],[7378,14822],[7379,14822],[7380,14822],[7381,14822],[7382,14822],[7383,14822],[7384,14828],[7385,14828],[7386,14828],[7387,14828],[7388,14828],[7389,14828],[7390,14828],[7391,14828],[7392,14828],[7393,14828],[7394,14828],[7395,14828],[7396,14828],[7397,14828],[7398,14828],[7399,14828],[7400,14828],[7401,14828],[7402,14828],[7403,14828],[7404,14828],[7405,14828],[7406,14828],[7407,14828],[7408,14828],[7409,14828],[7410,14828],[7411,14828],[7412,14828],[7413,14828],[7414,14828],[7415,14828],[7416,14828],[7417,14828],[7418,14828],[7419,14828],[7420,14828],[7421,14828],[7422,14828],[7423,14828],[7424,14828],[7425,14828],[7426,14828],[7427,14828],[7428,14828],[7429,14828],[7430,14828],[7431,14828],[7432,14828],[7433,14828],[7434,14828],[7435,14828],[7436,14828],[7437,14828],[7438,14828],[7439,14828],[7440,14828],[7441,14828],[7442,14828],[7443,14828],[7444,14828],[7445,14828],[7446,14828],[7447,14828],[7448,14828],[7449,14828],[7450,14828],[7451,14828],[7452,14828],[7453,14828],[7454,14828],[7455,14828],[7456,14828],[7457,14828],[7458,14828],[7459,14828],[7460,14828],[7461,14828],[7462,14828],[7463,14828],[7464,14828],[7465,14828],[7466,14828],[7467,14828],[7468,14828],[7469,14828],[7470,14828],[7471,14828],[7472,14828],[7473,14828],[7474,14828],[7475,14828],[7476,14828],[7477,14828],[7478,14828],[7479,14828],[7480,14828],[7481,14828],[7482,14828],[7483,14828],[7484,14828],[7485,14828],[7486,14828],[7487,14828],[7488,14828],[7489,14828],[7490,14828],[7491,14828],[7492,14828],[7493,14828],[7494,14828],[7495,14828],[7496,14828],[7497,14828],[7498,14828],[7499,14828],[7500,14828],[7501,14828],[7502,14828],[7503,14828],[7504,14828],[7505,14828],[7506,14828],[7507,14828],[7508,14828],[7509,14828],[7510,14828],[7511,14828],[7512,14828],[7513,14828],[7514,14828],[7515,14828],[7516,14828],[7517,14828],[7518,14828],[7519,14828],[7520,14828],[7521,14828],[7522,14828],[7523,14828],[7524,14828],[7525,14828],[7526,14828],[7527,14828],[7528,14828],[7529,14828],[7530,14828],[7531,14828],[7532,14828],[7533,14828],[7534,14828],[7535,14828],[7536,14828],[7537,14828],[7538,14828],[7539,14828],[7540,14828],[7541,14828],[7542,14828],[7543,14828],[7544,14828],[7545,14828],[7546,14828],[7547,14828],[7548,14828],[7549,14828],[7550,14828],[7551,14828],[7552,14828],[7553,14828],[7554,14828],[7555,14828],[7556,14828],[7557,14828],[7558,14828],[7559,14828],[7560,14825],[7561,14825],[7562,14829],[7563,14825],[7564,14825],[7565,14825],[7566,14825],[7567,14825],[7568,14825],[7569,14825],[7570,14825],[7571,14825],[7572,14825],[7573,14825],[7574,14825],[7575,14825],[7576,14825],[7577,14825],[7578,14825],[7579,14825],[7580,14825],[7581,14825],[7582,14825],[7583,14825],[7584,14825],[7585,14825],[7586,14825],[7587,14825],[7588,14825],[7589,14825],[7590,14825],[7591,14809],[7592,14809],[7593,14810],[7594,14809],[7595,14809],[7596,14809],[7597,14809],[7598,14809],[7599,14809],[7600,14810],[7601,14809],[7602,14809],[7603,14810],[7604,14809],[7605,14809],[7606,14809],[7607,14809],[7608,14809],[7609,14809],[7610,14809],[8115,14812],[8116,14812],[8117,14812],[8119,14812],[8120,14812],[8121,14812],[8122,14812],[8123,8276],[8124,14812],[8125,14812],[8127,14812],[8128,14812],[8130,14812],[8131,14812],[8133,14812],[8134,14812],[8136,14812],[8137,14812],[8139,14812],[8140,14812],[8142,14812],[8143,14812],[8145,14812],[8146,14812],[8148,14812],[8149,14812],[8150,14812],[8151,14812],[8152,14812],[8153,14812],[8154,14812],[8155,14812],[8158,14812],[8159,14812],[8160,14812],[8162,14812],[8163,14812],[8165,14812],[8166,14812],[8170,14812],[8171,14812],[8173,14812],[8174,14812],[8175,14812],[8176,14812],[8177,14812],[8178,14812],[8179,14812],[8180,14812],[8182,14812],[8183,14812],[8185,14812],[8186,14812],[8187,14812],[8188,14812],[8190,14812],[8191,14812],[8193,14812],[8194,14812],[8195,14812],[8196,14812],[8197,14812],[8199,14812],[8201,14812],[8202,14812],[8203,14812],[8205,14812],[8206,14812],[8208,14812],[8209,14812],[8211,14812],[8212,14812],[8214,14812],[8215,14812],[8217,14812],[8218,14812],[8220,14812],[8221,14812],[8223,14812],[8224,14812],[8226,14812],[8227,14812],[8229,14812],[8230,14812],[8235,14812],[8240,14812],[8241,14812],[8242,14812],[8243,14812],[8245,14812],[8246,14812],[8248,14812],[8249,14812],[8251,14812],[8252,14812],[8254,14812],[8255,14812],[8257,14812],[8258,14812],[8260,14812],[8261,14812],[8263,14812],[8264,14812],[8268,14812],[8269,14812],[8374,8376],[8440,14878],[8441,14878],[8442,14878],[8443,14878],[8444,14878],[8445,14878],[8447,14878],[8448,14748],[8456,14779],[8458,14779],[8459,14878],[8460,14748],[8466,14779],[8467,14878],[8468,14748],[8474,14779],[8475,14878],[8476,14748],[8482,14779],[8483,14878],[8484,14748],[8490,14779],[8491,14878],[8492,14748],[8498,14779],[8499,14779],[8500,14779],[8501,14748],[8502,14748],[8503,14779],[8504,14878],[8505,14748],[8511,14779],[8512,14878],[8513,14748],[8519,14779],[8520,14878],[8521,14748],[8527,14779],[8528,14779],[8529,14878],[8530,14748],[8535,14779],[8536,14878],[8537,14748],[8542,14779],[8543,14878],[8544,14748],[8549,14779],[8550,14878],[8555,14779],[8556,14878],[8557,14779],[8558,14878],[8559,14748],[8566,14779],[8567,14878],[8568,14748],[8574,14779],[8575,14878],[8576,14748],[8582,14779],[8583,14779],[8584,14779],[8585,14779],[8586,14779],[8587,14878],[8588,14748],[8594,14779],[8595,14878],[8596,14748],[8602,14779],[8603,14878],[8604,14748],[8606,14779],[8607,14779],[8608,14779],[8609,14878],[8610,14878],[8611,14878],[8612,14779],[8613,14779],[8614,14878],[8615,14878],[8616,14748],[8622,14779],[8623,14779],[8624,14878],[8625,14748],[8636,14779],[8637,14878],[8638,14748],[8644,14779],[8645,14779],[8647,14779],[8648,14878],[8649,14748],[8655,14779],[8662,14779],[8663,14779],[8664,14779],[8665,14878],[8668,14779],[8669,14779],[8672,14779],[8673,14779],[8674,14779],[8675,14779],[8676,14779],[8677,14878],[8678,14748],[8687,14779],[8688,14878],[8689,14748],[8695,14779],[8696,14878],[8697,14748],[8703,14779],[8704,14878],[8705,14748],[8711,14779],[8712,14878],[8713,14748],[8716,14779],[8717,14878],[8718,14748],[8724,14779],[8725,14878],[8726,14748],[8732,14779],[8733,14878],[8734,14748],[8740,14779],[8741,14878],[8742,14748],[8748,14779],[8749,14878],[8750,14748],[8756,14779],[8757,14779],[8760,14779],[8761,14779],[8762,14779],[8764,14779],[8768,14779],[8771,14779],[8775,14779],[8777,14779],[8778,14779],[8779,14878],[8780,14779],[8781,14779],[8782,14779],[8783,14779],[8784,14779],[8785,14779],[8787,14779],[8788,14779],[8789,14779],[8790,14779],[8791,14779],[8792,14779],[8793,14779],[8794,14779],[8795,14779],[8796,14779],[8797,14779],[8798,14779],[8799,14779],[8800,14779],[8801,14779],[8802,14779],[8803,14779],[8806,14779],[8809,14779],[8810,14779],[8811,14878],[8812,14748],[8817,14779],[8818,14878],[8819,14779],[8820,14878],[8821,14779],[8822,14878],[8823,14748],[8829,14779],[8830,14779],[8831,14878],[8832,14878],[8833,14748],[8839,14779],[8840,14878],[8841,14748],[8847,14779],[8848,14878],[8849,14748],[8855,14779],[8856,14878],[8857,14748],[8863,14779],[8864,14878],[8865,14748],[8871,14779],[8872,14878],[8873,14748],[8881,14779],[8882,14878],[8883,14748],[8889,14779],[8892,14779],[8893,14878],[8894,14748],[9047,14895],[9053,14896],[9054,14787],[9055,14900],[9056,14897],[9057,14897],[9059,14894],[9065,14895],[9066,14897],[9069,14898],[9070,14786],[9071,14896],[9072,14898],[9078,14897],[9080,14899],[9081,14896],[9082,14898],[9083,9888],[9087,14893],[9089,14897],[9090,14895],[9091,14787],[9092,14900],[9093,14893],[9095,14895],[9096,14896],[9097,14897],[9098,14898],[9099,14786],[9100,14899],[9109,14893],[9110,14787],[9111,14900],[9112,14893],[9114,14895],[9115,14896],[9116,14897],[9117,14898],[9118,14786],[9119,14899],[9128,14787],[9129,14900],[9130,14893],[9132,14895],[9133,14896],[9134,14897],[9135,14898],[9136,14786],[9137,14899],[9146,14787],[9147,14900],[9148,14893],[9150,14895],[9151,14896],[9152,14897],[9153,14898],[9154,14786],[9155,14899],[9164,14787],[9165,14900],[9166,14893],[9168,14895],[9169,14896],[9170,14897],[9171,14898],[9172,14786],[9173,14899],[9184,14787],[9185,14900],[9186,14893],[9188,14895],[9189,14896],[9190,14897],[9191,14898],[9192,14786],[9193,14899],[9202,14787],[9203,14900],[9204,14893],[9206,14895],[9207,14896],[9208,14897],[9209,14898],[9210,14786],[9211,14899],[9220,14787],[9221,14900],[9222,14893],[9224,14895],[9225,14896],[9226,14897],[9227,14898],[9228,14786],[9229,14899],[9238,14894],[9239,14787],[9241,14787],[9242,14893],[9244,14895],[9245,14896],[9246,14897],[9247,14898],[9248,14786],[9249,14899],[9258,14895],[9259,14896],[9260,14897],[9261,14898],[9262,14786],[9263,14899],[9272,14895],[9273,14896],[9274,14897],[9275,14898],[9276,14786],[9277,14899],[9286,14786],[9287,14899],[9289,14786],[9290,14899],[9291,14787],[9292,14900],[9293,14893],[9295,14895],[9296,14896],[9297,14897],[9298,14898],[9299,14786],[9300,14899],[9309,14893],[9313,14787],[9314,14900],[9315,14893],[9317,14895],[9318,14896],[9319,14897],[9320,14898],[9321,14786],[9322,14899],[9331,14787],[9332,14900],[9333,14893],[9335,14895],[9336,14896],[9337,14897],[9338,14898],[9339,14786],[9340,14899],[9350,14787],[9351,14900],[9352,14893],[9354,14895],[9355,14896],[9356,14897],[9357,14898],[9358,14786],[9359,14899],[9368,14787],[9369,14893],[9371,14787],[9372,14900],[9373,14893],[9375,14895],[9376,14896],[9377,14897],[9378,14898],[9379,14786],[9380,14899],[9389,14900],[9390,14895],[9391,14897],[9392,14786],[9393,14899],[9397,14895],[9398,14895],[9399,14895],[9400,14897],[9401,14897],[9402,14897],[9403,14786],[9404,14786],[9405,14786],[9406,14899],[9407,14899],[9408,14899],[9409,14895],[9410,14896],[9411,14897],[9412,14898],[9413,14786],[9414,14899],[9423,14787],[9424,14787],[9425,14900],[9426,14900],[9427,14893],[9429,14895],[9430,14896],[9431,14897],[9432,14898],[9433,14786],[9434,14899],[9443,14787],[9444,14900],[9445,14893],[9447,14895],[9448,14896],[9449,14897],[9450,14898],[9451,14786],[9452,14899],[9461,14787],[9462,14900],[9463,14893],[9465,14895],[9466,14896],[9467,14897],[9468,14898],[9469,14786],[9470,14899],[9479,14895],[9480,14898],[9481,14786],[9482,14899],[9486,14787],[9487,14900],[9488,14893],[9490,14895],[9491,14896],[9492,14897],[9493,14898],[9494,14786],[9495,14899],[9504,14787],[9505,14900],[9506,14893],[9508,14895],[9509,14896],[9510,14897],[9511,14898],[9512,14786],[9513,14899],[9522,14787],[9523,14900],[9524,14893],[9526,14895],[9527,14896],[9528,14897],[9529,14898],[9530,14786],[9531,14899],[9540,14787],[9541,14900],[9542,14893],[9544,14895],[9545,14896],[9546,14897],[9547,14898],[9548,14786],[9549,14899],[9558,14895],[9559,14896],[9560,14897],[9561,14898],[9562,14786],[9563,14899],[9572,14787],[9573,14900],[9574,14893],[9576,14895],[9577,14896],[9578,14897],[9579,14898],[9580,14786],[9581,14899],[9590,14787],[9591,14900],[9592,14893],[9594,14895],[9595,14896],[9596,14897],[9597,14898],[9598,14786],[9599,14899],[9608,14787],[9609,14900],[9610,14893],[9612,14895],[9613,14896],[9614,14897],[9615,14898],[9616,14786],[9617,14899],[9626,14787],[9627,14900],[9628,14893],[9630,14895],[9631,14896],[9632,14897],[9633,14898],[9634,14786],[9635,14899],[9644,14787],[9645,14900],[9646,14893],[9648,14895],[9649,14896],[9650,14897],[9651,14898],[9652,14786],[9653,14899],[9662,14893],[9665,14787],[9666,14900],[9667,14893],[9675,14893],[9676,14898],[9677,14786],[9678,14899],[9683,14895],[9685,14895],[9686,14898],[9687,14898],[9691,14787],[9692,14893],[9695,14787],[9696,14895],[9697,14896],[9698,14897],[9699,14898],[9700,14786],[9701,14899],[9710,14787],[9711,14900],[9712,14893],[9714,14895],[9715,14896],[9716,14897],[9717,14898],[9718,14786],[9719,14899],[9728,14787],[9729,14900],[9730,14893],[9732,14895],[9733,14896],[9734,14897],[9735,14898],[9736,14786],[9737,14899],[9746,14787],[9747,14900],[9748,14893],[9750,14895],[9751,14896],[9752,14897],[9753,14898],[9754,14786],[9755,14899],[9764,14787],[9765,14900],[9766,14893],[9768,14895],[9769,14896],[9770,14897],[9771,14898],[9772,14786],[9773,14899],[9782,14787],[9783,14900],[9784,14893],[9786,14895],[9787,14896],[9788,14897],[9789,14898],[9790,14786],[9791,14899],[9800,14787],[9801,14900],[9802,14893],[9804,14895],[9805,14896],[9806,14897],[9807,14898],[9808,14786],[9809,14899],[9818,14787],[9819,14900],[9820,14893],[9822,14895],[9823,14896],[9824,14897],[9825,14898],[9826,14786],[9827,14899],[9836,14787],[9837,14900],[9838,14893],[9840,14895],[9841,14896],[9842,14897],[9843,14898],[9844,14786],[9845,14899],[9855,14787],[9856,14900],[9857,14893],[9859,14895],[9860,14896],[9861,14897],[9862,14898],[9863,14786],[9864,14899],[11043,14904],[11051,14904],[11057,14904],[11058,14904],[11071,14904],[11072,14904],[11090,14904],[11091,14904],[11102,14904],[11103,14904],[11114,14904],[11115,14904],[11126,14904],[11127,14904],[11141,14904],[11142,14904],[11153,14904],[11154,14904],[11166,14904],[11167,14904],[11179,14904],[11180,14904],[11190,14904],[11191,14904],[11201,14904],[11202,14904],[11214,14904],[11215,14904],[11229,14904],[11230,14904],[11235,14904],[11236,14904],[11247,14904],[11248,14904],[11261,14904],[11262,14904],[11274,14904],[11275,14904],[11285,14904],[11286,14904],[11304,14904],[11305,14904],[11316,14904],[11317,14904],[11329,14904],[11330,14904],[11341,14904],[11342,14904],[11360,14904],[11361,14904],[11372,14904],[11373,14904],[11384,14904],[11385,14904],[11396,14904],[11397,14904],[11407,14904],[11408,14904],[11419,14904],[11420,14904],[11431,14904],[11432,14904],[11443,14904],[11444,14904],[11455,14904],[11456,14904],[11467,14904],[11468,14904],[11484,14904],[11485,14904],[11505,14904],[11506,14904],[11517,14904],[11518,14904],[11529,14904],[11530,14904],[11541,14904],[11542,14904],[11553,14904],[11554,14904],[11565,14904],[11566,14904],[11577,14904],[11578,14904],[11589,14904],[11590,14904],[11602,14904],[11603,14904],[11617,14904],[11618,14904],[11631,14904],[11632,14904],[11633,14904],[11634,14904],[11647,14738],[11648,14906],[11649,14792],[11650,14792],[11652,14792],[11653,14906],[11654,14905],[11655,14905],[11656,14906],[11658,14905],[11659,14906],[11661,14905],[11662,14906],[11664,14905],[11665,14906],[11667,14905],[11668,14906],[11670,14905],[11671,14906],[11673,14905],[11674,14906],[11676,14905],[11677,14906],[11679,14905],[11680,14905],[11681,14905],[11682,14905],[11683,14906],[11685,14906],[11686,14905],[11687,14906],[11689,14905],[11690,14906],[11692,14905],[11693,14906],[11695,14792],[11697,14905],[11698,14906],[11700,14905],[11701,14906],[11702,14905],[11703,14906],[11705,14905],[11706,14906],[11708,14905],[11709,14906],[11711,14906],[11712,14906],[11713,14906],[11715,14905],[11716,14906],[11718,14905],[11719,14906],[11721,14905],[11722,14906],[11724,14905],[11725,14906],[11727,14905],[11729,14905],[11730,14906],[11732,14905],[11733,14906],[11735,14905],[11736,14906],[11738,14905],[11739,14906],[11741,14905],[11742,14906],[11745,14905],[11746,14792],[11747,14792],[11750,14906],[11751,14905],[11752,14905],[11753,14905],[11754,14906],[11755,14905],[11756,14906],[11757,14905],[11760,14906],[11762,14905],[11763,14905],[11764,14906],[11766,14905],[11767,14906],[11769,14905],[11770,14906],[11772,14905],[11773,14906],[11775,14905],[11776,14906],[11778,14905],[11779,14906],[11781,14905],[11782,14906],[11784,14905],[11785,14906],[11787,14792],[11788,14792],[11790,14905],[11791,14906],[11794,14905],[12086,14769],[12093,14769],[12097,14769],[12101,14769],[12105,14769],[12109,14769],[12113,14769],[12117,14769],[12121,14769],[12126,14769],[12129,14769],[12132,14769],[12136,14769],[12141,14769],[12144,14769],[12148,14769],[12152,14769],[12157,14769],[12161,14769],[12164,14769],[12165,14769],[12166,14769],[12170,14769],[12173,14769],[12174,14769],[12179,14769],[12183,14769],[12184,14769],[12186,14769],[12190,14769],[12192,14769],[12193,14769],[12197,14769],[12201,14769],[12205,14769],[12209,14769],[12213,14769],[12217,14769],[12221,14769],[12225,14769],[12229,14769],[12241,14769],[12244,14769],[12248,14769],[12252,14769],[12256,14769],[12260,14769],[12264,14769],[12268,14769],[12272,14769],[12276,14769],[12281,14748],[12282,14748],[12283,14748],[12285,14767],[12286,14767],[12287,14748],[12288,14748],[12289,14794],[12290,14794],[12291,14748],[12292,14794],[12293,14748],[12294,14748],[12296,14748],[12297,14791],[12298,14794],[12299,14748],[12300,14748],[12301,14767],[12302,14767],[12303,14767],[12305,14748],[12306,14748],[12307,14748],[12308,14791],[12309,14748],[12310,14748],[12311,14748],[12312,14748],[12313,14767],[12314,14767],[12315,14791],[12316,14791],[12317,14791],[12318,14748],[12319,14748],[12320,14748],[12321,14748],[12322,14767],[12323,14767],[12324,14791],[12325,14748],[12326,14748],[12327,14748],[12328,14748],[12329,14767],[12330,14767],[12331,14791],[12332,14748],[12333,14748],[12334,14748],[12335,14748],[12336,14767],[12337,14767],[12338,14791],[12339,14748],[12340,14748],[12341,14748],[12342,14748],[12343,14767],[12344,14767],[12345,14748],[12346,14748],[12347,14767],[12348,14748],[12349,14748],[12350,14791],[12351,14748],[12352,14748],[12353,14748],[12354,14748],[12355,14767],[12356,14767],[12357,14791],[12358,14748],[12359,14748],[12360,14748],[12361,14748],[12362,14767],[12363,14767],[12364,14791],[12365,14748],[12366,14748],[12367,14748],[12368,14748],[12369,14767],[12370,14767],[12371,14791],[12372,14794],[12373,14791],[12374,14748],[12375,14748],[12376,14748],[12377,14748],[12378,14767],[12379,14748],[12380,14748],[12381,14748],[12382,14748],[12383,14767],[12384,14748],[12385,14748],[12386,14748],[12387,14748],[12388,14767],[12389,14791],[12390,14748],[12391,14748],[12392,14767],[12393,14791],[12394,14748],[12395,14791],[12396,14748],[12397,14748],[12398,14748],[12399,14748],[12400,14767],[12401,14767],[12402,14794],[12403,14767],[12404,14767],[12405,14767],[12406,14791],[12407,14748],[12408,14748],[12409,14748],[12410,14748],[12411,14767],[12412,14767],[12413,14791],[12414,14748],[12415,14748],[12416,14748],[12417,14748],[12418,14767],[12419,14767],[12420,14791],[12421,14748],[12422,14748],[12423,14748],[12424,14748],[12425,14767],[12426,14767],[12427,14791],[12428,14748],[12429,14748],[12430,14748],[12431,14748],[12432,14767],[12433,14767],[12434,14767],[12435,14791],[12436,14791],[12437,14748],[12438,14748],[12439,14748],[12440,14748],[12441,14767],[12442,14767],[12443,14748],[12444,14748],[12445,14748],[12446,14748],[12447,14767],[12448,14748],[12449,14748],[12450,14748],[12451,14748],[12452,14748],[12453,14748],[12454,14748],[12455,14748],[12456,14748],[12457,14748],[12458,14767],[12459,14767],[12460,14791],[12461,14748],[12462,14748],[12463,14748],[12464,14791],[12465,14748],[12466,14748],[12467,14748],[12468,14748],[12469,14748],[12470,14748],[12471,14748],[12472,14767],[12473,14767],[12474,14791],[12475,14748],[12476,14748],[12477,14748],[12478,14748],[12479,14767],[12480,14767],[12481,14791],[12482,14791],[12483,14748],[12484,14748],[12485,14748],[12486,14748],[12487,14767],[12488,14767],[12489,14748],[12490,14748],[12491,14748],[12492,14791],[12493,14748],[12494,14794],[12495,14791],[12496,14748],[12497,14748],[12498,14748],[12499,14748],[12500,14767],[12501,14767],[12502,14791],[12503,14748],[12504,14748],[12505,14748],[12506,14748],[12507,14767],[12508,14767],[12509,14791],[12510,14748],[12511,14748],[12512,14748],[12513,14748],[12514,14767],[12515,14767],[12516,14791],[12517,14748],[12518,14748],[12519,14748],[12520,14748],[12521,14767],[12522,14767],[12523,14748],[12524,14748],[12525,14748],[12526,14748],[12527,14767],[12528,14767],[12529,14791],[12530,14748],[12531,14748],[12532,14748],[12533,14748],[12534,14767],[12535,14767],[12536,14791],[12537,14748],[12538,14748],[12539,14748],[12540,14748],[12541,14767],[12542,14767],[12543,14791],[12544,14748],[12545,14748],[12546,14748],[12547,14748],[12548,14767],[12549,14767],[12550,14791],[12551,14748],[12552,14748],[12553,14748],[12554,14748],[12555,14767],[12556,14767],[12557,14748],[12558,14791],[12559,14748],[12560,14748],[12561,14748],[12562,14748],[12563,14767],[12564,14767],[12565,14767],[12566,14791],[12567,14791],[12568,14748],[12569,14748],[12570,14748],[12571,14748],[12572,14748],[12573,14791],[12574,14794],[12575,14791],[12576,14748],[12577,14791],[12578,14748],[12579,14748],[12580,14748],[12581,14748],[12582,14767],[12583,14767],[12584,14791],[12585,14748],[12586,14748],[12587,14767],[12588,14767],[12589,14791],[12590,14791],[12591,14748],[12592,14748],[12593,14791],[12594,14748],[12595,14748],[12596,14767],[12597,14791],[12598,14767],[12599,14791],[12600,14748],[12601,14748],[12602,14748],[12603,14748],[12604,14748],[12605,14748],[12606,14767],[12607,14748],[12608,14791],[12609,14748],[12610,14748],[12611,14748],[12612,14748],[12613,14767],[12614,14767],[12615,14791],[12616,14748],[12617,14748],[12618,14748],[12619,14748],[12620,14767],[12621,14767],[12622,14791],[12623,14748],[12624,14748],[12625,14748],[12626,14748],[12627,14767],[12628,14767],[12629,14791],[12630,14748],[12631,14748],[12632,14748],[12633,14748],[12634,14767],[12635,14767],[12636,14791],[12637,14748],[12638,14748],[12639,14748],[12640,14748],[12641,14767],[12642,14767],[12643,14791],[12644,14748],[12645,14748],[12646,14748],[12647,14748],[12648,14767],[12649,14767],[12650,14791],[12651,14748],[12652,14748],[12653,14748],[12654,14748],[12655,14767],[12656,14767],[12657,14748],[12658,14748],[12659,14791],[12660,14748],[12661,14748],[12662,14748],[12663,14748],[12664,14767],[12665,14767],[12666,14794],[12667,14791],[12668,14791],[12669,14748],[12670,14748],[12671,14748],[12672,14748],[12673,14767],[12674,14767],[12675,14791],[12676,14791],[12677,14791],[12678,14914],[12680,14914],[12685,14914],[12688,14914],[12689,14914],[12692,14914],[12695,14914],[12696,14914],[12697,14914],[12698,14914],[12699,14914],[12700,14914],[12701,14914],[12702,14914],[12705,14914],[12707,14914],[12710,14914],[12711,14914],[12712,14914],[12713,14914],[12714,14914],[12715,14914],[12716,14914],[12718,14914],[12719,14914],[12720,14914],[12721,14914],[12723,14914],[12724,14914],[12725,14914],[12727,14914],[12729,14914],[12731,14914],[12740,14914],[12741,14914],[12742,14914],[12745,14914],[12746,14914],[12747,14914],[12748,14914],[12749,14914],[12757,14914],[12758,14914],[12759,14914],[12760,14914],[12761,14914],[12769,14914],[12770,14914],[12771,14914],[12772,14914],[12773,14914],[12781,14914],[12782,14914],[12783,14914],[12784,14914],[12785,14914],[12793,14914],[12794,14914],[12795,14914],[12796,14914],[12797,14914],[12803,14914],[12808,14914],[12809,14914],[12810,14914],[12811,14914],[12812,14914],[12820,14914],[12821,14914],[12822,14914],[12823,14914],[12824,14914],[12832,14914],[12833,14914],[12834,14914],[12835,14914],[12836,14914],[12843,14914],[12844,14914],[12845,14914],[12846,14914],[12847,14914],[12852,14914],[12853,14914],[12854,14914],[12855,14914],[12856,14914],[12861,14914],[12862,14914],[12863,14914],[12864,14914],[12865,14914],[12872,14914],[12873,14914],[12874,14914],[12875,14914],[12876,14914],[12886,14914],[12887,14914],[12890,14914],[12891,14914],[12892,14914],[12893,14914],[12894,14914],[12902,14914],[12903,14914],[12904,14914],[12905,14914],[12906,14914],[12912,14914],[12915,14914],[12916,14914],[12917,14914],[12918,14914],[12919,14914],[12928,14914],[12929,14914],[12930,14914],[12931,14914],[12932,14914],[12938,14914],[12939,14914],[12940,14914],[12941,14914],[12942,14914],[12943,14914],[12948,14914],[12949,14914],[12950,14914],[12951,14914],[12952,14914],[12953,14914],[12961,14914],[12962,14914],[12963,14914],[12964,14914],[12965,14914],[12975,14914],[12976,14914],[12977,14914],[12978,14914],[12979,14914],[12987,14914],[12988,14914],[12989,14914],[12990,14914],[12991,14914],[13000,14914],[13001,14914],[13002,14914],[13003,14914],[13004,14914],[13016,14914],[13017,14914],[13018,14914],[13019,14914],[13020,14914],[13028,14914],[13029,14914],[13030,14914],[13031,14914],[13032,14914],[13040,14914],[13041,14914],[13042,14914],[13043,14914],[13044,14914],[13052,14914],[13053,14914],[13054,14914],[13055,14914],[13056,14914],[13062,14914],[13063,14914],[13064,14914],[13065,14914],[13066,14914],[13073,14914],[13074,14914],[13075,14914],[13076,14914],[13077,14914],[13085,14914],[13086,14914],[13087,14914],[13088,14914],[13089,14914],[13097,14914],[13098,14914],[13099,14914],[13100,14914],[13101,14914],[13109,14914],[13110,14914],[13111,14914],[13112,14914],[13113,14914],[13121,14914],[13122,14914],[13123,14914],[13124,14914],[13125,14914],[13131,14914],[13149,14914],[13150,14914],[13167,14914],[13169,14914],[13170,14914],[13171,14914],[13172,14914],[13173,14914],[13180,14914],[13181,14914],[13182,14914],[13183,14914],[13184,14914],[13192,14914],[13193,14914],[13194,14914],[13195,14914],[13196,14914],[13204,14914],[13205,14914],[13206,14914],[13207,14914],[13208,14914],[13216,14914],[13217,14914],[13218,14914],[13219,14914],[13220,14914],[13228,14914],[13229,14914],[13230,14914],[13231,14914],[13232,14914],[13240,14914],[13241,14914],[13242,14914],[13243,14914],[13244,14914],[13252,14914],[13253,14914],[13254,14914],[13255,14914],[13256,14914],[13265,14914],[13266,14914],[13267,14914],[13268,14914],[13269,14914],[13279,14914],[13280,14914],[13281,14914],[13282,14914],[13283,14914],[13289,14914],[13298,13725],[13313,14918],[13315,14918],[13324,14918],[13332,14918],[13340,14918],[13348,14918],[13358,14918],[13366,14918],[13374,14918],[13382,14918],[13389,14918],[13396,14918],[13405,14918],[13418,14918],[13426,14918],[13435,14918],[13445,14918],[13461,14918],[13462,14918],[13475,14918],[13485,14918],[13493,14918],[13505,14918],[13512,14918],[13513,14918],[13515,14918],[13523,14918],[13531,14918],[13538,14918],[13546,14918],[13554,14918],[13562,14918],[13570,14918],[13578,14918],[13585,14918],[13590,14918],[13603,14918],[13606,14918],[13617,14918],[13618,14918],[13619,14918],[13621,14918],[13622,14918],[13636,14918],[13643,14918],[13644,14918],[13646,14918],[13654,14918],[13662,14918],[13670,14918],[13678,14918],[13686,14918],[13694,14918],[13704,14918],[13706,14918],[13716,14918],[13823,14740],[13824,14759],[13825,14759],[13826,14759],[13827,14759],[13828,14740],[13829,14740],[13830,14740],[13831,14740],[13832,14740],[13833,14740],[13834,14759],[13835,14759],[13836,14740],[13837,14740],[13838,14759],[13839,14740],[13840,14759],[13841,14759],[13842,14740],[13843,14740],[13844,14759],[13845,14759],[13846,14759],[13847,14740],[13848,14740],[13849,14740],[13850,14759],[13851,14740],[13852,14759],[13853,14740],[13854,14759],[13855,14759],[13856,14740],[13857,14740],[13858,14759],[13859,14740],[13860,14759],[13861,14759],[13862,14759],[13863,14740],[13864,14740],[13865,14740],[13866,14759],[13867,14759],[13868,14759],[13869,14740],[13870,14740],[13871,14740],[13872,14740],[13873,14759],[13874,14740],[13875,14740],[13876,14759],[13877,14740],[13878,14740],[13879,14759],[13880,14740],[13881,14740],[13882,14759],[13883,14740],[13884,14740],[13885,14759],[13886,14740],[13887,14740],[13888,14759],[13889,14740],[13890,14740],[13891,14759],[13892,14740],[13893,14740],[13894,14759],[13895,14740],[13896,14740],[13897,14759],[13898,14740],[13899,14740],[13900,14759],[13901,14740],[13902,14740],[13903,14759],[13904,14740],[13905,14740],[13906,14759],[13907,14740],[13908,14740],[13909,14759],[13910,14740],[13911,14740],[13912,14759],[13913,14740],[13914,14759],[13915,14740],[13916,14740],[13917,14759],[13918,14740],[13919,14740],[13920,14759],[13921,14740],[13922,14740],[13923,14759],[13924,14740],[13925,14740],[13926,14759],[13927,14740],[13928,14740],[13929,14759],[13930,14740],[13931,14740],[13932,14740],[13933,14759],[13934,14740],[13935,14740],[13936,14759],[13937,14740],[13938,14740],[13939,14759],[13940,14740],[13941,14740],[13942,14759],[13943,14740],[13944,14740],[13945,14759],[13946,14740],[13947,14740],[13948,14759],[13949,14740],[13950,14740],[13951,14759],[13952,14740],[13953,14740],[13954,14759],[13955,14740],[13956,14740],[13957,14759],[13958,14740],[13959,14740],[13960,14759],[13961,14740],[13962,14740],[13963,14759],[13964,14740],[13965,14740],[13966,14759],[13967,14740],[13968,14740],[13969,14759],[13970,14740],[13971,14740],[13972,14740],[13973,14740],[13974,14759],[13975,14759],[13976,14759],[13977,14740],[13978,14759],[13979,14740],[13980,14740],[13981,14740],[13982,14740],[13983,14759],[13984,14740],[13985,14740],[13986,14759],[13987,14740],[13988,14740],[13989,14759],[13990,14740],[13991,14740],[13992,14759],[13993,14740],[13994,14740],[13995,14759],[13996,14740],[13997,14740],[13998,14759],[13999,14740],[14000,14740],[14001,14759],[14002,14740],[14003,14740],[14004,14759],[14005,14740],[14006,14740],[14007,14759],[14008,14740],[14009,14740],[14010,14759],[14011,14740],[14012,14759],[14013,14759],[14014,14759],[14015,14759],[14016,14759],[14017,14759],[14018,14759],[14019,14759],[14020,14759],[14021,14759],[14022,14759],[14023,14759],[14024,14759],[14025,14759],[14026,14759],[14027,14759],[14028,14759],[14029,14759],[14030,14759],[14031,14759],[14032,14759],[14033,14759],[14034,14759],[14035,14759],[14036,14759],[14037,14759],[14038,14759],[14039,14759],[14040,14759],[14041,14759],[14042,14759],[14043,14759],[14044,14759],[14045,14759],[14046,14759],[14047,14759],[14048,14759],[14049,14759],[14050,14759],[14051,14759],[14052,14759],[14053,14759],[14054,14759],[14055,14759],[14056,14759],[14057,14759],[14058,14759],[14059,14759],[14060,14759],[14061,14759],[14062,14759],[14063,14759],[14064,14759],[14065,14759],[14066,14759],[14067,14759],[14068,14759],[14069,14759],[14070,14759],[14071,14759],[14072,14759],[14073,14759],[14074,14759],[14075,14759],[14076,14759],[14077,14759],[14078,14759],[14079,14759],[14080,14759],[14081,14759],[14082,14759],[14083,14759],[14084,14759],[14085,14759],[14086,14759],[14087,14759],[14088,14759],[14089,14759],[14090,14759],[14091,14759],[14092,14759],[14093,14759],[14094,14759],[14095,14759],[14096,14759],[14097,14759],[14098,14759],[14099,14759],[14100,14759],[14101,14759],[14102,14759],[14103,14759],[14104,14759],[14105,14759],[14106,14759],[14107,14759],[14108,14759],[14109,14759],[14110,14759],[14111,14759],[14112,14759],[14113,14759],[14114,14759],[14115,14759],[14116,14759],[14117,14759],[14118,14759],[14119,14759],[14120,14759],[14121,14759],[14122,14759],[14123,14759],[14124,14759],[14125,14759],[14126,14759],[14127,14759],[14128,14759],[14129,14759],[14130,14759],[14131,14759],[14132,14759],[14133,14759],[14134,14759],[14135,14759],[14136,14759],[14137,14759],[14138,14759],[14139,14759],[14140,14759],[14141,14759],[14142,14759],[14143,14759],[14144,14759],[14145,14759],[14146,14759],[14147,14759],[14148,14759],[14149,14759],[14150,14759],[14151,14759],[14152,14759],[14153,14759],[14154,14759],[14155,14759],[14156,14759],[14157,14759],[14158,14759],[14159,14759],[14160,14759],[14161,14759],[14162,14759],[14163,14759],[14164,14759],[14165,14759],[14166,14759],[14167,14759],[14168,14759],[14169,14759],[14170,14759],[14171,14759],[14172,14759],[14173,14759],[14174,14759],[14175,14759],[14176,14759],[14177,14759],[14178,14759],[14179,14759],[14180,14759],[14181,14759],[14182,14759],[14183,14759],[14184,14759],[14185,14759],[14186,14759],[14187,14759],[14188,14759],[14189,14759],[14190,14759],[14191,14759],[14192,14759],[14193,14759],[14194,14759],[14195,14759],[14196,14759],[14197,14759],[14198,14759],[14199,14759],[14200,14759],[14201,14759],[14202,14759],[14203,14759],[14204,14759],[14205,14759],[14206,14759],[14207,14759],[14208,14759],[14209,14759],[14210,14759],[14211,14759],[14212,14759],[14213,14759],[14214,14759],[14215,14759],[14216,14759],[14217,14759],[14218,14759],[14219,14759],[14220,14759],[14221,14759],[14222,14759],[14223,14759],[14224,14759],[14225,14759],[14226,14759],[14227,14759],[14228,14759],[14229,14759],[14230,14759],[14231,14759],[14232,14759],[14233,14759],[14234,14759],[14235,14759],[14236,14759],[14237,14759],[14238,14759],[14239,14759],[14240,14759],[14241,14759],[14242,14759],[14243,14759],[14244,14759],[14245,14759],[14246,14759],[14247,14759],[14248,14759],[14249,14759],[14250,14759],[14251,14759],[14252,14759],[14253,14759],[14254,14759],[14255,14759],[14256,14759],[14257,14759],[14258,14759],[14259,14759],[14260,14759],[14261,14759],[14262,14759],[14263,14759],[14264,14759],[14265,14759],[14266,14759],[14267,14759],[14268,14759],[14269,14759],[14270,14759],[14271,14759],[14272,14759],[14273,14759],[14274,14759],[14275,14759],[14276,14759],[14277,14759],[14278,14759],[14279,14759],[14280,14759],[14281,14759],[14282,14759],[14283,14759],[14284,14759],[14285,14759],[14286,14759],[14287,14759],[14288,14759],[14289,14759],[14290,14759],[14291,14759],[14292,14759],[14293,14759],[14294,14759],[14295,14759],[14296,14759],[14297,14759],[14298,14759],[14299,14759],[14300,14759],[14301,14759],[14302,14759],[14303,14759],[14304,14759],[14305,14759],[14306,14759],[14307,14759],[14308,14759],[14309,14759],[14310,14759],[14311,14759],[14312,14759],[14313,14759],[14314,14759],[14315,14759],[14316,14759],[14317,14759],[14318,14759],[14319,14759],[14320,14759],[14321,14759],[14322,14759],[14323,14759],[14324,14759],[14325,14759],[14326,14759],[14327,14759],[14328,14759],[14329,14759],[14330,14759],[14331,14759],[14332,14759],[14333,14759],[14334,14759],[14335,14759],[14336,14759],[14337,14759],[14338,14759],[14339,14759],[14340,14759],[14341,14759],[14342,14759],[14343,14759],[14344,14759],[14345,14759],[14346,14759],[14347,14759],[14348,14759],[14349,14759],[14350,14759],[14351,14759],[14352,14759],[14353,14759],[14354,14759],[14355,14759],[14356,14759],[14357,14759],[14358,14759],[14359,14759],[14360,14759],[14361,14759],[14362,14759],[14363,14759],[14364,14759],[14365,14759],[14366,14759],[14367,14759],[14368,14759],[14369,14759],[14370,14759],[14371,14759],[14372,14759],[14373,14759],[14374,14759],[14375,14759],[14376,14759],[14377,14759],[14378,14759],[14379,14759],[14380,14759],[14381,14759],[14382,14759],[14383,14759],[14384,14759],[14385,14759],[14386,14759],[14387,14759],[14388,14759],[14389,14759],[14390,14759],[14391,14759],[14392,14759],[14393,14759],[14394,14759],[14395,14759],[14396,14759],[14397,14759],[14398,14759],[14399,14759],[14400,14759],[14401,14759],[14402,14759],[14403,14759],[14404,14759],[14405,14759],[14406,14759],[14407,14759],[14408,14759],[14409,14759],[14410,14759],[14411,14759],[14678,11795],[14680,11795],[14681,11795],[14682,11795],[14683,11795],[14684,11795],[14696,11795]],"b":[[134,"impl-Catalog-for-Theme"],[135,"impl-Catalog-for-Theme"],[136,"impl-Catalog-for-Theme"],[137,"impl-Catalog-for-Theme"],[138,"impl-Catalog-for-Theme"],[139,"impl-Catalog-for-Theme"],[140,"impl-Catalog-for-Theme"],[141,"impl-Catalog-for-Theme"],[142,"impl-Catalog-for-Theme"],[143,"impl-Catalog-for-Theme"],[144,"impl-Catalog-for-Theme"],[145,"impl-Catalog-for-Theme"],[146,"impl-Catalog-for-Theme"],[147,"impl-Catalog-for-Theme"],[148,"impl-Default-for-Theme"],[149,"impl-Catalog-for-Theme"],[150,"impl-Catalog-for-Theme"],[151,"impl-Catalog-for-Theme"],[173,"impl-Debug-for-Theme"],[174,"impl-Display-for-Theme"],[304,"impl-Catalog-for-Theme"],[305,"impl-Catalog-for-Theme"],[306,"impl-Catalog-for-Theme"],[307,"impl-Catalog-for-Theme"],[308,"impl-Catalog-for-Theme"],[309,"impl-Catalog-for-Theme"],[310,"impl-Catalog-for-Theme"],[311,"impl-Catalog-for-Theme"],[312,"impl-Catalog-for-Theme"],[313,"impl-Catalog-for-Theme"],[314,"impl-Catalog-for-Theme"],[315,"impl-Catalog-for-Theme"],[316,"impl-Catalog-for-Theme"],[317,"impl-Catalog-for-Theme"],[318,"impl-Catalog-for-Theme"],[319,"impl-Catalog-for-Theme"],[320,"impl-Catalog-for-Theme"],[833,"impl-From%3CColor%3E-for-Fill"],[834,"impl-From%3CLinear%3E-for-Fill"],[835,"impl-From%3CGradient%3E-for-Fill"],[843,"impl-From%3CColor%3E-for-Style"],[844,"impl-From%3CGradient%3E-for-Style"],[845,"impl-From%3C%26str%3E-for-Text"],[847,"impl-From%3CString%3E-for-Text"],[1691,"impl-BuilderWithAttributes"],[1692,"impl-PathBuilder-for-BuilderWithAttributes"],[1744,"impl-Build-for-BuilderWithAttributes"],[1745,"impl-BuilderWithAttributes"],[1875,"impl-PathBuilder-for-BuilderWithAttributes"],[1876,"impl-BuilderWithAttributes"],[1982,"impl-BuilderWithAttributes"],[1983,"impl-PathBuilder-for-BuilderWithAttributes"],[2140,"impl-Index%3CEndpointId%3E-for-Path"],[2141,"impl-Index%3CControlPointId%3E-for-Path"],[2142,"impl-Index%3CControlPointId%3E-for-PathSlice%3C\'l%3E"],[2143,"impl-Index%3CEndpointId%3E-for-PathSlice%3C\'l%3E"],[2373,"impl-IntoIterator-for-PathSlice%3C\'l%3E"],[2374,"impl-IntoIterator-for-%26PathSlice%3C\'l%3E"],[2429,"impl-PathBuilder-for-BuilderWithAttributes"],[2430,"impl-BuilderWithAttributes"],[2454,"impl-BuilderWithAttributes"],[2455,"impl-PathBuilder-for-BuilderWithAttributes"],[2469,"impl-PathBuilder-for-BuilderWithAttributes"],[2470,"impl-BuilderWithAttributes"],[2472,"impl-BuilderWithAttributes"],[2473,"impl-PathBuilder-for-BuilderWithAttributes"],[2842,"impl-NoAttributes%3CB%3E"],[2843,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[2857,"impl-Build-for-Flattened%3CBuilder%3E"],[2858,"impl-Flattened%3CBuilder%3E"],[2860,"impl-WithSvg%3CBuilder%3E"],[2861,"impl-Build-for-WithSvg%3CBuilder%3E"],[2862,"impl-Build-for-NoAttributes%3CB%3E"],[2863,"impl-NoAttributes%3CB%3E"],[2878,"impl-WithSvg%3CBuilder%3E"],[2879,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[2890,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[2891,"impl-WithSvg%3CBuilder%3E"],[2892,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[2893,"impl-NoAttributes%3CB%3E"],[2920,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[2921,"impl-NoAttributes%3CB%3E"],[2931,"impl-Debug-for-BorderRadii"],[2932,"impl-Display-for-BorderRadii"],[3009,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[3010,"impl-WithSvg%3CBuilder%3E"],[3011,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[3012,"impl-NoAttributes%3CB%3E"],[3014,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[3015,"impl-WithSvg%3CBuilder%3E"],[3035,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[3036,"impl-WithSvg%3CBuilder%3E"],[3037,"impl-NoAttributes%3CB%3E"],[3038,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[3059,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[3060,"impl-WithSvg%3CBuilder%3E"],[3061,"impl-NoAttributes%3CB%3E"],[3062,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[3248,"impl-Index%3CControlPointId%3E-for-CommandsPathSlice%3C\'l,+Endpoint,+ControlPoint%3E"],[3249,"impl-Index%3CEndpointId%3E-for-CommandsPathSlice%3C\'l,+Endpoint,+ControlPoint%3E"],[3410,"impl-Add-for-Angle%3CT%3E"],[3411,"impl-Add%3C%26Angle%3CT%3E%3E-for-Angle%3CT%3E"],[3414,"impl-Arc%3CS%3E"],[3415,"impl-Segment-for-Arc%3CS%3E"],[3416,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3417,"impl-CubicBezierSegment%3CS%3E"],[3418,"impl-LineSegment%3CS%3E"],[3419,"impl-Segment-for-LineSegment%3CS%3E"],[3420,"impl-QuadraticBezierSegment%3CS%3E"],[3421,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3427,"impl-Segment-for-Arc%3CS%3E"],[3428,"impl-Arc%3CS%3E"],[3429,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3430,"impl-CubicBezierSegment%3CS%3E"],[3477,"impl-Segment-for-Arc%3CS%3E"],[3478,"impl-Arc%3CS%3E"],[3479,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3480,"impl-CubicBezierSegment%3CS%3E"],[3481,"impl-Segment-for-LineSegment%3CS%3E"],[3482,"impl-LineSegment%3CS%3E"],[3483,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3484,"impl-QuadraticBezierSegment%3CS%3E"],[3606,"impl-CubicBezierSegment%3CS%3E"],[3607,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3609,"impl-QuadraticBezierSegment%3CS%3E"],[3610,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3615,"impl-Div%3CT%3E-for-Angle%3CT%3E"],[3616,"impl-Div-for-Angle%3CT%3E"],[3640,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3641,"impl-CubicBezierSegment%3CS%3E"],[3643,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3644,"impl-QuadraticBezierSegment%3CS%3E"],[3646,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3647,"impl-CubicBezierSegment%3CS%3E"],[3649,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3650,"impl-QuadraticBezierSegment%3CS%3E"],[3686,"impl-Segment-for-Arc%3CS%3E"],[3687,"impl-Arc%3CS%3E"],[3688,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3689,"impl-CubicBezierSegment%3CS%3E"],[3690,"impl-Segment-for-LineSegment%3CS%3E"],[3691,"impl-LineSegment%3CS%3E"],[3692,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3693,"impl-QuadraticBezierSegment%3CS%3E"],[3710,"impl-Segment-for-Arc%3CS%3E"],[3711,"impl-Arc%3CS%3E"],[3713,"impl-CubicBezierSegment%3CS%3E"],[3714,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3716,"impl-QuadraticBezierSegment%3CS%3E"],[3717,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3745,"impl-From%3CSvgArc%3CS%3E%3E-for-Arc%3CS%3E"],[3746,"impl-Arc%3CS%3E"],[3747,"impl-Segment-for-Arc%3CS%3E"],[3750,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3751,"impl-CubicBezierSegment%3CS%3E"],[3753,"impl-LineSegment%3CS%3E"],[3755,"impl-Segment-for-LineSegment%3CS%3E"],[3759,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3760,"impl-QuadraticBezierSegment%3CS%3E"],[3955,"impl-Segment-for-Arc%3CS%3E"],[3956,"impl-Arc%3CS%3E"],[3957,"impl-CubicBezierSegment%3CS%3E"],[3958,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3959,"impl-Segment-for-LineSegment%3CS%3E"],[3960,"impl-LineSegment%3CS%3E"],[3961,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3962,"impl-QuadraticBezierSegment%3CS%3E"],[3979,"impl-Segment-for-Arc%3CS%3E"],[3980,"impl-Arc%3CS%3E"],[3981,"impl-CubicBezierSegment%3CS%3E"],[3982,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3983,"impl-LineSegment%3CS%3E"],[3984,"impl-Segment-for-LineSegment%3CS%3E"],[3985,"impl-QuadraticBezierSegment%3CS%3E"],[3986,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3989,"impl-Arc%3CS%3E"],[3990,"impl-Segment-for-Arc%3CS%3E"],[3991,"impl-CubicBezierSegment%3CS%3E"],[3992,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3993,"impl-Segment-for-LineSegment%3CS%3E"],[3994,"impl-LineSegment%3CS%3E"],[3995,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3996,"impl-QuadraticBezierSegment%3CS%3E"],[4004,"impl-Sum%3C%26Angle%3CT%3E%3E-for-Angle%3CT%3E"],[4005,"impl-Sum-for-Angle%3CT%3E"],[4010,"impl-Segment-for-Arc%3CS%3E"],[4011,"impl-Arc%3CS%3E"],[4012,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[4013,"impl-CubicBezierSegment%3CS%3E"],[4014,"impl-LineSegment%3CS%3E"],[4015,"impl-Segment-for-LineSegment%3CS%3E"],[4016,"impl-QuadraticBezierSegment%3CS%3E"],[4017,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[4146,"impl-Arc%3CS%3E"],[4147,"impl-Segment-for-Arc%3CS%3E"],[4148,"impl-CubicBezierSegment%3CS%3E"],[4149,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[4150,"impl-LineSegment%3CS%3E"],[4151,"impl-Segment-for-LineSegment%3CS%3E"],[4152,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[4153,"impl-QuadraticBezierSegment%3CS%3E"],[4164,"impl-Segment-for-Arc%3CS%3E"],[4165,"impl-Arc%3CS%3E"],[4166,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[4167,"impl-CubicBezierSegment%3CS%3E"],[4168,"impl-LineSegment%3CS%3E"],[4169,"impl-Segment-for-LineSegment%3CS%3E"],[4170,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[4171,"impl-QuadraticBezierSegment%3CS%3E"],[4272,"impl-AsRef%3CPath%3E-for-ArrayString%3CCAP%3E"],[4273,"impl-AsRef%3Cstr%3E-for-ArrayString%3CCAP%3E"],[4358,"impl-PartialEq-for-ArrayVec%3CT,+CAP%3E"],[4359,"impl-PartialEq%3C%5BT%5D%3E-for-ArrayVec%3CT,+CAP%3E"],[4360,"impl-PartialEq-for-ArrayString%3CCAP%3E"],[4361,"impl-PartialEq%3Cstr%3E-for-ArrayString%3CCAP%3E"],[4376,"impl-Display-for-ArrayString%3CCAP%3E"],[4377,"impl-Debug-for-ArrayString%3CCAP%3E"],[4378,"impl-Display-for-CapacityError%3CT%3E"],[4379,"impl-Debug-for-CapacityError%3CT%3E"],[4401,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[4402,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[4404,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[4405,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[4456,"impl-IntoIterator-for-ArrayVec%3CT,+CAP%3E"],[4457,"impl-IntoIterator-for-%26mut+ArrayVec%3CT,+CAP%3E"],[4458,"impl-IntoIterator-for-%26ArrayVec%3CT,+CAP%3E"],[4471,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[4472,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[4478,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[4479,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[4518,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[4519,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[4562,"impl-TryFrom%3C%26str%3E-for-ArrayString%3CCAP%3E"],[4564,"impl-TryFrom%3CArguments%3C\'a%3E%3E-for-ArrayString%3CCAP%3E"],[4765,"impl-Add-for-Length%3CT,+U%3E"],[4766,"impl-Add%3C%26Length%3CT,+U%3E%3E-for-Length%3CT,+U%3E"],[4767,"impl-Add%3CSize2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[4768,"impl-Add%3CVector2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[4769,"impl-Add%3CSize3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[4770,"impl-Add%3CVector3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[4773,"impl-Add%3C%26Size2D%3CT,+U%3E%3E-for-Size2D%3CT,+U%3E"],[4774,"impl-Add-for-Size2D%3CT,+U%3E"],[4775,"impl-Add-for-Size3D%3CT,+U%3E"],[4776,"impl-Add%3C%26Size3D%3CT,+U%3E%3E-for-Size3D%3CT,+U%3E"],[4779,"impl-Add%3C%26Vector2D%3CT,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[4780,"impl-Add-for-Vector2D%3CT,+U%3E"],[4781,"impl-Add%3C%26Vector3D%3CT,+U%3E%3E-for-Vector3D%3CT,+U%3E"],[4782,"impl-Add-for-Vector3D%3CT,+U%3E"],[4784,"impl-AddAssign%3CSize2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[4785,"impl-AddAssign%3CVector2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[4786,"impl-AddAssign%3CSize3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[4787,"impl-AddAssign%3CVector3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[4825,"impl-Transform2D%3CT,+Src,+Dst%3E"],[4826,"impl-ApproxEq%3CT%3E-for-Transform2D%3CT,+Src,+Dst%3E"],[4827,"impl-Transform3D%3CT,+Src,+Dst%3E"],[4828,"impl-ApproxEq%3CT%3E-for-Transform3D%3CT,+Src,+Dst%3E"],[5031,"impl-Point2D%3CT,+U%3E"],[5032,"impl-Ceil-for-Point2D%3CT,+U%3E"],[5033,"impl-Ceil-for-Point3D%3CT,+U%3E"],[5034,"impl-Point3D%3CT,+U%3E"],[5035,"impl-Size2D%3CT,+U%3E"],[5036,"impl-Ceil-for-Size2D%3CT,+U%3E"],[5037,"impl-Size3D%3CT,+U%3E"],[5038,"impl-Ceil-for-Size3D%3CT,+U%3E"],[5039,"impl-Vector2D%3CT,+U%3E"],[5040,"impl-Ceil-for-Vector2D%3CT,+U%3E"],[5041,"impl-Vector3D%3CT,+U%3E"],[5042,"impl-Ceil-for-Vector3D%3CT,+U%3E"],[5242,"impl-Div%3CT%3E-for-Box2D%3CT,+U%3E"],[5243,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Box2D%3CT,+U2%3E"],[5244,"impl-Div%3CT%3E-for-Box3D%3CT,+U%3E"],[5245,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Box3D%3CT,+U2%3E"],[5246,"impl-Div%3CScale%3CT,+Src,+Dst%3E%3E-for-Length%3CT,+Dst%3E"],[5247,"impl-Div%3CLength%3CT,+Src%3E%3E-for-Length%3CT,+Dst%3E"],[5248,"impl-Div%3CT%3E-for-Length%3CT,+U%3E"],[5249,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Point2D%3CT,+U2%3E"],[5250,"impl-Div%3CT%3E-for-Point2D%3CT,+U%3E"],[5251,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Point3D%3CT,+U2%3E"],[5252,"impl-Div%3CT%3E-for-Point3D%3CT,+U%3E"],[5253,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Rect%3CT,+U2%3E"],[5254,"impl-Div%3CT%3E-for-Rect%3CT,+U%3E"],[5255,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-SideOffsets2D%3CT,+U2%3E"],[5256,"impl-Div%3CT%3E-for-SideOffsets2D%3CT,+U%3E"],[5257,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Size2D%3CT,+U2%3E"],[5258,"impl-Div%3CT%3E-for-Size2D%3CT,+U%3E"],[5259,"impl-Div%3CT%3E-for-Size3D%3CT,+U%3E"],[5260,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Size3D%3CT,+U2%3E"],[5261,"impl-Div%3CT%3E-for-Vector2D%3CT,+U%3E"],[5262,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Vector2D%3CT,+U2%3E"],[5263,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Vector3D%3CT,+U2%3E"],[5264,"impl-Div%3CT%3E-for-Vector3D%3CT,+U%3E"],[5265,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Box2D%3CT,+U%3E"],[5266,"impl-DivAssign%3CT%3E-for-Box2D%3CT,+U%3E"],[5267,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Box3D%3CT,+U%3E"],[5268,"impl-DivAssign%3CT%3E-for-Box3D%3CT,+U%3E"],[5270,"impl-DivAssign%3CT%3E-for-Point2D%3CT,+U%3E"],[5271,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Point2D%3CT,+U%3E"],[5272,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Point3D%3CT,+U%3E"],[5273,"impl-DivAssign%3CT%3E-for-Point3D%3CT,+U%3E"],[5274,"impl-DivAssign%3CT%3E-for-Rect%3CT,+U%3E"],[5275,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Rect%3CT,+U%3E"],[5276,"impl-DivAssign%3CT%3E-for-SideOffsets2D%3CT,+U%3E"],[5277,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-SideOffsets2D%3CT,+U%3E"],[5278,"impl-DivAssign%3CT%3E-for-Size2D%3CT,+U%3E"],[5279,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Size2D%3CT,+U%3E"],[5280,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Size3D%3CT,+U%3E"],[5281,"impl-DivAssign%3CT%3E-for-Size3D%3CT,+U%3E"],[5282,"impl-DivAssign%3CT%3E-for-Vector2D%3CT,+U%3E"],[5283,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[5284,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Vector3D%3CT,+U%3E"],[5285,"impl-DivAssign%3CT%3E-for-Vector3D%3CT,+U%3E"],[5436,"impl-Floor-for-Point2D%3CT,+U%3E"],[5437,"impl-Point2D%3CT,+U%3E"],[5438,"impl-Point3D%3CT,+U%3E"],[5439,"impl-Floor-for-Point3D%3CT,+U%3E"],[5440,"impl-Size2D%3CT,+U%3E"],[5441,"impl-Floor-for-Size2D%3CT,+U%3E"],[5442,"impl-Floor-for-Size3D%3CT,+U%3E"],[5443,"impl-Size3D%3CT,+U%3E"],[5444,"impl-Vector2D%3CT,+U%3E"],[5445,"impl-Floor-for-Vector2D%3CT,+U%3E"],[5446,"impl-Vector3D%3CT,+U%3E"],[5447,"impl-Floor-for-Vector3D%3CT,+U%3E"],[5475,"impl-From%3CVector2D%3CT,+U%3E%3E-for-HomogeneousVector%3CT,+U%3E"],[5476,"impl-From%3CPoint2D%3CT,+U%3E%3E-for-HomogeneousVector%3CT,+U%3E"],[5478,"impl-From%3CVector3D%3CT,+U%3E%3E-for-HomogeneousVector%3CT,+U%3E"],[5479,"impl-From%3CPoint3D%3CT,+U%3E%3E-for-HomogeneousVector%3CT,+U%3E"],[5481,"impl-From%3C%5BT;+2%5D%3E-for-Point2D%3CT,+U%3E"],[5483,"impl-From%3C(T,+T)%3E-for-Point2D%3CT,+U%3E"],[5485,"impl-From%3C(T,+T,+T)%3E-for-Point3D%3CT,+U%3E"],[5486,"impl-From%3C%5BT;+3%5D%3E-for-Point3D%3CT,+U%3E"],[5490,"impl-From%3CVector3D%3CT,+Dst%3E%3E-for-RigidTransform3D%3CT,+Src,+Dst%3E"],[5491,"impl-From%3CRotation3D%3CT,+Src,+Dst%3E%3E-for-RigidTransform3D%3CT,+Src,+Dst%3E"],[5497,"impl-From%3CVector2D%3CT,+U%3E%3E-for-Size2D%3CT,+U%3E"],[5498,"impl-From%3C%5BT;+2%5D%3E-for-Size2D%3CT,+U%3E"],[5499,"impl-From%3C(T,+T)%3E-for-Size2D%3CT,+U%3E"],[5501,"impl-From%3CVector3D%3CT,+U%3E%3E-for-Size3D%3CT,+U%3E"],[5502,"impl-From%3C%5BT;+3%5D%3E-for-Size3D%3CT,+U%3E"],[5503,"impl-From%3C(T,+T,+T)%3E-for-Size3D%3CT,+U%3E"],[5508,"impl-From%3CSize2D%3CT,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[5510,"impl-From%3C(T,+T)%3E-for-Vector2D%3CT,+U%3E"],[5511,"impl-From%3C%5BT;+2%5D%3E-for-Vector2D%3CT,+U%3E"],[5512,"impl-From%3CTranslation2D%3CT,+Src,+Dst%3E%3E-for-Vector2D%3CT,+Src%3E"],[5513,"impl-From%3C(T,+T,+T)%3E-for-Vector3D%3CT,+U%3E"],[5514,"impl-From%3CTranslation3D%3CT,+Src,+Dst%3E%3E-for-Vector3D%3CT,+Src%3E"],[5516,"impl-From%3C%5BT;+3%5D%3E-for-Vector3D%3CT,+U%3E"],[6007,"impl-Mul%3CT%3E-for-Box2D%3CT,+U%3E"],[6008,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Box2D%3CT,+U1%3E"],[6009,"impl-Mul%3CT%3E-for-Box3D%3CT,+U%3E"],[6010,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Box3D%3CT,+U1%3E"],[6011,"impl-Mul%3CScale%3CT,+Src,+Dst%3E%3E-for-Length%3CT,+Src%3E"],[6012,"impl-Mul%3CT%3E-for-Length%3CT,+U%3E"],[6013,"impl-Mul%3CT%3E-for-Point2D%3CT,+U%3E"],[6014,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Point2D%3CT,+U1%3E"],[6015,"impl-Mul%3CT%3E-for-Point3D%3CT,+U%3E"],[6016,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Point3D%3CT,+U1%3E"],[6017,"impl-Mul%3CT%3E-for-Rect%3CT,+U%3E"],[6018,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Rect%3CT,+U1%3E"],[6020,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-SideOffsets2D%3CT,+U1%3E"],[6021,"impl-Mul%3CT%3E-for-SideOffsets2D%3CT,+U%3E"],[6022,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Size2D%3CT,+U1%3E"],[6023,"impl-Mul%3CT%3E-for-Size2D%3CT,+U%3E"],[6024,"impl-Mul%3CT%3E-for-Size3D%3CT,+U%3E"],[6025,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Size3D%3CT,+U1%3E"],[6026,"impl-Mul%3CT%3E-for-Vector2D%3CT,+U%3E"],[6027,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Vector2D%3CT,+U1%3E"],[6028,"impl-Mul%3CT%3E-for-Vector3D%3CT,+U%3E"],[6029,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Vector3D%3CT,+U1%3E"],[6030,"impl-MulAssign%3CT%3E-for-Box2D%3CT,+U%3E"],[6031,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Box2D%3CT,+U%3E"],[6032,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Box3D%3CT,+U%3E"],[6033,"impl-MulAssign%3CT%3E-for-Box3D%3CT,+U%3E"],[6035,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Point2D%3CT,+U%3E"],[6036,"impl-MulAssign%3CT%3E-for-Point2D%3CT,+U%3E"],[6037,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Point3D%3CT,+U%3E"],[6038,"impl-MulAssign%3CT%3E-for-Point3D%3CT,+U%3E"],[6039,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Rect%3CT,+U%3E"],[6040,"impl-MulAssign%3CT%3E-for-Rect%3CT,+U%3E"],[6041,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-SideOffsets2D%3CT,+U%3E"],[6042,"impl-MulAssign%3CT%3E-for-SideOffsets2D%3CT,+U%3E"],[6043,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Size2D%3CT,+U%3E"],[6044,"impl-MulAssign%3CT%3E-for-Size2D%3CT,+U%3E"],[6045,"impl-MulAssign%3CT%3E-for-Size3D%3CT,+U%3E"],[6046,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Size3D%3CT,+U%3E"],[6047,"impl-MulAssign%3CT%3E-for-Vector2D%3CT,+U%3E"],[6048,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[6049,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Vector3D%3CT,+U%3E"],[6050,"impl-MulAssign%3CT%3E-for-Vector3D%3CT,+U%3E"],[6162,"impl-Point2D%3CT,+U%3E"],[6163,"impl-Round-for-Point2D%3CT,+U%3E"],[6164,"impl-Point3D%3CT,+U%3E"],[6165,"impl-Round-for-Point3D%3CT,+U%3E"],[6167,"impl-Round-for-Size2D%3CT,+U%3E"],[6168,"impl-Size2D%3CT,+U%3E"],[6169,"impl-Round-for-Size3D%3CT,+U%3E"],[6170,"impl-Size3D%3CT,+U%3E"],[6171,"impl-Round-for-Vector2D%3CT,+U%3E"],[6172,"impl-Vector2D%3CT,+U%3E"],[6173,"impl-Round-for-Vector3D%3CT,+U%3E"],[6174,"impl-Vector3D%3CT,+U%3E"],[6215,"impl-Sub%3CVector2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[6216,"impl-Sub-for-Point2D%3CT,+U%3E"],[6217,"impl-Sub%3CSize2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[6218,"impl-Sub%3CVector3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[6219,"impl-Sub%3CSize3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[6220,"impl-Sub-for-Point3D%3CT,+U%3E"],[6230,"impl-SubAssign%3CSize2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[6231,"impl-SubAssign%3CVector2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[6232,"impl-SubAssign%3CSize3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[6233,"impl-SubAssign%3CVector3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[6241,"impl-Sum%3C%26Length%3CT,+U%3E%3E-for-Length%3CT,+U%3E"],[6242,"impl-Sum-for-Length%3CT,+U%3E"],[6243,"impl-Sum-for-Size2D%3CT,+U%3E"],[6244,"impl-Sum%3C%26Size2D%3CT,+U%3E%3E-for-Size2D%3CT,+U%3E"],[6245,"impl-Sum-for-Size3D%3CT,+U%3E"],[6246,"impl-Sum%3C%26Size3D%3CT,+U%3E%3E-for-Size3D%3CT,+U%3E"],[6247,"impl-Sum-for-Vector2D%3CT,+U%3E"],[6248,"impl-Sum%3C%26Vector2D%3CT,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[6249,"impl-Sum-for-Vector3D%3CT,+U%3E"],[6250,"impl-Sum%3C%26Vector3D%3CT,+U%3E%3E-for-Vector3D%3CT,+U%3E"],[6433,"impl-Rotation2D%3CT,+Src,+Dst%3E"],[6434,"impl-Transformation%3CS%3E-for-Rotation2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[6435,"impl-Transformation%3CS%3E-for-Scale%3CS,+UnknownUnit,+UnknownUnit%3E"],[6436,"impl-Scale%3CT,+Src,+Dst%3E"],[6437,"impl-Translation2D%3CT,+Src,+Dst%3E"],[6438,"impl-Transformation%3CS%3E-for-Translation2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[6439,"impl-Transform2D%3CT,+Src,+Dst%3E"],[6440,"impl-Transformation%3CS%3E-for-Transform2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[6456,"impl-Transformation%3CS%3E-for-Rotation2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[6457,"impl-Rotation2D%3CT,+Src,+Dst%3E"],[6458,"impl-Scale%3CT,+Src,+Dst%3E"],[6459,"impl-Transformation%3CS%3E-for-Scale%3CS,+UnknownUnit,+UnknownUnit%3E"],[6461,"impl-Transform2D%3CT,+Src,+Dst%3E"],[6462,"impl-Transformation%3CS%3E-for-Transform2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[6769,"impl-Point2D%3CT,+U%3E"],[6770,"impl-Zero-for-Point2D%3CT,+U%3E"],[6771,"impl-Point3D%3CT,+U%3E"],[6772,"impl-Zero-for-Point3D%3CT,+U%3E"],[6775,"impl-Zero-for-Size2D%3CT,+U%3E"],[6776,"impl-Size2D%3CT,+U%3E"],[6777,"impl-Size3D%3CT,+U%3E"],[6778,"impl-Zero-for-Size3D%3CT,+U%3E"],[6779,"impl-Zero-for-Vector2D%3CT,+U%3E"],[6780,"impl-Vector2D%3CT,+U%3E"],[6781,"impl-Vector3D%3CT,+U%3E"],[6782,"impl-Zero-for-Vector3D%3CT,+U%3E"],[7254,"impl-PathBuilder-for-Builder%3C\'l%3E"],[7255,"impl-Builder%3C\'l%3E"],[7256,"impl-BuilderWithAttributes%3C\'l%3E"],[7257,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[7264,"impl-Builder%3C\'l%3E"],[7265,"impl-Build-for-Builder%3C\'l%3E"],[7266,"impl-Build-for-BuilderWithAttributes%3C\'l%3E"],[7267,"impl-BuilderWithAttributes%3C\'l%3E"],[7277,"impl-PathBuilder-for-Builder%3C\'l%3E"],[7278,"impl-Builder%3C\'l%3E"],[7279,"impl-BuilderWithAttributes%3C\'l%3E"],[7280,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[7293,"impl-Builder%3C\'l%3E"],[7294,"impl-PathBuilder-for-Builder%3C\'l%3E"],[7295,"impl-BuilderWithAttributes%3C\'l%3E"],[7296,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[7337,"impl-Builder%3C\'l%3E"],[7338,"impl-PathBuilder-for-Builder%3C\'l%3E"],[7339,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[7340,"impl-BuilderWithAttributes%3C\'l%3E"],[7346,"impl-PathBuilder-for-Builder%3C\'l%3E"],[7347,"impl-Builder%3C\'l%3E"],[7348,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[7349,"impl-BuilderWithAttributes%3C\'l%3E"],[7350,"impl-PathBuilder-for-Builder%3C\'l%3E"],[7351,"impl-Builder%3C\'l%3E"],[7352,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[7353,"impl-BuilderWithAttributes%3C\'l%3E"],[7763,"impl-Checkbox%3C\'a,+Message,+Theme,+Renderer%3E"],[7764,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-Checkbox%3C\'_,+Message,+Theme,+Renderer%3E"],[7902,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-ComboBox%3C\'_,+T,+Message,+Theme,+Renderer%3E"],[7903,"impl-ComboBox%3C\'a,+T,+Message,+Theme,+Renderer%3E"],[8017,"impl-From%3CLinear%3E-for-Style"],[8018,"impl-From%3CGradient%3E-for-Style"],[8019,"impl-From%3CColor%3E-for-Style"],[8186,"impl-From%3C%26Handle%3E-for-Handle"],[8187,"impl-From%3CT%3E-for-Handle"],[8612,"impl-Debug-for-Url"],[8613,"impl-Display-for-Url"],[8614,"impl-Display-for-HeadingLevel"],[8615,"impl-Debug-for-HeadingLevel"],[8630,"impl-From%3C%26Theme%3E-for-Settings"],[8631,"impl-From%3CTheme%3E-for-Settings"],[8633,"impl-From%3CPalette%3E-for-Style"],[8634,"impl-From%3C%26Theme%3E-for-Style"],[8635,"impl-From%3CTheme%3E-for-Style"],[8672,"impl-Index%3CRange%3CPosition%3E%3E-for-Url"],[8673,"impl-Index%3CRangeTo%3CPosition%3E%3E-for-Url"],[8674,"impl-Index%3CRangeFrom%3CPosition%3E%3E-for-Url"],[8675,"impl-Index%3CRangeFull%3E-for-Url"],[10592,"impl-Debug-for-Error"],[10593,"impl-Display-for-Error"],[10856,"impl-Radio%3C\'a,+Message,+Theme,+Renderer%3E"],[10857,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-Radio%3C\'_,+Message,+Theme,+Renderer%3E"],[12468,"impl-From%3Cf32%3E-for-LineHeight"],[12469,"impl-From%3CPixels%3E-for-LineHeight"],[12589,"impl-Rich%3C\'a,+Link,+Message,+Theme,+Renderer%3E"],[12590,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-Rich%3C\'_,+Link,+Message,+Theme,+Renderer%3E"],[13132,"impl-State%3CHighlighter%3E"],[13133,"impl-Focusable-for-State%3CHighlighter%3E"],[13159,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-TextEditor%3C\'_,+Highlighter,+Message,+Theme,+Renderer%3E"],[13160,"impl-TextEditor%3C\'a,+Highlighter,+Message,+Theme,+Renderer%3E"],[13442,"impl-TextInput%3C\'a,+Message,+Theme,+Renderer%3E"],[13443,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-TextInput%3C\'_,+Message,+Theme,+Renderer%3E"],[13461,"impl-Display-for-Value"],[13462,"impl-Debug-for-Value"],[13470,"impl-Focusable-for-State%3CP%3E"],[13471,"impl-State%3CP%3E"],[13479,"impl-From%3CString%3E-for-Id"],[13480,"impl-From%3C%26str%3E-for-Id"],[13586,"impl-State%3CP%3E"],[13587,"impl-Focusable-for-State%3CP%3E"],[13588,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-TextInput%3C\'_,+Message,+Theme,+Renderer%3E"],[13589,"impl-TextInput%3C\'a,+Message,+Theme,+Renderer%3E"],[13594,"impl-State%3CP%3E"],[13595,"impl-TextInput-for-State%3CP%3E"],[13597,"impl-State%3CP%3E"],[13598,"impl-TextInput-for-State%3CP%3E"],[13600,"impl-TextInput-for-State%3CP%3E"],[13601,"impl-State%3CP%3E"],[13624,"impl-State%3CP%3E"],[13625,"impl-TextInput-for-State%3CP%3E"],[13628,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-TextInput%3C\'_,+Message,+Theme,+Renderer%3E"],[13629,"impl-TextInput%3C\'a,+Message,+Theme,+Renderer%3E"],[13701,"impl-State%3CP%3E"],[13702,"impl-Focusable-for-State%3CP%3E"],[13930,"impl-Display-for-Custom"],[13931,"impl-Debug-for-Custom"],[14529,"impl-Toggler%3C\'a,+Message,+Theme,+Renderer%3E"],[14530,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-Toggler%3C\'_,+Message,+Theme,+Renderer%3E"]],"c":"OjAAAAEAAAAAAAoAEAAAAAwAEQA0AH0A/AD9ACYBJwF4AYABNSI=","e":"OjAAAAEAAAAAAIMsEAAAABguIBDv3OyN3///f/AA/8CT/////9+B/8DD////HsPEBgAEgDCB//8zAA//////Bh6A/z//85///x+/4///vxhG/v//fwQAAAD4////////////////9//////9//7/////v/7/P/4/HnDl//9/8v8BwP///////////////7+A+CEAEf/f///////////////9f/r/QOL//7t//of5////PT///8H//2P8e3P/Jz///wj+/88///T+wf/gwi8ODg7AB/7//////////////////z/5////////R/////////////////3/////////////////////////g/3/D5QAAP7//////3///+P///8fAADA//////////////////////////////f//38eFuT6w/sP9w////+v////////////////////////////////////////////D+ADAAD6///2//3+j32+//+/+3Twf//g/////z+f/x+8qiq8V/3p/////98fAf/////v///////f4P//4P////9f/////////9CPz9fx/z9Tdvv/////X9X//yDC/2/4//8//3/+/19r////mtb/HwmBqv+AWAUAwJ0V8///q/+vAfj//////////08gwBD8/f2al4XRl5oWfPt/vuc/hP7//////////+//WRvsbBD+/95/7/+D////Acf//+H//z////fv/99f8Pn/P/D///9//ofz////B/8DAI5/vn//4/////////////+f/3/v//8DAACA////////PwD/+WOD///////////////////////j//8PAAACAHAA////////////h///Pwbh/+f+/////3/+/////3/4///////////w//////////8RAP7//7bVGtytr+L//w8AQPj//wcAAPD//z8B8P//jzUAAOD/////////////////////////////HwACAAAEAPD//4OH9/D//////+8fQAwAgP//AgGOADAIAQDAB/AAg/////8fAAAAAgEAAAAA4P//fygAEAAAAAAAEJgCALIAAgD+/////////////5///////////0///3/s////APh8xM8HbyoJAP//v8D////7mc+bUvr/////x//4////////fwHA9OT///////8D/w//////z5//////D4B/0QYA/////////+M//v//////////gf//////////4f/h/////////////wEAAgAAAADA///z//57/v//B/55+P///xchEfz/////A/7///yPN/z/kaD+/3+AA/8P/Ed+x//73/zP8f//lxwY7f//ewfw////v//9v5vjOf7//xX////ngP//73958/8vif//v/T/z/Svo/8HfgH4/////w/////+///w////+v///3+A/R//AQb+HwD/////////H4wAGAABiPj///////////zjHwDA/5//P/3/4T/+/38C+P//fwAAAAAQ8P+///////////9//v//////f+P///////3/P/7////////5/7//////BgDw/////4///wEA+P////////////////////9/Q8wEhP7///////////////////////////8DAID7/////f9+3Dn8//8DCPD///8DAMD//3/+//7fp////3/A/3zw/////48SSvj//////x/o/+/+hv9/4H/8Pv/nzf9/iP//BgAA////v///8f8///////8P+f8f+P//////M3////////8/APz/8d9/fv8//Mf///+U4P///wcA////fuf/z/gd////5f//fwcAAID/B/z//////+P//9//9////9//w////+////////8PBP7//wX/DwD////////////////iG0T+///////////////9f/4fAAAB//////9+/HD8//+jgP3//88DAPj////B///+/z/+////f+D/+YH///////9g/P///////38AwP///7//Hv///7/y+Dz8////l/z/////AQAA4M////+D//+P/z/wh/////f//x9g+f8ff8D//////7+/QPyBBPn+///////z9w8AAAAAAAAAAP////////+P//////f/////x/////3///f///8fAPy//4f/B4D//////////////08C5AJF/P///////////////9//AwgA+Pf////P//+////vH/7///f//78A4/8//gH4/////////zOSAoEAJPL/////////v/z3D/z/////n5////z/PwAAAAAAAPz/8f//+f8//uP//x/4////BwAAAPD/////D/D//////++f//////9/gP9/4B/g/////////x8A4P///////////x8AgP8//vvP//8D/uP//28owf///w/A/3///583//9t/f//vn/71n/M/wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA","P":[[64,"T,M,D"],[68,"Message"],[69,"C,T"],[73,"C"],[77,""],[86,"T"],[94,"Message,Theme,Renderer,"],[99,"WpParam,T"],[104,"Message,Theme,Renderer,P"],[105,"Message"],[106,"Message,Theme,Renderer,"],[110,",Message,Theme,Renderer"],[111,"Message,Theme,Renderer,Dependency,View"],[112,""],[113,"Message"],[114,"T"],[116,""],[118,"Catalog::Class"],[119,"Message,Theme,Renderer,"],[123,"T,Message,,Theme,Renderer"],[124,"Message,Theme,Renderer,C"],[125,"C,T"],[130,"Message,Theme,Renderer,"],[132,""],[133,""],[134,"Catalog::Class"],[141,""],[144,"Catalog::Class"],[148,""],[150,"Catalog::Class"],[152,"T"],[160,"Message,Theme,Renderer,Dependency,View"],[161,"T"],[165,"Message,Theme,Renderer"],[166,"Message,Theme,Renderer,Dependency,View"],[167,""],[175,"Message"],[176,"T"],[186,"U,T"],[191,",Theme"],[192,""],[193,"Message,Theme,Renderer,,"],[194,",Message,Theme,Renderer"],[196,"Handle,"],[197,""],[201,"U"],[209,"T"],[219,"WpParam,T"],[223,"U"],[231,"Message"],[232,"T"],[237,"Key,Message,Theme,Renderer,"],[239,"Message,Theme,Renderer"],[240,"Message,Theme,Renderer,Dependency,View"],[241,"Dependency,Message,Theme,Renderer,View,"],[243,",,Theme,Renderer"],[244,"Message,Theme,Renderer,"],[245,"Message,Theme,Renderer"],[246,"Message,Theme,Renderer,Dependency,View"],[247,"Message,Theme,Renderer,"],[248,"Dependency,Message,Theme,Renderer,View,"],[249,"T"],[250,"Message,Theme,Renderer,"],[251,"Component::State,Component::Event"],[253,"Message,Theme,Renderer"],[254,"Message,Theme,Renderer,Dependency,View"],[256,"Message,Theme,Renderer"],[257,"Message,Theme,Renderer,Dependency,View"],[258,""],[260,"T,Message,Theme,Renderer,"],[262,"T,L,V,Message,,Theme,Renderer"],[263,"Message,Theme,Renderer,"],[267,"Theme"],[268,"Message"],[270,"Theme"],[272,",V,Message,,Theme,Renderer"],[274,"Message"],[276,"Message,Theme,Renderer,"],[277,"Link,,Message,Theme,Renderer"],[280,"Message,Theme,Renderer,"],[290,"Message,P"],[291,"Message,Theme,Renderer"],[292,"Message,Theme,Renderer,Dependency,View"],[293,"Component::State,Component::Event"],[295,"Message,Theme,Renderer,Dependency,View"],[297,"T,Message,,Theme"],[298,",Link,Font"],[299,"Message,Theme,Renderer,"],[302,"Message,Theme,Renderer"],[303,"Message,Theme,Renderer,Dependency,View"],[304,""],[306,"Catalog::Class"],[310,""],[311,"Catalog::Class"],[320,""],[322,",Theme"],[323,"Message,Theme,Renderer"],[324,"Message,Theme,Renderer,Dependency,View"],[326,",Theme,Renderer"],[330,"Renderer,Message,Theme"],[332,"Message,Theme,Renderer"],[334,"NewTheme,Message,Renderer,,OldTheme"],[335,"T"],[337,""],[340,"Message,Theme,Renderer"],[342,"Message,Theme,Renderer,,"],[343,"C"],[347,"U,T"],[351,"U"],[359,""],[363,"C,U"],[367,"C"],[371,"T"],[375,"Component::State,Component::Event,Message"],[376,"Message,Theme,Renderer"],[377,"Message,Theme,Renderer,Dependency,View"],[378,",Theme,Renderer"],[379,",Theme"],[381,"T,Message,,Theme"],[382,""],[383,"Component::State,Component::Event,Theme,Renderer"],[384,"V"],[398,"T,M,D"],[401,"C,T"],[404,"C"],[407,""],[415,"T"],[421,"WpParam,T"],[424,"Message,Theme,Renderer"],[425,"Message,Theme,Renderer,"],[426,"Message,Theme,Renderer"],[427,""],[429,"T"],[431,""],[433,"C,T"],[436,""],[437,"Catalog::Class"],[438,""],[439,"T"],[445,"Message,Theme,Renderer"],[446,"T"],[449,"Message,Theme,Renderer"],[450,""],[455,"K"],[458,""],[460,"T"],[466,"U,T"],[469,"Message,Theme,Renderer,"],[470,""],[473,"U"],[479,"T"],[487,"WpParam,T"],[490,"U"],[496,"T"],[499,"Message,Theme,Renderer"],[501,"Message,Theme,Renderer,"],[502,"T"],[503,"Message,Theme,Renderer"],[505,"Message,Theme,Renderer,"],[506,"Message,Theme,Renderer"],[508,"Message,Theme,Renderer,P"],[509,""],[512,"Message,Theme,Renderer"],[514,"Catalog::Class"],[515,"Message,Theme,Renderer,"],[516,""],[517,"Message,Theme,Renderer"],[518,""],[520,"T"],[522,"C"],[525,"U,T"],[528,"U"],[534,""],[537,"C,U"],[540,"C"],[543,"T"],[546,"Message,Theme,Renderer"],[547,"V"],[550,""],[551,"Message,Theme,Renderer,"],[552,""],[586,"T,M,D"],[599,"C,T"],[612,"C"],[625,""],[651,"T"],[677,"WpParam,T"],[690,""],[702,"H"],[703,"T"],[715,""],[729,"K"],[730,"C,T"],[743,""],[750,"T"],[789,"Program::State,Renderer,Theme"],[790,"Message,Theme,Renderer,P"],[791,""],[792,""],[809,"H"],[810,"K"],[814,""],[827,"H"],[828,"Message,Theme,Renderer,P"],[829,""],[830,"T"],[832,""],[836,"T"],[843,""],[846,"T"],[847,""],[848,"T"],[849,""],[850,"T"],[865,"U,T"],[879,""],[880,"__H"],[881,"Message,Theme,Renderer,P,"],[882,""],[896,"U"],[922,"T"],[961,"WpParam,T"],[974,"U"],[1000,"T"],[1013,""],[1014,"Message,Theme,Renderer,P"],[1015,""],[1020,"Program::State"],[1022,"Message,Theme,Renderer,P"],[1023,""],[1025,"Message,Theme,Renderer,P"],[1026,"T"],[1032,""],[1033,""],[1034,""],[1041,""],[1042,""],[1047,"Message,Theme,Renderer,P"],[1048,""],[1051,"Message,Theme,Renderer,P"],[1053,""],[1055,"Message,Theme,Renderer,P"],[1056,"T"],[1068,""],[1069,"C"],[1082,"U,T"],[1095,"U"],[1121,""],[1134,"C,U"],[1147,"C"],[1160,""],[1161,"T"],[1174,"Program::State,Message"],[1176,"Message,Theme,Renderer,P"],[1177,""],[1178,"V"],[1191,"Message,Theme,Renderer,P,"],[1192,""],[1204,"T,M,D"],[1205,"C,T"],[1206,"C"],[1207,""],[1209,"T"],[1211,"WpParam,T"],[1212,""],[1213,"T"],[1214,""],[1215,"C,T"],[1216,"T"],[1219,""],[1221,"K"],[1224,""],[1225,"T"],[1227,"U,T"],[1228,""],[1229,"U"],[1231,"T"],[1234,"WpParam,T"],[1235,"U"],[1237,"T"],[1238,""],[1240,"T"],[1241,"C"],[1242,"U,T"],[1243,"U"],[1245,""],[1246,"C,U"],[1247,"C"],[1248,"T"],[1249,"V"],[1254,"T,M,D"],[1256,""],[1257,""],[1258,"C,T"],[1260,"C"],[1262,""],[1266,"T"],[1270,"WpParam,T"],[1272,""],[1274,"T"],[1276,""],[1278,"C,T"],[1280,"T"],[1286,""],[1293,"T"],[1297,"U,T"],[1299,""],[1301,"U"],[1305,"T"],[1311,"WpParam,T"],[1313,"U"],[1317,"T"],[1320,""],[1325,"T"],[1327,"C"],[1329,"U,T"],[1331,"U"],[1335,""],[1337,"C,U"],[1339,"C"],[1341,"T"],[1343,"V"],[1348,"T,M,D"],[1351,""],[1353,"C,T"],[1355,"C"],[1357,""],[1362,"T"],[1366,""],[1367,"WpParam,T"],[1369,""],[1372,"T"],[1373,""],[1375,"C,T"],[1377,""],[1378,"T"],[1384,""],[1389,"T"],[1393,"U,T"],[1395,""],[1397,"U"],[1401,"T"],[1407,"WpParam,T"],[1409,"U"],[1413,"T"],[1415,""],[1418,"T"],[1419,""],[1424,"T"],[1425,"C"],[1427,"U,T"],[1429,"U"],[1433,""],[1435,"C,U"],[1437,"C"],[1439,"T"],[1441,"V"],[1445,"T,M,D"],[1446,"C,T"],[1447,"C"],[1448,""],[1450,"T"],[1452,"WpParam,T"],[1453,""],[1456,"T"],[1457,""],[1458,"C,T"],[1459,"T"],[1462,""],[1466,"T"],[1467,""],[1468,"T"],[1469,"U,T"],[1470,""],[1471,"U"],[1473,"T"],[1476,"WpParam,T"],[1477,"U"],[1479,"T"],[1480,""],[1485,"T"],[1486,"C"],[1487,"U,T"],[1488,"U"],[1490,""],[1491,"C,U"],[1492,"C"],[1493,"T"],[1494,"V"],[1535,""],[1560,"T,M,D"],[1585,"C,T"],[1610,"C"],[1635,""],[1693,"T"],[1743,""],[1751,"WpParam,T"],[1776,""],[1780,"Endpoint,ControlPoint"],[1781,""],[1790,"T"],[1791,""],[1800,"T"],[1823,""],[1849,"C,T"],[1874,""],[1881,"T"],[1956,""],[1985,"Endpoint,ControlPoint"],[1986,""],[1994,"K"],[2009,""],[2011,"T"],[2012,""],[2013,"Endpoint,ControlPoint"],[2014,""],[2021,"Endpoint,ControlPoint"],[2022,""],[2035,"F"],[2036,"T"],[2041,""],[2042,"T"],[2043,"Ep,Cp"],[2044,"T"],[2046,""],[2047,"T"],[2091,"U,T"],[2116,""],[2127,"Endpoint"],[2128,""],[2131,"Endpoint"],[2132,"Endpoint,ControlPoint,__H"],[2133,"__H"],[2137,""],[2139,"T"],[2140,""],[2144,"T"],[2145,""],[2172,"U"],[2222,"T"],[2295,"WpParam,T"],[2320,"U"],[2370,"I"],[2371,""],[2375,"I"],[2378,""],[2379,"T"],[2404,"Ep,Cp"],[2405,""],[2418,"T"],[2419,""],[2445,"T"],[2449,""],[2461,"T"],[2462,"Endpoint,ControlPoint"],[2463,""],[2479,"Ep,Cp"],[2480,""],[2481,"T"],[2504,""],[2508,"T"],[2510,"C"],[2535,"U,T"],[2560,"U"],[2610,""],[2635,"C,U"],[2660,"C"],[2685,"T"],[2710,"V"],[2735,""],[2738,"Ep,Cp"],[2739,""],[2788,"T,M,D"],[2793,""],[2795,"B"],[2796,""],[2798,"B"],[2799,""],[2801,"B"],[2802,""],[2804,"B"],[2805,""],[2809,"B"],[2810,""],[2812,"B"],[2813,""],[2815,"B"],[2816,"Builder"],[2817,""],[2818,"Builder"],[2819,"C,T"],[2824,"C"],[2829,""],[2840,"Builder"],[2841,"Builder,Transform"],[2842,"B"],[2844,"T"],[2854,""],[2856,"Build::PathType"],[2857,"Builder"],[2859,"Builder,Transform"],[2860,"Builder"],[2862,"B"],[2863,"P,B"],[2864,"WpParam,T"],[2869,""],[2870,"B"],[2871,"T"],[2873,""],[2878,"Builder"],[2880,"B"],[2881,"C,T"],[2886,""],[2888,"Builder"],[2889,"Builder,Transform"],[2890,"Builder"],[2892,"B"],[2894,"Builder"],[2895,""],[2896,"B"],[2897,"T"],[2912,""],[2918,"Builder"],[2919,"Builder,Transform"],[2920,"B"],[2922,""],[2923,"B"],[2924,""],[2929,"Builder"],[2930,"B"],[2931,""],[2933,"B"],[2934,"T"],[2944,"U,T"],[2949,"B,__H"],[2950,""],[2951,"Builder"],[2952,""],[2957,"B"],[2959,"U"],[2969,"T"],[2984,"WpParam,T"],[2989,"U"],[2999,"B"],[3000,"T"],[3005,""],[3007,"Builder"],[3008,"Builder,Transform"],[3009,"Builder"],[3011,"B"],[3013,""],[3014,"Builder"],[3017,"Builder,Transform"],[3018,"Builder"],[3019,""],[3020,"B"],[3021,"T"],[3023,""],[3024,"Builder"],[3025,"Builder,Transform"],[3026,"B"],[3027,""],[3030,"B"],[3031,""],[3033,"Builder"],[3034,"Builder,Transform"],[3035,"Builder"],[3037,"B"],[3039,""],[3040,"Builder"],[3041,""],[3042,"Builder"],[3043,""],[3044,"Builder"],[3045,""],[3046,"Builder"],[3047,""],[3048,"Builder"],[3049,""],[3050,"Builder"],[3051,""],[3052,"Builder"],[3053,""],[3057,"Builder"],[3058,"Builder,Transform"],[3059,"Builder"],[3061,"B"],[3063,"Builder"],[3064,"Builder,Transform"],[3066,""],[3067,"Builder"],[3068,""],[3069,"Builder"],[3070,""],[3071,"Builder"],[3072,""],[3073,"Builder"],[3074,"T"],[3076,""],[3080,"Transform"],[3082,"Builder,Transform"],[3083,"B,Transform"],[3084,"C"],[3089,"U,T"],[3094,"U"],[3104,""],[3109,"C,U"],[3114,"C"],[3119,"T"],[3124,""],[3125,"Builder"],[3126,"V"],[3131,"B"],[3132,""],[3134,"B"],[3143,"T,M,D"],[3148,"C,T"],[3153,"C"],[3158,""],[3169,"T"],[3179,""],[3180,"WpParam,T"],[3185,"Endpoint,ControlPoint"],[3186,""],[3187,"Endpoint,ControlPoint"],[3188,""],[3189,"Endpoint,ControlPoint"],[3190,"T"],[3195,""],[3200,"C,T"],[3205,""],[3207,"T"],[3222,""],[3228,"Endpoint,ControlPoint"],[3230,""],[3231,"T"],[3241,"U,T"],[3246,"Endpoint,ControlPoint"],[3250,""],[3255,"U"],[3265,"T"],[3277,"WpParam,T"],[3282,"U"],[3292,"I"],[3295,"T"],[3300,"Endpoint,ControlPoint"],[3301,""],[3303,"Endpoint,ControlPoint"],[3304,""],[3305,"Endpoint,ControlPoint"],[3306,"T"],[3307,"Ep,Cp"],[3308,""],[3309,"T"],[3314,"C"],[3319,"U,T"],[3324,"U"],[3334,""],[3339,"C,U"],[3344,"C"],[3349,"T"],[3354,"V"],[3359,""],[3397,"S"],[3398,""],[3399,"S"],[3401,"T,M,D"],[3410,"T"],[3413,"Segment::Scalar"],[3414,"S"],[3422,""],[3423,"T"],[3426,"Segment::Scalar"],[3427,"S"],[3434,"C,T"],[3443,"C"],[3452,""],[3470,"S"],[3471,""],[3472,"S"],[3476,"Segment::Scalar"],[3477,"S"],[3485,"T"],[3503,"S"],[3518,""],[3519,"S"],[3520,"WpParam,T"],[3529,"S,NewS"],[3531,"T,NewT"],[3532,"S"],[3533,""],[3534,"S"],[3546,"T"],[3556,""],[3565,"S"],[3567,"C,T"],[3576,"S"],[3578,""],[3582,"S"],[3584,"T"],[3604,"Segment::Scalar"],[3605,"S"],[3615,"T"],[3627,"S"],[3630,""],[3639,"Segment::Scalar"],[3640,"S"],[3645,"Segment::Scalar"],[3646,"S"],[3652,""],[3653,"S"],[3660,"T"],[3661,"S"],[3662,"K"],[3668,"S"],[3679,""],[3680,"S"],[3685,"Segment::Scalar"],[3686,"S"],[3702,"T"],[3703,"S,F"],[3709,"Segment::Scalar"],[3710,"S"],[3711,"S,F"],[3714,"S"],[3716,"S,F"],[3717,"S"],[3718,"S,F"],[3741,"T"],[3744,"Segment::Scalar"],[3745,"S"],[3748,"T"],[3750,"S"],[3752,"T"],[3753,"S"],[3754,"T"],[3755,"S"],[3756,"T"],[3759,"S"],[3761,"T"],[3763,""],[3767,"T"],[3776,"U,T"],[3785,"S"],[3786,"T"],[3787,"S"],[3788,"T,__H"],[3789,""],[3790,"S"],[3792,""],[3801,"S"],[3809,"U"],[3827,"T"],[3854,"WpParam,T"],[3863,"U"],[3881,"T"],[3890,"S"],[3892,"T"],[3893,"S"],[3905,""],[3906,"S"],[3908,"T"],[3909,"S"],[3921,""],[3928,"S"],[3929,""],[3930,"T"],[3933,"S"],[3935,"T"],[3936,"S"],[3941,"T"],[3943,"S"],[3944,""],[3945,"T"],[3946,"S"],[3950,"T"],[3951,""],[3954,"Segment::Scalar"],[3955,"S"],[3965,"T"],[3966,"S"],[3968,"T"],[3969,"S"],[3978,"Segment::Scalar"],[3979,"S"],[3988,"Segment::Scalar"],[3989,"S"],[4001,""],[4002,"T"],[4004,"T,I"],[4006,""],[4008,"S"],[4009,"Segment::Scalar"],[4010,"S"],[4018,""],[4022,"S"],[4024,"T"],[4025,"S"],[4029,"T"],[4030,"S"],[4034,"T"],[4035,"S"],[4036,"T"],[4045,"S"],[4050,"S,T"],[4054,"S"],[4055,"T,NewT"],[4056,"C"],[4065,"U,T"],[4074,"U"],[4092,"T"],[4093,""],[4102,"C,U"],[4111,"C"],[4120,"T"],[4130,""],[4131,"S"],[4132,""],[4133,"S"],[4135,"V"],[4144,""],[4145,"Segment::Scalar"],[4146,"S"],[4154,""],[4157,"S"],[4161,""],[4163,"Segment::Scalar"],[4164,"S"],[4172,""],[4175,"S"],[4179,"T"],[4184,"T,M,D"],[4185,"C,T"],[4186,"C"],[4187,""],[4189,"T"],[4191,"WpParam,T"],[4192,""],[4193,"C,T"],[4194,"T"],[4197,""],[4199,"T"],[4200,""],[4201,"T"],[4202,"U,T"],[4203,""],[4204,"U"],[4206,"T"],[4209,"WpParam,T"],[4210,"U"],[4212,"I"],[4213,"T"],[4214,""],[4215,"S"],[4216,""],[4222,"C"],[4223,"U,T"],[4224,"U"],[4226,""],[4227,"C,U"],[4228,"C"],[4229,"T"],[4230,"V"],[4231,""],[4238,"T,M,D"],[4243,"C,T"],[4248,"C"],[4253,""],[4263,"T"],[4265,""],[4266,"T"],[4268,""],[4269,"T"],[4270,""],[4271,"T"],[4272,""],[4274,"T"],[4276,""],[4277,"T"],[4281,""],[4282,"T"],[4289,""],[4290,"T"],[4291,"WpParam,T"],[4296,"T"],[4297,""],[4298,"T"],[4299,""],[4300,"T"],[4302,""],[4303,"T"],[4305,""],[4306,"T"],[4310,""],[4314,"T"],[4315,""],[4316,"T"],[4317,"K"],[4320,"C,T"],[4325,"T"],[4326,""],[4327,"T"],[4332,""],[4333,"T"],[4338,""],[4339,"T"],[4346,"T,R"],[4347,""],[4348,"T"],[4350,""],[4351,"T"],[4352,""],[4355,"T"],[4356,"U"],[4358,"T"],[4360,""],[4362,"T"],[4363,"K"],[4372,"T,I"],[4373,""],[4374,"T"],[4376,""],[4378,"T"],[4384,""],[4385,"T"],[4392,""],[4393,"T,I"],[4394,"U,T"],[4399,""],[4400,"T"],[4401,""],[4403,"T"],[4404,""],[4406,"T,H"],[4407,"H"],[4408,""],[4413,"T"],[4414,"U"],[4424,"T"],[4439,"WpParam,T"],[4444,"U"],[4454,"T"],[4459,"I"],[4461,"T"],[4467,""],[4468,"T"],[4469,""],[4470,"T"],[4471,""],[4473,"T"],[4474,""],[4477,"T"],[4478,""],[4480,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ,FromK"],[4481,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ,FromK,FromL"],[4482,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ"],[4483,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI"],[4484,""],[4485,"FromA"],[4486,"FromA,FromB"],[4487,"FromA,FromB,FromC"],[4488,"FromA,FromB,FromC,FromD,FromE,FromF,FromG"],[4489,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH"],[4490,"FromA,FromB,FromC,FromD"],[4491,"FromA,FromB,FromC,FromD,FromE"],[4492,"FromA,FromB,FromC,FromD,FromE,FromF"],[4494,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ,FromK,FromL"],[4495,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH"],[4496,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI"],[4497,""],[4498,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ"],[4499,"FromA"],[4500,"FromA,FromB"],[4501,"FromA,FromB,FromC"],[4502,"FromA,FromB,FromC,FromD,FromE,FromF,FromG"],[4503,"FromA,FromB,FromC,FromD,FromE"],[4504,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ,FromK"],[4505,"FromA,FromB,FromC,FromD"],[4506,"T"],[4507,""],[4508,"T"],[4510,""],[4511,"T"],[4518,""],[4520,"T"],[4522,""],[4523,"T"],[4525,""],[4527,"T"],[4529,""],[4530,"T"],[4531,""],[4532,"T,F"],[4533,"T"],[4534,""],[4535,"T"],[4538,""],[4539,"T"],[4546,""],[4550,"T"],[4551,""],[4552,"C"],[4557,"T"],[4558,"U,T"],[4559,"T"],[4560,"U,T"],[4562,""],[4563,"U,T"],[4564,""],[4565,"U,T"],[4566,"T"],[4567,"U"],[4577,"T"],[4578,""],[4585,"C,U"],[4590,"C"],[4595,"T"],[4600,"V"],[4605,""],[4671,"T,M,D"],[4672,"C,T"],[4673,"C"],[4674,""],[4676,"T"],[4678,"WpParam,T"],[4679,"C,T"],[4680,""],[4682,"T"],[4685,""],[4686,"T"],[4687,""],[4688,"T"],[4689,"U,T"],[4690,""],[4691,"U"],[4693,"T"],[4696,"WpParam,T"],[4697,"U"],[4699,"I"],[4700,"T"],[4701,"S"],[4703,""],[4704,"C"],[4705,"U,T"],[4706,"U"],[4708,""],[4709,"C,U"],[4710,"C"],[4711,"T"],[4712,"V"],[4738,"T,U"],[4742,"T,M,D"],[4765,"T,U"],[4771,"T,Src,Dst"],[4772,"T,U"],[4777,"T,Src,Dst1,Dst2"],[4779,"T,U"],[4791,"T,Src,Dst"],[4793,"T,U"],[4797,""],[4802,"T,U"],[4805,""],[4807,"T"],[4808,"T,U"],[4810,"T"],[4812,"T,U"],[4814,"T"],[4816,"T,Src,Dst"],[4818,"T,U"],[4821,"T,Src,Dst"],[4823,"T,U"],[4825,"T,Src,Dst"],[4831,"T,U"],[4834,"T,Src,Dst"],[4838,"C,T"],[4861,"C"],[4884,""],[4930,"T"],[4976,""],[4977,"T,U"],[4978,""],[4980,"WpParam,T"],[5003,"T,U,NewT"],[5009,"T,Src,Dst,NewT"],[5010,"T,U,NewT"],[5012,"T,Src,Dst,NewT"],[5014,"T,U,NewT"],[5016,"T,Src,Dst,NewT"],[5018,"T,U,V"],[5024,"T,Src,Dst,Src2,Dst2"],[5027,"T,U,V"],[5031,"T,U"],[5048,"T,Src,Dst"],[5049,"T,U"],[5062,"T,Src,Dst"],[5066,"T,U"],[5069,"T,Src,Dst"],[5071,"T,U"],[5073,"T,Src,Dst"],[5075,""],[5078,"T"],[5101,""],[5124,"T,U"],[5125,"T,Src,Dst"],[5126,""],[5127,"K"],[5130,"T,U"],[5134,"C,T"],[5157,"T,U"],[5167,""],[5168,"T,U"],[5170,"T,Src,Dst"],[5172,"T,U"],[5178,"T,Src,Dst"],[5179,"T,U"],[5182,"T,Src,Dst"],[5184,"T,U"],[5186,"T,Src,Dst"],[5188,""],[5190,"T,U"],[5191,""],[5192,"T"],[5238,"T,Src,Dst"],[5240,"T,U"],[5243,"T,U2,U1"],[5244,"T,U"],[5245,"T,U2,U1"],[5246,"T,Dst,Src"],[5248,"T,U"],[5249,"T,U2,U1"],[5250,"T,U"],[5251,"T,U2,U1"],[5252,"T,U"],[5253,"T,U2,U1"],[5254,"T,U"],[5255,"T,U2,U1"],[5256,"T,U"],[5257,"T,U2,U1"],[5258,"T,U"],[5260,"T,U2,U1"],[5261,"T,U"],[5262,"T,U2,U1"],[5264,"T,U"],[5290,"T"],[5313,""],[5336,"T,U"],[5343,"T,Src,Dst"],[5347,"T,U"],[5350,"T,Src,Dst"],[5352,"T,U"],[5354,"T,Src,Dst"],[5356,""],[5359,"T,U"],[5363,"K"],[5432,"T,Src,Dst"],[5433,"T,U"],[5435,""],[5436,"T,U"],[5455,"T,Src,Dst"],[5459,"T,U"],[5462,"T,Src,Dst"],[5464,"T,U"],[5466,"T,Src,Dst"],[5468,""],[5471,"T"],[5472,"T,U"],[5474,"T"],[5475,"T,U"],[5477,"T"],[5478,"T,U"],[5480,"T"],[5481,"T,U"],[5482,"T"],[5483,"T,U"],[5484,"T"],[5485,"T,U"],[5487,"T"],[5488,"T,U"],[5489,"T"],[5490,"T,Dst,Src"],[5491,"T,Src,Dst"],[5492,"T"],[5497,"T,U"],[5500,"T"],[5501,"T,U"],[5504,"T"],[5505,"T,Src,Dst"],[5507,"T"],[5508,"T,U"],[5509,"T"],[5510,"T,U"],[5512,"T,Src,Dst"],[5513,"T,U"],[5514,"T,Src,Dst"],[5515,"T"],[5516,"T,U"],[5517,"T"],[5518,"T,Src,Dst"],[5519,"T"],[5520,"T,Src,Dst"],[5521,"T"],[5547,"T,U"],[5548,"T,Src,Dst"],[5552,"T,U"],[5562,"I,T,U"],[5565,"T,Src,Dst"],[5567,"T,U"],[5570,"U,T"],[5593,"T,Dst,Src"],[5594,"T,U"],[5599,"T,Src,Dst"],[5602,"T,U"],[5604,"T,Src,Dst"],[5606,"T,U"],[5608,"T,Src,Dst"],[5610,"T,U"],[5613,"T,Src,Dst"],[5615,"T,U"],[5619,"T,U,H"],[5626,"T,Src,Dst,H"],[5630,"T,U,H"],[5633,"T,Src,Dst,H"],[5635,"T,U,H"],[5637,"T,Src,Dst,H"],[5639,"__H"],[5642,"T,U"],[5645,""],[5647,"T,U"],[5648,""],[5649,"T,Src,Dst"],[5657,"T,U"],[5660,""],[5683,"T,U"],[5693,"U"],[5739,"T"],[5808,"WpParam,T"],[5831,"U"],[5877,"T"],[5900,"T,Src,Dst"],[5910,"T,U"],[5924,"T,Src,Dst"],[5929,"T,U"],[5931,"T,Src,Dst"],[5932,"T,U"],[5935,""],[5938,"T,U"],[5946,"T,Src,Dst"],[5947,"T,U"],[5955,""],[5977,"T,U,V,F"],[5981,"T,U"],[5985,"T,Src,Dst"],[5986,"T,U"],[5990,""],[5992,"T,U"],[5998,"T,Src,Dst"],[5999,"T,U"],[6003,""],[6005,"T,U"],[6008,"T,U1,U2"],[6009,"T,U"],[6010,"T,U1,U2"],[6011,"T,Src,Dst"],[6012,"T,U"],[6014,"T,U1,U2"],[6015,"T,U"],[6016,"T,U1,U2"],[6017,"T,U"],[6018,"T,U1,U2"],[6019,"T,A,B,C"],[6020,"T,U1,U2"],[6021,"T,U"],[6022,"T,U1,U2"],[6023,"T,U"],[6025,"T,U1,U2"],[6026,"T,U"],[6027,"T,U1,U2"],[6028,"T,U"],[6029,"T,U1,U2"],[6030,"T,U"],[6051,"T,Src,Dst"],[6052,"T,U"],[6067,"T,Src,Dst"],[6070,"T,U"],[6073,"T,Src,Dst"],[6075,"T,U"],[6077,"T,Src,Dst"],[6080,"T,U"],[6081,"T,Src,Dst"],[6082,""],[6084,"T,Src,Dst"],[6086,"T,U"],[6088,""],[6090,"T,U"],[6094,"T"],[6112,"T,Src,Dst"],[6113,"T,U"],[6115,""],[6117,"T,U"],[6119,""],[6120,"T,Src,Dst"],[6121,"T,U"],[6123,"T,Src,Dst"],[6128,"T,U"],[6129,"T,Src,Dst"],[6130,""],[6131,"T,Src,Dst"],[6132,"T,U"],[6134,"U"],[6135,"T,Src,Dst"],[6141,"T,U"],[6143,"T,Src,Dst"],[6145,""],[6146,"T,Src,Dst"],[6147,""],[6149,"T,U"],[6154,""],[6155,"T,U"],[6157,"T,Src,Dst"],[6159,""],[6160,"T,U"],[6183,"S,T,U"],[6186,"T,Src,Dst"],[6188,"T,U"],[6195,""],[6196,"T,U"],[6198,""],[6199,"T,U"],[6201,"T,Src,Dst"],[6203,"T,U"],[6207,"T,Src,Dst"],[6209,"T,U"],[6213,"T,Src,Dst"],[6214,"T,U"],[6221,"T,Src,Dst"],[6222,"T,U"],[6225,"T,Src,Dst2,Dst1"],[6227,"T,U"],[6237,"T,Src,Dst"],[6239,"T,U"],[6241,"T,U,I"],[6251,""],[6252,"T,Src,Dst,Dst2"],[6253,"T,Src,Dst,NewSrc"],[6254,"T,Src,Dst,NewDst"],[6257,"T,Src,Dst"],[6263,"T,U"],[6265,"T,Src,Dst"],[6266,"T,U"],[6267,"T,Src,Dst"],[6268,"T,U"],[6269,"T,Src,Dst"],[6270,"T,U"],[6274,"T,Src,Dst"],[6276,"T,U"],[6278,"T,Src,Dst"],[6280,"T,U"],[6282,"T,Src,Dst"],[6287,"T,U"],[6295,"T,Src,Dst"],[6297,"T,U"],[6306,"T,Src,Dst"],[6308,"T,U"],[6317,"T,Src,Dst"],[6319,"T,U"],[6328,"T,Src,Dst"],[6330,"T,U"],[6335,"T"],[6358,"T,U"],[6364,"T,Src,Dst"],[6369,"T,U"],[6375,"T,Src,Dst"],[6377,"T,U"],[6388,"T,Src,Dst"],[6390,"T,U"],[6399,"T,Src,Dst"],[6402,"T,U"],[6404,"T,Src,Dst"],[6406,"T,U"],[6408,"T,Src,Dst"],[6410,"T,U"],[6417,"T,Src,Dst"],[6419,"T,U"],[6425,"T,Src,Dst"],[6427,""],[6428,"T,Src,Dst"],[6434,"S"],[6436,"T,Src,Dst"],[6438,"S"],[6439,"T,Src,Dst"],[6440,"S"],[6441,"T,Src,Dst"],[6456,"S"],[6457,"T,Src,Dst"],[6459,"S"],[6461,"T,Src,Dst"],[6462,"S"],[6463,"T,Src,Dst"],[6467,"T,U"],[6470,"T,Src,Dst"],[6472,""],[6473,"T,U,NewT"],[6479,"T,Src,Dst,NewT"],[6480,"T,U,NewT"],[6482,"T,Src,Dst,NewT"],[6484,"T,U,NewT"],[6486,"T,Src,Dst,NewT"],[6488,"C"],[6511,"U,T"],[6534,"U"],[6580,"T,U"],[6582,""],[6605,"C,U"],[6628,"C"],[6651,"T,U"],[6654,"T,Src,Dst"],[6655,"T"],[6678,"T,U"],[6680,"T,Src,Dst"],[6681,"T,U"],[6684,"V"],[6707,""],[6708,"T,U"],[6711,""],[6713,"T,Src,Dst,NewDst"],[6715,"T,U"],[6720,"T,Src,Dst,NewSrc"],[6722,""],[6731,"T,U"],[6736,""],[6737,"T,U"],[6740,""],[6741,"T,U"],[6742,""],[6751,"T,U"],[6758,""],[6759,"T,U"],[6760,""],[6765,"T,U"],[6783,"T,U,V,F"],[6788,"Eps"],[6789,""],[6790,"Eps"],[6791,"T"],[6813,""],[6890,"T,M,D"],[6893,"C,T"],[6896,"C"],[6899,""],[6905,"T"],[6911,"WpParam,T"],[6914,"C,T"],[6917,""],[6918,"T"],[6927,""],[6930,"T"],[6933,""],[6934,"T"],[6937,"U,T"],[6940,""],[6943,"U"],[6949,"T"],[6958,"WpParam,T"],[6961,"U"],[6967,"I"],[6969,"T"],[6972,"S"],[6977,""],[6978,"C"],[6981,"U,T"],[6984,"U"],[6990,""],[6993,"C,U"],[6996,"C"],[6999,"T"],[7002,"V"],[7008,"Segment::Scalar"],[7021,"S"],[7023,"Segment::Scalar"],[7025,"S"],[7036,"T,M,D"],[7040,"C,T"],[7044,"C"],[7048,""],[7056,"T"],[7064,"WpParam,T"],[7068,"Iter"],[7069,"C,T"],[7073,"T"],[7085,""],[7091,"T"],[7099,"U,T"],[7103,""],[7107,"U"],[7115,"T"],[7127,"WpParam,T"],[7131,"U"],[7139,"I"],[7143,"T"],[7147,"Iter"],[7148,"T,I"],[7149,"Iter"],[7152,"I,T"],[7153,"Iter"],[7156,"T"],[7158,"C"],[7162,"U,T"],[7166,"U"],[7174,""],[7178,"C,U"],[7182,"C"],[7186,"T"],[7190,"V"],[7194,"Iter"],[7204,""],[7239,"T,M,D"],[7242,"C,T"],[7245,"C"],[7248,""],[7258,"T"],[7264,""],[7268,"WpParam,T"],[7271,""],[7272,"T"],[7273,""],[7274,"C,T"],[7277,""],[7281,"T"],[7290,""],[7297,"T"],[7303,"U,T"],[7306,""],[7309,"U"],[7315,"T"],[7324,"WpParam,T"],[7327,"U"],[7333,"I"],[7334,"T"],[7337,""],[7355,"T"],[7356,"C"],[7359,"U,T"],[7362,"U"],[7368,""],[7371,"C,U"],[7374,"C"],[7377,"T"],[7380,"V"],[7383,""],[7390,"T,M,D"],[7394,"C,T"],[7398,"C"],[7402,""],[7410,"T"],[7418,"WpParam,T"],[7422,""],[7423,"T"],[7425,""],[7426,"T"],[7430,""],[7436,"C,T"],[7440,"T"],[7452,""],[7456,"T"],[7464,"U,T"],[7468,""],[7472,"U"],[7480,"T"],[7492,"WpParam,T"],[7496,"U"],[7504,"I"],[7508,"T"],[7512,""],[7514,"T"],[7516,""],[7517,"T"],[7518,""],[7520,"T"],[7524,"C"],[7528,"U,T"],[7532,"U"],[7540,""],[7544,"C,U"],[7548,"C"],[7552,"T"],[7556,"V"],[7565,""],[7567,"Build::PathType"],[7568,""],[7621,"T,M,D"],[7625,"C,T"],[7629,"C"],[7633,""],[7643,"T"],[7651,"WpParam,T"],[7655,"Message,Theme,Renderer,"],[7656,"Font"],[7657,""],[7659,"T"],[7662,""],[7666,"C,T"],[7670,""],[7671,"Catalog::Class"],[7672,"T"],[7684,"Message,Theme,Renderer"],[7685,""],[7689,"Font"],[7690,""],[7692,"K"],[7695,"Font"],[7696,""],[7698,"Message,Theme,Renderer,"],[7699,""],[7700,"T"],[7708,"U,T"],[7712,"Message,Theme,Renderer"],[7713,""],[7718,"U"],[7726,"T"],[7737,"WpParam,T"],[7741,"U"],[7749,"T"],[7753,"Message,Theme,Renderer"],[7754,""],[7755,"Message,Theme,Renderer"],[7756,",Message,Theme,Renderer"],[7757,"Message,Theme,Renderer,F"],[7759,"Message,Theme,Renderer"],[7760,""],[7763,"Message,Theme,Renderer,"],[7764,"Message,Theme,Renderer"],[7765,""],[7766,"Message,Theme,Renderer,"],[7767,"Message,Theme,Renderer"],[7768,"Catalog::Class"],[7769,"Message,Theme,Renderer,"],[7770,""],[7771,"Message,Theme,Renderer"],[7772,""],[7773,"Message,Theme,Renderer,"],[7774,"Message,Theme,Renderer"],[7775,"Message,Theme,Renderer,"],[7776,"Message,Theme,Renderer"],[7777,"T"],[7780,"C"],[7784,"U,T"],[7788,"U"],[7796,""],[7800,"C,U"],[7804,"C"],[7808,"T"],[7812,"Message,Theme,Renderer"],[7813,"V"],[7817,"Message,Theme,Renderer,"],[7818,""],[7824,"T,M,D"],[7826,"C,T"],[7828,"C"],[7830,""],[7834,"T"],[7838,"WpParam,T"],[7840,"T,Message,Theme,Renderer"],[7841,"T"],[7843,""],[7844,"C,T"],[7846,"T"],[7847,"Catalog::Class"],[7849,"T"],[7855,"T,Message,Theme,Renderer"],[7856,""],[7858,"T"],[7859,"T,Message,Theme,Renderer"],[7860,"T"],[7864,"U,T"],[7866,"T,Message,Theme,Renderer"],[7867,""],[7869,"T,Message,Theme,Renderer,"],[7871,"U"],[7875,"T"],[7879,"WpParam,T"],[7881,"U"],[7885,"T"],[7887,"T,Message,Theme,Renderer"],[7888,"T,Message,Theme,Renderer,"],[7891,"T,Message,Theme,Renderer"],[7892,"T,Message,,Theme,Renderer"],[7893,"T"],[7895,"T,Message,Theme,Renderer"],[7896,"T,Message,Theme,Renderer,"],[7897,"T,Message,Theme,Renderer"],[7898,"T,Message,Theme,Renderer,"],[7899,"T"],[7900,"T,Message,Theme,Renderer"],[7901,"T,Message,Theme,Renderer,"],[7902,"T,Message,Theme,Renderer"],[7906,"T"],[7907,"C"],[7909,"U,T"],[7911,"U"],[7915,""],[7917,"C,U"],[7919,"C"],[7921,"T"],[7923,"T,Message,Theme,Renderer"],[7924,"V"],[7926,"T,Message,Theme,Renderer,"],[7927,"T"],[7934,"T,M,D"],[7937,"Message,Theme,Renderer,"],[7943,"C,T"],[7946,"C"],[7949,""],[7955,""],[7957,""],[7958,""],[7959,""],[7961,"T"],[7967,"WpParam,T"],[7970,"Message,Theme,Renderer,"],[7973,"Message,Theme,Renderer"],[7974,"Message,Theme,Renderer,"],[7975,"Message,Theme,Renderer"],[7976,""],[7978,"T"],[7980,""],[7982,""],[7983,"C,T"],[7986,""],[7988,"Catalog::Class"],[7989,""],[7990,"T"],[7996,"Message,Theme,Renderer"],[7997,"T"],[8000,"Message,Theme,Renderer"],[8001,"Renderer"],[8002,""],[8007,"K"],[8010,""],[8012,"T"],[8013,"Theme"],[8014,""],[8015,"T"],[8017,""],[8020,"T"],[8023,"U,T"],[8026,"__H"],[8027,"Message,Theme,Renderer,"],[8029,""],[8032,"U"],[8038,"T"],[8046,"WpParam,T"],[8049,"U"],[8055,"T"],[8058,""],[8059,"Message,Theme,Renderer"],[8060,"Message,Theme,Renderer,"],[8062,"Message,Theme,Renderer"],[8063,"Message,Theme,Renderer,"],[8064,""],[8065,"T"],[8066,"Message,Theme,Renderer"],[8068,"Message,Theme,Renderer,P"],[8069,""],[8072,""],[8073,""],[8074,"Message,Theme,Renderer"],[8076,"Catalog::Class"],[8077,"Message,Theme,Renderer,"],[8078,""],[8079,"Message,Theme,Renderer"],[8080,""],[8081,"T"],[8083,"Theme"],[8084,"C"],[8087,"U,T"],[8090,"U"],[8096,""],[8099,"C,U"],[8102,"C"],[8105,""],[8106,"T"],[8109,"Message,Theme,Renderer"],[8110,""],[8111,"V"],[8114,"Message,Theme,Renderer,"],[8124,"T,M,D"],[8127,"C,T"],[8130,"C"],[8133,""],[8139,"T"],[8145,"WpParam,T"],[8148,""],[8150,"T"],[8152,""],[8154,"C,T"],[8157,"Handle"],[8158,""],[8159,"T"],[8168,"Handle,Renderer"],[8169,"Handle,Renderer,Theme"],[8170,""],[8175,"K"],[8181,"Handle"],[8182,""],[8184,"Handle"],[8185,"T"],[8186,""],[8187,"T"],[8193,""],[8194,"T"],[8195,""],[8196,"U,T"],[8199,"__H"],[8200,"Handle,"],[8201,""],[8205,"U"],[8211,"T"],[8220,"WpParam,T"],[8223,"U"],[8229,"T"],[8232,"Handle,Renderer"],[8234,"Handle,"],[8235,"T"],[8236,"Handle,"],[8239,"Handle"],[8240,"T"],[8242,"C"],[8245,"U,T"],[8248,"U"],[8254,""],[8257,"C,U"],[8260,"C"],[8263,"T"],[8267,"Handle"],[8268,"V"],[8271,"Handle,"],[8272,""],[8278,"T,M,D"],[8280,"C,T"],[8282,"C"],[8284,""],[8288,"T"],[8292,"WpParam,T"],[8294,""],[8295,"T"],[8296,""],[8297,"C,T"],[8299,"Handle"],[8300,""],[8301,"T"],[8307,"Handle,Renderer,Theme"],[8308,""],[8310,"Handle"],[8311,""],[8312,"T"],[8316,"U,T"],[8318,"Handle,"],[8319,""],[8321,"U"],[8325,"T"],[8331,"WpParam,T"],[8333,"U"],[8337,"T"],[8339,""],[8340,"Handle,Renderer"],[8341,"Handle"],[8343,"Handle,Renderer"],[8344,"Handle,T"],[8345,""],[8346,"T"],[8347,"Handle,"],[8348,"Handle"],[8349,"Renderer"],[8350,"Handle"],[8353,"T"],[8354,"C"],[8356,"U,T"],[8358,"U"],[8362,""],[8364,"C,U"],[8366,"C"],[8368,"T"],[8370,"Handle,Renderer,Message"],[8371,"V"],[8373,"Handle,"],[8377,"T,M,D"],[8378,"Key,Message,Theme,Renderer"],[8379,"C,T"],[8380,"C"],[8381,""],[8383,"T"],[8385,"WpParam,T"],[8386,"Key,Message,Theme,Renderer"],[8387,"C,T"],[8388,"Key,Message,Renderer"],[8389,"T"],[8391,"Key,Message,Theme,Renderer"],[8392,"T"],[8393,"Key,Message,Theme,Renderer"],[8394,""],[8395,"Key,Message,Theme,Renderer,"],[8396,"T"],[8398,"U,T"],[8399,"Key,Message,Theme,Renderer"],[8400,"Key,Message,Theme,Renderer,"],[8401,""],[8402,"U"],[8404,"T"],[8406,"WpParam,T"],[8407,"U"],[8409,"T"],[8410,"Key,Message,Theme,Renderer"],[8411,"Key,Message,Theme,Renderer,"],[8412,"Key,Message,Theme,Renderer"],[8414,"T"],[8415,"Key,Message,Theme,Renderer"],[8417,"Key,Message,Theme,Renderer,P"],[8418,"Key,Message,Theme,Renderer,"],[8420,"Key,Message,Theme,Renderer"],[8421,"Key,Message,Theme,Renderer,"],[8422,"Key,Message,Theme,Renderer"],[8424,"C"],[8425,"U,T"],[8426,"U"],[8428,""],[8429,"C,U"],[8430,"C"],[8431,"T"],[8432,"Key,Message,Theme,Renderer"],[8433,"V"],[8434,"Key,Message,Theme,Renderer,"],[8435,"Key,Message,Theme,Renderer"],[8436,"Key,Message,Theme,Renderer,"],[8458,"T,M,D"],[8466,"C,T"],[8474,"C"],[8482,""],[8503,"T"],[8519,"WpParam,T"],[8527,""],[8535,"T"],[8542,""],[8551,"Message,,Theme,Renderer"],[8552,"Catalog::Class"],[8553,"Message,Theme,Renderer"],[8554,""],[8555,"K"],[8557,"C,T"],[8565,""],[8566,"T"],[8582,"D"],[8584,""],[8586,"T"],[8594,""],[8606,"K"],[8612,""],[8623,"T"],[8630,""],[8632,"T"],[8633,""],[8636,"T"],[8644,"P"],[8646,""],[8647,"U,T"],[8655,""],[8664,"H"],[8665,"__H"],[8666,"Message,,Theme,Renderer"],[8667,"Message,Theme,Renderer"],[8668,""],[8670,"Message,Theme,Renderer"],[8671,""],[8687,"U"],[8703,"T"],[8724,"WpParam,T"],[8732,"U"],[8748,"T"],[8756,""],[8758,"Message,Theme,Renderer,"],[8759,""],[8766,"T"],[8767,"Message"],[8768,""],[8769,"Message,Theme,Renderer,"],[8770,"Message,Theme,Renderer"],[8771,""],[8772,"Message,,Theme,Renderer"],[8773,"Message,Theme,Renderer"],[8774,""],[8777,"I"],[8778,""],[8791,"S"],[8793,""],[8803,""],[8804,""],[8810,"T"],[8817,""],[8821,"C"],[8829,""],[8830,"U,T"],[8832,""],[8833,"U,T"],[8839,"U"],[8855,""],[8863,"C,U"],[8871,"C"],[8879,"Message,Theme,Renderer,"],[8880,"Message,Theme,Renderer"],[8881,"T"],[8889,""],[8890,",,Theme,Renderer"],[8891,",,Message,Theme,Renderer,"],[8892,"V"],[8900,""],[8901,","],[8902,""],[8917,"T,M,D"],[8920,"C,T"],[8923,"C"],[8926,""],[8934,"T"],[8940,"WpParam,T"],[8943,""],[8944,"T"],[8945,""],[8946,"C,T"],[8949,""],[8950,"Catalog::Class"],[8951,""],[8952,"Catalog::Class"],[8953,"T"],[8962,""],[8968,"T,Message,Theme,Renderer,"],[8969,"T"],[8975,"U,T"],[8978,""],[8981,"U"],[8987,"T"],[8994,"WpParam,T"],[8997,"U"],[9003,"T"],[9006,"T,Message,,Theme,Renderer"],[9007,""],[9008,"T"],[9009,"T,Message,Theme,Renderer"],[9010,"T,Message,Theme,Renderer,P"],[9011,""],[9013,"Catalog::Class"],[9014,""],[9015,"T,Message,Theme,Renderer,"],[9016,"T,Message,Theme,Renderer"],[9017,"T,Message,Theme,Renderer,"],[9018,"T"],[9019,"C"],[9022,"U,T"],[9025,"U"],[9031,""],[9034,"C,U"],[9037,"C"],[9040,"T"],[9043,"V"],[9046,"T,Message,Theme,Renderer"],[9091,"T,M,D"],[9109,"Message,Theme,Renderer"],[9110,"C,T"],[9128,"C"],[9146,""],[9184,"T"],[9220,"WpParam,T"],[9238,""],[9239,"Message,Theme,Renderer"],[9241,"Message,Theme,Renderer,"],[9244,""],[9245,"T"],[9246,""],[9258,"T"],[9272,""],[9289,"K"],[9291,"C,T"],[9309,"Message,Theme,Renderer,"],[9310,""],[9311,"Catalog::Class"],[9312,""],[9313,"T"],[9349,"Message,Theme,Renderer"],[9350,"T"],[9368,"Message,Theme,Renderer"],[9371,""],[9389,"Message,Theme,Renderer,,"],[9390,""],[9397,"K"],[9409,""],[9410,"T"],[9411,""],[9423,"T"],[9424,"Message,Theme,Renderer,T"],[9425,"Message,Theme,Renderer"],[9426,"T"],[9461,"U,T"],[9479,"__H"],[9480,"H"],[9481,"__H"],[9483,"Message,Theme,Renderer,"],[9484,""],[9504,"U"],[9540,"T"],[9590,"WpParam,T"],[9608,"U"],[9644,"T"],[9662,"Message,Theme,Renderer"],[9665,"Message,Theme,Renderer,"],[9668,"T,Message,Theme,Renderer,"],[9669,"T"],[9670,"Message,Theme,Renderer,F"],[9672,"Message,Theme,Renderer,,F"],[9673,"Message,Theme,Renderer"],[9675,"Message,Theme,Renderer,P"],[9676,""],[9681,"Message,Theme,Renderer"],[9682,"Message,Theme,Renderer,"],[9683,""],[9689,"Message,Theme,Renderer"],[9690,"Catalog::Class"],[9691,"Message,Theme,Renderer,"],[9694,"Message,Theme,Renderer"],[9696,"T"],[9710,"C"],[9728,"U,T"],[9746,"U"],[9782,""],[9800,"C,U"],[9818,"C"],[9836,"T"],[9854,"Message,Theme,Renderer"],[9855,"V"],[9873,"Message,Theme,Renderer,"],[9874,""],[9894,"T,M,D"],[9897,"T"],[9898,"C,T"],[9901,"C"],[9904,""],[9910,"T"],[9916,"WpParam,T"],[9919,"T"],[9920,""],[9922,"T"],[9925,""],[9928,"T"],[9929,"C,T"],[9932,""],[9933,"T"],[9942,""],[9943,"T"],[9944,""],[9947,"T"],[9948,""],[9950,"T"],[9957,"U,T"],[9960,"T"],[9962,""],[9966,"U"],[9972,"T"],[9981,"WpParam,T"],[9984,"U"],[9990,"T"],[10003,""],[10006,"T"],[10014,"C"],[10017,"U,T"],[10020,"U"],[10026,""],[10029,"C,U"],[10032,"C"],[10035,"T"],[10038,"V"],[10041,"T,"],[10042,""],[10061,"T,M,D"],[10066,"C,T"],[10071,"C"],[10076,""],[10088,"T"],[10098,"WpParam,T"],[10103,"T,L,V,Message,Theme,Renderer,"],[10104,"Font"],[10106,""],[10108,"T"],[10112,""],[10117,"C,T"],[10122,""],[10123,"Catalog::Class"],[10124,"Font"],[10125,"Catalog::Class"],[10126,"T"],[10141,"T,L,V,Message,Theme,Renderer"],[10142,""],[10147,"Font"],[10149,""],[10151,"K"],[10154,"Font"],[10156,""],[10158,"T,L,V,Message,Theme,Renderer,"],[10159,""],[10160,"T"],[10170,"U,T"],[10175,"T,L,V,Message,Theme,Renderer"],[10176,""],[10182,"U"],[10192,"T"],[10206,"WpParam,T"],[10211,"U"],[10221,"T"],[10226,"T,L,V,Message,Theme,Renderer"],[10227,""],[10228,"T,L,V,Message,Theme,Renderer,"],[10230,"T,L,V,Message,Theme,Renderer"],[10231,"T,L,V,Message,,Theme,Renderer"],[10232,"T"],[10233,"T,L,V,Message,Theme,Renderer"],[10236,"T,L,V,Message,Theme,Renderer,P"],[10237,"T,L,V,Message,Theme,Renderer,"],[10238,""],[10240,"T,L,V,Message,Theme,Renderer"],[10241,""],[10242,"T,L,V,Message,Theme,Renderer"],[10243,"Catalog::Class"],[10244,"T,L,V,Message,Theme,Renderer,"],[10245,"T,L,V,Message,Theme,Renderer"],[10246,""],[10247,"T,L,V,Message,Theme,Renderer,"],[10248,"T,L,V,Message,Theme,Renderer"],[10249,"T,L,V,Message,Theme,Renderer,"],[10250,"T"],[10254,"C"],[10259,"U,T"],[10264,"U"],[10274,""],[10279,"C,U"],[10284,"C"],[10289,"T"],[10294,"T,L,V,Message,Theme,Renderer"],[10295,"V"],[10300,"T,L,V,Message,Theme,Renderer,"],[10301,""],[10306,"T,M,D"],[10307,"Message,Theme,Renderer,"],[10308,"C,T"],[10309,"C"],[10310,""],[10312,"T"],[10314,"WpParam,T"],[10315,"Message,Theme,Renderer"],[10316,"C,T"],[10317,"T"],[10319,"Message,Theme,Renderer"],[10320,"T"],[10321,"Message,Theme,Renderer"],[10322,""],[10323,"T"],[10325,"U,T"],[10326,""],[10327,"U"],[10329,"T"],[10331,"WpParam,T"],[10332,"U"],[10334,"T"],[10335,"Message,Theme,Renderer,"],[10336,"Message,Theme,Renderer"],[10338,"Message,Theme,Renderer,"],[10339,"Message,Theme,Renderer"],[10340,"Message,Theme,Renderer,"],[10342,"Message,Theme,Renderer"],[10348,"C"],[10349,"U,T"],[10350,"U"],[10352,""],[10353,"C,U"],[10354,"C"],[10355,"T"],[10356,"Message,Theme,Renderer"],[10357,"V"],[10364,"T,M,D"],[10366,"C,T"],[10368,"C"],[10370,""],[10377,"T"],[10381,"WpParam,T"],[10383,"Theme,"],[10384,""],[10385,"T"],[10386,""],[10387,"C,T"],[10389,""],[10390,"Catalog::Class"],[10391,"T"],[10397,"Theme,Renderer"],[10398,""],[10402,"T"],[10406,"U,T"],[10408,"Theme,"],[10409,""],[10411,"U"],[10415,"T"],[10421,"WpParam,T"],[10423,"U"],[10427,"T"],[10429,"Theme,Renderer"],[10430,"Theme,"],[10431,"Theme"],[10432,""],[10434,"Theme"],[10435,"Catalog::Class"],[10436,"Theme,"],[10437,""],[10438,"T"],[10439,"C"],[10441,"U,T"],[10443,"U"],[10447,""],[10449,"C,U"],[10451,"C"],[10453,"T"],[10455,"Theme"],[10456,"V"],[10458,""],[10479,"T,M,D"],[10485,"C,T"],[10491,"C"],[10497,""],[10510,"T"],[10522,"WpParam,T"],[10528,""],[10529,"Theme,"],[10531,""],[10535,"T"],[10539,""],[10543,"C,T"],[10549,""],[10550,"Catalog::Class"],[10551,"T"],[10569,"Theme"],[10570,""],[10580,"K"],[10589,""],[10595,"T"],[10599,""],[10600,"T"],[10608,"U,T"],[10614,""],[10620,"U"],[10632,"T"],[10648,"WpParam,T"],[10654,"U"],[10666,"T"],[10672,"Theme"],[10674,""],[10675,"Theme"],[10677,"Catalog::Class"],[10678,"Theme,"],[10679,"Theme"],[10680,"T"],[10684,""],[10686,"Theme,"],[10687,"C"],[10693,"U,T"],[10699,"U"],[10711,""],[10717,"C,U"],[10723,"C"],[10729,"T"],[10735,"V"],[10741,""],[10753,"T,M,D"],[10756,"C,T"],[10759,"C"],[10762,""],[10771,"T"],[10777,"WpParam,T"],[10780,"Message,Theme,Renderer,"],[10781,""],[10783,"T"],[10785,""],[10787,"C,T"],[10790,""],[10791,"Catalog::Class"],[10792,"T"],[10798,""],[10799,"T"],[10802,"Message,Theme,Renderer"],[10803,""],[10808,"K"],[10811,""],[10813,"Message,Theme,Renderer,"],[10814,"T"],[10820,"U,T"],[10823,""],[10826,"U"],[10832,"T"],[10841,"WpParam,T"],[10844,"U"],[10850,"T"],[10853,"Message,Theme,Renderer"],[10855,",V,Message,F,Theme,Renderer"],[10856,"Message,Theme,Renderer,"],[10857,"Message,Theme,Renderer"],[10858,"Message,Theme,Renderer,"],[10859,"Message,Theme,Renderer"],[10860,"Catalog::Class"],[10861,"Message,Theme,Renderer,"],[10862,"Message,Theme,Renderer"],[10863,""],[10864,"Message,Theme,Renderer,"],[10865,"Message,Theme,Renderer"],[10866,"Message,Theme,Renderer,"],[10867,"Message,Theme,Renderer"],[10868,"T"],[10870,"C"],[10873,"U,T"],[10876,"U"],[10882,""],[10885,"C,U"],[10888,"C"],[10891,"T"],[10894,"Message,Theme,Renderer"],[10895,"V"],[10898,"Message,Theme,Renderer,"],[10899,""],[10911,"T,M,D"],[10914,"C,T"],[10917,"C"],[10920,""],[10926,"T"],[10932,"WpParam,T"],[10935,"Theme,"],[10936,""],[10938,"T"],[10940,""],[10943,"C,T"],[10946,""],[10947,"Catalog::Class"],[10948,"T"],[10957,"Theme,Renderer"],[10958,""],[10967,"T"],[10973,"U,T"],[10976,",Theme"],[10977,""],[10980,"U"],[10986,"T"],[10995,"WpParam,T"],[10998,"U"],[11004,"T"],[11007,"Theme,Renderer"],[11008,""],[11009,"Theme"],[11010,"Catalog::Class"],[11011,"Theme,"],[11012,"T"],[11014,"C"],[11017,"U,T"],[11020,"U"],[11026,""],[11029,"C,U"],[11032,"C"],[11035,"T"],[11038,",Theme"],[11039,"V"],[11042,""],[11070,"T,M,D"],[11082,""],[11083,"Message,Theme,Renderer"],[11089,"C,T"],[11101,"C"],[11113,""],[11140,"T"],[11164,""],[11165,"WpParam,T"],[11177,"Message,Theme,Renderer"],[11178,"Message,Theme,Renderer,"],[11179,""],[11190,"T"],[11201,""],[11213,"C,T"],[11225,""],[11228,"Catalog::Class"],[11229,""],[11234,"T"],[11258,"Message,Theme,Renderer"],[11259,"Message,Theme,Renderer,"],[11260,"T"],[11272,"Message,Theme,Renderer"],[11273,""],[11295,"K"],[11304,""],[11315,"T"],[11321,""],[11322,"T"],[11340,"U,T"],[11352,""],[11353,"__H"],[11354,"Message,Theme,Renderer,"],[11355,"Message,Theme,Renderer"],[11356,""],[11358,"Message,Theme,Renderer,"],[11359,""],[11371,"U"],[11395,"T"],[11430,"WpParam,T"],[11442,"U"],[11466,"T"],[11478,"Message,Theme,Renderer"],[11479,""],[11480,"Message,Theme,Renderer"],[11481,"Message,Theme,Renderer,"],[11482,""],[11483,""],[11484,"T"],[11489,"Message,Theme,Renderer,"],[11490,"Message,Theme,Renderer"],[11492,""],[11493,",T"],[11495,""],[11496,""],[11497,"Message,Theme,Renderer"],[11498,",T"],[11499,"Message,Theme,Renderer,"],[11500,""],[11501,"Message,Theme,Renderer"],[11502,"Catalog::Class"],[11503,"Message,Theme,Renderer,"],[11504,"Message,Theme,Renderer"],[11505,"T"],[11516,"C"],[11528,"U,T"],[11540,"U"],[11564,""],[11576,"C,U"],[11588,"C"],[11600,""],[11601,"T"],[11613,"Message,Theme,Renderer"],[11614,""],[11616,"V"],[11628,"Message,Theme,Renderer,"],[11629,""],[11630,"Message,Theme,Renderer,,"],[11631,""],[11655,"T,M,D"],[11658,"C,T"],[11661,"C"],[11664,""],[11670,"T"],[11676,"WpParam,T"],[11679,""],[11680,"T"],[11681,""],[11682,"C,T"],[11685,""],[11686,"T"],[11695,"Program::State,Program::Primitive"],[11696,"Message,P,Renderer,Theme"],[11697,""],[11702,"T"],[11708,"U,T"],[11711,"T"],[11713,""],[11714,"Message,P,"],[11715,""],[11718,"U"],[11724,"T"],[11732,"WpParam,T"],[11735,"U"],[11741,"T"],[11744,"Message,P,Renderer"],[11745,""],[11746,"Program::State,Program::Primitive"],[11748,"Message,P,Renderer"],[11749,"Message,P"],[11750,"T"],[11751,""],[11758,"Message,P"],[11760,"T"],[11761,"Message,P"],[11762,"T"],[11763,"C"],[11766,"U,T"],[11769,"U"],[11775,""],[11778,"C,U"],[11781,"C"],[11784,"T"],[11787,"Program::State,Program::Primitive,Message"],[11789,"Message,P,Renderer"],[11790,"V"],[11793,"Message,P,"],[11794,""],[11810,"T,M,D"],[11816,"C,T"],[11822,"C"],[11828,""],[11845,"T"],[11857,"WpParam,T"],[11863,"T,Message,Theme,"],[11864,""],[11869,"T"],[11874,""],[11879,"C,T"],[11885,""],[11886,"Catalog::Class"],[11887,"T,Message,Theme,"],[11888,"T"],[11906,"T,Message,Theme,Renderer"],[11907,""],[11918,"K"],[11921,""],[11926,"T"],[11938,"U,T"],[11944,""],[11945,"T,Message,Theme,"],[11946,""],[11952,"U"],[11964,"T"],[11981,"WpParam,T"],[11987,"U"],[11999,"T"],[12005,"T,Message,Theme,Renderer"],[12007,"T,Message,F,Theme"],[12008,"T,Message,Theme"],[12009,""],[12011,"T,Message,Theme,"],[12012,"T,Message,Theme"],[12014,"T,Message,Theme,"],[12015,"Catalog::Class"],[12016,"T,Message,Theme,"],[12017,"T,Message,Theme"],[12018,"T"],[12023,"C"],[12029,"U,T"],[12035,"U"],[12047,""],[12053,"C,U"],[12059,"C"],[12065,"T"],[12071,"T,Message,Theme,Renderer"],[12072,"V"],[12078,"T,Message,Theme,"],[12079,""],[12080,""],[12081,""],[12093,"T,M,D"],[12097,"C,T"],[12101,"C"],[12105,""],[12113,"T"],[12121,"WpParam,T"],[12125,"Theme,"],[12126,""],[12129,"T"],[12132,""],[12136,"C,T"],[12140,"Theme"],[12141,""],[12142,"Catalog::Class"],[12143,""],[12144,"T"],[12156,"Theme,Renderer"],[12157,""],[12164,"K"],[12170,""],[12173,"T"],[12176,"Theme"],[12177,"T"],[12183,""],[12185,",Theme"],[12186,"U,T"],[12190,"H"],[12191,"Theme,"],[12192,""],[12197,"U"],[12205,"T"],[12217,"WpParam,T"],[12221,"U"],[12229,"T"],[12233,"Theme,Renderer"],[12234,",Theme"],[12235,"T"],[12236,"Theme,"],[12238,"Theme"],[12239,"Catalog::Class"],[12240,"Theme,"],[12241,"T"],[12244,"C"],[12248,"U,T"],[12252,"U"],[12260,""],[12264,"C,U"],[12268,"C"],[12272,"T"],[12276,"V"],[12280,"Theme,"],[12308,"T,M,D"],[12315,"Link,Message,Theme,Renderer,"],[12317,"C,T"],[12324,"C"],[12331,""],[12345,"Link,Font,"],[12347,""],[12348,"Link,Font,"],[12350,"T"],[12364,"WpParam,T"],[12371,"Link,Message,Theme,Renderer"],[12372,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[12373,"Link,Message,Theme,Renderer,"],[12374,""],[12377,"Link,Font"],[12378,""],[12379,"T"],[12384,""],[12389,"Link,Message,Theme,Renderer,"],[12390,"Link,Font,"],[12391,""],[12393,"Link,Message,Theme,Renderer,"],[12394,"Link,Font,"],[12395,"C,T"],[12402,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[12403,""],[12405,"Catalog::Class"],[12406,"Link,Message,Theme,Renderer"],[12407,""],[12410,"Link,Font"],[12411,"P"],[12412,""],[12413,"T"],[12434,"Renderer"],[12435,"Link,Message,Theme,Renderer"],[12436,""],[12446,"Link,Font"],[12447,""],[12448,"K"],[12454,""],[12457,"Link,Font"],[12458,"P"],[12459,""],[12460,"Link,Message,Theme,Renderer,"],[12461,"Link,Font,"],[12462,""],[12463,"Link,Font,"],[12464,"T"],[12468,""],[12470,"T"],[12471,"Link,Font"],[12472,"T"],[12481,"Link,T,Message,Theme,Renderer"],[12482,"U,T"],[12489,"__H"],[12491,"H"],[12492,"Link,Message,Theme,Renderer,"],[12493,""],[12494,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[12495,""],[12502,"U"],[12516,"T"],[12536,"WpParam,T"],[12543,"U"],[12557,""],[12558,"T"],[12565,"Renderer"],[12566,"Link,Message,Theme,Renderer"],[12567,"Link,Message,Theme,Renderer,"],[12568,"Link,Font,"],[12569,""],[12570,"Link,Font,"],[12571,""],[12572,"Link,Font,"],[12573,"Link,Message,Theme,Renderer"],[12574,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[12575,"Link,Message,Theme,Renderer"],[12576,",Link,Font"],[12577,"T"],[12584,"Link,Message,Theme,Renderer,"],[12585,"Link,Font,"],[12586,""],[12589,"Link,Message,Theme,Renderer,"],[12590,"Link,Message,Theme,Renderer"],[12591,"Link,Font,"],[12592,""],[12593,"Link,Message,Theme,Renderer"],[12594,"Link,Font"],[12595,""],[12596,"Catalog::Class"],[12597,"Link,Message,Theme,Renderer,"],[12598,""],[12599,"Link,Message,Theme,Renderer"],[12600,""],[12602,"T"],[12607,"Link,Font"],[12608,"C"],[12615,"U,T"],[12622,"U"],[12636,""],[12643,"C,U"],[12650,"C"],[12657,"Link,Font"],[12658,""],[12659,"T"],[12666,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[12667,"Link,Message,Theme,Renderer"],[12668,"V"],[12675,"Link,Message,Theme,Renderer,"],[12676,"Link,,Message,Theme,Renderer"],[12677,"Link,Message,Theme,Renderer"],[12743,"T,M,D"],[12755,"C,T"],[12767,"C"],[12779,""],[12806,"T"],[12830,"WpParam,T"],[12842,"Highlighter,Message,Theme,Renderer,"],[12843,""],[12848,"Message"],[12849,""],[12852,"T"],[12861,""],[12870,"C,T"],[12882,"R"],[12883,""],[12884,"Catalog::Class"],[12885,"Renderer"],[12886,""],[12888,"T"],[12912,""],[12913,"T"],[12925,"Highlighter,Message,Theme,Renderer"],[12926,""],[12944,"Message"],[12945,""],[12948,"K"],[12960,"Renderer"],[12961,""],[12966,"Highlighter"],[12967,"Message"],[12968,""],[12971,"Highlighter"],[12972,"Highlighter,Message,Theme,Renderer,"],[12973,"T"],[12997,"Message"],[12998,"U,T"],[13010,"Highlighter,Message,Theme,Renderer,"],[13011,"Highlighter,Message,Theme,Renderer"],[13012,"Highlighter,Message,Theme,Renderer,H"],[13013,""],[13026,"U"],[13050,"T"],[13083,"WpParam,T"],[13095,"U"],[13119,"T"],[13131,""],[13132,"Highlighter"],[13134,""],[13135,"Highlighter,Message,Theme,Renderer,"],[13136,"Highlighter,Message,Theme,Renderer"],[13137,"R"],[13140,"Highlighter,Message,Theme,Renderer,"],[13141,"R"],[13142,"Highlighter,Message,Theme,Renderer,"],[13144,""],[13145,"Highlighter,Message,Theme,Renderer"],[13146,"Renderer,Message,Theme"],[13147,"R"],[13148,"T"],[13151,"Highlighter,Message,Theme,Renderer,"],[13152,"Highlighter,Message,Theme,Renderer"],[13153,"Highlighter,Message,Theme,Renderer,"],[13154,"R"],[13155,"Highlighter,Message,Theme,Renderer,"],[13156,""],[13157,"R"],[13158,""],[13159,"Highlighter,Message,Theme,Renderer"],[13160,"Highlighter,Message,Theme,Renderer,"],[13161,"Highlighter,Message,Theme,Renderer"],[13162,""],[13163,"Catalog::Class"],[13164,"Highlighter,Message,Theme,Renderer,"],[13165,"Highlighter,Message,Theme,Renderer"],[13166,"R"],[13167,""],[13169,"T"],[13178,"C"],[13190,"U,T"],[13202,"U"],[13226,""],[13238,"C,U"],[13250,"C"],[13262,"Highlighter"],[13263,"T"],[13275,"Highlighter,Message,Theme,Renderer"],[13276,""],[13277,"V"],[13289,""],[13290,"Highlighter,Message,Theme,Renderer,"],[13291,"R"],[13292,"Highlighter,Message,Theme,Renderer"],[13293,""],[13314,"T,M,D"],[13322,"Message,Theme,Renderer,"],[13323,"C,T"],[13331,"C"],[13339,""],[13357,"T"],[13373,"WpParam,T"],[13381,"Message,Theme,Renderer,"],[13382,""],[13383,"Font"],[13384,""],[13386,"P"],[13387,""],[13389,"T"],[13396,""],[13404,"C,T"],[13413,"P"],[13414,""],[13415,"Catalog::Class"],[13416,"P"],[13417,"T"],[13433,"Message,Theme,Renderer"],[13434,"T"],[13442,"Message,Theme,Renderer"],[13444,""],[13455,"K"],[13461,""],[13463,"Font"],[13464,""],[13466,"P"],[13467,""],[13469,",T"],[13470,"P"],[13472,"Message,Theme,Renderer"],[13473,""],[13474,"T"],[13479,""],[13481,"T"],[13492,"U,T"],[13500,"__H"],[13501,"Message,Theme,Renderer"],[13502,""],[13503,"Message,Theme,Renderer,"],[13504,""],[13514,"U"],[13530,"T"],[13553,"WpParam,T"],[13561,"U"],[13577,"T"],[13585,""],[13586,"P"],[13588,"Message,Theme,Renderer"],[13590,""],[13591,"Message,Theme,Renderer,"],[13592,"Message,Theme,Renderer"],[13593,",T"],[13594,"P"],[13596,",T"],[13597,"P"],[13599,",T"],[13600,"P"],[13602,"Message,Theme,Renderer"],[13603,""],[13604,""],[13605,"P"],[13606,""],[13607,"T"],[13608,"Message,Theme,Renderer,"],[13612,"Message,Theme,Renderer"],[13615,"Message,Theme,Renderer,P"],[13616,""],[13620,"Message,Theme,Renderer"],[13621,""],[13623,",T"],[13624,"P"],[13626,""],[13628,"Message,Theme,Renderer"],[13629,"Message,Theme,Renderer,"],[13630,""],[13632,"Message,Theme,Renderer"],[13633,"Catalog::Class"],[13634,"Message,Theme,Renderer,"],[13635,"Message,Theme,Renderer"],[13636,"T"],[13643,""],[13645,"C"],[13653,"U,T"],[13661,"U"],[13677,""],[13685,"C,U"],[13693,"C"],[13701,"P"],[13703,""],[13705,"T"],[13713,"Message,Theme,Renderer"],[13714,""],[13715,"V"],[13723,"Message,Theme,Renderer,"],[13724,""],[13729,"T,M,D"],[13731,"C,T"],[13733,"C"],[13735,""],[13739,"T"],[13743,"WpParam,T"],[13745,""],[13747,"T"],[13749,""],[13751,"C,T"],[13753,""],[13754,"T"],[13760,""],[13764,"K"],[13770,""],[13772,"T"],[13776,"U,T"],[13778,""],[13780,"U"],[13784,"T"],[13790,"WpParam,T"],[13792,"U"],[13796,"T"],[13799,""],[13801,"T"],[13803,"C"],[13805,"U,T"],[13807,"U"],[13811,""],[13813,"C,U"],[13815,"C"],[13817,"T"],[13819,"V"],[13821,""],[13873,"T,M,D"],[13876,"C,T"],[13879,"C"],[13882,""],[13891,"T"],[13897,"WpParam,T"],[13900,""],[13903,"T"],[13906,""],[13909,"C,T"],[13912,""],[13914,"T"],[13923,""],[13933,"T"],[13939,"U,T"],[13942,""],[13945,"U"],[13951,"T"],[13960,"WpParam,T"],[13963,"U"],[13969,"T"],[13972,""],[13978,"T"],[13981,""],[13983,"C"],[13986,"U,T"],[13989,"U"],[13995,""],[13998,"C,U"],[14001,"C"],[14004,"T"],[14007,"V"],[14010,""],[14011,""],[14014,""],[14043,"T,M,D"],[14051,"C,T"],[14059,"C"],[14067,""],[14091,"T"],[14107,"WpParam,T"],[14115,""],[14123,"T"],[14131,""],[14140,"C,T"],[14148,""],[14150,"T"],[14174,""],[14198,"T"],[14214,"U,T"],[14222,""],[14236,"U"],[14252,"T"],[14276,"WpParam,T"],[14284,"U"],[14300,"T"],[14308,""],[14324,"T"],[14332,"C"],[14340,"U,T"],[14348,"U"],[14364,""],[14372,"C,U"],[14380,"C"],[14388,"T"],[14396,"V"],[14404,""],[14422,"T,M,D"],[14425,"C,T"],[14428,"C"],[14431,""],[14440,"T"],[14446,"WpParam,T"],[14449,"Message,Theme,Renderer,"],[14450,""],[14452,"T"],[14454,""],[14456,"C,T"],[14459,""],[14460,"Catalog::Class"],[14461,"T"],[14470,"Message,Theme,Renderer"],[14471,""],[14476,"K"],[14479,""],[14481,"Message,Theme,Renderer,"],[14482,""],[14485,"T"],[14491,"U,T"],[14494,""],[14497,"U"],[14503,"T"],[14511,"WpParam,T"],[14514,"U"],[14520,"T"],[14523,"Message,Theme,Renderer,"],[14524,"Message,Theme,Renderer"],[14527,"Message,Theme,Renderer,"],[14530,"Message,Theme,Renderer"],[14531,"Message,Theme,Renderer,"],[14532,"Message,Theme,Renderer"],[14533,"Catalog::Class"],[14534,"Message,Theme,Renderer,"],[14535,"Message,Theme,Renderer"],[14537,"Message,Theme,Renderer,"],[14538,"Message,Theme,Renderer"],[14539,"Message,Theme,Renderer,"],[14540,"Message,Theme,Renderer"],[14541,"T"],[14543,"C"],[14546,"U,T"],[14549,"U"],[14555,""],[14558,"C,U"],[14561,"C"],[14564,"T"],[14567,"Message,Theme,Renderer"],[14568,"V"],[14571,"Message,Theme,Renderer,"],[14572,""],[14581,"T,M,D"],[14583,"C,T"],[14585,"C"],[14587,""],[14591,"T"],[14595,"WpParam,T"],[14597,"Message,Theme,Renderer"],[14598,"Message,Theme,Renderer,"],[14599,""],[14600,"T"],[14601,""],[14602,"C,T"],[14604,""],[14605,"T"],[14609,"Message,Theme,Renderer"],[14610,"T"],[14612,"Message,Theme,Renderer"],[14613,""],[14616,"K"],[14619,""],[14620,"T"],[14624,"U,T"],[14626,"Message,Theme,Renderer,"],[14627,""],[14629,"U"],[14633,"T"],[14638,"WpParam,T"],[14640,"U"],[14644,"T"],[14646,"Message,Theme,Renderer"],[14648,"Message,Theme,Renderer,,"],[14649,"T"],[14650,"Message,Theme,Renderer"],[14651,"Message,Theme,Renderer,"],[14652,"Message,Theme,Renderer"],[14656,"Message,Theme,Renderer,"],[14657,"Message,Theme,Renderer"],[14658,"T"],[14659,"C"],[14661,"U,T"],[14663,"U"],[14667,""],[14669,"C,U"],[14671,"C"],[14673,"T"],[14675,"Message,Theme,Renderer"],[14676,"V"],[14686,"T,M,D"],[14687,"C,T"],[14688,"C"],[14689,""],[14691,"T"],[14693,"WpParam,T"],[14694,"T,Message,Theme,"],[14695,"C,T"],[14697,"T,Message,Theme,"],[14698,"T"],[14701,"T,Message,Theme,Renderer"],[14702,""],[14703,"T"],[14705,"U,T"],[14706,"T,Message,Theme,"],[14707,""],[14708,"U"],[14710,"T"],[14712,"WpParam,T"],[14713,"U"],[14715,"T"],[14716,"T,Message,Theme,Renderer"],[14718,"T,Message,F,Theme"],[14719,"T,Message,Theme"],[14720,"T,Message,Theme,"],[14721,"T,Message,Theme"],[14724,"T,Message,Theme,"],[14725,"T,Message,Theme"],[14726,"C"],[14727,"U,T"],[14728,"U"],[14730,""],[14731,"C,U"],[14732,"C"],[14733,"T"],[14734,"T,Message,Theme,Renderer"],[14735,"V"],[14736,"T,Message,Theme,"]]}],["iced_winit",{"t":"EGPPEFEPNNNNNNNNNNNNNNNNCNNNNNCENNNNNNNNNNNNNNNNNEENNNNNNNNNNNNNNNNNNNNNNNNCENNCNCNNNNNNNNNNNNNNNNNNNEFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHHHHHHHHHHHHHHHHHHHRRRKRFRNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNMNNHNNNNNNMNMNNNNNNNMNHMNNNFNNNNNNNNNNNNNNNNNONNNNONNNNNNNNNNNNNNNNNNNNH","n":["Clipboard","Error","ExecutorCreationFailed","GraphicsCreationFailed","Program","Proxy","Settings","WindowCreationFailed","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","clipboard","clone","clone_into","clone_to_uninit","components_from","","conversion","core","deref","","deref_mut","","drop","","fmt","","","free_slots","from","","","from_angle","","from_stimulus","","futures","graphics","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","new","poll_close","poll_flush","poll_ready","program","runtime","send","send_action","settings","start_send","system","to_owned","to_smolstr","to_string","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","winit","Clipboard","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","components_from","connect","deref","deref_mut","drop","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","read","","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","unconnected","vzip","window_id","write","","cursor_position","fullscreen","icon","ime_purpose","key","key_code","mode","modifiers","mouse_button","mouse_interaction","native_key_code","physical_key","position","resize_direction","touch_event","user_attention","visible","window_attributes","window_event","window_level","Executor","Flags","Message","Program","Renderer","State","Theme","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","background_color","borrow","borrow_mut","build_user_interfaces","cam16_into_unclamped","components_from","cursor","deref","deref_mut","drop","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","logical_size","modifiers","new","","physical_size","run","scale_factor","","style","subscription","synchronize","text_color","theme","","title","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","update","","user_force_quit","view","viewport","viewport_version","vzip","Settings","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","default","deref","deref_mut","drop","fmt","fonts","from","","from_angle","from_stimulus","id","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","null_value","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vzip","fetch_information"],"q":[[0,"iced_winit"],[102,"iced_winit::clipboard"],[142,"iced_winit::conversion"],[162,"iced_winit::program"],[227,"iced_winit::settings"],[271,"iced_winit::system"],[272,"palette::chromatic_adaptation"],[273,"core::any"],[274,"palette::cam16::parameters"],[275,"iced_winit::proxy"],[276,"iced_winit::error"],[277,"core::fmt"],[278,"iced_graphics::error"],[279,"alloc::boxed"],[280,"alloc::sync"],[281,"alloc::rc"],[282,"iced_runtime"],[283,"winit::event_loop"],[284,"core::future::future"],[285,"core::pin"],[286,"core::task::wake"],[287,"core::result"],[288,"core::task::poll"],[289,"smol_str"],[290,"alloc::string"],[291,"palette::convert::try_from_into_color"],[292,"winit::window"],[293,"iced_core::clipboard"],[294,"core::option"],[295,"dpi"],[296,"iced_core::point"],[297,"winit::monitor"],[298,"iced_core::window::mode"],[299,"iced_core::window::icon"],[300,"winit::icon"],[301,"iced_core::input_method"],[302,"winit::keyboard"],[303,"iced_core::keyboard::key"],[304,"iced_core::keyboard::modifiers"],[305,"winit::event"],[306,"iced_core::mouse::button"],[307,"iced_core::mouse::interaction"],[308,"cursor_icon"],[309,"iced_core::size"],[310,"iced_core::window::position"],[311,"iced_core::window::direction"],[312,"iced_core::touch"],[313,"iced_core::window::user_attention"],[314,"iced_core::window::settings"],[315,"iced_core::event"],[316,"iced_core::window::level"],[317,"iced_winit::program::state"],[318,"iced_core::color"],[319,"iced_runtime::debug"],[320,"iced_core::window::id"],[321,"iced_runtime::user_interface"],[322,"rustc_hash"],[323,"iced_graphics::compositor"],[324,"iced_core::mouse::cursor"],[325,"iced_runtime::task"],[326,"core::marker"],[327,"iced_futures::executor"],[328,"iced_core::renderer"],[329,"iced_core::text"],[330,"iced_graphics::settings"],[331,"iced_core::theme"],[332,"iced_futures::subscription"],[333,"iced_core::element"],[334,"iced_graphics::viewport"],[335,"alloc::vec"],[336,"iced_core::settings"],[337,"iced_runtime::system"]],"i":"``Ad0```00l10101010101010`00010``10101011001101010``101010101010101010100000``00`0`0111010101010101010``D`00000000000000000000000000000000000000````````````````````In00`0`0Ij0000000`0000000000000000000000100`011100101000000010`1000`Lf000000000000000000000000000000000000000000`","f":"````````{eg{}{{b{c}}}{}}0{ce{}{}}0{{}c{}}0{d{{d{f}}}}0{{{d{h}}}{{d{hf}}}}0{d{{d{c}}}{}}0{{{d{h}}}{{d{hc}}}{}}0{{{j{c}}}e{}{}}0`{{{d{{l{c}}}}}{{l{c}}}{}}{{d{d{hc}}}n{}}{{dA`}n}99``{Ab{{d{c}}}{}}0{Ab{{d{hc}}}{}}0{Abn}0{{{d{Ad}}{d{hAf}}}Ah}0{{{d{{l{c}}}}{d{hAf}}}AhAj}{{{d{h{l{c}}}}Ab}n{}}{cc{}}{AlAd}111{ce{}{}}0``{{}Ab}0{{}c{}}000{{{An{c}}}{{An{f}}}{}}0{{{B`{c}}}{{B`{f}}}{}}0{{{Bb{c}}}{{Bb{f}}}{}}0{{{j{c}}}e{}{}}04444{{}c{}}0{{{Bf{{Bd{c}}}}}{{Bl{{l{c}}{`{{Bj{}{{Bh{n}}}}}}}}}{}}{{{Bn{{d{h{l{c}}}}}}{d{hC`}}}{{Cd{{Cb{ne}}}}}{}{}}00``{{{d{h{l{c}}}}c}nAj}{{{d{h{l{c}}}}{Bd{c}}}nAj}`{{{Bn{{d{h{l{c}}}}}}{Bd{c}}}{{Cb{ne}}}{}{}}`{dc{}}{dCf}{dCh}{{}{{Cb{c}}}{}}0{c{{Cb{e}}}{}{}}0{{}{{Cb{c}}}{}}0{{}{{Cb{c{Cj{c}}}}}{}}0{dCl}0{ce{}{}}0{{}c{}}0{{}c{}}0``{eg{}{{b{c}}}{}}{ce{}{}}3{d{{d{f}}}}{{{d{h}}}{{d{hf}}}}{d{{d{c}}}{}}{{{d{h}}}{{d{hc}}}{}}{{{j{c}}}e{}{}}5{{{B`{Cn}}}D`}{Ab{{d{c}}}{}}{Ab{{d{hc}}}{}}{Abn}{cc{}}0{ce{}{}}{{}Ab}{{}c{}}0{{{An{c}}}{{An{f}}}{}}{{{Bb{c}}}{{Bb{f}}}{}}:22{{}c{}}{{{d{D`}}Db}{{Dd{Ch}}}}0{{}{{Cb{c}}}{}}{c{{Cb{e}}}{}{}}{{}{{Cb{c}}}{}}{{}{{Cb{c{Cj{c}}}}}{}}{dCl}{ce{}{}}{{}c{}}{{}D`}{{}c{}}{{{d{D`}}}{{Dd{Df}}}}{{{d{hD`}}DbCh}n}0{{{Dj{Dh}}Dh}Dl}{{{Dd{Dn}}E`}{{Dd{Eb}}}}{Ed{{Dd{Ef}}}}{EhEj}{ElEn}{F`{{Dd{Fb}}}}{{{Dd{Eb}}}E`}{FdFf}{FhFj}{FlFn}{G`Gb}{GdGf}{{{Dd{{d{Dn}}}}GhGj}{{Dd{Gl}}}}{GnH`}{{HbDh}Hd}{HfHh}{E`Hj}{{Hl{d{Hn}}{Dd{Dn}}{Dd{Ch}}}I`}{{IbDhFd}{{Dd{Id}}}}{IfIh}```````{eg{}{{b{c}}}{}}{ce{}{}}{{}c{}}{d{{d{f}}}}{{{d{h}}}{{d{hf}}}}{{{d{{Ij{c}}}}}IlIn}{d{{d{c}}}{}}{{{d{h}}}{{d{hc}}}{}}{{{d{c}}{d{hJ`}}{d{h{`{ce}}}}{Jf{JbJd}}}{{Jf{JbJh}}}In{{Jl{}{{Jj{}}}}}}{{{j{c}}}e{}{}}8{{{d{{Ij{c}}}}}JnIn}{Ab{{d{c}}}{}}{Ab{{d{hc}}}{}}{Abn}{{{d{{Ij{c}}}}{d{hAf}}}AhIn}{cc{}}0{ce{}{}}{{}Ab}{{}c{}}0{{{An{c}}}{{An{f}}}{}}{{{B`{c}}}{{B`{f}}}{}}{{{Bb{c}}}{{Bb{f}}}{}}<33{{}c{}}{{{d{{Ij{c}}}}}{{Gh{K`}}}In}{{{d{{Ij{c}}}}}FdIn}{c{{Bl{{In{}{{Kb{e}}{Kd{g}}{Kf{i}}{Jj{k}}{Kh{c}}}}{Kj{e}}}}}{}{AjKl}{}Kn{L`Lb}}{{{d{c}}Jb{d{Cn}}}{{Ij{c}}}In}{{{d{{Ij{c}}}}}{{Gh{Ld}}}In}{{LfLh{Dd{Hl}}}{{Cb{nAd}}}}{{{d{{Ij{c}}}}}DhIn}{{{d{{In{}{{Kb{c}}{Kd{e}}{Kf{g}}{Jj{i}}{Kh{k}}}}}}Jb}Dh{AjKl}{}Kn{L`Lb}{}}{{{d{{In{}{{Kb{c}}{Kd{e}}{Kf{g}}{Jj{i}}{Kh{k}}}}}}{d{e}}}Lj{AjKl}{}Kn{L`Lb}{}}{{{d{{In{}{{Kb{c}}{Kd{e}}{Kf{g}}{Jj{i}}{Kh{k}}}}}}}{{Ll{c}}}{AjKl}{}Kn{L`Lb}{}}{{{d{h{Ij{c}}}}{d{c}}Jb{d{Cn}}}nIn}{{{d{{Ij{c}}}}}IlIn}{{{d{{In{}{{Kb{c}}{Kd{e}}{Kf{g}}{Jj{i}}{Kh{k}}}}}}Jb}e{AjKl}{}Kn{L`Lb}{}}{{{d{{Ij{c}}}}}dIn}{{{d{{In{}{{Kb{c}}{Kd{e}}{Kf{g}}{Jj{i}}{Kh{k}}}}}}Jb}Ch{AjKl}{}Kn{L`Lb}{}}{{}{{Cb{c}}}{}}{c{{Cb{e}}}{}{}}{{}{{Cb{c}}}{}}{{}{{Cb{c{Cj{c}}}}}{}}{dCl}{ce{}{}}{{}c{}}{{{d{h{In{}{{Kb{c}}{Kd{e}}{Kf{g}}{Jj{i}}{Kh{k}}}}}}c}{{Kj{c}}}{AjKl}{}Kn{L`Lb}{}}{{{d{h{Ij{c}}}}{d{Cn}}{d{Ib}}{d{hJ`}}}nIn}{{{d{Ib}}Fd}Hj}{{{d{{In{}{{Kb{c}}{Kd{e}}{Kf{g}}{Jj{i}}{Kh{k}}}}}}Jb}{{Ln{cei}}}{AjKl}{}Kn{L`Lb}{}}{{{d{{Ij{c}}}}}{{d{M`}}}In}{{{d{{Ij{c}}}}}MbIn}{{}c{}}`{eg{}{{b{c}}}{}}{ce{}{}}9{d{{d{f}}}}{{{d{h}}}{{d{hf}}}}{d{{d{c}}}{}}{{{d{h}}}{{d{hc}}}{}}{{{j{c}}}e{}{}}{{{d{Lf}}}Lf}{{d{d{hc}}}n{}}{{dA`}n}8{{}Lf}{Ab{{d{c}}}{}}{Ab{{d{hc}}}{}}{Abn}{{{d{Lf}}{d{hAf}}}Ah}{LfMd}{MfLf}{cc{}}0{ce{}{}}{LfDd}{{}Ab}{{}c{}}0{{{An{c}}}{{An{f}}}{}}{{{B`{c}}}{{B`{f}}}{}}{{{Bb{c}}}{{Bb{f}}}{}}{{{j{c}}}e{}{}}44{{}c{}}0{dc{}}{{}{{Cb{c}}}{}}{c{{Cb{e}}}{}{}}{{}{{Cb{c}}}{}}{{}{{Cb{c{Cj{c}}}}}{}}{dCl}{ce{}{}}{{}c{}}{{}c{}}{{}{{Kj{Mh}}}}","D":"Jl","p":[[10,"TransformMatrix",272],[1,"reference",null,null,1],[10,"Any",273],[0,"mut"],[5,"BakedParameters",274],[5,"Proxy",0,275],[1,"unit"],[1,"u8"],[1,"usize"],[6,"Error",0,276],[5,"Formatter",277],[8,"Result",277],[10,"Debug",277],[6,"Error",278],[5,"Box",279,null,1],[5,"Arc",280,null,1],[5,"Rc",281,null,1],[6,"Action",282],[5,"EventLoopProxy",283],[17,"Output"],[10,"Future",284,null,1],[1,"tuple",null,null,1],[5,"Pin",285],[5,"Context",286],[6,"Result",287,null,1],[6,"Poll",288],[5,"SmolStr",289],[5,"String",290],[5,"OutOfBounds",291],[5,"TypeId",273],[5,"Window",292],[5,"Clipboard",102],[6,"Kind",293],[6,"Option",294,null,1],[5,"WindowId",292],[1,"f64"],[5,"PhysicalPosition",295],[5,"Point",296],[5,"MonitorHandle",297],[6,"Mode",298],[6,"Fullscreen",292],[5,"Icon",299],[5,"Icon",300],[6,"Purpose",301],[6,"ImePurpose",292],[6,"Key",302],[6,"Key",303],[6,"KeyCode",302],[6,"Code",303],[5,"ModifiersState",302],[5,"Modifiers",304],[6,"MouseButton",305],[6,"Button",306],[6,"Interaction",307],[6,"CursorIcon",308],[6,"NativeKeyCode",302],[6,"NativeCode",303],[6,"PhysicalKey",302],[6,"Physical",303],[5,"Size",309],[6,"Position",310],[6,"Position",295],[6,"Direction",311],[6,"ResizeDirection",292],[5,"Touch",305],[6,"Event",312],[6,"UserAttention",313],[6,"UserAttentionType",292],[1,"bool"],[5,"Settings",314],[1,"str"],[5,"WindowAttributes",292],[6,"WindowEvent",305],[6,"Event",315],[6,"Level",316],[6,"WindowLevel",292],[5,"State",162,317],[5,"Color",318],[10,"Program",162],[5,"Debug",319],[5,"Id",320],[5,"Cache",321],[8,"FxHashMap",322],[5,"UserInterface",321],[17,"Renderer"],[10,"Compositor",323],[6,"Cursor",324],[1,"f32"],[17,"Message"],[17,"Theme"],[17,"Executor"],[17,"Flags"],[5,"Task",325],[10,"Send",326],[10,"Executor",327],[10,"Renderer",328],[10,"Renderer",329],[1,"u32"],[5,"Settings",227],[5,"Settings",330],[5,"Style",331],[5,"Subscription",332],[5,"Element",333],[5,"Viewport",334],[1,"u64"],[5,"Vec",335],[5,"Settings",336],[5,"Information",337]],"r":[[0,102],[1,276],[2,276],[3,276],[4,162],[5,275],[6,227],[7,276],[8,276],[9,275],[10,276],[11,275],[12,276],[13,275],[14,276],[15,275],[16,276],[17,275],[18,276],[19,275],[20,276],[21,275],[22,276],[23,275],[25,275],[26,275],[27,275],[28,276],[29,275],[32,276],[33,275],[34,276],[35,275],[36,276],[37,275],[38,276],[39,276],[40,275],[41,275],[42,276],[43,276],[44,275],[45,276],[46,275],[47,276],[48,275],[51,276],[52,275],[53,276],[54,275],[55,276],[56,275],[57,276],[58,275],[59,276],[60,275],[61,276],[62,275],[63,276],[64,275],[65,276],[66,275],[67,276],[68,275],[69,276],[70,275],[71,275],[72,275],[73,275],[74,275],[77,275],[78,275],[80,275],[82,275],[83,276],[84,276],[85,276],[86,275],[87,276],[88,275],[89,276],[90,275],[91,276],[92,275],[93,276],[94,275],[95,276],[96,275],[97,276],[98,275],[99,276],[100,275],[167,317],[169,317],[170,317],[171,317],[172,317],[173,317],[174,317],[175,317],[176,317],[178,317],[179,317],[180,317],[181,317],[182,317],[183,317],[184,317],[185,317],[186,317],[187,317],[188,317],[189,317],[190,317],[191,317],[192,317],[193,317],[194,317],[195,317],[196,317],[197,317],[198,317],[199,317],[201,317],[202,317],[204,317],[208,317],[209,317],[211,317],[213,317],[214,317],[215,317],[216,317],[217,317],[218,317],[219,317],[221,317],[224,317],[225,317],[226,317]],"b":[[38,"impl-Debug-for-Error"],[39,"impl-Display-for-Error"],[128,"impl-Clipboard"],[129,"impl-Clipboard-for-Clipboard"],[140,"impl-Clipboard"],[141,"impl-Clipboard-for-Clipboard"]],"c":"OjAAAAAAAAA=","e":"OzAAAAEAALoAIQABAAAABQAAAAcAAAAJAA8AGgAEACAACQAsAAAALgAHADgADwBJAAIATQAAAFEAAABTABMAaAAIAHIAAgB2AAIAegAGAIIABwCLAAAAjgAAAKoABACwAAEAswABALYAAwC7AAIAvwAHANYABgDjAAAA5QAQAPcAAAD5AAEA/AAAAP4AEQA=","P":[[8,"T,M,D"],[10,"C,T"],[12,"C"],[14,""],[18,"T"],[22,"WpParam,T"],[25,"T"],[27,""],[28,"C,T"],[32,"T"],[36,""],[40,"T"],[43,""],[44,"T"],[47,"U,T"],[51,""],[53,"U"],[57,"T"],[63,"WpParam,T"],[65,"U"],[69,"T"],[72,"T,Sink::Error"],[77,"T"],[80,"T,Sink::Error"],[82,"T"],[83,""],[85,"C"],[87,"U,T"],[89,"U"],[93,""],[95,"C,U"],[97,"C"],[99,"V"],[103,"T,M,D"],[104,"C,T"],[105,"C"],[106,""],[108,"T"],[110,"WpParam,T"],[111,"C,T"],[112,""],[113,"T"],[115,""],[116,"T"],[118,"U,T"],[119,""],[120,"U"],[122,"T"],[124,"WpParam,T"],[125,"U"],[127,"T"],[128,""],[130,"C"],[131,"U,T"],[132,"U"],[134,""],[135,"C,U"],[136,"C"],[137,""],[138,"V"],[139,""],[169,"T,M,D"],[170,"C,T"],[171,"C"],[172,""],[174,"P"],[175,"T"],[177,"P,C"],[178,"WpParam,T"],[179,"C,T"],[180,"P"],[181,"T"],[183,""],[184,"P"],[185,"T"],[187,"U,T"],[188,""],[189,"U"],[191,"T"],[194,"WpParam,T"],[195,"U"],[197,"T"],[198,"P"],[200,"Program::Flags,Program::Message,Program::Theme,Program::Executor,Program::Renderer"],[201,"P"],[203,""],[204,"P"],[205,"Program::Message,Program::Theme,Program::Executor,Program::Renderer,Program::Flags"],[208,"P"],[210,"Program::Message,Program::Theme,Program::Executor,Program::Renderer,Program::Flags"],[211,"P"],[212,"Program::Message,Program::Theme,Program::Executor,Program::Renderer,Program::Flags"],[213,"C"],[214,"U,T"],[215,"U"],[217,""],[218,"C,U"],[219,"C"],[220,"Program::Message,Program::Theme,Program::Executor,Program::Renderer,Program::Flags"],[221,"P"],[222,""],[223,"Program::Message,Program::Theme,Program::Executor,Program::Renderer,Program::Flags"],[224,"P"],[226,"V"],[228,"T,M,D"],[229,"C,T"],[230,"C"],[231,""],[233,"T"],[235,"WpParam,T"],[236,""],[237,"T"],[238,""],[239,"C,T"],[240,""],[241,"T"],[243,""],[247,"T"],[249,"U,T"],[250,""],[252,"U"],[254,"T"],[257,"WpParam,T"],[258,"U"],[260,"T"],[263,"C"],[264,"U,T"],[265,"U"],[267,""],[268,"C,U"],[269,"C"],[270,"V"],[271,""]]}]]')); +var searchIndex = new Map(JSON.parse('[["futures_core",{"t":"EEEEEECQCCIRKEIRKMMIRKRIRKKMMNMEEEEE","n":["FusedFuture","FusedStream","Future","Stream","TryFuture","TryStream","future","ready","stream","task","BoxFuture","Error","FusedFuture","Future","LocalBoxFuture","Ok","TryFuture","is_terminated","try_poll","BoxStream","Error","FusedStream","Item","LocalBoxStream","Ok","Stream","TryStream","is_terminated","poll_next","size_hint","try_poll_next","Context","Poll","RawWaker","RawWakerVTable","Waker"],"q":[[0,"futures_core"],[10,"futures_core::future"],[19,"futures_core::stream"],[31,"futures_core::task"],[36,"core::pin"],[37,"core::task::wake"],[38,"core::result"],[39,"core::task::poll"],[40,"core::option"],[41,"core::future::future"]],"i":"```````````n```0`b1`Bd`Al`1``Ah112`````","f":"`````````````````{{{d{b}}}f}{{{A`{{d{h{n{}{{j{c}}{l{e}}}}}}}}{d{hAb}}}{{Af{{Ad{ce}}}}}{}{}}````````{{{d{Ah}}}f}{{{A`{{d{h{Al{}{{Aj{c}}}}}}}}{d{hAb}}}{{Af{{An{c}}}}}{}}{{{d{{Al{}{{Aj{c}}}}}}}{{Bb{B`{An{B`}}}}}{}}{{{A`{{d{h{Bd{}{{j{c}}{l{e}}}}}}}}{d{hAb}}}{{Af{{An{{Ad{ce}}}}}}}{}{}}`````","D":"Cb","p":[[10,"FusedFuture",10],[1,"reference",null,null,1],[1,"bool"],[0,"mut"],[17,"Ok"],[17,"Error"],[10,"TryFuture",10],[5,"Pin",36],[5,"Context",37],[6,"Result",38,null,1],[6,"Poll",39],[10,"FusedStream",19],[17,"Item"],[10,"Stream",19],[6,"Option",40,null,1],[1,"usize"],[1,"tuple",null,null,1],[10,"TryStream",19]],"r":[[0,10],[1,19],[2,41],[3,19],[4,10],[5,19],[13,41],[31,37],[32,39],[33,37],[34,37],[35,37]],"b":[],"c":"OjAAAAAAAAA=","e":"OzAAAAEAAAsAAwABAAUADgAAACAABAA=","P":[[18,"TryFuture::Ok,TryFuture::Error"],[27,""],[28,"Stream::Item"],[30,"TryStream::Ok,TryStream::Error"]]}],["iced",{"t":"TGFETGFEPPPPEPFPPGPPTEPFPIPPGGKRPPEPPEPPPFGPPPPTTTPPPPPEGPPTRPPPPPTPPTFFFPKTTFFIRIEGPPFFEPFPPPPRFTFGRPPPEPFTFTPPTTTTONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCCNNCOCHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNOCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOQNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCCHNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNEONNCNNNNOOENONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNONNNNCNNNNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNNNONCCNNNNNNNNNNONNONNNNNONNNHNNNNNNNNNNNNNNNNNNMCNONNNNNNNNNNNNNNNNNNNONNNNNNNNNCCCNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNOECNOOOCNNNNNOOOOOOKFKKFFKNNNNNNNNNNNNNNNNNNNNNNNONNNNNNMCNNNNNNNNNONNNNNNNNNNMMNNNMMNMNNNONNNNNNNNNEOCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCMMONCNNNNNNCNNNNMNCNNNNNOMONMMNCCNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNCNNNNOMKGFPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNMNFPGGRFFPPPKPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNONNNNNNNNNONNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOFFTFNNNNNNNNNNNNHNNNNNNNNNNNNNNNNHNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNHHNNNHNNNNNNNNNNNNNNNNNNNNNNNNGPPNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNPPGPPPFPPGPPPGPPPPPGPPPPPPPPPPPPPPPGPPPPPPNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOFPGPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFFKNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNKFKFNNNNNNNNNNONNNNONNMNNNNNNNNNNNNNNNNNNMMNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNMOMMONNNNNNNNNNNNNNNNNNNNNNNGIIPGPRGPPKNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOPGFPKFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNONONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTPPPPPTPGKRRRRIPFRKGTKRGPPPKRPKRPGFFPPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNONNNNNNNNNNNNNNNMONNNNNNNMNNNNNNNNNNNNNNNNNNNNNNONMNNNNNNNOMMNMNNNNMMNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNMMMNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNMNNNMOMCMMMONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNMMMNOONONMMNNMNNNNNNOCMMMONOOMNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNMMMONNNNNNNMMMOGPPPPPGPGPPPPGPKPPRPPPPPPFGGPPPPPPPPPPPPPPPPNNNNNNNNNNNNNNMNNNNNNNNNNMMNNNNNNNNONNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNMMMMMMONNNNNNNNNNNNNNNNNNMNNMOFRKRFRNNNNNNNNNNNNNNNNMNNNNNNNONNMNNNNNNNNNNNNNONNNNNNMNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNMNNNRKFNNNNNNNNNNNMNNNNNNNNNNMMMMNNNNNNNNNNNMNNNNNNNNMMNNNNNNNNNNMNNMMFKFFKNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNMNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNHNNCNNNMNNNNNONNNOCNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNPKPKGKPKNNNNNHNNNNMNNNNNNNMCNNNNNNNNNNNNNMHMMMHMMCNMMNCNHNNNNNNNMNNFKNNNNNNNNNNNNHNNNNNNNNNHNHMHHONNNNNNNNNNNNNMNNONNNNNNNMNNFFKHMHMHMOOOOKHMHMHMHMPPPKRPGPPGFFIFPPGHOHHMHHHHMHPPGFFNNNNNNNNNNNNNNNNONNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONONNNNNNNNNNNNNNNNNNNGPPPPPGPPPPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPGKKPNNNNNNNNNNNNNNNNNNMNNNNNMNNNNNNNNNNNNNNNNNNNNNFKKKNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNMMNNNFFNNNNNNNHNHNOHNONNNNHONNNNNNNNNNNNNNNNNNNNNNNNNHNNNHOHNHNHNHNOHNONNNNNNNNNHOHHHHFKKNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNMNPGPPPPGPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHHHNNNNNNNNNNNIKNMMPPPPGPPPPPGPFPPPPPPPPPPPPPPGGPPPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOFGFPNNNNONNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONONNNNNNNNNNNNNNNNNNNNTTTPGGPPTPGFPPPPTPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNHHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOOOOOPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPGPGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNPPGPPPPPGPPPGPPPPPGPPPPPPPPPPPPPPPGPPPPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOICKRFFFINNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOMONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFHHOHOHOHOHHFNNNNNNNNNNNNOONNNNHNNNNOONNNNNNNNNNOOOOOONNNNNNNNNNFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNKTTTTPPPPFPTTPPTPTTPPTTTPPPTPTPTTPPTPFTTPPFTTTGPPPNNNNNNNNNNNNNNNOOMNNNNNNNNNNNNNNNNNNNNNOHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCOOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONFFJJJJJJJJJJJJJJJJJJJJJJFFFFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNOOOOOOOOOOOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOOFFTTTTTTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNHHNNNNNNNNNNHNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGFPPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOOFFFPPPPFFFKFPTTTTTTPPRPPPFPPPFPPFPPPFFFFPFFFIFFFFPFFPPFFRFIFFGFFPPPFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHHCHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCHNNHNHNHNCHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHQCHHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHHHNNNNNNCHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCHQNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNCHNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNCHCHHNNCHNCHNNNNNNNCHCHNNHHQHHNNHQCNCHNCHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCHNNNNNNNNHHQNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCHNNNNNNNNNNNNNNNNNNNNNNNCHQNNCHCHNNNNNNNNNNNNNNNCHNCHCHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNHNNHCHHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNPFKRPPPGFINNNNNNNNNNOONNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHOMHHONNNNNNNNNNNNNNNNNNNNHNFPPIFGFIIGPFFPPGFGPPPFKPPPPRFGFPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNCONNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCONONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOONNNNNNNNOONNCONNONOOOOOCOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNONNNNPFPPGPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNGFPFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNOONNNNNNNNNNNNNNNNNNNNFFFNNCNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNONNNNNNNNNNNNNNNNNNNFFNNNNNNNNOONNNNNNNNOONNNNNNNNNNNNNNNOOOOONNNNNNNNNNFIFKIPPPPIFFPFPPPPPPFPGFGTTTIFFFFPPPGGPPSPPPFFFFFIFFKKPPPPPFPPGPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNMNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCONNNNNNNCNNNNNNNNNNNNNNNNNMNNNNNNNNNCCNNNOOCMNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOFKFFKRKFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNOOMNNNNNNNNNNNNNNNNNNMNNNNNNNNNNMMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMMNNNNNNMNNNNNNNNNMNNNNNNNMMNNNNNNMNMNMNMNMNMNMNNNNNNNNNNNNNNMNMNMNMNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNFFFFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFFFIFTTTTTTFFFTTTTIFITTKRIKIFTTTIIFITNONNNNNNNNNNNNNNMNNNNNNNNONNNMNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOCNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNMNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNOOOONNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNOOOOOOONONNNNNNNNNNNNNHONNCNNNOOOMNNNNNNNNNNNNNNHNNNNNNNNMNNNNNNNNNMNNNNNNNNNNNNONNNNOONMNNNNNNNNOOOONNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCMHONNNNNNNNNNNONNNNNNNNNOOONNNNOONNNNNNNNNOOONNNNNFFFFNNNNNNNNONNNNNONONNNNNNNNNNNNNONOOOOOONNNNNNNNNOOFFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFFNNNNNNNNNOONNNNNONNNNNNNNNNNNNNNONNNNNNNNNFFFFFFFFFFFFFFFFFFFFFKFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNCCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOHHHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNCNNNNNNNNNNNNNNNNNMNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOONNNNNNNNNNNNNNNNNOOOOOOOOOOOOOOOOOOOOOONNNNNNNNNNNNNOONNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNONNNNNNNNNNNNHHNNNNNNNNNNNONOMHNNNNONNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNOHHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNOONNNNNNNNNOOOOOOOOONNNNNNNNNNNOOOOOOOOONNNNNNNNNOOOOONNNNNNNNNNNNNNNNNNNNNNKMNMHHIIIIIIIIIIIIIIIIIIIIOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOKKKKKMMMMMFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNRKKMMMMNNMMMMMMMMMNNHHHHHHFFFKFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNIIIIIIIIIOOOOOOOOOOHOHHOOOOOOOIFFFFFFFFFFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFFFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNKKKRKMMMMMMMMMMMMMMMMMMMMMMMMMMPPPGFGPPPPPFGOOOOOOOPKFRPPFGFINNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNONNNHMNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOHHOOMHONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOKFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNKRFFFINNNNNNNNNNHNONOHNNNNNNNNNNNNNNNHHMNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNHHHNOMHONNHNNNNNNNNNNNNNNNNNHNNPGGFPPPPFNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNCHNNOOOOFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNFNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFKPFPPPPPPPGFPGPPFFFFKNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHMNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOONNNNHNNNNNNNNNNNNNNNNOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNONNNMNHNNHNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNHHNNNNNNNNNOOOOOOOOCKRFFFIOOHMOOMOGPPKPRGFFGPGKPGPPFPPPFGFPPPFPGFPPFPPFFIGFPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNOONNNNONNNNCMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONOOOOOOOOOOOOOGPPFPFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNOOOOPPKRPGPFPPFPGFINNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNONNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONOOOMONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOFKRFFINNNNNOOONNNNNNNHMNNNNNNNNNNNNNNNNNNNHHMHNNNNNNNNNNHKRFPGGPPPPPPPPFPFIPGNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNPKRPFGFINNNNNNNNNNOOONNNNNNNNNNNNNNHMNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMONNNNNNNNNNNNNNNNNNNNOOPKRGPPPFFINNNNNNNNNNNNNNNNNNNNNNONNHMNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNOMNNNNNNNNNNNNNNNNNNNNOFPGPKRGPTPPPFFFTFFFPGFIPFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNONHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHONHNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNOOOOOOOOOOOOOOOOFKRKFRFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNMNNNNNNNNNNNNNNNNNNNNNNNPKPRPFGPFPFGFINNNNNNNNNNNNNNNNNNNNNNNNNOOOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONOOOKRFPPGFIFNNNNNNNNNNNNNNNNNNNNNNONNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNPPPPKRIPRKKRGPPPFRGFFFIIPPGNNNNNNNNNNNNNNNNNHNNNNNNNNNNMNNNNNOONNNNMHHMNNNNNNNNNNNNHNNNNNNNNONNNNNNNNNNNOMNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNHNNOONMNNNNNOHHNNONOMNHNONNNNNNNNNNNNNNNNNNNNNNONNNMNNNNNNNGPPPGKRPFPPPPPPPPPPPPGPPPPPPPPPFPPPFGGPPPPPPPPPPPPPPPPPPFGFIFPPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNONNNNNONOOMNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNOOPKRFSPPPFFPPGFGFIFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNCNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNONNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNHNNHNNNNNNNNONNNNNHNNNOOOONMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNOFPPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOKPPPPFPPPPPPPPPPPPPPFPPFGPPPOOMOHCOOOOOFFJJJJJJJJJJJJJJJJJJJJJJFFFFFFFOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOPKRPPGFIFNNNNNNNNNNOOONNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNOOONNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNOOPPPGPFPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNPKPRPFGPPGFIFOOOHMOOOMOOOGPPPPPPPPPGPPPPPGPPPPPPPPPPPPPPPPFFFPGPPGPPPPPPPPPGGPPPPPFPPPPPPPPFPPPPPPPPPGPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHHNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNHHNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNHONNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOHHHHHHHHHHNCONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOHOOHHNNNNHHNNOOHOHHHOCHHHHHHHHCHOONNNNNNNNNNNNNHHONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNOOGFPPPNNNNNNNNNNNNNNNNNNNNHHHNNNNNNNNNNNNNNNNNNNNNNNPFPFPPFFFPPFFPPFFPPFFGKKKKPPFPFPPFFGGPPFFPPPFFPPPFFPFFPFPFFPFPPFFPPFFONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOONNOMNMNOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOMNNGPFPNNNNNNNONNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNFFNONNNNNNNNNNNONNNNNNNNNONNNNOONNNNNNNNNNOOOONOOOOONONNNNNNNNON","n":["ALL","Alignment","Animation","Application","BLACK","Background","Border","Bottom","CatppuccinFrappe","CatppuccinLatte","CatppuccinMacchiato","CatppuccinMocha","Center","","Color","","Contain","ContentFit","Cover","Custom","DEFAULT","Daemon","Dark","Degrees","Dracula","Element","End","Err","Error","Event","Executor","","ExecutorCreationFailed","Ferra","Fill","","","FillPortion","","Fixed","Floating","Font","Gradient","","GraphicsCreationFailed","GruvboxDark","GruvboxLight","IDENTITY","INFINITE","INFINITY","InputMethod","KanagawaDragon","KanagawaLotus","KanagawaWave","Keyboard","Left","Length","Light","Linear","MONOSPACE","Message","Moonfly","Mouse","Nightfly","None","Nord","ORIGIN","Ok","Oxocarbon","PI","Padding","Pixels","Point","Primary","Program","RANGE","","Radians","Rectangle","Renderer","","Result","Right","Rotation","ScaleDown","Secondary","Settings","Shadow","Shrink","","Size","SolarizedDark","SolarizedLight","Solid","Start","State","Subscription","TRANSPARENT","Task","Theme","","TokyoNight","TokyoNightLight","TokyoNightStorm","Top","Touch","Transformation","UNIT","Vector","WHITE","Window","WindowCreationFailed","ZERO","","","","a","abortable","adapt_into_using","","","","","","","","","","","","","","","","","","","","","","","","","","add","","","","","","","","add_assign","advanced","alignment","and_then","","animation","antialiasing","application","","apply","area","arrays_from","","","","","","","","","","","","","","","","","","","","","","","","","","arrays_into","","","","","","","","","","","","","","","","","","","","","","","","","","as_any","","","","","","","","","","","","","","","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","","","","","","","","","","","","","","","as_ref","auto_reverse","b","base","batch","","blur_radius","border","borrow","","","","","","","","","","","","","","","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","","","","","","","","","","","","","","","bottom","","cam16_into_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","","center","center_x","center_y","chain","clipboard","clone","","","","","","","","","","","","","","","","","","","","","","","clone_into","","","","","","","","","","","","","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","","","","","","","","","","","","","code_block","collect","color","","","","components_from","","","","","","","","","","","","","","","","","","","","","","","","","","contains","custom","custom_with_fn","daemon","","default","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","default_font","default_text_size","degrees","delay","deref","","","","","","","","","","","","","","","","","","","","","","","","","","deref_mut","","","","","","","","","","","","","","","","","","","","","","","","","","discard","distance","","div","","","","","done","downcast","","","","","","","","","","","","","","","","","","","","","","","","","","drop","","","","","","","","","","","","","","","","","","","","","","","","","","duration","easing","enclose","enter","eq","","","","","","","","","","","","","","","","","","","","","","","equivalent","","","","","","","","","","","","","","","","","","","","","event","executor","exit","expand","","extended_palette","family","fill_factor","fit","","fluid","fmt","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","font","fonts","from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","","","","","","","","","","","","","","","","","from_f64","","from_i64","","from_linear_rgba","from_rgb","from_rgb8","from_rgba","from_rgba8","from_stimulus","","","","","","","","","","","","","","","","","","","","","","","","","","from_u64","","future","futures","g","go","go_mut","gradient","hash","","","","height","","highlighter","horizontal","id","init","","","","","","","","","","","","","","","","","","","","","","","","","","interpolate","interpolate_with","intersection","intersects","into","","","","","","","","","","","","","","","","","","","","","","","","","","into_angle","","","","","","","","","","","","","","","","","","","","","","","","","","into_any","","","","","","","","","","","","","","","","","","","","","","","","","","into_any_arc","","","","","","","","","","","","","","","","","","","","","","","","into_any_rc","","","","","","","","","","","","","","","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","","into_color","","","","","","","","","","","","","","","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","","into_linear","into_rgba8","into_stimulus","","","","","","","","","","","","","","","","","","","","","","","","","","inverse","invert","is_animating","is_fill","is_within","keyboard","left","","map","","max","min","mouse","mul","","","","","","","","","","","","","","","neg","never","new","","","","","","","none","","null_value","","","","","","","","","","","","","","","offset","orthographic","overlay","padding","palette","parse","partial_cmp","","","","","perform","position","quick","r","radians","radians_mut","radius","rem","remaining","repeat","repeat_forever","right","","rotate","","rounded","run","","","","","run_with","","","scale","scale_alpha","","","scale_factor","","","shrink","size","slow","snap","spawn","stream","","stretch","style","","","","","","","","","","","","","","","","","","","","sub","","","","","","sub_assign","subscription","","system","task","theme","","","then","time","title","","to_distance","to_owned","","","","","","","","","","","","","","","","","","","","","","","to_smolstr","","","","","to_string","","","","","top","","touch","translate","translation","try_components_into","","","","","","","","","","","","","","","","","","","","","","","","","","try_from","","","","","","","","","","","","","","","","","","","","","","","","","","try_into","","","","","","","","","","","","","","","","","","","","","","","","","","try_into_color","","","","","","","","","","","","","","","","","","","","","","","","","","type_id","","","","","","","","","","","","","","","","","","","","","","","","","","uints_from","","","","","","","","","","","","","","","","","","","","","","","","","","uints_into","","","","","","","","","","","","","","","","","","","","","","","","","","union","upcast","","","","","","","","","","","","","","","","","","","","","","","","","","update","value","vertical","very_quick","very_slow","view","vzip","","","","","","","","","","","","","","","","","","","","","","","","","","weight","wgpu","widget","width","","","","window","with","with_name","with_radius","with_size","with_vertices","x","","","y","","","Clipboard","Layout","Overlay","Renderer","Shell","Text","Widget","adapt_into_using","","","are_widgets_invalid","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","borrow","","","borrow_mut","","","bounds","","cam16_into_unclamped","","","capture_event","children","","clear","clipboard","clone","","clone_into","","clone_to_uninit","","components_from","","","content","deref","","","deref_mut","","","diff","downcast","","","draw","","drop","","","end_layer","end_transformation","event_status","fill_quad","fmt","","","font","from","","","from_angle","","","from_stimulus","","","graphics","horizontal_alignment","image","init","","","input_method","input_method_mut","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","invalidate_layout","invalidate_widgets","is_empty","is_event_captured","is_layout_invalid","is_over","layout","","","line_height","merge","mouse","mouse_interaction","","new","","operate","","overlay","","","position","publish","read","redraw_request","renderer","replace_redraw_request","request_input_method","request_redraw","request_redraw_at","revalidate_layout","shaping","size","","size_hint","start_layer","start_transformation","state","subscription","svg","tag","text","to_owned","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","update","","vertical_alignment","vzip","","","widget","with_layer","with_offset","with_transformation","with_translation","wrapping","write","Clipboard","Kind","Null","Primary","Standard","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","deref","","deref_mut","","downcast","","drop","","eq","equivalent","","","fmt","","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","read","","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","write","","Bytes","","FilterMethod","Handle","","Id","Image","Linear","Nearest","Path","Renderer","Rgba","adapt_into_using","","","","","advance","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","as_ref","borrow","","","","","","borrow_mut","","","","","cam16_into_unclamped","","","","","chunk","clear","clone","","","","","clone_into","","","","","clone_to_uninit","","","","","cmp","","compare","","components_from","","","","","copy_from_slice","copy_to_bytes","default","","deref","","","","","","deref_mut","","","","","downcast","","","","","draw_image","drop","","","","","","encode_hex","encode_hex_upper","eq","","","","","","","","","","","equivalent","","","","","","","","","","","","filter_method","","fmt","","","","","","","from","","","","","","","","","","","","","","","from_angle","","","","","from_bytes","from_iter","from_owner","from_path","from_rgba","from_static","from_stimulus","","","","","handle","hash","","","id","init","","","","","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","","","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_iter","","into_stimulus","","","","","is_empty","is_unique","len","measure_image","new","","null_value","","opacity","","partial_cmp","","","","","","","remaining","rotation","","slice","slice_ref","snap","","split_off","split_to","to_owned","","","","","truncate","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","try_into_mut","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","vzip","","","","","height","id","pixels","width","Layout","Limits","NONE","Node","adapt_into_using","","align","align_mut","arrays_from","","arrays_into","","as_any","","as_any_mut","","atomic","borrow","","borrow_mut","","bounds","cam16_into_unclamped","","children","clone","","clone_into","","clone_to_uninit","","components_from","","contained","container","default","deref","","deref_mut","","downcast","","drop","","eq","flex","fmt","","from","","from_angle","","from_stimulus","","height","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","loose","max","max_height","max_width","min","min_height","min_width","move_to","move_to_mut","new","","next_to_each_other","null_value","padded","positioned","resolve","shrink","size","sized","to_owned","","translate","translate_mut","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","width","with_children","Axis","Horizontal","Vertical","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","components_from","deref","deref_mut","downcast","drop","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","resolve","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Available","Back","Button","ButtonPressed","ButtonReleased","Cell","Click","Copy","Crosshair","Cursor","CursorEntered","CursorLeft","CursorMoved","Event","Forward","Grab","Grabbing","Help","Idle","Interaction","Left","Levitating","Lines","Middle","Move","None","NotAllowed","Other","Pixels","Pointer","ResizingDiagonallyDown","ResizingDiagonallyUp","ResizingHorizontally","ResizingVertically","Right","ScrollDelta","Text","Unavailable","WheelScrolled","Working","ZoomIn","ZoomOut","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","click","clone","clone_into","clone_to_uninit","components_from","deref","deref_mut","downcast","drop","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","kind","mul","new","position","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","delta","position","x","","y","","Click","Double","Kind","Single","Triple","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","deref","deref_mut","downcast","drop","eq","equivalent","","","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Element","Group","Overlay","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","components_from","","default","deref","","deref_mut","","downcast","","draw","","","drop","","from","","","from_angle","","from_children","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","is_over","","","layout","","","map","mouse_interaction","","","new","","null_value","operate","","","overlay","","","","push","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","update","","","vzip","","with_children","Headless","Quad","Renderer","Style","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","border","borrow","","borrow_mut","","bounds","cam16_into_unclamped","","clear","clone","","clone_into","","clone_to_uninit","","components_from","","default","","deref","","deref_mut","","downcast","","drop","","end_layer","end_transformation","eq","","fill_quad","fmt","","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","new","null_value","","screenshot","shadow","start_layer","start_transformation","text_color","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","with_layer","with_transformation","with_translation","Event","EventStream","Hasher","Interaction","MacOS","","Output","PlatformSpecific","","ReceivedUrl","Recipe","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","","","clone_into","","","clone_to_uninit","","","components_from","","","deref","","","deref_mut","","","downcast","","","drop","","","eq","","","equivalent","","","","","","fmt","","","from","","","from_angle","","","from_recipe","from_stimulus","","","hash","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_recipes","into_stimulus","","","stream","to_owned","","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","event","status","window","Bytes","Data","Handle","Path","Renderer","Svg","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","","","clone_into","","","clone_to_uninit","","","color","","components_from","","","data","deref","","","deref_mut","","","downcast","","","draw_svg","drop","","","eq","","","equivalent","","","","","","fmt","","","from","","","","","from_angle","","","from_memory","from_path","from_stimulus","","","handle","hash","","id","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","measure_svg","new","opacity","","rotation","","to_owned","","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","ARROW_DOWN_ICON","Absolute","Advanced","Basic","Borrowed","Bounds","CHECKMARK_ICON","CharOffset","Difference","Editor","","Font","","","Fragment","Glyph","Highlight","","Highlighter","Hit","ICON_FONT","IntoFragment","Iterator","LineHeight","None","","Owned","Paragraph","","Relative","Renderer","Settings","Shape","Shaping","Span","Text","Word","WordOrGlyph","Wrapping","adapt_into_using","","","","","","","arrays_from","","","","","","","arrays_into","","","","","","","as_any","","","","","","","as_any_mut","","","","","","","background","","background_maybe","border","","border_maybe","borrow","","","","","","","borrow_mut","","","","","","","bounds","","cam16_into_unclamped","","","","","","","change_line","clone","","","","","","","clone_into","","","","","","","clone_to_uninit","","","","","","","color","","color_maybe","compare","components_from","","","","","","","content","current_line","cursor","","cursor_position","default","","","","default_font","default_size","deref","","","","","","","deref_mut","","","","","","","downcast","","","","","","","drop","","","","","","","editor","eq","","","","","","","equivalent","","","","","","","","","fill_editor","fill_paragraph","fill_text","fmt","","","","","","","font","","","font_maybe","from","","","","","","","","","","from_angle","","","","","","","from_stimulus","","","","","","","grapheme_position","hash","","","highlight","","highlight_line","highlighter","hit_span","hit_test","horizontal_alignment","","init","","","","","","","into","","","","","","","into_angle","","","","","","","into_any","","","","","","","into_any_arc","","","","","","","into_any_rc","","","","","","","into_cam16_unclamped","","","","","","","into_color","","","","","","","into_color_unclamped","","","","","","","into_fragment","into_stimulus","","","","","","","is_empty","line","line_count","line_height","","","link","","link_maybe","min_bounds","","min_height","min_width","new","","null_value","","","","padding","","paragraph","perform","resize","selection","shaping","size","","","span_bounds","strikethrough","","text","to_absolute","to_owned","","","","","","","to_static","try_components_into","","","","","","","try_from","","","","","","","try_into","","","","","","","try_into_color","","","","","","","type_id","","","","","","","uints_from","","","","","","","uints_into","","","","","","","underline","","upcast","","","","","","","update","","vertical_alignment","","vzip","","","","","","","with_spans","with_text","","wrapping","Action","Backspace","Caret","Click","Cr","CrLf","Cursor","Delete","Direction","DocumentEnd","DocumentStart","Down","Drag","Edit","","Editor","End","Enter","Font","Home","Insert","Left","","Lf","LfCr","Line","LineEnding","Motion","Move","None","PageDown","PageUp","Paste","Right","","Scroll","Select","SelectAll","SelectLine","SelectWord","Selection","Up","WordLeft","WordRight","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","bounds","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","cursor","cursor_position","deref","","deref_mut","","downcast","","drop","","ending","eq","equivalent","","","fmt","","from","","from_angle","","from_stimulus","","highlight","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","is_empty","line","line_count","min_bounds","perform","selection","text","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","update","vzip","","with_text","lines","Format","Highlight","Highlighter","Iterator","PlainText","Settings","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","change_line","","clone","","clone_into","","clone_to_uninit","","color","components_from","","current_line","","default","deref","","deref_mut","","downcast","","drop","","eq","fmt","","font","from","","from_angle","","from_stimulus","","highlight_line","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","new","","null_value","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","update","","vzip","","Font","Paragraph","Plain","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","compare","components_from","default","deref","deref_mut","downcast","drop","fmt","from","from_angle","from_stimulus","grapheme_position","hit_span","hit_test","horizontal_alignment","","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","min_bounds","","min_height","","min_width","","new","null_value","raw","resize","span_bounds","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","update","vertical_alignment","","vzip","with_spans","with_text","Id","Operation","Text","Tree","Widget","adapt_into_using","","","align_x","align_y","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","center","children","","class","clone","clone_into","clone_to_uninit","color","color_maybe","components_from","","","container","custom","deref","","","deref_mut","","","diff","","diff_children","diff_children_custom","downcast","","","draw","","drop","","","empty","eq","equivalent","","","finish","fmt","","focusable","font","from","","","","","","","from_angle","","","from_stimulus","","","hash","height","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","layout","","line_height","mouse_interaction","new","","","operate","","","operation","overlay","scrollable","shaping","size","","","size_hint","state","","","style","tag","","","text","","text_input","to_owned","tree","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","unique","upcast","","","update","vzip","","","width","wrapping","Chain","Focusable","None","Operation","Outcome","Scrollable","Some","TextInput","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","black_box","borrow","borrow_mut","cam16_into_unclamped","components_from","container","custom","deref","deref_mut","downcast","drop","finish","fmt","focus","focusable","","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","is_focused","map","move_cursor_to","move_cursor_to_end","move_cursor_to_front","scope","scroll_by","scroll_to","scrollable","","select_all","snap_to","text","text_input","","then","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","unfocus","upcast","vzip","Count","Focusable","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","count","default","deref","deref_mut","downcast","drop","eq","equivalent","","","find_focused","fmt","focus","","focus_next","focus_previous","focused","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","is_focused","null_value","to_owned","total","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","unfocus","upcast","vzip","AbsoluteOffset","RelativeOffset","Scrollable","scroll_by","","scroll_to","","snap_to","","x","","y","","TextInput","move_cursor_to","","move_cursor_to_end","","move_cursor_to_front","","select_all","","Absolute","Advanced","Basic","Catalog","Class","Glyph","LineHeight","None","Relative","Shaping","State","Style","StyleFn","Text","Word","WordOrGlyph","Wrapping","base","color","danger","default","","draw","layout","primary","secondary","style","success","None","Some","State","Tag","Tree","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","children","clone","clone_into","clone_to_uninit","cmp","compare","components_from","","deref","","deref_mut","","diff_children_custom_with_search","downcast","","downcast_mut","downcast_ref","drop","","eq","equivalent","","","fmt","","from","","from_angle","","from_stimulus","","hash","init","","into","","into_angle","","into_any","","into_any_arc","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","new","of","partial_cmp","state","stateless","tag","to_owned","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","Alignment","Bottom","Center","","","End","Horizontal","Left","Right","Start","Top","Vertical","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","deref","","deref_mut","","downcast","","drop","","eq","","equivalent","","","","","","fmt","","from","","","","from_angle","","from_stimulus","","hash","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","Animation","Custom","EaseIn","EaseInBack","EaseInBounce","EaseInCirc","EaseInCubic","EaseInElastic","EaseInExpo","EaseInOut","EaseInOutBack","EaseInOutBounce","EaseInOutCirc","EaseInOutCubic","EaseInOutElastic","EaseInOutExpo","EaseInOutQuad","EaseInOutQuart","EaseInOutQuint","EaseInQuad","EaseInQuart","EaseInQuint","EaseOut","EaseOutBack","EaseOutBounce","EaseOutCirc","EaseOutCubic","EaseOutElastic","EaseOutExpo","EaseOutQuad","EaseOutQuart","EaseOutQuint","Easing","Float","Interpolable","Linear","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","default","deref","deref_mut","downcast","drop","eq","float_value","fmt","from","from_angle","from_stimulus","init","interpolated","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","null_value","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","value","vzip","Application","Title","Update","View","adapt_into_using","antialiasing","application","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","centered","components_from","decorations","default_font","deref","deref_mut","downcast","drop","executor","exit_on_close_request","fmt","font","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","level","position","resizable","run","run_with","scale_factor","settings","style","subscription","theme","title","transparent","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","update","view","vzip","window","window_size","Border","Radius","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","bottom","","bottom_left","","","bottom_right","","","cam16_into_unclamped","clone","clone_into","clone_to_uninit","color","","components_from","default","deref","deref_mut","downcast","drop","eq","fmt","from","","","","","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","left","","new","null_value","radius","","right","","rounded","to_owned","top","","top_left","","","top_right","","","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","width","","read","read_primary","write","write_primary","Daemon","Title","View","adapt_into_using","antialiasing","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","components_from","daemon","default_font","deref","deref_mut","downcast","drop","executor","fmt","font","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","run","run_with","scale_factor","settings","style","subscription","theme","title","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","view","vzip","Captured","Event","Ignored","InputMethod","Keyboard","Mouse","Status","Touch","Window","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","deref","deref_mut","downcast","drop","eq","equivalent","","","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","listen","listen_raw","listen_url","listen_with","merge","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Default","Executor","enter","new","spawn","Black","Bold","Condensed","Cursive","Error","Expanded","ExtraBold","ExtraCondensed","ExtraExpanded","ExtraLight","Family","Fantasy","Font","Italic","Light","Medium","Monospace","Name","Normal","","","Oblique","SansSerif","SemiCondensed","SemiExpanded","Semibold","Serif","Stretch","Style","Thin","UltraCondensed","UltraExpanded","Weight","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","borrow","","","","","borrow_mut","","","","","cam16_into_unclamped","","","","","clone","","","","","clone_into","","","","","clone_to_uninit","","","","","components_from","","","","","default","","","","deref","","","","","deref_mut","","","","","downcast","","","","","drop","","","","","eq","","","","","equivalent","","","","","","","","","","","","","","","family","fmt","","","","","from","","","","","from_angle","","","","","from_stimulus","","","","","hash","","","","init","","","","","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","","","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_stimulus","","","","","load","null_value","","","","stretch","style","to_owned","","","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","vzip","","","","","weight","ColorStop","Gradient","Linear","","adapt_into_using","","add_stop","add_stops","angle","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","color","components_from","","default","deref","","deref_mut","","downcast","","drop","","eq","","fmt","","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","new","null_value","offset","scale_alpha","stops","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","ALT","COMMAND","CTRL","Character","Event","Key","KeyPressed","KeyReleased","LOGO","Left","Location","Modifiers","ModifiersChanged","Named","Numpad","Right","SHIFT","Standard","Unidentified","adapt_into_using","","","","all","alt","arrays_from","","","","arrays_into","","","","as_any","","","","as_any_mut","","","","as_ref","bitand","bitand_assign","bitor","bitor_assign","bits","","bitxor","bitxor_assign","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","clone","","","","clone_into","","","","clone_to_uninit","","","","cmp","","command","compare","","complement","components_from","","","","contains","control","default","deref","","","","deref_mut","","","","difference","downcast","","","","drop","","","","empty","eq","","","","equivalent","","","","","","","","","","","","extend","fmt","","","","","","","","from","","","","","from_angle","","","","from_bits","from_bits_retain","","from_bits_truncate","from_iter","from_name","from_stimulus","","","","hash","","init","","","","insert","intersection","intersects","into","","","","into_angle","","","","into_any","","","","into_any_arc","","","","into_any_rc","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_iter","into_stimulus","","","","is_all","is_empty","iter","iter_names","jump","key","logo","macos_command","not","null_value","on_key_press","on_key_release","partial_cmp","","remove","set","shift","sub","sub_assign","symmetric_difference","to_owned","","","","toggle","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","union","upcast","","","","vzip","","","","key","","location","","modified_key","","modifiers","","physical_key","","text","AVRInput","AVRPower","Abort","Accept","Again","","AllCandidates","Alphanumeric","Alt","AltGraph","AltLeft","AltRight","Android","AppSwitch","ArrowDown","","ArrowLeft","","ArrowRight","","ArrowUp","","Attn","AudioBalanceLeft","AudioBalanceRight","AudioBassBoostDown","AudioBassBoostToggle","AudioBassBoostUp","AudioFaderFront","AudioFaderRear","AudioSurroundModeNext","AudioTrebleDown","AudioTrebleUp","AudioVolumeDown","","AudioVolumeMute","","AudioVolumeUp","","Backquote","Backslash","Backspace","","BracketLeft","BracketRight","BrightnessDown","BrightnessUp","BrowserBack","","BrowserFavorites","","BrowserForward","","BrowserHome","","BrowserRefresh","","BrowserSearch","","BrowserStop","","Call","Camera","CameraFocus","Cancel","CapsLock","","ChannelDown","ChannelUp","Character","Clear","Close","ClosedCaptionToggle","Code","","CodeInput","ColorF0Red","ColorF1Green","ColorF2Yellow","ColorF3Blue","ColorF4Grey","ColorF5Brown","Comma","Compose","ContextMenu","","Control","ControlLeft","ControlRight","Convert","","Copy","","CrSel","Cut","","DVR","Delete","","Digit0","Digit1","Digit2","Digit3","Digit4","Digit5","Digit6","Digit7","Digit8","Digit9","Dimmer","DisplaySwap","Eisu","Eject","","End","","EndCall","Enter","","Equal","EraseEof","Escape","","ExSel","Execute","Exit","F1","","F10","","F11","","F12","","F13","","F14","","F15","","F16","","F17","","F18","","F19","","F2","","F20","","F21","","F22","","F23","","F24","","F25","","F26","","F27","","F28","","F29","","F3","","F30","","F31","","F32","","F33","","F34","","F35","","F4","","F5","","F6","","F7","","F8","","F9","","FavoriteClear0","FavoriteClear1","FavoriteClear2","FavoriteClear3","FavoriteRecall0","FavoriteRecall1","FavoriteRecall2","FavoriteRecall3","FavoriteStore0","FavoriteStore1","FavoriteStore2","FavoriteStore3","FinalMode","Find","","Fn","","FnLock","","GoBack","GoHome","GroupFirst","GroupLast","GroupNext","GroupPrevious","Guide","GuideNextDay","GuidePreviousDay","HangulMode","HanjaMode","Hankaku","HeadsetHook","Help","","Hibernate","Hiragana","","HiraganaKatakana","Home","","Hyper","","Info","Insert","","InstantReplay","IntlBackslash","IntlRo","IntlYen","JunjaMode","KanaMode","","KanjiMode","Katakana","","Key","Key11","Key12","KeyA","KeyB","KeyC","KeyD","KeyE","KeyF","KeyG","KeyH","KeyI","KeyJ","KeyK","KeyL","KeyM","KeyN","KeyO","KeyP","KeyQ","KeyR","KeyS","KeyT","KeyU","KeyV","KeyW","KeyX","KeyY","KeyZ","Lang1","Lang2","Lang3","Lang4","Lang5","LastNumberRedial","LaunchApp1","LaunchApp2","LaunchApplication1","LaunchApplication2","LaunchCalendar","LaunchContacts","LaunchMail","","LaunchMediaPlayer","LaunchMusicPlayer","LaunchPhone","LaunchScreenSaver","LaunchSpreadsheet","LaunchWebBrowser","LaunchWebCam","LaunchWordProcessor","Link","ListProgram","LiveContent","Lock","LogOff","MacOS","MailForward","MailReply","MailSend","MannerMode","MediaApps","MediaAudioTrack","MediaClose","MediaFastForward","MediaLast","MediaPause","MediaPlay","MediaPlayPause","","MediaRecord","MediaRewind","MediaSelect","MediaSkipBackward","MediaSkipForward","MediaStepBackward","MediaStepForward","MediaStop","","MediaTopMenu","MediaTrackNext","","MediaTrackPrevious","","Meta","","MicrophoneToggle","MicrophoneVolumeDown","MicrophoneVolumeMute","MicrophoneVolumeUp","Minus","ModeChange","Named","","NativeCode","NavigateIn","NavigateNext","NavigateOut","NavigatePrevious","New","NextCandidate","NextFavoriteChannel","NextUserProfile","NonConvert","","Notification","NumLock","","Numpad0","Numpad1","Numpad2","Numpad3","Numpad4","Numpad5","Numpad6","Numpad7","Numpad8","Numpad9","NumpadAdd","NumpadBackspace","NumpadClear","NumpadClearEntry","NumpadComma","NumpadDecimal","NumpadDivide","NumpadEnter","NumpadEqual","NumpadHash","NumpadMemoryAdd","NumpadMemoryClear","NumpadMemoryRecall","NumpadMemoryStore","NumpadMemorySubtract","NumpadMultiply","NumpadParenLeft","NumpadParenRight","NumpadStar","NumpadSubtract","OnDemand","Open","","PageDown","","PageUp","","Pairing","Paste","","Pause","","Period","Physical","PinPDown","PinPMove","PinPToggle","PinPUp","Play","PlaySpeedDown","PlaySpeedReset","PlaySpeedUp","Power","","PowerOff","PreviousCandidate","Print","PrintScreen","","Process","Props","","Quote","RandomToggle","RcLowBattery","RecordSpeedNext","Redo","Resume","RfBypass","Romaji","STBInput","STBPower","Save","ScanChannelsToggle","ScreenModeNext","ScrollLock","","Select","","Semicolon","Settings","Shift","ShiftLeft","ShiftRight","SingleCandidate","Slash","Sleep","Soft1","Soft2","Soft3","Soft4","Space","","SpeechCorrectionList","SpeechInputToggle","SpellCheck","SplitScreenToggle","Standby","Subtitle","Super","SuperLeft","SuperRight","Suspend","Symbol","SymbolLock","TV","TV3DMode","TVAntennaCable","TVAudioDescription","TVAudioDescriptionMixDown","TVAudioDescriptionMixUp","TVContentsMenu","TVDataService","TVInput","TVInputComponent1","TVInputComponent2","TVInputComposite1","TVInputComposite2","TVInputHDMI1","TVInputHDMI2","TVInputHDMI3","TVInputHDMI4","TVInputVGA1","TVMediaContext","TVNetwork","TVNumberEntry","TVPower","TVRadioService","TVSatellite","TVSatelliteBS","TVSatelliteCS","TVSatelliteToggle","TVTerrestrialAnalog","TVTerrestrialDigital","TVTimer","Tab","","Teletext","Turbo","Undo","","Unidentified","","","VideoModeNext","VoiceDial","WakeUp","","Windows","Wink","Xkb","Zenkaku","ZenkakuHankaku","ZoomIn","ZoomOut","ZoomToggle","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","as_any","","","","as_any_mut","","","","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","clone","","","","clone_into","","","","clone_to_uninit","","","","cmp","","","","compare","","","","components_from","","","","deref","","","","deref_mut","","","","downcast","","","","drop","","","","eq","","","","","","","","equivalent","","","","","","","","","","","","fmt","","","","from","","","","from_angle","","","","from_stimulus","","","","hash","","","","init","","","","into","","","","into_angle","","","","into_any","","","","into_any_arc","","","","into_any_rc","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_stimulus","","","","partial_cmp","","","","to_owned","","","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","upcast","","","","vzip","","","","Available","Back","Button","ButtonPressed","ButtonReleased","Cell","Copy","Crosshair","Cursor","CursorEntered","CursorLeft","CursorMoved","Event","Forward","Grab","Grabbing","Help","Idle","Interaction","Left","Levitating","Lines","Middle","Move","None","NotAllowed","Other","Pixels","Pointer","ResizingDiagonallyDown","ResizingDiagonallyUp","ResizingHorizontally","ResizingVertically","Right","ScrollDelta","Text","Unavailable","WheelScrolled","Working","ZoomIn","ZoomOut","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","borrow","","","","","borrow_mut","","","","","cam16_into_unclamped","","","","","clone","","","","","clone_into","","","","","clone_to_uninit","","","","","cmp","compare","components_from","","","","","default","","deref","","","","","deref_mut","","","","","downcast","","","","","drop","","","","","eq","","","","","equivalent","","","","","","fmt","","","","","from","","","","","from_angle","","","","","from_stimulus","","","","","hash","init","","","","","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","","","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_stimulus","","","","","is_levitating","is_over","land","levitate","mul","null_value","","partial_cmp","position","position_from","position_in","position_over","to_owned","","","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","vzip","","","","","delta","position","x","","y","","Element","menu","Catalog","Class","Menu","State","Style","StyleFn","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","background","border","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","clone_into","clone_to_uninit","components_from","","","default","","","default_scrollable","","deref","","","deref_mut","","","downcast","","","drop","","","eq","fmt","","font","from","","","from_angle","","","from_stimulus","","","init","","","into","","","into_angle","","","into_any","","","into_any_arc","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","new","","null_value","overlay","padding","selected_background","selected_text_color","style","text_color","text_line_height","text_shaping","text_size","to_owned","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","width","Padding","all","bottom","","left","","right","","top","","channel","try_channel","Information","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","cpu_brand","cpu_cores","deref","deref_mut","downcast","drop","fetch_information","fmt","from","from_angle","from_stimulus","graphics_adapter","graphics_backend","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","memory_total","memory_used","system_kernel","system_name","system_short_version","system_version","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Handle","Task","abort","abort_on_drop","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","deref","deref_mut","downcast","drop","","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","is_aborted","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Base","CATPPUCCIN_FRAPPE","CATPPUCCIN_LATTE","CATPPUCCIN_MACCHIATO","CATPPUCCIN_MOCHA","CatppuccinFrappe","CatppuccinLatte","CatppuccinMacchiato","CatppuccinMocha","Custom","","DARK","DRACULA","Dark","Dracula","FERRA","Ferra","GRUVBOX_DARK","GRUVBOX_LIGHT","GruvboxDark","GruvboxLight","KANAGAWA_DRAGON","KANAGAWA_LOTUS","KANAGAWA_WAVE","KanagawaDragon","KanagawaLotus","KanagawaWave","LIGHT","Light","MOONFLY","Moonfly","NIGHTFLY","NORD","Nightfly","Nord","OXOCARBON","Oxocarbon","Palette","SOLARIZED_DARK","SOLARIZED_LIGHT","SolarizedDark","SolarizedLight","Style","TOKYO_NIGHT","TOKYO_NIGHT_LIGHT","TOKYO_NIGHT_STORM","Theme","TokyoNight","TokyoNightLight","TokyoNightStorm","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","background","background_color","base","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","","","clone_into","","","clone_to_uninit","","","components_from","","","danger","default","deref","","","deref_mut","","","downcast","","","drop","","","eq","","","fmt","","","","from","","","from_angle","","","from_stimulus","","","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","new","palette","primary","success","text","text_color","to_owned","","","to_smolstr","to_string","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","warning","with_fn","Background","Danger","EXTENDED_CATPPUCCIN_FRAPPE","EXTENDED_CATPPUCCIN_LATTE","EXTENDED_CATPPUCCIN_MACCHIATO","EXTENDED_CATPPUCCIN_MOCHA","EXTENDED_DARK","EXTENDED_DRACULA","EXTENDED_FERRA","EXTENDED_GRUVBOX_DARK","EXTENDED_GRUVBOX_LIGHT","EXTENDED_KANAGAWA_DRAGON","EXTENDED_KANAGAWA_LOTUS","EXTENDED_KANAGAWA_WAVE","EXTENDED_LIGHT","EXTENDED_MOONFLY","EXTENDED_NIGHTFLY","EXTENDED_NORD","EXTENDED_OXOCARBON","EXTENDED_SOLARIZED_DARK","EXTENDED_SOLARIZED_LIGHT","EXTENDED_TOKYO_NIGHT","EXTENDED_TOKYO_NIGHT_LIGHT","EXTENDED_TOKYO_NIGHT_STORM","Extended","Pair","Palette","Primary","Secondary","Success","Warning","adapt_into_using","","","","","","","","arrays_from","","","","","","","","arrays_into","","","","","","","","as_any","","","","","","","","as_any_mut","","","","","","","","background","","base","","","","","","borrow","","","","","","","","borrow_mut","","","","","","","","cam16_into_unclamped","","","","","","","","clone","","","","","","","","clone_into","","","","","","","","clone_to_uninit","","","","","","","","color","components_from","","","","","","","","danger","","deref","","","","","","","","deref_mut","","","","","","","","downcast","","","","","","","","drop","","","","","","","","eq","","","","","","","","fmt","","","","","","","","from","","","","","","","","from_angle","","","","","","","","from_stimulus","","","","","","","","generate","","","","","","init","","","","","","","","into","","","","","","","","into_angle","","","","","","","","into_any","","","","","","","","into_any_arc","","","","","","","","into_any_rc","","","","","","","","into_cam16_unclamped","","","","","","","","into_color","","","","","","","","into_color_unclamped","","","","","","","","into_stimulus","","","","","","","","is_dark","new","","primary","","secondary","strong","","","","","","success","","text","","to_owned","","","","","","","","try_components_into","","","","","","","","try_from","","","","","","","","try_into","","","","","","","","try_into_color","","","","","","","","type_id","","","","","","","","uints_from","","","","","","","","uints_into","","","","","","","","upcast","","","","","","","","vzip","","","","","","","","warning","","weak","","","","","","Duration","Instant","MAX","MICROSECOND","MILLISECOND","NANOSECOND","SECOND","ZERO","abs_diff","adapt_into_using","","add","","","","add_assign","","","","arrays_from","","arrays_into","","as_any","","as_any_mut","","as_micros","as_millis","as_millis_f32","as_millis_f64","as_nanos","as_secs","as_secs_f32","as_secs_f64","borrow","","","borrow_mut","","cam16_into_unclamped","","checked_add","","checked_add_signed","checked_div","checked_duration_since","checked_mul","checked_sub","","checked_sub_signed","clone","","clone_into","","clone_to_uninit","","cmp","","compare","","components_from","","days","default","deref","","deref_mut","","deserialize","deserializer_for_signature","div","","div_assign","div_duration_f32","div_duration_f64","div_f32","div_f64","downcast","","drop","","duration_since","elapsed","elapsed_since","eq","","","equivalent","","","","","","every","fmt","","from","","","","","from_angle","","from_days","from_hours","from_micros","from_millis","from_mins","from_nanos","from_secs","from_secs_f32","from_secs_f64","from_stimulus","","from_weeks","hash","","hours","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","is_zero","milliseconds","minutes","mul","mul_assign","mul_f32","mul_f64","new","now","null_value","partial_cmp","","","repeat","saturating_add","saturating_duration_since","saturating_mul","saturating_sub","seconds","serialize","signature","signed_duration_since","sub","","","","","sub_assign","","","","subsec_micros","subsec_millis","subsec_nanos","sum","","to_owned","","try_components_into","","try_from","","","try_from_secs_f32","try_from_secs_f64","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","Event","Finger","FingerLifted","FingerLost","FingerMoved","FingerPressed","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","deref","","deref_mut","","downcast","","drop","","eq","","equivalent","","","fmt","","from","","from_angle","","from_stimulus","","hash","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","id","","","","position","","","","Action","Button","Canvas","CatppuccinFrappe","CatppuccinLatte","CatppuccinMacchiato","CatppuccinMocha","Checkbox","Column","ComboBox","Component","Container","Custom","DEFAULT_GIRTH","DEFAULT_HEIGHT","DEFAULT_SIZE","","DEFAULT_SPACING","DEFAULT_WIDTH","Dark","Dracula","Event","Ferra","GruvboxDark","GruvboxLight","Image","KanagawaDragon","KanagawaLotus","KanagawaWave","Lazy","Light","Moonfly","MouseArea","Nightfly","Nord","Oxocarbon","PaneGrid","PickList","Pin","Pop","Primary","ProgressBar","QRCode","Radio","Renderer","Responsive","Row","Rule","Scrollable","Secondary","Shader","Slider","SolarizedDark","SolarizedLight","Space","Stack","State","Svg","Text","TextEditor","TextInput","Theme","Themer","Toggler","TokyoNight","TokyoNightLight","TokyoNightStorm","Tooltip","VerticalSlider","adapt_into_using","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","align_bottom","align_left","align_right","align_top","align_x","","","align_y","","anchor_bottom","anchor_left","anchor_right","anchor_top","anchor_x","anchor_y","and_capture","anticipate","arrays_from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","arrays_into","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","as_any","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","background","borrow","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","bottom","bottom_center","bottom_right","button","","cam16_into_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","canvas","","capture","cell_size","center","","center_x","","center_y","","checkbox","","children","","","","","","","","","","","","","","class","","","","","","","","","","","","","","","","","clip","","","","clone","clone_into","clone_to_uninit","column","","combo_box","","component","components_from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","container","","content_fit","","default","","","","","deref","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","deref_mut","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","diff","","","","","","","","","","","","","","direction","downcast","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","draw","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","drop","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","extend","","","filter_method","fmt","","","","focus_next","focus_previous","font","","","","","","","from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","from_iter","","from_path","from_stimulus","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","from_vec","","","gap","girth","handle","height","","","","","","","","","","","","","","","","highlight","highlight_with","horizontal","","horizontal_rule","horizontal_space","hover","iced","icon","","","id","","","image","","init","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","input_class","input_style","interaction","into","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into_angle","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into_any","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into_any_arc","","","","","","","","","into_any_rc","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into_color","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into_inner","into_stimulus","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","key","key_binding","keyed","keyed_column","","label","layout","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","lazy","length","line_height","","","markdown","","max_height","","max_width","","menu_class","","menu_style","","min_height","mouse_area","mouse_interaction","","","","","","","","","","","","","","","","","","","","","","","","","new","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","null_value","","","on_action","on_click","on_close","","on_double_click","on_drag","on_enter","on_exit","on_hide","on_input","","on_input_maybe","on_middle_press","on_middle_release","on_move","on_open","","on_option_hovered","on_paste","on_paste_maybe","on_press","","on_press_maybe","on_press_with","on_release","","","on_resize","","on_right_press","on_right_release","on_scroll","","on_show","on_submit","on_submit_maybe","on_toggle","","on_toggle_maybe","","opacity","","opaque","operate","","","","","","","","","","","","","","","","","overlay","","","","","","","","","","","","","","","","","padding","","","","","","","","","pane_grid","","pick_list","","pin","placeholder","","pop","","position","progress_bar","","publish","push","","","push_maybe","","","qr_code","","radio","","request_redraw","request_redraw_at","responsive","rich_text","","right","right_center","rotation","","row","","rule","scale","scrollable","","secure","shader","","shift_step","","size","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","size_hint","","","","slider","","snap_within_viewport","spacing","","","","","","","span","stack","","state","","","","","","","","","","","","","","","","","","","","","","","step","","style","","","","","","","","","","","","","","","","","svg","","tag","","","","","","","","","","","","","","","","","","","","","","","text","","","text_alignment","text_color","text_editor","","text_input","","text_line_height","","","","text_shaping","","","","text_size","","","","text_wrapping","","","theme","themer","to_owned","toggler","","tooltip","","total_size","try_components_into","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","try_from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","try_into","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","try_into_color","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","type_id","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","uints_from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","uints_into","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","upcast","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","update","","","","","","","","","","","","","","","","","","","","","","","","","","value","vertical","","vertical_rule","vertical_slider","","vertical_space","view","vzip","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","width","","","","","","","","","","","","","","","","","","","","","","with_capacity","","","with_children","","","with_direction","with_height","with_width","wrap","wrapping","x","y","Active","Button","Catalog","Class","Disabled","Hovered","Pressed","Status","Style","StyleFn","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","background","border","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","danger","default","","deref","","deref_mut","","downcast","","drop","","eq","","equivalent","","","fmt","","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","null_value","primary","secondary","shadow","style","success","text","text_color","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","warning","with_background","Action","Bevel","Butt","Cache","Canvas","Event","Fill","Frame","Geometry","Gradient","","Group","Image","InputMethod","Keyboard","LineCap","LineDash","LineJoin","Linear","Miter","Mouse","Path","Program","Round","","Solid","Square","State","Stroke","Style","Text","Touch","Window","adapt_into_using","","","","","","","","","","arrays_from","","","","","","","","","","arrays_into","","","","","","","","","","as_any","","","","","","","","","","as_any_mut","","","","","","","","","","borrow","","","","","","","","","","borrow_mut","","","","","","","","","","cam16_into_unclamped","","","","","","","","","","circle","clone","","","","","","","","","","clone_into","","","","","","","","","","clone_to_uninit","","","","","","","","","","cmp","color","compare","components_from","","","","","","","","","","content","default","","","","","","deref","","","","","","","","","","deref_mut","","","","","","","","","","downcast","","","","","","","","","","draw","draw_with","drop","","","","","","","","","","eq","","","equivalent","","","fill","filter_method","fmt","","","","","","","","","","font","from","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","from_stimulus","","","","","","","","","","gradient","handle","hash","horizontal_alignment","init","","","","","","","","","","into","","","","","","","","","","into_angle","","","","","","","","","","into_any","","","","","","","","","","into_any_arc","","","","","","","","","","into_any_rc","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","into_color","","","","","","","","","","into_color_unclamped","","","","","","","","","","into_stimulus","","","","","","","","","","is_singleton","line","line_cap","line_dash","line_height","line_join","mouse_interaction","new","null_value","","","","","","offset","opacity","pack","partial_cmp","path","position","raw","rectangle","rotation","rounded_rectangle","rule","segments","shaping","size","snap","stroke","style","","to_owned","","","","","","","","","","transform","try_components_into","","","","","","","","","","try_from","","","","","","","","","","try_into","","","","","","","","","","try_into_color","","","","","","","","","","type_id","","","","","","","","","","uints_from","","","","","","","","","","uints_into","","","","","","","","","","unique","upcast","","","","","","","","","","update","vertical_alignment","vzip","","","","","","","","","","width","with_color","with_line_cap","with_line_join","with_width","EvenOdd","Fill","Gradient","NonZero","Rule","Solid","Style","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","deref","deref_mut","downcast","drop","eq","equivalent","","","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","rule","style","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Gradient","Linear","","Packed","adapt_into_using","","add_stop","add_stops","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","deref","","deref_mut","","downcast","","drop","","end","eq","","fmt","","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","is_valid_bit_pattern","new","pack","","start","stops","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","Arc","Builder","Path","adapt_into_using","","arc","","arc_to","arrays_from","","arrays_into","","as_any","","as_any_mut","","bezier_curve_to","borrow","","borrow_mut","","build","cam16_into_unclamped","","center","circle","clone","clone_into","clone_to_uninit","close","components_from","","default","deref","","deref_mut","","downcast","","drop","","ellipse","end_angle","fmt","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","line_to","move_to","new","null_value","quadratic_curve_to","radius","rectangle","rounded_rectangle","start_angle","to_owned","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","Arc","Elliptical","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","center","","clone","clone_into","clone_to_uninit","components_from","deref","deref_mut","downcast","drop","end_angle","","fmt","from","","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","radii","radius","rotation","start_angle","","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","ArcFlags","AttributeIndex","AttributeSlice","AttributeStore","Attributes","Begin","","","Bevel","Builder","BuilderImpl","BuilderWithAttributes","Butt","ControlPointId","Cubic","","","End","","","EndpointId","EvenOdd","Event","EventId","FillRule","INVALID","","","IdEvent","IdIter","IdPolygon","Iter","IterWithAttributes","Line","","","LineCap","LineJoin","Miter","MiterClip","NO_ATTRIBUTES","Negative","","NonZero","Path","PathBuffer","PathBufferSlice","PathCommands","PathCommandsSlice","PathEvent","PathSlice","Polygon","Position","PositionStore","Positive","","Quadratic","","","Reversed","Round","","Side","Square","Winding","adapt_into_using","","","","","","","","","","","","","","","","","","","","","","","","","arrays_from","","","","","","","","","","","","","","","","","","","","","","","","","arrays_into","","","","","","","","","","","","","","","","","","","","","","","","","as_any","","","","","","","","","","","","","","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","","","","","","","","","","","","","","as_slice","","","attributes","","begin","","","borrow","","","","","","","","","","","","","","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","","","","","","","","","","","","","","build","","","builder","","","","builder_with_attributes","cam16_into_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","clear","clone","","","","","","","","","","","","","","","","","","","","","","","clone_into","","","","","","","","","","","","","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","","","","","","","","","","","","","closed","","commands","components_from","","","","","","","","","","","","","","","","","","","","","","","","","cubic_bezier_to","","","default","","","","deref","","","","","","","","","","","","","","","","","","","","","","","","","deref_mut","","","","","","","","","","","","","","","","","","","","","","","","","downcast","","","","","","","","","","","","","","","","","","","","","","","","","drop","","","","","","","","","","","","","","","","","","","","","","","","","end","","","eq","","","","","","","","","","equivalent","","","","","","","","","","","","","","","event","","","","events","extend_from_paths","","first_endpoint","","fmt","","","","","","","","","","","","","","","","","for_each_flattened","from","","","","","","","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","","","","","","","","","","","","","","","","from_iter","","from_stimulus","","","","","","","","","","","","","","","","","","","","","","","","","from_usize","","get","","","","","","get_control_point","","","","get_endpoint","","","","hash","","","","","id_iter","","","index","","","","","indices","","init","","","","","","","","","","","","","","","","","","","","","","","","","into","","","","","","","","","","","","","","","","","","","","","","","","","into_angle","","","","","","","","","","","","","","","","","","","","","","","","","into_any","","","","","","","","","","","","","","","","","","","","","","","","","into_any_arc","","","","","","","","","","","","","","","","","","","","","","","into_any_rc","","","","","","","","","","","","","","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","into_color","","","","","","","","","","","","","","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","into_iter","","","","","","","","into_path","into_stimulus","","","","","","","","","","","","","","","","","","","","","","","","","is_edge","is_empty","","","is_in","is_negative","is_out","is_positive","iter","","","","","","","","iter_with_attributes","","iterator","large_arc","last_endpoint","","len","","line_to","","","math","new","","","","","next","","","","next_event_id_in_path","","next_event_id_in_sub_path","","null_value","","","","num_attributes","","","","","","","offset","","opposite","path","path_buffer","path_events","path_slice","points","","","polygon","position","quadratic_bezier_to","","","reserve","","","","reversed","","svg_builder","sweep","to","to_f32","to_owned","","","","","","","","","","","","","","","","","","","","","","","to_usize","","","traits","transformed","","try_components_into","","","","","","","","","","","","","","","","","","","","","","","","","try_from","","","","","","","","","","","","","","","","","","","","","","","","","try_into","","","","","","","","","","","","","","","","","","","","","","","","","try_into_color","","","","","","","","","","","","","","","","","","","","","","","","","type_id","","","","","","","","","","","","","","","","","","","","","","","","","uints_from","","","","","","","","","","","","","","","","","","","","","","","","","uints_into","","","","","","","","","","","","","","","","","","","","","","","","","upcast","","","","","","","","","","","","","","","","","","","","","","","","","vzip","","","","","","","","","","","","","","","","","","","","","","","","","with_attributes","with_capacity","","with_points","with_svg","at","close","ctrl","ctrl1","ctrl2","first","from","","","last","to","","","at","close","ctrl","ctrl1","ctrl2","first","from","","","last","to","","","at","close","ctrl","ctrl1","ctrl2","first","from","","","last","to","","","BorderRadii","Build","Flattened","NoAttributes","PathBuilder","PathType","SvgPathBuilder","Transformed","WithSvg","adapt_into_using","","","","","add_circle","","","add_ellipse","","","add_line_segment","","","add_point","","","add_polygon","","","","","add_rectangle","","","add_rounded_rectangle","","","arc","arc_to","","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","begin","","","","","borrow","","","","","borrow_mut","","","","","bottom_left","bottom_right","build","","","","","","","","cam16_into_unclamped","","","","","clone","","clone_into","","clone_to_uninit","","close","","","","","","components_from","","","","","cubic_bezier_to","","","","","","","","current_position","default","","deref","","","","","deref_mut","","","","","downcast","","","","","drop","","","","","end","","","","","eq","","event","","extend_from_paths","flattened","","","","fmt","","","from","","","","","from_angle","","","","","from_stimulus","","","","","hash","horizontal_line_to","","init","","","","","inner","inner_mut","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","","","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_inner","into_stimulus","","","","","line_to","","","","","","","","move_to","","","new","","","","","null_value","","num_attributes","","","","partial_cmp","path_event","","","quadratic_bezier_to","","","","","","","","relative_arc_to","","relative_cubic_bezier_to","","relative_horizontal_line_to","","relative_line_to","","relative_move_to","","relative_quadratic_bezier_to","","relative_vertical_line_to","","reserve","","","","","","","","","","set_tolerance","set_transform","","smooth_cubic_bezier_to","","smooth_quadratic_bezier_to","","smooth_relative_cubic_bezier_to","","smooth_relative_quadratic_bezier_to","","to_owned","","to_smolstr","to_string","top_left","top_right","transformed","","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","vertical_line_to","","vzip","","","","","with_capacity","with_svg","","","wrap","CommandsPathSlice","Events","Iter","PathCommands","PathCommandsBuilder","PathCommandsSlice","PointEvents","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","begin","borrow","","","","","borrow_mut","","","","","build","cam16_into_unclamped","","","","","clone","","","","","clone_into","","","","","clone_to_uninit","","","","","components_from","","","","","cubic_bezier_to","default","deref","","","","","deref_mut","","","","","downcast","","","","","drop","","","","","end","events","fmt","","from","","","","","from_angle","","","","","from_stimulus","","","","","get_control_point","get_endpoint","index","","init","","","","","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_iter","","","into_stimulus","","","","","iter","line_to","new","next","","","null_value","points","quadratic_bezier_to","to_owned","","","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","vzip","","","","","with_capacity","Angle","Arc","ArcFlags","Box2D","CubicBezierSegment","DIV_EPSILON","EIGHT","EPSILON","FIVE","FOUR","HALF","Line","LineEquation","LineSegment","MAX","MIN","NINE","ONE","Point","QuadraticBezierSegment","Rotation","SEVEN","SIX","Scalar","","Scale","Segment","Size","SvgArc","TEN","THREE","TWO","Transform","Translation","Triangle","Vector","ZERO","a","","ab","ac","adapt_into_using","","","","","","","","","add","","add_assign","after_split","","","","","","","","","angle","angle_to","approx_epsilon","approx_eq_eps","approximate_length","","","","","","","arc","arrays_from","","","","","","","","","arrays_into","","","","","","","","","as_any","","","","","","","","","as_any_mut","","","","","","","","","b","","ba","baseline","","bc","before_split","","","","","","","","","borrow","","","","","","","","","borrow_mut","","","","","","","","","bounding_box","","","","","bounding_range_x","","","","bounding_range_y","","","","bounding_triangle","c","","ca","cam16_into_unclamped","","","","","","","","","cast","","","cb","center","circle","clipped","clipped_x","clipped_y","clone","","","","","","","","","clone_into","","","","","","","","","clone_to_uninit","","","","","","","","","closest_point","","components_from","","","","","","","","","contains_point","contains_segment","ctrl","ctrl1","ctrl2","cubic_bezier","cubic_intersections","cubic_intersections_t","default","degrees","deref","","","","","","","","","deref_mut","","","","","","","","","derivative","","","","","","","distance_to_point","","","","div","","div_assign","downcast","","","","","","","","","drag","","drag_with_weight","drop","","","","","","","","","dx","","","","","","dy","","","","","","end_angle","epsilon_for","eq","","","","","","","","equation","equivalent","","","","","","fast_bounding_box","","","fast_bounding_range_x","","","fast_bounding_range_y","","","fat_line","","flags","flattened","","","flattened_t","flattening_step","flip","","","","","","","","","fmt","","","","","","","","","for_each_cubic_bezier","","for_each_flattened","","","","for_each_flattened_with_t","","","","","","","","","for_each_inflection_t","for_each_local_x_extremum_t","","for_each_local_y_extremum_t","","for_each_monotonic","","for_each_monotonic_range","","for_each_quadratic_bezier","","","for_each_quadratic_bezier_with_t","","","for_each_x_monotonic","","for_each_x_monotonic_range","","for_each_y_monotonic","","for_each_y_monotonic_range","","frac_pi_2","frac_pi_3","frac_pi_4","from","","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","from_stimulus","","","","","","","","","from_svg_arc","get","get_angle","hash","height","horizontal_line_intersection","horizontal_line_intersection_t","init","","","","","","","","","intersection","","intersection_t","intersects","","intersects_box","intersects_line","intersects_line_segment","into","","","","","","","","","into_angle","","","","","","","","","into_any","","","","","","","","","into_any_arc","","","","","","","","","into_any_rc","","","","","","","","","into_cam16_unclamped","","","","","","","","","into_color","","","","","","","","","into_color_unclamped","","","","","","","","","into_stimulus","","","","","","","","","invert","is_a_point","is_finite","is_horizontal","is_linear","","is_monotonic","","is_quadratic","is_straight_line","is_vertical","is_x_monotonic","","is_y_monotonic","","large_arc","length","","lerp","line_intersection","line_intersection_t","line_intersections","","line_intersections_t","","line_segment_intersections","","line_segment_intersections_t","","local_x_extremum_t","local_y_extremum_t","m11","m12","m21","m22","m31","m32","max","mid_point","min","mul","mul_assign","neg","new","normal","null_value","num_quadratics","offset","overlaps_line","overlaps_segment","parallel_line","partial_cmp","pi","point","","positive","project_point","quadratic_bezier","quadratic_intersections","quadratic_intersections_t","radians","","radii","","sample","","","","","","","","","sample_tangent","set_length","signed","signed_distance_to_point","","sin_cos","size","solve_t_for_x","","solve_t_for_y","","solve_x_for_y","","solve_y_for_x","","split","","","","","","","","","split_at_x","split_range","","","","","","","","","square_distance_to_point","","","square_length","start_angle","sub","sub_assign","sum","","sweep","sweep_angle","tangent","to","","","","","","","","","","","","","to_arc","to_cubic","to_degrees","to_f32","","","","","to_f64","","","","","to_line","to_owned","","","","","","","","","to_quadratic","to_quadratic_error","to_svg_arc","to_vector","traits","transform","transformed","","","translate","try_cast","try_components_into","","","","","","","","","try_from","","","","","","","","","try_into","","","","","","","","","try_into_color","","","","","","","","","two_pi","type_id","","","","","","","","","uints_from","","","","","","","","","uints_into","","","","","","","","","upcast","","","","","","","","","utils","value","vector","","vertical_line_intersection","vertical_line_intersection_t","vzip","","","","","","","","","width","x","","","","","","","","","","","","x_maximum_t","","x_minimum_t","","x_rotation","","y","","","","","","","","","","","","y_maximum_t","","y_minimum_t","","zero","Arc","ArcFlags","Flattened","SvgArc","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","center","components_from","deref","deref_mut","downcast","drop","flags","from","","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_iter","into_stimulus","large_arc","next","radii","","start_angle","sweep","sweep_angle","to","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","x_rotation","","ArrayString","ArrayVec","CapacityError","Drain","IntoIter","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","as_mut","as_mut_ptr","","as_mut_slice","","as_mut_str","as_ptr","","as_ref","","","as_slice","","as_str","borrow","","","","","","","borrow_mut","","","","","","","cam16_into_unclamped","","","","","capacity","","clear","","clone","","","","clone_from","","clone_into","","","","clone_to_uninit","","","","cmp","","","compare","","","components_from","","","","","default","","deref","","","","","","","deref_mut","","","","","","","downcast","","","","","drain","drop","","","","","","","","element","encode_hex","encode_hex_upper","eq","","","","","equivalent","","","","","","","","","extend","flush","fmt","","","","","","from","","","","","","","from_angle","","","","","from_byte_string","from_iter","from_stimulus","","","","","from_str","ge","","","gt","","","hash","","init","","","","","insert","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","","","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_inner","into_inner_unchecked","into_iter","","","","","into_stimulus","","","","","is_empty","","is_full","","le","","","len","","","limit_ptr","lt","","","multiunzip","","","","","","","","","","","","","","","","","","","","","","","","","","new","","","new_const","","next","","next_back","","null_value","","partial_cmp","","","","pop","","pop_at","push","","push_str","push_unchecked","remaining_capacity","","remove","","retain","set_len","","simplify","size_hint","","start_ptr","swap_pop","swap_remove","take","to_owned","","","","to_smolstr","","to_string","","truncate","","try_components_into","","","","","try_extend_from_slice","try_from","","","","","","","","try_insert","try_into","","","","","try_into_color","","","","","try_push","","try_push_str","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","vzip","","","","","write","write_as_big_endian","","","","","","","","","","","","","","","","","","","","","","","","write_as_little_endian","","","","","","","","","","","","","","","","","","","","","","","","write_char","write_f32","write_f64","write_i128","write_i16","write_i32","write_i64","write_i8","write_str","write_u128","write_u16","write_u32","write_u64","write_u8","zero_filled","CubicBezierSegment","Flattened","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","components_from","ctrl1","ctrl2","deref","deref_mut","downcast","drop","from","","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_iter","into_stimulus","next","size_hint","to","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Angle","BoolVector2D","BoolVector3D","Box2D","Box3D","HomogeneousVector","Length","Point2D","Point3D","Rect","RigidTransform3D","Rotation2D","Rotation3D","Scale","SideOffsets2D","Size2D","Size3D","Transform2D","Transform3D","Translation2D","Translation3D","Trig","UnknownUnit","Vector2D","Vector3D","abs","","","","adapt_into_using","","","","","","","","","","","","","","","","","","","","","","","add","","","","","","","","","","","","","","","","","","add_assign","","","","","","","","","","","","add_size","","all","","and","","angle","angle_from_x_axis","angle_to","","any","","approx_epsilon","","","","","","","","","approx_eq","","approx_eq_eps","","","","","","","","","","","approxeq","approxord","area","","","around_axis","around_x","around_y","around_z","arrays_from","","","","","","","","","","","","","","","","","","","","","","","arrays_into","","","","","","","","","","","","","","","","","","","","","","","as_any","","","","","","","","","","","","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","","","","","","","","","","","","borrow","","","","","","","","","","","","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","","","","","","","","","","","","bottom","box3d","bvec2","bvec3","cam16_into_unclamped","","","","","","","","","","","","","","","","","","","","","","","cast","","","","","","","","","","","","","","","cast_unit","","","","","","","","","","","","","ceil","","","","","","","","","","","","center","","","clamp","","","","","","","clamp_length","","clone","","","","","","","","","","","","","","","","","","","","","","","clone_into","","","","","","","","","","","","","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","","","","","","","","","","","","","cmp","","","compare","","","component_div","","component_mul","","components_from","","","","","","","","","","","","","","","","","","","","","","","contains","","","","","contains_box","","contains_inclusive","","contains_rect","cos","cross","","decompose_reversed","default","","","","","","","","","","","","","","","","","","degrees_to_radians","depth","","deref","","","","","","","","","","","","","","","","","","","","","","","deref_mut","","","","","","","","","","","","","","","","","","","","","","","determinant","","distance_to","","div","","","","","","","","","","","","","","","","","","","","","","","div_assign","","","","","","","","","","","","","","","","","","","","","div_euclid","","dot","","downcast","","","","","","","","","","","","","","","","","","","","","","","drop","","","","","","","","","","","","","","","","","","","","","","","eq","","","","","","","","","","","","","","","","","","","","","","","equal","","","","equivalent","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","euler","extend","","fast_atan2","floor","","","","","","","","","","","","fmt","","","","","","","","","","","","","","","","","","","","","","","from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","","","","","","","","","","","","","","from_angle_and_length","from_array","","from_arrays","","from_length_all_same","from_lengths","","","","","","","from_origin_and_size","","from_points","","","from_rotation","from_scale","from_size","","","from_stimulus","","","","","","","","","","","","","","","","","","","","","","","from_translation","from_untyped","","","","","","","","","","","","","","","","from_vectors_inner","from_vectors_outer","get","","get_angle","greater_than","","","","hash","","","","","","","","","","","","","","","","","","","","","","","height","","","","","horizontal","i","identity","","","","","","","","inflate","","","init","","","","","","","","","","","","","","","","","","","","","","","inner_box","inner_rect","intersection","","","intersection_unchecked","","intersects","","","into","","","","","","","","","","","","","","","","","","","","","","","into_angle","","","","","","","","","","","","","","","","","","","","","","","into_any","","","","","","","","","","","","","","","","","","","","","","","into_any_arc","","","","","","","","","","","","","","","","","","","","","","","into_any_rc","","","","","","","","","","","","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","","","","","","","","","","","","into_color","","","","","","","","","","","","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","","","","","","","","","","","","into_stimulus","","","","","","","","","","","","","","","","","","","","","","","inverse","","","","","","","","is_2d","is_backface_visible","is_empty","","","","","is_finite","","","","","","","","","is_identity","","","is_invertible","","is_negative","","is_normalized","is_positive","","is_zero","j","k","left","length","","lerp","","","","","","","","","","","lower_than","","","","m11","","m12","","m13","m14","m21","","m22","","m23","m24","m31","","m32","","m33","m34","m41","m42","m43","m44","map","","","","max","","","","","","","","","","","max_x","max_y","min","","","","","","","","","","","min_x","min_y","mul","","","","","","","","","","","","","","","","","","","","","","","mul_assign","","","","","","","","","","","","","","","","","","","","","mul_s","neg","","","","","","","","new","","","","","","","","","","","","","","","","","","","new_2d","new_all_same","new_from_reversed","none","","norm","normalize","","","not","","not_equal","","","","null_value","","","","","","","","","","","","","","","","","num","one","","","or","","origin","","","ortho","outer_box","outer_rect","outer_transformed_box","outer_transformed_box2d","outer_transformed_box3d","outer_transformed_rect","","partial_cmp","","","perspective","point2","point3","position","pre_rotate","","pre_scale","","pre_translate","","project_onto_vector","","project_to_2d","quaternion","r","radians","","radians_to_degrees","rect","reflect","","rem_euclid","","right","robust_normalize","","rotation","","","round","","","","","","","","","","","","","","","round_in","","","round_out","","","saturating_add","saturating_sub","scale","","","","","select_point","","select_size","","select_vector","","set_size","sin","size","","","size2","size3","skew","slerp","splat","","","","","","","","square_length","","square_norm","sub","","","","","","","","","","","","","","","sub_assign","","","","","","","","","","","","sum","","","","","","","","","","tan","then","","","","","then_rotate","","then_scale","","then_translate","","to_2d","","","to_3d","","","","to_array","","","","","","","","","","to_array_4d","","to_array_transposed","","to_arrays","","to_arrays_transposed","to_box2d","to_f32","","","","","","","","","","","to_f64","","","","","","","","","","","to_i32","","","","","","","","","","","to_i64","","","","","","","","","","","to_non_empty","","","to_owned","","","","","","","","","","","","","","","","","","","","","","","to_point","","to_point2d","to_point3d","to_rect","to_size","to_transform","","","","","","","to_tuple","","","","","","","","to_tuple_4d","","to_u32","","","","","","","","","","","to_u64","","to_untyped","","","","","","","","","","","","","","","","to_usize","","","","","","","","","","","to_vector","","","","","","top","transform_box","transform_box2d","","transform_box3d","","transform_point","","","","","","","","transform_point2d","","","transform_point2d_homogeneous","transform_point3d","","","","transform_point3d_homogeneous","transform_rect","","","transform_size","","","transform_vector","","","","","","","transform_vector2d","","transform_vector3d","","translate","","","translation","","","try_cast","","","","","","","","","","","","","","","try_components_into","","","","","","","","","","","","","","","","","","","","","","","try_from","","","","","","","","","","","","","","","","","","","","","","","try_into","","","","","","","","","","","","","","","","","","","","","","","try_into_color","","","","","","","","","","","","","","","","","","","","","","","try_normalize","","type_id","","","","","","","","","","","","","","","","","","","","","","","uints_from","","","","","","","","","","","","","","","","","","","","","","","uints_into","","","","","","","","","","","","","","","","","","","","","","","union","","","unit_quaternion","upcast","","","","","","","","","","","","","","","","","","","","","","","vec2","vec3","vector_part","vertical","volume","","vzip","","","","","","","","","","","","","","","","","","","","","","","w","width","","","","","with_destination","","with_length","with_max_length","","with_min_length","","with_source","","x","","","","","","","","","x_range","","","xy","","","xy_area","xz","","","xz_area","y","","","","","","","","","y_range","","","yx","","yz","","","yz_area","z","","","","","z_range","zero","","","","","","","","","","","","","","","","","zip","","","","ApproxEq","approx_epsilon","approx_eq","approx_eq_eps","max","min","Box2D","Box3D","HomogeneousVector","Length","Point2D","Point3D","Rect","RigidTransform3D","Rotation2D","Rotation3D","Scale","SideOffsets2D","Size2D","Size3D","Transform2D","Transform3D","Translation2D","Translation3D","Vector2D","Vector3D","angle","bottom","depth","height","","i","j","k","left","m11","","m12","","m13","m14","m21","","m22","","m23","m24","m31","","m32","","m33","m34","m41","m42","m43","m44","max","","min","","origin","r","right","rotation","size","top","translation","w","width","","x","","","","","","","y","","","","","","","z","","","","Ceil","Floor","One","Round","Zero","ceil","floor","one","round","zero","Flattened","FlattenedT","FlatteningParameters","QuadraticBezierSegment","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","components_from","","","ctrl","deref","","","deref_mut","","","downcast","","","drop","","","from","","","","from_angle","","","from_stimulus","","","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_iter","","into_stimulus","","","new","next","","size_hint","","to","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","Scalar","Segment","Transformation","after_split","approximate_length","before_split","derivative","dx","dy","flip","for_each_flattened_with_t","from","sample","split","split_range","to","transform_point","transform_vector","x","y","cubic_polynomial_roots","directed_angle","directed_angle2","min_max","normalized_tangent","tangent","Flattened","FromPolyline","NoAttributes","PathIterator","Transformed","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","as_any","","","","as_any_mut","","","","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","closed","components_from","","","","deref","","","","deref_mut","","","","downcast","","","","drop","","","","flattened","","from","","","","from_angle","","","","from_stimulus","","","","init","","","","into","","","","into_angle","","","","into_any","","","","into_any_arc","","","","into_any_rc","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_iter","","","","into_stimulus","","","","new","","","next","","","","open","size_hint","transformed","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","upcast","","","","vzip","","","","with_attributes","Angle","Box2D","Point","Rotation","Scale","Size","Transform","Translation","Vector","angle","height","m11","m12","m21","m22","m31","m32","max","min","point","radians","size","vector","width","x","","","y","","","Builder","BuilderImpl","BuilderWithAttributes","IdIter","Iter","IterWithAttributes","Path","PathSlice","Reversed","Builder","BuilderWithAttributes","Iter","PathBuffer","PathBufferSlice","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","begin","","","","borrow","","","borrow_mut","","","build","","","","cam16_into_unclamped","","","clone","clone_into","clone_to_uninit","components_from","","","cubic_bezier_to","","","","deref","","","deref_mut","","","downcast","","","drop","","","end","","","","from","","","from_angle","","","from_stimulus","","","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_iter","into_stimulus","","","line_to","","","","new","next","next_back","num_attributes","","quadratic_bezier_to","","","","reserve","","","","size_hint","to_owned","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","with_attributes","IdPolygon","IdPolygonIter","PathEvents","Polygon","PolygonIdIter","PolygonIter","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","as_any","","","","as_any_mut","","","","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","clone","","","","clone_into","","","","clone_to_uninit","","","","closed","","components_from","","","","deref","","","","deref_mut","","","","downcast","","","","drop","","","","from","","","","from_angle","","","","from_stimulus","","","","init","","","","into","","","","into_angle","","","","into_any","","","","into_any_arc","","","","into_any_rc","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_iter","","","","into_stimulus","","","","new","next","","","","par_bridge","points","","to_owned","","","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","upcast","","","","vzip","","","","Build","PathBuilder","PathIterator","PathType","SvgPathBuilder","arc_to","begin","build","close","cubic_bezier_to","","end","horizontal_line_to","line_to","","move_to","num_attributes","quadratic_bezier_to","","relative_arc_to","relative_cubic_bezier_to","relative_horizontal_line_to","relative_line_to","relative_move_to","relative_quadratic_bezier_to","relative_vertical_line_to","smooth_cubic_bezier_to","smooth_quadratic_bezier_to","smooth_relative_cubic_bezier_to","smooth_relative_quadratic_bezier_to","vertical_line_to","Bevel","Butt","Gradient","LineCap","LineDash","LineJoin","Miter","Round","","Solid","Square","Stroke","Style","line_cap","line_dash","line_join","offset","segments","style","width","Active","Catalog","Checkbox","Class","Disabled","Hovered","Icon","Status","Style","StyleFn","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","background","border","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","","","clone_into","","","clone_to_uninit","","","code_point","components_from","","","danger","default","deref","","","deref_mut","","","downcast","","","drop","","","eq","","","equivalent","","","fmt","","","font","from","","","from_angle","","","from_stimulus","","","icon_color","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","line_height","primary","secondary","shaping","size","style","success","text_color","to_owned","","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","is_checked","","","Catalog","ComboBox","State","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","default","default_input","default_menu","deref","deref_mut","downcast","drop","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","new","null_value","options","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","with_selection","Catalog","Class","Container","Id","Style","StyleFn","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","background","","","border","","bordered_box","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","color","components_from","","danger","dark","default","","deref","","deref_mut","","downcast","","draw_background","drop","","eq","","equivalent","","","fmt","","from","","","","","","from_angle","","from_stimulus","","hash","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","layout","new","null_value","primary","rounded_box","secondary","shadow","","style","success","text_color","to_owned","","transparent","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","unique","upcast","","visible_bounds","vzip","","Bytes","FilterMethod","Handle","Image","Linear","Nearest","Path","Rgba","Viewer","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","components_from","content_fit","deref","deref_mut","downcast","draw","","drop","filter_method","from","from_angle","from_stimulus","height","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","layout","","max_scale","min_scale","mouse_interaction","new","padding","scale_step","size","state","tag","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","update","viewer","","vzip","width","height","id","pixels","width","State","Viewer","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","default","deref","deref_mut","downcast","drop","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","is_cursor_grabbed","new","null_value","scaled_image_size","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Column","adapt_into_using","align_items","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","children","column","components_from","default","deref","deref_mut","diff","downcast","draw","drop","extend","from","from_angle","from_stimulus","from_vecs","height","init","into","into_angle","into_any","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","layout","max_width","mouse_interaction","new","null_value","operate","overlay","padding","push","push_maybe","size","spacing","state","tag","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","update","vzip","width","with_capacity","with_children","Column","Catalog","CodeBlock","Content","H1","H2","H3","H4","H5","H6","Heading","HeadingLevel","Highlight","Image","Item","List","Paragraph","Settings","Style","Text","Url","Viewer","adapt_into_using","","","","","","","arrays_from","","","","","","","arrays_into","","","","","","","as_any","","","","","","","as_any_mut","","","","","","","as_ref","as_str","authority","background","border","borrow","","","","","","","borrow_mut","","","","","","","cam16_into_unclamped","","","","","","","cannot_be_a_base","clone","","","","","","clone_into","","","","","","clone_to_uninit","","","","","","cmp","","code_block","","","code_size","compare","","components_from","","","","","","","default","deref","","","","","","","deref_mut","","","","","","","deserialize","deserialize_internal","deserializer_for_signature","domain","downcast","","","","","","","drop","","","","","","","eq","","","equivalent","","","","","","fmt","","","","","","","","","fragment","from","","","","","","","","","","","","from_angle","","","","","","","from_directory_path","from_file_path","from_palette","from_stimulus","","","","","","","from_str","h1_size","h2_size","h3_size","h4_size","h5_size","h6_size","has_authority","has_host","hash","","heading","","host","host_str","image","images","index","","","","init","","","","","","","inline_code_color","inline_code_highlight","inline_code_padding","into","","","","","","","into_angle","","","","","","","into_any","","","","","","","into_any_arc","","","","into_any_rc","","","","","","","into_cam16_unclamped","","","","","","","into_color","","","","","","","into_color_unclamped","","","","","","","into_stimulus","","","","","","","into_string","is_special","item","items","join","len","limit_ptr","link_color","make_relative","new","null_value","on_link_click","options","ordered_list","","origin","paragraph","","parse","","","parse_with_params","partial_cmp","","password","path","path_segments","path_segments_mut","port","port_or_known_default","push_str","query","query_pairs","query_pairs_mut","scheme","serialize","serialize_internal","set_fragment","set_host","set_ip_host","set_password","set_path","set_port","set_query","set_scheme","set_username","signature","socket_addrs","spacing","spans","start_ptr","style","text_size","to_file_path","to_owned","","","","","","to_smolstr","","to_string","","try_components_into","","","","","","","try_from","","","","","","","","","try_into","","","","","","","try_into_color","","","","","","","type_id","","","","","","","uints_from","","","","","","","uints_into","","","","","","","unordered_list","","upcast","","","","","","","username","view","view_with","vzip","","","","","","","with_style","with_text_size","alt","code","items","language","lines","start","title","url","menu","Catalog","Class","Menu","State","Style","StyleFn","background","border","default","","selected_background","selected_text_color","style","text_color","Axis","Bottom","Canceled","Catalog","Center","Class","Configuration","Content","Controls","Direction","Down","DragEvent","Draggable","Dropped","Edge","","","Highlight","Horizontal","Left","","Line","Node","Pane","","","","PaneGrid","Picked","Region","ResizeEvent","Right","","Split","","","State","Style","StyleFn","Target","TitleBar","Top","Up","Vertical","adapt_into_using","","","","","","","","","","","","","","","","","","adjacent","always_show_controls","arrays_from","","","","","","","","","","","","","","","","","","arrays_into","","","","","","","","","","","","","","","","","","as_any","","","","","","","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","","","","","","","background","border","borrow","","","","","","","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","","","","","","","cam16_into_unclamped","","","","","","","","","","","","","","","","","","can_be_dragged_at","","class","","clone","","","","","","","","","","","","","","","clone_into","","","","","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","","","","","close","cmp","","color","compare","","components_from","","","","","","","","","","","","","","","","","","controls","default","","","deref","","","","","","","","","","","","","","","","","","deref_mut","","","","","","","","","","","","","","","","","","downcast","","","","","","","","","","","","","","","","","","draw","","drop","","","","","","","","","","","","","","","","","","","dynamic","eq","","","","","","","equivalent","","","","","","","","","","","","fmt","","","","","","","","","","","","","","","from","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","","","","","","","","","from_stimulus","","","","","","","","","","","","","","","","","","get","get_mut","hash","","","","hovered_region","hovered_split","init","","","","","","","","","","","","","","","","","","internal","into","","","","","","","","","","","","","","","","","","into_angle","","","","","","","","","","","","","","","","","","into_any","","","","","","","","","","","","","","","","","","into_any_arc","","","","","","","","","","","","","","","into_any_rc","","","","","","","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","","","","","","","into_color","","","","","","","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","","","","","","","into_stimulus","","","","","","","","","","","","","","","","","","is_empty","is_over_pick_area","iter","iter_mut","layout","len","maximize","maximized","move_to_edge","new","","","","null_value","padding","pane_regions","panes","partial_cmp","","picked_split","ratio","resize","restore","split","","","split_line_bounds","split_regions","split_with","splits","state","style","","","swap","title_bar","to_owned","","","","","","","","","","","","","","","try_components_into","","","","","","","","","","","","","","","","","","try_from","","","","","","","","","","","","","","","","","","try_into","","","","","","","","","","","","","","","","","","try_into_color","","","","","","","","","","","","","","","","","","type_id","","","","","","","","","","","","","","","","","","uints_from","","","","","","","","","","","","","","","","","","uints_into","","","","","","","","","","","","","","","","","","upcast","","","","","","","","","","","","","","","","","","vzip","","","","","","","","","","","","","","","","","","width","with_configuration","a","axis","b","ratio","pane","","","target","a","axis","b","id","ratio","Action","Dragging","Idle","Internal","Resizing","State","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","default","deref","","deref_mut","","downcast","","drop","","eq","fmt","","from","","from_angle","","from_configuration","from_stimulus","","init","","internal","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","null_value","panes","picked_pane","picked_split","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","axis","origin","pane","split","Active","Arrow","Catalog","Class","Dynamic","Handle","Hovered","Icon","None","Opened","PickList","Static","Status","Style","StyleFn","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","as_any","","","","as_any_mut","","","","background","border","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","clone","","","","clone_into","","","","clone_to_uninit","","","","code_point","components_from","","","","default","","","default_menu","deref","","","","deref_mut","","","","downcast","","","","drop","","","","eq","","","","equivalent","","","fmt","","","","font","from","","","","from_angle","","","","from_stimulus","","","","handle_color","init","","","","into","","","","into_angle","","","","into_any","","","","into_any_arc","","","","into_any_rc","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_stimulus","","","","line_height","null_value","placeholder_color","shaping","size","style","text_color","to_owned","","","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","upcast","","","","vzip","","","","closed","open","size","is_hovered","Pop","Catalog","Class","ProgressBar","Style","StyleFn","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","background","bar","border","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","danger","default","deref","deref_mut","downcast","drop","eq","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","primary","secondary","style","success","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","warning","Catalog","Class","Data","DataTooLong","Error","ErrorCorrection","High","InvalidCharacter","InvalidEciDesignator","InvalidVersion","Low","Medium","Micro","Normal","QRCode","Quartile","Style","StyleFn","UnsupportedCharacterSet","Version","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","background","borrow","","","","","borrow_mut","","","","","cam16_into_unclamped","","","","","cell","clone","","","","clone_into","","","","clone_to_uninit","","","","components_from","","","","","default","","deref","","","","","deref_mut","","","","","downcast","","","","","drop","","","","","eq","","","","equivalent","","","","","","","","","fmt","","","","","","from","","","","","","from_angle","","","","","from_stimulus","","","","","init","","","","","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_stimulus","","","","","new","style","to_owned","","","","to_smolstr","to_string","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","vzip","","","","","with_error_correction","with_version","Active","Catalog","Class","Hovered","Radio","Status","Style","StyleFn","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","background","border_color","border_width","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","default","","deref","","deref_mut","","dot_color","downcast","","drop","","eq","","equivalent","","","fmt","","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","style","text_color","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","is_selected","","AsymmetricPadding","Catalog","Class","FillMode","Full","Padded","Percent","Rule","Style","StyleFn","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","color","components_from","","default","","deref","","deref_mut","","downcast","","drop","","eq","","fill","fill_mode","fmt","","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","radius","style","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","width","AbsoluteOffset","Active","Anchor","Both","Catalog","Class","Direction","Dragged","END","End","Horizontal","Hovered","Id","Rail","RelativeOffset","START","Scrollable","Scrollbar","Scroller","Start","Status","Style","StyleFn","Vertical","Viewport","absolute_offset","absolute_offset_reversed","adapt_into_using","","","","","","","","","","","anchor","arrays_from","","","","","","","","","","","arrays_into","","","","","","","","","","","as_any","","","","","","","","","","","as_any_mut","","","","","","","","","","","background","border","","borrow","","","","","","","","","","","borrow_mut","","","","","","","","","","","bounds","cam16_into_unclamped","","","","","","","","","","","clone","","","","","","","","","","","clone_into","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","color","components_from","","","","","","","","","","","container","content_bounds","default","","","","","","","deref","","","","","","","","","","","deref_mut","","","","","","","","","","","downcast","","","","","","","","","","","drop","","","","","","","","","","","eq","","","","","","","","","","equivalent","","","","","","","","","fmt","","","","","","","","","","","from","","","","","","","","","","","","from_angle","","","","","","","","","","","from_stimulus","","","","","","","","","","","gap","hash","horizontal","horizontal_rail","init","","","","","","","","","","","into","","","","","","","","","","","into_angle","","","","","","","","","","","into_any","","","","","","","","","","","into_any_arc","","","","","","","","","","","into_any_rc","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","into_color","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","into_stimulus","","","","","","","","","","","margin","new","","null_value","","","","","relative_offset","scroll_by","scroll_to","scroller","scroller_width","snap_to","spacing","style","to_owned","","","","","","","","","","","try_components_into","","","","","","","","","","","try_from","","","","","","","","","","","try_into","","","","","","","","","","","try_into_color","","","","","","","","","","","type_id","","","","","","","","","","","uints_from","","","","","","","","","","","uints_into","","","","","","","","","","","unique","upcast","","","","","","","","","","","vertical","vertical_rail","vzip","","","","","","","","","","","width","x","","y","","horizontal","vertical","is_horizontal_scrollbar_disabled","","","is_horizontal_scrollbar_dragged","is_horizontal_scrollbar_hovered","is_vertical_scrollbar_disabled","","","is_vertical_scrollbar_dragged","is_vertical_scrollbar_hovered","Action","Primitive","","Program","Shader","State","Storage","Viewport","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","clone_into","clone_to_uninit","components_from","","default","deref","","deref_mut","","downcast","","draw","drop","","fmt","","from","","from_angle","","from_stimulus","","get","get_mut","has","init","","into","","into_angle","","into_any","","into_any_arc","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","logical_size","mouse_interaction","null_value","physical_height","physical_size","physical_width","prepare","projection","render","scale_factor","store","to_owned","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","update","vzip","","with_physical_size","Active","Catalog","Circle","Class","Dragged","Handle","HandleShape","Hovered","Rail","Rectangle","Slider","Status","Style","StyleFn","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","background","backgrounds","border","border_color","border_width","borrow","","","","","borrow_mut","","","","","cam16_into_unclamped","","","","","clone","","","","","clone_into","","","","","clone_to_uninit","","","","","components_from","","","","","default","","deref","","","","","deref_mut","","","","","downcast","","","","","drop","","","","","eq","","","","","equivalent","","","fmt","","","","","from","","","","","from_angle","","","","","from_stimulus","","","","","handle","init","","","","","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","","","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_stimulus","","","","","rail","shape","style","to_owned","","","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","vzip","","","","","width","with_circular_handle","border_radius","radius","width","Catalog","Class","Handle","Hovered","Idle","Status","Style","StyleFn","Svg","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","color","components_from","","default","","deref","","deref_mut","","downcast","","drop","","eq","","equivalent","","","fmt","","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","null_value","style","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","Absolute","Advanced","Basic","Borrowed","Catalog","Class","Fragment","Glyph","Highlight","Highlighter","IntoFragment","Iterator","LineHeight","None","Owned","Relative","Rich","Settings","Shaping","Span","State","Style","StyleFn","Text","Word","WordOrGlyph","Wrapping","adapt_into_using","","","align_x","align_y","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","base","borrow","","","borrow_mut","","","cam16_into_unclamped","","","center","change_line","class","clone","clone_into","clone_to_uninit","color","","","color_maybe","components_from","","","current_line","danger","default","","","","","deref","","","deref_mut","","","downcast","","","draw","","drop","","","eq","fmt","","font","","from","","","from_angle","","","from_iter","from_stimulus","","","height","highlight","highlight_line","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_fragment","into_stimulus","","","layout","","line_height","","link","mouse_interaction","new","","null_value","","","on_link_click","padding","primary","secondary","size","","","state","strikethrough","style","","success","tag","text","to_owned","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","underline","upcast","","","update","","vzip","","","width","with_spans","wrapping","Action","Active","Backspace","","Binding","Catalog","Class","Click","Content","Copy","Cr","CrLf","Custom","Cut","Delete","","Disabled","DocumentEnd","DocumentStart","Down","Drag","Edit","","End","Enter","","Focused","Home","Hovered","Insert","","KeyPress","Left","Lf","LfCr","Line","LineEnding","Motion","Move","","None","PageDown","PageUp","Paste","","Right","Scroll","Select","","SelectAll","","SelectLine","","SelectWord","","Sequence","State","Status","Style","StyleFn","TextEditor","Unfocus","Up","WordLeft","WordRight","adapt_into_using","","","","","","","","","","","arrays_from","","","","","","","","","","","arrays_into","","","","","","","","","","","as_any","","","","","","","","","","","as_any_mut","","","","","","","","","","","as_str","background","border","borrow","","","","","","","","","","","borrow_mut","","","","","","","","","","","cam16_into_unclamped","","","","","","","","","","","clone","","","","","","","","","clone_into","","","","","","","","","clone_to_uninit","","","","","","","","","components_from","","","","","","","","","","","cursor_position","default","","","","","deref","","","","","","","","","","","deref_mut","","","","","","","","","","","direction","downcast","","","","","","","","","","","drop","","","","","","","","","","","ending","eq","","","","","","","","","equivalent","","","","","","","","","","","","fmt","","","","","","","","","","","focus","from","","","","","","","","","","","from_angle","","","","","","","","","","","from_key_press","from_stimulus","","","","","","","","","","","icon","init","","","","","","","","","","","into","","","","","","","","","","","into_angle","","","","","","","","","","","into_any","","","","","","","","","","","into_any_arc","","","","","","","","","into_any_rc","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","into_color","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","into_stimulus","","","","","","","","","","","is_edit","is_focused","","key","line","line_count","line_ending","lines","modifiers","new","null_value","","","perform","placeholder","selection","","status","style","text","","","to_owned","","","","","","","","","try_components_into","","","","","","","","","","","try_from","","","","","","","","","","","try_into","","","","","","","","","","","try_into_color","","","","","","","","","","","type_id","","","","","","","","","","","uints_from","","","","","","","","","","","uints_into","","","","","","","","","","","unfocus","upcast","","","","","","","","","","","value","vzip","","","","","","","","","","","widen","with_text","lines","is_hovered","Active","Catalog","Class","Cursor","DEFAULT_PADDING","Disabled","Focused","Hovered","Icon","Id","Left","Right","Side","State","Status","Style","StyleFn","TextInput","Value","adapt_into_using","","","","","","","","arrays_from","","","","","","","","arrays_into","","","","","","","","as_any","","","","","","","","as_any_mut","","","","","","","","background","border","borrow","","","","","","","","borrow_mut","","","","","","","","cam16_into_unclamped","","","","","","","","clone","","","","","","","","clone_into","","","","","","","","clone_to_uninit","","","","","","","","code_point","components_from","","","","","","","","cursor","","default","","","","deref","","","","","","","","deref_mut","","","","","","","","downcast","","","","","","","","drop","","","","","","","","eq","","","","equivalent","","","","","","","","","fmt","","","","","","","","","focus","","","font","from","","","","","","","","","","from_angle","","","","","","","","from_stimulus","","","","","","","","hash","icon","init","","","","","","","","insert","insert_many","into","","","","","","","","into_angle","","","","","","","","into_any","","","","","","","","into_any_arc","","","","","","","","into_any_rc","","","","","","","","into_cam16_unclamped","","","","","","","","into_color","","","","","","","","into_color_unclamped","","","","","","","","into_stimulus","","","","","","","","is_empty","is_focused","","len","move_cursor_to","","","move_cursor_to_end","","","move_cursor_to_front","","","new","","","next_end_of_word","null_value","","placeholder","previous_start_of_word","remove","remove_many","secure","select","select_all","","","selection","","side","size","spacing","state","style","to_owned","","","","","","","","to_smolstr","to_string","try_components_into","","","","","","","","try_from","","","","","","","","try_into","","","","","","","","try_into_color","","","","","","","","type_id","","","","","","","","uints_from","","","","","","","","uints_into","","","","","","","","unfocus","","unique","until","upcast","","","","","","","","value","vzip","","","","","","","","is_hovered","Cursor","Index","Selection","State","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","deref","deref_mut","downcast","drop","eq","equivalent","","","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","end","start","Base","CatppuccinFrappe","CatppuccinLatte","CatppuccinMacchiato","CatppuccinMocha","Custom","","Dark","Dracula","Ferra","GruvboxDark","GruvboxLight","KanagawaDragon","KanagawaLotus","KanagawaWave","Light","Moonfly","Nightfly","Nord","Oxocarbon","Palette","SolarizedDark","SolarizedLight","Style","Theme","TokyoNight","TokyoNightLight","TokyoNightStorm","background","background_color","base","danger","default","palette","primary","success","text","text_color","warning","Background","Danger","EXTENDED_CATPPUCCIN_FRAPPE","EXTENDED_CATPPUCCIN_LATTE","EXTENDED_CATPPUCCIN_MACCHIATO","EXTENDED_CATPPUCCIN_MOCHA","EXTENDED_DARK","EXTENDED_DRACULA","EXTENDED_FERRA","EXTENDED_GRUVBOX_DARK","EXTENDED_GRUVBOX_LIGHT","EXTENDED_KANAGAWA_DRAGON","EXTENDED_KANAGAWA_LOTUS","EXTENDED_KANAGAWA_WAVE","EXTENDED_LIGHT","EXTENDED_MOONFLY","EXTENDED_NIGHTFLY","EXTENDED_NORD","EXTENDED_OXOCARBON","EXTENDED_SOLARIZED_DARK","EXTENDED_SOLARIZED_LIGHT","EXTENDED_TOKYO_NIGHT","EXTENDED_TOKYO_NIGHT_LIGHT","EXTENDED_TOKYO_NIGHT_STORM","Extended","Pair","Palette","Primary","Secondary","Success","Warning","background","","base","","","","","","color","danger","","is_dark","primary","","secondary","strong","","","","","","success","","text","","warning","","weak","","","","","","Active","Catalog","Class","Disabled","Hovered","Status","Style","StyleFn","Toggler","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","background","background_border_color","background_border_width","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","default","","deref","","deref_mut","","downcast","","drop","","eq","","equivalent","","","fmt","","foreground","foreground_border_color","foreground_border_width","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","style","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","is_toggled","","Bottom","FollowCursor","Left","Position","Right","Tooltip","Top","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","default","deref","deref_mut","downcast","drop","eq","equivalent","","","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","null_value","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Active","Catalog","Circle","Class","Dragged","Handle","HandleShape","Hovered","Rectangle","Status","Style","StyleFn","VerticalSlider","background","border_color","border_width","default","","handle","rail","shape","style","border_radius","radius","width","Action","AlwaysOnBottom","AlwaysOnTop","At","Centered","Close","CloseRequested","Closed","Critical","Default","Direction","DisableMousePassthrough","Drag","DragResize","East","EnableMousePassthrough","Event","FileDropped","FileHovered","FilesHoveredLeft","Focused","Fullscreen","GainFocus","GetLatest","GetMaximized","GetMinimized","GetMode","GetOldest","GetPosition","GetRawId","GetScaleFactor","GetSize","Hidden","Icon","","Id","Informational","Level","Maximize","Minimize","Mode","Move","Moved","NextFrame","Normal","North","NorthEast","NorthWest","Open","Opened","Position","RedrawRequest","RedrawRequested","RequestUserAttention","Resize","Resized","RunWithHandle","Screenshot","","SetIcon","SetLevel","SetMaxSize","SetMinSize","SetMode","SetResizable","SetResizeIncrements","Settings","ShowSystemMenu","South","SouthEast","SouthWest","Specific","SpecificWith","ToggleDecorations","ToggleMaximize","Unfocused","UserAttention","Wait","West","Windowed","adapt_into_using","","","","","","","","","","","","arrays_from","","","","","","","","","","","","arrays_into","","","","","","","","","","","","as_any","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","as_ref","borrow","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","bytes","cam16_into_unclamped","","","","","","","","","","","","clone","","","","","","","","","","","clone_into","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","close","close_events","close_requests","cmp","","compare","","components_from","","","","","","","","","","","","crop","decorations","default","","","deref","","","","","","","","","","","","deref_mut","","","","","","","","","","","","disable_mouse_passthrough","downcast","","","","","","","","","","","","drag","drag_resize","drop","","","","","","","","","","","","enable_mouse_passthrough","encode_hex","encode_hex_upper","eq","","","","","","equivalent","","","","","","","","","","","","events","exit_on_close_request","fmt","","","","","","","","","","","","frames","from","","","","","","","","","","","","","from_angle","","","","","","","","","","","","from_stimulus","","","","","","","","","","","","fullscreen","gain_focus","get_latest","get_maximized","get_minimized","get_mode","get_oldest","get_position","get_raw_id","get_scale_factor","get_size","hash","icon","","init","","","","","","","","","","","","into","","","","","","","","","","","","into_angle","","","","","","","","","","","","into_any","","","","","","","","","","","","into_any_arc","","","","","","","","","","","into_any_rc","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","into_color","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","into_raw","into_stimulus","","","","","","","","","","","","level","max_size","maximize","maximized","min_size","minimize","move_to","new","null_value","","","open","open_events","partial_cmp","","platform_specific","position","request_user_attention","resizable","resize","resize_events","run_with_handle","scale_factor","screenshot","","set_icon","set_level","set_max_size","set_min_size","set_mode","set_resizable","set_resize_increments","settings","show_system_menu","size","","to_owned","","","","","","","","","","","to_smolstr","to_string","toggle_decorations","toggle_maximize","transparent","try_components_into","","","","","","","","","","","","try_from","","","","","","","","","","","","try_into","","","","","","","","","","","","try_into_color","","","","","","","","","","","","type_id","","","","","","","","","","","","uints_from","","","","","","","","","","","","uints_into","","","","","","","","","","","","unique","upcast","","","","","","","","","","","","visible","vzip","","","","","","","","","","","","position","size","Error","Icon","ImageError","InvalidError","OsError","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","components_from","deref","deref_mut","downcast","drop","fmt","","from","","","","from_angle","from_file","from_file_data","from_rgba","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","source","to_smolstr","to_string","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Android","AndroidDisplayHandle","AndroidNdk","AndroidNdkWindowHandle","AppKit","","AppKitDisplayHandle","AppKitWindowHandle","DisplayHandle","Drm","","DrmDisplayHandle","DrmWindowHandle","Gbm","","GbmDisplayHandle","GbmWindowHandle","Haiku","","HaikuDisplayHandle","HaikuWindowHandle","HandleError","HasDisplayHandle","HasRawDisplayHandle","HasRawWindowHandle","HasWindowHandle","NotSupported","Ohos","OhosDisplayHandle","OhosNdk","OhosNdkWindowHandle","Orbital","","OrbitalDisplayHandle","OrbitalWindowHandle","RawDisplayHandle","RawWindowHandle","UiKit","","UiKitDisplayHandle","UiKitWindowHandle","Unavailable","Wayland","","WaylandDisplayHandle","WaylandWindowHandle","Web","","WebCanvas","WebCanvasWindowHandle","WebDisplayHandle","WebOffscreenCanvas","WebOffscreenCanvasWindowHandle","WebWindowHandle","Win32","Win32WindowHandle","WinRt","WinRtWindowHandle","WindowHandle","Windows","WindowsDisplayHandle","Xcb","","XcbDisplayHandle","XcbWindowHandle","Xlib","","XlibDisplayHandle","XlibWindowHandle","a_native_window","adapt_into_using","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","android","appkit","arrays_from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","arrays_into","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","as_any","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","as_raw","","as_ref","","b_direct_window","b_window","borrow","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","borrow_raw","","cam16_into_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","clone","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","clone_into","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","components_from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","connection","core_window","deref","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","deref_mut","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","display","","display_handle","","downcast","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","drop","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","eq","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","equivalent","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","fd","fmt","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","from_stimulus","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","gbm_device","gbm_surface","haiku","hash","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","hinstance","hwnd","id","init","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into_angle","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into_any","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into_any_arc","","","","","","","","","","","","","","","into_any_rc","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into_color","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","into_stimulus","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","native_window","new","","","","","","","","","","","","","","","","","","","","","","","","","","","","","ns_view","obj","","ohos","orbital","plane","raw_display_handle","","raw_window_handle","","screen","","surface","to_owned","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","to_smolstr","to_string","try_components_into","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","try_from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","try_into","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","try_into_color","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","type_id","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","ui_view","ui_view_controller","uikit","uints_from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","uints_into","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","upcast","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","visual_id","","vzip","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","web","window","","","window_handle","","windows","CropError","OutOfBounds","Screenshot","Zero","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","bytes","cam16_into_unclamped","components_from","deref","deref_mut","downcast","drop","fmt","","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","scale_factor","size","to_smolstr","to_string","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","PlatformSpecific","Settings","adapt_into_using","application_id","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","decorations","default","deref","deref_mut","downcast","drop","eq","equivalent","","","exit_on_close_request","fmt","from","from_angle","from_stimulus","fullscreen","icon","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","level","max_size","maximized","min_size","null_value","override_redirect","platform_specific","position","resizable","size","to_owned","transparent","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","visible","vzip"],"q":[[0,"iced"],[1553,"iced::advanced"],[1750,"iced::advanced::clipboard"],[1819,"iced::advanced"],[1820,"iced::advanced::clipboard"],[1841,"iced::advanced"],[1842,"iced::advanced::clipboard"],[1843,"iced::advanced::image"],[2151,"iced::advanced::image::Handle"],[2155,"iced::advanced::layout"],[2273,"iced::advanced::layout::flex"],[2313,"iced::mouse"],[2315,"iced::advanced::mouse"],[2316,"iced::mouse"],[2319,"iced::advanced::mouse"],[2320,"iced::mouse"],[2322,"iced::advanced::mouse"],[2323,"iced::mouse"],[2326,"iced::advanced::mouse"],[2327,"iced::mouse"],[2332,"iced::advanced::mouse"],[2333,"iced::mouse"],[2348,"iced::advanced::mouse"],[2349,"iced::mouse"],[2355,"iced::advanced::mouse"],[2400,"iced::mouse::Event"],[2402,"iced::mouse::ScrollDelta"],[2406,"iced::advanced::mouse::click"],[2455,"iced::advanced::overlay"],[2483,"iced::advanced"],[2484,"iced::advanced::overlay"],[2516,"iced::advanced"],[2518,"iced::advanced::overlay"],[2523,"iced::advanced"],[2524,"iced::advanced::overlay"],[2529,"iced::advanced"],[2530,"iced::advanced::overlay"],[2533,"iced::advanced"],[2534,"iced::advanced::overlay"],[2553,"iced::advanced"],[2554,"iced::advanced::overlay"],[2557,"iced::advanced::renderer"],[2579,"iced::advanced"],[2580,"iced::advanced::renderer"],[2598,"iced::advanced"],[2600,"iced::advanced::renderer"],[2602,"iced::advanced"],[2603,"iced::advanced::renderer"],[2636,"iced::advanced"],[2638,"iced::advanced::renderer"],[2659,"iced::advanced"],[2662,"iced::advanced::subscription"],[2806,"iced::advanced::subscription::Event"],[2809,"iced::advanced::svg"],[2962,"iced::advanced::text"],[3057,"iced::advanced"],[3058,"iced::advanced::text"],[3098,"iced::advanced"],[3099,"iced::advanced::text"],[3165,"iced::advanced"],[3166,"iced::advanced::text"],[3203,"iced::advanced"],[3204,"iced::advanced::text"],[3279,"iced::advanced"],[3280,"iced::advanced::text"],[3300,"iced::advanced"],[3301,"iced::advanced::text"],[3302,"iced::advanced"],[3303,"iced::advanced::text"],[3378,"iced::advanced"],[3379,"iced::advanced::text"],[3389,"iced::advanced"],[3390,"iced::advanced::text::editor"],[3391,"iced::widget::text_editor"],[3392,"iced::advanced::text::editor"],[3393,"iced::widget::text_editor"],[3396,"iced::advanced::text::editor"],[3397,"iced::widget::text_editor"],[3398,"iced::advanced::text::editor"],[3399,"iced::widget::text_editor"],[3403,"iced::advanced::text::editor"],[3404,"iced::widget::text_editor"],[3405,"iced::advanced::text::editor"],[3406,"iced::widget::text_editor"],[3408,"iced::advanced::text"],[3409,"iced::widget::text_editor"],[3412,"iced::advanced::text::editor"],[3413,"iced::widget::text_editor"],[3415,"iced::advanced::text::editor"],[3418,"iced::widget::text_editor"],[3424,"iced::advanced::text::editor"],[3425,"iced::widget::text_editor"],[3430,"iced::advanced::text::editor"],[3431,"iced::widget::text_editor"],[3434,"iced::advanced::text::editor"],[3448,"iced::advanced::text"],[3449,"iced::advanced::text::editor"],[3459,"iced::advanced::text"],[3461,"iced::advanced::text::editor"],[3469,"iced::widget::text_editor"],[3470,"iced::advanced::text::editor"],[3482,"iced::advanced::text"],[3483,"iced::advanced::text::editor"],[3503,"iced::advanced::text"],[3509,"iced::widget::text_editor"],[3510,"iced::advanced::text::editor"],[3528,"iced::advanced::text"],[3529,"iced::advanced::text::editor"],[3531,"iced::advanced::text"],[3532,"iced::widget::text_editor::Action"],[3533,"iced::advanced::text::highlighter"],[3534,"iced::advanced::text"],[3535,"iced::advanced::text::highlighter"],[3536,"iced::advanced::text"],[3537,"iced::advanced::text::highlighter"],[3538,"iced::advanced::text"],[3539,"iced::advanced::text::highlighter"],[3555,"iced::advanced::text"],[3556,"iced::advanced::text::highlighter"],[3566,"iced::advanced::text"],[3567,"iced::advanced::text::highlighter"],[3587,"iced::advanced::text"],[3588,"iced::advanced::text::highlighter"],[3609,"iced::advanced::text"],[3610,"iced::advanced::text::highlighter"],[3630,"iced::advanced::text"],[3631,"iced::advanced::text::highlighter"],[3634,"iced::advanced::text"],[3635,"iced::advanced::text::paragraph"],[3648,"iced::advanced::text"],[3649,"iced::advanced::text::paragraph"],[3659,"iced::advanced::text"],[3663,"iced::advanced::text::paragraph"],[3674,"iced::advanced::text"],[3675,"iced::advanced::text::paragraph"],[3676,"iced::advanced::text"],[3677,"iced::advanced::text::paragraph"],[3678,"iced::advanced::text"],[3679,"iced::advanced::text::paragraph"],[3683,"iced::advanced::text"],[3685,"iced::advanced::text::paragraph"],[3695,"iced::advanced::text"],[3696,"iced::advanced::text::paragraph"],[3698,"iced::advanced::text"],[3700,"iced::advanced::widget"],[3732,"iced::advanced"],[3733,"iced::advanced::widget"],[3751,"iced::advanced"],[3752,"iced::advanced::widget"],[3758,"iced::advanced"],[3759,"iced::advanced::widget"],[3817,"iced::advanced"],[3818,"iced::advanced::widget"],[3820,"iced::advanced"],[3821,"iced::advanced::widget"],[3826,"iced::advanced"],[3827,"iced::advanced::widget"],[3828,"iced::advanced"],[3829,"iced::advanced::widget"],[3831,"iced::advanced"],[3832,"iced::advanced::widget"],[3834,"iced::advanced"],[3835,"iced::advanced::widget"],[3836,"iced::advanced"],[3837,"iced::advanced::widget"],[3840,"iced::advanced"],[3841,"iced::advanced::widget"],[3872,"iced::advanced"],[3873,"iced::advanced::widget"],[3878,"iced::advanced::widget::operation"],[3896,"iced::advanced::widget"],[3898,"iced::advanced::widget::operation"],[3902,"iced::advanced::widget"],[3903,"iced::advanced::widget::operation"],[3906,"iced::advanced::widget"],[3907,"iced::advanced::widget::operation"],[3928,"iced::advanced::widget"],[3929,"iced::advanced::widget::operation"],[3931,"iced::advanced::widget"],[3932,"iced::advanced::widget::operation"],[3933,"iced::advanced::widget"],[3934,"iced::advanced::widget::operation"],[3945,"iced::advanced::widget::operation::focusable"],[3972,"iced::advanced::widget::operation"],[3973,"iced::advanced::widget::operation::focusable"],[3989,"iced::advanced::widget::operation"],[3990,"iced::advanced::widget::operation::focusable"],[4000,"iced::advanced::widget::operation"],[4001,"iced::advanced::widget::operation::focusable"],[4003,"iced::advanced::widget::operation::scrollable"],[4007,"iced::advanced::widget::operation"],[4008,"iced::advanced::widget::operation::scrollable"],[4009,"iced::advanced::widget::operation"],[4010,"iced::advanced::widget::operation::scrollable"],[4011,"iced::advanced::widget::operation"],[4012,"iced::widget::scrollable"],[4016,"iced::advanced::widget::operation::text_input"],[4018,"iced::advanced::widget::operation"],[4019,"iced::advanced::widget::operation::text_input"],[4020,"iced::advanced::widget::operation"],[4021,"iced::advanced::widget::operation::text_input"],[4022,"iced::advanced::widget::operation"],[4023,"iced::advanced::widget::operation::text_input"],[4024,"iced::advanced::widget::operation"],[4025,"iced::advanced::text"],[4028,"iced::advanced::widget::text"],[4029,"iced::widget::text"],[4030,"iced::advanced::text"],[4031,"iced::advanced::widget::text"],[4032,"iced::advanced::text"],[4034,"iced::advanced::widget::text"],[4039,"iced::advanced::text"],[4041,"iced::advanced::widget::text"],[4043,"iced::widget::text"],[4044,"iced::advanced::widget::text"],[4046,"iced::widget::text"],[4047,"iced::advanced::widget::text"],[4051,"iced::widget::text"],[4052,"iced::advanced::widget::text"],[4053,"iced::advanced::widget::tree"],[4074,"iced::advanced::widget"],[4075,"iced::advanced::widget::tree"],[4128,"iced::advanced::widget"],[4129,"iced::advanced::widget::tree"],[4130,"iced::advanced::widget"],[4131,"iced::advanced::widget::tree"],[4150,"iced::alignment"],[4152,"iced"],[4153,"iced::alignment"],[4155,"iced"],[4156,"iced::alignment"],[4159,"iced"],[4160,"iced::alignment"],[4254,"iced::animation"],[4336,"iced::application"],[4400,"iced::border"],[4422,"iced"],[4423,"iced::border"],[4453,"iced"],[4454,"iced::border"],[4476,"iced"],[4477,"iced::clipboard"],[4481,"iced::daemon"],[4534,"iced::event"],[4537,"iced"],[4540,"iced::event"],[4541,"iced"],[4543,"iced::event"],[4592,"iced::executor"],[4594,"iced"],[4597,"iced::font"],[4734,"iced"],[4735,"iced::font"],[4814,"iced"],[4816,"iced::font"],[4866,"iced"],[4867,"iced::gradient"],[4870,"iced"],[4871,"iced::gradient"],[4963,"iced::keyboard"],[5220,"iced::keyboard::Event"],[5231,"iced::keyboard::key"],[5300,"iced::keyboard"],[5301,"iced::keyboard::key"],[5575,"iced::keyboard"],[5576,"iced::keyboard::key"],[5731,"iced::keyboard"],[5732,"iced::keyboard::key"],[5942,"iced::mouse"],[6211,"iced::mouse::Event"],[6213,"iced::mouse::ScrollDelta"],[6217,"iced::overlay"],[6219,"iced::overlay::menu"],[6356,"iced::padding"],[6359,"iced"],[6360,"iced::padding"],[6361,"iced"],[6362,"iced::padding"],[6363,"iced"],[6364,"iced::padding"],[6365,"iced"],[6366,"iced::stream"],[6368,"iced::system"],[6420,"iced::task"],[6466,"iced::theme"],[6471,"iced"],[6475,"iced::theme"],[6476,"iced"],[6477,"iced::theme"],[6479,"iced"],[6481,"iced::theme"],[6482,"iced"],[6483,"iced::theme"],[6485,"iced"],[6487,"iced::theme"],[6490,"iced"],[6493,"iced::theme"],[6494,"iced"],[6495,"iced::theme"],[6496,"iced"],[6497,"iced::theme"],[6499,"iced"],[6501,"iced::theme"],[6502,"iced"],[6503,"iced::theme"],[6506,"iced"],[6508,"iced::theme"],[6513,"iced"],[6516,"iced::theme"],[6655,"iced::theme::palette"],[6726,"iced::theme"],[6727,"iced::theme::palette"],[6791,"iced::theme"],[6792,"iced::theme::palette"],[6954,"iced::theme"],[6955,"iced::theme::palette"],[6963,"iced::theme"],[6964,"iced::theme::palette"],[6965,"iced::theme"],[6966,"iced::theme::palette"],[7047,"iced::theme"],[7048,"iced::theme::palette"],[7055,"iced::time"],[7253,"iced::touch"],[7345,"iced::touch::Event"],[7353,"iced::widget"],[7356,"iced"],[7360,"iced::widget"],[7365,"iced"],[7366,"iced::widget"],[7372,"iced"],[7374,"iced::widget"],[7375,"iced"],[7378,"iced::widget"],[7379,"iced"],[7382,"iced::widget"],[7383,"iced"],[7385,"iced::widget"],[7386,"iced"],[7389,"iced::widget"],[7393,"iced"],[7394,"iced::widget"],[7402,"iced"],[7403,"iced::widget"],[7405,"iced"],[7407,"iced::widget"],[7417,"iced"],[7420,"iced::widget"],[9179,"iced::widget::button"],[9289,"iced::widget::canvas"],[9302,"iced"],[9304,"iced::widget::canvas"],[9309,"iced"],[9310,"iced::widget::canvas"],[9320,"iced"],[9322,"iced::widget::canvas"],[9502,"iced::advanced::image"],[9503,"iced::widget::canvas"],[9553,"iced::advanced::image"],[9554,"iced::widget::canvas"],[9671,"iced::advanced::image"],[9672,"iced::widget::canvas"],[9678,"iced::advanced::image"],[9679,"iced::widget::canvas"],[9684,"iced::advanced::image"],[9685,"iced::widget::canvas"],[9797,"iced::widget::canvas::fill"],[9799,"iced::widget::canvas"],[9800,"iced::widget::canvas::fill"],[9802,"iced::widget::canvas"],[9803,"iced::widget::canvas::fill"],[9838,"iced::widget::canvas"],[9840,"iced::widget::canvas::fill"],[9850,"iced::widget::canvas::gradient"],[9852,"iced::widget::canvas"],[9853,"iced::widget::canvas::gradient"],[9945,"iced::widget::canvas::path"],[10043,"iced::widget::canvas::path::arc"],[10053,"iced::widget::canvas::path"],[10054,"iced::widget::canvas::path::arc"],[10063,"iced::widget::canvas::path"],[10064,"iced::widget::canvas::path::arc"],[10081,"iced::widget::canvas::path"],[10082,"iced::widget::canvas::path::arc"],[10083,"iced::widget::canvas::path"],[10084,"iced::widget::canvas::path::arc"],[10095,"iced::widget::canvas::path::lyon_path"],[11340,"iced::widget::canvas::path::lyon_path::Event"],[11379,"iced::widget::canvas::path::lyon_path::builder"],[11736,"iced::widget::canvas::path::lyon_path::commands"],[11960,"iced::widget::canvas::path::lyon_path::geom"],[12505,"iced::widget::canvas::path::lyon_path"],[12506,"iced::widget::canvas::path::lyon_path::geom"],[12606,"iced::widget::canvas::path::lyon_path"],[12607,"iced::widget::canvas::path::lyon_path::geom"],[12780,"iced::widget::canvas::path::lyon_path::geom::arc"],[12792,"iced::widget::canvas::path::lyon_path::geom"],[12793,"iced::widget::canvas::path::lyon_path::geom::arc"],[12798,"iced::widget::canvas::path::lyon_path::geom"],[12799,"iced::widget::canvas::path::lyon_path::geom::arc"],[12800,"iced::widget::canvas::path::lyon_path::geom"],[12801,"iced::widget::canvas::path::lyon_path::geom::arc"],[12814,"iced::widget::canvas::path::lyon_path"],[12815,"iced::widget::canvas::path::lyon_path::geom::arc"],[12816,"iced::widget::canvas::path::lyon_path::geom"],[12819,"iced::widget::canvas::path::lyon_path"],[12820,"iced::widget::canvas::path::lyon_path::geom"],[12822,"iced::widget::canvas::path::lyon_path::geom::arc"],[12831,"iced::widget::canvas::path::lyon_path::geom"],[12833,"iced::widget::canvas::path::lyon_path::geom::arrayvec"],[13269,"iced::widget::canvas::path::lyon_path::geom::cubic_bezier"],[13280,"iced::widget::canvas::path::lyon_path::geom"],[13282,"iced::widget::canvas::path::lyon_path::geom::cubic_bezier"],[13287,"iced::widget::canvas::path::lyon_path::geom"],[13288,"iced::widget::canvas::path::lyon_path::geom::cubic_bezier"],[13303,"iced::widget::canvas::path::lyon_path::geom"],[13304,"iced::widget::canvas::path::lyon_path::geom::cubic_bezier"],[13313,"iced::widget::canvas::path::lyon_path::geom::euclid"],[14747,"iced::widget::canvas::path::lyon_path::geom"],[14748,"iced::widget::canvas::path::lyon_path::geom::euclid"],[15387,"iced::widget::canvas::path::lyon_path::geom::euclid::approxeq"],[15391,"iced::widget::canvas::path::lyon_path::geom::euclid::approxord"],[15393,"iced::widget::canvas::path::lyon_path::geom::euclid::default"],[15416,"iced::widget::canvas::path::lyon_path::geom"],[15417,"iced::widget::canvas::path::lyon_path::geom::euclid::default"],[15444,"iced::widget::canvas::path::lyon_path::geom"],[15445,"iced::widget::canvas::path::lyon_path::geom::euclid::default"],[15446,"iced::widget::canvas::path::lyon_path::geom"],[15447,"iced::widget::canvas::path::lyon_path::geom::euclid::default"],[15456,"iced::widget::canvas::path::lyon_path::geom"],[15457,"iced::widget::canvas::path::lyon_path::geom::euclid::default"],[15458,"iced::widget::canvas::path::lyon_path::geom"],[15459,"iced::widget::canvas::path::lyon_path::geom::euclid::default"],[15460,"iced::widget::canvas::path::lyon_path::geom"],[15461,"iced::widget::canvas::path::lyon_path::geom::euclid::default"],[15465,"iced::widget::canvas::path::lyon_path::geom"],[15466,"iced::widget::canvas::path::lyon_path::geom::euclid::default"],[15467,"iced::widget::canvas::path::lyon_path::geom"],[15468,"iced::widget::canvas::path::lyon_path::geom::euclid::default"],[15476,"iced::widget::canvas::path::lyon_path::geom::euclid::num"],[15486,"iced::widget::canvas::path::lyon_path::geom::quadratic_bezier"],[15517,"iced::widget::canvas::path::lyon_path::geom"],[15518,"iced::widget::canvas::path::lyon_path::geom::quadratic_bezier"],[15533,"iced::widget::canvas::path::lyon_path::geom"],[15534,"iced::widget::canvas::path::lyon_path::geom::quadratic_bezier"],[15577,"iced::widget::canvas::path::lyon_path::geom"],[15578,"iced::widget::canvas::path::lyon_path::geom::quadratic_bezier"],[15605,"iced::widget::canvas::path::lyon_path::geom"],[15606,"iced::widget::canvas::path::lyon_path::geom::traits"],[15608,"iced::widget::canvas::path::lyon_path::geom"],[15621,"iced::widget::canvas::path::lyon_path::geom::traits"],[15623,"iced::widget::canvas::path::lyon_path::geom"],[15625,"iced::widget::canvas::path::lyon_path::geom::utils"],[15631,"iced::widget::canvas::path::lyon_path::iterator"],[15795,"iced::widget::canvas::path::lyon_path::math"],[15825,"iced::widget::canvas::path::lyon_path::path"],[15834,"iced::widget::canvas::path::lyon_path::path_buffer"],[15984,"iced::widget::canvas::path::lyon_path::polygon"],[16034,"iced::widget::canvas::path::lyon_path"],[16036,"iced::widget::canvas::path::lyon_path::polygon"],[16118,"iced::widget::canvas::path::lyon_path"],[16120,"iced::widget::canvas::path::lyon_path::polygon"],[16160,"iced::widget::canvas::path::lyon_path::traits"],[16163,"iced::widget::canvas::path::lyon_path::builder"],[16164,"iced::widget::canvas::path::lyon_path::traits"],[16165,"iced::widget::canvas::path::lyon_path::builder"],[16191,"iced::widget::canvas"],[16194,"iced::widget::canvas::stroke"],[16197,"iced::widget::canvas"],[16202,"iced::widget::canvas::stroke"],[16204,"iced::widget::canvas"],[16211,"iced::widget::checkbox"],[16362,"iced::widget::checkbox::Status"],[16365,"iced::widget::combo_box"],[16414,"iced::widget::container"],[16536,"iced::advanced::image"],[16537,"iced::widget::image"],[16540,"iced::advanced::image"],[16544,"iced::widget::image"],[16600,"iced::advanced::image::Handle"],[16604,"iced::widget::image::viewer"],[16651,"iced::widget::keyed"],[16713,"iced::widget::keyed::column"],[16714,"iced::widget::markdown"],[16773,"iced::advanced::text"],[16775,"iced::widget::markdown"],[17138,"iced::widget::markdown::Item"],[17146,"iced::widget::overlay"],[17147,"iced::widget::overlay::menu"],[17148,"iced::overlay::menu"],[17149,"iced::widget::overlay::menu"],[17153,"iced::overlay::menu"],[17155,"iced::widget::overlay::menu"],[17156,"iced::overlay::menu"],[17161,"iced::widget::pane_grid"],[17997,"iced::widget::pane_grid::Configuration"],[18001,"iced::widget::pane_grid::DragEvent"],[18005,"iced::widget::pane_grid::Node"],[18010,"iced::widget::pane_grid::state"],[18061,"iced::widget::pane_grid"],[18062,"iced::widget::pane_grid::state"],[18081,"iced::widget::pane_grid"],[18082,"iced::widget::pane_grid::state"],[18104,"iced::widget::pane_grid::state::Action"],[18108,"iced::widget::pick_list"],[18306,"iced::widget::pick_list::Handle"],[18309,"iced::widget::pick_list::Status"],[18310,"iced::widget::pop"],[18311,"iced::widget::progress_bar"],[18367,"iced::widget::qr_code"],[18607,"iced::widget::radio"],[18708,"iced::widget::radio::Status"],[18710,"iced::widget::rule"],[18810,"iced::widget::scrollable"],[19340,"iced::widget::scrollable::Direction"],[19342,"iced::widget::scrollable::Status"],[19352,"iced::widget::shader"],[19453,"iced::widget::slider"],[19688,"iced::widget::slider::HandleShape"],[19691,"iced::widget::svg"],[19790,"iced::advanced::text"],[19794,"iced::widget::text"],[19797,"iced::advanced::text"],[19799,"iced::widget::text"],[19801,"iced::advanced::text"],[19802,"iced::widget::text"],[19803,"iced::advanced::text"],[19806,"iced::widget::text"],[19807,"iced::advanced::text"],[19808,"iced::widget::text"],[19814,"iced::advanced::text"],[19816,"iced::widget::text"],[19845,"iced::advanced::text"],[19846,"iced::widget::text"],[19851,"iced::advanced::text"],[19852,"iced::widget::text"],[19857,"iced::advanced::text"],[19858,"iced::widget::text"],[19882,"iced::advanced::text"],[19883,"iced::widget::text"],[19894,"iced::advanced::text"],[19896,"iced::widget::text"],[19922,"iced::advanced::text"],[19923,"iced::widget::text"],[19929,"iced::advanced::text"],[19931,"iced::widget::text"],[19932,"iced::advanced::text"],[19933,"iced::widget::text"],[19938,"iced::advanced::text"],[19939,"iced::widget::text"],[19943,"iced::advanced::text"],[19944,"iced::widget::text"],[19945,"iced::advanced::text"],[19946,"iced::widget::text"],[19950,"iced::advanced::text"],[19951,"iced::widget::text"],[19973,"iced::advanced::text"],[19974,"iced::widget::text"],[19977,"iced::advanced::text"],[19978,"iced::widget::text"],[19985,"iced::widget::text_editor"],[20541,"iced::widget::text_editor::Action"],[20542,"iced::widget::text_editor::Status"],[20543,"iced::widget::text_input"],[20957,"iced::widget::text_input::Status"],[20958,"iced::widget::text_input::cursor"],[21006,"iced::widget::text_input::cursor::State"],[21008,"iced::widget::theme"],[21009,"iced"],[21013,"iced::widget::theme"],[21014,"iced"],[21028,"iced::widget::theme"],[21029,"iced"],[21031,"iced::widget::theme"],[21033,"iced"],[21036,"iced::theme"],[21040,"iced::widget::theme"],[21042,"iced::theme"],[21047,"iced::widget::theme::palette"],[21078,"iced::theme"],[21079,"iced::theme::palette"],[21087,"iced::theme"],[21088,"iced::theme::palette"],[21090,"iced::theme"],[21091,"iced::theme::palette"],[21099,"iced::theme"],[21100,"iced::theme::palette"],[21101,"iced::theme"],[21102,"iced::theme::palette"],[21103,"iced::theme"],[21104,"iced::theme::palette"],[21111,"iced::widget::toggler"],[21214,"iced::widget::toggler::Status"],[21216,"iced::widget::tooltip"],[21269,"iced::widget::slider"],[21270,"iced::widget::vertical_slider"],[21271,"iced::widget::slider"],[21274,"iced::widget::vertical_slider"],[21276,"iced::widget::slider"],[21278,"iced::widget::vertical_slider"],[21282,"iced::widget::slider"],[21285,"iced::widget::vertical_slider"],[21286,"iced::widget::slider"],[21291,"iced::widget::slider::HandleShape"],[21294,"iced::window"],[21949,"iced::window::Event"],[21951,"iced::window::icon"],[22002,"iced::window::raw_window_handle"],[23692,"iced::window::screenshot"],[23703,"iced::window"],[23704,"iced::window::screenshot"],[23725,"iced::window"],[23727,"iced::window::screenshot"],[23738,"iced::window::settings"],[23753,"iced::window"],[23754,"iced::window::settings"],[23763,"iced::window"],[23764,"iced::window::settings"],[23768,"iced::window"],[23770,"iced::window::settings"],[23780,"iced::window"],[23784,"iced::window::settings"],[23786,"iced::window"],[23790,"iced::window::settings"],[23791,"iced::window"],[23792,"iced::window::settings"],[23800,"iced::window"],[23801,"iced::window::settings"],[23802,"iced_core::color"],[23803,"iced_runtime::task"],[23804,"palette::chromatic_adaptation"],[23805,"iced_core::angle"],[23806,"iced_core::pixels"],[23807,"iced_core::point"],[23808,"iced_core::vector"],[23809,"core::ops::arith"],[23810,"iced_core::rectangle"],[23811,"iced_core::size"],[23812,"core::option"],[23813,"iced_futures::maybe::platform"],[23814,"core::ops::function"],[23815,"core::result"],[23816,"iced_core::settings"],[23817,"iced::program"],[23818,"core::marker"],[23819,"core::fmt"],[23820,"core::default"],[23821,"iced_core::theme"],[23822,"iced_core::rotation"],[23823,"core::any"],[23824,"iced_core::transformation"],[23825,"iced_core::animation"],[23826,"core::clone"],[23827,"core::cmp"],[23828,"core::iter::traits::collect"],[23829,"iced_futures::subscription"],[23830,"iced_core::shadow"],[23831,"iced_core::padding"],[23832,"core::convert"],[23833,"palette::cam16::parameters"],[23834,"iced_core::alignment"],[23835,"iced_core::border"],[23836,"iced_core::event"],[23837,"iced_core::font"],[23838,"iced_core::gradient"],[23839,"iced_core::background"],[23840,"iced_core::content_fit"],[23841,"iced_core::length"],[23842,"alloc::vec"],[23843,"alloc::string"],[23844,"iced_core::theme::palette"],[23845,"alloc::boxed"],[23846,"core::time"],[23847,"num_traits::float"],[23848,"num_traits"],[23849,"lilt::animated"],[23850,"iced_futures::executor"],[23851,"iced::error"],[23852,"iced_winit::error"],[23853,"palette::rgb::rgb"],[23854,"palette::alpha::alpha"],[23855,"core::future::future"],[23856,"core::hash"],[23857,"std::time"],[23858,"lilt::traits"],[23859,"alloc::sync"],[23860,"alloc::rc"],[23861,"std::io::error"],[23862,"iced_core::window::settings"],[23863,"futures_core::stream"],[23864,"iced_core::window::id"],[23865,"iced_widget::text_input"],[23866,"iced_core::widget::text"],[23867,"iced_widget::checkbox"],[23868,"iced_widget::button"],[23869,"iced_widget::radio"],[23870,"iced_widget::pick_list"],[23871,"iced_widget::qr_code"],[23872,"iced_widget::svg"],[23873,"iced_widget::text_editor"],[23874,"iced_widget::container"],[23875,"iced_widget::progress_bar"],[23876,"iced_widget::scrollable"],[23877,"iced_widget::slider"],[23878,"iced_widget::pane_grid"],[23879,"iced_widget::rule"],[23880,"iced_widget::overlay::menu"],[23881,"iced_widget::toggler"],[23882,"smol_str"],[23883,"palette::convert::try_from_into_color"],[23884,"iced_core::shell"],[23885,"iced_core::layout"],[23886,"iced_core::text"],[23887,"iced_core::widget"],[23888,"iced_core::widget::tree"],[23889,"core::iter::traits::double_ended"],[23890,"iced_core::renderer"],[23891,"iced_core::overlay"],[23892,"iced_core::mouse::cursor"],[23893,"iced_core::input_method"],[23894,"iced_core::layout::node"],[23895,"iced_core::layout::limits"],[23896,"iced_core::mouse::interaction"],[23897,"iced_core::widget::operation"],[23898,"iced_core::overlay::element"],[23899,"iced_core::clipboard"],[23900,"iced_core::window::redraw_request"],[23901,"bytes::bytes"],[23902,"iced_core::image"],[23903,"bytes::bytes_mut"],[23904,"iced_core::window::screenshot"],[23905,"std::path"],[23906,"core::ops::range"],[23907,"iced_core::layout::flex"],[23908,"iced_core::element"],[23909,"iced_core::mouse::click"],[23910,"iced_core::mouse::button"],[23911,"iced_core::mouse::event"],[23912,"iced_core::overlay::group"],[23913,"rustc_hash"],[23914,"core::pin"],[23915,"iced_core::svg"],[23916,"alloc::borrow"],[23917,"iced_core::text::editor"],[23918,"iced_core::text::highlighter"],[23919,"core::iter::traits::iterator"],[23920,"iced_core::text::paragraph"],[23921,"iced_core::widget::id"],[23922,"core::borrow"],[23923,"iced_core::widget::operation::focusable"],[23924,"iced_core::widget::operation::scrollable"],[23925,"iced_core::widget::operation::text_input"],[23926,"iced_core::window::level"],[23927,"iced_core::window::position"],[23928,"iced_runtime::font"],[23929,"iced_core::keyboard::modifiers"],[23930,"iced_core::keyboard::key"],[23931,"iced_core::keyboard::event"],[23932,"iced_core::keyboard::location"],[23933,"bitflags::iter"],[23934,"futures_channel::mpsc"],[23935,"iced_runtime::system"],[23936,"std::sync::lazy_lock"],[23937,"time::duration"],[23938,"serde::de"],[23939,"zvariant_utils::signature"],[23940,"zvariant::error"],[23941,"tokio::time::instant"],[23942,"image::animation"],[23943,"nix::sys::time"],[23944,"serde::ser"],[23945,"time::error::conversion_range"],[23946,"iced_core::touch"],[23947,"iced_widget::column"],[23948,"iced_widget::row"],[23949,"iced_widget::action"],[23950,"iced_widget::pop"],[23951,"iced_widget::themer"],[23952,"iced_widget::canvas"],[23953,"iced_graphics::geometry"],[23954,"iced_widget::canvas::program"],[23955,"iced_widget::mouse_area"],[23956,"iced_widget::pin"],[23957,"iced_widget::stack"],[23958,"iced_widget::combo_box"],[23959,"iced_widget::tooltip"],[23960,"iced_widget::lazy"],[23961,"iced_widget::vertical_slider"],[23962,"iced_widget::lazy::component"],[23963,"iced_widget::image"],[23964,"num_traits::cast"],[23965,"iced_widget::text_input::value"],[23966,"iced_widget::lazy::responsive"],[23967,"iced_widget::shader"],[23968,"iced_widget::shader::program"],[23969,"iced_wgpu::primitive"],[23970,"iced_wgpu"],[23971,"iced_tiny_skia"],[23972,"iced_renderer::fallback"],[23973,"iced_widget::space"],[23974,"iced_highlighter"],[23975,"iced_widget::keyed::column"],[23976,"url"],[23977,"iced_widget::markdown"],[23978,"iced_widget::pane_grid::state"],[23979,"iced_widget::pane_grid::pane"],[23980,"iced_widget::pane_grid::content"],[23981,"iced_widget::text::rich"],[23982,"iced_graphics::geometry::path"],[23983,"iced_graphics::cache"],[23984,"iced_graphics::gradient"],[23985,"iced_graphics::geometry::fill"],[23986,"iced_graphics::geometry::stroke"],[23987,"iced_graphics::geometry::style"],[23988,"iced_graphics::geometry::text"],[23989,"iced_graphics::geometry::path::builder"],[23990,"lyon_path::path"],[23991,"euclid"],[23992,"euclid::transform2d"],[23993,"iced_graphics::geometry::path::arc"],[23994,"lyon_path::commands"],[23995,"lyon_path::path_buffer"],[23996,"lyon_path"],[23997,"euclid::point"],[23998,"lyon_path::builder"],[23999,"lyon_geom::arc"],[24000,"lyon_path::events"],[24001,"lyon_path::polygon"],[24002,"lyon_path::iterator"],[24003,"lyon_geom::traits"],[24004,"euclid::vector"],[24005,"euclid::angle"],[24006,"lyon_geom::line"],[24007,"euclid::box2d"],[24008,"lyon_geom::scalar"],[24009,"lyon_geom::triangle"],[24010,"lyon_geom::segment"],[24011,"lyon_geom::cubic_bezier"],[24012,"lyon_geom::quadratic_bezier"],[24013,"lyon_geom"],[24014,"num_traits::identities"],[24015,"euclid::approxeq"],[24016,"arrayvec::arrayvec"],[24017,"euclid::trig"],[24018,"euclid::default"],[24019,"num_traits::real"],[24020,"euclid::size"],[24021,"arrayvec::array_string"],[24022,"arrayvec::errors"],[24023,"core::str::error"],[24024,"endi::endian"],[24025,"num_traits::sign"],[24026,"euclid::length"],[24027,"euclid::scale"],[24028,"euclid::side_offsets"],[24029,"euclid::translation"],[24030,"euclid::rotation"],[24031,"euclid::transform3d"],[24032,"euclid::rect"],[24033,"euclid::box3d"],[24034,"euclid::rigid"],[24035,"euclid::num"],[24036,"euclid::homogen"],[24037,"num_traits::ops::euclid"],[24038,"num_traits::ops::saturating"],[24039,"lyon_path::math"],[24040,"rayon::iter::par_bridge"],[24041,"iced_widget::image::viewer"],[24042,"pulldown_cmark"],[24043,"url::parser"],[24044,"url::host"],[24045,"std::collections::hash::set"],[24046,"url::slicing"],[24047,"url::origin"],[24048,"core::str::iter"],[24049,"url::path_segments"],[24050,"form_urlencoded"],[24051,"core::net::ip_addr"],[24052,"core::net::socket_addr"],[24053,"iced_widget::pane_grid::direction"],[24054,"iced_widget::pane_grid::title_bar"],[24055,"iced_widget::pane_grid::draggable"],[24056,"iced_widget::pane_grid::axis"],[24057,"iced_widget::pane_grid::configuration"],[24058,"iced_widget::pane_grid::node"],[24059,"iced_widget::pane_grid::split"],[24060,"iced_widget::pane_grid::controls"],[24061,"alloc::collections::btree::map"],[24062,"qrcode::types"],[24063,"iced_graphics::viewport"],[24064,"wgpu::api::device"],[24065,"wgpu::api::queue"],[24066,"wgpu_types"],[24067,"wgpu::api::command_encoder"],[24068,"wgpu::api::texture_view"],[24069,"iced_widget::text_input::cursor"],[24070,"iced_core::window::icon"],[24071,"iced_core::window::direction"],[24072,"iced_core::window::event"],[24073,"iced_core::window::mode"],[24074,"iced_core::window::user_attention"],[24075,"iced_core::window::settings::platform"],[24076,"raw_window_handle::borrowed"],[24077,"image::error"],[24078,"image::image"],[24079,"core::error"],[24080,"raw_window_handle::android"],[24081,"core::ptr::non_null"],[24082,"raw_window_handle"],[24083,"raw_window_handle::haiku"],[24084,"raw_window_handle::appkit"],[24085,"raw_window_handle::ohos"],[24086,"raw_window_handle::redox"],[24087,"raw_window_handle::uikit"],[24088,"raw_window_handle::unix"],[24089,"raw_window_handle::web"],[24090,"raw_window_handle::windows"],[24091,"core::num::nonzero"],[24092,"core::ffi"],[24093,"iced_core::alignment::Vertical"],[24094,"iced_core::alignment::Alignment"],[24095,"iced_core::length::Length"],[24096,"iced_core::alignment::Horizontal"],[24097,"iced_renderer"],[24098,"iced_core"],[24099,"iced_runtime"],[24100,"iced_futures"],[24101,"iced_core::mouse"],[24102,"iced_runtime::clipboard"],[24103,"iced_futures::event"],[24104,"iced_core::keyboard"],[24105,"iced_futures::keyboard"],[24106,"iced_widget::overlay"],[24107,"iced_futures::stream"],[24108,"iced_winit::system"],[24109,"iced_core::time"],[24110,"iced_futures::backend::native::tokio::time"],[24111,"iced_widget::text"],[24112,"iced_widget::helpers"],[24113,"iced_widget"],[24114,"iced_widget::lazy::helpers"],[24115,"iced_graphics"],[24116,"euclid::approxord"],[24117,"lyon_geom::utils"],[24118,"iced_widget::keyed"],[24119,"iced_runtime::window"],[24120,"iced_core::window"]],"i":"El```b```1111`Fn`GhGj`04Gd`5`5`3Mn```ChJh8`4Gl`00Dj``72::DnAlAnGb>>>0``>Gf:8?1?;?Ad:Eln```EKl`A`2```=```Gj2```<`44;Fn?`b``Ch777`:`;`1:JhFhAb>Af5f0Fd58EbG`GbGdGf9ElA`nGhbGjGl?AdAlDjBnFfAnDnAf<<;:987654889EbfFdJhFn48Gb8Gf87A`nGhbGjGlAbAdAlDjBnFfAnDnAffFdJhFnEbG`GbGdGfFhElA`nGhbGjGlAbAdAlDjBnFfAnDnAff87>>99900FdJhFnEbG`GbGdGfFhElA`nGhbGjGlAbAdAlDjBnFfAnDnAffFdJhFnEbG`GbGdGfFhElA`nGhbGjGlAbAdAlDjBnFfAnDnAfEb0:InFnG`GbGdGfFhElA`0n0GhbGjGlAbAdAlDjFfAnDnAfFn00Gd00;;;888777444222```74El1;Fh==>=;;;;;fFdJhFnEbG`GbGdGfFhElA`nGhbGjGlAbAdAlDjBnFfAnDnAf>=f`6:6`Fh94FdJh45G`Gb5Gf5ElA`nGhbGjGlAbAdAlDjBnFfAnDnAfEb077fFdJhFn4G`GbGdGfFhElA`nGhbGjGlAbAdAlDjBnFfAnDnAffFdJhFnEbG`GbGdGfFhElA`nGhbGjGlAbAdAlDjBnFfAnDnAffFdJhFnEbG`GbGdGfFhElA`nGhbGjGlAbAdAlDjBnFfAnDnAfJhFnEbG`GbGdGfFhElA`nGhbGjGlAbAdAlDjBnFfAnDnAffFdJhFnEbG`GbGdGfFhElA`nGhbGjGlAbAdAlDjBnFfAnDnAffFdJhFnEbG`GbGdGfFhElA`nGhbGjGlAbAdAlDjBnFfAnDnAffFdJhFnEbG`GbGdGfFhElA`nGhbGjGlAbAdAlDjBnFfAnDnAffFdJhFnEbG`GbGdGfFhElA`nGhbGjGlAbAdAlDjBnFfAnDnAf;;fFdJhFnEbG`GbGdGfFhElA`nGhbGjGlAbAdAlDjBnFfAnDnAf;;Eb:7`Fh0fFd66`A`n0>>=<<<8887666`In65>=9743G`Gd7ElbGjAbAdAlDjBnFfAnDnAf31``;:A`0n0:f9Eb>99G`3111Fh0<81`Ch04Fd1109GfGhb4415151515151515151515>>>>>>0151515151515151515>15>ANj`<`<`1101010010>10101010100100101010>110101010101010101010>10101010101010101010>110AMd``AO`00000000001000000000011110000000000010101000011000000000010011`````AObAClAOf222102102102102102102102ACj2311133321AEf04324321333432144323222203204443222243243224432432432432424324324324324321441432`41`10414414134413`002`4324324324324324324322432143244AOj`0```0`00000`000011000010AOl`21111111111110`B@f00`B@d0`4104`4`3333333233``B@l00000000000`000000000`0`3``0000000000000030000000000300````1`1`1B@hB@j10``4`4`4`4AEbAFb0`AOdAFh`03`````00``Ob``2````2`AFd0```0AFf10101010101010ACl11111212121`212221111121212121121212121121212121212110101212121212121212121`K`FnKb21`0012`02020202020202020202020202020202020002220200220202020202020202020202020202020202020202020202`Il000000000000000000000000000000```0000000000000000000Ej11111Lh222222222222222222222````Cj0`000000000000000000000000000000000000000000Cl111111111DbDh333``Ml000000`0`00`000000`G`1111111111111111111111111`111`0`1`1`1`11`11111111111`0```````Hj000000000`0000000000000000000000000000Hl11111111Hn2ADh`0Gb00`001111111111111111111111111111111111````11111111111``In00AC`0NlJ``12112`0`ABd3311320012231``322`BAf2431024310243102431024310243102431024310243102431024310243124310243102431024310243102431000222444333111Gd13542135421354213542354213542135421354213542135421354213542135421354213542`354200135421354213542135421354213542135421354213542135420```GfBAhKd000101010101010101010101101101010101010101010101010101010101010100110010101010101010101010BAj00BAl``BAn02BB```12003022103332103210321032103233333333210321032103210321032103233233210333321032103321032103321032221110003333210333332210321033333332103232103333210321032103210321032103210321033210333333`3333``23333333210332103210321032103210321032103321032103BBlBBn101010101BBd0BCb110111100BCd221212121222222222222121211121112221212121212121222221227222`BC`33333332332322323233233222222222223333232332233233332323232323232323232323232323232323232323232323232323232323232323232323333333333333323232333333333333332332332323323222332332`3322222222222222222222222222222223223333323333333333333133333333333323323333323323232333323`8`33333333323322222222222222222222222222222223323232332322`33333333323333233223333233333333232233223223333323333333222333333333333333333333333333333333232328103332131333333210321032103210321032103210321032103210321032103210321032103210321032103221100033322211100032103210321032103210321032103210321032103210321032103210321032103210321032103210321032103210321032103210ADfAId`BCf0AEd00`111`20000`23AIh311130111113`142111342013420134201342013420134201342013420134201342013420111342014134201342013420134201342013331113420134201342013420133420134201342013420134201342013420134201342013420144444411444434201342013420134201342013420134201342013420134201AIfAIjAIlAIn10```BCn````BCjBChAAn21021021021000210210210000210`31332102102102100102210210210210210210210021021021021021021122003022202102102102102102102102102102```Fh`0`0`0```BDb00000000000000000`00000000000000000000000000000000``h0000000000000000000000000000000000000000000`Hd000El000`011001011001110001010110010`1100`111`0001BDdEn31031031031030Df4214214214214214214214`42142142142142142214214214214214214214214214214214214214212`44414212242142142142142142142142142142```````````````````````````````HfBDjBDhBDlBDnBE`BEbBEd76543210765432107654321076543210<7543210765432107654321076543210765432107654321076543210676543210<776543210765432107654321076543210765432107654321076543210765432107654321074321076543210765432107654321076543210765432107654321076543210765432107654321076543210765<77543210<7<676543210765432107654321076543210765432107654321076543210765432107654321076543210<7543210``Ib000000Lf10011001101010101111111110110101010101010010101010101`101011111111110101000011000111`01001110111111111101101`010101010101010101011``1111101011`1011`1100001100111111101010111101010101010101``BFl0000BFn101010101010101010101010101010100001010101001010101010101010101010101010101010101010BG`BGbBGdBGf3210```El000`````0BKhBLdBKlBLn1BMb55BMj666`666`66`666````EKl````````0``77``1```````777``BGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGh000BGl1>BHb2BHd000007BHl3BJbBJd4BJfBHnBI`BInBJh;BJlBKd9BKhBKlBL`=BLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBHnBGlBJbBJdBHbBJf5BI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBId`````BGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBId``34`BGh`0`0``BGlBJbBJdBHbBJfBHnBI`BJh8BJlBHlBHdBK`BKb6BIn>5BKdBKhBKlBL`7BLdBLjBGnBLn:BMbBMdBIjBGlBHbBI`BGhBHj00`````4BJbBJd5BJfBHn6BInBJh7BJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBId``51BGlBHbBJfBLd=3BJbBJd43BHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHd>BLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BGhBJlBHlBHdBGnBK`BKb3=<;:987BInBJh87BKd7BKhBKlBL`9BLdBLj:BLn:BMbBNd;BNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGn0BLnBK`BMbBNdBKbBNfBMdBIjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBHbBJf46543``BInBJhBKdBKlBLjBGnBLn9BJbBJd:9BHnBI`:9BGhBJl:BHlBKh;BL`BHdBLd=<;BK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBHb71BJbBJd2BJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBHbBJf=BKhBKd4BJd43BI`BGhBJlBHdBLdBLjBMbBNfBMdBObBMlBId66BL`9````BInBJhBGn><0``BGlBJbBJdBHbBJfBHnBI`98BGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBJh0BJbBGl1BJdBHbBJfBHnBI`BIn8BGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBKhBKlBL`986543BGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHl?>=BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBId3BGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBHl>```=``BGh?BGl12BKd30BLj`2BJbBJdBHbBJfBHnBI`BIn;:BJl9BHlBKlBHdBLdBIn=BJl=BKhBKlBL`BHd?>=BLn=BKl31?031?03103``BHj````6BGlBJbBJdBHbBJf8BI`8BJhBGhBJlBKdBHlBKh=BL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKhBKlBL`BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBMjBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHlBKlBHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBId`BKhBL`````BMjBGlBJbBJdBHbBJfBHnBI`BInBJhBGhBJlBKdBHl?BKl?BHdBLdBLjBGnBLnBK`BMbBNdBKbBNfBMdBIjBHjBObBMlBIdBGlBJdBHbBJfBI`BInBJhBGhBJlBKdBKlBHdBLdBLjBGnBLnBMbBNfBMdBObBMlBIdBGlBHbBJf210=551;BJd0Oh``BIb111```1Oj202020200020202020202020`10202020202022220202020202020202020202020200``01``020202020202020202020`0`CCdCCb```````CCh``Gb0```CBl41``3423BIh```22CBj2CBnCBhCC`89CCf8CCj57432:;19057432:;19057432:;19057432:;19057432:;19057432:;19057432:;190357432:;19057432:;19057432:;19050557432:;190042:;1057432:;19057432:;19057432:;1906057432:;190579555`AG`68543;<2:11688555543;<2:::11168543;<2:168543;<2:1`06168543;<2:168543;<2:168543;<2:168543;<2:168543;<2:168543;<2:168543;<2:168543;<2:168543;<2:168543;<2:16433137453;<212086`1440452110`5368543;<2:1468543;<2:168543;<2:168543;<2:168543;<2:168543;<2:168543;<2:168543;<2:1668543;<2:17168543;<2:133333CDd`;0`;`0000000000000000000000000000000000660000000000``9`CClCD`11101010101010101010101010101010110101010101010101010101010101001`11110101010101010101010```CCnCDj`11101010101101011001000110110101010100101010101010101010101010101111101100101010101010101010``CDl0000000100000000010000000000000000010100000000000`````EL`ELbCFhCGf```CGd`432432`CGj```CGnCEhCH``````876``55`CGhCGl5``````````10:98`67`6`CI`CFfCHfCDnCE`=CDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CDnCDb=0CEbCEjCEn0CI`CFfCHf7CE`CFh8765CFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CEjCEn0`CDnCDb?0CI`CFfCHf4CE`CFh5CEb98CFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`;CFfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CFfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CFfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`98`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CEjCEn0CFfCDb3?CI`2CHfCDnCE`CFh5CEb98CFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CEjCEn0CFfCFh;:987654000777666555444CDnCE`?>154CDbCEb532410CFnCEdCEfCGdCGfCGhCGjCGlCGnCEhCH`CFlCI`CFfCHfCDnCE`0CFh0CDbCEb0CEjCEnCFj;CFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CDbCHh21>021>CFh987632?3322?CEdCEfCI`CFf8CDnCE`698CEjCEnCFjCFlCFn:9CG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CDnCDbCEb0CFjCFlCFn66CFfCHf7CE`CFh87CEjCEn876CEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`>CEb<;5656CDnCE`CDb3?>=<03`CFf14CEdCEfCEjCEn0`CHf6214CI`CFjCFlCFn<;<;9:68CHd5;>766CGnCEhCGh``CG`CDn71CGb`CHj>==>==CEdCDbCEb1CFfCFh917CE`143CEjCEnCFjCFlCFn:CEf?=CGdCGfCGhCGjCGlCGnCEhCH`210`?CDbCI`CFfCHfCDnCE`CFh6CEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CI`CFfCHfCDnCE`CFhCDbCEbCEjCEnCFjCFlCFnCEdCEfCG`CGbCGdCGfCGhCGjCGlCGnCEhCH`CDbCEj=CFh1CJdCJfCJhCJj02CJl21302143211302130214321130213021`````CLb```CKlCKnCJ`CKjCFbCJn0100100100100CKf0211211240465432654326543265432165226543265432337665442265432323232011442654321065442243265432654326543265432165223211211423326543265432654322046543222654326543265432654326543265432654326543226543210654422044654323216523112106544220404040404040411006544226540404040432333311426543265432654326543265432654326543265432046543221122```````CIlCF`CHbCHnCLd43210432104321043210343210432103432104321043210432104321033432104321043210432103443432104321043210444443210432104321043210434321043210432104321021043210433210323432104321043210432104321043210432104321043210432103`````CLh00000```0000```00`CM`````111````1CLfCLj00CMbCNdCMdCKdCNf6CMf6CKb000966443311CMh111:775542`765439281765439281765439281765439281988528:77554422765439281765439281754287528752829887654392817218774447654392817654392817654392814276543928184255`5511765439281765439281:7554224392111765439281525765439281:55422:554227;76549281399911175275275252675222:77554422765439281767652:7765542257575525276576552525252111:77776555444392228165427654392817654392817171COh5587654:3925455945987654:39287654:39287654:39287654:39287654:39287654:39287654:39287654:39287654:392:32:636367:6363CFf643667474747444COj00000COl80555==59=88=55`75=`9955;:>;;998866;857=5`98988=8=>;;9988668>;;9988668768;55552;=>;;998866:986:6598765987658;:987=6<599;8`<98685;:987=6<5;:987=6<5;:987=6<5;:987=6<55;:987=6<5;:987=6<5;:987=6<5;:987=6<5`?`788;:987=6<53>;;998866D@hD@jD@l<9<9>=CM`??==<<::321=:=:9````CO`0000000CMb11111CNd2022222222222229210191022222222210`````CNhDA`DAfD@nDAd432104321043210432104414314141143144321104432110432104141431041431043104104104321041443211044321104321044433221004444110444111000444311004432110432101443210141141141432104432104321043210432104321043210432104321044444324321041414114111411333333333333322222222222224104132324141104144114414144103214444310101041432104443211104432104321041143210432104321043210432104444444444444444444444444444444444444444444444444144444441444441``COb00000000CMd01111101111111111111110111111111`````````````````````````D@dDBdCK`DBfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBn?>DC`DCb?>CDhDCjDCdDCfCDf??>>==87D@d0DBd087CK`0DBf0DBhCEl0DBj0>65=<43109898DCh554:93210DCl65=<=<4321065==<<``CKhDCn:22221DD`DDh8762DDb65DBlDBn?>DC`DCb?>CDhDCjDCdDCfCDf=;:DBhCElDBj?=<54321DBn<;DC`DCb<;CDhDCjDCdDCfCDf?>8DBhCElDBjDCnDDbDChDClDBl?D@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfDBh=10=17676CKhDD`DDh3CElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DCn=<21210CNj:9DDb`43DBhCElDBj5DBlDBnD@dDBdDC`DCbCK`DBfCDhDCjCDf?DD`8CKh1DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDf43CElDBjCKh0DD`0DBh004433DCn0DBn0D@d0DBd0??>>66554887733221100??>>87?>65DDh5984DDbDChDClDBl765DC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`?DBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDf:965CKh00DD`00DDh00DBh00CEl00DBj00DCn00DDb00DCh00DCl00DBl00DBn00D@d00DBd00DC`00DCb00CK`00DBf00CDh00DCj00DCd00DCf00CDf00=CEl7CNj11DBj0==<<9988CKhDD`DDhDBh64DCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKh0DD`0DDh0000DBhCEl00DBj00DCn0DDb00DChDClDBlDBnD@d000DBd000DC`0DCb0CK`0000DBf000CDh0DCj0DCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDf64343;CElDBj=<;87CKhDD`10DCnDDb932132DDhDBh7632DChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfDDbCKhDD`CElDBjDCn5DChDClD@dDBdDC`DCbCK`DBfCDhDCjDBn0DBhDBl<:965CKhDD`DDh4CElDBjDCnDDbDChDCl9;D@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DCn==98798DDhDBhCElDBj;9876:D@dDBd76CK`DBfCDhDCjDCdDCfCDfCKhDCn1DD`12020120?>=<1DDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDf?>=<874333CKhDD`DCn=<21CElDBj2?>;:DBl>=:954DClD@dDBdDBn330CK`DBf;:DBh98:654215421CDhDCj10001010001010000000;:432;:<97643>=<<2;:<97643>=<<>>==22;;::<<95577664433>>==2;;::<<557766443302;:57643>=DDh3<;=DDbDCh<8:9DC`DCb98655:3DCdDCf??;:10>=;:CKhDD`;CElDBjDCnDBlDBnD@dDBd<;CK`DBfCDhDCjCDf`843?>;:91=921121DBh912``<323232542DCl0DChCKbCNj`98CElDBj>;:98DDbCKhDD`4433DCnD@d0DBd0CK`0DBf0654654>>654CDhDCjDCdDCf1010:>:98``2DCl>=87DC`DCb87872DBhCEl00DBj00DBlDBn?>65=<433220?>65=<44??>>==<=>=>=>=5?=60CK`?76D@dDBd<;2DBfCDhDCj;210100DCnCKhDD`?>276DC`DCb:732CElDBj6;:32<954106;:32<954106;:32<954654DDhDBh328DDbDChDClDBlDBnD@dDBd<;CK`DBfCDhDCjDCdDCfCDf65??CKh7>=54=<0?61320DDbDChDClD@dDBd:9CK`DBfCDhDCj?:<;954>=32<;54>=DBn?DBl?0?9900DC`0449DCb44:2044210210;;22155:4:4CKh?>65=0?DBhCElDBjDCn7>=65<;:94DD`DDh5432DDbDChDCl<=D@dDBd==DBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDf65CKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DDhDBhCElDBjDCnDDbDChDClDBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDfCKhDD`DCnDCl32DDhDBhCElDBj5DDbDCh6DBlDBnD@dDBdDC`DCbCK`DBfCDhDCjDCdDCfCDf``DCl=87::9:9873CElDBj>=<;874320;730;73510>=<;874321<0;7350=;7343DBh22113DBnD@d0DBd0CK`0DBf07610`CN`00``````````````````````DEdDEfDEhCOh1DEj003DElDEn10001010001010000000COlDF`10DFb58DFd190DFf89D@jDFhD@lDFj4DFlDFn54326104260`````DDdDDnDDfDE`DDj````DG`COdCOf210210210210210210210210CMf321321321321321032132132132132132132132132132132121321321210321321321321321321321321321CM```0000000000000CJb011```````````CInDGfDGhDGb3210321032103210321032103210032103210321032103210DGd043214321432143214321432143214321432143214321432143214321321432113004321432143214321432143214321432143214`````````DGjDGlDGn00000DH`0`DHb``3DHdDHfDHh210``````````````CFdDHjCId2102102102102211210210221121000021022112102102102102211210210210210210210210210210210210210021022111002122112211002102102102102102102102102102``````CIhCIfCIjCHl3210321032103210321032103210321032103210CG`CGb5432543254325432543254325432543254325432543254325432543254325432543254325432254322105432543254325432543254325432543254325432```CLb`CKfCJn210101011001111111111111CCdCCbCCh```21201``CC`00CCf011Od``BJ`11````BOj2Of130130130130001301301301301301301130`2130130130130130333130113013013001301301301301301301301301301301``112`0130130130130130130130130130130DHnDI`DIb```BMh000000000000BJj01111111111111111111111111111111`BGj````B@`A@n10101010`0000`101010101010010``20101010`1010111101100001010110101010101010101010`10```002`010`10101010101010110`10AGb```AGf011`DId000000000000`00000000000000000`0000000000000000000``00AHj000``DIf000000000000000000000000000000000`0000000000`C@b000000000`00000000000000000000000000000000000000000000000000``C@f`DIh000001``1`11`````C@d1DJ`3DIjC@hDIl4536210453621045362104536210444AKn0564732156473215647321556732156732156732156`C@jDIn478786954367869543786954377777869543786954378377788877886954377869544433337869543773786954374444447778`077067777786954333378695437869543786954378437869543786954378695437869543786954377`6777376607`07`0`767787777776777777777777777774574477895437878786954377886954378695437869543786954378695437869543`078695437``786954344DLbDLdDLf11022``BCn````AAn0`10010`DMlCAl`DMjBJn````DLh``3`DMh3`DM`26```DMbDMd3`7``48`10`````842CA`DN`DLj5473C@nDMfC@l=9<>CAnAAjDLlDMn47987<;>:654CAl>DMjDMl6543<;:?>DLh>:983DMh328765>==<7365;:98CA`DN`DLj5473C@nDMfC@l=9<;CAnAAjDLlDMn11987<;>:654CAl>DMjDMl6543<;:?>DLh>:983DMh328765>==<7365;:98DLnCA`0DLj5473C@nDMfC@l=9<;CAnAAjDLlDMn<;>:654CAl>DMjDMl6543?>DLh>:983DMh3287659;:5;:=DN`=DM`DMb4DMd?>=8476<;:9DLj`BJn9CA`625483C@nDMfC@l>:==<7DMh76<;:9CA`DLj1706543C@nDMfC@l0=5<;CAnAAjDLlDMn>=;65210===;;;666555=<;:654CAl:DMjDMl6543;;DN`0;DM`DMbDLhDMd>=<7DMh76<;:9CA`6DLj6543C@nDMfC@l=5<;CAnAAjDLlDMn8>7=<;:654CAl:DMjDMl654377DM`>:966=<7DMh76<;:9=CA`5DLj7543C@nDMfC@l=5<;CAnAAjDLlDMn8=7><;:654CAl:DMjDMl6543;DN`;DM`DMbDLhDMd>=<7DMh76<;:94321?>=8076<;:9CA`6DLj6543C@nDMfC@l=5<;CAnAAjDLlDMn8>7=<;:654CAl:DMjDMl6543;DN`;DM`DMbDLhDMd>=<7DMh76<;:9CA`6DLj6543C@nDMfC@l=5<;CAnAAjDLlDMn8>7=<;:654CAl:DMjDMl65437:7777777;DN`;82;>8:96788DM`980?9?`BJn>=:>1DMbDLhDMd?>=8DMh87=<;:CA`7DLj7543C@nDMfC@l>5=<;:654CAl:DMjDMl6543;DN`;DM`DMbDLhDMd>=<7DMh76<;:9CA`6DLj6543C@nDMfC@l=5<;CAnAAjDLlDMn8>7=<;:654CAl:DMjDMl6543;DN`;DM`DMbDLhDMd>=<7DMh76<;:9CA`6DLj6543C@nDMfC@l=5<;CAnAAjDLlDMn8>7=<;:654CAl:DMjDMl6543;DN`;DM`DMbDLhDMd>=<7DMh76<;:99=DNf000DNhDNjDNl1DNn0000`DO`0`0`DNb10101010101010101010101101010101101010100101C@l121212121212121212202212121212121212121212DObDOd01A@`BOd`BKf1`2`12`1```1DOf3A@b31403140314031400031403140314031403140314013140`23231403140314031403140444314013140314031400314031403140314031403140314031403140314013011203140314031403140314031403140314031403140DOh0DOjDOl``BKj```AA`00000000000000`10000000000000000000``1`0000000000``BIl`E@b``E@`11100DOn0`1``2`CAj123A@d123401234012340123400123401234012340023402340234012340`5123401234012340123402340222333444123440123440123401234012340123401234012340234012340123401234012340123401523404412340123401234012340123401234012340123401234011Ol`BKn1````1On2020202000020202020202020`12020020202022220202020202020202020202020201020202020202020202020E@fE@hE@j`BLb`111```AAl202020202020202020202002`1020202020220020202020202020202020202020201020202020202020202020`AAb`BMn`BHf`2B@jBHh34```1```0```3`CB`0B@h35E@l3AOn38AAdE@nEA`458:4736;21058:4736;21058:4736;21058:4736;21011058:4736;21058:4736;210658:4736;21058:4736;21058:4736;21058:4736;210058:4736;21026`958:4758:4736;21058:4736;21058:4736;21058:4736;21058:473;210777333;;;58:4736;21058:47336;21058:4736;21058:4736;21023:258:4736;21058:4736;21058:4736;21058:4736;21058:4736;21058:4736;21058:4736;21058:4736;21058:4736;21058:4736;21044358:476``14`4958:4736;21058:4736;21058:4736;21058:4736;21058:4736;21058:4736;21058:4736;21058:4736;210358:4736;210:258:4736;21045858EAb0EAdEAfEAh0121001``BNh``0``EAjEAl10101010101010111100101010210101010100001010101011010101010120111EB`2021221212121212121213212AAf`EC`BLh2``2`1````2AAhEBnEBl4521045210452104521040110052104521045210452104521045210452104`35210452104521045210452104555521045210452104521042521045210452104521045210452104521045210452104521042035210452104521045210452104521045210452104521045210412ECbECd1`BMf`A@f0````0A@h1010101010101010101001020101010101011110101010101010101010101010100210101010101010101010AEbAFb0EKn`AOd`AFhALj``0`135`0``````11`CBdB@nOb22210210210210`2102102102320002AKl133214``6321321321321`332112130321321332130432132132132121321321321321AN`432`441145443241``4414174`412432432432432432432432143254432444`A@jECfC@```BLlANd`2ANh033435ECh002`205460654`011```241005402242424244`````4000CAf361ANb3ECj7BOn:A@l47:536291;047:536291;047:536291;047:536291;060047:536291;047:536291;047:536291;07:53691;07:53691;07:53691;047:536291;04`843647:536291;047:536291;0547:536291;047:536291;037:53691;0333666111;;;47:536291;0247:536291;047:536291;0947:536291;0047:536291;047:536291;047:536291;047:536291;07:53691;047:536291;047:536291;047:536291;047:536291;047:536291;072214444144364040184317:53691;047:536291;047:536291;047:536291;047:536291;047:536291;047:536291;047:536291;0247:536291;0047:536291;054ANjEClNn`BH```111``ED`0```````BNbECnBOl3B@bEDb7O`5436218054362180543621805436218000543621805436218054362180543621805436218054362180354362180`1`741543621805436218054362180543621804280444222888554362180`113543622218054362180543621802054362180555436218054362180543621805436218054362180543621805436218054362180543621805115`11`11`11521541055555`114033347543621805554362180543621805436218054362180543621805436218054362180112554362180054362180EDf`EDd0`00000000000000000000000000000000000000000000EDh0`El000`00000000000000`00``000HdEnDf2``22212```````````````````````````````2HfBDhBDlBDnBE`BEbBEdBDj:77:77654321:7:0:7654321AB``BM`11````1ABb2020202000020202020202020`120202020202222000020202020202020202020202020120202020202020202020EDjEDlCAh00`0`00000000000000000000000000000000000000000000000AAf`EC`BLh2``21````EBl00`1AAh012ECbECd1`BAb0AEnBAdELdEEb0EEf3`222EE`3`2222EEd44444444440```2`44`436711143``34434`44444444`411155443`6104EDnAHdNd46Nj;49:68321570;49:68321570;49:68321570;49:68321570;49:628321570;49:68321570;49:628321570;49:6321570;49:6321570;49:6321570;49:6```0:0:8321570;49:6211;98321570;49:68321570;49:6`8321570;49:6``8321570;49:6`2270;49:000;;;444:::`13215700;49:6`8321570;49::68321570;49:68321570;49:61``````````0`18321570;49:68321570;49:68321570;49:68321570;49:6321570;49:68321570;49:68321570;49:68321570;49:68321570;49:638321570;49:611`11``21;9``0:11`1```2```````````21321570;49:600``18321570;49:68321570;49:68321570;49:68321570;49:68321570;49:68321570;49:68321570;49:608321570;49:618321570;49:6EEn0``EF`0000000000000000000000```00000000000000000000000EG``EGb`01```01``01``01```````EJl2`1`12````12``012``121``1``1`1``2`12``12``EFjEGf1EGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEFn0EGfEFjEGhEGj4EElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEFnEEl10EGd0EGfEFjEGhEGj6655EGl5EGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEFnEElEGfEFjEGhEGj54EGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEHn4EGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEHjEIbEJnEFnEGfEFjEGhEGj4EElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EGf00EFj00EGh00EGj00EFn00EEl00EGl00EGd00EGn00EH`00EHb00EHd00EHf00EHh00EHj00EHl00EHn00EI`00EIb00EId00EIf00EIh00EIj00EIl00EIn00EJ`00EJb00EJd00EJf00EJh00EJj00EGb00EG`00=EFj=EGjEFnEEl?EGd?EH`?EHd?EHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEH`EGfEFjEGhEGjEGlEGdEGn7EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGj54EFn0;EKf1EKhEElEHjEHnEIdEGfEFjEGh:96EGlEGdEGnEH`EHbEHdEHfEHh=EHl=EI`EIb>EIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJl00EGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEHh0EFnEGfEFjEGhEGj4EElEGlEGdEGnEH`EHbEHdEHf=EHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEHlEI`EGfEFjEGhEGjEFnEElEGlEGdEGnEH`EHbEHdEHfEHhEHjEHlEHnEI`EIbEIdEIfEIhEIjEIlEInEJ`EJbEJdEJfEJhEJjEGbEG`EJlEFnEHdEHlEI`EKjEEl5`EEh`00000000AHd1111111111111111111110011111111111``EEj000000000000Nd111111111011110011111111110000110000101111111101","f":"````````````````````````````````````````````````````````````````````````````````````````````````````````````````````{bd}{{{f{c}}}{{j{{f{c}}h}}}{}}{eg{}{{l{c}}}{}}0000000000000000000000000{{nA`}}{{nn}}{{AbAb}Ab}{{Abd}Ab}{{{Ad{c}}{Af{c}}}{{Ad{c}}}{{Aj{}{{Ah{}}}}}}{{{Al{c}}{Af{c}}}{{Al{c}}}{{Aj{}{{Ah{}}}}}}{{{An{c}}{An{c}}}{}{{Aj{}{{Ah{}}}}}}{{{Af{c}}{Af{c}}}{{Af{c}}}{{Aj{}{{Ah{}}}}}}{{{Bb{B`n}}n}Bd}``{{{f{{Bf{c}}}}g}{{f{e}}}BhBh{{Bj{c}{{Ah{{f{e}}}}}}Bh}}{{{f{{Bl{ce}}}}i}{{f{g}}}BhBhBh{{Bj{c}{{Ah{{f{g}}}}}}Bh}}`{BnC`}`{{eio}{{Cj{{`{{Ch{}{{Cb{c}}{Cd{g}}{Cf{k}}}}}}}}}{}{{Cl{c}}}{CnD`}{{Db{cg}}}{DdDf}`{{Dh{cgkm}}}}{{DjAn}An}{{{Bb{Al}}}d}{ce{}{}}0000000000000000000000000{{}c{}}0000000000000000000000000{Bb{{Bb{Dl}}}}0000000000000000000000000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000000000000000000000000{{{Bb{Dn}}}{{Bb{{E`{d}}}}}}{{{Eb{c}}}{{Eb{c}}}{EdEfEhEj}}{bd}{{{Bb{El}}}En}{e{{f{c}}}{}{{Fb{}{{F`{{f{c}}}}}}}}{e{{Fd{c}}}{}{{Fb{}{{F`{{Fd{c}}}}}}}}{Ffd}`{Bb{{Bb{c}}}{}}0000000000000000000000000{{{Bb{B`}}}{{Bb{B`c}}}{}}0000000000000000000000000{{Fhc}Fh{{Fj{Ab}}}}{Fhd}{{{Fl{c}}}e{}{}}0000000000000000000000000{{{Bb{Al}}}Ad}{{{Bb{Al}}}d}0{{{f{c}}{f{c}}}{{f{c}}}{}}`{{{Bb{Fn}}}Fn}{{{Bb{{Eb{c}}}}}{{Eb{c}}}{EdEdEfEhEj}}{{{Bb{G`}}}G`}{{{Bb{Gb}}}Gb}{{{Bb{Gd}}}Gd}{{{Bb{Gf}}}Gf}{{{Bb{Fh}}}Fh}{{{Bb{El}}}El}{{{Bb{A`}}}A`}{{{Bb{n}}}n}{{{Bb{Gh}}}Gh}{{{Bb{b}}}b}{{{Bb{Gj}}}Gj}{{{Bb{Gl}}}Gl}{{{Bb{Ab}}}Ab}{{{Bb{{Ad{c}}}}}{{Ad{c}}}Ed}{{{Bb{{Al{c}}}}}{{Al{c}}}Ed}{{{Bb{Dj}}}Dj}{{{Bb{Bn}}}Bn}{{{Bb{Ff}}}Ff}{{{Bb{{An{c}}}}}{{An{c}}}Ed}{{{Bb{Dn}}}Dn}{{{Bb{{Af{c}}}}}{{Af{c}}}Ed}{{Bb{Bb{B`c}}}Bd{}}0000000000000000000000{{BbGn}Bd}0000000000000000000000{{}}{{{f{c}}}{{f{{H`{c}}}}}Bh}{{G`c}G`{{Fj{b}}}}{G`b}{Ffb}`{ce{}{}}0000000000000000000000000{{{Bb{Al}}Ad}C`}{{HbHd}El}{{HbHdc}El{{Hh{Hd}{{Ah{Hf}}}}}}`{{eio}{{Hj{{`{{Ch{}{{Cb{c}}{Cd{g}}{Cf{k}}}}}}}}}{}{{Hl{c}}}{CnD`}{{Db{cg}}}{DdDf}`{{Hn{cgkm}}}}{{}G`}{{}Gd}{{}Fh}<<<<{{}{{I`{Bj}}}}{{}El}>>>>>>>1>>>1{{}b}{{}Gj}{{}Ab}{{}{{Ad{c}}}Dd}{{}{{Al{c}}}Dd}{{}Dj}{{}Bn}{{}Ff}{{}{{An{c}}}Dd}{{}Dn}{{}{{Af{c}}}Dd}{BnGd}{BnAb}{DjA`}{{{Eb{c}}Ib}{{Eb{c}}}{EdEfEhEj}}{Id{{Bb{c}}}{}}0000000000000000000000000{Id{{Bb{B`c}}}{}}0000000000000000000000000{{{f{c}}}{{f{e}}}BhBh}{{{Bb{{Ad{c}}}}{Ad{c}}}c{IfIh}}{{{Bb{Al}}Ad}d}{{nn}}{{nd}}{{AbAb}Ab}{{AbIj}Ab}{{Abd}Ab}{c{{f{c}}}Bh}{Bb{{Bb{c}}}{}}0000000000000000000000000{IdBd}0000000000000000000000000={{{Eb{c}}Il}{{Eb{c}}}{EdEfEhEj}}{{GlGl}Gl}{{{Bb{In}}e}c{}{{Hh{}{{Ah{c}}}}}}{{{Bb{Fn}}{Bb{Fn}}}C`}{{{Bb{G`}}{Bb{G`}}}C`}{{{Bb{Gb}}{Bb{Gb}}}C`}{{{Bb{Gd}}{Bb{Gd}}}C`}{{{Bb{Gf}}{Bb{Gf}}}C`}{{{Bb{Fh}}{Bb{Fh}}}C`}{{{Bb{El}}{Bb{El}}}C`}{{{Bb{A`}}{Bb{A`}}}C`}{{{Bb{A`}}{Bb{d}}}C`}{{{Bb{n}}{Bb{d}}}C`}{{{Bb{n}}{Bb{n}}}C`}{{{Bb{Gh}}{Bb{Gh}}}C`}{{{Bb{b}}{Bb{b}}}C`}{{{Bb{Gj}}{Bb{Gj}}}C`}{{{Bb{Gl}}{Bb{Gl}}}C`}{{{Bb{Ab}}{Bb{Ab}}}C`}{{{Bb{{Ad{c}}}}{Bb{{Ad{c}}}}}C`Eh}{{{Bb{{Al{c}}}}{Bb{{Al{c}}}}}C`Eh}{{{Bb{Dj}}{Bb{Dj}}}C`}{{{Bb{Ff}}{Bb{Ff}}}C`}{{{Bb{{An{c}}}}{Bb{{An{c}}}}}C`Eh}{{{Bb{Dn}}{Bb{Dn}}}C`}{{{Bb{{Af{c}}}}{Bb{{Af{c}}}}}C`Eh}{{Bb{Bb{c}}}C`{}}00000000000000000000``{{}{{f{c}}}{}}{{Alc}Al{{Fj{Fh}}}}{{Anc}An{{Fj{An}}}}{{{Bb{El}}}{{Bb{Hf}}}}{GdJ`}{{{Bb{Gl}}}Jb}{{FhAnAn}Fh}{{{Bb{Gj}}AnAn}An}{{{Bb{Gl}}}Gl}{{{Bb{{Fd{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}{}}{{{Bb{Jh}}{Bb{B`Jd}}}Jj}0{{{Bb{Fn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{{Eb{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}{D`EdEfEhEj}}{{{Bb{G`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Gb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Gd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Gf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Fh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{El}}{Bb{B`Jd}}}{{Bl{BdJf}}}}0{{{Bb{A`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{n}}{Bb{B`Jd}}}{{Bl{BdJf}}}}0{{{Bb{Gh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{b}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Gj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}0{{{Bb{Gl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Ab}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{{Ad{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}Jl}{{{Bb{{Ad{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{{Al{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{Dj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Bn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Ff}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{{An{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{Dn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{{Af{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}`{BnH`}{Bd{{f{c}}}{}}{cc{}}00{JnJh}{K`Fn}2{KbFn}33333{KdGf}{dFh}5{{{E`{d}}}Fh}{{{E`{Jb}}}Fh}{AbFh}{JbFh}9{dA`}{GnA`};;{A`n}{dn}{Gnn}{bGh}?{KdGh}{GfGh}{{{E`{d}}}b}{{{Kh{Kfd}}}b}1{cc{}}{Kfb}11{dGl}{IjGl}{AbGl}{dAb}{IjAb}6{{{E`{c}}}{{Ad{c}}}Ih}{{{j{cc}}}{{Ad{c}}}Ih}8{{{Al{Ij}}}Al}9{dDj}{nDj};;;;{{{E`{c}}}{{An{c}}}{}}{{{j{cc}}}{{An{c}}}{}}{{{Af{c}}}{{An{c}}}{}}{FhAn}??{{{E`{c}}}{{Af{c}}}{}}{{{An{c}}}{{Af{c}}}{}}{cc{}}0000000000000000000000000{Kj{{Bf{A`}}}}{Kj{{Bf{n}}}}{Kl{{Bf{A`}}}}{Kl{{Bf{n}}}}{{dddd}b}{{ddd}b}{{GnGnGn}b}2{{GnGnGnd}b}{ce{}{}}0000000000000000000000000{Kn{{Bf{A`}}}}{Kn{{Bf{n}}}}{e{{f{c}}}{}{{L`{}{{Ah{c}}}}Bh}}`{bd}{{{Eb{c}}c}{{Eb{c}}}{EdEfEhEj}}{{{Bb{B`{Eb{c}}}}c}Bd{EdEfEhEj}}`{{{Bb{Fn}}{Bb{B`c}}}BdLb}{{{Bb{Gd}}{Bb{B`c}}}BdLb}{{{Bb{Gj}}{Bb{B`c}}}BdLb}{{{Bb{{An{c}}}}{Bb{B`e}}}BdLdLb}{Al}{An}`{Fhd}{BnBf}{{}Id}0000000000000000000000000{{{Bb{{Eb{C`}}}}ccLf}c{LhEd}}{{{Bb{{Eb{c}}}}gLf}e{EdEfEhEj}Lh{{Bj{c}{{Ah{e}}}}}}{{{Bb{Al}}{Bb{Al}}}{{Bf{Al}}}}{{{Bb{Al}}{Bb{Al}}}C`}{{}c{}}000000000000000000000000000000000000000000000000000{{{I`{c}}}{{I`{Dl}}}{}}0000000000000000000000000{{{Lj{c}}}{{Lj{Dl}}}{}}00000000000000000000000{{{Ll{c}}}{{Ll{Dl}}}{}}0000000000000000000000000{{{Fl{c}}}e{}{}}00000000000000000000000004444444444444444444444444444444444444444444444444444{b{{E`{d}}}}{b{{E`{Gn}}}}{{}c{}}0000000000000000000000000{bb}{{{Bb{B`b}}}Bd}{{{Bb{{Eb{c}}}}Lf}C`{EdEfEhEj}}{{{Bb{Gl}}}C`}<`{{Fhc}Fh{{Fj{Ab}}}}{Fhd}{{{f{c}}g}{{f{e}}}BhBh{{Ln{c}{{Ah{e}}}}Bh}}{{{Fd{c}}g}{{Fd{e}}}{}{}{{Bj{c}{{Ah{e}}}}BhEd}}{{AnAn}An}0`{{A`d}}{{nd}}{{nn}}{{Abd}Ab}{{AbAb}Ab}{{AdDn}Ad}{{{Al{c}}{Af{c}}}{{Al{c}}}{{M`{}{{Ah{}}}}Ef}}{{Ald}Al}{{AlDn}Al}{{{An{c}}{Af{c}}}{}{{M`{}{{Ah{}}}}Ef}}{{AnDn}An}{{{An{c}}c}{}{{M`{}{{Ah{}}}}Ef}}{{DnDn}Dn}{{AfDn}Af}{{{Af{c}}c}{{Af{c}}}{{M`{}{{Ah{}}}}Ef}}{{{Af{c}}}{}{{Mb{}{{Ah{}}}}}}{Mdc{}}{{}{{Bl{InMf}}}}{c{{Eb{c}}}{EdEfEhEj}}{dFh}{{cc}{{Ad{c}}}Ih}{{AdAn}Al}{{cc}{{An{c}}}{}}{{cc}{{Af{c}}}{}}{{}{{f{c}}}{}}{{}{{Fd{c}}}{}}{{}c{}}00000000000000{FfAf}{{IjIj}Dn}``{{{Bb{El}}}Hd}{{{Bb{Mh}}}{{Bf{b}}}}{{{Bb{A`}}{Bb{A`}}}{{Bf{Mj}}}}{{{Bb{A`}}{Bb{d}}}{{Bf{Mj}}}}{{{Bb{n}}{Bb{n}}}{{Bf{Mj}}}}{{{Bb{n}}{Bb{d}}}{{Bf{Mj}}}}{{{Bb{Ab}}{Bb{Ab}}}{{Bf{Mj}}}}{{ei}{{f{g}}}Bh{{L`{}{{Ah{c}}}}Bh}Bh{{Bj{c}{{Ah{g}}}}Bh}}{{{Bb{Al}}}Ad}{{{Eb{c}}}{{Eb{c}}}{EdEfEhEj}}{bd}{Djn}{{{Bb{B`Dj}}}{{Bb{B`n}}}}{G`Ml}{{nn}}{{{Bb{{Eb{C`}}}}Lf}Ib}{{{Eb{c}}Ij}{{Eb{c}}}{EdEfEhEj}}7{{Fhc}Fh{{Fj{Ab}}}}{Fhd}{{Aln}Al}{{Ann}An}{{G`c}G`{{Fj{Ml}}}}{{eio}MnDd{{Cl{c}}}{D`Cn}{{Db{cg}}}{DdDf}`{{Dh{cgkm}}}}{{{Ch{}{{Cb{c}}{Cd{e}}{Cf{g}}{N`{i}}{Nb{k}}}}Bn{Bf{Nd}}}Mn{}{CnD`}{DdDf}`In}0{{ei}{{f{g}}}{}{{Nf{}{{F`{c}}}}Bh}{}{{Bj{c}{{Ah{g}}}}Bh}}{{{Nh{}{{Ah{e}}}}}{{Fd{c}}}{}{{Nf{}{{F`{c}}}}Bh}}{{{Ch{}{{Cb{c}}{Cd{e}}{Cf{g}}{N`{i}}{Nb{k}}}}Bn{Bf{Nd}}m}Mn{}{CnD`}{DdDf}`In{{Hh{}{{Ah{{j{c{f{e}}}}}}}}}}0{{c{Nh{{Bb{c}}}{{Ah{g}}}}}{{Fd{e}}}Ld{}{{Nf{}{{F`{e}}}}Bh}}{dDn}{{Gfd}Gf}{{Ghd}Gh}{{bd}b}{{{Bb{{Ch{}{{Cb{c}}{Cd{e}}{Cf{g}}{N`{i}}{Nb{k}}}}}}{Bb{c}}Nj}Kj{}{CnD`}{DdDf}`In}0{{{Bb{Dn}}}d}{{Alc}Al{{Fj{Fh}}}}{{{Bb{Al}}}An}{{{Eb{c}}}{{Eb{c}}}{EdEfEhEj}}{Al{{Bf{{Al{Ij}}}}}}{{{Bb{In}}c}Bd{{L`{}{{Ah{Bd}}}}Bh}}`{e{{f{c}}}{}{{Nf{}{{F`{c}}}}Bh}}{GdNl}{{{Bb{{Ch{}{{Cb{c}}{Cd{e}}{Cf{g}}{N`{i}}{Nb{k}}}}}}{Bb{c}}{Bb{g}}}En{}{CnD`}{DdDf}`In}0{{{Bb{El}}BbNn}O`}{{{Bb{El}}Bb}Ob}{{{Bb{El}}BbOd}Of}{{{Bb{El}}BbOh}Oj}{{{Bb{El}}BbOl}On}{{{Bb{El}}{Bb{{I`{Bj}}}}A@`}A@b}{{{Bb{El}}Bb}A@d}{{{Bb{El}}BbA@f}A@h}{{{Bb{El}}BbA@j}A@l}{{{Bb{El}}Bb}A@n}{{{Bb{El}}Bb}AA`}{{{Bb{El}}BbAAb}AAd}{{{Bb{El}}BbAAf}AAh}{{{Bb{El}}{Bb{{I`{Bj}}}}}AAj}{{{Bb{El}}Bb}AAl}{{{Bb{El}}{Bb{{I`{Bj}}}}}AAn}{{{Bb{El}}BbAB`}ABb}{GdABd}{{nn}}{{{Ad{c}}{Ad{c}}}{{Af{c}}}{{ABf{}{{Ah{}}}}}}{{{Ad{c}}{Af{c}}}{{Ad{c}}}{{ABf{}{{Ah{}}}}}}{{{Al{c}}{Af{c}}}{{Al{c}}}{{ABf{}{{Ah{}}}}}}{{{An{c}}{An{c}}}{}{{ABf{}{{Ah{}}}}}}{{{Af{c}}{Af{c}}}{{Af{c}}}{{ABf{}{{Ah{}}}}}}{{{Bb{B`n}}n}Bd}{{{Bb{{Ch{}{{Cb{c}}{Cd{e}}{Cf{g}}{N`{i}}{Nb{k}}}}}}{Bb{c}}}{{Fd{e}}}{}{CnD`}{DdDf}`In}0```{{{Bb{{Ch{}{{Cb{c}}{Cd{e}}{Cf{g}}{N`{i}}{Nb{k}}}}}}{Bb{c}}Nj}g{}{CnD`}{DdDf}`In}0{{{f{c}}g}{{f{e}}}BhBh{{Ln{c}{{Ah{{f{e}}}}}}Bh}}`{{{Bb{{Ch{}{{Cb{c}}{Cd{e}}{Cf{g}}{N`{i}}{Nb{k}}}}}}{Bb{c}}Nj}Hb{}{CnD`}{DdDf}`In}0{{{Bb{n}}{Bb{Al}}}{{j{AdAd}}}}{Bbc{}}0000000000000000000000{BbABh}0000{BbHb}0000{{Fhc}Fh{{Fj{Ab}}}}{Fhd}`{{dd}Dn}{{{Bb{Dn}}}Af}{{}{{Bl{c}}}{}}0000000000000000000000000{c{{Bl{e}}}{}{}}0000000000000000000000000{{}{{Bl{c}}}{}}0000000000000000000000000{{}{{Bl{c{ABj{c}}}}}{}}0000000000000000000000000{BbABl}0000000000000000000000000{ce{}{}}0000000000000000000000000{{}c{}}0000000000000000000000000{{{Bb{Al}}{Bb{Al}}}Al}{Bb{{Bf{{Bb{c}}}}}{}}0000000000000000000000000{{{Bb{{Ch{}{{Cb{c}}{Cd{e}}{Cf{g}}{N`{i}}{Nb{k}}}}}}{Bb{B`c}}e}{{f{e}}}{}{CnD`}{DdDf}`In}{{{Bb{{Eb{c}}}}}c{EdEfEhEj}}={{{Eb{c}}}{{Eb{c}}}{EdEfEhEj}}0{{{Bb{{Ch{}{{Cb{c}}{Cd{e}}{Cf{g}}{N`{i}}{Nb{k}}}}}}{Bb{c}}Nj}{{ABn{egi}}}{}{CnD`}{DdDf}`In}{{}c{}}0000000000000000000000000{GdAC`}``{{G`c}G`{{Fj{Ab}}}}{G`d}{Al}{An}`{{{Fd{c}}e}{{Fd{{j{ec}}}}}{}{LdEdCnACb}}{{{Bb{Mh}}}Gd}{dAl}{{{An{c}}}{{Al{c}}}Dd}{{AdAdAd}{{j{Aln}}}}{Ad}7{Af}180```````{eg{}{{l{c}}}{}}00{{{Bb{{ACd{c}}}}}C`{}}{ce{}{}}00{{}c{}}00{Bb{{Bb{Dl}}}}00{{{Bb{B`}}}{{Bb{B`Dl}}}}00{Bb{{Bb{c}}}{}}00{{{Bb{B`}}}{{Bb{B`c}}}{}}00{{{Bb{ACf}}}Al}{AChAn}{{{Fl{c}}}e{}{}}00{{{Bb{B`{ACd{c}}}}}Bd{}}{{{Bb{ACj}}}{{H`{ACl}}}}{ACf{{`{ACn}}}}{{{Bb{B`AD`}}}Bd}`{{{Bb{ACf}}}ACf}{{{Bb{{ACh{ce}}}}}{{ACh{ce}}}EdEd}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0{ce{}{}}00{ACh}{Id{{Bb{c}}}{}}00{Id{{Bb{B`c}}}{}}00{{{Bb{ACj}}{Bb{B`ACl}}}Bd}{Bb{{Bb{c}}}{}}00{{{Bb{ADb}}{Bb{B`c}}{Bb{e}}{Bb{ADd}}ACfADf}BdAD`{}}{{{Bb{ACj}}{Bb{ACl}}{Bb{B`c}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}BdAD`{}}{IdBd}00=={{{Bb{{ACd{c}}}}}ADh{}}{{{Bb{B`AD`}}ADjc}Bd{{Fj{Gh}}}}{{{Bb{ACf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{{ACh{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`D`}{{{Bb{{ACd{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}<{cc{}}00000{ce{}{}}00`{AChKb}`{{}Id}00{{{Bb{{ACd{c}}}}}{{Bb{ADl}}}{}}{{{Bb{B`{ACd{c}}}}}{{Bb{B`ADl}}}{}}{{}c{}}00000{{{I`{c}}}{{I`{Dl}}}{}}00{{{Lj{c}}}{{Lj{Dl}}}{}}00{{{Ll{c}}}{{Ll{Dl}}}{}}00{{{Fl{c}}}e{}{}}00444444{{}c{}}00{{{Bb{B`{ACd{c}}}}}Bd{}}0{{{Bb{{ACd{c}}}}}C`{}}00{{{Bb{ADb}}ACf{Bb{c}}Ad}C`AD`}`{{{Bb{B`ADb}}{Bb{c}}An}ADnAD`}{{{Bb{ACj}}{Bb{B`ACl}}{Bb{c}}{Bb{AE`}}}ADnAD`}{AChAEb}{{{Bb{B`{ACd{c}}}}{ACd{e}}g}Bd{}{}{{Bj{e}{{Ah{c}}}}}}`{{{Bb{ADb}}ACfADf{Bb{Al}}{Bb{c}}}AEdAD`}{{{Bb{ACj}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{c}}}AEdAD`}{{{Bb{ADn}}}ACf}{{{Bb{B`{H`{c}}}}}{{ACd{c}}}{}}{{{Bb{B`ADb}}ACf{Bb{c}}{Bb{B`AEf}}}BdAD`}{{{Bb{ACj}}{Bb{B`ACl}}ACf{Bb{c}}{Bb{B`AEf}}}BdAD`}`{{{Bb{B`ADb}}ACf{Bb{c}}}{{Bf{{AEh{egc}}}}}AD`{}{}}{{{Bb{B`ACj}}{Bb{B`ACl}}ACf{Bb{c}}Af}{{Bf{{AEh{egc}}}}}AD`{}{}}{{{Bb{ACf}}}Ad}{{{Bb{B`{ACd{c}}}}c}Bd{}}{{{Bb{AEj}}AEl}{{Bf{Hb}}}}{{{Bb{{ACd{c}}}}}AEn{}}`{{{Bb{B`{ACd{c}}}}AEn}Bd{}}{{{Bb{B`{ACd{c}}}}{Bb{{ADl{e}}}}}Bd{}{{AF`{Mh}}}}{{{Bb{B`{ACd{c}}}}}Bd{}}{{{Bb{B`{ACd{c}}}}e}Bd{}{{Fj{AEn}}}}{{{Bb{B`{ACd{c}}}}e}Bd{}Hh}{AChAFb}{{{Bb{ACj}}}{{An{Gl}}}}{AChAb}1{{{Bb{B`AD`}}Al}Bd}{{{Bb{B`AD`}}Dn}Bd}{{{Bb{ACj}}}AFd}``{{{Bb{ACj}}}AFf}`{Bbc{}}0{{}{{Bl{c}}}{}}00{c{{Bl{e}}}{}{}}00{{}{{Bl{c}}}{}}00{{}{{Bl{c{ABj{c}}}}}{}}00{BbABl}00{ce{}{}}00{{}c{}}00{Bb{{Bf{{Bb{c}}}}}{}}00{{{Bb{B`ADb}}{Bb{Gb}}ACfADf{Bb{c}}{Bb{B`AEj}}{Bb{B`{ACd{e}}}}}BdAD`{}}{{{Bb{B`ACj}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{c}}{Bb{B`AEj}}{Bb{B`{ACd{e}}}}{Bb{Al}}}BdAD`{}}{AChK`}{{}c{}}00`{{{Bb{B`AD`}}Alc}Bd{{Hh{{Bb{B`AD`}}}}}}{{Af{Bb{ADn}}}ACf}{{{Bb{B`AD`}}Dnc}Bd{{Hh{{Bb{B`AD`}}}}}}{{{Bb{B`AD`}}Afc}Bd{{Hh{{Bb{B`AD`}}}}}}{AChAFh}{{{Bb{B`AEj}}AElHb}Bd}`````{eg{}{{l{c}}}{}}0{ce{}{}}0=={Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{AEl}}}AEl}{{{Bb{AFj}}}AFj}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}099{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}088{IdBd}0{{{Bb{AEl}}{Bb{AEl}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{AEl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AFj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{ce{}{}}0{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{{{Bb{AEj}}AEl}{{Bf{Hb}}}}{{{Bb{AFj}}AEl}{{Bf{Hb}}}}{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0{{{Bb{B`AEj}}AElHb}Bd}{{{Bb{B`AFj}}AElHb}Bd}````````````{eg{}{{l{c}}}{}}0000{{{Bb{B`AFl}}Id}Bd}{ce{}{}}000077777{Bb{{Bb{Dl}}}}0000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000{{{Bb{AFl}}}{{Bb{{AFn{Gn}}}}}}0{Bb{{Bb{c}}}{}}0000{{{Bb{B`}}}{{Bb{B`c}}}{}}0000{{{Fl{c}}}e{}{}}00003{{{Bb{B`AFl}}}Bd}{{{Bb{AFl}}}AFl}{{{Bb{{AG`{c}}}}}{{AG`{c}}}Ed}{{{Bb{AGb}}}AGb}{{{Bb{AGd}}}AGd}{{{Bb{AGf}}}AGf}{{Bb{Bb{B`c}}}Bd{}}0000{{BbGn}Bd}0000{{{Bb{AFl}}{Bb{AFl}}}Mj}{{{Bb{AGd}}{Bb{AGd}}}Mj}{{Bb{Bb{c}}}Mj{}}0{ce{}{}}0000{{{Bb{{AFn{Gn}}}}}AFl}{{{Bb{B`AFl}}Id}AFl}{{}AFl}{{}AGf}{Id{{Bb{c}}}{}}{{{Bb{AFl}}}{{Bb{{AFn{Gn}}}}}}1111{Id{{Bb{B`c}}}{}}0000{Bb{{Bb{c}}}{}}0000{{{Bb{B`{AGj{}{{AGh{c}}}}}}{AG`{c}}Al}BdEd}{{{Bb{B`AFl}}}Bd}{IdBd}0000{Bbc{{AGn{AGl}}}}0{{{Bb{AFl}}{Bb{Mh}}}C`}{{{Bb{AFl}}{Bb{AFl}}}C`}{{{Bb{AFl}}{Bb{AH`}}}C`}{{{Bb{AFl}}{Bb{{Bb{c}}}}}C`AHb}{{{Bb{AFl}}{Bb{Hb}}}C`}{{{Bb{AFl}}{Bb{{H`{Gn}}}}}C`}{{{Bb{AFl}}{Bb{{AFn{Gn}}}}}C`}{{{Bb{{AG`{c}}}}{Bb{{AG`{c}}}}}C`Eh}{{{Bb{AGb}}{Bb{AGb}}}C`}{{{Bb{AGd}}{Bb{AGd}}}C`}{{{Bb{AGf}}{Bb{AGf}}}C`}{{Bb{Bb{c}}}C`{}}00000000000{{AG`AGf}AG`}{AG`AGf}{{{Bb{AFl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}00{{{Bb{{AG`{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{AGb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AGd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AGf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{H`{Gn}}}AFl}{{{Bb{{AFn{Gn}}}}}AFl}{{{Bb{Mh}}}AFl}{cc{}}{AHdAFl}{AH`AFl}{HbAFl}{{{I`{{AFn{Gn}}}}}AFl}{{{Bb{AGb}}}AG`}55{cAGb{{Fj{AHf}}}}{{{Bb{AGb}}}AGb}7777777{cAGb{{Fj{AFl}}}}{cAFl{{Fb{}{{F`{Gn}}}}}}{cAFl{{AF`{{AFn{Gn}}}}Cn}}4{{IjIjc}AGb{{Fj{AFl}}}}={ce{}{}}0000{AG`}{{{Bb{AFl}}{Bb{B`c}}}BdLb}{{{Bb{AGd}}{Bb{B`c}}}BdLb}{{{Bb{AGf}}{Bb{B`c}}}BdLb}{{{Bb{AGb}}}AGd}{{}Id}0000{{}c{}}000000000{{{I`{c}}}{{I`{Dl}}}{}}0000{{{Lj{c}}}{{Lj{Dl}}}{}}0000{{{Ll{c}}}{{Ll{Dl}}}{}}0000{{{Fl{c}}}e{}{}}00004444444444{AFl}{{{Bb{AFl}}}}{{}c{}}0000{{{Bb{AFl}}}C`}0{{{Bb{AFl}}}Id}{{{Bb{{AGj{}{{AGh{c}}}}}}{Bb{c}}}{{An{Ij}}}Ed}{{}AFl}{cAG`{{Fj{AGb}}}}55{{AG`c}AG`{{Fj{d}}}}{AG`d}{{{Bb{AFl}}{Bb{Hb}}}{{Bf{Mj}}}}{{{Bb{AFl}}{Bb{Mh}}}{{Bf{Mj}}}}{{{Bb{AFl}}{Bb{{AFn{Gn}}}}}{{Bf{Mj}}}}{{{Bb{AFl}}{Bb{{Bb{c}}}}}{{Bf{Mj}}}AHb}{{{Bb{AFl}}{Bb{AFl}}}{{Bf{Mj}}}}{{{Bb{AFl}}{Bb{{H`{Gn}}}}}{{Bf{Mj}}}}{{{Bb{AGd}}{Bb{AGd}}}{{Bf{Mj}}}}<{{AG`c}AG`{{Fj{n}}}}{AG`n}{{{Bb{AFl}}c}AFl{{AHh{Id}}}}{{{Bb{AFl}}{Bb{{AFn{Gn}}}}}AFl}{{AG`C`}AG`}{AG`C`}{{{Bb{B`AFl}}Id}AFl}0{Bbc{}}0000{{{Bb{B`AFl}}Id}Bd}{{}{{Bl{c}}}{}}0000{c{{Bl{e}}}{}{}}0000{{}{{Bl{c}}}{}}0000{{}{{Bl{c{ABj{c}}}}}{}}0000{AFl{{Bl{AH`AFl}}}}{BbABl}0000{ce{}{}}0000{{}c{}}0000{Bb{{Bf{{Bb{c}}}}}{}}0000{{}c{}}0000{AHjIj}{AHjAGd}{AHjAFl}2````{eg{}{{l{c}}}{}}0{{ADnFnFnAn}ADn}{{{Bb{B`ADn}}FnFnAn}Bd}{ce{}{}}099{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{{{Bb{AE`}}ce}ADn{{Fj{Gl}}}{{Fj{Gl}}}}{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Bb{ADn}}}Al}{{{Fl{c}}}e{}{}}0{{{Bb{ADn}}}{{Bb{{AFn{ADn}}}}}}{{{Bb{AE`}}}AE`}{{{Bb{ADn}}}ADn}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0<<{{{Bb{AE`}}ceg}ADn{{Fj{Gl}}}{{Fj{Gl}}}{{Hh{{Bb{AE`}}}{{Ah{ADn}}}}}}{{ADnFh}ADn}{{}ADn}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}0=={IdBd}0{{{Bb{AE`}}{Bb{AE`}}}C`}`{{{Bb{AE`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{ADn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{ce{}{}}0{{AE`c}AE`{{Fj{Gl}}}}{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{{{Bb{AE`}}}AE`}{{{Bb{AE`}}}An}{{AE`d}AE`}0100{{ADnc}ADn{{Fj{Ad}}}}{{{Bb{B`ADn}}c}Bd{{Fj{Ad}}}}{{AnAn}AE`}{AnADn}{{{Bb{AE`}}dce}ADn{{Hh{{Bb{AE`}}}{{Ah{ADn}}}}}{{Hh{{Bb{AE`}}}{{Ah{ADn}}}}}}8{{{Bb{AE`}}cegi}ADn{{Fj{Gl}}}{{Fj{Gl}}}{{Fj{Fh}}}{{Hh{{Bb{AE`}}}{{Ah{ADn}}}}}}{{{Bb{AE`}}cegik}ADn{{Fj{Gl}}}{{Fj{Gl}}}{{Fj{Fh}}}{{Hh{{Bb{AE`}}}{{Ah{ADn}}}}}{{Hh{ADnAn}{{Ah{ADn}}}}}}{{{Bb{AE`}}ceAn}An{{Fj{Gl}}}{{Fj{Gl}}}}{{{Bb{AE`}}c}AE`{{Fj{An}}}}{{{Bb{ADn}}}An}{{{Bb{AE`}}ceg}ADn{{Fj{Gl}}}{{Fj{Gl}}}{{Hh{{Bb{AE`}}}{{Ah{An}}}}}}{Bbc{}}0{{ADnc}ADn{{Fj{Af}}}}{{{Bb{B`ADn}}c}Bd{{Fj{Af}}}}{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0{{AE`c}AE`{{Fj{Gl}}}}{{An{H`{ADn}}}ADn}```{eg{}{{l{c}}}{}}{ce{}{}}6{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}5{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}4{IdBd}{{{Bb{AHl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}};33{{}c{}}{{AHl{Bb{c}}{Bb{AE`}}GlGlFhdFn{Bb{{AFn{{AHn{egc}}}}}}{Bb{B`{AFn{ACl}}}}}ADnAD`{}{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}``````````````````````````````````````````{eg{}{{l{c}}}{}}{ce{}{}}4{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}`{{{Bb{AI`}}}AI`}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}8{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}7{IdBd}{{{Bb{AI`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}>33{{}c{}}{{{Bb{AI`}}}AIb}{{AI`Dn}AI`}{{AdAId{Bf{AI`}}}AI`}{{{Bb{AI`}}}Ad}{Bbc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}{AIfAIh}{AIjAd}{AIld}{AInd}10`````{eg{}{{l{c}}}{}}{ce{}{}}8{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{AIb}}}AIb}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}8{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}7{IdBd}{{{Bb{AIb}}{Bb{AIb}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{AIb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}44{{}c{}}{Bbc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}```{eg{}{{l{c}}}{}}0{ce{}{}}044{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}055{{}{{AJ`{ceg}}}{}{}AD`}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}055{{{Bb{ADb}}{Bb{B`c}}{Bb{e}}{Bb{ADd}}ACfADf}BdAD`{}}{{{Bb{{AEh{ceg}}}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf}Bd{}{}AD`}{{{Bb{{AJ`{ceg}}}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf}Bd{}{}AD`}{IdBd}0{cc{}}{{{AJ`{ceg}}}{{AEh{ceg}}}{}{}AD`}111{{{Bb{B`{AFn{{AHn{ceg}}}}}}{Bb{B`ACl}}ACf{Bb{g}}Af}{{Bf{{AEh{ceg}}}}}{}{}AD`}{ce{}{}}0{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0??2222{{}c{}}0{{{Bb{{AEh{ceg}}}}ACf{Bb{g}}Ad}C`{}{}AD`}{{{Bb{{AJ`{ceg}}}}ACf{Bb{g}}Ad}C`{}{}AD`}{{{Bb{ADb}}ACf{Bb{c}}Ad}C`AD`}{{{Bb{B`ADb}}{Bb{c}}An}ADnAD`}{{{Bb{B`{AEh{ceg}}}}{Bb{g}}An}ADn{}{}AD`}{{{Bb{B`{AJ`{ceg}}}}{Bb{g}}An}ADn{}{}AD`}{{{AEh{ceg}}{Bb{Bj}}}{{AEh{ieg}}}{}{}AD`{}}{{{Bb{{AEh{ceg}}}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}{}AD`}{{{Bb{{AJ`{ceg}}}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}{}AD`}{{{Bb{ADb}}ACfADf{Bb{Al}}{Bb{c}}}AEdAD`}{{{I`{ADb}}}{{AEh{ceg}}}{}{}AD`}{{}{{AJ`{ceg}}}{}{}AD`}<{{{Bb{B`{AEh{ceg}}}}ACf{Bb{g}}{Bb{B`AEf}}}Bd{}{}AD`}{{{Bb{B`{AJ`{ceg}}}}ACf{Bb{g}}{Bb{B`AEf}}}Bd{}{}AD`}{{{Bb{B`ADb}}ACf{Bb{c}}{Bb{B`AEf}}}BdAD`}{{{Bb{B`{AEh{ceg}}}}ACf{Bb{g}}}{{Bf{{AEh{ceg}}}}}{}{}AD`}{{{Bb{B`{AJ`{ceg}}}}ACf{Bb{g}}}{{Bf{{AEh{ceg}}}}}{}{}AD`}{{{AJ`{ceg}}}{{AEh{ceg}}}{}{}AD`}{{{Bb{B`ADb}}ACf{Bb{c}}}{{Bf{{AEh{egc}}}}}AD`{}{}}{{{AJ`{ceg}}i}{{AJ`{ceg}}}{}{}AD`{{Fj{{AEh{ceg}}}}}}{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{{Bb{B`{AEh{ceg}}}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}}Bd{}{}AD`}{{{Bb{B`{AJ`{ceg}}}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}}Bd{}{}AD`}{{{Bb{B`ADb}}{Bb{Gb}}ACfADf{Bb{c}}{Bb{B`AEj}}{Bb{B`{ACd{e}}}}}BdAD`{}}{{}c{}}0{{{H`{{AEh{ceg}}}}}{{AJ`{ceg}}}{}{}AD`}````{eg{}{{l{c}}}{}}0{ce{}{}}088{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{ADjG`}{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{ADjAl}{{{Fl{c}}}e{}{}}0{{{Bb{B`AD`}}}Bd}{{{Bb{ADj}}}ADj}{{{Bb{ADd}}}ADd}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0<<{{}ADj}{{}ADd}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}0<<{IdBd}099{{{Bb{ADj}}{Bb{ADj}}}C`}{{{Bb{ADd}}{Bb{ADd}}}C`}{{{Bb{B`AD`}}ADjc}Bd{{Fj{Gh}}}}{{{Bb{ADj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{ADd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{ce{}{}}0{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{{GdAb}AJb}11{{{Bb{B`AJb}}{An{Ij}}db}{{H`{Gn}}}}{ADjFf}{{{Bb{B`AD`}}Al}Bd}{{{Bb{B`AD`}}Dn}Bd}{ADdb}{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0{{{Bb{B`AD`}}Alc}Bd{{Hh{{Bb{B`AD`}}}}}}{{{Bb{B`AD`}}Dnc}Bd{{Hh{{Bb{B`AD`}}}}}}{{{Bb{B`AD`}}Afc}Bd{{Hh{{Bb{B`AD`}}}}}}```````````{eg{}{{l{c}}}{}}00{ce{}{}}00777{Bb{{Bb{Dl}}}}00{{{Bb{B`}}}{{Bb{B`Dl}}}}00{Bb{{Bb{c}}}{}}00{{{Bb{B`}}}{{Bb{B`c}}}{}}00{{{Fl{c}}}e{}{}}00{{{Bb{AJd}}}AJd}{{{Bb{AJf}}}AJf}{{{Bb{AJh}}}AJh}{{Bb{Bb{B`c}}}Bd{}}00{{BbGn}Bd}00:::{Id{{Bb{c}}}{}}00{Id{{Bb{B`c}}}{}}00999{IdBd}00{{{Bb{AJd}}{Bb{AJd}}}C`}{{{Bb{AJf}}{Bb{AJf}}}C`}{{{Bb{AJh}}{Bb{AJh}}}C`}{{Bb{Bb{c}}}C`{}}00000{{{Bb{AJd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AJf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AJh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}00000{e{{Fd{c}}}{}{{AJj{}{{Ah{c}}}}}}{ce{}{}}00{{{Bb{{AJj{}{{Ah{c}}}}}}{Bb{B`AJl}}}Bd{}}{{}Id}00{{}c{}}00000{{{I`{c}}}{{I`{Dl}}}{}}00{{{Lj{c}}}{{Lj{Dl}}}{}}00{{{Ll{c}}}{{Ll{Dl}}}{}}00{{{Fl{c}}}e{}{}}00444444{{{Fd{c}}}{{H`{{I`{AJj}}}}}{}}{{}c{}}00{{{I`{{AJj{}{{Ah{c}}}}}}{AJn{{I`{Nf}}}}}{{AJn{{I`{Nf}}}}}{}}{Bbc{}}00{{}{{Bl{c}}}{}}00{c{{Bl{e}}}{}{}}00{{}{{Bl{c}}}{}}00{{}{{Bl{c{ABj{c}}}}}{}}00{BbABl}00{ce{}{}}00{{}c{}}00{Bb{{Bf{{Bb{c}}}}}{}}00{{}c{}}00{AK`Gb}{AK`ADh}{AK`Nj}``````{eg{}{{l{c}}}{}}00{ce{}{}}00777{Bb{{Bb{Dl}}}}00{{{Bb{B`}}}{{Bb{B`Dl}}}}00{Bb{{Bb{c}}}{}}00{{{Bb{B`}}}{{Bb{B`c}}}{}}00{{{Fl{c}}}e{}{}}00{{{Bb{{AKb{c}}}}}{{AKb{c}}}Ed}{{{Bb{AKd}}}AKd}{{{Bb{AKf}}}AKf}{{Bb{Bb{B`c}}}Bd{}}00{{BbGn}Bd}00{{AKbc}AKb{{Fj{b}}}}{AKbBf}<<<{{{Bb{AKd}}}{{Bb{AKf}}}}{Id{{Bb{c}}}{}}00{Id{{Bb{B`c}}}{}}00<<<{{{Bb{B`AKh}}AKbAl}Bd}{IdBd}00{{{Bb{{AKb{c}}}}{Bb{{AKb{c}}}}}C`Eh}{{{Bb{AKd}}{Bb{AKd}}}C`}{{{Bb{AKf}}{Bb{AKf}}}C`}{{Bb{Bb{c}}}C`{}}00000{{{Bb{{AKb{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{AKd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AKf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}{{{Bb{AKd}}}AKb}1{cAKd{{Fj{AHf}}}}2222{cAKd{{Fj{{AKj{{AFn{Gn}}}}}}}}{cAKd{{Fj{AHf}}}}{ce{}{}}00{AKb}{{{Bb{AKd}}{Bb{B`c}}}BdLb}{{{Bb{AKf}}{Bb{B`c}}}BdLb}{{{Bb{AKd}}}Kn}{{}Id}00{{}c{}}00000{{{I`{c}}}{{I`{Dl}}}{}}00{{{Lj{c}}}{{Lj{Dl}}}{}}00{{{Ll{c}}}{{Ll{Dl}}}{}}00{{{Fl{c}}}e{}{}}00444444{{}c{}}00{{{Bb{AKh}}{Bb{AKd}}}{{An{Ij}}}}{cAKb{{Fj{AKd}}}}{{AKbc}AKb{{Fj{d}}}}{AKbd}{{AKbc}AKb{{Fj{n}}}}{AKbn}{Bbc{}}00{{}{{Bl{c}}}{}}00{c{{Bl{e}}}{}{}}00{{}{{Bl{c}}}{}}00{{}{{Bl{c{ABj{c}}}}}{}}00{BbABl}00{ce{}{}}00{{}c{}}00{Bb{{Bf{{Bb{c}}}}}{}}00{{}c{}}00```````````````````````````````````````{eg{}{{l{c}}}{}}000000{ce{}{}}0000004444444{Bb{{Bb{Dl}}}}000000{{{Bb{B`}}}{{Bb{B`Dl}}}}000000{{{AKl{ce}}g}{{AKl{ce}}}{}{}{{Fj{Gh}}}}{AKnGh}{{{AKl{ce}}{Bf{g}}}{{AKl{ce}}}{}{}{{Fj{Gh}}}}{{{AKl{ce}}g}{{AKl{ce}}}{}{}{{Fj{G`}}}}{AKnG`}{{{AKl{ce}}{Bf{g}}}{{AKl{ce}}}{}{}{{Fj{G`}}}}{Bb{{Bb{c}}}{}}000000{{{Bb{B`}}}{{Bb{B`c}}}{}}000000{{{Bb{{ALb{}{{AL`{c}}}}}}}An{EfEhDd}}{AChAn}{{{Fl{c}}}e{}{}}000000{{{Bb{B`{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}}Id}Bd{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}{{{Bb{AFb}}}AFb}{{{Bb{AFh}}}AFh}{{{Bb{AEb}}}AEb}{{{Bb{AM`}}}AM`}{{{Bb{AMb}}}AMb}{{{Bb{{AKl{ce}}}}}{{AKl{ce}}}EdEd}{{{Bb{AKn}}}AKn}{{Bb{Bb{B`c}}}Bd{}}000000{{BbGn}Bd}000000{{{AKl{ce}}g}{{AKl{ce}}}{}{}{{Fj{b}}}}{AKlBf}{{{AKl{ce}}{Bf{g}}}{{AKl{ce}}}{}{}{{Fj{b}}}}{{{Bb{{AMd{}{{AL`{c}}}}}}{ACh{Bdc}}}AMb{EfEh}}{ce{}{}}000000{ACh}{{{Bb{{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}}}Id{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}{{{Bb{{ALb{}{{AL`{c}}}}}}}AMf{EfEhDd}}{AM`Id}{{{Bb{{ALb{}{{AL`{c}}}}}}}{{j{IdId}}}{EfEhDd}}{{}AFb}{{}AFh}{{}AEb}{{}{{AKl{ce}}}{}{}}{{{Bb{{AMl{}{{AL`{c}}{AMh{e}}{AMj{g}}}}}}}c{EfEh}{{AMd{}{{AL`{c}}}}}{{ALb{}{{AL`{c}}}}}}{{{Bb{{AMl{}{{AL`{c}}{AMh{e}}{AMj{g}}}}}}}Ab{EfEh}{{AMd{}{{AL`{c}}}}}{{ALb{}{{AL`{c}}}}}}{Id{{Bb{c}}}{}}000000{Id{{Bb{B`c}}}{}}000000{Bb{{Bb{c}}}{}}000000{IdBd}000000`{{{Bb{AFb}}{Bb{AFb}}}C`}{{{Bb{AFh}}{Bb{AFh}}}C`}{{{Bb{AEb}}{Bb{AEb}}}C`}{{{Bb{AM`}}{Bb{AM`}}}C`}{{{Bb{AMb}}{Bb{AMb}}}C`}{{{Bb{{AKl{ce}}}}{Bb{{AKl{ce}}}}}C`{}Eh}{{{Bb{AKn}}{Bb{AKn}}}C`}{{Bb{Bb{c}}}C`{}}00000000{{{Bb{B`{AMl{}{{AL`{c}}{AMh{e}}{AMj{g}}}}}}{Bb{g}}AdbAl}Bd{EfEh}{{AMd{}{{AL`{c}}}}}{{ALb{}{{AL`{c}}}}}}{{{Bb{B`{AMl{}{{AL`{c}}{AMh{e}}{AMj{g}}}}}}{Bb{e}}AdbAl}Bd{EfEh}{{AMd{}{{AL`{c}}}}}{{ALb{}{{AL`{c}}}}}}{{{Bb{B`{AMl{}{{AL`{c}}{AMh{e}}{AMj{g}}}}}}{ACh{Hbc}}AdbAl}Bd{EfEh}{{AMd{}{{AL`{c}}}}}{{ALb{}{{AL`{c}}}}}}{{{Bb{AFb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AFh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AEb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AM`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AMb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{{AKl{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`D`}{{{Bb{AKn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{AKl{ce}}g}{{AKl{ce}}}{}{}{{Fj{e}}}}{ACh}{AKlBf}{{{AKl{ce}}{Bf{g}}}{{AKl{ce}}}{}{}{{Fj{e}}}}{cc{}}00{AbAEb}{dAEb}222{{{Bb{Mh}}}{{AKl{ce}}}{}{}}33333333{ce{}{}}000000{{{Bb{{AMd{}{{AL`{c}}}}}}IdId}{{Bf{Ad}}}{EfEh}}{{{Bb{AFb}}{Bb{B`c}}}BdLb}{{{Bb{AFh}}{Bb{B`c}}}BdLb}{{{Bb{AEb}}{Bb{B`c}}}BdLb}{{{Bb{B`{ALb{}{{AL`{c}}}}}}c{Bb{B`e}}g}Bd{EfEhDd}ALj{{Bj{Bb}{{Ah{{AMn{c}}}}}}}};{{{Bb{B`{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}}{Bb{Mh}}}g{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}`{{{Bb{{AMd{}{{AL`{c}}}}}}Ad}{{Bf{Id}}}{EfEh}}{{{Bb{{AMd{}{{AL`{c}}}}}}Ad}{{Bf{AM`}}}{EfEh}}{{{Bb{{AMd{}{{AL`{c}}}}}}}Kb{EfEh}}{AChKb}{{}Id}000000{{}c{}}0000000000000{{{I`{c}}}{{I`{Dl}}}{}}000000{{{Lj{c}}}{{Lj{Dl}}}{}}000000{{{Ll{c}}}{{Ll{Dl}}}{}}000000{{{Fl{c}}}e{}{}}00000044444444444444{AN`{{AKj{Mh}}}}{{}c{}}000000{{{Bb{{ALb{}{{AL`{c}}}}}}}C`{EfEhDd}}{{{Bb{{ALb{}{{AL`{c}}}}}}Id}{{Bf{ANb}}}{EfEhDd}}{{{Bb{{ALb{}{{AL`{c}}}}}}}Id{EfEhDd}}{{{AKl{ce}}g}{{AKl{ce}}}{}{}{{Fj{AEb}}}}{AChAEb}{AKlBf}{{{AKl{ce}}g}{{AKl{ce}}}{}{}{{Fj{c}}}}1{{{AKl{ce}}{Bf{g}}}{{AKl{ce}}}{}{}{{Fj{c}}}}{{{Bb{{ALb{}{{AL`{c}}}}}}}An{EfEhDd}}{{{Bb{{AMd{}{{AL`{c}}}}}}}An{EfEh}}{{{Bb{{AMd{}{{AL`{c}}}}}}}d{EfEh}}0{{{Bb{c}}}{{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}{c{{AKl{eg}}}AN`{}{}}===={{{AKl{ce}}g}{{AKl{ce}}}{}{}{{Fj{Fh}}}}{AKlFh}`{{{Bb{B`{ALb{}{{AL`{c}}}}}}ANd}Bd{EfEhDd}}{{{Bb{B`{AMd{}{{AL`{c}}}}}}An}Bd{EfEh}}{{{Bb{{ALb{}{{AL`{c}}}}}}}{{Bf{Hb}}}{EfEhDd}}{AChAFb}{{{AKl{ce}}g}{{AKl{ce}}}{}{}{{Fj{Ab}}}}{AChAb}?{{{Bb{{AMd{}{{AL`{c}}}}}}Id}{{H`{Al}}}{EfEh}}{{{AKl{ce}}C`}{{AKl{ce}}}{}{}}{AKlC`}{AKlAKj}{{AEbAb}Ab}{Bbc{}}000000{{{AKl{ce}}}{{AKl{ce}}}{}{}}{{}{{Bl{c}}}{}}000000{c{{Bl{e}}}{}{}}000000{{}{{Bl{c}}}{}}000000{{}{{Bl{c{ABj{c}}}}}{}}000000{BbABl}000000{ce{}{}}000000{{}c{}}000000<;{Bb{{Bf{{Bb{c}}}}}{}}000000{{{Bb{B`{ALb{}{{AL`{c}}}}}}AncAbAEbAFh{Bb{B`e}}}Bd{EfEhDd}ALj}{{{Bb{B`{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}}{Bb{c}}}Bd{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}{{{Bb{{AMd{}{{AL`{c}}}}}}}K`{EfEh}}{AChK`}{{}c{}}000000{{{ACh{{Bb{{AFn{{AKl{ce}}}}}}e}}}{{AMd{}{{AL`{e}}}}}{}{EfEh}}{{{Bb{Mh}}}{{ALb{}{{AL`{c}}}}}{EfEhDd}}{{{ACh{{Bb{Mh}}c}}}{{AMd{}{{AL`{c}}}}}{EfEh}}{AChAFh}````````````````````````````````````````````{eg{}{{l{c}}}{}}0{ce{}{}}0<<{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Bb{{ALb{}{{AL`{c}}}}}}}An{EfEhDd}}{{{Fl{c}}}e{}{}}0{{{Bb{ANf}}}ANf}{{{Bb{AMf}}}AMf}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0::{{{Bb{{ALb{}{{AL`{c}}}}}}}AMf{EfEhDd}}{{{Bb{{ALb{}{{AL`{c}}}}}}}{{j{IdId}}}{EfEhDd}}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}0;;{IdBd}0{ANbANh}{{{Bb{ANf}}{Bb{ANf}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{ANf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AMf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{ce{}{}}0{{{Bb{B`{ALb{}{{AL`{c}}}}}}c{Bb{B`e}}g}Bd{EfEhDd}ALj{{Bj{Bb}{{Ah{{AMn{c}}}}}}}}{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{{{Bb{{ALb{}{{AL`{c}}}}}}}C`{EfEhDd}}{{{Bb{{ALb{}{{AL`{c}}}}}}Id}{{Bf{ANb}}}{EfEhDd}}{{{Bb{{ALb{}{{AL`{c}}}}}}}Id{EfEhDd}}{{{Bb{{ALb{}{{AL`{c}}}}}}}An{EfEhDd}}{{{Bb{B`{ALb{}{{AL`{c}}}}}}ANd}Bd{EfEhDd}}{{{Bb{{ALb{}{{AL`{c}}}}}}}{{Bf{Hb}}}{EfEhDd}}{ANbAKj}{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{{Bb{B`{ALb{}{{AL`{c}}}}}}AncAbAEbAFh{Bb{B`e}}}Bd{EfEhDd}ALj}{{}c{}}0{{{Bb{Mh}}}{{ALb{}{{AL`{c}}}}}{EfEhDd}}{ANjANl}``````{eg{}{{l{c}}}{}}0{ce{}{}}077{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{B`{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}}Id}Bd{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}{{{Bb{B`ANn}}Id}Bd}{{{Bb{ANn}}}ANn}{{{Bb{{AMn{c}}}}}{{AMn{c}}}Ed}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0{AMnBf}<<{{{Bb{{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}}}Id{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}{{{Bb{ANn}}}Id}{{}{{AMn{c}}}{}}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}0>>{IdBd}0{{{Bb{{AMn{c}}}}{Bb{{AMn{c}}}}}C`Eh}{{{Bb{ANn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{{AMn{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}9{cc{}}000{ce{}{}}0{{{Bb{B`{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}}{Bb{Mh}}}g{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}{{{Bb{B`ANn}}{Bb{Mh}}}}{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{{{Bb{c}}}{{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}{BbANn}2{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{{Bb{B`{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}}{Bb{c}}}Bd{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}{{{Bb{B`ANn}}Bb}Bd}{{}c{}}0```{eg{}{{l{c}}}{}}{ce{}{}}6{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{{AO`{c}}}}}{{AO`{c}}}{EdAMd}}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}{{{Bb{{AMd{}{{AL`{c}}}}}}{ACh{Bdc}}}AMb{EfEh}}9{{}{{AO`{c}}}{DdAMd}}{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}9{IdBd}{{{Bb{{AO`{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}{D`AMd}}{cc{}}0{ce{}{}}{{{Bb{{AMd{}{{AL`{c}}}}}}IdId}{{Bf{Ad}}}{EfEh}}{{{Bb{{AMd{}{{AL`{c}}}}}}Ad}{{Bf{Id}}}{EfEh}}{{{Bb{{AMd{}{{AL`{c}}}}}}Ad}{{Bf{AM`}}}{EfEh}}{{{Bb{{AMd{}{{AL`{c}}}}}}}Kb{EfEh}}{{{Bb{{AO`{c}}}}}KbAMd}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}44{{}c{}}{{{Bb{{AMd{}{{AL`{c}}}}}}}An{EfEh}}{{{Bb{{AO`{c}}}}}AnAMd}{{{Bb{{AMd{}{{AL`{c}}}}}}}d{EfEh}}{{{Bb{{AO`{c}}}}}dAMd}10{{{ACh{{Bb{Mh}}}}}{{AO`{c}}}AMd}5{{{Bb{{AO`{c}}}}}{{Bb{c}}}AMd}{{{Bb{B`{AMd{}{{AL`{c}}}}}}An}Bd{EfEh}}{{{Bb{{AMd{}{{AL`{c}}}}}}Id}{{H`{Al}}}{EfEh}}{Bbc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{{Bb{B`{AO`{c}}}}{ACh{{Bb{Mh}}}}}BdAMd}{{{Bb{{AMd{}{{AL`{c}}}}}}}K`{EfEh}}{{{Bb{{AO`{c}}}}}K`AMd}{{}c{}}{{{ACh{{Bb{{AFn{{AKl{ce}}}}}}e}}}{{AMd{}{{AL`{e}}}}}{}{EfEh}}{{{ACh{{Bb{Mh}}c}}}{{AMd{}{{AL`{c}}}}}{EfEh}}`````{eg{}{{l{c}}}{}}00{{{AOb{ce}}g}{{AOb{ce}}}AOdAMl{{Fj{Kb}}}}{{{AOb{ce}}g}{{AOb{ce}}}AOdAMl{{Fj{K`}}}}{ce{}{}}00;;;{Bb{{Bb{Dl}}}}00{{{Bb{B`}}}{{Bb{B`Dl}}}}00{Bb{{Bb{c}}}{}}00{{{Bb{B`}}}{{Bb{B`c}}}{}}00{{{Fl{c}}}e{}{}}00{{{AOb{ce}}}{{AOb{ce}}}AOdAMl}{{{Bb{ACj}}}{{H`{ACl}}}}{AClH`}{{{AOb{ce}}g}{{AOb{ce}}}AOdAMlFj}{{{Bb{AOf}}}AOf}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}{{{AOb{ce}}g}{{AOb{ce}}}AOdAMl{{Fj{b}}}}{{{AOb{ce}}{Bf{g}}}{{AOb{ce}}}AOdAMl{{Fj{b}}}}>>>{{{Bb{B`AEf}}{Bf{{Bb{AOf}}}}Al{Bb{B`Ln}}}Bd}{{{Bb{B`AEf}}{Bf{{Bb{AOf}}}}Al{Bb{B`Dl}}}Bd}{Id{{Bb{c}}}{}}00{Id{{Bb{B`c}}}{}}00{{{Bb{ACj}}{Bb{B`ACl}}}Bd}{{{Bb{B`ACl}}c}Bd{{AOh{ACj}}}}{{{Bb{B`ACl}}{Bb{{AFn{c}}}}}Bd{{AOh{ACj}}}}{{{Bb{B`ACl}}{Bb{{AFn{c}}}}eg}Bd{}{{Bj{{Bb{B`ACl}}{Bb{c}}}}}{{Bj{{Bb{c}}}{{Ah{ACl}}}}}}{Bb{{Bb{c}}}{}}00{{{Bb{ACj}}{Bb{ACl}}{Bb{B`c}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}BdAD`{}}{{{Bb{{AOb{ce}}}}{Bb{ACl}}{Bb{B`e}}{Bb{c}}{Bb{ADd}}ACfADf{Bb{Al}}}BdAOdAMl}{IdBd}00{{}ACl}{{{Bb{AOf}}{Bb{AOf}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{AEf}}}{{AOj{c}}}{}}{{{Bb{ACl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AOf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{B`AEf}}{Bf{{Bb{AOf}}}}Al{Bb{B`AOl}}}Bd}{{{AOb{ce}}g}{{AOb{ce}}}AOdAMlFj}{{{Bb{Mh}}}{{AOb{ce}}}AOdAMl}{cc{}}0{AOnAOf}1{B@`AOf}{B@bAOf}333{ce{}{}}00{{{Bb{AOf}}{Bb{B`c}}}BdLb}{{{AOb{ce}}g}{{AOb{ce}}}AOdAMl{{Fj{Gl}}}}{{}Id}00{{}c{}}00000{{{I`{c}}}{{I`{Dl}}}{}}00{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}00{{{Fl{c}}}e{}{}}00444444{{}c{}}00{{{Bb{ACj}}{Bb{B`ACl}}{Bb{c}}{Bb{AE`}}}ADnAD`}{{{Bb{{AOb{ce}}}}{Bb{B`ACl}}{Bb{e}}{Bb{AE`}}}ADnAOdAMl}{{{AOb{ce}}g}{{AOb{ce}}}AOdAMl{{Fj{AEb}}}}{{{Bb{ACj}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{c}}}AEdAD`}{c{{AOb{eg}}}AN`AOdAMl}{cACl{{AOh{ACj}}}}{cAOf{{Fj{{AKj{Mh}}}}}}{e{{f{c}}}Cn{{AEf{c}}}}{{{Bb{{AOb{ce}}}}{Bb{B`ACl}}ACf{Bb{e}}{Bb{B`AEf}}}BdAOdAMl}{{{Bb{ACj}}{Bb{B`ACl}}ACf{Bb{c}}{Bb{B`AEf}}}BdAD`}`{{{Bb{B`ACj}}{Bb{B`ACl}}ACf{Bb{c}}Af}{{Bf{{AEh{egc}}}}}AD`{}{}}{{{Bb{B`AEf}}{Bf{{Bb{AOf}}}}AlAlAf{Bb{B`B@d}}}Bd}{{{AOb{ce}}AFb}{{AOb{ce}}}AOdAMl}{{{Bb{ACj}}}{{An{Gl}}}}{{{AOb{ce}}g}{{AOb{ce}}}AOdAMl{{Fj{Ab}}}}{{{Bb{{AOb{ce}}}}}{{An{Gl}}}AOdAMl}2{{{Bb{{AOb{ce}}}}}AFdAOdAMl}{{{Bb{ACj}}}AFd}{AClAFd}{{{AOb{ce}}g}{{AOb{ce}}}AOdAMl{{Bj{{Bb{c}}}{{Ah{Ob}}}}}}{{{Bb{{AOb{ce}}}}}AFfAOdAMl}{{{Bb{ACj}}}AFf}{AClAFf}`{{{Bb{B`AEf}}{Bf{{Bb{AOf}}}}Al{Bb{Mh}}}Bd}{{{Bb{B`AEf}}{Bf{{Bb{AOf}}}}Al{Bb{B`B@f}}}Bd}{Bbc{}}`{{}{{Bl{c}}}{}}00{c{{Bl{e}}}{}{}}00{{}{{Bl{c}}}{}}00{{}{{Bl{c{ABj{c}}}}}{}}00{BbABl}00{ce{}{}}00{{}c{}}00{{}AOf}{Bb{{Bf{{Bb{c}}}}}{}}00{{{Bb{B`ACj}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{c}}{Bb{B`AEj}}{Bb{B`{ACd{e}}}}{Bb{Al}}}BdAD`{}}{{}c{}}00{{{AOb{ce}}g}{{AOb{ce}}}AOdAMl{{Fj{Gl}}}}{{{AOb{ce}}AFh}{{AOb{ce}}}AOdAMl}````````{eg{}{{l{c}}}{}}{ce{}{}}8{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{{{Bb{B`AEf}}}{{`{{AEf{c}}}}}{}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}6{{{Bb{B`AEf}}{Bf{{Bb{AOf}}}}Al{Bb{B`Ln}}}Bd}{{{Bb{B`AEf}}{Bf{{Bb{AOf}}}}Al{Bb{B`Dl}}}Bd}{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}6{IdBd}{{{Bb{AEf}}}{{AOj{c}}}{}}{{{Bb{{AOj{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{B`AOl}}}Bd}`{{{Bb{B`AEf}}{Bf{{Bb{AOf}}}}Al{Bb{B`AOl}}}Bd}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}?22{{}c{}}{{{Bb{AOl}}}C`}{{ei}{{`{{AEf{g}}}}}{}{{AEf{c}}}{}{{Bj{c}{{Ah{g}}}}CnACb}}{{{Bb{B`B@f}}Id}Bd}{{{Bb{B`B@f}}}Bd}0{{AOfe}{{`{{AEf{c}}}}}{}{{AEf{c}}}}{{{Bb{B`B@d}}B@hAlAl}Bd}{{{Bb{B`B@d}}B@h}Bd}`{{{Bb{B`AEf}}{Bf{{Bb{AOf}}}}AlAlAf{Bb{B`B@d}}}Bd}4{{{Bb{B`B@d}}B@j}Bd}{{{Bb{B`AEf}}{Bf{{Bb{AOf}}}}Al{Bb{Mh}}}Bd}`{{{Bb{B`AEf}}{Bf{{Bb{AOf}}}}Al{Bb{B`B@f}}}Bd}{{e{Nh{c}{{Ah{i}}}}}{{`{{AEf{g}}}}}{}{{AEf{c}}}Cn{{AEf{g}}}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{{{Bb{B`AOl}}}Bd}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}``{eg{}{{l{c}}}{}}{ce{}{}}5{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{B@l}}}B@l}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}8{{}{{`{{AEf{B@l}}}}}}{{}B@l}{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}9{IdBd}{{{Bb{B@l}}{Bb{B@l}}}C`}{{Bb{Bb{c}}}C`{}}00{{}{{`{{AEf{AOf}}}}}}{{{Bb{B@l}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{AOf{{`{{AEf{c}}}}}{}}{{{Bb{B`AOl}}}Bd}{{}{{`{{AEf{c}}}}}Cn}0{B@lBf}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}44{{}c{}}{{{Bb{AOl}}}C`}1{Bbc{}}{B@lId}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{{{Bb{B`AOl}}}Bd}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}```{{AOfB@h}{{`{{AEf{c}}}}}{}}{{{Bb{B`B@d}}B@hAlAl}Bd}1{{{Bb{B`B@d}}B@h}Bd}{{AOfB@j}{{`{{AEf{c}}}}}{}}{{{Bb{B`B@d}}B@j}Bd}{B@hd}{B@jd}10`{{AOfId}{{`{{AEf{c}}}}}{}}{{{Bb{B`B@f}}Id}Bd}{AOf{{`{{AEf{c}}}}}{}}{{{Bb{B`B@f}}}Bd}1010`````````````````{{{Bb{El}}}Ob}{ObBf}11{{}c{}}{{{Bb{B`c}}{Bb{ADd}}ACfBbOb{Bb{Al}}}BdAMl}{{{Bb{B`B@n}}{Bb{c}}{Bb{AE`}}GlGl{Bb{Mh}}AEb{Bf{Ab}}BfKbK`AFbAFh}ADnAMl}44{{{Bb{{AOd{}{{BA`{c}}}}}}{Bb{c}}}Ob{}}5`````{eg{}{{l{c}}}{}}0{ce{}{}}0{{}c{}}0{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{AClH`}{{{Bb{AFf}}}AFf}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}{{{Bb{AFf}}{Bb{AFf}}}Mj}{{Bb{Bb{c}}}Mj{}}<<{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}0{{{Bb{B`{H`{ACl}}}}{Bb{{AFn{c}}}}egi}Bd{}{{Bj{{Bb{B`ACl}}{Bb{c}}}}}{{Bj{Id}{{Ah{C`}}}}}{{Bj{{Bb{c}}}{{Ah{ACl}}}}}};;{{{Bb{B`AFd}}}{{Bb{B`c}}}{}}{{{Bb{AFd}}}{{Bb{c}}}{}}{IdBd}0{{{Bb{AFf}}{Bb{AFf}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{AFd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AFf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{ce{}{}}0{{{Bb{AFf}}{Bb{B`c}}}BdLb}{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{cAFd{}}{{}AFf}{{{Bb{AFf}}{Bb{AFf}}}{{Bf{Mj}}}}{AClAFd}2{AClAFf}{Bbc{}}{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0````````````{eg{}{{l{c}}}{}}0{ce{}{}}044{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{Kb}}}Kb}{{{Bb{K`}}}K`}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}099{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}088{IdBd}0{{{Bb{Kb}}{Bb{Kb}}}C`}{{{Bb{K`}}{Bb{K`}}}C`}{{Bb{Bb{c}}}C`{}}00000{{{Bb{Kb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{K`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}{FnKb}1{FnK`}22{ce{}{}}0{{{Bb{Kb}}{Bb{B`c}}}BdLb}{{{Bb{K`}}{Bb{B`c}}}BdLb}{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0````````````````````````````````````{eg{}{{l{c}}}{}}{ce{}{}}4{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{Il}}}Il}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}8{{}Il}{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}8{IdBd}{{{Bb{Il}}{Bb{Il}}}C`}{{{Bb{Ej}}}d}{{{Bb{Il}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0{ce{}{}}{{}Id}{{{Bb{Lh}}Lhd}Lh}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}44{{}c{}}0{Bbc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{Ild}d}{{}c{}}````{eg{}{{l{c}}}{}}{{{Cj{c}}C`}{{Cj{c}}}Ch}{{eio}{{Cj{{`{{Ch{}{{Cb{c}}{Cd{g}}{Cf{k}}}}}}}}}{}{{Cl{c}}}{CnD`}{{Db{cg}}}{DdDf}`{{Dh{cgkm}}}}{ce{}{}}7{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Cj{c}}}{{Cj{c}}}Ch}68{{{Cj{c}}Gd}{{Cj{c}}}Ch}{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}6{IdBd}{{{Cj{c}}}{{Cj{{`{{Ch{}{{Cb{}}{Cd{}}{Cf{}}}}}}}}}Ch}={{{Bb{{Cj{c}}}}{Bb{B`Jd}}}Jj{D`Ch}}{{{Cj{c}}e}{{Cj{c}}}Ch{{Fj{{AKj{{AFn{Gn}}}}}}}}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}?33{{}c{}}{{{Cj{c}}BAb}{{Cj{c}}}Ch}{{{Cj{c}}BAd}{{Cj{c}}}Ch}{{{Cj{c}}C`}{{Cj{c}}}Ch}{{{Cj{c}}}MnCh}{{{Cj{c}}e}MnCh{{Hh{}{{Ah{{j{f}}}}}}}}{{{Cj{c}}e}{{Cj{{`{{Ch{}{{Cb{}}{Cd{}}{Cf{}}}}}}}}}Ch{{Bj{Bb}{{Ah{Kj}}}}}}{{{Cj{c}}Bn}{{Cj{c}}}Ch}{{{Cj{c}}e}{{Cj{{`{{Ch{}{{Cb{}}{Cd{}}{Cf{}}}}}}}}}Ch{{Bj{BbBb}{{Ah{En}}}}}}{{{Cj{c}}e}{{Cj{{`{{Ch{}{{Cb{}}{Cd{}}{Cf{}}}}}}}}}Ch{{Bj{Bb}{{Ah{Fd}}}}}}{{{Cj{c}}e}{{Cj{{`{{Ch{}{{Cb{}}{Cd{}}{Cf{}}}}}}}}}Ch{{Bj{Bb}{{Ah{}}}}}}{{{Bb{Cl}}{Bb{c}}}Hb{}}8{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{{Bb{Db}}{Bb{B`c}}e}{{`{{Fj{{f{e}}}}}}}{}{}}{{{Bb{Dh}}{Bb{c}}}{{`{{Fj{{ABn{egi}}}}}}}{}{}{}{}}{{}c{}}{{{Cj{c}}Nd}{{Cj{c}}}Ch}{{{Cj{c}}e}{{Cj{c}}}Ch{{Fj{An}}}}``{eg{}{{l{c}}}{}}{ce{}{}}8{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{cMl{{Fj{Ab}}}}{{Mlc}Ml{{Fj{Ab}}}}10{Mld}210{{{Fl{c}}}e{}{}}{{{Bb{Ml}}}Ml}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}{cG`{{Fj{b}}}}{G`b}={{}Ml}{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}={IdBd}{{{Bb{Ml}}{Bb{Ml}}}C`}{{{Bb{Ml}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{JbMl}{ANlMl}{cc{}}{dMl}{GnMl}2{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}44{{}c{}}{cMl{{Fj{Ab}}}}{{Mlc}Ml{{Fj{Ab}}}}121{G`Ml}21{cG`{{Fj{Ml}}}}{Bbc{}}4343{Mld}540{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}{cG`{{Fj{Ab}}}}{G`d}{{}{{f{{Bf{Hb}}}}}}0{Hb{{f{c}}}{}}{Hb{{f{c}}}{}}```{eg{}{{l{c}}}{}}{{{Hj{c}}C`}{{Hj{c}}}Ch}{ce{}{}}:{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}5{{eio}{{Hj{{`{{Ch{}{{Cb{c}}{Cd{g}}{Cf{k}}}}}}}}}{}{{Hl{c}}}{CnD`}{{Db{cg}}}{DdDf}`{{Hn{cgkm}}}}{{{Hj{c}}Gd}{{Hj{c}}}Ch}{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}6{IdBd}{{{Hj{c}}}{{Hj{{`{{Ch{}{{Cb{}}{Cd{}}{Cf{}}}}}}}}}Ch}{{{Bb{{Hj{c}}}}{Bb{B`Jd}}}Jj{D`Ch}}{{{Hj{c}}e}{{Hj{c}}}Ch{{Fj{{AKj{{AFn{Gn}}}}}}}}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}?33{{}c{}}{{{Hj{c}}}MnCh}{{{Hj{c}}e}MnCh{{Hh{}{{Ah{{j{f}}}}}}}}{{{Hj{c}}e}{{Hj{{`{{Ch{}{{Cb{}}{Cd{}}{Cf{}}}}}}}}}Ch{{Bj{BbNj}{{Ah{Kj}}}}}}{{{Hj{c}}Bn}{{Hj{c}}}Ch}{{{Hj{c}}e}{{Hj{{`{{Ch{}{{Cb{}}{Cd{}}{Cf{}}}}}}}}}Ch{{Bj{BbBb}{{Ah{En}}}}}}{{{Hj{c}}e}{{Hj{{`{{Ch{}{{Cb{}}{Cd{}}{Cf{}}}}}}}}}Ch{{Bj{Bb}{{Ah{Fd}}}}}}{{{Hj{c}}e}{{Hj{{`{{Ch{}{{Cb{}}{Cd{}}{Cf{}}}}}}}}}Ch{{Bj{BbNj}{{Ah{}}}}}}{{{Bb{Hl}}{Bb{c}}Nj}Hb{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{{Bb{Hn}}{Bb{c}}Nj}{{`{{Fj{{ABn{egi}}}}}}}{}{}{}{}}{{}c{}}`````````{eg{}{{l{c}}}{}}{ce{}{}}5{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{ADh}}}ADh}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}8{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}7{IdBd}{{{Bb{ADh}}{Bb{ADh}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{ADh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}44{{}c{}}{{}{{Fd{Gb}}}}{{{Nh{GbADhNj}{{Ah{{Bf{c}}}}}}}{{Fd{c}}}Bh}{{}{{Fd{Hb}}}}1{{ADhADh}ADh}{Bbc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}``{{{Bb{In}}e}c{}{{Hh{}{{Ah{c}}}}}}{{}{{Bl{InMf}}}}{{{Bb{In}}c}Bd{{L`{}{{Ah{Bd}}}}Bh}}`````````````````````````````````{eg{}{{l{c}}}{}}0000{ce{}{}}000077777{Bb{{Bb{Dl}}}}0000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000{Bb{{Bb{c}}}{}}0000{{{Bb{B`}}}{{Bb{B`c}}}{}}0000{{{Fl{c}}}e{}{}}0000{{{Bb{BAf}}}BAf}{{{Bb{J`}}}J`}{{{Bb{AC`}}}AC`}{{{Bb{Nl}}}Nl}{{{Bb{ABd}}}ABd}{{Bb{Bb{B`c}}}Bd{}}0000{{BbGn}Bd}0000<<<<<{{}J`}{{}AC`}{{}Nl}{{}ABd}{Id{{Bb{c}}}{}}0000{Id{{Bb{B`c}}}{}}0000?????{IdBd}0000{{{Bb{BAf}}{Bb{BAf}}}C`}{{{Bb{J`}}{Bb{J`}}}C`}{{{Bb{AC`}}{Bb{AC`}}}C`}{{{Bb{Nl}}{Bb{Nl}}}C`}{{{Bb{ABd}}{Bb{ABd}}}C`}{{Bb{Bb{c}}}C`{}}00000000000000{GdJ`}{{{Bb{BAf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{J`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AC`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Nl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{ABd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000000000{ce{}{}}0000{{{Bb{J`}}{Bb{B`c}}}BdLb}{{{Bb{AC`}}{Bb{B`c}}}BdLb}{{{Bb{Nl}}{Bb{B`c}}}BdLb}{{{Bb{ABd}}{Bb{B`c}}}BdLb}{{}Id}0000{{}c{}}000000000{{{I`{c}}}{{I`{Dl}}}{}}0000{{{Lj{c}}}{{Lj{Dl}}}{}}0000{{{Ll{c}}}{{Ll{Dl}}}{}}0000{{{Fl{c}}}e{}{}}00004444444444{{}c{}}0000{c{{f{{Bl{BdBAf}}}}}{{Fj{{AKj{{AFn{Gn}}}}}}}}1111{GdNl}{GdABd}{Bbc{}}0000{{}{{Bl{c}}}{}}0000{c{{Bl{e}}}{}{}}0000{{}{{Bl{c}}}{}}0000{{}{{Bl{c{ABj{c}}}}}{}}0000{BbABl}0000{ce{}{}}0000{{}c{}}0000{Bb{{Bf{{Bb{c}}}}}{}}0000{{}c{}}0000{GdAC`}````{eg{}{{l{c}}}{}}0{{Kddb}Kd}{{Kdc}Kd{{Fb{}{{F`{BAh}}}}}}{Kdn}{ce{}{}}088{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{BAh}}}BAh}{{{Bb{Kd}}}Kd}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0{BAhb}::{{}BAh}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}0::{IdBd}0{{{Bb{BAh}}{Bb{BAh}}}C`}{{{Bb{Kd}}{Bb{Kd}}}C`}{{{Bb{BAh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Kd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{ce{}{}}0{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{cKd{{Fj{n}}}}1{BAhd}{{Kdd}Kd}{KdE`}{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0```````````````````{eg{}{{l{c}}}{}}000{{}BAj}{BAjC`}{ce{}{}}0006666{Bb{{Bb{Dl}}}}000{{{Bb{B`}}}{{Bb{B`Dl}}}}000{{{Bb{BAl}}}{{BAl{{Bb{Mh}}}}}}{{BAjBAj}BAj}{{{Bb{B`BAj}}BAj}Bd}10{{{Bb{BAj}}}Ij}021{Bb{{Bb{c}}}{}}000{{{Bb{B`}}}{{Bb{B`c}}}{}}000{{{Fl{c}}}e{}{}}000{{{Bb{{BAl{c}}}}}{{BAl{c}}}Ed}{{{Bb{BAn}}}BAn}{{{Bb{BB`}}}BB`}{{{Bb{BAj}}}BAj}{{Bb{Bb{B`c}}}Bd{}}000{{BbGn}Bd}000{{{Bb{{BAl{c}}}}{Bb{{BAl{c}}}}}MjBBb}{{{Bb{BAj}}{Bb{BAj}}}Mj}{BAjC`}{{Bb{Bb{c}}}Mj{}}0{BAjBAj}{ce{}{}}000{{{Bb{BAj}}BAj}C`}4{{}BAj}{Id{{Bb{c}}}{}}000{Id{{Bb{B`c}}}{}}000{{BAjBAj}BAj}{Bb{{Bb{c}}}{}}000{IdBd}0005{{{Bb{{BAl{c}}}}{Bb{{BAl{c}}}}}C`Eh}{{{Bb{BAn}}{Bb{BAn}}}C`}{{{Bb{BB`}}{Bb{BB`}}}C`}{{{Bb{BAj}}{Bb{BAj}}}C`}{{Bb{Bb{c}}}C`{}}00000000000{{{Bb{B`BAj}}c}Bd{{Fb{}{{F`{BAj}}}}}}{{{Bb{{BAl{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{BAn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BB`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BAj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}0000{cc{}}{BBdBAl}1111111{Ij{{Bf{BAj}}}}{IjBAj}00{cBAj{{Fb{}{{F`{BAj}}}}}}{{{Bb{Mh}}}{{Bf{BAj}}}}{ce{}{}}000{{{Bb{{BAl{c}}}}{Bb{B`e}}}BdLdLb}{{{Bb{BAj}}{Bb{B`c}}}BdLb}{{}Id}000{{{Bb{B`BAj}}BAj}Bd}{{BAjBAj}BAj}{{{Bb{BAj}}BAj}C`}{{}c{}}0000000{{{I`{c}}}{{I`{Dl}}}{}}000{{{Lj{c}}}{{Lj{Dl}}}{}}000{{{Ll{c}}}{{Ll{Dl}}}{}}000{{{Fl{c}}}e{}{}}00044444444{BAj}{{}c{}}000{{{Bb{BAj}}}C`}0{{{Bb{BAj}}}{{BBf{BAj}}}}{{{Bb{BAj}}}{{BBh{BAj}}}}{BAjC`}`00{BAjBAj}5{{{Nh{BAlBAj}{{Ah{{Bf{c}}}}}}}{{Fd{c}}}Bh}0{{{Bb{{BAl{c}}}}{Bb{{BAl{c}}}}}{{Bf{Mj}}}BBj}{{{Bb{BAj}}{Bb{BAj}}}{{Bf{Mj}}}}{{{Bb{B`BAj}}BAj}Bd}{{{Bb{B`BAj}}BAjC`}Bd}6{{BAjBAj}BAj}20{Bbc{}}0003{{}{{Bl{c}}}{}}000{c{{Bl{e}}}{}{}}000{{}{{Bl{c}}}{}}000{{}{{Bl{c{ABj{c}}}}}{}}000{BbABl}000{ce{}{}}000{{}c{}}0008{Bb{{Bf{{Bb{c}}}}}{}}000{{}c{}}000{BBlBAl}{BBnBAl}{BBlBB`}{BBnBB`}32{BBlBAj}{BBnBAj}{BBlBC`}{BBnBC`}{BBlBf}```````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````{eg{}{{l{c}}}{}}000{ce{}{}}000===={Bb{{Bb{Dl}}}}000{{{Bb{B`}}}{{Bb{B`Dl}}}}000{Bb{{Bb{c}}}{}}000{{{Bb{B`}}}{{Bb{B`c}}}{}}000{{{Fl{c}}}e{}{}}000{{{Bb{BBd}}}BBd}{{{Bb{BCb}}}BCb}{{{Bb{BCd}}}BCd}{{{Bb{BC`}}}BC`}{{Bb{Bb{B`c}}}Bd{}}000{{BbGn}Bd}000{{{Bb{BBd}}{Bb{BBd}}}Mj}{{{Bb{BCb}}{Bb{BCb}}}Mj}{{{Bb{BCd}}{Bb{BCd}}}Mj}{{{Bb{BC`}}{Bb{BC`}}}Mj}{{Bb{Bb{c}}}Mj{}}000{ce{}{}}000{Id{{Bb{c}}}{}}000{Id{{Bb{B`c}}}{}}000{Bb{{Bb{c}}}{}}000{IdBd}000{{{Bb{BBd}}{Bb{BBd}}}C`}{{{Bb{BCb}}{Bb{BC`}}}C`}{{{Bb{BCb}}{Bb{BCb}}}C`}{{{Bb{BCd}}{Bb{BCd}}}C`}{{{Bb{BCd}}{Bb{BC`}}}C`}{{{Bb{BC`}}{Bb{BC`}}}C`}{{{Bb{BC`}}{Bb{BCb}}}C`}{{{Bb{BC`}}{Bb{BCd}}}C`}{{Bb{Bb{c}}}C`{}}00000000000{{{Bb{BBd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BCb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BCd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BC`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0000000{ce{}{}}000{{{Bb{BBd}}{Bb{B`c}}}BdLb}{{{Bb{BCb}}{Bb{B`c}}}BdLb}{{{Bb{BCd}}{Bb{B`c}}}BdLb}{{{Bb{BC`}}{Bb{B`c}}}BdLb}{{}Id}000{{}c{}}0000000{{{I`{c}}}{{I`{Dl}}}{}}000{{{Lj{c}}}{{Lj{Dl}}}{}}000{{{Ll{c}}}{{Ll{Dl}}}{}}000{{{Fl{c}}}e{}{}}00044444444{{}c{}}000{{{Bb{BBd}}{Bb{BBd}}}{{Bf{Mj}}}}{{{Bb{BCb}}{Bb{BCb}}}{{Bf{Mj}}}}{{{Bb{BCd}}{Bb{BCd}}}{{Bf{Mj}}}}{{{Bb{BC`}}{Bb{BC`}}}{{Bf{Mj}}}}{Bbc{}}000{{}{{Bl{c}}}{}}000{c{{Bl{e}}}{}{}}000{{}{{Bl{c}}}{}}000{{}{{Bl{c{ABj{c}}}}}{}}000{BbABl}000{ce{}{}}000{{}c{}}000{Bb{{Bf{{Bb{c}}}}}{}}000{{}c{}}000`````````````````````````````````````````{eg{}{{l{c}}}{}}0000{ce{}{}}000044444{Bb{{Bb{Dl}}}}0000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000{Bb{{Bb{c}}}{}}0000{{{Bb{B`}}}{{Bb{B`c}}}{}}0000{{{Fl{c}}}e{}{}}0000{{{Bb{AId}}}AId}{{{Bb{ADf}}}ADf}{{{Bb{BCf}}}BCf}{{{Bb{AIh}}}AIh}{{{Bb{AEd}}}AEd}{{Bb{Bb{B`c}}}Bd{}}0000{{BbGn}Bd}0000{{{Bb{AEd}}{Bb{AEd}}}Mj}{{Bb{Bb{c}}}Mj{}}>>>>>{{}ADf}{{}AEd}{Id{{Bb{c}}}{}}0000{Id{{Bb{B`c}}}{}}0000?????{IdBd}0000{{{Bb{AId}}{Bb{AId}}}C`}{{{Bb{ADf}}{Bb{ADf}}}C`}{{{Bb{BCf}}{Bb{BCf}}}C`}{{{Bb{AIh}}{Bb{AIh}}}C`}{{{Bb{AEd}}{Bb{AEd}}}C`}{{Bb{Bb{c}}}C`{}}00000{{{Bb{AId}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{ADf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BCf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AIh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AEd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000000000{ce{}{}}0000{{{Bb{AId}}{Bb{B`c}}}BdLb}{{}Id}0000{{}c{}}000000000{{{I`{c}}}{{I`{Dl}}}{}}0000{{{Lj{c}}}{{Lj{Dl}}}{}}0000{{{Ll{c}}}{{Ll{Dl}}}{}}0000{{{Fl{c}}}e{}{}}00004444444444{{}c{}}0000{ADfC`}{{ADfAl}C`}{ADfADf}0{{ADfDn}ADf}44{{{Bb{AEd}}{Bb{AEd}}}{{Bf{Mj}}}}{ADf{{Bf{Ad}}}}{{ADfAd}{{Bf{Ad}}}}{{ADfAl}{{Bf{Ad}}}}0{Bbc{}}0000{{}{{Bl{c}}}{}}0000{c{{Bl{e}}}{}{}}0000{{}{{Bl{c}}}{}}0000{{}{{Bl{c{ABj{c}}}}}{}}0000{BbABl}0000{ce{}{}}0000{{}c{}}0000{Bb{{Bf{{Bb{c}}}}}{}}0000{{}c{}}0000{AIfAIh}{AIjAd}{AIld}{AInd}10````````{eg{}{{l{c}}}{}}00{ce{}{}}00888{Bb{{Bb{Dl}}}}00{{{Bb{B`}}}{{Bb{B`Dl}}}}00{AAnGh}{AAnG`}{Bb{{Bb{c}}}{}}00{{{Bb{B`}}}{{Bb{B`c}}}{}}00{{{Fl{c}}}e{}{}}00{{{Bb{AAn}}}AAn}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}:::{{{Bb{El}}}AAn}{{}c{}}{{}BCh}11{Id{{Bb{c}}}{}}00{Id{{Bb{B`c}}}{}}00:::{IdBd}00{{{Bb{AAn}}{Bb{AAn}}}C`}{{{Bb{BCh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AAn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{BCj{cegi}}k}{{BCj{cegi}}}{BClEd}{}BCnAMlFj}{cc{}}00000{ce{}{}}00{{}Id}00{{}c{}}00000{{{I`{c}}}{{I`{Dl}}}{}}00{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}00{{{Fl{c}}}e{}{}}00444444{{}c{}}00{{{Bb{B`BCh}}{Bb{{AFn{c}}}}{Bb{B`{Bf{Id}}}}g{Bf{{Bb{Bj}}}}Bb}{{BCj{ceik}}}{BClEd}{}{{Ln{c}{{Ah{e}}}}}BCnAMl}{{}BCh}2{{{BCj{cegi}}Add}{{AEh{egi}}}{BClEd}{}BCnAMl}{{{BCj{cegi}}k}{{BCj{cegi}}}{BClEd}{}BCnAMl{{Fj{Fh}}}}{AAnGh}{AAnb}{{{Bb{{BCn{}{{BA`{c}}}}}}{Bb{c}}}AAn{}}1{{{BCj{cegi}}k}{{BCj{cegi}}}{BClEd}{}BCnAMl{{Fj{AEb}}}}{{{BCj{cegi}}AFb}{{BCj{cegi}}}{BClEd}{}BCnAMl}{{{BCj{cegi}}k}{{BCj{cegi}}}{BClEd}{}BCnAMl{{Fj{Ab}}}}{Bbc{}}{{}{{Bl{c}}}{}}00{c{{Bl{e}}}{}{}}00{{}{{Bl{c}}}{}}00{{}{{Bl{c{ABj{c}}}}}{}}00{BbABl}00{ce{}{}}00{{}c{}}00{Bb{{Bf{{Bb{c}}}}}{}}00{{}c{}}00{{{BCj{cegi}}d}{{BCj{cegi}}}{BClEd}{}BCnAMl}`{cFh{{Fj{Ab}}}}0{Fhd}101010{{Idg}{{`{{Nf{}{{F`{c}}}}}}}{}{{L`{}{{Ah{Bd}}}}}{{Hh{{BD`{c}}}{{Ah{e}}}}}}{{Idi}{{`{{Nf{}{{F`{{Bl{ce}}}}}}}}}{}{}{{L`{}{{Ah{{Bl{Bde}}}}}}}{{Hh{{BD`{c}}}{{Ah{g}}}}}}`{eg{}{{l{c}}}{}}{ce{}{}}9{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{BDb}}}BDb}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}8{BDbHb}{BDbBf}{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}9{IdBd}{{}{{f{BDb}}}}{{{Bb{BDb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0{ce{}{}}88{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}44{{}c{}}{BDbKn}?????{Bbc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}``{{{Bb{h}}}Bd}{hh}{eg{}{{l{c}}}{}}{ce{}{}}6{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{h}}}h}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}8{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}7{IdBd}{{{Bb{B`h}}}Bd}{{{Bb{h}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}?33{{}c{}}{{{Bb{h}}}C`}{Bbc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}``````````````````````````````````````````````````{eg{}{{l{c}}}{}}00{ce{}{}}00444{Bb{{Bb{Dl}}}}00{{{Bb{B`}}}{{Bb{B`Dl}}}}00{Hdb}{Enb}{{{Bb{Df}}}En}{Bb{{Bb{c}}}{}}00{{{Bb{B`}}}{{Bb{B`c}}}{}}00{{{Fl{c}}}e{}{}}00{{{Bb{Hd}}}Hd}{{{Bb{BDd}}}BDd}{{{Bb{En}}}En}{{Bb{Bb{B`c}}}Bd{}}00{{BbGn}Bd}00===:{{{Bb{El}}}En}{Id{{Bb{c}}}{}}00{Id{{Bb{B`c}}}{}}00:::{IdBd}00{{{Bb{Hd}}{Bb{Hd}}}C`}{{{Bb{BDd}}{Bb{BDd}}}C`}{{{Bb{En}}{Bb{En}}}C`}{{{Bb{Hd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BDd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}0{{{Bb{En}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}00000{ce{}{}}00{{}Id}00{{}c{}}00000{{{I`{c}}}{{I`{Dl}}}{}}00{{{Lj{c}}}{{Lj{Dl}}}{}}00{{{Ll{c}}}{{Ll{Dl}}}{}}00{{{Fl{c}}}e{}{}}00444444{{}c{}}00{{HbHd}BDd}`{Hdb}00{Enb}{Bbc{}}00{BbABh}{BbHb}{{}{{Bl{c}}}{}}00{c{{Bl{e}}}{}{}}00{{}{{Bl{c}}}{}}00{{}{{Bl{c{ABj{c}}}}}{}}00{BbABl}00{ce{}{}}00{{}c{}}00{Bb{{Bf{{Bb{c}}}}}{}}00{{}c{}}00={{HbHdc}BDd{{Hh{Hd}{{Ah{Hf}}}}}}``{{}BDf}000000000000000000000```````{eg{}{{l{c}}}{}}0000000{ce{}{}}000000066666666{Bb{{Bb{Dl}}}}0000000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000000{Hdb}{HfBDh}{BDhBDj}{BDlBDj}{BDnBDj}{BE`BDj}{BEbBDj}{BEdBDj}{Bb{{Bb{c}}}{}}0000000{{{Bb{B`}}}{{Bb{B`c}}}{}}0000000{{{Fl{c}}}e{}{}}0000000{{{Bb{Hf}}}Hf}{{{Bb{BDj}}}BDj}{{{Bb{BDh}}}BDh}{{{Bb{BDl}}}BDl}{{{Bb{BDn}}}BDn}{{{Bb{BE`}}}BE`}{{{Bb{BEb}}}BEb}{{{Bb{BEd}}}BEd}{{Bb{Bb{B`c}}}Bd{}}0000000{{BbGn}Bd}0000000{BDjb}{ce{}{}}0000000{Hdb}{HfBEd}{Id{{Bb{c}}}{}}0000000{Id{{Bb{B`c}}}{}}0000000{Bb{{Bb{c}}}{}}0000000{IdBd}0000000{{{Bb{Hf}}{Bb{Hf}}}C`}{{{Bb{BDj}}{Bb{BDj}}}C`}{{{Bb{BDh}}{Bb{BDh}}}C`}{{{Bb{BDl}}{Bb{BDl}}}C`}{{{Bb{BDn}}{Bb{BDn}}}C`}{{{Bb{BE`}}{Bb{BE`}}}C`}{{{Bb{BEb}}{Bb{BEb}}}C`}{{{Bb{BEd}}{Bb{BEd}}}C`}{{{Bb{Hf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BDj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BDh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BDl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BDn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BE`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BEb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BEd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000000000000000{ce{}{}}0000000{HdHf}{{bbb}BDl}{{bb}BDn}{{bbb}BE`}{{bbb}BEb}{{bbb}BEd}{{}Id}0000000{{}c{}}000000000000000{{{I`{c}}}{{I`{Dl}}}{}}0000000{{{Lj{c}}}{{Lj{Dl}}}{}}0000000{{{Ll{c}}}{{Ll{Dl}}}{}}0000000{{{Fl{c}}}e{}{}}00000004444444444444444{{}c{}}0000000{HfC`}{{bb}BDj}{{bb}BDh}{Hdb}{HfBDl}{HfBDn}{BDhBDj}{BDlBDj}{BDnBDj}{BE`BDj}{BEbBDj}{BEdBDj}8{HfBE`}9{BDjb}{Bbc{}}0000000{{}{{Bl{c}}}{}}0000000{c{{Bl{e}}}{}{}}0000000{{}{{Bl{c}}}{}}0000000{{}{{Bl{c{ABj{c}}}}}{}}0000000{BbABl}0000000{ce{}{}}0000000{{}c{}}0000000{Bb{{Bf{{Bb{c}}}}}{}}0000000{{}c{}}0000000{Hdb}{HfBEb}{BDhBDj}{BDlBDj}{BDnBDj}{BE`BDj}{BEbBDj}{BEdBDj}````````{{IbIb}Ib}{eg{}{{l{c}}}{}}0{{LfBEf}}{{LfIb}Lf}3{{IbBEf}}{{{Bb{B`Lf}}BEf}Bd}{{{Bb{B`Lf}}Ib}Bd}{{{Bb{B`Ib}}Ib}Bd}{{{Bb{B`Ib}}BEf}Bd}{ce{}{}}0{{}c{}}0{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{{{Bb{Ib}}}BEh}0{{{Bb{Ib}}}d}{{{Bb{Ib}}}Kj}2{{{Bb{Ib}}}Kn}21{Bb{{Bb{c}}}{}}{Bb{{Bb{c}}}{}}1{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{Lf}}Ib}{{Bf{Lf}}}}{{IbIb}{{Bf{Ib}}}}{{{Bb{Lf}}BEf}{{Bf{Lf}}}}{{IbIj}{{Bf{Ib}}}}{{{Bb{Lf}}Lf}{{Bf{Ib}}}}1432{{{Bb{Lf}}}Lf}{{{Bb{Ib}}}Ib}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0{{{Bb{Lf}}{Bb{Lf}}}Mj}{{{Bb{Ib}}{Bb{Ib}}}Mj}{{Bb{Bb{c}}}Mj{}}0{ce{}{}}0{KnIb}{{}Ib}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}0{c{{Bl{Ib}}}BEj}{{{Bb{BEl}}}{{Bl{BEn}}}}{{IbBEf}}{{IbIj}Ib}{{{Bb{B`Ib}}Ij}Bd}{{IbIb}d}{{IbIb}Kj}{{Ibd}Ib}{{IbKj}Ib}{Bb{{Bb{c}}}{}}0{IdBd}0{{{Bb{Lf}}Lf}Ib}{{{Bb{Lf}}}Ib}{{LfLf}d}{{{Bb{Lf}}{Bb{Lf}}}C`}{{{Bb{Ib}}{Bb{Ib}}}C`}{{{Bb{Ib}}{Bb{BEf}}}C`}{{Bb{Bb{c}}}C`{}}00000{Ib{{Fd{Lf}}}}{{{Bb{Lf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Ib}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}{BF`Lf}{BFbIb}{BFdIb}333{KnIb}000000{dIb}{KjIb}{ce{}{}}03{{{Bb{Lf}}{Bb{B`c}}}BdLb}{{{Bb{Ib}}{Bb{B`c}}}BdLb}5{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{{{Bb{Ib}}}C`}=={{IbIj}Ib}{{{Bb{B`Ib}}Ij}Bd}{{Ibd}Ib}{{IbKj}Ib}{{KnIj}Ib}{{}Lf}7{{{Bb{Lf}}{Bb{Lf}}}{{Bf{Mj}}}}{{{Bb{Ib}}{Bb{BEf}}}{{Bf{Mj}}}}{{{Bb{Ib}}{Bb{Ib}}}{{Bf{Mj}}}}{{{Nh{}{{Ah{e}}}}Ib}{{Fd{c}}}Bh{{L`{}{{Ah{c}}}}Bh}}{{IbIb}Ib}{{{Bb{Lf}}Lf}Ib};1{KnIb}{{{Bb{Ib}}c}BlBFf}{BbBEl}{{{Bb{Lf}}Lf}BEf}{{LfBEf}}{{LfIb}Lf}{{LfLf}Ib}{{IbBEf}}9{{{Bb{B`Lf}}Ib}Bd}{{{Bb{B`Lf}}BEf}Bd}{{{Bb{B`Ib}}BEf}Bd}{{{Bb{B`Ib}}Ib}Bd}{{{Bb{Ib}}}Ij}00{cIb{{ALn{}{{F`{{Bb{Ib}}}}}}}}{cIb{{ALn{}{{F`{Ib}}}}}}{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}{BEf{{Bl{IbBFh}}}}1{d{{Bl{IbBFj}}}}{Kj{{Bl{IbBFj}}}}{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0``````{eg{}{{l{c}}}{}}0{ce{}{}}044{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{BFl}}}BFl}{{{Bb{BFn}}}BFn}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}099{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}088{IdBd}0{{{Bb{BFl}}{Bb{BFl}}}C`}{{{Bb{BFn}}{Bb{BFn}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{BFl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BFn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{ce{}{}}0{{{Bb{BFn}}{Bb{B`c}}}BdLb}{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0{BG`BFn}{BGbBFn}{BGdBFn}{BGfBFn}{BG`Ad}{BGbAd}{BGdAd}{BGfAd}`````````````````````````````````````````````````````````````````````{eg{}{{l{c}}}{}}0000000000000000000000000000000{{{BGh{ceg}}i}{{BGh{ceg}}}{}BGjAD`{{Fj{Gl}}}}000{{{BGl{ceg}}i}{{BGl{ceg}}}{}{}AD`{{Fj{Kb}}}}{{{BGh{ceg}}i}{{BGh{ceg}}}{}BGjAD`{{Fj{Kb}}}}{{{BGn{ceg}}i}{{BGn{ceg}}}EdBH`AMl{{Fj{Kb}}}}{{{BHb{ceg}}i}{{BHb{ceg}}}{}{}AD`{{Fj{K`}}}}{{{BGh{ceg}}i}{{BGh{ceg}}}{}BGjAD`{{Fj{K`}}}}{{{BHd{ceg}}}{{BHd{ceg}}}{}BHfAD`}000{{{BHd{ceg}}BHh}{{BHd{ceg}}}{}BHfAD`}0{{{BHj{c}}}{{BHj{c}}}{}}{{{BHl{ceg}}i}{{BHl{ceg}}}Ed{}AD`{{Fj{Ab}}}}{ce{}{}}0000000000000000000000000000000{{}c{}}0000000000000000000000000000000{Bb{{Bb{Dl}}}}0000000000000000000000000000000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000000000000000000000000000000{{{BHn{cegik}}{Nh{{Bb{g}}}{{Ah{Gh}}}}}{{BHn{cegik}}}{}{}{}{{Bj{{Bb{e}}}{{Ah{g}}}}}AD`}{Bb{{Bb{c}}}{}}0000000000000000000000000000000{{{Bb{B`}}}{{Bb{B`c}}}{}}0000000000000000000000000000000{i{{BGh{ceg}}}{}BGjAD`{{Fj{{AHn{ceg}}}}}}00`{i{{BI`{ceg}}}{}BIbAD`{{Fj{{AHn{ceg}}}}}}{{{Fl{c}}}e{}{}}0000000000000000000000000000000`{i{{BId{iceg}}}{}{}BIf{{BIh{ceg}}}}{{}{{BHj{c}}}{}}{{{BIj{c}}e}{{BIj{c}}}BIl{{Fj{Ab}}}}5{{{BGh{ceg}}i}{{BGh{ceg}}}{}BGjAD`{{Fj{Gl}}}}6060`{{cC`}{{BIn{egi}}}{{Fj{Hb}}}{}BJ`AMl}{{{Bb{{BGl{ceg}}}}}{{H`{ACl}}}{}{}AD`}{{{Bb{{BJb{ceg}}}}}{{H`{ACl}}}Ed{}AD`}{{{Bb{{BJd{ceg}}}}}{{H`{ACl}}}{}{}AD`}{{{Bb{{BHb{ceg}}}}}{{H`{ACl}}}{}{}AD`}{{{Bb{{BJf{ceg}}}}}{{H`{ACl}}}{}{}AD`}{{{Bb{{BHn{cegik}}}}}{{H`{ACl}}}{}{}{}{{Bj{{Bb{e}}}{{Ah{g}}}}}AD`}{{{Bb{{BI`{ceg}}}}}{{H`{ACl}}}EdBIbAD`}{{{Bb{{BJh{cegi}}}}}{{H`{ACl}}}{JlEd}EdBJjAMl}{{{Bb{{BGh{ceg}}}}}{{H`{ACl}}}{}BGjAD`}{{{Bb{{BJl{ceg}}}}}{{H`{ACl}}}{}BJnAD`}{{{Bb{{BHl{ceg}}}}}{{H`{ACl}}}Ed{}AD`}{{{Bb{{BHd{ceg}}}}}{{H`{ACl}}}{}BHfAD`}{{{Bb{{BK`{ceg}}}}}{{H`{ACl}}}{}BGjAMl}{{{Bb{{BKb{cegik}}}}}{{H`{ACl}}}{}{}AD`Ld{{Fj{{AHn{ceg}}}}}}{{{BI`{ceg}}i}{{BI`{ceg}}}{}BIbAD`Fj}{{{BIn{ceg}}i}{{BIn{ceg}}}{}BJ`AMlFj}{{{BGh{ceg}}i}{{BGh{ceg}}}{}BGjAD`Fj}{{{BJl{ceg}}i}{{BJl{ceg}}}{}BJnAD`Fj}{{{BKd{cegikm}}o}{{BKd{cegikm}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMlFj}{{{BKh{c}}e}{{BKh{c}}}BKjFj}{{{BKl{ceg}}i}{{BKl{ceg}}}EdBKnAMlFj}{{{BL`{c}}e}{{BL`{c}}}BLbFj}{{{BHd{ceg}}i}{{BHd{ceg}}}{}BHfAD`Fj}{{{BLd{ceg}}i}{{BLd{ceg}}}{Ef{BLf{Gn}}BBj}EdBLhFj}{{{BLj{cegi}}k}{{BLj{cegi}}}ALj{}BLlAMlFj}{{{BGn{ceg}}i}{{BGn{ceg}}}EdBH`AMlFj}{{{BLn{ceg}}i}{{BLn{ceg}}}{}BM`AMlFj}{{{BK`{ceg}}i}{{BK`{ceg}}}{}BGjAMlFj}{{{BMb{ceg}}i}{{BMb{ceg}}}{Ef{BLf{Gn}}BBj}EdBLhFj}{{{BMd{c}}e}{{BMd{c}}}BMfFj}{{{BIj{c}}e}{{BIj{c}}}BIlFj}{{{BGl{ceg}}C`}{{BGl{ceg}}}{}{}AD`}{{{BHb{ceg}}C`}{{BHb{ceg}}}{}{}AD`}{{{BI`{ceg}}C`}{{BI`{ceg}}}{}BIbAD`}{{{BGh{ceg}}C`}{{BGh{ceg}}}{}BGjAD`}{{{Bb{{BHj{c}}}}}{{BHj{c}}}Ed}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}{i{{BGl{ceg}}}{}{}AD`{{Fb{}{{F`{{AHn{ceg}}}}}}}}``{{{Bb{{BMh{c}}}}{Bb{Mh}}{Bf{{Bb{c}}}}g}{{BJh{ceik}}}{JlEd}{}{{Bj{c}{{Ah{e}}}}}BJjAMl}{i{{AHn{ceg}}}{}{}AD`{{BMj{ceg}}}}{ce{}{}}0000000000000000000000000000000`{i{{BGh{ceg}}}{}BGjAD`{{Fj{{AHn{ceg}}}}}}{{{BMd{c}}Gj}{{BMd{c}}}BMf}{{{BMl{c}}Gj}{{BMl{c}}}{}}{{}{{BGl{ce}}}{}AD`}{{}{{BHb{ce}}}{}AD`}{{}{{BJf{ce}}}{}AD`}{{{BLd{ceg}}i}{{BLd{ceg}}}{Ef{BLf{Gn}}BBj}EdBLh{{Fj{c}}}}{{{BMb{ceg}}i}{{BMb{ceg}}}{Ef{BLf{Gn}}BBj}EdBLh{{Fj{c}}}}{Id{{Bb{c}}}{}}0000000000000000000000000000000{Id{{Bb{B`c}}}{}}0000000000000000000000000000000{{{Bb{{BGl{ceg}}}}{Bb{B`ACl}}}Bd{}{}AD`}{{{Bb{{BJb{ceg}}}}{Bb{B`ACl}}}BdEd{}AD`}{{{Bb{{BJd{ceg}}}}{Bb{B`ACl}}}Bd{}{}AD`}{{{Bb{{BHb{ceg}}}}{Bb{B`ACl}}}Bd{}{}AD`}{{{Bb{{BJf{ceg}}}}{Bb{B`ACl}}}Bd{}{}AD`}{{{Bb{{BHn{cegik}}}}{Bb{B`ACl}}}Bd{}{}{}{{Bj{{Bb{e}}}{{Ah{g}}}}}AD`}{{{Bb{{BI`{ceg}}}}{Bb{B`ACl}}}BdEdBIbAD`}{{{Bb{{BGh{ceg}}}}{Bb{B`ACl}}}Bd{}BGjAD`}{{{Bb{{BJl{ceg}}}}{Bb{B`ACl}}}Bd{}BJnAD`}{{{Bb{{BHl{ceg}}}}{Bb{B`ACl}}}BdEd{}AD`}{{{Bb{{BHd{ceg}}}}{Bb{B`ACl}}}Bd{}BHfAD`}{{{Bb{{BGn{ceg}}}}{Bb{B`ACl}}}BdEdBH`AMl}{{{Bb{{BK`{ceg}}}}{Bb{B`ACl}}}Bd{}BGjAMl}{{{Bb{{BKb{cegik}}}}{Bb{B`ACl}}}Bd{}{}AD`Ld{{Fj{{AHn{ceg}}}}}}{{{BHd{ceg}}i}{{BHd{ceg}}}{}BHfAD`{{Fj{BMn}}}}{Bb{{Bb{c}}}{}}0000000000000000000000000000000{{{Bb{{BGl{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}{}AD`}{{{Bb{{BJb{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}BdEd{}AD`}{{{Bb{{BJd{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}{}AD`}{{{Bb{{BHb{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}{}AD`}{{{Bb{{BJf{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}{}AD`}{{{Bb{{BHn{cegik}}}}{Bb{ACl}}{Bb{B`k}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}{}{}{{Bj{{Bb{e}}}{{Ah{g}}}}}AD`}{{{Bb{{BI`{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}BdEdBIbAD`}{{{Bb{{BIn{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}BJ`AMl}{{{Bb{{BJh{cegi}}}}{Bb{ACl}}{Bb{B`i}}{Bb{g}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{JlEd}EdBJjAMl}{{{Bb{{BGh{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}BGjAD`}{{{Bb{{BJl{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}BJnAD`}{{{Bb{{BKd{cegikm}}}}{Bb{ACl}}{Bb{B`m}}{Bb{k}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{EdBClEh}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl}{{{Bb{{BHl{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}BdEd{}AD`}{{{Bb{{BKh{c}}}}{Bb{ACl}}{Bb{B`e}}{Bb{c}}{Bb{ADd}}ACfADf{Bb{Al}}}BdBKjAD`}{{{Bb{{BKl{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}BdEdBKnAMl}{{{Bb{{BL`{c}}}}{Bb{ACl}}{Bb{B`e}}{Bb{c}}{Bb{ADd}}ACfADf{Bb{Al}}}BdBLbAD`}{{{Bb{{BHd{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}BHfAD`}{{{Bb{{BLd{ceg}}}}{Bb{ACl}}{Bb{B`i}}{Bb{g}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{Ef{Fj{Kj}}BN`}EdBLhAD`}{{{Bb{{BLj{cegi}}}}{Bb{ACl}}{Bb{B`i}}{Bb{g}}{Bb{ADd}}ACfADf{Bb{Al}}}BdALj{}BLlAMl}{{{Bb{{BGn{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}BdEdBH`AMl}{{{Bb{{BGn{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}ACfADf{Bf{{Bb{BNb}}}}{Bb{Al}}}BdEdBH`AMl}{{{Bb{{BLn{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}BM`AMl}{{{Bb{{BK`{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}BGjAMl}{{{Bb{{BMb{ceg}}}}{Bb{ACl}}{Bb{B`i}}{Bb{g}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{Ef{Fj{Kj}}BN`}EdBLhAD`}{{{Bb{{BNd{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}{}AD`}{{{Bb{{BKb{cegik}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}{}AD`Ld{{Fj{{AHn{ceg}}}}}}{{{Bb{{BNf{ce}}}}{Bb{ACl}}{Bb{B`g}}{Bb{i}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}{{BNh{c}}}BNj{}}{{{Bb{{BMd{c}}}}{Bb{ACl}}{Bb{B`e}}{Bb{c}}{Bb{ADd}}ACfADf{Bb{Al}}}BdBMfAKh}{{{Bb{{BIj{c}}}}{Bb{ACl}}{Bb{B`{BO`{BNlBNn}}}}{Bb{c}}{Bb{ADd}}ACfADf{Bb{Al}}}BdBIl}{{{Bb{BOb}}{Bb{ACl}}{Bb{B`c}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}BdAD`{}}{{{Bb{{BMl{c}}}}{Bb{ACl}}{Bb{B`e}}{Bb{g}}{Bb{ADd}}ACfADf{Bb{Al}}}BdEd{{AGj{}{{AGh{c}}}}}{}}{{{Bb{{BId{iceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}{}BIf{{BIh{ceg}}}}{IdBd}0000000000000000000000000000000{{{BGl{ceg}}i}{{BGl{ceg}}}{}{}AD`{{Fb{}{{F`{{AHn{ceg}}}}}}}}{{{BHb{ceg}}i}{{BHb{ceg}}}{}{}AD`{{Fb{}{{F`{{AHn{ceg}}}}}}}}{{{BJf{ceg}}i}{{BJf{ceg}}}{}{}AD`{{Fb{}{{F`{{AHn{ceg}}}}}}}}{{{BMl{c}}AGf}{{BMl{c}}}{}}{{{Bb{{BHj{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{BOb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{{BMl{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{{BId{iceg}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`D`{D`BIf}{D`{BIh{ceg}}}}{{}{{f{c}}}{}}0{{{BIn{ceg}}i}{{BIn{ceg}}}{}BJ`AMlFj}{{{BJh{cegi}}}{{BJh{cegi}}}{JlEd}{}BJjAMl}{{{BKd{cegikm}}o}{{BKd{cegikm}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMlFj}{{{BKl{ceg}}i}{{BKl{ceg}}}EdBKnAMlFj}{{{BLj{cegi}}k}{{BLj{cegi}}}ALj{}BLlAMlFj}{{{BGn{ceg}}}{{BGn{ceg}}}EdBH`AMl}{{{BLn{ceg}}i}{{BLn{ceg}}}{}BM`AMlFj}{cc{}}000000000000000000000000000000000000000000000000000000000000000{i{{BGl{ceg}}}{}{}AD`{{Fb{}{{F`{{AHn{ceg}}}}}}}}{i{{BHb{ceg}}}{}{}AD`{{Fb{}{{F`{{AHn{ceg}}}}}}}}{c{{BMd{e}}}{{Fj{AHf}}}BMf}{ce{}{}}0000000000000000000000000000000{{{H`{{AHn{ceg}}}}}{{BGl{ceg}}}{}{}AD`}{{{H`{{AHn{ceg}}}}}{{BHb{ceg}}}{}{}AD`}{{{H`{{AHn{ceg}}}}}{{BJf{ceg}}}{}{}AD`}{{{BK`{ceg}}i}{{BK`{ceg}}}{}BGjAMl{{Fj{Ab}}}}{{{BKh{c}}e}{{BKh{c}}}BKj{{Fj{Gl}}}}{{{BKd{cegikm}}BOd}{{BKd{cegikm}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl}{{{BGl{ceg}}i}{{BGl{ceg}}}{}{}AD`{{Fj{Gl}}}}{{{BJd{ceg}}i}{{BJd{ceg}}}{}{}AD`{{Fj{Gl}}}}{{{BHb{ceg}}i}{{BHb{ceg}}}{}{}AD`{{Fj{Gl}}}}{{{BJf{ceg}}i}{{BJf{ceg}}}{}{}AD`{{Fj{Gl}}}}{{{BI`{ceg}}i}{{BI`{ceg}}}{}BIbAD`{{Fj{Gl}}}}{{{BGh{ceg}}i}{{BGh{ceg}}}{}BGjAD`{{Fj{Gl}}}}{{{BJl{ceg}}i}{{BJl{ceg}}}{}BJnAD`{{Fj{Gl}}}}{{{BHd{ceg}}i}{{BHd{ceg}}}{}BHfAD`{{Fj{Gl}}}}{{{BLd{ceg}}i}{{BLd{ceg}}}{Ef{BLf{Gn}}BBj}EdBLh{{Fj{Ab}}}}{{{BLj{cegi}}k}{{BLj{cegi}}}ALj{}BLlAMl{{Fj{Gl}}}}{{{BMb{ceg}}i}{{BMb{ceg}}}{Ef{BLf{Gn}}BBj}EdBLh{{Fj{Gl}}}}{{{BNf{ce}}g}{{BNf{ce}}}{}{{BNh{c}}}{{Fj{Gl}}}}{{{BMd{c}}e}{{BMd{c}}}BMf{{Fj{Gl}}}}{{BObc}BOb{{Fj{Gl}}}}{{{BMl{c}}e}{{BMl{c}}}{}{{Fj{Gl}}}}{{{BId{iceg}}k}{{BId{iceg}}}{}{}BIf{{BIh{ceg}}}{{Fj{Gl}}}}{{{BLj{cegi}}{Bb{Mh}}BOf}{{BLj{BOhegi}}}ALj{}BLl{{AMl{}{{AL`{Gd}}}}AMl}}{{{BLj{cegi}}{Nh{Bb{Bb{g}}}{{Ah{AMn}}}}}{{BLj{kegi}}}ALj{}BLlAMlALj}{c{{BL`{e}}}{{Fj{Ab}}}BLb}{{{BHd{ceg}}}{{BHd{ceg}}}{}BHfAD`}1{{}BOb}{{ik}{{AHn{ceg}}}{}{}AD`{{Fj{{AHn{ceg}}}}}{{Fj{{AHn{ceg}}}}}}{c{{AHn{egi}}}{{Fj{Ab}}}{}{AOdBMf}{AD`{AMl{}{{AL`{Gd}}}}AKh}}{{{BIn{ceg}}BOj}{{BIn{ceg}}}{}BJ`AMl}{{{BJh{cegi}}BOl}{{BJh{cegi}}}{JlEd}{}BJjAMl}{{{BGn{ceg}}BOl}{{BGn{ceg}}}EdBH`AMl}{{{BGh{ceg}}i}{{BGh{ceg}}}{}BGjAD`{{Fj{B@`}}}}{{{BHd{ceg}}i}{{BHd{ceg}}}{}BHfAD`{{Fj{AOn}}}}{{{BGn{ceg}}i}{{BGn{ceg}}}EdBH`AMl{{Fj{B@b}}}}`{e{{BMl{c}}}{}{{Fj{c}}}}{{}Id}0000000000000000000000000000000{{{BJh{cegi}}k}{{BJh{cegi}}}{JlEd}{}BJjAMlFj}{{{BJh{cegi}}k}{{BJh{cegi}}}{JlEd}{}BJjAMl{{Bj{{Bb{g}}Nn}{{Ah{O`}}}}}}{{{BJb{ceg}}AEd}{{BJb{ceg}}}{}{}{}}{{}c{}}000000000000000000000000000000000000000000000000000000000000000{{{I`{c}}}{{I`{Dl}}}{}}0000000000000000000000000000000{{{Lj{c}}}{{Lj{Dl}}}{}}00000000{{{Ll{c}}}{{Ll{Dl}}}{}}0000000000000000000000000000000{{{Fl{c}}}e{}{}}00000000000000000000000000000004444444444444444444444444444444444444444444444444444444444444444{{{BHj{c}}}{{j{{Bf{c}}AEnADh}}}{}}{{}c{}}0000000000000000000000000000000{{{BHl{ceg}}i}{{BHl{ceg}}}Ed{}AD`AN`}{{{BLj{cegi}}k}{{BLj{cegi}}}ALj{}BLlAMl{{Bj{BOn}{{Ah{{Bf{{C@`{e}}}}}}}}}}`{k{{C@b{cegi}}}{EfEh}{}{}AD`{{Fb{}{{F`{{j{c{AHn{egi}}}}}}}}}}`{{{BLn{ceg}}i}{{BLn{ceg}}}{}BM`AMlAN`}{{{Bb{{BGl{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADn{}{}AD`}{{{Bb{{BJb{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADnEd{}AD`}{{{Bb{{BJd{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADn{}{}AD`}{{{Bb{{BHb{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADn{}{}AD`}{{{Bb{{BJf{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADn{}{}AD`}{{{Bb{{BHn{cegik}}}}{Bb{B`ACl}}{Bb{k}}{Bb{AE`}}}ADn{}{}{}{{Bj{{Bb{e}}}{{Ah{g}}}}}AD`}{{{Bb{{BI`{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADnEdBIbAD`}{{{Bb{{BIn{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADn{}BJ`AMl}{{{Bb{{BJh{cegi}}}}{Bb{B`ACl}}{Bb{i}}{Bb{AE`}}}ADn{JlEd}EdBJjAMl}{{{Bb{{BGh{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADn{}BGjAD`}{{{Bb{{BJl{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADn{}BJnAD`}{{{Bb{{BKd{cegikm}}}}{Bb{B`ACl}}{Bb{m}}{Bb{AE`}}}ADn{EdBClEh}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl}{{{Bb{{BHl{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADnEd{}AD`}{{{Bb{{BKh{c}}}}{Bb{B`ACl}}{Bb{e}}{Bb{AE`}}}ADnBKjAD`}{{{Bb{{BKl{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADnEdBKnAMl}{{{Bb{{BL`{c}}}}{Bb{B`ACl}}{Bb{e}}{Bb{AE`}}}ADnBLbAD`}{{{Bb{{BHd{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADn{}BHfAD`}{{{Bb{{BLd{ceg}}}}{Bb{B`ACl}}{Bb{i}}{Bb{AE`}}}ADn{Ef{Fj{Kj}}BN`}EdBLhAD`}{{{Bb{{BLj{cegi}}}}{Bb{B`ACl}}{Bb{i}}{Bb{AE`}}}ADnALj{}BLlAMl}{{{Bb{{BGn{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADnEdBH`AMl}{{{Bb{{BGn{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}{Bf{{Bb{BNb}}}}}ADnEdBH`AMl}{{{Bb{{BLn{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADn{}BM`AMl}{{{Bb{{BK`{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADn{}BGjAMl}{{{Bb{{BMb{ceg}}}}{Bb{B`ACl}}{Bb{i}}{Bb{AE`}}}ADn{Ef{Fj{Kj}}BN`}EdBLhAD`}{{{Bb{{BNd{ceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADn{}{}AD`}{{{Bb{{BKb{cegik}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADn{}{}AD`Ld{{Fj{{AHn{ceg}}}}}}{{{Bb{{BNf{ce}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADn{}{{BNh{c}}}BNj}{{{Bb{{BMd{c}}}}{Bb{B`ACl}}{Bb{e}}{Bb{AE`}}}ADnBMfAKh}{{{Bb{{BIj{c}}}}{Bb{B`ACl}}{Bb{{BO`{BNlBNn}}}}{Bb{AE`}}}ADnBIl}{{{Bb{BOb}}{Bb{B`ACl}}{Bb{c}}{Bb{AE`}}}ADnAD`}{{{Bb{{BMl{c}}}}{Bb{B`ACl}}{Bb{e}}{Bb{AE`}}}ADnEd{{AGj{}{{AGh{c}}}}}}{{{Bb{{BId{iceg}}}}{Bb{B`ACl}}{Bb{g}}{Bb{AE`}}}ADn{}{}BIf{{BIh{ceg}}}}{{cm}{{BKb{egick}}}Ld{}{}{}{{Fj{{AHn{egi}}}}}{{Bj{{Bb{c}}}{{Ah{k}}}}}}{{{BKh{c}}e}{{BKh{c}}}BKj{{Fj{Gl}}}}{{{BJh{cegi}}k}{{BJh{cegi}}}{JlEd}{}BJjAMl{{Fj{AEb}}}}{{{BLj{cegi}}k}{{BLj{cegi}}}ALj{}BLlAMl{{Fj{AEb}}}}{{{BGn{ceg}}i}{{BGn{ceg}}}EdBH`AMl{{Fj{AEb}}}}`{{ce}{{AHn{C@dgi}}}{{Fb{}{{F`{{Bb{C@f}}}}}}}{{Fj{C@h}}}C@j{{AMl{}{{AL`{Gd}}}}}}{{{BGh{ceg}}i}{{BGh{ceg}}}{}BGjAD`{{Fj{Ab}}}}{{{BLj{cegi}}k}{{BLj{cegi}}}ALj{}BLlAMl{{Fj{Ab}}}}{{{BGl{ceg}}i}{{BGl{ceg}}}{}{}AD`{{Fj{Ab}}}}2{{{BJh{cegi}}k}{{BJh{cegi}}}{JlEd}{}BJjAMlFj}{{{BKd{cegikm}}o}{{BKd{cegikm}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMlFj}{{{BJh{cegi}}k}{{BJh{cegi}}}{JlEd}{}BJjAMl{{Bj{{Bb{g}}}{{Ah{AAn}}}}}}{{{BKd{cegikm}}o}{{BKd{cegikm}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl{{Bj{{Bb{k}}}{{Ah{AAn}}}}}}5{i{{BJb{ceg}}}{}{}AD`{{Fj{{AHn{ceg}}}}}}{{{Bb{{BGl{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}{}AD`}{{{Bb{{BJb{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEdEd{}AD`}{{{Bb{{BJd{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}{}AD`}{{{Bb{{BHb{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}{}AD`}{{{Bb{{BJf{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}{}AD`}{{{Bb{{BHn{cegik}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{k}}}AEd{}{}{}{{Bj{{Bb{e}}}{{Ah{g}}}}}AD`}{{{Bb{{BI`{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEdEdBIbAD`}{{{Bb{{BIn{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}BJ`AMl}{{{Bb{{BJh{cegi}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{i}}}AEd{JlEd}EdBJjAMl}{{{Bb{{BGh{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}BGjAD`}{{{Bb{{BJl{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}BJnAD`}{{{Bb{{BKd{cegikm}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{m}}}AEd{EdBClEh}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl}{{{Bb{{BHl{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEdEd{}AD`}{{{Bb{{BKl{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEdEdBKnAMl}{{{Bb{{BHd{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}BHfAD`}{{{Bb{{BLd{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{i}}}AEd{Ef{Fj{Kj}}BN`}EdBLhAD`}{{{Bb{{BLj{cegi}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{i}}}AEdALj{}BLlAMl}{{{Bb{{BGn{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEdEdBH`AMl}{{{Bb{{BLn{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}BM`AMl}{{{Bb{{BK`{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}BGjAMl}{{{Bb{{BMb{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{i}}}AEd{Ef{Fj{Kj}}BN`}EdBLhAD`}{{{Bb{{BNd{ceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}{}AD`}{{{Bb{{BKb{cegik}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}{}AD`Ld{{Fj{{AHn{ceg}}}}}}{{{Bb{{BNf{ce}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}{{BNh{c}}}BNj}{{{Bb{{BId{iceg}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{g}}}AEd{}{}BIf{{BIh{ceg}}}}{{}{{BGl{ceg}}}{}{}AD`}{i{{BJb{ceg}}}{}{}{}{{Fj{{AHn{ceg}}}}}}{i{{BJd{ceg}}}{}{}AD`{{Fj{{AHn{ceg}}}}}}{{}{{BHb{ceg}}}{}{}AD`}{{}{{BJf{ceg}}}{}{}AD`}{{gm}{{BHn{icegk}}}{}{}{{Bj{{Bb{c}}}{{Ah{e}}}}}{}AD`{{Fj{{AHn{iek}}}}}}{i{{BI`{ceg}}}{}BIbAD`{{Fj{{AHn{ceg}}}}}}{{cC`}{{BIn{egi}}}{{Fj{Hb}}}{}BJ`AMl}{{{Bb{{BMh{c}}}}{Bb{Mh}}{Bf{{Bb{c}}}}g}{{BJh{ceik}}}{JlEd}{}{{Bj{c}{{Ah{e}}}}}BJjAMl}{i{{BGh{ceg}}}{}BGjAD`{{Fj{{AHn{ceg}}}}}}{{{Bb{{C@l{c}}}}k}{{BJl{egi}}}{}{}BJnAD`{{Bj{C@n{Bb{c}}C`}{{Ah{{CA`{egi}}}}}}}}{{e{Bf{g}}k}{{BKd{cegimo}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}Ed{{Bj{c}{{Ah{i}}}}}BKfAMl}{i{{BHl{ceg}}}Ed{}AD`{{Fj{{AHn{ceg}}}}}}{{{CAb{d}}d}{{BKh{c}}}BKj}{{ce{Bf{e}}i}{{BKl{gkm}}}{{Fj{Hb}}}{CAdEf}Ed{{Hh{e}{{Ah{g}}}}}BKnAMl}{i{{BHd{ceg}}}{}BHfAD`{{Fj{{AHn{ceg}}}}}}{{{CAb{c}}cg}{{BLd{cei}}}{Ef{BLf{Gn}}BBj}Ed{{Bj{c}{{Ah{e}}}}}BLh}{{{Bb{{CAf{c}}}}}{{BLj{ANnegc}}}AMl{}BLl}{{{Bb{Mh}}{Bb{Mh}}}{{BGn{ceg}}}EdBH`AMl}{C`{{BLn{ceg}}}{}BM`AMl}{{ikCAh}{{BK`{ceg}}}{}BGjAMl{{Fj{{AHn{ceg}}}}}{{Fj{{AHn{ceg}}}}}}{{{CAb{c}}cg}{{BMb{cei}}}{Ef{BLf{Gn}}BBj}Ed{{Bj{c}{{Ah{e}}}}}BLh}{i{{BNd{ceg}}}{}{}AD`{{Bj{An}{{Ah{{AHn{ceg}}}}}}}}{{cm}{{BKb{egick}}}Ld{}{}{}{{Fj{{AHn{egi}}}}}{{Bj{{Bb{c}}}{{Ah{k}}}}}}{e{{BNf{ce}}}{}{{BNh{c}}}}{c{{BMd{e}}}{{Fj{AKd}}}BMf}{{{Bb{CAj}}}{{BIj{c}}}BIl}{{ce}BOb{{Fj{Gl}}}{{Fj{Gl}}}}{e{{BMl{c}}}{}{{Fj{c}}}}{i{{BId{iceg}}}{}{}BIf{{BIh{ceg}}}}{{}c{}}00{{{BLj{cegi}}k}{{BLj{cegi}}}ALj{}BLlAMl{{Bj{ANd}{{Ah{e}}}}}}{{{BJl{ceg}}i}{{BJl{ceg}}}{}BJnAD`{{Bj{C@n}{{Ah{c}}}}}}{{{BJh{cegi}}e}{{BJh{cegi}}}{JlEd}{}BJjAMl}{{{BKd{cegikm}}i}{{BKd{cegikm}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl}{{{BJb{ceg}}c}{{BJb{ceg}}}{}{}{}}{{{BJl{ceg}}i}{{BJl{ceg}}}{}BJnAD`{{Bj{CAl}{{Ah{c}}}}}}11{{{BHl{ceg}}c}{{BHl{ceg}}}Ed{}AD`}{{{BJh{cegi}}k}{{BJh{cegi}}}{JlEd}{}BJjAMl{{Bj{Hb}{{Ah{e}}}}}}{{{BGn{ceg}}i}{{BGn{ceg}}}EdBH`AMl{{Bj{Hb}{{Ah{c}}}}}}{{{BGn{ceg}}{Bf{i}}}{{BGn{ceg}}}EdBH`AMl{{Bj{Hb}{{Ah{c}}}}}}55{{{BJb{ceg}}i}{{BJb{ceg}}}{}{}{}{{Bj{Ad}{{Ah{c}}}}}}87{{{BJh{cegi}}k}{{BJh{cegi}}}{JlEd}{}BJjAMl{{Bj{c}{{Ah{e}}}}}}327{{{BI`{ceg}}c}{{BI`{ceg}}}{}BIbAD`}{{{BI`{ceg}}{Bf{c}}}{{BI`{ceg}}}{}BIbAD`}{{{BI`{ceg}}i}{{BI`{ceg}}}{}BIbAD`{{Bj{}{{Ah{c}}}}}}:{{{BLd{ceg}}e}{{BLd{ceg}}}{Ef{BLf{Gn}}BBj}EdBLh}{{{BMb{ceg}}e}{{BMb{ceg}}}{Ef{BLf{Gn}}BBj}EdBLh}{{{BJl{ceg}}ik}{{BJl{ceg}}}{}BJnAD`{{Fj{Ab}}}{{Bj{CAn}{{Ah{c}}}}}}{{{BHl{ceg}}i}{{BHl{ceg}}}Ed{}AD`{{Bj{An}{{Ah{c}}}}}}>>{{{BJb{ceg}}i}{{BJb{ceg}}}{}{}{}{{Bj{AIh}{{Ah{c}}}}}}{{{BHd{ceg}}i}{{BHd{ceg}}}{}BHfAD`{{Bj{CB`}{{Ah{c}}}}}}2{{{BGn{ceg}}c}{{BGn{ceg}}}EdBH`AMl}{{{BGn{ceg}}{Bf{c}}}{{BGn{ceg}}}EdBH`AMl}{{{BIn{ceg}}i}{{BIn{ceg}}}{}BJ`AMl{{Bj{C`}{{Ah{c}}}}}}{{{BLn{ceg}}i}{{BLn{ceg}}}{}BM`AMl{{Bj{C`}{{Ah{c}}}}}}{{{BIn{ceg}}{Bf{i}}}{{BIn{ceg}}}{}BJ`AMl{{Bj{C`}{{Ah{c}}}}}}{{{BLn{ceg}}{Bf{i}}}{{BLn{ceg}}}{}BM`AMl{{Bj{C`}{{Ah{c}}}}}}{{{BMd{c}}e}{{BMd{c}}}BMf{{Fj{d}}}}{{{BMl{c}}e}{{BMl{c}}}{}{{Fj{d}}}}{i{{AHn{ceg}}}{}{}AD`{{Fj{{AHn{ceg}}}}}}{{{Bb{{BGl{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}{Bb{B`AEf}}}Bd{}{}AD`}{{{Bb{{BJb{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}{Bb{B`AEf}}}BdEd{}AD`}{{{Bb{{BJd{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}{Bb{B`AEf}}}Bd{}{}AD`}{{{Bb{{BHb{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}{Bb{B`AEf}}}Bd{}{}AD`}{{{Bb{{BJf{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}{Bb{B`AEf}}}Bd{}{}AD`}{{{Bb{{BHn{cegik}}}}{Bb{B`ACl}}ACf{Bb{k}}{Bb{B`AEf}}}Bd{}{}{}{{Bj{{Bb{e}}}{{Ah{g}}}}}AD`}{{{Bb{{BI`{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}{Bb{B`AEf}}}BdEdBIbAD`}{{{Bb{{BIn{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}{Bb{B`AEf}}}Bd{}BJ`AMl}{{{Bb{{BGh{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}{Bb{B`AEf}}}Bd{}BGjAD`}{{{Bb{{BJl{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}{Bb{B`AEf}}}Bd{}BJnAD`}{{{Bb{{BHl{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}{Bb{B`AEf}}}BdEd{}AD`}{{{Bb{{BHd{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}{Bb{B`AEf}}}Bd{}BHfAD`}{{{Bb{{BLj{cegi}}}}{Bb{B`ACl}}ACf{Bb{i}}{Bb{B`AEf}}}BdALj{}BLlAMl}{{{Bb{{BGn{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}{Bb{B`AEf}}}BdEdBH`AMl}{{{Bb{{BMj{}{{Cb{c}}{CBb{e}}}}}}{Bb{B`c}}{Bb{B`AEf}}}BdDd{}}{{{Bb{{BNd{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}{Bb{B`AEf}}}Bd{}{}AD`}{{{Bb{{BKb{cegik}}}}{Bb{B`ACl}}ACf{Bb{g}}{Bb{B`AEf}}}Bd{}{}AD`Ld{{Fj{{AHn{ceg}}}}}}`{{{Bb{B`{BGl{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}Af}{{Bf{{AEh{ceg}}}}}{}{}AD`}{{{Bb{B`{BJb{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}Af}{{Bf{{AEh{ceg}}}}}Ed{}AD`}{{{Bb{B`{BJd{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}Af}{{Bf{{AEh{ceg}}}}}{}{}AD`}{{{Bb{B`{BHb{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}Af}{{Bf{{AEh{ceg}}}}}{}{}AD`}{{{Bb{B`{BJf{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}Af}{{Bf{{AEh{ceg}}}}}{}{}AD`}{{{Bb{B`{BHn{cegik}}}}{Bb{B`ACl}}ACf{Bb{k}}Af}{{Bf{{AEh{cek}}}}}{}{}{}{{Bj{{Bb{e}}}{{Ah{g}}}}}AD`}{{{Bb{B`{BI`{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}Af}{{Bf{{AEh{ceg}}}}}EdBIbAD`}{{{Bb{B`{BJh{cegi}}}}{Bb{B`ACl}}ACf{Bb{i}}Af}{{Bf{{AEh{egi}}}}}{JlEd}EdBJjAMl}{{{Bb{B`{BGh{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}Af}{{Bf{{AEh{ceg}}}}}{}BGjAD`}{{{Bb{B`{BJl{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}Af}{{Bf{{AEh{ceg}}}}}{}BJnAD`}{{{Bb{B`{BKd{cegikm}}}}{Bb{B`ACl}}ACf{Bb{m}}Af}{{Bf{{AEh{ikm}}}}}{EdBClEh}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl}{{{Bb{B`{BHl{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}Af}{{Bf{{AEh{ceg}}}}}Ed{}AD`}{{{Bb{B`{BHd{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}Af}{{Bf{{AEh{ceg}}}}}{}BHfAD`}{{{Bb{B`{BK`{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}Af}{{Bf{{AEh{ceg}}}}}{}BGjAMl}{{{Bb{B`{BNd{ceg}}}}{Bb{B`ACl}}ACf{Bb{g}}Af}{{Bf{{AEh{ceg}}}}}{}{}AD`}{{{Bb{B`{BKb{cegik}}}}{Bb{B`ACl}}ACf{Bb{g}}Af}{{Bf{{AEh{ceg}}}}}{}{}AD`Ld{{Fj{{AHn{ceg}}}}}}{{{BGl{ceg}}i}{{BGl{ceg}}}{}{}AD`{{Fj{Fh}}}}{{{BHb{ceg}}i}{{BHb{ceg}}}{}{}AD`{{Fj{Fh}}}}{{{BI`{ceg}}i}{{BI`{ceg}}}{}BIbAD`{{Fj{Fh}}}}{{{BJh{cegi}}k}{{BJh{cegi}}}{JlEd}{}BJjAMl{{Fj{Fh}}}}{{{BGh{ceg}}i}{{BGh{ceg}}}{}BGjAD`{{Fj{Fh}}}}{{{BKd{cegikm}}o}{{BKd{cegikm}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl{{Fj{Fh}}}}{{{BLj{cegi}}k}{{BLj{cegi}}}ALj{}BLlAMl{{Fj{Fh}}}}{{{BGn{ceg}}i}{{BGn{ceg}}}EdBH`AMl{{Fj{Fh}}}}{{{BK`{ceg}}i}{{BK`{ceg}}}{}BGjAMl{{Fj{Ab}}}}`{{{Bb{{C@l{c}}}}k}{{BJl{egi}}}{}{}BJnAD`{{Bj{C@n{Bb{c}}C`}{{Ah{{CA`{egi}}}}}}}}`{{e{Bf{g}}k}{{BKd{cegimo}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}Ed{{Bj{c}{{Ah{i}}}}}{BKfBCn}AMl}{i{{BJd{ceg}}}{}{}AD`{{Fj{{AHn{ceg}}}}}}{{{BKd{cegikm}}o}{{BKd{cegikm}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl{{Fj{Hb}}}}{{{BLj{cegi}}k}{{BLj{cegi}}}ALj{}BLlAMlAN`}`{i{{BHl{ceg}}}Ed{}AD`{{Fj{{AHn{ceg}}}}}}{{{BJd{ceg}}i}{{BJd{ceg}}}{}{}AD`{{Fj{Ad}}}}`{{{CAb{d}}d}{{BKh{c}}}BKj}{c{{BHj{c}}}{}}{{{BGl{ceg}}i}{{BGl{ceg}}}{}{}AD`{{Fj{{AHn{ceg}}}}}}{{{BHb{ceg}}i}{{BHb{ceg}}}{}{}AD`{{Fj{{AHn{ceg}}}}}}{{{BJf{ceg}}i}{{BJf{ceg}}}{}{}AD`{{Fj{{AHn{ceg}}}}}}{{{BGl{ceg}}{Bf{i}}}{{BGl{ceg}}}{}{}AD`{{Fj{{AHn{ceg}}}}}}{{{BHb{ceg}}{Bf{i}}}{{BHb{ceg}}}{}{}AD`{{Fj{{AHn{ceg}}}}}}{{{BJf{ceg}}{Bf{i}}}{{BJf{ceg}}}{}{}AD`{{Fj{{AHn{ceg}}}}}}`{{{Bb{CAj}}}{{BIj{c}}}BIl}`{{ce{Bf{e}}i}{{BKl{gkm}}}{{Fj{Hb}}}{EfCAd}Ed{{Hh{e}{{Ah{g}}}}}BKnAMl}{{}{{BHj{c}}}{}}{Lf{{BHj{c}}}{}}{i{{BNd{ceg}}}{}{}AD`{{Bj{An}{{Ah{{AHn{ceg}}}}}}}}{e{{CBd{cgik}}}Ed{{AF`{{AFn{{AKl{c}}}}}}}{}AOdAMl}`{i{{BGh{ceg}}}{}BGjAD`{{Fj{{AHn{ceg}}}}}}0{{{BMd{c}}e}{{BMd{c}}}BMf{{Fj{Dj}}}}{{{BMl{c}}e}{{BMl{c}}}{}{{Fj{Dj}}}}{i{{BHb{ceg}}}{}{}AD`{{Fb{}{{F`{{AHn{ceg}}}}}}}}``{{{BMl{c}}e}{{BMl{c}}}{}{{Fj{d}}}}`{i{{BHd{ceg}}}{}BHfAD`{{Fj{{AHn{ceg}}}}}}{{{BGn{ceg}}C`}{{BGn{ceg}}}EdBH`AMl}`{e{{BNf{ce}}}{}{{BNh{c}}}}{{{BLd{ceg}}i}{{BLd{ceg}}}{Ef{BLf{Gn}}BBj}EdBLh{{Fj{c}}}}{{{BMb{ceg}}i}{{BMb{ceg}}}{Ef{BLf{Gn}}BBj}EdBLh{{Fj{c}}}}{{{Bb{{BGl{ceg}}}}}{{An{Gl}}}{}{}AD`}{{{Bb{{BJb{ceg}}}}}{{An{Gl}}}Ed{}AD`}{{{Bb{{BJd{ceg}}}}}{{An{Gl}}}{}{}AD`}{{{Bb{{BHb{ceg}}}}}{{An{Gl}}}{}{}AD`}{{{Bb{{BJf{ceg}}}}}{{An{Gl}}}{}{}AD`}{{{Bb{{BHn{cegik}}}}}{{An{Gl}}}{}{}{}{{Bj{{Bb{e}}}{{Ah{g}}}}}AD`}{{{Bb{{BI`{ceg}}}}}{{An{Gl}}}EdBIbAD`}{{{Bb{{BIn{ceg}}}}}{{An{Gl}}}{}BJ`AMl}{{{BIn{ceg}}i}{{BIn{ceg}}}{}BJ`AMl{{Fj{Ab}}}}{{{BJh{cegi}}d}{{BJh{cegi}}}{JlEd}{}BJjAMl}{{{Bb{{BJh{cegi}}}}}{{An{Gl}}}{JlEd}EdBJjAMl}{{{Bb{{BGh{ceg}}}}}{{An{Gl}}}{}BGjAD`}{{{Bb{{BJl{ceg}}}}}{{An{Gl}}}{}BJnAD`}{{{Bb{{BKd{cegikm}}}}}{{An{Gl}}}{EdBClEh}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl}{{{Bb{{BHl{ceg}}}}}{{An{Gl}}}Ed{}AD`}{{{Bb{{BKh{c}}}}}{{An{Gl}}}BKj}{{{BKl{ceg}}i}{{BKl{ceg}}}EdBKnAMl{{Fj{Ab}}}}{{{Bb{{BKl{ceg}}}}}{{An{Gl}}}EdBKnAMl}{{{Bb{{BL`{c}}}}}{{An{Gl}}}BLb}{{{Bb{{BHd{ceg}}}}}{{An{Gl}}}{}BHfAD`}{{{Bb{{BLd{ceg}}}}}{{An{Gl}}}{Ef{Fj{Kj}}BN`}EdBLh}{{{BLj{cegi}}k}{{BLj{cegi}}}ALj{}BLlAMl{{Fj{Ab}}}}{{{Bb{{BLj{cegi}}}}}{{An{Gl}}}ALj{}BLlAMl}{{{BGn{ceg}}i}{{BGn{ceg}}}EdBH`AMl{{Fj{Ab}}}}{{{Bb{{BGn{ceg}}}}}{{An{Gl}}}EdBH`AMl}{{{BLn{ceg}}i}{{BLn{ceg}}}{}BM`AMl{{Fj{Ab}}}}{{{Bb{{BLn{ceg}}}}}{{An{Gl}}}{}BM`AMl}{{{Bb{{BK`{ceg}}}}}{{An{Gl}}}{}BGjAMl}{{{Bb{{BMb{ceg}}}}}{{An{Gl}}}{Ef{Fj{Kj}}BN`}EdBLh}{{{Bb{{BNd{ceg}}}}}{{An{Gl}}}{}{}AD`}{{{Bb{{BKb{cegik}}}}}{{An{Gl}}}{}{}AD`Ld{{Fj{{AHn{ceg}}}}}}{{{Bb{{BNf{ce}}}}}{{An{Gl}}}{}{{BNh{c}}}}{{{Bb{{BMd{c}}}}}{{An{Gl}}}BMf}{{{Bb{{BIj{c}}}}}{{An{Gl}}}BIl}{{{Bb{BOb}}}{{An{Gl}}}}{{{Bb{{BMl{c}}}}}{{An{Gl}}}Ed}{{{Bb{{BId{iceg}}}}}{{An{Gl}}}{}{}BIf{{BIh{ceg}}}}{{{Bb{{BHl{ceg}}}}}{{An{Gl}}}Ed{}AD`}:{{{Bb{{BMj{}{{Cb{c}}{CBb{e}}}}}}}{{An{Gl}}}Dd{}}8`{{{CAb{c}}cg}{{BLd{cei}}}{Ef{BLf{Gn}}BBj}Ed{{Bj{c}{{Ah{e}}}}}BLh}{{{BK`{ceg}}C`}{{BK`{ceg}}}{}BGjAMl}{{{BGl{ceg}}i}{{BGl{ceg}}}{}{}AD`{{Fj{Ab}}}}{{{BHb{ceg}}i}{{BHb{ceg}}}{}{}AD`{{Fj{Ab}}}}{{{BIn{ceg}}i}{{BIn{ceg}}}{}BJ`AMl{{Fj{Ab}}}}{{{BJl{ceg}}i}{{BJl{ceg}}}{}BJnAD`{{Fj{Ab}}}}{{{BKl{ceg}}i}{{BKl{ceg}}}EdBKnAMl{{Fj{Ab}}}}{{{BHd{ceg}}i}{{BHd{ceg}}}{}BHfAD`{{Fj{Ab}}}}{{{BLn{ceg}}i}{{BLn{ceg}}}{}BM`AMl{{Fj{Ab}}}}{c{{AKl{eg}}}AN`{}{}}{i{{BJf{ceg}}}{}{}AD`{{Fb{}{{F`{{AHn{ceg}}}}}}}}`{{{Bb{{BJb{ceg}}}}}AFdEd{}AD`}{{{Bb{{BJd{ceg}}}}}AFd{}{}AD`}{{{Bb{{BHn{cegik}}}}}AFd{}{}{}{{Bj{{Bb{e}}}{{Ah{g}}}}}AD`}{{{Bb{{BI`{ceg}}}}}AFdEdBIbAD`}{{{Bb{{BIn{ceg}}}}}AFd{}BJ`AMl}{{{Bb{{BJh{cegi}}}}}AFd{JlEd}EdBJjAMl}{{{Bb{{BGh{ceg}}}}}AFd{}BGjAD`}{{{Bb{{BJl{ceg}}}}}AFd{}BJnAD`}{{{Bb{{BKd{cegikm}}}}}AFd{EdBClEh}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl}{{{Bb{{BHl{ceg}}}}}AFdEd{}AD`}{{{Bb{{BKl{ceg}}}}}AFdEdBKnAMl}{{{Bb{{BHd{ceg}}}}}AFd{}BHfAD`}{{{Bb{{BLd{ceg}}}}}AFd{Ef{Fj{Kj}}BN`}EdBLh}{{{Bb{{BLj{cegi}}}}}AFdALj{}BLlAMl}{{{Bb{{BGn{ceg}}}}}AFdEdBH`AMl}{{{Bb{{BLn{ceg}}}}}AFd{}BM`AMl}{{{Bb{{BK`{ceg}}}}}AFd{}BGjAMl}{{{Bb{{BMb{ceg}}}}}AFd{Ef{Fj{Kj}}BN`}EdBLh}{{{Bb{{BNd{ceg}}}}}AFd{}{}AD`}{{{Bb{{BKb{cegik}}}}}AFd{}{}AD`Ld{{Fj{{AHn{ceg}}}}}}{{{Bb{{BNf{ce}}}}}AFd{}{{BNh{c}}}}{{{Bb{{BIj{c}}}}}AFdBIl}{{{Bb{{BId{iceg}}}}}AFd{}{}BIf{{BIh{ceg}}}}{{{BLd{ceg}}i}{{BLd{ceg}}}{Ef{BLf{Gn}}BBj}EdBLh{{Fj{c}}}}{{{BMb{ceg}}c}{{BMb{ceg}}}{Ef{BLf{Gn}}BBj}EdBLh}{{{BI`{ceg}}i}{{BI`{ceg}}}{}BIbAD`{{Bj{{Bb{e}}Oh}{{Ah{Oj}}}}}}{{{BIn{ceg}}i}{{BIn{ceg}}}{}BJ`AMl{{Bj{{Bb{e}}Od}{{Ah{Of}}}}}}{{{BGh{ceg}}i}{{BGh{ceg}}}{}BGjAD`{{Bj{{Bb{e}}}{{Ah{A@n}}}}}}{{{BJl{ceg}}i}{{BJl{ceg}}}{}BJnAD`{{Bj{{Bb{e}}}{{Ah{AAj}}}}}}{{{BKd{cegikm}}o}{{BKd{cegikm}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl{{Bj{{Bb{k}}A@`}{{Ah{A@b}}}}}}{{{BKh{c}}e}{{BKh{c}}}BKj{{Bj{{Bb{c}}}{{Ah{AA`}}}}}}{{{BKl{ceg}}i}{{BKl{ceg}}}EdBKnAMl{{Bj{{Bb{e}}Ol}{{Ah{On}}}}}}{{{BL`{c}}e}{{BL`{c}}}BLb{{Bj{{Bb{c}}}{{Ah{AAl}}}}}}{{{BHd{ceg}}i}{{BHd{ceg}}}{}BHfAD`{{Bj{{Bb{e}}AAb}{{Ah{AAd}}}}}}{{{BLd{ceg}}i}{{BLd{ceg}}}{Ef{BLf{Gn}}BBj}EdBLh{{Bj{{Bb{g}}AAf}{{Ah{AAh}}}}}}{{{BLj{cegi}}k}{{BLj{cegi}}}ALj{}BLlAMl{{Bj{{Bb{g}}A@j}{{Ah{A@l}}}}}}{{{BGn{ceg}}i}{{BGn{ceg}}}EdBH`AMl{{Bj{{Bb{e}}Nn}{{Ah{O`}}}}}}{{{BLn{ceg}}i}{{BLn{ceg}}}{}BM`AMl{{Bj{{Bb{e}}AB`}{{Ah{ABb}}}}}}{{{BK`{ceg}}i}{{BK`{ceg}}}{}BGjAMl{{Bj{{Bb{e}}}{{Ah{A@n}}}}}}{{{BMb{ceg}}i}{{BMb{ceg}}}{Ef{BLf{Gn}}BBj}EdBLh{{Bj{{Bb{g}}AAf}{{Ah{AAh}}}}}}{{{BMd{c}}e}{{BMd{c}}}BMf{{Bj{{Bb{c}}A@f}{{Ah{A@h}}}}}}{{{BIj{c}}e}{{BIj{c}}}BIl{{Bj{{Bb{c}}}{{Ah{A@d}}}}}}`{c{{BMd{e}}}{{Fj{AKd}}}BMf}{{{Bb{{BJb{ceg}}}}}AFfEd{}AD`}{{{Bb{{BJd{ceg}}}}}AFf{}{}AD`}{{{Bb{{BHn{cegik}}}}}AFf{}{}{}{{Bj{{Bb{e}}}{{Ah{g}}}}}AD`}{{{Bb{{BI`{ceg}}}}}AFfEdBIbAD`}{{{Bb{{BIn{ceg}}}}}AFf{}BJ`AMl}{{{Bb{{BJh{cegi}}}}}AFf{JlEd}EdBJjAMl}{{{Bb{{BGh{ceg}}}}}AFf{}BGjAD`}{{{Bb{{BJl{ceg}}}}}AFf{}BJnAD`}{{{Bb{{BKd{cegikm}}}}}AFf{EdBClEh}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl}{{{Bb{{BHl{ceg}}}}}AFfEd{}AD`}{{{Bb{{BKl{ceg}}}}}AFfEdBKnAMl}{{{Bb{{BHd{ceg}}}}}AFf{}BHfAD`}{{{Bb{{BLd{ceg}}}}}AFf{Ef{Fj{Kj}}BN`}EdBLh}{{{Bb{{BLj{cegi}}}}}AFfALj{}BLlAMl}{{{Bb{{BGn{ceg}}}}}AFfEdBH`AMl}{{{Bb{{BLn{ceg}}}}}AFf{}BM`AMl}{{{Bb{{BK`{ceg}}}}}AFf{}BGjAMl}{{{Bb{{BMb{ceg}}}}}AFf{Ef{Fj{Kj}}BN`}EdBLh}{{{Bb{{BNd{ceg}}}}}AFf{}{}AD`}{{{Bb{{BKb{cegik}}}}}AFf{}{}AD`Ld{{Fj{{AHn{ceg}}}}}}{{{Bb{{BNf{ce}}}}}AFf{}{{BNh{c}}}}{{{Bb{{BIj{c}}}}}AFfBIl}{{{Bb{{BId{iceg}}}}}AFf{}{}BIf{{BIh{ceg}}}}`{c{{AOb{eg}}}AN`AOdAMl}`{{{BLn{ceg}}Kb}{{BLn{ceg}}}{}BM`AMl}{{{BHn{cegik}}{Nh{{Bb{g}}}{{Ah{b}}}}}{{BHn{cegik}}}{}{}{}{{Bj{{Bb{e}}}{{Ah{g}}}}}AD`}`{{{Bb{{CAf{c}}}}}{{BLj{ANnegc}}}AMlEdBLl}`{{{Bb{Mh}}{Bb{Mh}}}{{BGn{ceg}}}EdBH`AMl}{{{BIn{ceg}}i}{{BIn{ceg}}}{}BJ`AMl{{Fj{AEb}}}}{{{BKd{cegikm}}o}{{BKd{cegikm}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl{{Fj{AEb}}}}{{{BKl{ceg}}i}{{BKl{ceg}}}EdBKnAMl{{Fj{AEb}}}}{{{BLn{ceg}}i}{{BLn{ceg}}}{}BM`AMl{{Fj{AEb}}}}{{{BIn{ceg}}AFb}{{BIn{ceg}}}{}BJ`AMl}{{{BKd{cegikm}}AFb}{{BKd{cegikm}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl}{{{BKl{ceg}}AFb}{{BKl{ceg}}}EdBKnAMl}{{{BLn{ceg}}AFb}{{BLn{ceg}}}{}BM`AMl}{{{BIn{ceg}}i}{{BIn{ceg}}}{}BJ`AMl{{Fj{Ab}}}}{{{BKd{cegikm}}o}{{BKd{cegikm}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl{{Fj{Ab}}}}{{{BKl{ceg}}i}{{BKl{ceg}}}EdBKnAMl{{Fj{Ab}}}}{{{BLn{ceg}}i}{{BLn{ceg}}}{}BM`AMl{{Fj{Ab}}}}{{{BIn{ceg}}AFh}{{BIn{ceg}}}{}BJ`AMl}{{{BKl{ceg}}AFh}{{BKl{ceg}}}EdBKnAMl}{{{BLn{ceg}}AFh}{{BLn{ceg}}}{}BM`AMl}`{{ci}{{BHn{ekc{`{{Bj{{Bb{k}}}}}}g}}}Ed{}AD`{{Fj{{AHn{ecg}}}}}{}}{Bbc{}}`{C`{{BLn{ceg}}}{}BM`AMl}`{{ikCAh}{{BK`{ceg}}}{}BGjAMl{{Fj{{AHn{ceg}}}}}{{Fj{{AHn{ceg}}}}}}{{{BIj{c}}e}{{BIj{c}}}BIl{{Fj{Ab}}}}{{}{{Bl{c}}}{}}0000000000000000000000000000000{c{{Bl{e}}}{}{}}0000000000000000000000000000000{{}{{Bl{c}}}{}}0000000000000000000000000000000{{}{{Bl{c{ABj{c}}}}}{}}0000000000000000000000000000000{BbABl}0000000000000000000000000000000{ce{}{}}0000000000000000000000000000000{{}c{}}0000000000000000000000000000000{Bb{{Bf{{Bb{c}}}}}{}}0000000000000000000000000000000{{{Bb{B`{BMj{}{{Cb{c}}{CBb{e}}}}}}{Bb{B`c}}e}{{Bf{g}}}Dd{}{}}{{{Bb{B`{BGl{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}{}AD`}{{{Bb{B`{BJb{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}BdEd{}AD`}{{{Bb{B`{BJd{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}{}AD`}{{{Bb{B`{BHb{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}{}AD`}{{{Bb{B`{BJf{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}{}AD`}{{{Bb{B`{BHn{cegik}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{k}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}{}{}{{Bj{{Bb{e}}}{{Ah{g}}}}}AD`}{{{Bb{B`{BI`{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}BdEdBIbAD`}{{{Bb{B`{BIn{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}BJ`AMl}{{{Bb{B`{BJh{cegi}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{i}}{Bb{B`AEj}}{Bb{B`{ACd{e}}}}{Bb{Al}}}Bd{JlEd}EdBJjAMl}{{{Bb{B`{BGh{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}BGjAD`}{{{Bb{B`{BJl{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}BJnAD`}{{{Bb{B`{BKd{cegikm}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{m}}{Bb{B`AEj}}{Bb{B`{ACd{i}}}}{Bb{Al}}}Bd{EdBClEh}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl}{{{Bb{B`{BHl{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}BdEd{}AD`}{{{Bb{B`{BKl{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}BdEdBKnAMl}{{{Bb{B`{BHd{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}BHfAD`}{{{Bb{B`{BLd{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{i}}{Bb{B`AEj}}{Bb{B`{ACd{e}}}}{Bb{Al}}}Bd{Ef{Fj{Kj}}BN`}EdBLhAD`}{{{Bb{B`{BLj{cegi}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{i}}{Bb{B`AEj}}{Bb{B`{ACd{e}}}}{Bb{Al}}}BdALj{}BLlAMl}{{{Bb{B`{BGn{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}BdEdBH`AMl}{{{Bb{B`{BLn{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}BM`AMl}{{{Bb{B`{BK`{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}BGjAMl}{{{Bb{B`{BMb{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{i}}{Bb{B`AEj}}{Bb{B`{ACd{e}}}}{Bb{Al}}}Bd{Ef{Fj{Kj}}BN`}EdBLhAD`}{{{Bb{B`{BNd{ceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}{}AD`}{{{Bb{B`{BKb{cegik}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}{}AD`Ld{{Fj{{AHn{ceg}}}}}}{{{Bb{B`{BNf{ce}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}{{BNh{c}}}BNj}{{{Bb{B`{BId{iceg}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{g}}{Bb{B`AEj}}{Bb{B`{ACd{c}}}}{Bb{Al}}}Bd{}{}BIf{{BIh{ceg}}}}{c{{AOb{eg}}}BClAOdAMl}{{{BKh{c}}}{{BKh{c}}}BKj}{c{{BL`{e}}}{{Fj{Ab}}}BLb}0`{{{CAb{c}}cg}{{BMb{cei}}}{Ef{BLf{Gn}}BBj}Ed{{Bj{c}{{Ah{e}}}}}BLh}{{}BOb}{{{Bb{{BMj{}{{Cb{c}}{CBb{e}}}}}}{Bb{c}}}{{AHn{egi}}}Dd{}{}{}}{{}c{}}0000000000000000000000000000000{{{BGl{ceg}}i}{{BGl{ceg}}}{}{}AD`{{Fj{Gl}}}}{{{BJd{ceg}}i}{{BJd{ceg}}}{}{}AD`{{Fj{Gl}}}}{{{BHb{ceg}}i}{{BHb{ceg}}}{}{}AD`{{Fj{Gl}}}}{{{BJf{ceg}}i}{{BJf{ceg}}}{}{}AD`{{Fj{Gl}}}}{{{BI`{ceg}}i}{{BI`{ceg}}}{}BIbAD`{{Fj{Gl}}}}{{{BIn{ceg}}i}{{BIn{ceg}}}{}BJ`AMl{{Fj{Gl}}}}{{{BJh{cegi}}k}{{BJh{cegi}}}{JlEd}{}BJjAMl{{Fj{Gl}}}}{{{BGh{ceg}}i}{{BGh{ceg}}}{}BGjAD`{{Fj{Gl}}}}{{{BJl{ceg}}i}{{BJl{ceg}}}{}BJnAD`{{Fj{Gl}}}}{{{BKd{cegikm}}o}{{BKd{cegikm}}}{BClEhEd}{{AOh{{AFn{c}}}}}{{AOh{c}}}EdBKfAMl{{Fj{Gl}}}}{{{BKl{ceg}}i}{{BKl{ceg}}}EdBKnAMl{{Fj{Gl}}}}{{{BHd{ceg}}i}{{BHd{ceg}}}{}BHfAD`{{Fj{Gl}}}}{{{BLd{ceg}}i}{{BLd{ceg}}}{Ef{BLf{Gn}}BBj}EdBLh{{Fj{Gl}}}}{{{BLj{cegi}}k}{{BLj{cegi}}}ALj{}BLlAMl{{Fj{Ab}}}}{{{BGn{ceg}}i}{{BGn{ceg}}}EdBH`AMl{{Fj{Gl}}}}{{{BLn{ceg}}i}{{BLn{ceg}}}{}BM`AMl{{Fj{Gl}}}}{{{BMb{ceg}}i}{{BMb{ceg}}}{Ef{BLf{Gn}}BBj}EdBLh{{Fj{Ab}}}}{{{BNf{ce}}g}{{BNf{ce}}}{}{{BNh{c}}}{{Fj{Gl}}}}{{{BMd{c}}e}{{BMd{c}}}BMf{{Fj{Gl}}}}{{BObc}BOb{{Fj{Gl}}}}{{{BMl{c}}e}{{BMl{c}}}{}{{Fj{Gl}}}}{{{BId{iceg}}k}{{BId{iceg}}}{}{}BIf{{BIh{ceg}}}{{Fj{Gl}}}}{Id{{BGl{ceg}}}{}{}AD`}{Id{{BHb{ceg}}}{}{}AD`}{Id{{BJf{ceg}}}{}{}AD`}{i{{BGl{ceg}}}{}{}AD`{{Fb{}{{F`{{AHn{ceg}}}}}}}}{i{{BHb{ceg}}}{}{}AD`{{Fb{}{{F`{{AHn{ceg}}}}}}}}{i{{BJf{ceg}}}{}{}AD`{{Fb{}{{F`{{AHn{ceg}}}}}}}}{{ik}{{BHd{ceg}}}{}BHfAD`{{Fj{{AHn{ceg}}}}}{{Fj{BMn}}}}{cBOb{{Fj{Gl}}}}0{{{BHb{ceg}}}{{CBf{ceg}}}{}{}AD`}{{{BLj{cegi}}AFh}{{BLj{cegi}}}ALj{}BLlAMl}{{{BJd{ceg}}i}{{BJd{ceg}}}{}{}AD`{{Fj{Ab}}}}0``````````{eg{}{{l{c}}}{}}0{ce{}{}}0{{}c{}}0{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{OjBf}{OjG`}{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{Oh}}}Oh}{{{Bb{Oj}}}Oj}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0<<{{{Bb{El}}Oh}Oj}{{}c{}}{{}Oj}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}0;;{IdBd}0{{{Bb{Oh}}{Bb{Oh}}}C`}{{{Bb{Oj}}{Bb{Oj}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{Oh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Oj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{ce{}{}}0{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}00{{{Bb{El}}Oh}Oj}0{OjFf}{{{Bb{{BIb{}{{BA`{c}}}}}}{Bb{c}}Oh}Oj{}}22{Ojb}{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0={{Ojc}Oj{{Fj{Gh}}}}`````````````````````````````````{eg{}{{l{c}}}{}}000000000{ce{}{}}0000000005555555555{Bb{{Bb{Dl}}}}000000000{{{Bb{B`}}}{{Bb{B`Dl}}}}000000000{Bb{{Bb{c}}}{}}000000000{{{Bb{B`}}}{{Bb{B`c}}}{}}000000000{{{Fl{c}}}e{}{}}000000000{{Add}CBh}{{{Bb{CBj}}}CBj}{{{Bb{CBl}}}CBl}{{{Bb{CBn}}}CBn}{{{Bb{CBh}}}CBh}{{{Bb{CC`}}}CC`}{{{Bb{CCb}}}CCb}{{{Bb{CCd}}}CCd}{{{Bb{CCf}}}CCf}{{{Bb{CCh}}}CCh}{{{Bb{CCj}}}CCj}{{Bb{Bb{B`c}}}Bd{}}000000000{{BbGn}Bd}000000000{{{Bb{CBj}}{Bb{CBj}}}Mj}{CCjb}{{Bb{Bb{c}}}Mj{}}{ce{}{}}000000000{CCjHb}{{}CBn}{{}CC`}{{}CCb}{{}CCd}{{}CCf}{{}CCj}{Id{{Bb{c}}}{}}000000000{Id{{Bb{B`c}}}{}}000000000{Bb{{Bb{c}}}{}}000000000{{{Bb{{BIh{}{{Cb{c}}}}}}{Bb{c}}{Bb{e}}{Bb{g}}AlADf}H`DdBIf{}}{{{Bb{CCj}}c}Bd{{Ln{CBhb}}}}{IdBd}000000000{{{Bb{CBj}}{Bb{CBj}}}C`}{{{Bb{CBl}}{Bb{CBl}}}C`}{{{Bb{CCh}}{Bb{CCh}}}C`}{{Bb{Bb{c}}}C`{}}00`{AG`AGf}{{{Bb{CBj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CBl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CBn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CBh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CC`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CCb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CCd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CCf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CCh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CCj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{CCjGd}{cc{}}{CClCBl}1{CBlCBn}2{CClCBn}{bCBn}444444{CBlCCh}{bCCh}{{{Bb{Mh}}}CCj}7{HbCCj}8888888888{ce{}{}}000000000`{AG`}{{{Bb{CBj}}{Bb{B`c}}}BdLb}{CCjKb}{{}Id}000000000{{}c{}}0000000000000000000{{{I`{c}}}{{I`{Dl}}}{}}000000000{{{Lj{c}}}{{Lj{Dl}}}{}}000000000{{{Ll{c}}}{{Ll{Dl}}}{}}000000000{{{Fl{c}}}e{}{}}00000000044444444444444444444{{}c{}}000000000{CBjC`}{{AdAd}CBh}{CC`CCb}{CC`CCf}{CCjAEb}{CC`CCd}{{{Bb{{BIh{}{{Cb{c}}}}}}{Bb{c}}AlADf}AEdDd}{cCBh{{Hh{{Bb{B`CCn}}}}}}888888{CCfId}{AG`d}{{{Bb{CBl}}}CD`}{{{Bb{CBj}}{Bb{CBj}}}{{Bf{Mj}}}}`{CCjAd}{{{Bb{CBh}}}{{Bb{CDb}}}}{{AdAn}CBh}{AG`n}{{AdAnMl}CBh}{CBnCDd}{CCfBb}{CCjAFb}{CCjAb}{AG`C`}`{CBnCCh}{CC`CCh}{Bbc{}}000000000{{{Bb{CBh}}{Bb{{CDh{dCDfCDf}}}}}CBh}{{}{{Bl{c}}}{}}000000000{c{{Bl{e}}}{}{}}000000000{{}{{Bl{c}}}{}}000000000{{}{{Bl{c{ABj{c}}}}}{}}000000000{BbABl}000000000{ce{}{}}000000000{{}c{}}000000000{{}CBj}{Bb{{Bf{{Bb{c}}}}}{}}000000000{{{Bb{{BIh{}{{Cb{c}}}}}}{Bb{B`c}}{Bb{Gb}}AlADf}{{Bf{{BHj{e}}}}}Dd{}}{CCjK`}{{}c{}}000000000{CC`d}{{CC`b}CC`}{{CC`CCb}CC`}{{CC`CCd}CC`}{{CC`d}CC`}```````{eg{}{{l{c}}}{}}{ce{}{}}<{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{CDd}}}CDd}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}8{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}7{IdBd}{{{Bb{CDd}}{Bb{CDd}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{CDd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}44{{}c{}}{CBnCDd}{CBnCCh}{Bbc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}````{eg{}{{l{c}}}{}}0{{CCldb}CCl}{{CClc}CCl{{Fb{}{{F`{BAh}}}}}}{ce{}{}}066{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{CCl}}}CCl}{{{Bb{CD`}}}CD`}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}099{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}088{IdBd}0{CClAd}{{{Bb{CCl}}{Bb{CCl}}}C`}{{{Bb{CD`}}{Bb{CD`}}}C`}{{{Bb{CCl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CD`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{ce{}{}}0{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{{{Bb{c}}}C`{}}{{AdAd}CCl}{{{Bb{Gf}}Al}CD`}{{{Bb{CCl}}}CD`}{CClAd}{CClE`}{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0```{eg{}{{l{c}}}{}}0`{{{Bb{B`CCn}}CDj}Bd}{{{Bb{B`CCn}}AdAdd}Bd}{ce{}{}}066{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{{{Bb{B`CCn}}AdAdAd}Bd}{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{CCnCBh}{{{Fl{c}}}e{}{}}0{CDjAd}{{{Bb{B`CCn}}Add}Bd}{{{Bb{CDj}}}CDj}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}{{{Bb{B`CCn}}}Bd}=={{}CCn}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}0<<{IdBd}0{{{Bb{B`CCn}}CDl}Bd}{CDjn}{{{Bb{CDj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{ce{}{}}0{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{{{Bb{B`CCn}}Ad}Bd}0{{}CCn}2{{{Bb{B`CCn}}AdAd}Bd}{CDjd}{{{Bb{B`CCn}}AdAn}Bd}{{{Bb{B`CCn}}AdAnMl}Bd}{CDjn}{Bbc{}}{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0``{eg{}{{l{c}}}{}}{ce{}{}}4{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{CDjAd}{CDlAd}{{{Bb{CDl}}}CDl}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}:{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}9{IdBd}{CDjn}{CDln}{{{Bb{CDl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{CDjCDl}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}44{{}c{}}{CDlAf}{CDjd}=>={Bbc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}````````````````````````````````````````{{}Bb}````````````````````````{eg{}{{l{c}}}{}}000000000000000000000000{ce{}{}}0000000000000000000000005555555555555555555555555{Bb{{Bb{Dl}}}}000000000000000000000000{{{Bb{B`}}}{{Bb{B`Dl}}}}000000000000000000000000{{{Bb{CDn}}}CE`}{{{Bb{CDb}}}CEb}{{{Bb{CEd}}}CEf}{{{Bb{CDb}}CEh}{{Bb{{AFn{d}}}}}}{{{Bb{CEb}}CEh}{{Bb{{AFn{d}}}}}}{{{Bb{B`CEj}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}{{{Bb{B`CEn}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}0{Bb{{Bb{c}}}{}}000000000000000000000000{{{Bb{B`}}}{{Bb{B`c}}}{}}000000000000000000000000{CEjCDb}{CEnCDb}0`{{}CF`}{{}{{CFb{CEj}}}}{{{Bb{B`CEd}}}CFd}{IdCEn}{{{Fl{c}}}e{}{}}000000000000000000000000{{{Bb{B`CEd}}}Bd}{{{Bb{CFf}}}CFf}{{{Bb{CDn}}}CDn}{{{Bb{CE`}}}CE`}{{{Bb{{CFh{ce}}}}}{{CFh{ce}}}EdEd}{{{Bb{CDb}}}CDb}{{{Bb{CEb}}}CEb}{{{Bb{CEj}}}CEj}{{{Bb{CEn}}}CEn}{{{Bb{CFj}}}CFj}{{{Bb{CFl}}}CFl}{{{Bb{CFn}}}CFn}{{{Bb{CEd}}}CEd}{{{Bb{CEf}}}CEf}{{{Bb{{CG`{c}}}}}{{CG`{c}}}Ed}{{{Bb{CGb}}}CGb}{{{Bb{CGd}}}CGd}{{{Bb{CGf}}}CGf}{{{Bb{CGh}}}CGh}{{{Bb{CGj}}}CGj}{{{Bb{CGl}}}CGl}{{{Bb{CGn}}}CGn}{{{Bb{CEh}}}CEh}{{{Bb{CH`}}}CH`}{{Bb{Bb{B`c}}}Bd{}}0000000000000000000000{{BbGn}Bd}0000000000000000000000{CG`C`}{CGbC`}`{ce{}{}}000000000000000000000000{{{Bb{B`CEj}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}{{{Bb{B`CEn}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}0{{}CFf}{{}CDb}{{}CEj}{{}CEd}{Id{{Bb{c}}}{}}000000000000000000000000{Id{{Bb{B`c}}}{}}000000000000000000000000{Bb{{Bb{c}}}{}}000000000000000000000000{IdBd}000000000000000000000000{{{Bb{B`CEj}}C`}Bd}{{{Bb{B`CEn}}C`}Bd}0{{{Bb{CFf}}{Bb{CFf}}}C`}{{{Bb{{CFh{ce}}}}{Bb{{CFh{ce}}}}}C`EhEh}{{{Bb{CGd}}{Bb{CGd}}}C`}{{{Bb{CGf}}{Bb{CGf}}}C`}{{{Bb{CGh}}{Bb{CGh}}}C`}{{{Bb{CGj}}{Bb{CGj}}}C`}{{{Bb{CGl}}{Bb{CGl}}}C`}{{{Bb{CGn}}{Bb{CGn}}}C`}{{{Bb{CEh}}{Bb{CEh}}}C`}{{{Bb{CH`}}{Bb{CH`}}}C`}{{Bb{Bb{c}}}C`{}}00000000000000{{{Bb{CDn}}CH`}{{CFh{CEhCGn}}}}{{{Bb{CE`}}CH`}{{CFh{CEhCGn}}}}{{{Bb{{CG`{c}}}}CH`}{{CFh{{Bb{c}}Bd}}}{}}{{{Bb{CGb}}CH`}{{CFh{CEhCGn}}}}{{{Bb{CDn}}{Bb{{AFn{c}}}}{Bb{{AFn{e}}}}}{{CHb{ce}}}{}{}}{{{Bb{B`CEj}}{Bb{{AFn{CEb}}}}}Bd}{{{Bb{B`CEn}}{Bb{{AFn{CEb}}}}}Bd}{{{Bb{CDb}}}{{Bf{{j{{CEl{dCDf}}{Bb{{AFn{d}}}}}}}}}}{{{Bb{CEb}}}{{Bf{{j{{CEl{dCDf}}{Bb{{AFn{d}}}}}}}}}}{{{Bb{CFf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CDn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CE`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{{CFh{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`D`}{{{Bb{CDb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CEb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CFn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CEd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CEf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CGd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CGf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CGh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CGj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CGl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CGn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CEh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CH`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{CFld{Bb{B`c}}}Bd{{Ln{{Bb{{CFh{{j{{CEl{dCDf}}{Bb{{AFn{d}}}}}}{CEl{dCDf}}}}}}}}}}{cc{}}0000{{{Bb{CDn}}}CE`}{{{Bb{{CFh{ce}}}}}cEd{}}222{{{Bb{CDb}}}CEb}333333333333333333333333333333333333333333{cCDb{{Fb{}{{F`{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}}}}}}{cCEd{{Fb{}{{F`{CEb}}}}}}{ce{}{}}000000000000000000000000{IdCGn}{IdCEh}{{{Bb{CHd}}CEh}{{Bb{{AFn{d}}}}}}{{{Bb{CHf}}CEh}{{Bb{{AFn{d}}}}}}{{{Bb{CDb}}CEh}{{Bb{{AFn{d}}}}}}{{{Bb{CEb}}CEh}{{Bb{{AFn{d}}}}}}{{{Bb{CEd}}Id}CEb}{{{Bb{CEf}}Id}CEb}{{{Bb{CHh}}CGn}{{CEl{dCDf}}}}{{{Bb{CDb}}CGn}{{CEl{dCDf}}}}{{{Bb{CEb}}CGn}{{CEl{dCDf}}}}{{{Bb{{CG`{c}}}}CGn}{{CEl{dCDf}}}CHj}{{{Bb{CHh}}CEh}{{CEl{dCDf}}}}{{{Bb{CDb}}CEh}{{CEl{dCDf}}}}{{{Bb{CEb}}CEh}{{CEl{dCDf}}}}{{{Bb{{CG`{c}}}}CEh}{{CEl{dCDf}}}CHj}{{{Bb{{CFh{ce}}}}{Bb{B`g}}}BdLdLdLb}{{{Bb{CGl}}{Bb{B`c}}}BdLb}{{{Bb{CGn}}{Bb{B`c}}}BdLb}{{{Bb{CEh}}{Bb{B`c}}}BdLb}{{{Bb{CH`}}{Bb{B`c}}}BdLb}{{{Bb{CDb}}}CFn}{{{Bb{CEb}}}CFn}{{{Bb{{CG`{c}}}}}CHl{}}{{{Bb{CDb}}CGn}{{Bb{{CEl{dCDf}}}}}}{{{Bb{CDb}}CEh}{{Bb{{CEl{dCDf}}}}}}{{{Bb{CEb}}CGn}{{Bb{{CEl{dCDf}}}}}}{{{Bb{CEb}}CEh}{{Bb{{CEl{dCDf}}}}}}{{{Bb{{CG`{c}}}}CEh}{{Bb{c}}}{}}{{{Bb{CEd}}}{{ALl{Id}}}}{{{Bb{CEf}}}{{ALl{Id}}}}{{}Id}000000000000000000000000{{}c{}}0000000000000000000000000000000000000000000000000{{{I`{c}}}{{I`{Dl}}}{}}000000000000000000000000{{{Lj{c}}}{{Lj{Dl}}}{}}0000000000000000000000{{{Ll{c}}}{{Ll{Dl}}}{}}000000000000000000000000{{{Fl{c}}}e{}{}}00000000000000000000000044444444444444444444444444444444444444444444444444{{}c{}}{{{Bb{CDn}}}CHn}{{{Bb{CDb}}}CFj}{CEbCFj}{{{Bb{CEb}}}CFj}444{CI`CDb}{{}c{}}000000000000000000000000{{{Bb{{CFh{ce}}}}}C`{}{}}{{{Bb{CEb}}}C`}{{{Bb{CEd}}}C`}{{{Bb{CEf}}}C`}{{{Bb{CGj}}CIb}C`}{CGhC`}10;{{{Bb{CE`}}}CHn};9{{{Bb{CEd}}}CId}{{{Bb{CEf}}}CId}{{{Bb{{CG`{c}}}}}{{CIf{c}}}{}}{{{Bb{CGb}}}CIh}{{{Bb{CDb}}}CFl}{{{Bb{CEb}}}CFl}`{CFfC`}{{{Bb{CDb}}}{{Bf{{j{{CEl{dCDf}}{Bb{{AFn{d}}}}}}}}}}{{{Bb{CEb}}}{{Bf{{j{{CEl{dCDf}}{Bb{{AFn{d}}}}}}}}}}{{{Bb{CEd}}}Id}{{{Bb{CEf}}}Id}{{{Bb{B`CEj}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}{{{Bb{B`CEn}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}0`{{{Bb{{AFn{d}}}}Id}CHf}{{}CDb}{{}CEj}{IdCEn}{{}CEd}{{{Bb{B`CI`}}}Bf}{{{Bb{B`CFj}}}{{Bf{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}}}}{{{Bb{B`CFl}}}Bf}{{{Bb{B`CFn}}}{{Bf{{CFh{CEhCGn}}}}}}{{{Bb{CDn}}CH`}{{Bf{CH`}}}}{{{Bb{CE`}}CH`}{{Bf{CH`}}}}{{{Bb{CDn}}CH`}CH`}{{{Bb{CE`}}CH`}CH`}{{}c{}}000{{{Bb{CHd}}}Id}{{{Bb{CHf}}}Id}{{{Bb{CDb}}}Id}{{{Bb{CEb}}}Id}{{{Bb{CEj}}}Id}{{{Bb{CEn}}}Id}0{CGnId}{CEhId}{CGhCGh}``{{{Bb{{CG`{c}}}}}{{CIj{c}}}CHj}{{{Bb{CDn}}{Bb{{AFn{c}}}}{Bb{{AFn{e}}}}}{{CIl{ce}}}{}{}}{CFlCFj}{CG`Bb}{CGbBb}`{{{Bb{CHj}}}{{CEl{dCDf}}}}{{{Bb{B`CEj}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}{{{Bb{B`CEn}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}0{{{Bb{B`CEj}}IdId}Bd}{{{Bb{B`CEn}}IdId}Bd}0{{{Bb{B`CEd}}IdIdId}Bd}{{{Bb{CDb}}}{{CIn{CI`}}}}{{{Bb{CEb}}}{{CIn{CI`}}}}{{}{{CJ`{CEj}}}}{CFfC`}{{{Bb{{CFh{ce}}}}}cEd{}}{CGhd}{Bbc{}}0000000000000000000000{CGnId}{CEhId}{CH`Id}`{{{Bb{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}}{Bb{c}}}{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}{{CJb{d}}}}{{CDb{Bb{c}}}CDb{{CJb{d}}}}{{}{{Bl{c}}}{}}000000000000000000000000{c{{Bl{e}}}{}{}}000000000000000000000000{{}{{Bl{c}}}{}}000000000000000000000000{{}{{Bl{c{ABj{c}}}}}{}}000000000000000000000000{BbABl}000000000000000000000000{ce{}{}}000000000000000000000000{{}c{}}000000000000000000000000{Bb{{Bf{{Bb{c}}}}}{}}000000000000000000000000{{}c{}}000000000000000000000000{IdCDb}{{IdId}CEj}{{IdIdId}CEd}{{{Bb{{CFh{ce}}}}}{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}CHjCHj}{CEj{{CJ`{CEj}}}}{CJd}{CJfC`}{CJh}{CJj}0{CJf}{CJl}321032{CJdCEh}5{CJhCGn}{CJjCGn}0{CJfCEh}{CJlCEh}{CJhCEh}{CJjCEh}3210{CJdCEl}<{CJhCEl}{CJjCEl}0{CJfCEl}{CJlCEl}321032`````````{eg{}{{l{c}}}{}}0000{{{Bb{B`CJn}}{CEl{dCDf}}dCGl{Bb{{AFn{d}}}}}Bd}0{{{Bb{B`{CFb{c}}}}{CEl{dCDf}}dCGl}BdCJn}{{{Bb{B`CJn}}{CEl{dCDf}}{CK`{dCDf}}{CKb{d}}CGl{Bb{{AFn{d}}}}}Bd}0{{{Bb{B`{CFb{c}}}}{CEl{dCDf}}{CK`{dCDf}}{CKb{d}}CGl}BdCJn}{{{Bb{B`CJn}}{Bb{{CKd{d}}}}{Bb{{AFn{d}}}}}{{j{CEhCEh}}}}0{{{Bb{B`{CFb{c}}}}{Bb{{CKd{d}}}}}{{j{CEhCEh}}}CJn}{{{Bb{B`CJn}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}0{{{Bb{B`{CFb{c}}}}{CEl{dCDf}}}CEhCJn}{{{Bb{B`CJn}}{CG`{{CEl{dCDf}}}}{Bb{{AFn{d}}}}}Bd}0{{{Bb{B`CKf}}{CG`{{CEl{dCDf}}}}}Bd}0{{{Bb{B`{CFb{c}}}}{CG`{{CEl{dCDf}}}}}BdCJn}{{{Bb{B`CJn}}{Bb{{CKh{dCDf}}}}CGl{Bb{{AFn{d}}}}}Bd}0{{{Bb{B`{CFb{c}}}}{Bb{{CKh{dCDf}}}}CGl}BdCJn}{{{Bb{B`CJn}}{Bb{{CKh{dCDf}}}}{Bb{CKj}}CGl{Bb{{AFn{d}}}}}Bd}0{{{Bb{B`{CFb{c}}}}{Bb{{CKh{dCDf}}}}{Bb{CKj}}CGl}BdCJn}{{{Bb{B`{CJ`{c}}}}{CEl{dCDf}}{CK`{dCDf}}{CKb{d}}{CKb{d}}}BdCJn}{{{Bb{B`CKf}}{CK`{dCDf}}{CKb{d}}CFf{CEl{dCDf}}}Bd}{{{Bb{B`{CJ`{c}}}}{CK`{dCDf}}{CKb{d}}CFf{CEl{dCDf}}}BdCJn}{ce{}{}}0000{{}c{}}0000{Bb{{Bb{Dl}}}}0000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000?{{{Bb{B`{CKl{c}}}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEhCJn}{{{Bb{B`{CKn{ce}}}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEhCJn{{CJb{d}}}}{{{Bb{B`{CFb{c}}}}{CEl{dCDf}}}CEhCJn}{{{Bb{B`{CFb{c}}}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEhCJn}{Bb{{Bb{c}}}{}}0000{{{Bb{B`}}}{{Bb{B`c}}}{}}0000{CKjd}0{{{CLb{}{{CL`{c}}}}}c{}}{{{CKl{c}}}{}CLb}{{{CKl{c}}}{}{CLbCJn}}{{{CKn{ce}}}{}CLb{}}{{{CJ`{c}}}{}{CJnCLb}}{{{CJ`{c}}}{}{CLbCJn}}{{{CFb{e}}}c{}{{CLb{}{{CL`{c}}}}CJn}}{{{CFb{c}}}{}{CJnCLb}}{{{Fl{c}}}e{}{}}0000{{{Bb{CKj}}}CKj}{{{Bb{{CFb{c}}}}}{{CFb{c}}}{EdCJn}}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0{{{Bb{B`CKf}}}Bd}{{{Bb{B`CJn}}}Bd}0{{{Bb{B`{CJ`{c}}}}}BdCJn}0{{{Bb{B`{CFb{c}}}}}BdCJn}{ce{}{}}0000{{{Bb{B`CJn}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}{{{Bb{B`CKf}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}}Bd}{{{Bb{B`{CKl{c}}}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEhCJn}{{{Bb{B`{CKn{ce}}}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEhCJn{{CJb{d}}}}{{{Bb{B`{CJ`{c}}}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}}BdCJn}{{{Bb{B`{CJ`{c}}}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}}CEhCJn}{{{Bb{B`{CFb{c}}}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEhCJn}{{{Bb{B`{CFb{c}}}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}}CEhCJn}{{{Bb{{CJ`{c}}}}}{{CEl{dCDf}}}CJn}{{}CKj}{{}{{CFb{c}}}{CJnDd}}{Id{{Bb{c}}}{}}0000{Id{{Bb{B`c}}}{}}0000{Bb{{Bb{c}}}{}}0000{IdBd}0000{{{Bb{B`CJn}}C`}Bd}{{{Bb{B`{CKl{c}}}}C`}BdCJn}{{{Bb{B`{CKn{ce}}}}C`}BdCJn{{CJb{d}}}}{{{Bb{B`{CFb{c}}}}C`}BdCJn}0{{{Bb{CKj}}{Bb{CKj}}}C`}{{{Bb{{CFb{c}}}}{Bb{{CFb{c}}}}}C`{EhCJn}}{{{Bb{B`CJn}}{CFh{{j{{CEl{dCDf}}{Bb{{AFn{d}}}}}}{CEl{dCDf}}}}}Bd}0{{{Bb{B`{CFb{CEj}}}}{Bb{{AFn{CEb}}}}}Bd}{{CJnd}{{CKl{CJn}}}}0{{{CJ`{c}}d}{{CJ`{{CKl{c}}}}}CJn}{{{CFb{c}}d}{{CFb{{CKl{c}}}}}CJn}{{{Bb{CKj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}0{{{Bb{{CFb{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}{D`CJn}}{cc{}}000000000{ce{}{}}0000{{{Bb{{CFb{c}}}}{Bb{B`e}}}Bd{LdCJn}Lb}{{{Bb{B`CKf}}d}Bd}{{{Bb{B`{CJ`{c}}}}d}BdCJn}{{}Id}0000{{{Bb{{CFb{c}}}}}{{Bb{c}}}CJn}{{{Bb{B`{CFb{c}}}}}{{Bb{B`c}}}CJn}{{}c{}}000000000{{{I`{c}}}{{I`{Dl}}}{}}0000{{{Lj{c}}}{{Lj{Dl}}}{}}0000{{{Ll{c}}}{{Ll{Dl}}}{}}0000{{{Fl{c}}}e{}{}}00004444444444{{{CFb{c}}}cCJn}{{}c{}}0000{{{Bb{B`CJn}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}{{{Bb{B`CKf}}{CEl{dCDf}}}Bd}{{{Bb{B`{CKl{c}}}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEhCJn}{{{Bb{B`{CKn{ce}}}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEhCJn{{CJb{d}}}}{{{Bb{B`{CJ`{c}}}}{CEl{dCDf}}}CEhCJn}{{{Bb{B`{CJ`{c}}}}{CEl{dCDf}}}BdCJn}{{{Bb{B`{CFb{c}}}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEhCJn}{{{Bb{B`{CFb{c}}}}{CEl{dCDf}}}CEhCJn}623{{cd}{{CKl{c}}}CJn}{{ce}{{CKn{ce}}}{}{}}{c{{CJ`{c}}}CJn}{dCKj}{{}{{CFb{c}}}{DdCJn}}=={{{Bb{CJn}}}Id}{{{Bb{{CKl{c}}}}}IdCJn}{{{Bb{{CKn{ce}}}}}IdCJn{{CJb{d}}}}{{{Bb{{CFb{c}}}}}IdCJn}{{{Bb{CKj}}{Bb{CKj}}}{{Bf{Mj}}}}{{{Bb{B`CJn}}{CFh{{CEl{dCDf}}{CEl{dCDf}}}}{Bb{{AFn{d}}}}}Bd}0{{{Bb{B`{CFb{c}}}}{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}BdCJn}{{{Bb{B`CJn}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}{{{Bb{B`CKf}}{CEl{dCDf}}{CEl{dCDf}}}Bd}{{{Bb{B`{CKl{c}}}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEhCJn}{{{Bb{B`{CKn{ce}}}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEhCJn{{CJb{d}}}}{{{Bb{B`{CJ`{c}}}}{CEl{dCDf}}{CEl{dCDf}}}CEhCJn}{{{Bb{B`{CJ`{c}}}}{CEl{dCDf}}{CEl{dCDf}}}BdCJn}{{{Bb{B`{CFb{c}}}}{CEl{dCDf}}{CEl{dCDf}}}CEhCJn}{{{Bb{B`{CFb{c}}}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEhCJn}{{{Bb{B`CKf}}{CK`{dCDf}}{CKb{d}}CFf{CK`{dCDf}}}Bd}{{{Bb{B`{CJ`{c}}}}{CK`{dCDf}}{CKb{d}}CFf{CK`{dCDf}}}BdCJn}{{{Bb{B`CKf}}{CK`{dCDf}}{CK`{dCDf}}{CK`{dCDf}}}Bd}{{{Bb{B`{CJ`{c}}}}{CK`{dCDf}}{CK`{dCDf}}{CK`{dCDf}}}BdCJn}{{{Bb{B`CKf}}d}Bd}{{{Bb{B`{CJ`{c}}}}d}BdCJn}{{{Bb{B`CKf}}{CK`{dCDf}}}Bd}{{{Bb{B`{CJ`{c}}}}{CK`{dCDf}}}BdCJn}10{{{Bb{B`CKf}}{CK`{dCDf}}{CK`{dCDf}}}Bd}{{{Bb{B`{CJ`{c}}}}{CK`{dCDf}}{CK`{dCDf}}}BdCJn}54{{{Bb{B`CJn}}IdId}Bd}0{{{Bb{B`CKf}}IdId}Bd}0{{{Bb{B`{CKl{c}}}}IdId}BdCJn}{{{Bb{B`{CKn{ce}}}}IdId}BdCJn{{CJb{d}}}}{{{Bb{B`{CJ`{c}}}}IdId}BdCJn}0{{{Bb{B`{CFb{c}}}}IdId}BdCJn}0{{{Bb{B`{CKl{c}}}}d}BdCJn}{{{Bb{B`{CKn{ce}}}}e}Bd{}{}}{{{Bb{B`{CJ`{{CKn{ce}}}}}}e}BdCJn{{CJb{d}}}}{{{Bb{B`CKf}}{CEl{dCDf}}{CEl{dCDf}}}Bd}{{{Bb{B`{CJ`{c}}}}{CEl{dCDf}}{CEl{dCDf}}}BdCJn}{{{Bb{B`CKf}}{CEl{dCDf}}}Bd}{{{Bb{B`{CJ`{c}}}}{CEl{dCDf}}}BdCJn}>={{{Bb{B`CKf}}{CK`{dCDf}}}Bd}{{{Bb{B`{CJ`{c}}}}{CK`{dCDf}}}BdCJn}{Bbc{}}0{BbABh}{BbHb}{CKjd}0{{CJnc}{{CKn{CJnc}}}{{CJb{d}}}}0{{{CJ`{c}}e}{{CJ`{{CKn{ce}}}}}CJn{{CJb{d}}}}{{{CFb{c}}e}{{CFb{{CKn{ce}}}}}CJn{{CJb{d}}}}{{}{{Bl{c}}}{}}0000{c{{Bl{e}}}{}{}}0000{{}{{Bl{c}}}{}}0000{{}{{Bl{c{ABj{c}}}}}{}}0000{BbABl}0000{ce{}{}}0000{{}c{}}0000{Bb{{Bf{{Bb{c}}}}}{}}0000{{{Bb{B`CKf}}d}Bd}{{{Bb{B`{CJ`{c}}}}d}BdCJn}{{}c{}}0000{{IdId}{{CFb{c}}}{DdCJn}}{CJn{{CJ`{CJn}}}}0{{{CFb{c}}}{{CJ`{c}}}CJn}{c{{CFb{c}}}CJn}```````{eg{}{{l{c}}}{}}0000{ce{}{}}0000:::::{Bb{{Bb{Dl}}}}0000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000{{{Bb{B`CF`}}CEh}CH`}{Bb{{Bb{c}}}{}}0000{{{Bb{B`}}}{{Bb{B`c}}}{}}0000{CF`CDn}{{{Fl{c}}}e{}{}}0000{{{Bb{{CIl{ce}}}}}{{CIl{ce}}}EdEd}{{{Bb{CF`}}}CF`}{{{Bb{{CHb{ce}}}}}{{CHb{ce}}}EdEd}{{{Bb{CHn}}}CHn}{{{Bb{{CLd{ce}}}}}{{CLd{ce}}}EdEd}{{Bb{Bb{B`c}}}Bd{}}0000{{BbGn}Bd}0000>>>>>{{{Bb{B`CF`}}CGnCGnCEh}CH`}{{}CF`}{Id{{Bb{c}}}{}}0000{Id{{Bb{B`c}}}{}}0000>>>>>{IdBd}0000{{{Bb{B`CF`}}C`}{{Bf{CH`}}}}{{{Bb{{CIl{ce}}}}}{{CHb{ce}}}{}{}}{{{Bb{{CIl{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`D`}{{{Bb{CF`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000000000{ce{}{}}0000{{{Bb{{CIl{ce}}}}CGn}{{CEl{dCDf}}}CHjCHj}{{{Bb{{CIl{ce}}}}CEh}{{CEl{dCDf}}}CHjCHj}{{{Bb{{CIl{ce}}}}CGn}{{Bb{e}}}{}{}}{{{Bb{{CIl{ce}}}}CEh}{{Bb{c}}}{}{}}{{}Id}0000{{}c{}}000000000{{{I`{c}}}{{I`{Dl}}}{}}0000{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0000{{{Fl{c}}}e{}{}}00004444444444{{}c{}}00{{}c{}}0000{{{Bb{{CIl{ce}}}}}CHn{}{}}{{{Bb{B`CF`}}CEh}CH`}{{}CF`}{{{Bb{B`{CHb{ce}}}}}{{Bf{{CFh{{Bb{c}}{Bb{e}}}}}}}{}{}}{{{Bb{B`CHn}}}{{Bf{{CFh{CEhCGn}}}}}}{{{Bb{B`{CLd{ce}}}}}{{Bf{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}}}CHjCHj}6{{{CHb{ce}}}{{CLd{ce}}}CHjCHj}{{{Bb{B`CF`}}CGnCEh}CH`}{Bbc{}}0000{{}{{Bl{c}}}{}}0000{c{{Bl{e}}}{}{}}0000{{}{{Bl{c}}}{}}0000{{}{{Bl{c{ABj{c}}}}}{}}0000{BbABl}0000{ce{}{}}0000{{}c{}}0000{Bb{{Bf{{Bb{c}}}}}{}}0000{{}c{}}0000{IdCF`}`````````````````````````````````````{{{Bb{{CLf{c}}}}}cCLh}{CLjCEl}{{{Bb{{CLj{c}}}}}{{CKd{c}}}CLh}0{eg{}{{l{c}}}{}}00000000{{{CKb{c}}{Bb{{CKb{c}}}}}{{CKb{c}}}{Ef{Aj{}{{Ah{}}}}}}{{{CKb{c}}{CKb{c}}}{{CKb{c}}}{{Aj{}{{Ah{}}}}}}{{{Bb{B`{CKb{c}}}}{CKb{c}}}BdCLl}{{{Bb{{CM`{}{{CLn{c}}}}}}c}{{CM`{}{{CLn{c}}}}}CLh}{{{Bb{{CMb{c}}}}c}{{CMb{c}}}CLh}0{{{Bb{{CMd{c}}}}c}{{CMd{c}}}CLh}0{{{Bb{{CKd{c}}}}c}{{CKd{c}}}CLh}0{{{Bb{{CMf{c}}}}c}{{CMf{c}}}CLh}0{CMh}{{{Bb{{CKb{c}}}}{CKb{c}}}{{CKb{c}}}{{CMj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}CMlCMnEf}}{{}cCN`}{{{Bb{{CKb{c}}}}{Bb{{CKb{c}}}}{Bb{c}}}C`CN`}{{{Bb{{CM`{}{{CLn{c}}}}}}c}cCLh}{{{Bb{{CMb{c}}}}c}cCLh}0{{{Bb{{CMd{c}}}}c}cCLh}0{{{Bb{{CKd{c}}}}c}cCLh}{{{Bb{{CMf{c}}}}c}cCLh}`{ce{}{}}00000000{{}c{}}00000000{Bb{{Bb{Dl}}}}00000000{{{Bb{B`}}}{{Bb{B`Dl}}}}00000000{{{Bb{{CLf{c}}}}}cCLh}{CLjCEl}{{{Bb{{CLj{c}}}}}{{CKd{c}}}CLh}{{{Bb{{CMd{c}}}}}{{CKd{c}}}CLh}{{{Bb{{CMf{c}}}}}{{CKd{c}}}CLh}2{{{Bb{{CM`{}{{CLn{c}}}}}}c}{{CM`{}{{CLn{c}}}}}CLh}{{{Bb{{CMb{c}}}}c}{{CMb{c}}}CLh}0{{{Bb{{CMd{c}}}}c}{{CMd{c}}}CLh}0{{{Bb{{CKd{c}}}}c}{{CKd{c}}}CLh}0{{{Bb{{CMf{c}}}}c}{{CMf{c}}}CLh}0{Bb{{Bb{c}}}{}}00000000{{{Bb{B`}}}{{Bb{B`c}}}{}}00000000{{{Bb{{CMb{c}}}}}{{CKh{cCDf}}}CLh}{{{Bb{{CMd{c}}}}}{{CKh{cCDf}}}CLh}{{{Bb{{CKd{c}}}}}{{CKh{cCDf}}}CLh}{{{Bb{{CMf{c}}}}}{{CKh{cCDf}}}CLh}{{{Bb{{CLj{c}}}}}{{CKh{cCDf}}}CLh}{{{Bb{{CMb{c}}}}}{{j{cc}}}CLh}{{{Bb{{CMd{c}}}}}{{j{cc}}}CLh}{{{Bb{{CMf{c}}}}}{{j{cc}}}CLh}{{{Bb{{CLj{c}}}}}{{j{cc}}}CLh}3210{{{Bb{{CMf{c}}}}}{{CLj{c}}}CLh}{{{Bb{{CLf{c}}}}}cCLh}{CLjCEl}{{{Bb{{CLj{c}}}}}{{CKd{c}}}CLh}{{{Fl{c}}}e{}{}}00000000{{{CMb{c}}}{{CMb{e}}}CLhCNb}{{{CMf{c}}}{{CMf{e}}}CLhCNb}{{{Bb{{CKb{c}}}}}{{CKb{e}}}{CNbEf}CNb}4{CMbCEl}{{{CEl{cCDf}}c}{{CMb{c}}}CLh}{{{Bb{{CKd{c}}}}{Bb{{CKh{cCDf}}}}}{{Bf{{CKd{c}}}}}CLh}{{{Bb{{CKd{c}}}}{ALl{c}}}{{Bf{{CKd{c}}}}}CLh}0{{{Bb{{CMb{c}}}}}{{CMb{c}}}Ed}{{{Bb{{CNd{c}}}}}{{CNd{c}}}Ed}{{{Bb{{CMd{c}}}}}{{CMd{c}}}Ed}{{{Bb{{CKd{c}}}}}{{CKd{c}}}Ed}{{{Bb{{CNf{c}}}}}{{CNf{c}}}Ed}{{{Bb{{CLf{c}}}}}{{CLf{c}}}Ed}{{{Bb{{CMf{c}}}}}{{CMf{c}}}Ed}{{{Bb{{CLj{c}}}}}{{CLj{c}}}Ed}{{{Bb{{CKb{c}}}}}{{CKb{c}}}Ed}{{Bb{Bb{B`c}}}Bd{}}00000000{{BbGn}Bd}00000000{{{Bb{{CKd{c}}}}{CEl{cCDf}}}{{CEl{cCDf}}}CLh}{{{Bb{{CMf{c}}}}{CEl{cCDf}}}cCLh}{ce{}{}}00000000{{{Bb{{CLj{c}}}}{CEl{cCDf}}}C`CLh}{{{Bb{{CKd{c}}}}{Bb{{CKd{c}}}}}C`CLh}{CMfCEl}{CMdCEl}0`{{{Bb{{CMd{c}}}}{Bb{{CMd{c}}}}}{{CNh{{CEl{cCDf}}}}}CLh}{{{Bb{{CMd{c}}}}{Bb{{CMd{c}}}}}{{CNh{{j{cc}}}}}CLh}{{}{{CKb{c}}}Dd}{c{{CKb{c}}}CNj}{Id{{Bb{c}}}{}}00000000{Id{{Bb{B`c}}}{}}00000000{{{Bb{{CM`{}{{CLn{c}}}}}}c}{{CK`{cCDf}}}CLh}{{{Bb{{CMb{c}}}}c}{{CK`{cCDf}}}CLh}{{{Bb{{CMd{c}}}}c}{{CK`{cCDf}}}CLh}0{{{Bb{{CKd{c}}}}c}{{CK`{cCDf}}}CLh}{{{Bb{{CMf{c}}}}c}{{CK`{cCDf}}}CLh}0{{{Bb{{CKd{c}}}}{CEl{cCDf}}}cCLh}{{{Bb{{CNf{c}}}}{Bb{{CEl{cCDf}}}}}cCLh}{{{Bb{{CLf{c}}}}{Bb{{CEl{cCDf}}}}}cCLh}{{{Bb{{CMf{c}}}}{CEl{cCDf}}}cCLh}{{{CKb{c}}c}{{CKb{c}}}{{CNl{}{{Ah{}}}}}}{{{CKb{c}}{CKb{c}}}c{{CNl{}{{Ah{}}}}}}{{{Bb{B`{CKb{c}}}}c}BdCNn}{Bb{{Bb{c}}}{}}00000000{{{Bb{{CMd{c}}}}c{CEl{cCDf}}}{{CMd{c}}}CLh}{{{Bb{{CMf{c}}}}c{CEl{cCDf}}}{{CMf{c}}}CLh}{{{Bb{{CMd{c}}}}c{CEl{cCDf}}c}{{CMd{c}}}CLh}{IdBd}00000000{{{Bb{{CM`{}{{CLn{c}}}}}}c}cCLh}{{{Bb{{CMd{c}}}}c}cCLh}0{{{Bb{{CKd{c}}}}c}cCLh}{{{Bb{{CMf{c}}}}c}cCLh}0322100{{{Bb{{CMb{c}}}}}{{CKb{c}}}CLh}{CLhCLh}{{{Bb{{CMb{c}}}}{Bb{{CMb{c}}}}}C`Eh}{{{Bb{{CNd{c}}}}{Bb{{CNd{c}}}}}C`Eh}{{{Bb{{CMd{c}}}}{Bb{{CMd{c}}}}}C`Eh}{{{Bb{{CKd{c}}}}{Bb{{CKd{c}}}}}C`Eh}{{{Bb{{CLf{c}}}}{Bb{{CLf{c}}}}}C`Eh}{{{Bb{{CMf{c}}}}{Bb{{CMf{c}}}}}C`Eh}{{{Bb{{CLj{c}}}}{Bb{{CLj{c}}}}}C`Eh}{{{Bb{{CKb{c}}}}{Bb{{CKb{c}}}}}C`Eh}{{{Bb{{CNf{c}}}}}{{CLf{c}}}CLh}{{Bb{Bb{c}}}C`{}}00000{{{Bb{{CMb{c}}}}}{{CKh{cCDf}}}CLh}{{{Bb{{CMd{c}}}}}{{CKh{cCDf}}}CLh}{{{Bb{{CMf{c}}}}}{{CKh{cCDf}}}CLh}{{{Bb{{CMb{c}}}}}{{j{cc}}}CLh}{{{Bb{{CMd{c}}}}}{{j{cc}}}CLh}{{{Bb{{CMf{c}}}}}{{j{cc}}}CLh}210{{{Bb{{CMd{c}}}}}{{j{{CLf{c}}{CLf{c}}}}}CLh}{{{Bb{{CMf{c}}}}}{{j{{CLf{c}}{CLf{c}}}}}CLh}{CNdCFf}{{{Bb{{CMb{c}}}}c}{{CO`{c}}}CLh}{{{Bb{{CMd{c}}}}c}{{COb{c}}}CLh}{{{Bb{{CMf{c}}}}c}{{COd{c}}}CLh}{{{Bb{{CMf{c}}}}c}{{COf{c}}}CLh}{{{Bb{{CMf{c}}}}c}cCLh}{{{Bb{{CM`{}{{CLn{c}}}}}}}{{CM`{}{{CLn{c}}}}}CLh}{{{Bb{{CMb{c}}}}}{{CMb{c}}}CLh}0{{{Bb{{CMd{c}}}}}{{CMd{c}}}CLh}0{{{Bb{{CKd{c}}}}}{{CKd{c}}}CLh}0{{{Bb{{CMf{c}}}}}{{CMf{c}}}CLh}0{{{Bb{{CMb{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{{CNd{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{{CMd{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{{CKd{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{{CNf{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{{CLf{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{{CMf{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{{CLj{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{{CKb{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{{CMb{c}}}}{Bb{B`e}}}BdCLh{{Ln{{Bb{{CMd{c}}}}}}}}{{{Bb{{CNd{c}}}}{Bb{B`e}}}BdCLh{{Ln{{Bb{{CMd{c}}}}}}}}{{{Bb{{CMb{c}}}}c{Bb{B`e}}}BdCLh{{Ln{{Bb{{CKd{c}}}}}}}}{{{Bb{{CNd{c}}}}c{Bb{B`e}}}BdCLh{{Ln{{Bb{{CKd{c}}}}}}}}{{{Bb{{CMd{c}}}}c{Bb{B`e}}}BdCLh{{Ln{{Bb{{CKd{c}}}}}}}}{{{Bb{{CMf{c}}}}c{Bb{B`e}}}BdCLh{{Ln{{Bb{{CKd{c}}}}}}}}{{{Bb{{CM`{}{{CLn{c}}}}}}c{Bb{B`Ln}}}BdCLh}{{{Bb{{CMb{c}}}}c{Bb{B`e}}}BdCLh{{Ln{{Bb{{CKd{c}}}}{ALl{c}}}}}}{{{Bb{{CMb{c}}}}{Bb{B`Ln}}}BdCLh}{{{Bb{{CNd{c}}}}c{Bb{B`e}}}BdCLh{{Ln{{Bb{{CKd{c}}}}{ALl{c}}}}}}{{{Bb{{CMd{c}}}}{Bb{B`Ln}}}BdCLh}{{{Bb{{CMd{c}}}}c{Bb{B`e}}}BdCLh{{Ln{{Bb{{CKd{c}}}}{ALl{c}}}}}}{{{Bb{{CKd{c}}}}{Bb{B`Ln}}}BdCLh}{{{Bb{{CMf{c}}}}c{Bb{B`e}}}BdCLh{{Ln{{Bb{{CKd{c}}}}{ALl{c}}}}}}{{{Bb{{CMf{c}}}}{Bb{B`Ln}}}BdCLh}{{{Bb{{CMd{c}}}}{Bb{B`e}}}BdCLh{{Ln{c}}}}{{{Bb{{CMb{c}}}}{Bb{B`e}}}BdCLh{{Ln{c}}}}101{{{Bb{{CMd{c}}}}{Bb{B`e}}}BdCLh{{Ln{{Bb{{CMd{c}}}}}}}}{{{Bb{{CMf{c}}}}{Bb{B`e}}}BdCLh{{Ln{{Bb{{CMf{c}}}}}}}}{{{Bb{{CMd{c}}}}{Bb{B`e}}}BdCLh{{Ln{{ALl{c}}}}}}{{{Bb{{CMf{c}}}}{Bb{B`e}}}BdCLh{{Ln{{ALl{c}}}}}}{{{Bb{{CMb{c}}}}{Bb{B`e}}}BdCLh{{Ln{{Bb{{CMf{c}}}}}}}}{{{Bb{{CNd{c}}}}{Bb{B`e}}}BdCLh{{Ln{{Bb{{CMf{c}}}}}}}}{{{Bb{{CMd{c}}}}c{Bb{B`e}}}BdCLh{{Ln{{Bb{{CMf{c}}}}}}}}{{{Bb{{CMb{c}}}}{Bb{B`e}}}BdCLh{{Ln{{Bb{{CMf{c}}}}{ALl{c}}}}}}{{{Bb{{CNd{c}}}}{Bb{B`e}}}BdCLh{{Ln{{Bb{{CMf{c}}}}{ALl{c}}}}}}{{{Bb{{CMd{c}}}}c{Bb{B`e}}}BdCLh{{Ln{{Bb{{CMf{c}}}}{ALl{c}}}}}}98769876{{}{{CKb{c}}}{CMn{Aj{}{{Ah{}}}}}}00{{{Bb{{CM`{}{{CLn{c}}}}}}}{{CEl{cCDf}}}CLh}{{{Bb{{CMb{c}}}}}{{CEl{cCDf}}}CLh}{cc{}}{{{CNd{c}}}{{CMb{c}}}CLh}21{{{Bb{{CMd{c}}}}}{{CEl{cCDf}}}CLh}20{{{Bb{{CKd{c}}}}}{{CEl{cCDf}}}CLh}0333{{{Bb{{CMf{c}}}}}{{CEl{cCDf}}}CLh}4044{CNdCEl}{CMdCEl}{CKdCEl}{CMfCEl}888888888{ce{}{}}00000000{{{Bb{{CNd{c}}}}}{{CMb{c}}}CLh}{{{CKb{c}}}c{}}{{{Bb{{CMb{c}}}}c}{{CKb{c}}}CLh}{{{Bb{{CKb{c}}}}{Bb{B`e}}}BdLdLb}{COh}{{{Bb{{CKd{c}}}}c}{{Bf{{CEl{cCDf}}}}}CLh}{{{Bb{{CKd{c}}}}c}{{Bf{c}}}CLh}{{}Id}00000000{{{Bb{{CKd{c}}}}{Bb{{CKd{c}}}}}{{Bf{{CEl{cCDf}}}}}CLh}{{{Bb{{CNf{c}}}}{Bb{{CNf{c}}}}}{{Bf{{CEl{cCDf}}}}}CLh}{{{Bb{{CKd{c}}}}{Bb{{CKd{c}}}}}{{Bf{{j{cc}}}}}CLh}{{{Bb{{CKd{c}}}}{Bb{{CKd{c}}}}}C`CLh}{{{Bb{{CLj{c}}}}{Bb{{CLj{c}}}}}C`CLh}{{{Bb{{CNf{c}}}}{Bb{{CKh{cCDf}}}}}C`CLh}{{{Bb{{CKd{c}}}}{Bb{{CNf{c}}}}}C`CLh}{{{Bb{{CLj{c}}}}{Bb{{CKd{c}}}}}C`CLh}{{}c{}}00000000000000000{{{I`{c}}}{{I`{Dl}}}{}}00000000{{{Lj{c}}}{{Lj{Dl}}}{}}00000000{{{Ll{c}}}{{Ll{Dl}}}{}}00000000{{{Fl{c}}}e{}{}}00000000444444444444444444{{}c{}}00000000{{{Bb{{CLf{c}}}}}{{CLf{c}}}CLh}{{{Bb{{CMf{c}}}}c}C`CLh}{{{CKb{c}}}C`If}{{{Bb{{CLf{c}}}}}C`CLh}{{{Bb{{CMd{c}}}}c}C`CLh}3{{{Bb{{CMd{c}}}}}C`CLh}{{{Bb{{CMf{c}}}}}C`CLh}2{{{Bb{{CNd{c}}}}}C`CLh}42121{CFfC`}{{{Bb{{CKd{c}}}}}cCLh}{{{Bb{{CMf{c}}}}}cCLh}{{{Bb{{CKb{c}}}}{CKb{c}}c}{{CKb{c}}}{{CMj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}CMlCMnEf}}{{{Bb{{CKd{c}}}}{Bb{{CNf{c}}}}}{{Bf{{CEl{cCDf}}}}}CLh}{{{Bb{{CKd{c}}}}{Bb{{CNf{c}}}}}{{Bf{c}}}CLh}{{{Bb{{CMd{c}}}}{Bb{{CNf{c}}}}}{{CNh{{CEl{cCDf}}}}}CLh}{{{Bb{{CMf{c}}}}{Bb{{CNf{c}}}}}{{CNh{{CEl{cCDf}}}}}CLh}{{{Bb{{CMd{c}}}}{Bb{{CNf{c}}}}}{{CNh{c}}}CLh}{{{Bb{{CMf{c}}}}{Bb{{CNf{c}}}}}{{CNh{c}}}CLh}{{{Bb{{CMd{c}}}}{Bb{{CKd{c}}}}}{{CNh{{CEl{cCDf}}}}}CLh}{{{Bb{{CMf{c}}}}{Bb{{CKd{c}}}}}{{CNh{{CEl{cCDf}}}}}CLh}{{{Bb{{CMd{c}}}}{Bb{{CKd{c}}}}}{{CNh{{j{cc}}}}}CLh}{{{Bb{{CMf{c}}}}{Bb{{CKd{c}}}}}{{CNh{{j{cc}}}}}CLh}{{{Bb{{CMf{c}}}}}{{Bf{c}}}CLh}0{COj}00000{COlCEl}{{{Bb{B`{CKd{c}}}}}{{CEl{cCDf}}}CLh}1{{{CKb{c}}c}{{CKb{c}}}{{M`{}{{Ah{}}}}}}{{{Bb{B`{CKb{c}}}}c}BdCOn}{{{CKb{c}}}{{CKb{c}}}{{Mb{}{{Ah{}}}}}}{{ccc}{{CLf{c}}}CLh}{{{Bb{{CLf{c}}}}}{{CK`{cCDf}}}CLh}{{}c{}}{{{Bb{{CMd{c}}}}c}IjCLh}{{{Bb{{CLf{c}}}}c}{{CLf{c}}}CLh}{{{Bb{{CKd{c}}}}{Bb{{CNf{c}}}}}C`CLh}{{{Bb{{CKd{c}}}}{Bb{{CKd{c}}}}}C`CLh}{{{Bb{{CLf{c}}}}{Bb{{CEl{cCDf}}}}}{{CLf{c}}}CLh}{{{Bb{{CKb{c}}}}{Bb{{CKb{c}}}}}{{Bf{Mj}}}BBj}{{}{{CKb{c}}}{CMn{Aj{}{{Ah{}}}}}}{{cc}{{CEl{cCDf}}}{}}{CNfCEl}{{{Bb{{CKb{c}}}}}{{CKb{c}}}{{ABf{}{{Ah{}}}}{CMj{}{{Ah{}}}}{Aj{}{{Ah{}}}}D@`CMnBBjEf}}{{{Bb{{CLf{c}}}}{Bb{{CEl{cCDf}}}}}{{CEl{cCDf}}}CLh}`{{{Bb{{CMd{c}}}}{Bb{{CMf{c}}}}}{{CNh{{CEl{cCDf}}}}}CLh}{{{Bb{{CMd{c}}}}{Bb{{CMf{c}}}}}{{CNh{{j{cc}}}}}CLh}{c{{CKb{c}}}{}}{CKb}{CMbCK`}{CNdCK`}{{{Bb{{CM`{}{{CLn{c}}}}}}c}{{CEl{cCDf}}}CLh}{{{Bb{{CMb{c}}}}c}{{CEl{cCDf}}}CLh}0{{{Bb{{CMd{c}}}}c}{{CEl{cCDf}}}CLh}0{{{Bb{{CKd{c}}}}c}{{CEl{cCDf}}}CLh}0{{{Bb{{CMf{c}}}}c}{{CEl{cCDf}}}CLh}0{{{Bb{{CMb{c}}}}c}{{CK`{cCDf}}}CLh}{{{Bb{B`{CKd{c}}}}c}BdCLh}>{{{Bb{{CNf{c}}}}{Bb{{CEl{cCDf}}}}}cCLh}{{{Bb{{CLf{c}}}}{Bb{{CEl{cCDf}}}}}cCLh}{{{CKb{c}}}{{j{cc}}}D@b}{{cc}{{D@d{cCDf}}}{}}{{{Bb{{CMd{c}}}}c}{{CNh{c}}}CLh}{{{Bb{{CKd{c}}}}c}cCLh}100{{{Bb{{CLf{c}}}}c}{{Bf{c}}}CLh}10{{{Bb{{CM`{}{{CLn{c}}}}}}c}{{j{{CM`{}{{CLn{c}}}}{CM`{}{{CLn{c}}}}}}}CLh}{{{Bb{{CMb{c}}}}c}{{j{{CMb{c}}{CMb{c}}}}}CLh}0{{{Bb{{CMd{c}}}}c}{{j{{CMd{c}}{CMd{c}}}}}CLh}0{{{Bb{{CKd{c}}}}c}{{j{{CKd{c}}{CKd{c}}}}}CLh}0{{{Bb{{CMf{c}}}}c}{{j{{CMf{c}}{CMf{c}}}}}CLh}01{{{Bb{{CM`{}{{CLn{c}}}}}}{ALl{c}}}{{CM`{}{{CLn{c}}}}}CLh}{{{Bb{{CMb{c}}}}{ALl{c}}}{{CMb{c}}}CLh}0{{{Bb{{CMd{c}}}}{ALl{c}}}{{CMd{c}}}CLh}0{{{Bb{{CKd{c}}}}{ALl{c}}}{{CKd{c}}}CLh}0{{{Bb{{CMf{c}}}}{ALl{c}}}{{CMf{c}}}CLh}0{{{Bb{{CKd{c}}}}{CEl{cCDf}}}cCLh}{{{Bb{{CNf{c}}}}{CEl{cCDf}}}cCLh}{{{Bb{{CMf{c}}}}{CEl{cCDf}}}cCLh}{{{Bb{{CKd{c}}}}}cCLh}{CMbCKb}{{{CKb{c}}{CKb{c}}}{}{{ABf{}{{Ah{}}}}}}{{{Bb{B`{CKb{c}}}}{CKb{c}}}BdD@f}{e{{CKb{c}}}{AjD@`}{{ALn{}{{F`{{CKb{c}}}}}}}}{e{{CKb{c}}}{AjEfD@`}{{ALn{}{{F`{{Bb{{CKb{c}}}}}}}}}}{CFfC`}5{{{Bb{{CLf{c}}}}}{{CK`{cCDf}}}CLh}{{{Bb{{CM`{}{{CLn{c}}}}}}}{{CEl{cCDf}}}CLh}{{{Bb{{CMb{c}}}}}{{CEl{cCDf}}}CLh}0{{{Bb{{CMd{c}}}}}{{CEl{cCDf}}}CLh}0{{{Bb{{CKd{c}}}}}{{CEl{cCDf}}}CLh}0{{{Bb{{CMf{c}}}}}{{CEl{cCDf}}}CLh}0{CNdCEl}{CMdCEl}{CKdCEl}{CMfCEl}{{{Bb{{CNd{c}}}}}{{CMb{c}}}CLh}{{{Bb{{CMf{c}}}}}{{CMd{c}}}CLh}{{{CKb{c}}}cCNj}{{{Bb{{CMd{c}}}}}{{CMd{d}}}CLh}{{{Bb{{CKd{c}}}}}{{CKd{d}}}CLh}{{{Bb{{CNf{c}}}}}{{CNf{d}}}CLh}{{{Bb{{CMf{c}}}}}{{CMf{d}}}CLh}{{{Bb{{CKb{c}}}}}{{CKb{d}}}{CNbEf}}{{{Bb{{CMd{c}}}}}{{CMd{Kj}}}CLh}{{{Bb{{CKd{c}}}}}{{CKd{Kj}}}CLh}{{{Bb{{CNf{c}}}}}{{CNf{Kj}}}CLh}{{{Bb{{CMf{c}}}}}{{CMf{Kj}}}CLh}{{{Bb{{CKb{c}}}}}{{CKb{Kj}}}{CNbEf}}{{{Bb{{CKd{c}}}}}{{CNf{c}}}CLh}{Bbc{}}00000000{{{Bb{{CMd{c}}}}}{{CMf{c}}}CLh}{{{Bb{{CMd{c}}}}}cCLh}{{{Bb{{CMb{c}}}}}{{CNd{c}}}CLh}{{{Bb{{CKd{c}}}}}{{CK`{cCDf}}}CLh}`{{{Bb{{CLj{c}}}}{Bb{e}}}{{CLj{c}}}CLh{{CJb{c}}}}{{{Bb{{CMd{c}}}}{Bb{e}}}{{CMd{c}}}CLh{{CJb{c}}}}{{{Bb{{CKd{c}}}}{Bb{e}}}{{CKd{c}}}CLh{{CJb{c}}}}{{{Bb{{CMf{c}}}}{Bb{e}}}{{CMf{c}}}CLh{{CJb{c}}}}{{{Bb{B`{CKd{c}}}}{CK`{cCDf}}}{{CKd{c}}}CLh}{{{Bb{{CKb{c}}}}}{{Bf{{CKb{e}}}}}{CNbEf}CNb}{{}{{Bl{c}}}{}}00000000{c{{Bl{e}}}{}{}}00000000{{}{{Bl{c}}}{}}00000000{{}{{Bl{c{ABj{c}}}}}{}}00000000{{}{{CKb{c}}}{CMn{Aj{}{{Ah{}}}}}}{BbABl}00000000{ce{}{}}00000000{{}c{}}00000000{Bb{{Bf{{Bb{c}}}}}{}}00000000`{dCLh}{{cc}{{CK`{cCDf}}}{}}{CNfCK`}{{{Bb{{CKd{c}}}}c}{{Bf{{CEl{cCDf}}}}}CLh}{{{Bb{{CKd{c}}}}c}{{Bf{c}}}CLh}{{}c{}}00000000{COh}{{{Bb{{CM`{}{{CLn{c}}}}}}c}cCLh}{{{Bb{{CMb{c}}}}c}cCLh}0{{{Bb{{CMd{c}}}}c}cCLh}0{{{Bb{{CKd{c}}}}c}cCLh}0{{{Bb{{CMf{c}}}}c}cCLh}0{D@h}{D@j}{D@l}{{{Bb{{CMd{c}}}}}cCLh}{{{Bb{{CMf{c}}}}}cCLh}10{CMbCKb}{CNdCKb};::9988776543232{{}{{CKb{c}}}D@`}````{eg{}{{l{c}}}{}}{ce{}{}}{{}c{}}{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{CMbCEl}7{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}5{IdBd}{CNdCFf}{cc{}}{CNdCEl}1{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}=33{{}c{}}{{}c{}}{CFfC`}{{{Bb{B`{CO`{c}}}}}{{Bf{{CEl{cCDf}}}}}CLh}{CMbCK`}{CNdCK`}{CMbCKb}40={{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}9{CNdCKb}`````{eg{}{{l{c}}}{}}0000{ce{}{}}000055555{Bb{{Bb{Dl}}}}0000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000{{{Bb{B`{CNh{c}}}}}{{Bb{B`{AFn{c}}}}}{}}{{{Bb{B`{CNh{c}}}}}{}{}}{{{Bb{B`D@n}}}Gn}2{{{Bb{B`{DA`{c}}}}}{{Bb{B`{AFn{c}}}}}{}}{{{Bb{B`D@n}}}{{Bb{B`Mh}}}}{{{Bb{{CNh{c}}}}}{}{}}{{{Bb{D@n}}}Gn}{{{Bb{{CNh{c}}}}}{{Bb{{AFn{c}}}}}{}}{{{Bb{D@n}}}{{Bb{DAb}}}}{{{Bb{D@n}}}{{Bb{Mh}}}}2{{{Bb{{DA`{c}}}}}{{Bb{{AFn{c}}}}}{}}1{Bb{{Bb{c}}}{}}400200{{{Bb{B`}}}{{Bb{B`c}}}{}}<00080{{{Fl{c}}}e{}{}}0000{{{Bb{{CNh{c}}}}}Id{}}{{{Bb{D@n}}}Id}{{{Bb{B`{CNh{c}}}}}Bd{}}{{{Bb{B`D@n}}}Bd}{{{Bb{{CNh{c}}}}}{{CNh{c}}}Ed}{{{Bb{{DA`{c}}}}}{{DA`{c}}}Ed}{{{Bb{D@n}}}D@n}{{{Bb{{DAd{c}}}}}{{DAd{c}}}Ed}{{{Bb{B`{CNh{c}}}}{Bb{{CNh{c}}}}}BdEd}{{{Bb{B`D@n}}{Bb{D@n}}}Bd}{{Bb{Bb{B`c}}}Bd{}}000{{BbGn}Bd}000{{{Bb{{CNh{c}}}}{Bb{{CNh{c}}}}}MjBBb}{{{Bb{D@n}}{Bb{D@n}}}Mj}{{{Bb{{DAd{c}}}}{Bb{{DAd{c}}}}}MjBBb}{{Bb{Bb{c}}}Mj{}}00{ce{}{}}0000{{}{{CNh{c}}}{}}{{}D@n}{Id{{Bb{c}}}{}}{{{Bb{{CNh{c}}}}}Bb{}}11{{{Bb{D@n}}}{{Bb{Mh}}}}22{{{Bb{B`{CNh{c}}}}}{{Bb{B`}}}{}}{Id{{Bb{B`c}}}{}}000{{{Bb{B`D@n}}}{{Bb{B`Mh}}}}1{Bb{{Bb{c}}}{}}0000{{{Bb{B`{CNh{c}}}}e}{{DAf{c}}}{}{{AHh{Id}}}}{IdBd}{{{Bb{B`{CNh{c}}}}}Bd{}}1{{{Bb{B`{DA`{c}}}}}Bd{}}2{{{Bb{B`{DAf{c}}}}}Bd{}}33{{{DAd{c}}}c{}}{Bbc{{AGn{AGl}}}}0{{{Bb{{CNh{c}}}}{Bb{{CNh{c}}}}}C`Eh}{{{Bb{{CNh{c}}}}{Bb{{AFn{c}}}}}C`Eh}{{{Bb{D@n}}{Bb{D@n}}}C`}{{{Bb{D@n}}{Bb{Mh}}}C`}{{{Bb{{DAd{c}}}}{Bb{{DAd{c}}}}}C`Eh}{{Bb{Bb{c}}}C`{}}00000000{{{Bb{B`{CNh{c}}}}e}Bd{}{{Fb{}{{F`{c}}}}}}{{{Bb{B`{CNh{Gn}}}}}{{Bl{BdMf}}}}{{{Bb{{CNh{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{{DA`{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{D@n}}{Bb{B`Jd}}}{{Bl{BdJf}}}}0{{{Bb{{DAd{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}{}}0{{{E`{c}}}{{CNh{c}}}{}}{cc{}}00{{{Bb{Mh}}}{{Bl{D@n{DAd{{Bb{Mh}}}}}}}}1111111{{{Bb{{E`{Gn}}}}}{{Bl{D@nDAh}}}}{e{{CNh{c}}}{}{{Fb{}{{F`{c}}}}}}{ce{}{}}0000{{{Bb{Mh}}}{{Bl{D@n}}}}{{{Bb{{CNh{c}}}}{Bb{{CNh{c}}}}}C`BBj}{{{Bb{D@n}}{Bb{Mh}}}C`}{{{Bb{D@n}}{Bb{D@n}}}C`}210{{{Bb{{CNh{c}}}}{Bb{B`e}}}BdLdLb}{{{Bb{D@n}}{Bb{B`c}}}BdLb}{{}Id}0000{{{Bb{B`{CNh{c}}}}Idc}Bd{}}{{}c{}}000000000{{{I`{c}}}{{I`{Dl}}}{}}0000{{{Lj{c}}}{{Lj{Dl}}}{}}0000{{{Ll{c}}}{{Ll{Dl}}}{}}0000{{{Fl{c}}}e{}{}}00004444444444{{{CNh{c}}}{{Bl{{E`{c}}{CNh{c}}}}}{}}{{{CNh{c}}}{{E`{c}}}{}}{{{CNh{c}}}{{DA`{c}}}{}}{{{Bb{{CNh{c}}}}}{}{}}{{{Bb{B`{CNh{c}}}}}{}{}}{{}c{}}0{{}c{}}0000{{{Bb{{CNh{c}}}}}C`{}}{{{Bb{D@n}}}C`}10{{{Bb{{CNh{c}}}}{Bb{{CNh{c}}}}}C`BBj}{{{Bb{D@n}}{Bb{D@n}}}C`}{{{Bb{D@n}}{Bb{Mh}}}C`}{{{Bb{{CNh{c}}}}}Id{}}{BbId}{{{Bb{D@n}}}Id}{BbGn}654{{}{{j{cegikmoAaAcAe}}}{}{}{}{}{}{}{}{}{}{}}{{}{{j{cegi}}}{}{}{}{}}{{}{{j{cegik}}}{}{}{}{}{}}{{}{{j{cegikm}}}{}{}{}{}{}{}}{{}{{j{cegikmo}}}{}{}{}{}{}{}{}}{{}{{j{cegikmoAaAcAeAg}}}{}{}{}{}{}{}{}{}{}{}{}}{{}{{j{ceg}}}{}{}{}}{{}{{j{ce}}}{}{}}{{}{{j{c}}}{}}{{}{{j{cegikmoAa}}}{}{}{}{}{}{}{}{}}{{}{{j{cegikmoAaAcAeAgAi}}}{}{}{}{}{}{}{}{}{}{}{}{}}{{}{{j{cegikmoAaAc}}}{}{}{}{}{}{}{}{}{}}{{}Bd}37<1;05:94268{{}{{CNh{c}}}{}}{{}D@n}{c{{DAd{c}}}{}}21{{{Bb{B`{DA`{c}}}}}Bf{}}{{{Bb{B`{DAf{c}}}}}Bf{}}10{{}c{}}0{{{Bb{{CNh{c}}}}{Bb{{CNh{c}}}}}{{Bf{Mj}}}BBj}{{{Bb{D@n}}{Bb{Mh}}}{{Bf{Mj}}}}{{{Bb{D@n}}{Bb{D@n}}}{{Bf{Mj}}}}{{{Bb{{DAd{c}}}}{Bb{{DAd{c}}}}}{{Bf{Mj}}}BBj}{{{Bb{B`{CNh{c}}}}}{{Bf{c}}}{}}{{{Bb{B`D@n}}}{{Bf{AGl}}}}{{{Bb{B`{CNh{c}}}}Id}{{Bf{c}}}{}}{{{Bb{B`{CNh{c}}}}c}Bd{}}{{{Bb{B`D@n}}AGl}Bd}{{{Bb{B`D@n}}{Bb{Mh}}}Bd}2{{{Bb{{CNh{c}}}}}Id{}}{{{Bb{D@n}}}Id}{{{Bb{B`{CNh{c}}}}Id}c{}}{{{Bb{B`D@n}}Id}AGl}{{{Bb{B`{CNh{c}}}}e}Bd{}{{Ln{{Bb{B`c}}}{{Ah{C`}}}}}}{{{Bb{B`{CNh{c}}}}Id}Bd{}}{{{Bb{B`D@n}}Id}Bd}{{{DAd{c}}}DAd{}}{{{Bb{{DA`{c}}}}}{{j{Id{Bf{Id}}}}}{}}{{{Bb{{DAf{c}}}}}{{j{Id{Bf{Id}}}}}{}}{BbGn}>8{{{Bb{B`{CNh{c}}}}}{{CNh{c}}}{}}{Bbc{}}000{BbABh}0{BbHb}098{{}{{Bl{c}}}{}}0000{{{Bb{B`{CNh{c}}}}{Bb{{AFn{c}}}}}{{Bl{BdDAd}}}Ef}{c{{Bl{e}}}{}{}}{{{Bb{{AFn{c}}}}}{{Bl{{CNh{c}}}}}Ed}11{DAj{{Bl{D@n}}}}2{{{Bb{Mh}}}{{Bl{D@n}}}}3{{{Bb{B`{CNh{c}}}}Idc}{{Bl{Bd{DAd{c}}}}}{}}{{}{{Bl{c}}}{}}0000{{}{{Bl{c{ABj{c}}}}}{}}0000{{{Bb{B`{CNh{c}}}}c}{{Bl{Bd{DAd{c}}}}}{}}{{{Bb{B`D@n}}AGl}{{Bl{Bd{DAd{AGl}}}}}}{{{Bb{B`D@n}}{Bb{Mh}}}{{Bl{Bd{DAd{{Bb{Mh}}}}}}}}{BbABl}0000{ce{}{}}0000{{}c{}}0000{Bb{{Bf{{Bb{c}}}}}{}}0000{{}c{}}0000{{{Bb{B`{CNh{Gn}}}}{Bb{{AFn{Gn}}}}}{{Bl{IdMf}}}}{{{Bb{B`}}{Bb{{AFn{BEh}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{DAl}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{Kj}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{DAl}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{Gn}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{Kl}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{ANl}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{Jb}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{CIb}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{d}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{DAn}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{Kn}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{d}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{BEh}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{Kn}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{DAn}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{Ij}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{CIb}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{Jb}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{ANl}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{Gn}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{Kl}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{Kj}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{Ij}}}{{Bl{BdMf}}}}5{{{Bb{B`}}{Bb{Jb}}}{{Bl{BdMf}}}}?2{{{Bb{B`}}{Bb{Gn}}}{{Bl{BdMf}}}}5{{{Bb{B`}}{Bb{DAl}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{Kj}}}}}{{Bl{BdMf}}}}6;8=:{{{Bb{B`}}{Bb{{AFn{DAl}}}}}{{Bl{BdMf}}}}={{{Bb{B`}}{Bb{{AFn{DAn}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{BEh}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{CIb}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{d}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{Kn}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{ANl}}}}}{{Bl{BdMf}}}};{{{Bb{B`}}{Bb{{AFn{Kl}}}}}{{Bl{BdMf}}}}{{{Bb{B`}}{Bb{{AFn{BEh}}}}}{{Bl{BdMf}}}}{{{Bb{B`D@n}}AGl}{{Bl{BdJf}}}}{{{Bb{B`}}DB`d}{{Bl{BdMf}}}}{{{Bb{B`}}DB`Kj}{{Bl{BdMf}}}}{{{Bb{B`}}DB`DAl}{{Bl{BdMf}}}}{{{Bb{B`}}DB`CIb}{{Bl{BdMf}}}}{{{Bb{B`}}DB`ANl}{{Bl{BdMf}}}}{{{Bb{B`}}DB`Kl}{{Bl{BdMf}}}}{{{Bb{B`}}DB`DAn}{{Bl{BdMf}}}}{{{Bb{B`D@n}}{Bb{Mh}}}{{Bl{BdJf}}}}{{{Bb{B`}}DB`BEh}{{Bl{BdMf}}}}{{{Bb{B`}}DB`Jb}{{Bl{BdMf}}}}{{{Bb{B`}}DB`Ij}{{Bl{BdMf}}}}{{{Bb{B`}}DB`Kn}{{Bl{BdMf}}}}{{{Bb{B`}}DB`Gn}{{Bl{BdMf}}}}{{}D@n}``{eg{}{{l{c}}}{}}{ce{}{}}{{}c{}}{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}6{CMdCEl}0{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}5{IdBd}{cc{}}40{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}};33{{}c{}}{{}c{}}{{{Bb{B`{COb{c}}}}}{{Bf{{CEl{cCDf}}}}}CLh}{{{Bb{{COb{c}}}}}{{j{Id{Bf{Id}}}}}CLh}>{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}`````````````````````````{{{D@d{ce}}}{{D@d{ce}}}DBb{}}{{{DBd{ce}}}{{DBd{ce}}}DBb{}}{{{CK`{ce}}}{{CK`{ce}}}DBb{}}{{{DBf{ce}}}{{DBf{ce}}}DBb{}}{eg{}{{l{c}}}{}}0000000000000000000000{{{DBh{ce}}{DBh{ce}}}{}Aj{}}{{{DBh{ce}}{Bb{{DBh{ce}}}}}{}{AjEf}{}}{{{CEl{ce}}{CK`{ce}}}{}Aj{}}{{{CEl{ce}}{D@d{ce}}}{}Aj{}}{{{DBj{ce}}{DBf{ce}}}{}Aj{}}{{{DBj{ce}}{DBd{ce}}}{}Aj{}}{{{DBl{ceg}}{DBl{ceg}}}{}Aj{}{}}{{{DBn{ce}}{DBn{ce}}}{{DBn{ce}}}{{Aj{}{{Ah{}}}}}{}}{{{D@d{ce}}{Bb{{D@d{ce}}}}}{{D@d{ce}}}{Ef{Aj{}{{Ah{}}}}}{}}{{{D@d{ce}}{D@d{ce}}}{}Aj{}}{{{DBd{ce}}{DBd{ce}}}{}Aj{}}{{{DBd{ce}}{Bb{{DBd{ce}}}}}{{DBd{ce}}}{Ef{Aj{}{{Ah{}}}}}{}}{{{DC`{ceg}}{DC`{cgi}}}{}Aj{}{}{}}{{{DCb{ceg}}{DCb{cgi}}}{}Aj{}{}{}}{{{CK`{ce}}{Bb{{CK`{ce}}}}}{}{AjEf}{}}{{{CK`{ce}}{CK`{ce}}}{}Aj{}}{{{DBf{ce}}{DBf{ce}}}{}Aj{}}{{{DBf{ce}}{Bb{{DBf{ce}}}}}{}{AjEf}{}}{{{Bb{B`{DBh{ce}}}}{DBh{ce}}}BdCLl{}}{{{Bb{B`{CEl{ce}}}}{CK`{ce}}}Bd{Ef{Aj{}{{Ah{}}}}}{}}{{{Bb{B`{CEl{ce}}}}{D@d{ce}}}BdCLl{}}{{{Bb{B`{DBj{ce}}}}{DBf{ce}}}Bd{Ef{Aj{}{{Ah{}}}}}{}}{{{Bb{B`{DBj{ce}}}}{DBd{ce}}}BdCLl{}}{{{Bb{B`{DBn{ce}}}}{DBn{ce}}}BdCLl{}}{{{Bb{B`{D@d{ce}}}}{D@d{ce}}}BdCLl{}}{{{Bb{B`{DBd{ce}}}}{DBd{ce}}}BdCLl{}}{{{Bb{B`{DC`{ceg}}}}{DC`{cgg}}}BdCLl{}{}}{{{Bb{B`{DCb{ceg}}}}{DCb{cgg}}}BdCLl{}{}}{{{Bb{B`{CK`{ce}}}}{CK`{ce}}}Bd{Ef{Aj{}{{Ah{}}}}}{}}{{{Bb{B`{DBf{ce}}}}{DBf{ce}}}Bd{Ef{Aj{}{{Ah{}}}}}{}}{{{CEl{ce}}{Bb{{D@d{ce}}}}}{{CEl{ce}}}{Ef{Aj{}{{Ah{}}}}}{}}{{{DBj{ce}}{DBd{ce}}}{{DBj{ce}}}{Ef{Aj{}{{Ah{}}}}}{}}{DCdC`}{DCfC`}{{DCdDCd}DCd}{{DCfDCf}DCf}{DCh}{{{CK`{ce}}}{{CKb{c}}}{CNjEf}{}}{{{CK`{ce}}{CK`{ce}}}{{CKb{c}}}{{ABf{}{{Ah{}}}}CNjEf{M`{}{{Ah{}}}}{Aj{}{{Ah{}}}}}{}}{{{DBf{ce}}{DBf{ce}}}{{CKb{c}}}{CNjD@b}{}}76{{}cCN`}{{}{{CEl{ce}}}{}{}}{{}{{DBj{ce}}}{}{}}{{}c{}}0{{}{{CK`{ce}}}{}{}}{{}{{DBf{ce}}}{}{}}55{{{Bb{{CDh{ceg}}}}{Bb{{CDh{ceg}}}}}C`CN`{}{}}{{{Bb{{DCj{ceg}}}}{Bb{{DCj{ceg}}}}}C`CN`{}{}}{{{Bb{{DBh{ce}}}}{Bb{{DBh{ce}}}}{Bb{c}}}C`CN`{}}{{{Bb{{CEl{ce}}}}{Bb{{CEl{ce}}}}{Bb{{CEl{ce}}}}}C`CN`{}}{{{Bb{{DBj{ce}}}}{Bb{{DBj{ce}}}}{Bb{{DBj{ce}}}}}C`CN`{}}{{{Bb{{DCh{ceg}}}}{Bb{{DCh{ceg}}}}{Bb{c}}}C`{Ef{Mb{}{{Ah{}}}}CN`}{}{}}{{{Bb{{DCl{ceg}}}}{Bb{{DCl{ceg}}}}{Bb{c}}}C`{Ef{Mb{}{{Ah{}}}}CN`}{}{}}{{{Bb{{CK`{ce}}}}{Bb{{CK`{ce}}}}{Bb{{CK`{ce}}}}}C`CN`{}}{{{Bb{{DBf{ce}}}}{Bb{{DBf{ce}}}}{Bb{{DBf{ce}}}}}C`CN`{}}{{{Bb{{CDh{ceg}}}}{Bb{{CDh{ceg}}}}{Bb{c}}}C`CN`{}{}}0{{{Bb{{DCj{ceg}}}}{Bb{{DCj{ceg}}}}{Bb{c}}}C`CN`{}{}}0``{{{Bb{{CKh{ce}}}}}c{Ef{M`{}{{Ah{}}}}{ABf{}{{Ah{}}}}}{}}{{{Bb{{DCn{ce}}}}}c{Ef{M`{}{{Ah{}}}}}{}}{{{D@d{ce}}}{}{M`Ef}{}}{{{DBf{ce}}{CKb{c}}}{{DCl{ceg}}}D@b{}{}}{{{CKb{c}}}{{DCl{ceg}}}D@b{}{}}00{ce{}{}}0000000000000000000000{{}c{}}0000000000000000000000{Bb{{Bb{Dl}}}}0000000000000000000000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000000000000000000000{Bb{{Bb{c}}}{}}0000000000000000000000{{{Bb{B`}}}{{Bb{B`c}}}{}}0000000000000000000000{DBn}{{cccccc}{{DD`{ce}}}Ef{}}{{C`C`}DCd}{{C`C`C`}DCf}{{{Fl{c}}}e{}{}}0000000000000000000000{{{Bb{{CKh{ce}}}}}{{CKh{ge}}}{CNbEf}{}CNb}{{{Bb{{DD`{ce}}}}}{{DD`{ge}}}{CNbEf}{}CNb}{{{DBh{ce}}}{{DBh{ge}}}{CNbEd}{}CNb}{{{CEl{ce}}}{{CEl{ge}}}{CNbEf}{}CNb}{{{DBj{ce}}}{{DBj{ge}}}{CNbEf}{}CNb}{{{Bb{{DCn{ce}}}}}{{DCn{ge}}}{CNbEf}{}CNb}{{{DBl{ceg}}}{{DBl{ieg}}}CNb{}{}CNb}{{{D@d{ce}}}{{D@d{ge}}}{CNbEf}{}CNb}{{{DBd{ce}}}{{DBd{ge}}}{CNbEf}{}CNb}{{{DC`{ceg}}}{{DC`{ieg}}}{CNbEf}{}{}CNb}{{{DCb{ceg}}}{{DCb{ieg}}}{CNbEf}{}{}CNb}{{{CK`{ce}}}{{CK`{ge}}}{CNbEf}{}CNb}{{{DBf{ce}}}{{DBf{ge}}}{CNbEf}{}CNb}{{{Bb{{CDh{ceg}}}}}{{CDh{ieg}}}{CNbEf}{}{}CNb}{{{Bb{{DCj{ceg}}}}}{{DCj{ieg}}}{CNbEf}{}{}CNb}{{{Bb{{CKh{ce}}}}}{{CKh{cg}}}Ef{}{}}{{{Bb{{DD`{ce}}}}}{{DD`{cg}}}Ef{}{}}{{{DBh{ce}}}{{DBh{cg}}}Ed{}{}}{{{CEl{ce}}}{{CEl{cg}}}Ef{}{}}{{{DBj{ce}}}{{DBj{cg}}}Ef{}{}}{{{Bb{{DCn{ce}}}}}{{DCn{cg}}}Ef{}{}}{{{Bb{{DDb{ceg}}}}}{{DDb{cik}}}Ef{}{}{}{}}{{{Bb{{DCh{ceg}}}}}{{DCh{cik}}}Ef{}{}{}{}}{{{Bb{{DCl{ceg}}}}}{{DCl{cik}}}Ef{}{}{}{}}{{{D@d{ce}}}{{D@d{cg}}}Ef{}{}}{{{DBd{ce}}}{{DBd{cg}}}Ef{}{}}{{{CK`{ce}}}{{CK`{cg}}}Ef{}{}}{{{DBf{ce}}}{{DBf{cg}}}Ef{}{}}{{{CEl{ce}}}{{CEl{ce}}}DDd{}}{{{CEl{ce}}}{{CEl{ce}}}{DDdEf}{}}{{{DBj{ce}}}{{DBj{ce}}}DDd{}}{{{DBj{ce}}}{{DBj{ce}}}{DDdEf}{}}{{{D@d{ce}}}{{D@d{ce}}}DDd{}}{{{D@d{ce}}}{{D@d{ce}}}{DDdEf}{}}{{{DBd{ce}}}{{DBd{ce}}}DDd{}}{{{DBd{ce}}}{{DBd{ce}}}{DDdEf}{}}{{{CK`{ce}}}{{CK`{ce}}}{DDdEf}{}}{{{CK`{ce}}}{{CK`{ce}}}DDd{}}{{{DBf{ce}}}{{DBf{ce}}}{DDdEf}{}}{{{DBf{ce}}}{{DBf{ce}}}DDd{}}{{{Bb{{CKh{ce}}}}}{{CEl{ce}}}{EfDDf{Aj{}{{Ah{}}}}{CNl{}{{Ah{}}}}}{}}{{{Bb{{DD`{ce}}}}}{{DBj{ce}}}{EfDDf{Aj{}{{Ah{}}}}{CNl{}{{Ah{}}}}}{}}{{{Bb{{DCn{ce}}}}}{{CEl{ce}}}{EfDDf{Aj{}{{Ah{}}}}{CNl{}{{Ah{}}}}}{}}{{{CEl{ce}}{CEl{ce}}{CEl{ce}}}{{CEl{ce}}}{EfBBj}{}}{{{DBj{ce}}{DBj{ce}}{DBj{ce}}}{{DBj{ce}}}{EfBBj}{}}{{{DBl{ceg}}{DBl{ceg}}{DBl{ceg}}}{{DBl{ceg}}}{EfBBj}{}{}}{{{D@d{ce}}{D@d{ce}}{D@d{ce}}}{{D@d{ce}}}{EfBBj}{}}{{{DBd{ce}}{DBd{ce}}{DBd{ce}}}{{DBd{ce}}}{EfBBj}{}}{{{CK`{ce}}{CK`{ce}}{CK`{ce}}}{{CK`{ce}}}{EfBBj}{}}{{{DBf{ce}}{DBf{ce}}{DBf{ce}}}{{DBf{ce}}}{EfBBj}{}}{{{CK`{ce}}cc}{{CK`{ce}}}D@b{}}{{{DBf{ce}}cc}{{DBf{ce}}}D@b{}}{{{Bb{{CKh{ce}}}}}{{CKh{ce}}}Ed{}}{{{Bb{{DD`{ce}}}}}{{DD`{ce}}}Ed{}}{{{Bb{{DDh{ce}}}}}{{DDh{ce}}}Ed{}}{{{Bb{{DBh{ce}}}}}{{DBh{ce}}}Ed{}}{{{Bb{{CEl{ce}}}}}{{CEl{ce}}}Ed{}}{{{Bb{{DBj{ce}}}}}{{DBj{ce}}}Ed{}}{{{Bb{{DCn{ce}}}}}{{DCn{ce}}}Ed{}}{{{Bb{{DDb{ceg}}}}}{{DDb{ceg}}}Ed{}{}}{{{Bb{{DCh{ceg}}}}}{{DCh{ceg}}}Ed{}{}}{{{Bb{{DCl{ceg}}}}}{{DCl{ceg}}}Ed{}{}}{{{Bb{{DBl{ceg}}}}}{{DBl{ceg}}}Ed{}{}}{{{Bb{{DBn{ce}}}}}{{DBn{ce}}}Ed{}}{{{Bb{{D@d{ce}}}}}{{D@d{ce}}}Ed{}}{{{Bb{{DBd{ce}}}}}{{DBd{ce}}}Ed{}}{{{Bb{{DC`{ceg}}}}}{{DC`{ceg}}}Ed{}{}}{{{Bb{{DCb{ceg}}}}}{{DCb{ceg}}}Ed{}{}}{{{Bb{{CK`{ce}}}}}{{CK`{ce}}}Ed{}}{{{Bb{{DBf{ce}}}}}{{DBf{ce}}}Ed{}}{{{Bb{{CDh{ceg}}}}}{{CDh{ceg}}}Ed{}{}}{{{Bb{{DCj{ceg}}}}}{{DCj{ceg}}}Ed{}{}}{{{Bb{DCd}}}DCd}{{{Bb{DCf}}}DCf}{{{Bb{CDf}}}CDf}{{Bb{Bb{B`c}}}Bd{}}0000000000000000000000{{BbGn}Bd}0000000000000000000000{{{Bb{{DBh{ce}}}}{Bb{{DBh{ce}}}}}MjBBb{}}{{{Bb{{DBl{ceg}}}}{Bb{{DBl{ceg}}}}}MjBBb{}{}}{{{Bb{CDf}}{Bb{CDf}}}Mj}{{Bb{Bb{c}}}Mj{}}00{{{CK`{ce}}{CK`{ce}}}{{CK`{ce}}}{{CNl{}{{Ah{}}}}}{}}{{{DBf{ce}}{DBf{ce}}}{{DBf{ce}}}{{CNl{}{{Ah{}}}}Ef}{}}{{{CK`{ce}}{CK`{ce}}}{{CK`{ce}}}{{M`{}{{Ah{}}}}}{}}{{{DBf{ce}}{DBf{ce}}}{{DBf{ce}}}{{M`{}{{Ah{}}}}Ef}{}}{ce{}{}}0000000000000000000000{{{Bb{{CKh{ce}}}}{CEl{ce}}}C`BBj{}}{{{Bb{{DD`{ce}}}}{DBj{ce}}}C`BBj{}}{{{Bb{{DCn{ce}}}}{CEl{ce}}}C`{EfBBj{Aj{}{{Ah{}}}}}{}}{{{D@d{ce}}{D@d{ce}}}C`BBj{}}{{{DBd{ce}}{DBd{ce}}}C`BBj{}}{{{Bb{{CKh{ce}}}}{Bb{{CKh{ce}}}}}C`BBj{}}{{{Bb{{DD`{ce}}}}{Bb{{DD`{ce}}}}}C`BBj{}}65{{{Bb{{DCn{ce}}}}{Bb{{DCn{ce}}}}}C`{EfDDjBBj{Aj{}{{Ah{}}}}}{}}{CNjCNj}{{{CK`{ce}}{CK`{ce}}}c{{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}}{{{DBf{ce}}{DBf{ce}}}{{DBf{ce}}}{{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}Ef}{}}{{{Bb{{DDb{ceg}}}}}{{j{{DBf{ce}}{DCl{ceg}}}}}{D@bCN`}{}{}}`{{}{{CKh{ce}}}Dd{}}{{}{{DD`{ce}}}Dd{}}{{}{{DBh{ce}}}Dd{}}{{}{{CEl{ce}}}Dd{}}{{}{{DBj{ce}}}Dd{}}{{}{{DCn{ce}}}Dd{}}{{}{{DBl{ceg}}}Dd{}{}}{{}{{DBn{ce}}}Dd{}}{{}{{D@d{ce}}}Dd{}}{{}{{DBd{ce}}}Dd{}}{{}{{DC`{ceg}}}DDj{}{}}{{}{{DCb{ceg}}}DDj{}{}}{{}{{CK`{ce}}}Dd{}}{{}{{DBf{ce}}}Dd{}}{{}{{CDh{ceg}}}{DDjDDf}{}{}}{{}{{DCj{ceg}}}{DDjDDf}{}{}}{{}CDf}{CNjCNj}{{{Bb{{DD`{ce}}}}}c{Ef{ABf{}{{Ah{}}}}}{}}{DBd}{Id{{Bb{c}}}{}}0000000000000000000000{Id{{Bb{B`c}}}{}}0000000000000000000000{{{Bb{{CDh{ceg}}}}}c{Ef{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{CNl{}{{Ah{}}}}EhDDjDDf}{}{}}{{{Bb{{DCj{ceg}}}}}c{{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{CNl{}{{Ah{}}}}Ef{Mb{}{{Ah{}}}}{Aj{}{{Ah{}}}}BBjDDfDDj}{}{}}{{{CEl{ce}}{CEl{ce}}}c{{D@b{}{{Ah{}}}}ABf}{}}{{{DBj{ce}}{DBj{ce}}}c{{D@b{}{{Ah{}}}}ABf}{}}{{{CKh{ce}}{DBl{cge}}}{}{EfCNl}{}{}}{{{CKh{ce}}c}{}{EfCNl}{}}{{{DD`{ce}}{DBl{cge}}}{}{EfCNl}{}{}}{{{DD`{ce}}c}{}{EfCNl}{}}{{{DBh{ce}}c}{}CNl{}}{{{DBh{ce}}{DBh{cg}}}{}CNl{}{}}{{{DBh{ce}}{DBl{cge}}}{}CNl{}{}}{{{CEl{ce}}{DBl{cge}}}{}{EfCNl}{}{}}{{{CEl{ce}}c}{}{EfCNl}{}}{{{DBj{ce}}{DBl{cge}}}{}{EfCNl}{}{}}{{{DBj{ce}}c}{}{EfCNl}{}}{{{DCn{ce}}{DBl{cge}}}{}{EfCNl}{}{}}{{{DCn{ce}}c}{}{EfCNl}{}}{{{DBn{ce}}c}{}{EfCNl}{}}{{{DBn{ce}}{DBl{cge}}}{}{EfCNl}{}{}}{{{D@d{ce}}c}{}{EfCNl}{}}{{{D@d{ce}}{DBl{cge}}}{}{EfCNl}{}{}}{{{DBd{ce}}c}{}{EfCNl}{}}{{{DBd{ce}}{DBl{cge}}}{}{EfCNl}{}{}}{{{CK`{ce}}{DBl{cge}}}{}{EfCNl}{}{}}{{{CK`{ce}}c}{}{EfCNl}{}}{{{DBf{ce}}{DBl{cge}}}{}{EfCNl}{}{}}{{{DBf{ce}}c}{}{EfCNl}{}}{{{Bb{B`{CKh{ce}}}}{DBl{cee}}}Bd{EfCNn}{}}{{{Bb{B`{CKh{ce}}}}c}Bd{EfCNn}{}}{{{Bb{B`{DD`{ce}}}}{DBl{cee}}}Bd{EfCNn}{}}{{{Bb{B`{DD`{ce}}}}c}Bd{EfCNn}{}}{{{Bb{B`{DBh{ce}}}}c}Bd{Ef{CNl{}{{Ah{}}}}}{}}{{{Bb{B`{CEl{ce}}}}c}Bd{Ef{CNl{}{{Ah{}}}}}{}}{{{Bb{B`{CEl{ce}}}}{DBl{cee}}}Bd{EfCNn}{}}{{{Bb{B`{DBj{ce}}}}{DBl{cee}}}Bd{EfCNn}{}}{{{Bb{B`{DBj{ce}}}}c}Bd{EfCNn}{}}{{{Bb{B`{DCn{ce}}}}c}Bd{EfCNn}{}}{{{Bb{B`{DCn{ce}}}}{DBl{cee}}}Bd{EfCNn}{}}{{{Bb{B`{DBn{ce}}}}c}Bd{EfCNn}{}}{{{Bb{B`{DBn{ce}}}}{DBl{cee}}}Bd{EfCNn}{}}{{{Bb{B`{D@d{ce}}}}{DBl{cee}}}Bd{EfCNn}{}}{{{Bb{B`{D@d{ce}}}}c}Bd{EfCNn}{}}{{{Bb{B`{DBd{ce}}}}{DBl{cee}}}Bd{EfCNn}{}}{{{Bb{B`{DBd{ce}}}}c}Bd{EfCNn}{}}{{{Bb{B`{CK`{ce}}}}c}Bd{Ef{CNl{}{{Ah{}}}}}{}}{{{Bb{B`{CK`{ce}}}}{DBl{cee}}}Bd{EfCNn}{}}{{{Bb{B`{DBf{ce}}}}{DBl{cee}}}Bd{EfCNn}{}}{{{Bb{B`{DBf{ce}}}}c}Bd{Ef{CNl{}{{Ah{}}}}}{}}{{{Bb{{CEl{ce}}}}{Bb{{D@d{ce}}}}}{{CEl{ce}}}DDl{}}{{{Bb{{DBj{ce}}}}{Bb{{DBd{ce}}}}}{{DBj{ce}}}DDl{}}{{{CK`{ce}}{CK`{ce}}}c{{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}}{{{DBf{ce}}{DBf{ce}}}c{{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}}{Bb{{Bb{c}}}{}}0000000000000000000000{IdBd}0000000000000000000000{{{Bb{{CKh{ce}}}}{Bb{{CKh{ce}}}}}C`Eh{}}{{{Bb{{DD`{ce}}}}{Bb{{DD`{ce}}}}}C`Eh{}}{{{Bb{{DDh{ce}}}}{Bb{{DDh{ce}}}}}C`Eh{}}{{{Bb{{DBh{ce}}}}{Bb{{DBh{ce}}}}}C`Eh{}}{{{Bb{{CEl{ce}}}}{Bb{{CEl{ce}}}}}C`Eh{}}{{{Bb{{DBj{ce}}}}{Bb{{DBj{ce}}}}}C`Eh{}}{{{Bb{{DCn{ce}}}}{Bb{{DCn{ce}}}}}C`Eh{}}{{{Bb{{DDb{ceg}}}}{Bb{{DDb{ceg}}}}}C`Eh{}{}}{{{Bb{{DCh{ceg}}}}{Bb{{DCh{ceg}}}}}C`Eh{}{}}{{{Bb{{DCl{ceg}}}}{Bb{{DCl{ceg}}}}}C`Eh{}{}}{{{Bb{{DBl{ceg}}}}{Bb{{DBl{ceg}}}}}C`Eh{}{}}{{{Bb{{DBn{ce}}}}{Bb{{DBn{ce}}}}}C`Eh{}}{{{Bb{{D@d{ce}}}}{Bb{{D@d{ce}}}}}C`Eh{}}{{{Bb{{DBd{ce}}}}{Bb{{DBd{ce}}}}}C`Eh{}}{{{Bb{{DC`{ceg}}}}{Bb{{DC`{ceg}}}}}C`Eh{}{}}{{{Bb{{DCb{ceg}}}}{Bb{{DCb{ceg}}}}}C`Eh{}{}}{{{Bb{{CK`{ce}}}}{Bb{{CK`{ce}}}}}C`Eh{}}{{{Bb{{DBf{ce}}}}{Bb{{DBf{ce}}}}}C`Eh{}}{{{Bb{{CDh{ceg}}}}{Bb{{CDh{ceg}}}}}C`Eh{}{}}{{{Bb{{DCj{ceg}}}}{Bb{{DCj{ceg}}}}}C`Eh{}{}}{{{Bb{DCd}}{Bb{DCd}}}C`}{{{Bb{DCf}}{Bb{DCf}}}C`}{{{Bb{CDf}}{Bb{CDf}}}C`}{{{D@d{ce}}{D@d{ce}}}DCdEh{}}{{{DBd{ce}}{DBd{ce}}}DCfEh{}}{{{CK`{ce}}{CK`{ce}}}DCdEh{}}{{{DBf{ce}}{DBf{ce}}}DCfEh{}}{{Bb{Bb{c}}}C`{}}00000000000000000000000000000000000000000000000000000000000000000000{{{CKb{c}}{CKb{c}}{CKb{c}}}{{DCl{ceg}}}D@b{}{}}{{{CEl{ce}}c}{{DBj{ce}}}Ef{}}{{{CK`{ce}}c}{{DBf{ce}}}Ef{}}{{CNjCNj}CNj}{{{CEl{ce}}}{{CEl{ce}}}DDn{}}{{{CEl{ce}}}{{CEl{ce}}}{DDnEf}{}}{{{DBj{ce}}}{{DBj{ce}}}{DDnEf}{}}{{{DBj{ce}}}{{DBj{ce}}}DDn{}}{{{D@d{ce}}}{{D@d{ce}}}{DDnEf}{}}{{{D@d{ce}}}{{D@d{ce}}}DDn{}}{{{DBd{ce}}}{{DBd{ce}}}{DDnEf}{}}{{{DBd{ce}}}{{DBd{ce}}}DDn{}}{{{CK`{ce}}}{{CK`{ce}}}DDn{}}{{{CK`{ce}}}{{CK`{ce}}}{DDnEf}{}}{{{DBf{ce}}}{{DBf{ce}}}DDn{}}{{{DBf{ce}}}{{DBf{ce}}}{DDnEf}{}}{{{Bb{{CKh{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}}{{{Bb{{DD`{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}}{{{Bb{{DDh{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}}{{{Bb{{DBh{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}}{{{Bb{{CEl{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}}{{{Bb{{DBj{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}}{{{Bb{{DCn{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}}{{{Bb{{DDb{ceg}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}{}}{{{Bb{{DCh{ceg}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}{}}{{{Bb{{DCl{ceg}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}{}}{{{Bb{{DBl{ceg}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}{}}{{{Bb{{DBn{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}}{{{Bb{{D@d{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}}{{{Bb{{DBd{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}}{{{Bb{{DC`{ceg}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}{}}{{{Bb{{DCb{ceg}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}{}}{{{Bb{{CK`{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}}{{{Bb{{DBf{ce}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`{}}{{{Bb{{CDh{ceg}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}{EfD`EhDDfDDj}{}{}}{{{Bb{{DCj{ceg}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}{EfD`EhDDfDDj}{}{}}{{{Bb{DCd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{DCf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CDf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{D@d{ce}}}{{CKh{ce}}}{EfDDjBBj}{}}{cc{}}0{{{DBd{ce}}}{{DD`{ce}}}{EfDDjBBj}{}}{{{DBf{ce}}}{{DDh{ce}}}DDj{}}2{{{CEl{ce}}}{{DDh{ce}}}{DDjDDf}{}}{{{DBj{ce}}}{{DDh{ce}}}DDf{}}{{{CK`{ce}}}{{DDh{ce}}}DDj{}}5{{{j{cc}}}{{CEl{ce}}}{}{}}{{{E`{c}}}{{CEl{ce}}}{}{}}7{{{E`{c}}}{{DBj{ce}}}{}{}}{{{j{ccc}}}{{DBj{ce}}}{}{}}9{{{D@d{ce}}}{{DCn{ce}}}DDj{}}::{{{DCl{ceg}}}{{DDb{ceg}}}{}{}{}}{{{DBf{ce}}}{{DDb{cge}}}{}{}{}}<<<<{{{CK`{ce}}}{{D@d{ce}}}{}{}}{{{E`{c}}}{{D@d{ce}}}{}{}}{{{j{cc}}}{{D@d{ce}}}{}{}}?{{{E`{c}}}{{DBd{ce}}}{}{}}{{{j{ccc}}}{{DBd{ce}}}{}{}}{{{DBf{ce}}}{{DBd{ce}}}{}{}}{cc{}}0{{{CK`{ce}}}{{DC`{ceg}}}{}{}{}}{{{DBf{ce}}}{{DCb{ceg}}}{}{}{}}2{{{D@d{ce}}}{{CK`{ce}}}{}{}}{{{E`{c}}}{{CK`{ce}}}{}{}}4{{{DC`{ceg}}}{{CK`{ce}}}{}{}{}}{{{j{cc}}}{{CK`{ce}}}{}{}}{{{DCb{ceg}}}{{DBf{ce}}}{}{}{}}7{{{E`{c}}}{{DBf{ce}}}{}{}}{{{j{ccc}}}{{DBf{ce}}}{}{}}9{{{DC`{ceg}}}{{CDh{ceg}}}{DDjDDf}{}{}}:{{{DCb{ceg}}}{{DCj{ceg}}}{DDjDDf}{}{}};;;;;;;;;;;;;;;;;;;;;;;;;;{{{CKb{c}}c}{{CK`{ce}}}{CNj{M`{}{{Ah{}}}}Ef}{}}{{{E`{c}}}{{CDh{ceg}}}Ef{}{}}{{{E`{c}}}{{DCj{ceg}}}Ef{}{}}{{{E`{{E`{c}}}}}{{CDh{ceg}}}Ef{}{}}{{{E`{{E`{c}}}}}{{DCj{ceg}}}Ef{}{}}{{{DBh{ce}}}{{DBn{ce}}}Ef{}}{{{DBh{ce}}{DBh{ce}}}{{CEl{ce}}}{}{}}{{{DBh{ce}}{DBh{ce}}{DBh{ce}}}{{DBj{ce}}}{}{}}{{{DBh{ce}}{DBh{ce}}{DBh{ce}}{DBh{ce}}}{{DBn{ce}}}{}{}}{{{DBh{ce}}{DBh{ce}}}{{D@d{ce}}}{}{}}{{{DBh{ce}}{DBh{ce}}{DBh{ce}}}{{DBd{ce}}}{}{}}{{{DBh{ce}}{DBh{ce}}}{{CK`{ce}}}{}{}}{{{DBh{ce}}{DBh{ce}}{DBh{ce}}}{{DBf{ce}}}{}{}}{{{CEl{ce}}{D@d{ce}}}{{CKh{ce}}}{Ef{Aj{}{{Ah{}}}}}{}}{{{DBj{ce}}{DBd{ce}}}{{DD`{ce}}}{Ef{Aj{}{{Ah{}}}}}{}}{c{{CKh{eg}}}Fb{EfDDjBBj}{}}{c{{DD`{eg}}}Fb{EfDDjBBj}{}}{c{{DCn{eg}}}Fb{EfDDjBBj{ABf{}{{Ah{}}}}}{}}{{{DCl{ceg}}}{{DDb{ceg}}}{}{}{}}{{{DBl{ceg}}}{{DCj{ceg}}}{{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{CNl{}{{Ah{}}}}Ef{Mb{}{{Ah{}}}}{Aj{}{{Ah{}}}}BBjDDfDDj}{}{}}{{{D@d{ce}}}{{CKh{ce}}}DDj{}}{{{DBd{ce}}}{{DD`{ce}}}DDj{}}{{{D@d{ce}}}{{DCn{ce}}}DDj{}}{ce{}{}}0000000000000000000000{{{DBf{ce}}}{{DDb{cge}}}{}{}{}}{{{Bb{{CKh{cCDf}}}}}{{CKh{ce}}}Ef{}}{{{Bb{{DD`{cCDf}}}}}{{DD`{ce}}}Ef{}}{{{CEl{cCDf}}}{{CEl{ce}}}{}{}}{{{DBj{cCDf}}}{{DBj{ce}}}{}{}}{{{Bb{{DCn{cCDf}}}}}{{DCn{ce}}}Ef{}}{{{Bb{{DDb{cCDfCDf}}}}}{{DDb{ceg}}}{D@bCN`}{}{}}{{{Bb{{DCh{cCDfCDf}}}}}{{DCh{ceg}}}Ef{}{}}{{{Bb{{DCl{cCDfCDf}}}}}{{DCl{ceg}}}Ef{}{}}{{{D@d{cCDf}}}{{D@d{ce}}}{}{}}{{{DBd{cCDf}}}{{DBd{ce}}}{}{}}{{{Bb{{DC`{cCDfCDf}}}}}{{DC`{ceg}}}Ef{}{}}{{{Bb{{DCb{cCDfCDf}}}}}{{DCb{ceg}}}Ef{}{}}{{{CK`{cCDf}}}{{CK`{ce}}}{}{}}{{{DBf{cCDf}}}{{DBf{ce}}}{}{}}{{{Bb{{CDh{cCDfCDf}}}}}{{CDh{ceg}}}Ef{}{}}{{{Bb{{DCj{cCDfCDf}}}}}{{DCj{ceg}}}Ef{}{}}{{{CK`{ce}}{CK`{ce}}}{{DBn{ce}}}{{Mb{}{{Ah{}}}}}{}}0{{{DBh{ce}}}cEd{}}{{{DBl{ceg}}}c{}{}{}}{{{Bb{{DCh{ceg}}}}}{{CKb{c}}}Ef{}{}}{{{D@d{ce}}{D@d{ce}}}DCdBBj{}}{{{DBd{ce}}{DBd{ce}}}DCfBBj{}}{{{CK`{ce}}{CK`{ce}}}DCdBBj{}}{{{DBf{ce}}{DBf{ce}}}DCfBBj{}}{{{Bb{{CKh{ce}}}}{Bb{B`g}}}BdLd{}Lb}{{{Bb{{DD`{ce}}}}{Bb{B`g}}}BdLd{}Lb}{{{Bb{{DDh{ce}}}}{Bb{B`g}}}BdLd{}Lb}{{{Bb{{DBh{ce}}}}{Bb{B`g}}}BdLd{}Lb}{{{Bb{{CEl{ce}}}}{Bb{B`g}}}BdLd{}Lb}{{{Bb{{DBj{ce}}}}{Bb{B`g}}}BdLd{}Lb}{{{Bb{{DCn{ce}}}}{Bb{B`g}}}BdLd{}Lb}{{{Bb{{DDb{ceg}}}}{Bb{B`i}}}BdLd{}{}Lb}{{{Bb{{DCh{ceg}}}}{Bb{B`i}}}BdLd{}{}Lb}{{{Bb{{DCl{ceg}}}}{Bb{B`i}}}BdLd{}{}Lb}{{{Bb{{DBl{ceg}}}}{Bb{B`i}}}BdLd{}{}Lb}{{{Bb{{DBn{ce}}}}{Bb{B`g}}}BdLd{}Lb}{{{Bb{{D@d{ce}}}}{Bb{B`g}}}BdLd{}Lb}{{{Bb{{DBd{ce}}}}{Bb{B`g}}}BdLd{}Lb}{{{Bb{{DC`{ceg}}}}{Bb{B`i}}}BdLd{}{}Lb}{{{Bb{{DCb{ceg}}}}{Bb{B`i}}}BdLd{}{}Lb}{{{Bb{{CK`{ce}}}}{Bb{B`g}}}BdLd{}Lb}{{{Bb{{DBf{ce}}}}{Bb{B`g}}}BdLd{}Lb}{{{Bb{{CDh{ceg}}}}{Bb{B`i}}}BdLd{}{}Lb}{{{Bb{{DCj{ceg}}}}{Bb{B`i}}}BdLd{}{}Lb}{{{Bb{DCd}}{Bb{B`c}}}BdLb}{{{Bb{DCf}}{Bb{B`c}}}BdLb}{{{Bb{CDf}}{Bb{B`c}}}BdLb}{{{Bb{{CKh{ce}}}}}c{Ef{ABf{}{{Ah{}}}}}{}}{{{Bb{{DD`{ce}}}}}c{Ef{ABf{}{{Ah{}}}}}{}}{{{Bb{{DCn{ce}}}}}c{Ef{Aj{}{{Ah{}}}}}{}}{D@d}{DBd}{{{Bb{{DBn{ce}}}}}c{Ef{Aj{}{{Ah{}}}}}{}}{DCl}{{}{{DDb{ceg}}}{}{}{}}{{}{{DCh{ceg}}}D@`{}{}}{{}{{DCl{ceg}}}{D@`CMl}{}{}}{{}{{DBl{ceg}}}DDf{}{}}{{}{{DC`{ceg}}}DDj{}{}}{{}{{DCb{ceg}}}DDj{}{}}{{}{{CDh{ceg}}}{DDjDDf}{}{}}{{}{{DCj{ceg}}}{DDjDDf}{}{}}{{{Bb{{CKh{ce}}}}cc}{{CKh{ce}}}{Ef{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}}{}}{{{Bb{{DD`{ce}}}}ccc}{{DD`{ce}}}{Ef{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}}{}}{{{Bb{{DCn{ce}}}}cc}{{DCn{ce}}}{Ef{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}}{}}{{}Id}0000000000000000000000{{{Bb{{CKh{ce}}}}{DBn{ce}}}{{CKh{ce}}}{Ef{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}}{}}{{{Bb{{DCn{ce}}}}{DBn{ce}}}{{DCn{ce}}}{EfDDjBBj{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}}{}}{{{Bb{{CKh{ce}}}}{Bb{{CKh{ce}}}}}{{Bf{{CKh{ce}}}}}{EfBBj}{}}{{{Bb{{DD`{ce}}}}{Bb{{DD`{ce}}}}}{{Bf{{DD`{ce}}}}}{EfBBj}{}}{{{Bb{{DCn{ce}}}}{Bb{{DCn{ce}}}}}{{Bf{{DCn{ce}}}}}{EfBBj{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}}{}}{{{Bb{{CKh{ce}}}}{Bb{{CKh{ce}}}}}{{CKh{ce}}}{EfBBj}{}}{{{Bb{{DD`{ce}}}}{Bb{{DD`{ce}}}}}{{DD`{ce}}}{EfBBj}{}}{{{Bb{{CKh{ce}}}}{Bb{{CKh{ce}}}}}C`BBj{}}{{{Bb{{DD`{ce}}}}{Bb{{DD`{ce}}}}}C`BBj{}}{{{Bb{{DCn{ce}}}}{Bb{{DCn{ce}}}}}C`{EfBBj{Aj{}{{Ah{}}}}}{}}{{}c{}}000000000000000000000000000000000000000000000{{{I`{c}}}{{I`{Dl}}}{}}0000000000000000000000{{{Lj{c}}}{{Lj{Dl}}}{}}0000000000000000000000{{{Ll{c}}}{{Ll{Dl}}}{}}0000000000000000000000{{{Fl{c}}}e{}{}}00000000000000000000004444444444444444444444444444444444444444444444{{}c{}}0000000000000000000000{{{Bb{{DDb{ceg}}}}}{{DDb{cge}}}{D@bCN`}{}{}}{{{Bb{{DCh{ceg}}}}}{{DCh{cge}}}D@b{}{}}{{{Bb{{DCl{ceg}}}}}{{DCl{cge}}}D@b{}{}}{{{DBl{ceg}}}{{DBl{ge}}}{DDfCNl}{}{}}{{{Bb{{DC`{ceg}}}}}{{DC`{ge}}}{MbEf}{}{}}{{{Bb{{DCb{ceg}}}}}{{DCb{ge}}}{MbEf}{}{}}{{{Bb{{CDh{ceg}}}}}{{Bf{{CDh{cge}}}}}{Ef{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{CNl{}{{Ah{}}}}EhDDjDDf}{}{}}{{{Bb{{DCj{ceg}}}}}{{Bf{{DCj{cge}}}}}{{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{CNl{}{{Ah{}}}}Ef{Mb{}{{Ah{}}}}{Aj{}{{Ah{}}}}BBjDDfDDj}{}{}}{{{Bb{{DCj{ceg}}}}}C`{DDjDDfEh}{}{}}{{{Bb{{DCj{ceg}}}}}C`{{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{CNl{}{{Ah{}}}}Ef{Mb{}{{Ah{}}}}{Aj{}{{Ah{}}}}BBjDDfDDj}{}{}}{{{Bb{{CKh{ce}}}}}C`BBj{}}{{{Bb{{DD`{ce}}}}}C`BBj{}}{{{Bb{{DCn{ce}}}}}C`{EfDDjBBj}{}}{{{D@d{ce}}}C`{DDjBBj}{}}{{{DBd{ce}}}C`{DDjBBj}{}}{{{CKh{ce}}}C`If{}}{{{DD`{ce}}}C`If{}}{{{CEl{ce}}}C`If{}}{{{DBj{ce}}}C`If{}}{{{DCn{ce}}}C`If{}}{{{D@d{ce}}}C`If{}}{{{DBd{ce}}}C`If{}}{{{CK`{ce}}}C`If{}}{{{DBf{ce}}}C`If{}}{{{DBl{ceg}}}C`{EhDDf}{}{}}{{{Bb{{DC`{ceg}}}}}C`{DDjEh}{}{}}{{{Bb{{DCb{ceg}}}}}C`{DDjEh}{}{}}{{{Bb{{CDh{ceg}}}}}C`{Ef{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{CNl{}{{Ah{}}}}EhDDjDDf}{}{}}{{{Bb{{DCj{ceg}}}}}C`{{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{CNl{}{{Ah{}}}}Ef{Mb{}{{Ah{}}}}{Aj{}{{Ah{}}}}BBjDDfDDj}{}{}}{{{Bb{{CKh{ce}}}}}C`BBj{}}{{{Bb{{DD`{ce}}}}}C`BBj{}}{{{Bb{{DCl{ceg}}}}}C`{CN`D@b}{}{}}{{{D@d{ce}}}C`DBb{}}{{{DBd{ce}}}C`DBb{}}{{{Bb{{DBn{ce}}}}}C`{DDjEh}{}}{DCl}0{DBn}{{{CK`{ce}}}cD@b{}}{{{DBf{ce}}}cD@b{}}{{{Bb{{CKh{ce}}}}{CKh{ce}}c}{{CKh{ce}}}{DDf{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}Ef}{}}{{{Bb{{DD`{ce}}}}{DD`{ce}}c}{{DD`{ce}}}{DDf{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}Ef}{}}{{{DBh{ce}}{DBh{ce}}c}{{DBh{ce}}}{DDf{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{Aj{}{{Ah{}}}}Ed}{}}{{{CEl{ce}}{CEl{ce}}c}{{CEl{ce}}}{DDf{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{Aj{}{{Ah{}}}}Ef}{}}{{{DBj{ce}}{DBj{ce}}c}{{DBj{ce}}}{DDf{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{Aj{}{{Ah{}}}}Ef}{}}{{{Bb{{DCn{ce}}}}{DCn{ce}}c}{{DCn{ce}}}{DDf{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}Ef}{}}{{{Bb{{DCl{ceg}}}}{Bb{{DCl{ceg}}}}c}{{DCl{ceg}}}D@b{}{}}{{{D@d{ce}}{D@d{ce}}c}{{D@d{ce}}}{DDf{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{Aj{}{{Ah{}}}}Ef}{}}{{{DBd{ce}}{DBd{ce}}c}{{DBd{ce}}}{DDf{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{Aj{}{{Ah{}}}}Ef}{}}{{{CK`{ce}}{CK`{ce}}c}{{CK`{ce}}}{DDf{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}Ef}{}}{{{DBf{ce}}{DBf{ce}}c}{{DBf{ce}}}{DDf{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}Ef}{}}{{{D@d{ce}}{D@d{ce}}}DCdBBj{}}{{{DBd{ce}}{DBd{ce}}}DCfBBj{}}{{{CK`{ce}}{CK`{ce}}}DCdBBj{}}{{{DBf{ce}}{DBf{ce}}}DCfBBj{}}{CDh}{DCj}10001010001010000000{{{CEl{ce}}i}{{CEl{ge}}}{}{}{}{{Ln{c}{{Ah{g}}}}}}{{{DBj{ce}}i}{{DBj{ge}}}{}{}{}{{Ln{c}{{Ah{g}}}}}}{{{CK`{ce}}i}{{CK`{ge}}}{}{}{}{{Ln{c}{{Ah{g}}}}}}{{{DBf{ce}}i}{{DBf{ge}}}{}{}{}{{Ln{c}{{Ah{g}}}}}}{{{DBh{ce}}{DBh{ce}}}{{DBh{ce}}}BBj{}}{{{CEl{ce}}{CEl{ce}}}{{CEl{ce}}}BBj{}}{{{DBj{ce}}{DBj{ce}}}{{DBj{ce}}}BBj{}}{{{Bb{{DCn{ce}}}}}{{CEl{ce}}}{Ef{Aj{}{{Ah{}}}}}{}}{{{DBl{ceg}}{DBl{ceg}}}{{DBl{ceg}}}BBj{}{}}{{{D@d{ce}}{D@d{ce}}}{{D@d{ce}}}BBj{}}{{{DBd{ce}}{DBd{ce}}}{{DBd{ce}}}BBj{}}{{{CK`{ce}}{CK`{ce}}}{{CK`{ce}}}BBj{}}{{{DBf{ce}}{DBf{ce}}}{{DBf{ce}}}BBj{}}{CKhCEl}{DD`DBj}{{{Bb{{DCn{ce}}}}}c{Ef{Aj{}{{Ah{}}}}}{}}0;:98765432100{{{CKh{ce}}c}{}{EfM`}{}}{{{CKh{ce}}{DBl{ceg}}}{}{EfM`}{}{}}{{{DD`{ce}}c}{}{EfM`}{}}{{{DD`{ce}}{DBl{ceg}}}{}{EfM`}{}{}}{{{DBh{ce}}c}{}M`{}}{{{DBh{ce}}{DBl{ceg}}}{}M`{}{}}{{{CEl{ce}}{DBl{ceg}}}{}{EfM`}{}{}}{{{CEl{ce}}c}{}{EfM`}{}}{{{DBj{ce}}{DBl{ceg}}}{}{EfM`}{}{}}{{{DBj{ce}}c}{}{EfM`}{}}{{{DCn{ce}}{DBl{ceg}}}{}{EfM`}{}{}}{{{DCn{ce}}c}{}{EfM`}{}}{{{DBl{ceg}}{DBl{cgi}}}{}M`{}{}{}}{{{DBn{ce}}{DBl{ceg}}}{}{EfM`}{}{}}{{{DBn{ce}}c}{}{EfM`}{}}{{{D@d{ce}}{DBl{ceg}}}{}{EfM`}{}{}}{{{D@d{ce}}c}{}{EfM`}{}}{{{DBd{ce}}{DBl{ceg}}}{}{EfM`}{}{}}{{{DBd{ce}}c}{}{EfM`}{}}{{{CK`{ce}}c}{}{EfM`}{}}{{{CK`{ce}}{DBl{ceg}}}{}{EfM`}{}{}}{{{DBf{ce}}{DBl{ceg}}}{}{EfM`}{}{}}{{{DBf{ce}}c}{}{EfM`}{}}{{{Bb{B`{CKh{ce}}}}{DBl{cee}}}Bd{EfCOn}{}}{{{Bb{B`{CKh{ce}}}}c}Bd{EfCOn}{}}{{{Bb{B`{DD`{ce}}}}c}Bd{EfCOn}{}}{{{Bb{B`{DD`{ce}}}}{DBl{cee}}}Bd{EfCOn}{}}{{{Bb{B`{DBh{ce}}}}c}Bd{Ef{M`{}{{Ah{}}}}}{}}{{{Bb{B`{CEl{ce}}}}c}Bd{Ef{M`{}{{Ah{}}}}}{}}{{{Bb{B`{CEl{ce}}}}{DBl{cee}}}Bd{EfCOn}{}}{{{Bb{B`{DBj{ce}}}}c}Bd{EfCOn}{}}{{{Bb{B`{DBj{ce}}}}{DBl{cee}}}Bd{EfCOn}{}}{{{Bb{B`{DCn{ce}}}}c}Bd{EfCOn}{}}{{{Bb{B`{DCn{ce}}}}{DBl{cee}}}Bd{EfCOn}{}}{{{Bb{B`{DBn{ce}}}}c}Bd{EfCOn}{}}{{{Bb{B`{DBn{ce}}}}{DBl{cee}}}Bd{EfCOn}{}}{{{Bb{B`{D@d{ce}}}}c}Bd{EfCOn}{}}{{{Bb{B`{D@d{ce}}}}{DBl{cee}}}Bd{EfCOn}{}}{{{Bb{B`{DBd{ce}}}}c}Bd{EfCOn}{}}{{{Bb{B`{DBd{ce}}}}{DBl{cee}}}Bd{EfCOn}{}}{{{Bb{B`{CK`{ce}}}}{DBl{cee}}}Bd{EfCOn}{}}{{{Bb{B`{CK`{ce}}}}c}Bd{Ef{M`{}{{Ah{}}}}}{}}{{{Bb{B`{DBf{ce}}}}{DBl{cee}}}Bd{EfCOn}{}}{{{Bb{B`{DBf{ce}}}}c}Bd{Ef{M`{}{{Ah{}}}}}{}}{{{Bb{{DCj{ceg}}}}c}{{DCj{ceg}}}{{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{CNl{}{{Ah{}}}}Ef{Mb{}{{Ah{}}}}{Aj{}{{Ah{}}}}BBjDDfDDj}{}{}}{{{DBh{ce}}}{}Mb{}}{{{CEl{ce}}}{}Mb{}}{{{DBj{ce}}}{}Mb{}}{{{DBn{ce}}}{{DBn{ce}}}{{Mb{}{{Ah{}}}}}{}}{{{D@d{ce}}}{}Mb{}}{{{DBd{ce}}}{}Mb{}}{{{CK`{ce}}}{}Mb{}}{{{DBf{ce}}}{}Mb{}}{{{CEl{ce}}{CEl{ce}}}{{CKh{ce}}}{}{}}{{{DBj{ce}}{DBj{ce}}}{{DD`{ce}}}{}{}}{{cccc}{{DDh{ce}}}{}{}}{c{{DBh{ce}}}{}{}}{{cc}{{CEl{ce}}}{}{}}{{ccc}{{DBj{ce}}}{}{}}{{{CEl{ce}}{D@d{ce}}}{{DCn{ce}}}{}{}}{{{DCl{ceg}}{DBf{cg}}}{{DDb{ceg}}}{}{}{}}{{{CKb{c}}}{{DCh{ceg}}}{}{}{}}{c{{DBl{ceg}}}{}{}{}}{{cccc}{{DBn{ce}}}{}{}}{{cc}{{D@d{ce}}}{}{}}{{ccc}{{DBd{ce}}}{}{}}{{cc}{{DC`{ceg}}}{}{}{}}{{ccc}{{DCb{ceg}}}{}{}{}}{{cc}{{CK`{ce}}}{}{}}{{ccc}{{DBf{ce}}}{}{}}{{cccccc}{{CDh{ceg}}}{}{}{}}{{cccccccccccccccc}{{DCj{ceg}}}{}{}{}}{{cccccc}{{DCj{ceg}}}{DDjDDf}{}{}}{c{{DBn{ce}}}Ef{}}{{{DBf{ce}}{DCl{ceg}}}{{DDb{ceg}}}{}{}{}}{DCdC`}{DCfC`}{{{Bb{{DCl{ceg}}}}}cD@b{}{}}{{{Bb{{DCl{ceg}}}}}{{DCl{ceg}}}D@b{}{}}{{{CK`{ce}}}{{CK`{ce}}}D@b{}}{{{DBf{ce}}}{{DBf{ce}}}D@b{}}{DCdDCd}{DCfDCf}{{{D@d{ce}}{D@d{ce}}}DCdEh{}}{{{DBd{ce}}{DBd{ce}}}DCfEh{}}{{{CK`{ce}}{CK`{ce}}}DCdEh{}}{{{DBf{ce}}{DBf{ce}}}DCfEh{}}{{}c{}}0000000000000000`{{}{{DBl{ceg}}}DDf{}{}}{{}{{CK`{ce}}}DDf{}}{{}{{DBf{ce}}}DDf{}}{{DCdDCd}DCd}{{DCfDCf}DCf}{{}{{CEl{ce}}}DDj{}}{{}{{DBj{ce}}}DDj{}}{DCnCEl}{{cccccc}{{DCj{ceg}}}{}{}{}}{{{Bb{{CKh{ce}}}}{DBn{ce}}}{{CKh{ce}}}{Ef{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}}{}}{{{Bb{{DCn{ce}}}}{DBn{ce}}}{{DCn{ce}}}{Ef{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}}{}}{{{Bb{{CDh{ceg}}}}{Bb{{CKh{ce}}}}}{{CKh{cg}}}{{ABf{}{{Ah{}}}}DDjBBjEf{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}}{{{Bb{{DCj{ceg}}}}{Bb{{CKh{ce}}}}}{{Bf{{CKh{cg}}}}}{{ABf{}{{Ah{}}}}{CNl{}{{Ah{}}}}DDjBBjEf{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}}{{{Bb{{DCj{ceg}}}}{Bb{{DD`{ce}}}}}{{Bf{{DD`{cg}}}}}{{ABf{}{{Ah{}}}}{CNl{}{{Ah{}}}}DDjBBjEf{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}}{{{Bb{{CDh{ceg}}}}{Bb{{DCn{ce}}}}}{{DCn{cg}}}{{ABf{}{{Ah{}}}}DDjBBjEf{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}}{{{Bb{{DCj{ceg}}}}{Bb{{DCn{ce}}}}}{{Bf{{DCn{cg}}}}}{{ABf{}{{Ah{}}}}{CNl{}{{Ah{}}}}DDjBBjEf{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}}{{{Bb{{DBh{ce}}}}{Bb{{DBh{ce}}}}}{{Bf{Mj}}}BBj{}}{{{Bb{{DBl{ceg}}}}{Bb{{DBl{ceg}}}}}{{Bf{Mj}}}BBj{}{}}{{{Bb{CDf}}{Bb{CDf}}}{{Bf{Mj}}}}{c{{DCj{ceg}}}{}{}{}}{{cc}{{CEl{ce}}}{}{}}{{ccc}{{DBj{ce}}}{}{}}{{{Bb{{CEl{dc}}}}}{{CEl{dCDf}}}{}}{{{Bb{{CDh{ceg}}}}{CKb{c}}}{{CDh{ceg}}}{Ef{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}DDjCNj}{}{}}{{{Bb{{DCj{ceg}}}}ccc{CKb{c}}}{{DCj{ceg}}}{{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{CNl{}{{Ah{}}}}EfDDjDDfCNj}{}{}}{{{Bb{{CDh{ceg}}}}cc}{{CDh{ceg}}}{Ef{M`{}{{Ah{}}}}}{}{}}{{{Bb{{DCj{ceg}}}}ccc}{{DCj{ceg}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}DDjDDf}{}{}}{{{Bb{{CDh{ceg}}}}{CK`{ce}}}{{CDh{ceg}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}DDjDDf}{}{}}{{{Bb{{DCj{ceg}}}}{DBf{ce}}}{{DCj{ceg}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}DDjDDf}{}{}}{{{CK`{ce}}{CK`{ce}}}{{CK`{ce}}}{{ABf{}{{Ah{}}}}{CNl{}{{Ah{}}}}Ef{M`{}{{Ah{}}}}{Aj{}{{Ah{}}}}}{}}{{{DBf{ce}}{DBf{ce}}}{{DBf{ce}}}{{ABf{}{{Ah{}}}}{CNl{}{{Ah{}}}}Ef{M`{}{{Ah{}}}}{Aj{}{{Ah{}}}}}{}}{{{Bb{{DCj{ceg}}}}}{{DCj{ceg}}}{Ef{M`{}{{Ah{}}}}{CNl{}{{Ah{}}}}DDjDDfEh}{}{}}{{cccc}{{DCl{ceg}}}{}{}{}}{DCl}{c{{DCh{ceg}}}{}{}{}}{CKb}{CNjCNj}{{cccc}{{DCn{ce}}}{}{}}{{{CK`{ce}}{CK`{ce}}}{{CK`{ce}}}{DDf{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}Ef}{}}{{{DBf{ce}}{DBf{ce}}}{{DBf{ce}}}{DDf{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}Ef}{}}{{{Bb{{CEl{ce}}}}{Bb{{D@d{ce}}}}}{{CEl{ce}}}DDl{}}{{{Bb{{DBj{ce}}}}{Bb{{DBd{ce}}}}}{{DBj{ce}}}DDl{}}{DBn}{{{CK`{ce}}}{{CK`{ce}}}If{}}{{{DBf{ce}}}{{DBf{ce}}}If{}}{{{CKb{c}}}{{CDh{ceg}}}{Ef{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}DDjCNj}{}{}}{{ccc{CKb{c}}}{{DCj{ceg}}}{}{}{}}{DDbDCl}{{{Bb{{CKh{ce}}}}}{{CKh{ce}}}DE`{}}{{{Bb{{DD`{ce}}}}}{{DD`{ce}}}DE`{}}{{{CEl{ce}}}{{CEl{ce}}}DE`{}}{{{CEl{ce}}}{{CEl{ce}}}{DE`Ef}{}}{{{DBj{ce}}}{{DBj{ce}}}{DE`Ef}{}}{{{DBj{ce}}}{{DBj{ce}}}DE`{}}{{{Bb{{DCn{ce}}}}}{{DCn{ce}}}{DDnDDdDE`{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}}{}}{{{D@d{ce}}}{{D@d{ce}}}DE`{}}{{{D@d{ce}}}{{D@d{ce}}}{DE`Ef}{}}{{{DBd{ce}}}{{DBd{ce}}}DE`{}}{{{DBd{ce}}}{{DBd{ce}}}{DE`Ef}{}}{{{CK`{ce}}}{{CK`{ce}}}{DE`Ef}{}}{{{CK`{ce}}}{{CK`{ce}}}DE`{}}{{{DBf{ce}}}{{DBf{ce}}}{DE`Ef}{}}{{{DBf{ce}}}{{DBf{ce}}}DE`{}}{{{Bb{{CKh{ce}}}}}{{CKh{ce}}}{DDnDDd}{}}{{{Bb{{DD`{ce}}}}}{{DD`{ce}}}{DDnDDd}{}}:10:{{{DBh{ce}}{DBh{ce}}}{{DBh{ce}}}DEb{}}0{{{Bb{{CKh{eg}}}}cc}{{CKh{eg}}}Ef{{M`{}{{Ah{}}}}Ef}{}}{{{Bb{{DD`{eg}}}}ccc}{{DD`{eg}}}Ef{{M`{}{{Ah{}}}}Ef}{}}{{{Bb{{DCn{eg}}}}cc}{{DCn{eg}}}Ef{Ef{M`{}{{Ah{}}}}}{}}{{cc}{{CDh{ceg}}}DDj{}{}}{{ccc}{{DCj{ceg}}}{DDjDDf}{}{}}{{DCd{CEl{ce}}{CEl{ce}}}{{CEl{ce}}}{}{}}{{DCf{DBj{ce}}{DBj{ce}}}{{DBj{ce}}}{}{}}{{DCd{D@d{ce}}{D@d{ce}}}{{D@d{ce}}}{}{}}{{DCf{DBd{ce}}{DBd{ce}}}{{DBd{ce}}}{}{}}{{DCd{CK`{ce}}{CK`{ce}}}{{CK`{ce}}}{}{}}{{DCf{DBf{ce}}{DBf{ce}}}{{DBf{ce}}}{}{}}{{{Bb{B`{CKh{ce}}}}{D@d{ce}}}Bd{Ef{ABf{}{{Ah{}}}}}{}}{CNjCNj}{{{Bb{{CKh{ce}}}}}{{D@d{ce}}}{Ef{ABf{}{{Ah{}}}}}{}}{{{Bb{{DD`{ce}}}}}{{DBd{ce}}}{Ef{ABf{}{{Ah{}}}}}{}}{DCnD@d}{{cc}{{D@d{ce}}}{}{}}{{ccc}{{DBd{ce}}}{}{}}{{{CKb{c}}{CKb{c}}}{{DCj{ceg}}}{CNjDDjDDf}{}{}}{{{Bb{{DCl{ceg}}}}{Bb{{DCl{ceg}}}}c}{{DCl{ceg}}}{CN`D@b}{}{}}{c{{CEl{ce}}}Ed{}}{c{{DBj{ce}}}Ed{}}{c{{D@d{ce}}}Ed{}}{c{{DBd{ce}}}Ed{}}{c{{DC`{ceg}}}Ed{}{}}{c{{DCb{ceg}}}Ed{}{}}{c{{CK`{ce}}}Ed{}}{c{{DBf{ce}}}Ed{}}{{{CK`{ce}}}c{Ef{M`{}{{Ah{}}}}{Aj{}{{Ah{}}}}}{}}{{{DBf{ce}}}c{Ef{M`{}{{Ah{}}}}{Aj{}{{Ah{}}}}}{}}{{{Bb{{DCl{ceg}}}}}cD@b{}{}}{{{DBh{ce}}{DBh{ce}}}{}ABf{}}{{{CEl{ce}}{CK`{ce}}}{}ABf{}}{{{CEl{ce}}{CEl{ce}}}{}ABf{}}{{{CEl{ce}}{D@d{ce}}}{}ABf{}}{{{DBj{ce}}{DBd{ce}}}{}ABf{}}{{{DBj{ce}}{DBf{ce}}}{}ABf{}}{{{DBj{ce}}{DBj{ce}}}{}ABf{}}{{{DBl{ceg}}{DBl{ceg}}}{}ABf{}{}}{{{DBn{ce}}{DBn{ce}}}{{DBn{ce}}}{{ABf{}{{Ah{}}}}}{}}{{{D@d{ce}}{D@d{ce}}}{}ABf{}}{{{DBd{ce}}{DBd{ce}}}{}ABf{}}{{{DC`{ceg}}{DC`{cig}}}{}ABf{}{}{}}{{{DCb{ceg}}{DCb{cig}}}{}ABf{}{}{}}{{{CK`{ce}}{CK`{ce}}}{}ABf{}}{{{DBf{ce}}{DBf{ce}}}{}ABf{}}{{{Bb{B`{DBh{ce}}}}{DBh{ce}}}BdD@f{}}{{{Bb{B`{CEl{ce}}}}{CK`{ce}}}Bd{Ef{ABf{}{{Ah{}}}}}{}}{{{Bb{B`{CEl{ce}}}}{D@d{ce}}}BdD@f{}}{{{Bb{B`{DBj{ce}}}}{DBf{ce}}}Bd{Ef{ABf{}{{Ah{}}}}}{}}{{{Bb{B`{DBj{ce}}}}{DBd{ce}}}BdD@f{}}{{{Bb{B`{DBn{ce}}}}{DBn{ce}}}BdD@f{}}{{{Bb{B`{D@d{ce}}}}{D@d{ce}}}BdD@f{}}{{{Bb{B`{DBd{ce}}}}{DBd{ce}}}BdD@f{}}{{{Bb{B`{DC`{ceg}}}}{DC`{cgg}}}BdD@f{}{}}{{{Bb{B`{DCb{ceg}}}}{DCb{cgg}}}BdD@f{}{}}{{{Bb{B`{CK`{ce}}}}{CK`{ce}}}Bd{Ef{ABf{}{{Ah{}}}}}{}}{{{Bb{B`{DBf{ce}}}}{DBf{ce}}}Bd{Ef{ABf{}{{Ah{}}}}}{}}{g{{DBh{ce}}}{{Aj{}{{Ah{}}}}EfDDj}{}{{ALn{}{{F`{{Bb{{DBh{ce}}}}}}}}}}{g{{DBh{ce}}}{{Aj{}{{Ah{}}}}DDj}{}{{ALn{}{{F`{{DBh{ce}}}}}}}}{g{{D@d{ce}}}{{Aj{}{{Ah{}}}}EfDDj}{}{{ALn{}{{F`{{Bb{{D@d{ce}}}}}}}}}}{g{{D@d{ce}}}{{Aj{}{{Ah{}}}}DDj}{}{{ALn{}{{F`{{D@d{ce}}}}}}}}{g{{DBd{ce}}}{{Aj{}{{Ah{}}}}DDj}{}{{ALn{}{{F`{{DBd{ce}}}}}}}}{g{{DBd{ce}}}{{Aj{}{{Ah{}}}}EfDDj}{}{{ALn{}{{F`{{Bb{{DBd{ce}}}}}}}}}}{g{{CK`{ce}}}{{Aj{}{{Ah{}}}}DDj}{}{{ALn{}{{F`{{CK`{ce}}}}}}}}{g{{CK`{ce}}}{{Aj{}{{Ah{}}}}EfDDj}{}{{ALn{}{{F`{{Bb{{CK`{ce}}}}}}}}}}{g{{DBf{ce}}}{{Aj{}{{Ah{}}}}EfDDj}{}{{ALn{}{{F`{{Bb{{DBf{ce}}}}}}}}}}{g{{DBf{ce}}}{{Aj{}{{Ah{}}}}DDj}{}{{ALn{}{{F`{{DBf{ce}}}}}}}}{CNjCNj}{{{Bb{{DDb{ceg}}}}{Bb{{DDb{cgi}}}}}{{DDb{cei}}}{D@bCN`}{}{}{}}{{{Bb{{DCh{ceg}}}}{Bb{{DCh{cie}}}}}{{DCh{cig}}}D@b{}{}{}}{{{Bb{{DCl{ceg}}}}{Bb{{DCl{cgi}}}}}{{DCl{cei}}}{CN`D@b}{}{}{}}{{{Bb{{CDh{ceg}}}}{Bb{{CDh{cgi}}}}}{{CDh{cei}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}{}}{{{Bb{{DCj{ceg}}}}{Bb{{DCj{cgi}}}}}{{DCj{cei}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}{}}{{{Bb{{CDh{ceg}}}}{CKb{c}}}{{CDh{ceg}}}{Ef{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}DDjCNj}{}{}}{{{Bb{{DCj{ceg}}}}ccc{CKb{c}}}{{DCj{ceg}}}{{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}{CNl{}{{Ah{}}}}EfDDjDDfCNj}{}{}}{{{Bb{{CDh{ceg}}}}cc}{{CDh{ceg}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}DDj}{}{}}{{{Bb{{DCj{ceg}}}}ccc}{{DCj{ceg}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}DDjDDf}{}{}}{{{Bb{{CDh{ceg}}}}{CK`{cg}}}{{CDh{ceg}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}DDjDDf}{}{}}{{{Bb{{DCj{ceg}}}}{DBf{cg}}}{{DCj{ceg}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}DDjDDf}{}{}}{{{DBj{ce}}}{{CEl{ce}}}Ef{}}{{{DBf{ce}}}{{CK`{ce}}}Ef{}}{{{Bb{{DCj{ceg}}}}}{{CDh{ceg}}}Ef{}{}}{{{CEl{ce}}}{{DBj{ce}}}{DDjEf}{}}{{{Bb{{DCh{ceg}}}}}{{DCl{ceg}}}D@b{}{}}{{{CK`{ce}}}{{DBf{ce}}}{DDjEf}{}}{{{Bb{{CDh{ceg}}}}}{{DCj{ceg}}}{DDjDDfEf}{}{}}{{{CEl{ce}}}{{E`{c}}}Ef{}}{{{DBj{ce}}}{{E`{c}}}Ef{}}{{{D@d{ce}}}{{E`{c}}}Ef{}}{{{DBd{ce}}}{{E`{c}}}Ef{}}{{{Bb{{DC`{ceg}}}}}{{E`{c}}}Ef{}{}}{{{Bb{{DCb{ceg}}}}}{{E`{c}}}Ef{}{}}{{{CK`{ce}}}{{E`{c}}}Ef{}}{{{DBf{ce}}}{{E`{c}}}Ef{}}{{{Bb{{CDh{ceg}}}}}{{E`{c}}}Ef{}{}}{{{Bb{{DCj{ceg}}}}}{{E`{c}}}Ef{}{}}{{{DBj{ce}}}{{E`{c}}}{DDfEf}{}}{{{DBf{ce}}}{{E`{c}}}{DDjEf}{}}32{{{Bb{{CDh{ceg}}}}}{{E`{{E`{c}}}}}Ef{}{}}{{{Bb{{DCj{ceg}}}}}{{E`{{E`{c}}}}}Ef{}{}}0{{{Bb{{DCn{ce}}}}}{{CKh{ce}}}{Ef{Aj{}{{Ah{}}}}}{}}{{{Bb{{CKh{ce}}}}}{{CKh{de}}}{CNbEf}{}}{{{Bb{{DD`{ce}}}}}{{DD`{de}}}{CNbEf}{}}{{{CEl{ce}}}{{CEl{de}}}{CNbEf}{}}{{{DBj{ce}}}{{DBj{de}}}{CNbEf}{}}{{{Bb{{DCn{ce}}}}}{{DCn{de}}}{CNbEf}{}}{{{D@d{ce}}}{{D@d{de}}}{CNbEf}{}}{{{DBd{ce}}}{{DBd{de}}}{CNbEf}{}}{{{DC`{ceg}}}{{DC`{deg}}}{CNbEf}{}{}}{{{DCb{ceg}}}{{DCb{deg}}}{CNbEf}{}{}}{{{CK`{ce}}}{{CK`{de}}}{CNbEf}{}}{{{DBf{ce}}}{{DBf{de}}}{CNbEf}{}}{{{Bb{{CKh{ce}}}}}{{CKh{Kje}}}{CNbEf}{}}{{{Bb{{DD`{ce}}}}}{{DD`{Kje}}}{CNbEf}{}}{{{CEl{ce}}}{{CEl{Kje}}}{CNbEf}{}}{{{DBj{ce}}}{{DBj{Kje}}}{CNbEf}{}}{{{Bb{{DCn{ce}}}}}{{DCn{Kje}}}{CNbEf}{}}{{{D@d{ce}}}{{D@d{Kje}}}{CNbEf}{}}{{{DBd{ce}}}{{DBd{Kje}}}{CNbEf}{}}{{{DC`{ceg}}}{{DC`{Kjeg}}}{CNbEf}{}{}}{{{DCb{ceg}}}{{DCb{Kjeg}}}{CNbEf}{}{}}{{{CK`{ce}}}{{CK`{Kje}}}{CNbEf}{}}{{{DBf{ce}}}{{DBf{Kje}}}{CNbEf}{}}{{{Bb{{CKh{ce}}}}}{{CKh{ANle}}}{CNbEf}{}}{{{Bb{{DD`{ce}}}}}{{DD`{ANle}}}{CNbEf}{}}{{{CEl{ce}}}{{CEl{ANle}}}{CNbEf}{}}{{{DBj{ce}}}{{DBj{ANle}}}{CNbEf}{}}{{{Bb{{DCn{ce}}}}}{{DCn{ANle}}}{CNbEf}{}}{{{D@d{ce}}}{{D@d{ANle}}}{CNbEf}{}}{{{DBd{ce}}}{{DBd{ANle}}}{CNbEf}{}}{{{DC`{ceg}}}{{DC`{ANleg}}}{CNbEf}{}{}}{{{DCb{ceg}}}{{DCb{ANleg}}}{CNbEf}{}{}}{{{CK`{ce}}}{{CK`{ANle}}}{CNbEf}{}}{{{DBf{ce}}}{{DBf{ANle}}}{CNbEf}{}}{{{Bb{{CKh{ce}}}}}{{CKh{Kle}}}{CNbEf}{}}{{{Bb{{DD`{ce}}}}}{{DD`{Kle}}}{CNbEf}{}}{{{CEl{ce}}}{{CEl{Kle}}}{CNbEf}{}}{{{DBj{ce}}}{{DBj{Kle}}}{CNbEf}{}}{{{Bb{{DCn{ce}}}}}{{DCn{Kle}}}{CNbEf}{}}{{{D@d{ce}}}{{D@d{Kle}}}{CNbEf}{}}{{{DBd{ce}}}{{DBd{Kle}}}{CNbEf}{}}{{{DC`{ceg}}}{{DC`{Kleg}}}{CNbEf}{}{}}{{{DCb{ceg}}}{{DCb{Kleg}}}{CNbEf}{}{}}{{{CK`{ce}}}{{CK`{Kle}}}{CNbEf}{}}{{{DBf{ce}}}{{DBf{Kle}}}{CNbEf}{}}{{{Bb{{CKh{ce}}}}}{{Bf{{CKh{ce}}}}}{EfBBj}{}}{{{Bb{{DD`{ce}}}}}{{Bf{{DD`{ce}}}}}{EfBBj}{}}{{{Bb{{DCn{ce}}}}}{{Bf{{DCn{ce}}}}}{EfDDjBBj}{}}{Bbc{}}0000000000000000000000{{{CK`{ce}}}{{CEl{ce}}}Ef{}}{{{DBf{ce}}}{{DBj{ce}}}Ef{}}{{{DDh{ce}}}{{Bf{{CEl{ce}}}}}{Ef{CNl{}{{Ah{}}}}DDjBBj}{}}{{{DDh{ce}}}{{Bf{{DBj{ce}}}}}{Ef{CNl{}{{Ah{}}}}DDjBBj}{}}{{{Bb{{CKh{ce}}}}}{{DCn{ce}}}{Ef{ABf{}{{Ah{}}}}}{}}{{{CK`{ce}}}{{D@d{ce}}}Ef{}}{{{Bb{{DDb{ceg}}}}}{{DCj{ceg}}}{CNjD@bCN`}{}{}}{{{Bb{{DCh{ceg}}}}}{{CDh{ceg}}}{Ef{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}{M`{}{{Ah{}}}}D@`CNj}{}{}}{{{Bb{{DCl{ceg}}}}}{{DCj{ceg}}}{CN`D@b}{}{}}{{{Bb{{DC`{ceg}}}}}{{CDh{ceg}}}{DDjDDfEf}{}{}}{{{Bb{{DCb{ceg}}}}}{{DCj{ceg}}}{DDjDDfEf}{}{}}{{{CK`{ce}}}{{CDh{cee}}}{DDjDDfEf}{}}{{{DBf{ce}}}{{DCj{cee}}}{DDjDDfEf}{}}{{{CEl{ce}}}{{j{cc}}}Ef{}}{{{DBj{ce}}}{{j{ccc}}}Ef{}}{{{D@d{ce}}}{{j{cc}}}Ef{}}{{{DBd{ce}}}{{j{ccc}}}Ef{}}{{{Bb{{DC`{ceg}}}}}{{j{cc}}}Ef{}{}}{{{Bb{{DCb{ceg}}}}}{{j{ccc}}}Ef{}{}}{{{CK`{ce}}}{{j{cc}}}Ef{}}{{{DBf{ce}}}{{j{ccc}}}Ef{}}{{{DBj{ce}}}{{j{cccc}}}{DDfEf}{}}{{{DBf{ce}}}{{j{cccc}}}{DDjEf}{}}{{{Bb{{CKh{ce}}}}}{{CKh{Ije}}}{CNbEf}{}}{{{Bb{{DD`{ce}}}}}{{DD`{Ije}}}{CNbEf}{}}{{{CEl{ce}}}{{CEl{Ije}}}{CNbEf}{}}{{{DBj{ce}}}{{DBj{Ije}}}{CNbEf}{}}{{{Bb{{DCn{ce}}}}}{{DCn{Ije}}}{CNbEf}{}}{{{D@d{ce}}}{{D@d{Ije}}}{CNbEf}{}}{{{DBd{ce}}}{{DBd{Ije}}}{CNbEf}{}}{{{DC`{ceg}}}{{DC`{Ijeg}}}{CNbEf}{}{}}{{{DCb{ceg}}}{{DCb{Ijeg}}}{CNbEf}{}{}}{{{CK`{ce}}}{{CK`{Ije}}}{CNbEf}{}}{{{DBf{ce}}}{{DBf{Ije}}}{CNbEf}{}}{{{Bb{{DCn{ce}}}}}{{DCn{Kne}}}{CNbEf}{}}{{{D@d{ce}}}{{D@d{Kne}}}{CNbEf}{}}{{{Bb{{CKh{ce}}}}}{{CKh{cCDf}}}Ef{}}{{{Bb{{DD`{ce}}}}}{{DD`{cCDf}}}Ef{}}{{{CEl{ce}}}{{CEl{cCDf}}}Ef{}}{{{DBj{ce}}}{{DBj{cCDf}}}Ef{}}{{{Bb{{DCn{ce}}}}}{{DCn{cCDf}}}Ef{}}{{{Bb{{DDb{ceg}}}}}{{DDb{cCDfCDf}}}{D@bCN`}{}{}}{{{Bb{{DCh{ceg}}}}}{{DCh{cCDfCDf}}}Ef{}{}}{{{Bb{{DCl{ceg}}}}}{{DCl{cCDfCDf}}}Ef{}{}}{{{D@d{ce}}}{{D@d{cCDf}}}Ef{}}{{{DBd{ce}}}{{DBd{cCDf}}}Ef{}}{{{Bb{{DC`{ceg}}}}}{{DC`{cCDfCDf}}}Ef{}{}}{{{Bb{{DCb{ceg}}}}}{{DCb{cCDfCDf}}}Ef{}{}}{{{CK`{ce}}}{{CK`{cCDf}}}Ef{}}{{{DBf{ce}}}{{DBf{cCDf}}}Ef{}}{{{Bb{{CDh{ceg}}}}}{{CDh{cCDfCDf}}}Ef{}{}}{{{Bb{{DCj{ceg}}}}}{{DCj{cCDfCDf}}}Ef{}{}}{{{Bb{{CKh{ce}}}}}{{CKh{Ide}}}{CNbEf}{}}{{{Bb{{DD`{ce}}}}}{{DD`{Ide}}}{CNbEf}{}}{{{CEl{ce}}}{{CEl{Ide}}}{CNbEf}{}}{{{DBj{ce}}}{{DBj{Ide}}}{CNbEf}{}}{{{Bb{{DCn{ce}}}}}{{DCn{Ide}}}{CNbEf}{}}{{{D@d{ce}}}{{D@d{Ide}}}{CNbEf}{}}{{{DBd{ce}}}{{DBd{Ide}}}{CNbEf}{}}{{{DC`{ceg}}}{{DC`{Ideg}}}{CNbEf}{}{}}{{{DCb{ceg}}}{{DCb{Ideg}}}{CNbEf}{}{}}{{{CK`{ce}}}{{CK`{Ide}}}{CNbEf}{}}{{{DBf{ce}}}{{DBf{Ide}}}{CNbEf}{}}{{{CEl{ce}}}{{CK`{ce}}}Ef{}}{{{DBj{ce}}}{{DBf{ce}}}Ef{}}{{{D@d{ce}}}{{CK`{ce}}}Ef{}}{{{DBd{ce}}}{{DBf{ce}}}Ef{}}{{{Bb{{DC`{ceg}}}}}{{CK`{ce}}}Ef{}{}}{{{Bb{{DCb{ceg}}}}}{{DBf{ce}}}Ef{}{}}{DBn}{{{Bb{{DC`{ceg}}}}{Bb{{CKh{ce}}}}}{{CKh{g}}}{AjEf}{}{}}{{{DBl{ceg}}{Bb{{CKh{ce}}}}}{{CKh{g}}}{EfM`}{}{}}{{{Bb{{DCb{ceg}}}}{Bb{{CKh{ce}}}}}{{CKh{g}}}{AjEf}{}{}}{{{DBl{ceg}}{Bb{{DD`{ce}}}}}{{DD`{g}}}{EfM`}{}{}}{{{Bb{{DCb{ceg}}}}{Bb{{DD`{ce}}}}}{{DD`{g}}}{AjEf}{}{}}{{{Bb{{DCh{ceg}}}}{CEl{ce}}}{{CEl{cg}}}D@b{}{}}{{{Bb{{DCh{cCDfCDf}}}}{CEl{cCDf}}}{{CEl{cCDf}}}CLh}{{{DBl{ceg}}{CEl{ce}}}{{CEl{g}}}{EfM`}{}{}}{{{Bb{{DBl{cCDfCDf}}}}{CEl{cCDf}}}{{CEl{cCDf}}}CLh}{{{Bb{{DC`{ceg}}}}{CEl{ce}}}{{CEl{g}}}{AjEf}{}{}}{{{Bb{{DC`{cCDfCDf}}}}{CEl{cCDf}}}{{CEl{cCDf}}}CLh}{{{Bb{{CDh{ceg}}}}{CEl{ce}}}{{CEl{cg}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}}{{{Bb{{CDh{cCDfCDf}}}}{CEl{cCDf}}}{{CEl{cCDf}}}CLh}{{{Bb{{DCl{ceg}}}}{CEl{ce}}}{{CEl{cg}}}{CN`D@b}{}{}}{{{Bb{{DCb{ceg}}}}{Bb{{CEl{ce}}}}}{{CEl{g}}}{AjEf}{}{}}{{{Bb{{DCj{ceg}}}}{CEl{ce}}}{{Bf{{CEl{cg}}}}}{{CNl{}{{Ah{}}}}DDjBBjEf{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}}{{{Bb{{DCj{ceg}}}}{CEl{ce}}}{{DDh{cg}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}}{{{Bb{{DCl{ceg}}}}{DBj{ce}}}{{DBj{cg}}}{CN`D@b}{}{}}{{{DBl{ceg}}{DBj{ce}}}{{DBj{g}}}{EfM`}{}{}}{{{Bb{{DCb{ceg}}}}{Bb{{DBj{ce}}}}}{{DBj{g}}}{AjEf}{}{}}{{{Bb{{DCj{ceg}}}}{DBj{ce}}}{{Bf{{DBj{cg}}}}}{{CNl{}{{Ah{}}}}DDjBBjEf{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}}{{{Bb{{DCj{ceg}}}}{DBj{ce}}}{{DDh{cg}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}}{{{DBl{ceg}}{Bb{{DCn{ce}}}}}{{DCn{g}}}{EfM`}{}{}}{{{Bb{{DC`{ceg}}}}{Bb{{DCn{ce}}}}}{{DCn{g}}}{{Aj{}{{Ah{}}}}Ef}{}{}}{{{Bb{{DCb{ceg}}}}{Bb{{DCn{ce}}}}}{{DCn{cg}}}{{Aj{}{{Ah{}}}}Ef}{}{}}{{{DBl{ceg}}{D@d{ce}}}{{D@d{g}}}{EfM`}{}{}}{{{Bb{{DC`{ceg}}}}{D@d{ce}}}{{D@d{cg}}}{}{}{}}{{{DCb{ceg}}{D@d{ce}}}{{D@d{cg}}}{}{}{}}{{{Bb{{DCh{cCDfCDf}}}}{CK`{cCDf}}}{{CK`{cCDf}}}CLh}{{{Bb{{DCh{ceg}}}}{CK`{ce}}}{{CK`{cg}}}D@b{}{}}{{{DBl{ceg}}{CK`{ce}}}{{CK`{g}}}{EfM`}{}{}}{{{Bb{{DBl{cCDfCDf}}}}{CK`{cCDf}}}{{CK`{cCDf}}}CLh}{{{Bb{{DC`{cCDfCDf}}}}{CK`{cCDf}}}{{CK`{cCDf}}}CLh}{{{Bb{{CDh{ceg}}}}{CK`{ce}}}{{CK`{cg}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}}{{{Bb{{CDh{cCDfCDf}}}}{CK`{cCDf}}}{{CK`{cCDf}}}CLh}{{{Bb{{DCl{ceg}}}}{CK`{ce}}}{{CK`{cg}}}{CN`D@b}{}{}}{{{Bb{{DCj{ceg}}}}{CK`{ce}}}{{CK`{cg}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}}{{{Bb{{DCl{ceg}}}}{DBf{ce}}}{{DBf{cg}}}{CN`D@b}{}{}}{{{Bb{{DCj{ceg}}}}{DBf{ce}}}{{DBf{cg}}}{Ef{Aj{}{{Ah{}}}}{M`{}{{Ah{}}}}}{}{}}{{{Bb{{CKh{ce}}}}{CK`{ce}}}{{CKh{ce}}}{Ef{Aj{}{{Ah{}}}}}{}}{{{Bb{{DD`{ce}}}}{DBf{ce}}}{{DD`{ce}}}{Ef{Aj{}{{Ah{}}}}}{}}{{{Bb{{DCn{ce}}}}{CK`{ce}}}{{DCn{ce}}}{Ef{Aj{}{{Ah{}}}}}{}}{{cc}{{CDh{ceg}}}{DDjDDf}{}{}}{{ccc}{{DCj{ceg}}}{DDjDDf}{}{}}{DDbDBf}{{{Bb{{CKh{ce}}}}}{{Bf{{CKh{ge}}}}}{CNbEf}{}CNb}{{{Bb{{DD`{ce}}}}}{{Bf{{DD`{ge}}}}}{CNbEf}{}CNb}{{{DBh{ce}}}{{Bf{{DBh{ge}}}}}{CNbEd}{}CNb}{{{CEl{ce}}}{{Bf{{CEl{ge}}}}}{CNbEf}{}CNb}{{{DBj{ce}}}{{Bf{{DBj{ge}}}}}{CNbEf}{}CNb}{{{Bb{{DCn{ce}}}}}{{Bf{{DCn{ge}}}}}{CNbEf}{}CNb}{{{DBl{ceg}}}{{Bf{{DBl{ieg}}}}}CNb{}{}CNb}{{{D@d{ce}}}{{Bf{{D@d{ge}}}}}{CNbEf}{}CNb}{{{DBd{ce}}}{{Bf{{DBd{ge}}}}}{CNbEf}{}CNb}{{{DC`{ceg}}}{{Bf{{DC`{ieg}}}}}{CNbEf}{}{}CNb}{{{DCb{ceg}}}{{Bf{{DCb{ieg}}}}}{CNbEf}{}{}CNb}{{{CK`{ce}}}{{Bf{{CK`{ge}}}}}{CNbEf}{}CNb}{{{DBf{ce}}}{{Bf{{DBf{ge}}}}}{CNbEf}{}CNb}{{{Bb{{CDh{ceg}}}}}{{Bf{{CDh{ieg}}}}}{CNbEf}{}{}CNb}{{{Bb{{DCj{ceg}}}}}{{Bf{{DCj{ieg}}}}}{CNbEf}{}{}CNb}{{}{{Bl{c}}}{}}0000000000000000000000{c{{Bl{e}}}{}{}}0000000000000000000000{{}{{Bl{c}}}{}}0000000000000000000000{{}{{Bl{c{ABj{c}}}}}{}}0000000000000000000000{{{CK`{ce}}}{{Bf{{CK`{ce}}}}}D@b{}}{{{DBf{ce}}}{{Bf{{DBf{ce}}}}}D@b{}}{BbABl}0000000000000000000000{ce{}{}}0000000000000000000000{{}c{}}0000000000000000000000{{{Bb{{CKh{ce}}}}{Bb{{CKh{ce}}}}}{{CKh{ce}}}{EfBBj}{}}{{{Bb{{DD`{ce}}}}{Bb{{DD`{ce}}}}}{{DD`{ce}}}{EfBBj}{}}{{{Bb{{DCn{ce}}}}{Bb{{DCn{ce}}}}}{{DCn{ce}}}{EfBBj{Aj{}{{Ah{}}}}{ABf{}{{Ah{}}}}DDj}{}}{{cccc}{{DCl{ceg}}}D@b{}{}}{Bb{{Bf{{Bb{c}}}}}{}}0000000000000000000000{{cc}{{CK`{ce}}}{}{}}{{ccc}{{DBf{ce}}}{}{}}{{{Bb{{DCl{ceg}}}}}{{DBf{cCDf}}}Ef{}{}}{{{Bb{{DBn{ce}}}}}c{Ef{Aj{}{{Ah{}}}}}{}}{{{Bb{{DD`{ce}}}}}c{Ef{M`{}{{Ah{}}}}{ABf{}{{Ah{}}}}}{}}{{{DBd{ce}}}c{{M`{}{{Ah{}}}}Ef}{}}{{}c{}}0000000000000000000000{DDh}{{{Bb{{CKh{ce}}}}}c{Ef{ABf{}{{Ah{}}}}}{}}{{{Bb{{DD`{ce}}}}}c{Ef{ABf{}{{Ah{}}}}}{}}{{{Bb{{DCn{ce}}}}}c{Ef{Aj{}{{Ah{}}}}}{}}{D@d}{DBd}{{{Bb{{CDh{ceg}}}}}{{CDh{cei}}}Ef{}{}{}}{{{Bb{{DCj{ceg}}}}}{{DCj{cei}}}Ef{}{}{}}{{{CK`{ce}}c}{{CK`{ce}}}D@b{}}0{{{DBf{ce}}c}{{DBf{ce}}}D@b{}}10{{{Bb{{CDh{ceg}}}}}{{CDh{cig}}}Ef{}{}{}}{{{Bb{{DCj{ceg}}}}}{{DCj{cig}}}Ef{}{}{}};{CEl}{DBj}{DC`}{DCb}{CK`}{DBf}{DCdC`}{DCfC`}{{{Bb{{CKh{ce}}}}}{{ALl{c}}}Ef{}}{{{Bb{{DD`{ce}}}}}{{ALl{c}}}Ef{}}{{{Bb{{DCn{ce}}}}}{{ALl{c}}}{Ef{Aj{}{{Ah{}}}}}{}}{{{DBj{ce}}}{{CEl{ce}}}Ef{}}{{{DBf{ce}}}{{CK`{ce}}}Ef{}}{DCfDCd}{{{Bb{{DD`{ce}}}}}c{Ef{M`{}{{Ah{}}}}{ABf{}{{Ah{}}}}}{}}3210{DDh}?>=<;:98765{{{CEl{ce}}}{{CEl{ce}}}Ef{}}{{{CK`{ce}}}{{CK`{ce}}}Ef{}}65432{DBj}?=;9{{}{{CKh{ce}}}DDj{}}{{}{{DD`{ce}}}DDj{}}{{}{{DBh{ce}}}DDj{}}{{}{{CEl{ce}}}DDj{}}0{{}{{DBj{ce}}}DDj{}}0{{}{{DCn{ce}}}DDj{}}{{}{{DBn{ce}}}DDj{}}{{}{{D@d{ce}}}DDj{}}0{{}{{DBd{ce}}}DDj{}}0{{}{{CK`{ce}}}DDj{}}0{{}{{DBf{ce}}}DDj{}}0{{{CEl{ce}}{CEl{ce}}i}{{CK`{ge}}}{}{}{}{{Ln{cc}{{Ah{g}}}}}}{{{DBj{ce}}{DBj{ce}}i}{{DBf{ge}}}{}{}{}{{Ln{cc}{{Ah{g}}}}}}{{{CK`{ce}}{CK`{ce}}i}{{CK`{ge}}}{}{}{}{{Ln{cc}{{Ah{g}}}}}}{{{DBf{ce}}{DBf{ce}}i}{{DBf{ge}}}{}{}{}{{Ln{cc}{{Ah{g}}}}}}`{{}c{}}{{{Bb{CN`}}{Bb{CN`}}}C`}{{{Bb{CN`}}{Bb{CN`}}{Bb{c}}}C`{}}{{cc}cBBj}0````````````````````{DEd}{DEf}{DEh}{COh}1{DEj}003{DEl}{DEn}10001010001010000000{COlCEl}{DF`DBj}10{DFbCEl}58{DFdDCl}{DFbD@d}:{DFdDBf}{DFf}:;{D@j}{DFh}{D@l}{DFj}4{DFl}{DFn}54326104260`````{DDdDDd}{DDnDDn}{{}DDf}{DE`DE`}{{}DDj}````{eg{}{{l{c}}}{}}00{ce{}{}}00{{}c{}}00{Bb{{Bb{Dl}}}}00{{{Bb{B`}}}{{Bb{B`Dl}}}}00{Bb{{Bb{c}}}{}}00{{{Bb{B`}}}{{Bb{B`c}}}{}}00{{{Fl{c}}}e{}{}}00666{CMfCEl}{Id{{Bb{c}}}{}}00{Id{{Bb{B`c}}}{}}00555{IdBd}00{cc{}}004000{ce{}{}}00{{}Id}00{{}c{}}00000{{{I`{c}}}{{I`{Dl}}}{}}00{{{Lj{c}}}{{Lj{Dl}}}{}}00{{{Ll{c}}}{{Ll{Dl}}}{}}00;;;333333{{}c{}}0{{}c{}}00{{{Bb{{CMf{c}}}}c}{{DG`{c}}}CLh}{{{Bb{B`{COd{c}}}}}{{Bf{{CEl{cCDf}}}}}CLh}{{{Bb{B`{COf{c}}}}}{{Bf{c}}}CLh}{{{Bb{{COd{c}}}}}{{j{Id{Bf{Id}}}}}CLh}{{{Bb{{COf{c}}}}}{{j{Id{Bf{Id}}}}}CLh}{CMfCEl}{{}{{Bl{c}}}{}}00{c{{Bl{e}}}{}{}}00{{}{{Bl{c}}}{}}00{{}{{Bl{c{ABj{c}}}}}{}}00{BbABl}00{ce{}{}}00{{}c{}}00{Bb{{Bf{{Bb{c}}}}}{}}00{{}c{}}00```{{{Bb{{CM`{}{{CLn{c}}}}}}c}{{CM`{}{{CLn{c}}}}}CLh}{{{Bb{{CM`{}{{CLn{c}}}}}}c}cCLh}1{{{Bb{{CM`{}{{CLn{c}}}}}}c}{{CK`{cCDf}}}CLh}11{{{Bb{{CM`{}{{CLn{c}}}}}}}{{CM`{}{{CLn{c}}}}}CLh}{{{Bb{{CM`{}{{CLn{c}}}}}}c{Bb{B`Ln}}}BdCLh}{{{Bb{{CM`{}{{CLn{c}}}}}}}{{CEl{cCDf}}}CLh}{{{Bb{{CM`{}{{CLn{c}}}}}}c}{{CEl{cCDf}}}CLh}{{{Bb{{CM`{}{{CLn{c}}}}}}c}{{j{{CM`{}{{CLn{c}}}}{CM`{}{{CLn{c}}}}}}}CLh}{{{Bb{{CM`{}{{CLn{c}}}}}}{ALl{c}}}{{CM`{}{{CLn{c}}}}}CLh}3{{{Bb{CJb}}{CEl{cCDf}}}{{CEl{cCDf}}}{}}{{{Bb{CJb}}{CK`{cCDf}}}{{CK`{cCDf}}}{}}99{{cccc}{{CNh{c}}}CLh}{{{CK`{cCDf}}{CK`{cCDf}}}cCLh}{{{CEl{cCDf}}{CEl{cCDf}}{CEl{cCDf}}}cCLh}{{cc}{{j{cc}}}If}{{{CK`{cCDf}}}{{CK`{cCDf}}}CLh}{{{CK`{cCDf}}}{{CK`{cCDf}}}If}`````{eg{}{{l{c}}}{}}000{ce{}{}}000{{}c{}}000{Bb{{Bb{Dl}}}}000{{{Bb{B`}}}{{Bb{B`Dl}}}}000{Bb{{Bb{c}}}{}}000{{{Bb{B`}}}{{Bb{B`c}}}{}}000{{{Fl{c}}}e{}{}}000{c{{DGb{c}}}{{ALn{}{{F`{{CEl{dCDf}}}}}}}}7777{Id{{Bb{c}}}{}}000{Id{{Bb{B`c}}}{}}0005555{IdBd}000{{DGdd}{{DGf{DGd}}}}0{cc{}}0000000{ce{}{}}000{{}Id}000{{}c{}}0000000{{{I`{c}}}{{I`{Dl}}}{}}000{{{Lj{c}}}{{Lj{Dl}}}{}}000{{{Ll{c}}}{{Ll{Dl}}}{}}000<<<<33333333{{}c{}}000{{}c{}}000{{dc}{{DGf{c}}}{{ALn{}{{F`{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}}}}}}{{{Bb{c}}e}{{DGh{ec}}}{{CJb{d}}}{{ALn{}{{F`{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}}}}}}{{C`c}{{DGb{c}}}{{ALn{}{{F`{{CEl{dCDf}}}}}}}}{{{Bb{B`{CIn{c}}}}}{{Bf{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}}}{{ALn{}{{F`{{CFh{{j{{CEl{dCDf}}{Bb{{AFn{d}}}}}}{CEl{dCDf}}}}}}}}}}{{{Bb{B`{DGf{c}}}}}{{Bf{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}}}{{ALn{}{{F`{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}}}}}}{{{Bb{B`{DGh{ce}}}}}{{Bf{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}}}{{ALn{}{{F`{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}}}}}{{CJb{d}}}}{{{Bb{B`{DGb{c}}}}}{{Bf{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}}}{{ALn{}{{F`{{CEl{dCDf}}}}}}}}{c{{DGb{c}}}{{ALn{}{{F`{{CEl{dCDf}}}}}}}}{{{Bb{{DGf{c}}}}}{{j{Id{Bf{Id}}}}}{{ALn{}{{F`{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}}}}}}{{DGd{Bb{c}}}{{DGh{DGdc}}}{{CJb{d}}}}0{{}{{Bl{c}}}{}}000{c{{Bl{e}}}{}{}}000{{}{{Bl{c}}}{}}000{{}{{Bl{c{ABj{c}}}}}{}}000{BbABl}000{ce{}{}}000{{}c{}}000{Bb{{Bf{{Bb{c}}}}}{}}000{{}c{}}000{{{CIn{c}}}c{{ALn{}{{F`{{CFh{{j{{CEl{dCDf}}{Bb{{AFn{d}}}}}}{CEl{dCDf}}}}}}}}}}`````````{DGjd}{DGld}{DGnd}00000{DH`CEl}0{{dd}{{CEl{dCDf}}}}{DHbd}{{dd}{{D@d{dCDf}}}}{{dd}{{CK`{dCDf}}}}6{DHdd}{DHfd}{DHhd}210``````````````{eg{}{{l{c}}}{}}00{ce{}{}}00{{}c{}}00{Bb{{Bb{Dl}}}}00{{{Bb{B`}}}{{Bb{B`Dl}}}}00{{{Bb{B`CFd}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}{{{Bb{B`CFd}}{CEl{dCDf}}}CEh}{{{Bb{B`DHj}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}0{Bb{{Bb{c}}}{}}00{{{Bb{B`}}}{{Bb{B`c}}}{}}00{CFdId}0{DHjId}0{{{Fl{c}}}e{}{}}00{{{Bb{CId}}}CId}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}>>>{{{Bb{B`CFd}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}}CEh}{{{Bb{B`CFd}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}{{{Bb{B`DHj}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}0{Id{{Bb{c}}}{}}00{Id{{Bb{B`c}}}{}}00<<<{IdBd}00{{{Bb{B`CFd}}C`}Bd}0{{{Bb{B`DHj}}C`}Bd}0{cc{}}00000{ce{}{}}00{{}Id}00{{}c{}}00000{{{I`{c}}}{{I`{Dl}}}{}}00{{{Lj{c}}}{{Lj{Dl}}}{}}00{{{Ll{c}}}{{Ll{Dl}}}{}}00{{{Fl{c}}}e{}{}}00444444{{}c{}}{{}c{}}00{{{Bb{B`CFd}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}{{{Bb{B`CFd}}{CEl{dCDf}}}CEh}{{{Bb{B`DHj}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}0{{{Bb{B`CEd}}Id}DHj}{{{Bb{B`CId}}}{{Bf{CEb}}}}0{{{Bb{CFd}}}Id}{{{Bb{DHj}}}Id}{{{Bb{B`CFd}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}{{{Bb{B`CFd}}{CEl{dCDf}}{CEl{dCDf}}}CEh}{{{Bb{B`DHj}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}0{{{Bb{B`CFd}}IdId}Bd}0{{{Bb{B`DHj}}IdId}Bd}0{{{Bb{CId}}}{{j{Id{Bf{Id}}}}}}{Bbc{}}{{}{{Bl{c}}}{}}00{c{{Bl{e}}}{}{}}00{{}{{Bl{c}}}{}}00{{}{{Bl{c{ABj{c}}}}}{}}00{BbABl}00{ce{}{}}00{{}c{}}00{Bb{{Bf{{Bb{c}}}}}{}}00{{}c{}}00{{CFdId}DHj}``````{eg{}{{l{c}}}{}}000{ce{}{}}0005555{Bb{{Bb{Dl}}}}000{{{Bb{B`}}}{{Bb{B`Dl}}}}000{Bb{{Bb{c}}}{}}000{{{Bb{B`}}}{{Bb{B`c}}}{}}000{{{Fl{c}}}e{}{}}000{{{Bb{CIh}}}CIh}{{{Bb{{CIf{c}}}}}{{CIf{c}}}Ed}{{{Bb{{CIj{c}}}}}{{CIj{c}}}Ed}{{{Bb{CHl}}}CHl}{{Bb{Bb{B`c}}}Bd{}}000{{BbGn}Bd}000{CG`C`}{CGbC`}===={Id{{Bb{c}}}{}}000{Id{{Bb{B`c}}}{}}000<<<<{IdBd}000{cc{}}0000000{ce{}{}}000{{}Id}000{{}c{}}0000000{{{I`{c}}}{{I`{Dl}}}{}}000{{{Lj{c}}}{{Lj{Dl}}}{}}000{{{Ll{c}}}{{Ll{Dl}}}{}}000{{{Fl{c}}}e{}{}}00044444444{{}c{}}000{{}c{}}000{{{ALl{Ij}}C`}CHl}{{{Bb{B`CIh}}}{{Bf{{CFh{CEhCGn}}}}}}{{{Bb{B`{CIf{c}}}}}{{Bf{{CFh{{Bb{c}}Bd}}}}}{}}{{{Bb{B`{CIj{c}}}}}{{Bf{{CFh{{CEl{dCDf}}{CEl{dCDf}}}}}}}CHj}{{{Bb{B`CHl}}}{{Bf{{CFh{CEhCGn}}}}}}{{}{{DHl{c}}}{}}{CG`Bb}{CGbBb}{Bbc{}}000{{}{{Bl{c}}}{}}000{c{{Bl{e}}}{}{}}000{{}{{Bl{c}}}{}}000{{}{{Bl{c{ABj{c}}}}}{}}000{BbABl}000{ce{}{}}000{{}c{}}000{Bb{{Bf{{Bb{c}}}}}{}}000{{}c{}}000`````{{{Bb{B`CKf}}{CK`{dCDf}}{CKb{d}}CFf{CEl{dCDf}}}Bd}{{{Bb{B`CJn}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}{{{CLb{}{{CL`{c}}}}}c{}}{{{Bb{B`CKf}}}Bd}{{{Bb{B`CJn}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}{{{Bb{B`CKf}}{CEl{dCDf}}{CEl{dCDf}}{CEl{dCDf}}}Bd}{{{Bb{B`CJn}}C`}Bd}{{{Bb{B`CKf}}d}Bd}6{{{Bb{B`CKf}}{CEl{dCDf}}}Bd}0{{{Bb{CJn}}}Id}{{{Bb{B`CJn}}{CEl{dCDf}}{CEl{dCDf}}{Bb{{AFn{d}}}}}CEh}{{{Bb{B`CKf}}{CEl{dCDf}}{CEl{dCDf}}}Bd}{{{Bb{B`CKf}}{CK`{dCDf}}{CKb{d}}CFf{CK`{dCDf}}}Bd}{{{Bb{B`CKf}}{CK`{dCDf}}{CK`{dCDf}}{CK`{dCDf}}}Bd}6{{{Bb{B`CKf}}{CK`{dCDf}}}Bd}0{{{Bb{B`CKf}}{CK`{dCDf}}{CK`{dCDf}}}Bd}847018`````````````{CC`CCb}{CC`CCf}{CC`CCd}{CCfId}{CCfBb}{CC`CCh}{CC`d}``````````{eg{}{{l{c}}}{}}00{ce{}{}}00{{}c{}}00{Bb{{Bb{Dl}}}}00{{{Bb{B`}}}{{Bb{B`Dl}}}}00{OfGh}{OfG`}{Bb{{Bb{c}}}{}}00{{{Bb{B`}}}{{Bb{B`c}}}{}}00{{{Fl{c}}}e{}{}}00{{{Bb{{BOj{c}}}}}{{BOj{c}}}Ed}{{{Bb{Od}}}Od}{{{Bb{Of}}}Of}{{Bb{Bb{B`c}}}Bd{}}00{{BbGn}Bd}00{BOjAGl}>>>{{{Bb{El}}Od}Of}{{}c{}}{Id{{Bb{c}}}{}}00{Id{{Bb{B`c}}}{}}00<<<{IdBd}00{{{Bb{{BOj{c}}}}{Bb{{BOj{c}}}}}C`Eh}{{{Bb{Od}}{Bb{Od}}}C`}{{{Bb{Of}}{Bb{Of}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{{BOj{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{Od}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Of}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{BOj}{cc{}}00000{ce{}{}}00{Ofb}{{}Id}00{{}c{}}00000{{{I`{c}}}{{I`{Dl}}}{}}00{{{Lj{c}}}{{Lj{Dl}}}{}}00{{{Ll{c}}}{{Ll{Dl}}}{}}00{{{Fl{c}}}e{}{}}00444444{{}c{}}00{BOjAEb}{{{Bb{El}}Od}Of}0{BOjAFb}{BOjBf}{{{Bb{{BJ`{}{{BA`{c}}}}}}{Bb{c}}Od}Of{}}3{OfBf}{Bbc{}}00{{}{{Bl{c}}}{}}00{c{{Bl{e}}}{}{}}00{{}{{Bl{c}}}{}}00{{}{{Bl{c{ABj{c}}}}}{}}00{BbABl}00{ce{}{}}00{{}c{}}00{Bb{{Bf{{Bb{c}}}}}{}}00{{}c{}}00{DHnC`}{DI`C`}{DIbC`}```{eg{}{{l{c}}}{}}{ce{}{}}7{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{{BMh{c}}}}}{{BMh{c}}}Ed}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}8{{}{{BMh{c}}}{JlEd}}{{}c{}}0{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}9{IdBd}{{{Bb{{BMh{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}?22{{}c{}}{{{H`{c}}}{{BMh{c}}}{JlEd}}1{{{Bb{{BMh{c}}}}}{{Bb{{AFn{c}}}}}{JlEd}}{Bbc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}{{{H`{c}}{Bf{{Bb{c}}}}}{{BMh{c}}}{JlEd}}``````{eg{}{{l{c}}}{}}0{ce{}{}}055{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{cA@n{{Fj{Gh}}}}{{A@nc}A@n{{Fj{Gh}}}}{A@nBf}{{A@nc}A@n{{Fj{G`}}}}{A@nG`}{{{Bb{El}}}A@n}{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{B@`}}}B@`}{{{Bb{A@n}}}A@n}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0{{A@nc}A@n{{Fj{b}}}}{ce{}{}}099{{}c{}}{{}A@n}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}0<<{{{Bb{B`c}}{Bb{A@n}}Al}BdAD`}{IdBd}0{{{Bb{B@`}}{Bb{B@`}}}C`}{{{Bb{A@n}}{Bb{A@n}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{B@`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{A@n}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Mh}}}B@`}{cc{}}0{bA@n}{GfA@n}{KdA@n}33{ce{}{}}0{{{Bb{B@`}}{Bb{B`c}}}BdLb}{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{{{Bb{AE`}}GlGlddFhKbK`c}ADn{{Hh{{Bb{AE`}}}{{Ah{ADn}}}}}}{cB@`{{Fj{{AKj{Mh}}}}}}2{{{Bb{El}}}A@n}00{{A@nc}A@n{{Fj{Ff}}}}{A@nFf}{{{Bb{{BGj{}{{BA`{c}}}}}}{Bb{c}}}A@n{}}3{A@nBf}{Bbc{}}0{{{Bb{c}}}A@n{}}{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{{}B@`}{Bb{{Bf{{Bb{c}}}}}{}}0{c{{f{{Bf{Al}}}}}{{Fj{B@`}}}}{{}c{}}0`````````{eg{}{{l{c}}}{}}{ce{}{}}6{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}5{{{DId{c}}Gj}{{DId{c}}}{}}{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}5{{{Bb{B`e}}ACf{Bb{Al}}{Bb{c}}GjAGfDjdd}BdEd{{AGj{}{{AGh{c}}}}}}{{{Bb{{DId{c}}}}{Bb{ACl}}{Bb{B`e}}{Bb{g}}{Bb{ADd}}ACfADf{Bb{Al}}}BdEd{{AGj{}{{AGh{c}}}}}{}}{IdBd}{{{DId{c}}AGf}{{DId{c}}}{}}{cc{}}0{ce{}{}}{{{DId{c}}e}{{DId{c}}}{}{{Fj{Gl}}}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}?33{{}c{}}{{{Bb{e}}{Bb{AE`}}{Bb{c}}GlGlGjDj}ADn{}{{AGj{}{{AGh{c}}}}}}{{{Bb{{DId{c}}}}{Bb{B`ACl}}{Bb{e}}{Bb{AE`}}}ADnEd{{AGj{}{{AGh{c}}}}}}{{{DId{c}}d}{{DId{c}}}{}}0{{{Bb{{DId{c}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{e}}}AEdEd{{AGj{}{{AGh{c}}}}}}{e{{DId{c}}}{}{{Fj{c}}}}{{{DId{c}}e}{{DId{c}}}{}{{Fj{Ab}}}}3{{{Bb{{DId{c}}}}}{{An{Gl}}}Ed}{{{Bb{{DId{c}}}}}AFdEd}{{{Bb{{DId{c}}}}}AFfEd}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{{Bb{B`{DId{c}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{e}}{Bb{B`AEj}}{Bb{B`{ACd{g}}}}{Bb{Al}}}BdEd{{AGj{}{{AGh{c}}}}}{}}`{c{{DId{c}}}{}}{{}c{}}{{{DId{c}}e}{{DId{c}}}{}{{Fj{Gl}}}}{AHjIj}{AHjAGd}{AHjAFl}2``{eg{}{{l{c}}}{}}{ce{}{}}:{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{DIf}}}DIf}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}8{{}DIf}{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}8{IdBd}{{{Bb{DIf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}?33{{}c{}}{{{Bb{DIf}}}C`}=1{{{Bb{c}}Bb{Bb{DIf}}AnGj}AnAGj}{Bbc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}`{eg{}{{l{c}}}{}}{{{C@b{cegi}}Fn}{{C@b{cegi}}}{EfEh}{}{}AD`}{ce{}{}}5{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{{C@b{cegi}}}}}{{H`{ACl}}}{EfEh}{}{}AD`}`6{{}{{C@b{ceg}}}{EfEh}{}AD`}{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}{{{Bb{{C@b{cegi}}}}{Bb{B`ACl}}}Bd{EfEh}{}{}AD`}7{{{Bb{{C@b{cegi}}}}{Bb{ACl}}{Bb{B`i}}{Bb{g}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{EfEh}{}{}AD`}{IdBd}{{{C@b{cegi}}k}{{C@b{cegi}}}{EfEh}{}{}AD`{{Fb{}{{F`{{j{c{AHn{egi}}}}}}}}}}{cc{}}0{ce{}{}}{{{H`{c}}{H`{{AHn{egi}}}}}{{C@b{cegi}}}{EfEh}{}{}AD`}{{{C@b{cegi}}k}{{C@b{cegi}}}{EfEh}{}{}AD`{{Fj{Gl}}}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}33{{}c{}}{{{Bb{{C@b{cegi}}}}{Bb{B`ACl}}{Bb{i}}{Bb{AE`}}}ADn{EfEh}{}{}AD`}{{{C@b{cegi}}k}{{C@b{cegi}}}{EfEh}{}{}AD`{{Fj{Ab}}}}{{{Bb{{C@b{cegi}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{i}}}AEd{EfEh}{}{}AD`}{{}{{C@b{cegi}}}{EfEh}{}{}AD`}4{{{Bb{{C@b{cegi}}}}{Bb{B`ACl}}ACf{Bb{i}}{Bb{B`AEf}}}Bd{EfEh}{}{}AD`}{{{Bb{B`{C@b{cegi}}}}{Bb{B`ACl}}ACf{Bb{i}}Af}{{Bf{{AEh{egi}}}}}{EfEh}{}{}AD`}{{{C@b{cegi}}k}{{C@b{cegi}}}{EfEh}{}{}AD`{{Fj{Fh}}}}{{{C@b{cegi}}ck}{{C@b{cegi}}}{EfEh}{}{}AD`{{Fj{{AHn{egi}}}}}}{{{C@b{cegi}}c{Bf{k}}}{{C@b{cegi}}}{EfEh}{}{}AD`{{Fj{{AHn{egi}}}}}}{{{Bb{{C@b{cegi}}}}}{{An{Gl}}}{EfEh}{}{}AD`}8{{{Bb{{C@b{cegi}}}}}AFd{EfEh}{}{}AD`}{{{Bb{{C@b{cegi}}}}}AFf{EfEh}{}{}AD`}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{{Bb{B`{C@b{cegi}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{i}}{Bb{B`AEj}}{Bb{B`{ACd{e}}}}{Bb{Al}}}Bd{EfEh}{}{}AD`}{{}c{}}{{{C@b{cegi}}k}{{C@b{cegi}}}{EfEh}{}{}AD`{{Fj{Gl}}}}{Id{{C@b{cegi}}}{EfEh}{}{}AD`}{k{{C@b{cegi}}}{EfEh}{}{}AD`{{Fb{}{{F`{{j{c{AHn{egi}}}}}}}}}}``````````````````````{eg{}{{l{c}}}{}}000000{ce{}{}}0000008888888{Bb{{Bb{Dl}}}}000000{{{Bb{B`}}}{{Bb{B`Dl}}}}000000{{{Bb{C@d}}}{{Bb{Mh}}}}00{AKnGh}{AKnG`}{Bb{{Bb{c}}}{}}000000{{{Bb{B`}}}{{Bb{B`c}}}{}}000000{{{Fl{c}}}e{}{}}000000{{{Bb{C@d}}}C`}{{{Bb{C@d}}}C@d}{{{Bb{DIh}}}DIh}{{{Bb{C@f}}}C@f}{{{Bb{DIj}}}DIj}{{{Bb{C@h}}}C@h}{{{Bb{DIl}}}DIl}{{Bb{Bb{B`c}}}Bd{}}00000{{BbGn}Bd}00000{{{Bb{C@d}}{Bb{C@d}}}Mj}{{{Bb{DIh}}{Bb{DIh}}}Mj}{{C@h{Bb{{AFn{DIj}}}}e}{{AHn{cgi}}}{}{{Bj{C@d}{{Ah{c}}}}Ed}C@j{{AMl{}{{AL`{Gd}}}}}}{{}c{}}{{{Bb{DIn}}C@h{Bf{{Bb{Mh}}}}{Bb{Mh}}{Bb{{AFn{DIj}}}}}{{AHn{ceg}}}{}C@j{{AMl{}{{AL`{Gd}}}}}}{C@hAb}{{Bb{Bb{c}}}Mj{}}0{ce{}{}}000000{{}DJ`}{Id{{Bb{c}}}{}}000000{Id{{Bb{B`c}}}{}}000000{c{{Bl{C@d}}}BEj}0{{{Bb{BEl}}}{{Bl{BEn}}}}{{{Bb{C@d}}}{{Bf{{Bb{Mh}}}}}}{Bb{{Bb{c}}}{}}000000{IdBd}000000{{{Bb{C@d}}{Bb{C@d}}}C`}{{{Bb{DIh}}{Bb{DIh}}}C`}{{{Bb{DIl}}{Bb{DIl}}}C`}{{Bb{Bb{c}}}C`{}}00000{{{Bb{C@d}}{Bb{B`Jd}}}{{Bl{BdJf}}}}0{{{Bb{DIh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}0{{{Bb{DJ`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{C@f}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{DIj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{C@h}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{DIl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}={cc{}}00000{ElC@h}{{{Bb{El}}}C@h}{{{Bb{El}}}DIl}{HdDIl}{ElDIl}55555555{c{{Bl{C@dBd}}}{{AF`{DAb}}}}02{ce{}{}}000000{{{Bb{Mh}}}{{Bl{C@dDJb}}}}{C@hAb}00000{{{Bb{C@d}}}C`}0{{{Bb{C@d}}{Bb{B`c}}}BdLb}{{{Bb{DIh}}{Bb{B`c}}}BdLb}{{C@h{Bb{DIh}}{Bb{DIj}}Ide}{{AHn{cgi}}}{}{{Bj{C@d}{{Ah{c}}}}}C@j{{AMl{}{{AL`{Gd}}}}}}{{{Bb{DIn}}C@h{Bb{DIh}}{Bb{DIj}}Id}{{AHn{ceg}}}{}C@j{{AMl{}{{AL`{Gd}}}}}}{{{Bb{C@d}}}{{Bf{{DJd{{Bb{Mh}}}}}}}}{{{Bb{C@d}}}{{Bf{{Bb{Mh}}}}}}{{{Bb{DIn}}C@h{Bb{C@d}}{Bb{Mh}}{Bb{DIj}}}{{AHn{ceg}}}{}C@j{{AMl{}{{AL`{Gd}}}}}}{{{Bb{DJ`}}}{{Bb{{DJf{C@d}}}}}}{{{Bb{C@d}}DJh}{{Bb{Mh}}}}{{{Bb{C@d}}{DJl{DJj}}}{{Bb{Mh}}}}{{{Bb{C@d}}{DJn{DJj}}}{{Bb{Mh}}}}{{{Bb{C@d}}{ALl{DJj}}}{{Bb{Mh}}}}{{}Id}000000{DIlb}{DIlAKn}{DIlFh}{{}c{}}0000000000000{{{I`{c}}}{{I`{Dl}}}{}}000000{{{Lj{c}}}{{Lj{Dl}}}{}}000{{{Ll{c}}}{{Ll{Dl}}}{}}000000{{{Fl{c}}}e{}{}}00000044444444444444{{}c{}}000000{C@dHb}{{{Bb{C@d}}}C`}{{{Bb{i}}C@h{Bb{C@f}}Id}{{AHn{ceg}}}{}C@j{{AMl{}{{AL`{Gd}}}}}{{DIn{ceg}}}}{{{Bb{DJ`}}}{{Bb{{AFn{C@f}}}}}}{{{Bb{C@d}}{Bb{Mh}}}{{Bl{C@dDJb}}}}{BbId}{BbGn}?{{{Bb{C@d}}{Bb{C@d}}}{{Bf{Hb}}}}{{}DJ`}9{C@dc{}}{{}DK`}{{{Bb{i}}C@hKn{Bb{{AFn{{H`{C@f}}}}}}}{{AHn{ceg}}}{}C@j{{AMl{}{{AL`{Gd}}}}}{{DIn{ceg}}}}{{{Bb{DIn}}C@hKn{Bb{{AFn{{H`{C@f}}}}}}}{{AHn{ceg}}}{}C@j{{AMl{}{{AL`{Gd}}}}}}{{{Bb{C@d}}}DKb}{{C@h{Bb{DIj}}e}{{AHn{cgi}}}{}{{Bj{C@d}{{Ah{c}}}}}C@j{{AMl{}{{AL`{Gd}}}}}}{{{Bb{DIn}}C@h{Bb{DIj}}}{{AHn{ceg}}}{}C@j{{AMl{}{{AL`{Gd}}}}}}{{{Bb{Mh}}}{{`{{ALn{}{{F`{C@f}}}}}}}}{{{Bb{Mh}}}{{Bl{C@dDJb}}}}{{{Bb{Mh}}}DJ`}{{{Bb{Mh}}c}{{Bl{C@dDJb}}}Fb}{{{Bb{C@d}}{Bb{C@d}}}{{Bf{Mj}}}}{{{Bb{DIh}}{Bb{DIh}}}{{Bf{Mj}}}}{{{Bb{C@d}}}{{Bf{{Bb{Mh}}}}}}{{{Bb{C@d}}}{{Bb{Mh}}}}{{{Bb{C@d}}}{{Bf{{DKd{AGl}}}}}}{{{Bb{B`C@d}}}{{Bl{DKfBd}}}}{{{Bb{C@d}}}{{Bf{Jb}}}}0{{{Bb{B`DJ`}}{Bb{Mh}}}Bd}5{{{Bb{C@d}}}DKh}{{{Bb{B`C@d}}}{{DKl{DKj}}}}6{{{Bb{C@d}}c}BlBFf}0{{{Bb{B`C@d}}{Bf{{Bb{Mh}}}}}Bd}{{{Bb{B`C@d}}{Bf{{Bb{Mh}}}}}{{Bl{BdDJb}}}}{{{Bb{B`C@d}}DKn}{{Bl{BdBd}}}}{{{Bb{B`C@d}}{Bf{{Bb{Mh}}}}}{{Bl{BdBd}}}}{{{Bb{B`C@d}}{Bb{Mh}}}Bd}{{{Bb{B`C@d}}{Bf{Jb}}}{{Bl{BdBd}}}}5{{{Bb{B`C@d}}{Bb{Mh}}}{{Bl{BdBd}}}}0{BbBEl}{{{Bb{C@d}}c}{{Bl{{H`{DL`}}Mf}}}{{Bj{}{{Ah{{Bf{Jb}}}}}}}}{C@hAb}{{{Bb{DIj}}DIl}{{Lj{{AFn{{AKl{C@d}}}}}}}}{BbGn}{C@hDIl}3{{{Bb{C@d}}}{{Bl{AHfBd}}}}{Bbc{}}00000{BbABh}0{BbHb}0{{}{{Bl{c}}}{}}000000{{{Bb{Mh}}}{{Bl{C@d}}}}{c{{Bl{e}}}{}{}}0{Id{{Bl{DIh}}}}11111{{}{{Bl{c}}}{}}000000{{}{{Bl{c{ABj{c}}}}}{}}000000{BbABl}000000{ce{}{}}000000{{}c{}}000000{{{Bb{i}}C@h{Bb{{AFn{{H`{C@f}}}}}}}{{AHn{ceg}}}{}C@j{{AMl{}{{AL`{Gd}}}}}{{DIn{ceg}}}}{{{Bb{DIn}}C@h{Bb{{AFn{{H`{C@f}}}}}}}{{AHn{ceg}}}{}C@j{{AMl{}{{AL`{Gd}}}}}}{Bb{{Bf{{Bb{c}}}}}{}}000000{{{Bb{C@d}}}{{Bb{Mh}}}}{{ce}{{AHn{C@dgi}}}{{Fb{}{{F`{{Bb{C@f}}}}}}}{{Fj{C@h}}}C@j{{AMl{}{{AL`{Gd}}}}}}{{ce{Bb{m}}}{{AHn{gik}}}{{Fb{}{{F`{{Bb{C@f}}}}}}}{{Fj{C@h}}}{}C@j{{AMl{}{{AL`{Gd}}}}}{{DIn{gik}}}}{{}c{}}000000{cC@h{{Fj{DIl}}}}{{ce}C@h{{Fj{Ab}}}{{Fj{DIl}}}}{DLbDIj}{DLdHb}{DLfH`}{DLdBf}{DLdH`}{DLfBf}{DLbHb}{DLbC@d}```````{AAnGh}{AAnG`}{{{Bb{El}}}AAn}{{}c{}}3{AAnb}{{{Bb{{BCn{}{{BA`{c}}}}}}{Bb{c}}}AAn{}}1````````````````````````````````````````````{eg{}{{l{c}}}{}}00000000000000000{{{Bb{{C@l{c}}}}C@nDLh}{{Bf{C@n}}}{}}{{{DLj{ceg}}}{{DLj{ceg}}}{}BGjAD`}{ce{}{}}00000000000000000{{}c{}}00000000000000000{Bb{{Bb{Dl}}}}00000000000000000{{{Bb{B`}}}{{Bb{B`Dl}}}}00000000000000000{DLlGh}{DLlG`}{Bb{{Bb{c}}}{}}00000000000000000{{{Bb{B`}}}{{Bb{B`c}}}{}}00000000000000000{{{Fl{c}}}e{}{}}00000000000000000{{{Bb{DLn}}ACfAd}C`}{{{Bb{{Bb{{CA`{ceg}}}}}}ACfAd}C`{}BGjAD`}{{{CA`{ceg}}i}{{CA`{ceg}}}{}BGjAD`Fj}{{{DLj{ceg}}i}{{DLj{ceg}}}{}BGjAD`Fj}{{{Bb{DM`}}}DM`}{{{Bb{{DMb{c}}}}}{{DMb{c}}}Ed}{{{Bb{DLh}}}DLh}{{{Bb{DMd}}}DMd}{{{Bb{C@n}}}C@n}{{{Bb{DMf}}}DMf}{{{Bb{{C@l{c}}}}}{{C@l{c}}}Ed}{{{Bb{CAl}}}CAl}{{{Bb{DMh}}}DMh}{{{Bb{DMj}}}DMj}{{{Bb{DMl}}}DMl}{{{Bb{CAn}}}CAn}{{{Bb{AAj}}}AAj}{{{Bb{DLl}}}DLl}{{{Bb{DMn}}}DMn}{{Bb{Bb{B`c}}}Bd{}}00000000000000{{BbGn}Bd}00000000000000{{{Bb{B`{C@l{c}}}}C@n}{{Bf{{j{cC@n}}}}}{}}{{{Bb{C@n}}{Bb{C@n}}}Mj}{{{Bb{DMf}}{Bb{DMf}}}Mj}{DMnb}{{Bb{Bb{c}}}Mj{}}0{ce{}{}}00000000000000000{{{DLj{ceg}}i}{{DLj{ceg}}}{}BGjAD`{{Fj{{DN`{ceg}}}}}}{{{Bb{El}}}AAj}{{}c{}}{{}DMj}{Id{{Bb{c}}}{}}00000000000000000{Id{{Bb{B`c}}}{}}00000000000000000{Bb{{Bb{c}}}{}}00000000000000000{{{Bb{{CA`{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}}Bd{}BGjAD`}{{{Bb{{DLj{ceg}}}}{Bb{ACl}}{Bb{B`g}}{Bb{e}}{Bb{ADd}}ACfADf{Bb{Al}}C`}Bd{}BGjAD`}{IdBd}000000000{{{Bb{B`{C@l{c}}}}C@nDMh}Bd{}}11111111{{ik}{{DN`{ceg}}}{}BGjAD`{{Fj{{AHn{ceg}}}}}{{Fj{{AHn{ceg}}}}}}{{{Bb{DM`}}{Bb{DM`}}}C`}{{{Bb{DLh}}{Bb{DLh}}}C`}{{{Bb{C@n}}{Bb{C@n}}}C`}{{{Bb{DMf}}{Bb{DMf}}}C`}{{{Bb{AAj}}{Bb{AAj}}}C`}{{{Bb{DLl}}{Bb{DLl}}}C`}{{{Bb{DMn}}{Bb{DMn}}}C`}{{Bb{Bb{c}}}C`{}}00000000000{{{Bb{DM`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{{DMb{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{DLh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{DMd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{C@n}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{DMf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{{C@l{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{CAl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{DMh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{DMj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{DMl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CAn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AAj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{DLl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{DMn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}{i{{CA`{ceg}}}{}BGjAD`{{Fj{{AHn{ceg}}}}}}1{{{AHn{ceg}}}{{DN`{ceg}}}{}BGjAD`}2222222222222222222222222222222222{ce{}{}}00000000000000000{{{Bb{{C@l{c}}}}C@n}{{Bf{{Bb{c}}}}}{}}{{{Bb{B`{C@l{c}}}}C@n}{{Bf{{Bb{B`c}}}}}{}}{{{Bb{DM`}}{Bb{B`c}}}BdLb}{{{Bb{DMd}}{Bb{B`c}}}BdLb}{{{Bb{C@n}}{Bb{B`c}}}BdLb}{{{Bb{DMf}}{Bb{B`c}}}BdLb}{AAjDLl}{AAjDMn}{{}Id}00000000000000000{C@lDNb}{{}c{}}00000000000000000000000000000000000{{{I`{c}}}{{I`{Dl}}}{}}00000000000000000{{{Lj{c}}}{{Lj{Dl}}}{}}00000000000000{{{Ll{c}}}{{Ll{Dl}}}{}}00000000000000000{{{Fl{c}}}e{}{}}00000000000000000444444444444444444444444444444444444{{}c{}}00000000000000000{{{Bb{{C@l{c}}}}}C`{}}{{{Bb{{DLj{ceg}}}}ACfAd}C`{}BGjAD`}{{{Bb{{C@l{c}}}}}{{`{{ALn{}{{F`{{j{{Bb{C@n}}{Bb{c}}}}}}}}}}}{}}{{{Bb{B`{C@l{c}}}}}{{`{{ALn{}{{F`{{j{{Bb{C@n}}{Bb{B`c}}}}}}}}}}}{}}{{{Bb{{C@l{c}}}}}{{Bb{DMd}}}{}}{{{Bb{{C@l{c}}}}}Id{}}{{{Bb{B`{C@l{c}}}}C@n}Bd{}}{{{Bb{{C@l{c}}}}}{{Bf{C@n}}}{}}{{{Bb{B`{C@l{c}}}}C@nDMl}Bd{}}{i{{CA`{ceg}}}{}BGjAD`{{Fj{{AHn{ceg}}}}}}{i{{DN`{ceg}}}{}BGjAD`{{Fj{{AHn{ceg}}}}}}{i{{DLj{ceg}}}{}BGjAD`{{Fj{{AHn{ceg}}}}}}{c{{j{{C@l{c}}C@n}}}{}}={{{DLj{ceg}}i}{{DLj{ceg}}}{}BGjAD`{{Fj{Fh}}}}{{{Bb{DMd}}dAn}{{DNd{C@nAl}}}}{C@lDNd}{{{Bb{C@n}}{Bb{C@n}}}{{Bf{Mj}}}}{{{Bb{DMf}}{Bb{DMf}}}{{Bf{Mj}}}}{AAjDMn}{CAnd}{{{Bb{B`{C@l{c}}}}DMfd}Bd{}}{{{Bb{B`{C@l{c}}}}}Bd{}}{{{Bb{DM`}}{Bb{Al}}dd}{{j{AlAl}}}}{{{Bb{B`{C@l{c}}}}DM`C@nc}{{Bf{{j{C@nDMf}}}}}{}}{CAnDMf}{{{Bb{DM`}}Aldd}Al}{{{Bb{DMd}}dAn}{{DNd{DMf{j{DM`Ald}}}}}}{{{Bb{B`{C@l{c}}}}C@nC@nDMj}Bd{}}{{{Bb{DMd}}}{{`{{ALn{}{{F`{{Bb{DMf}}}}}}}}}}`{{{Bb{{BJn{}{{BA`{c}}}}}}{Bb{c}}}AAj{}}{{{CA`{ceg}}i}{{CA`{ceg}}}{}BGjAD`{{Bj{{Bb{e}}}{{Ah{A@n}}}}}}{{{DLj{ceg}}i}{{DLj{ceg}}}{}BGjAD`{{Bj{{Bb{e}}}{{Ah{A@n}}}}}}{{{Bb{B`{C@l{c}}}}C@nC@n}Bd{}}{{{CA`{ceg}}{DLj{ceg}}}{{CA`{ceg}}}{}BGjAD`}{Bbc{}}00000000000000{{}{{Bl{c}}}{}}00000000000000000{c{{Bl{e}}}{}{}}00000000000000000{{}{{Bl{c}}}{}}00000000000000000{{}{{Bl{c{ABj{c}}}}}{}}00000000000000000{BbABl}00000000000000000{ce{}{}}00000000000000000{{}c{}}00000000000000000{Bb{{Bf{{Bb{c}}}}}{}}00000000000000000{{}c{}}00000000000000000{DMnd}{e{{C@l{c}}}{}{{Fj{{DMb{c}}}}}}{DNfI`}{DNfDM`}1{DNfd}{DNhC@n}{DNjC@n}{DNlC@n}{DNjDMh}{DNnI`}{DNnDM`}1{DNnDMf}{DNnd}``````{eg{}{{l{c}}}{}}0{ce{}{}}0{{}c{}}0{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{DNb}}}DNb}{{{Bb{DO`}}}DO`}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0::{{}DO`}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}099{IdBd}0{{{Bb{DO`}}{Bb{DO`}}}C`}{{{Bb{DNb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{DO`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{{{Bb{B`{DNd{C@nc}}}}{DMb{c}}Id}DNb{}}{ce{}{}}0{{}Id}0{C@lDNb}{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}00{C@lDNd}{{{Bb{DO`}}}{{Bf{{j{C@nAd}}}}}}{{{Bb{DO`}}}{{Bf{{j{DMfDM`}}}}}}{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0{DObDM`}{DOdAd}{DOdC@n}{DObDMf}```````````````{eg{}{{l{c}}}{}}000{ce{}{}}0008888{Bb{{Bb{Dl}}}}000{{{Bb{B`}}}{{Bb{B`Dl}}}}000{A@bGh}{A@bG`}{Bb{{Bb{c}}}{}}000{{{Bb{B`}}}{{Bb{B`c}}}{}}000{{{Fl{c}}}e{}{}}000{{{Bb{{BOd{c}}}}}{{BOd{c}}}Ed}{{{Bb{{DOf{c}}}}}{{DOf{c}}}Ed}{{{Bb{A@`}}}A@`}{{{Bb{A@b}}}A@b}{{Bb{Bb{B`c}}}Bd{}}000{{BbGn}Bd}000{DOfAGl}>>>>{{{Bb{El}}A@`}A@b}{{}c{}}{{}{{BOd{c}}}{}}1{Id{{Bb{c}}}{}}000{Id{{Bb{B`c}}}{}}000>>>>{IdBd}000{{{Bb{{BOd{c}}}}{Bb{{BOd{c}}}}}C`Eh}{{{Bb{{DOf{c}}}}{Bb{{DOf{c}}}}}C`Eh}{{{Bb{A@`}}{Bb{A@`}}}C`}{{{Bb{A@b}}{Bb{A@b}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{{BOd{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{{DOf{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{A@`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{A@b}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{DOf}{cc{}}0000000{ce{}{}}000{A@bb}{{}Id}000{{}c{}}0000000{{{I`{c}}}{{I`{Dl}}}{}}000{{{Lj{c}}}{{Lj{Dl}}}{}}000{{{Ll{c}}}{{Ll{Dl}}}{}}000{{{Fl{c}}}e{}{}}00044444444{{}c{}}000{DOfAEb}18{DOfAFb}{DOfBf}{{{Bb{{BKf{}{{BA`{c}}}}}}{Bb{c}}A@`}A@b{}};{Bbc{}}000{{}{{Bl{c}}}{}}000{c{{Bl{e}}}{}{}}000{{}{{Bl{c}}}{}}000{{}{{Bl{c{ABj{c}}}}}{}}000{BbABl}000{ce{}{}}000{{}c{}}000{Bb{{Bf{{Bb{c}}}}}{}}000{{}c{}}000{DOhDOf}0{DOjBf}{DOlC`}``````{eg{}{{l{c}}}{}}{ce{}{}}7{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{AA`Gh}0{AA`G`}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{AA`}}}AA`}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}:{{{Bb{El}}}AA`}{{}c{}}{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}9{IdBd}{{{Bb{AA`}}{Bb{AA`}}}C`}{{{Bb{AA`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}44{{}c{}}??{{{Bb{{BKj{}{{BA`{c}}}}}}{Bb{c}}}AA`{}}{{{Bb{El}}}AA`}{Bbc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}:````````````````````{eg{}{{l{c}}}{}}0000{ce{}{}}000044444{Bb{{Bb{Dl}}}}0000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000{A@db}{Bb{{Bb{c}}}{}}0000{{{Bb{B`}}}{{Bb{B`c}}}{}}0000{{{Fl{c}}}e{}{}}00003{{{Bb{DOn}}}DOn}{{{Bb{E@`}}}E@`}{{{Bb{E@b}}}E@b}{{{Bb{A@d}}}A@d}{{Bb{Bb{B`c}}}Bd{}}000{{BbGn}Bd}000<<<<<{{{Bb{El}}}A@d}{{}c{}}{Id{{Bb{c}}}{}}0000{Id{{Bb{B`c}}}{}}0000<<<<<{IdBd}0000{{{Bb{DOn}}{Bb{DOn}}}C`}{{{Bb{E@`}}{Bb{E@`}}}C`}{{{Bb{E@b}}{Bb{E@b}}}C`}{{{Bb{A@d}}{Bb{A@d}}}C`}{{Bb{Bb{c}}}C`{}}00000000{{{Bb{CAj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{DOn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{E@`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{E@b}}{Bb{B`Jd}}}{{Bl{BdJf}}}}0{{{Bb{A@d}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{E@dE@b}111111{ce{}{}}0000{{}Id}0000{{}c{}}000000000{{{I`{c}}}{{I`{Dl}}}{}}0000{{{Lj{c}}}{{Lj{Dl}}}{}}000{{{Ll{c}}}{{Ll{Dl}}}{}}0000{{{Fl{c}}}e{}{}}00004444444444{{}c{}}0000{c{{Bl{CAjE@b}}}{{AF`{{AFn{Gn}}}}}}{{{Bb{{BIl{}{{BA`{c}}}}}}{Bb{c}}}A@d{}}{Bbc{}}000{BbABh}{BbHb}{{}{{Bl{c}}}{}}0000{c{{Bl{e}}}{}{}}0000{{}{{Bl{c}}}{}}0000{{}{{Bl{c{ABj{c}}}}}{}}0000{BbABl}0000{ce{}{}}0000{{}c{}}0000{Bb{{Bf{{Bb{c}}}}}{}}0000{{}c{}}0000{{cE@`}{{Bl{CAjE@b}}}{{AF`{{AFn{Gn}}}}}}{{cDOnE@`}{{Bl{CAjE@b}}}{{AF`{{AFn{Gn}}}}}}````````{eg{}{{l{c}}}{}}0{ce{}{}}066{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{OnGh}{Onb}{Ond}{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{Ol}}}Ol}{{{Bb{On}}}On}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0<<{{{Bb{El}}Ol}On}{{}c{}}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}0<::{IdBd}0{{{Bb{Ol}}{Bb{Ol}}}C`}{{{Bb{On}}{Bb{On}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{Ol}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{On}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{ce{}{}}0{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{{{Bb{{BKn{}{{BA`{c}}}}}}{Bb{c}}Ol}On{}}{OnBf}{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0{E@fC`}{E@hC`}``````````{eg{}{{l{c}}}{}}0{ce{}{}}066{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{AAl}}}AAl}{{{Bb{E@j}}}E@j}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0{AAlb}::{{{Bb{El}}}AAl}{{}c{}}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}0;;{IdBd}0{{{Bb{AAl}}{Bb{AAl}}}C`}{{{Bb{E@j}}{Bb{E@j}}}C`}{{{Bb{E@j}}d}{{j{dd}}}}{AAlE@j}{{{Bb{AAl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{E@j}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{ce{}{}}0{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{AAlMl}{{{Bb{{BLb{}{{BA`{c}}}}}}{Bb{c}}}AAl{}}{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0{AAlJb}`````````````````````````{{{Bb{CB`}}}B@h}0{eg{}{{l{c}}}{}}0000000000{{E@lBHh}E@l}{ce{}{}}000000000077777777777{Bb{{Bb{Dl}}}}0000000000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000000000{E@nBf}{E@nG`}{EA`G`}{Bb{{Bb{c}}}{}}0000000000{{{Bb{B`}}}{{Bb{B`c}}}{}}0000000000{{{Bb{CB`}}}Al}{{{Fl{c}}}e{}{}}0000000000{{{Bb{B@h}}}B@h}{{{Bb{B@j}}}B@j}{{{Bb{BMn}}}BMn}{{{Bb{E@l}}}E@l}{{{Bb{BHh}}}BHh}{{{Bb{AOn}}}AOn}{{{Bb{CB`}}}CB`}{{{Bb{AAb}}}AAb}{{{Bb{AAd}}}AAd}{{{Bb{E@n}}}E@n}{{{Bb{EA`}}}EA`}{{Bb{Bb{B`c}}}Bd{}}0000000000{{BbGn}Bd}0000000000{EA`b}{ce{}{}}0000000000{AAdA@n}{{{Bb{CB`}}}Al}{{{Bb{El}}AAb}AAd}{{}c{}}{{}B@h}{{}B@j}{{}BMn}{{}E@l}{{}BHh}{Id{{Bb{c}}}{}}0000000000{Id{{Bb{B`c}}}{}}0000000000{Bb{{Bb{c}}}{}}0000000000{IdBd}0000000000{{{Bb{B@h}}{Bb{B@h}}}C`}{{{Bb{B@j}}{Bb{B@j}}}C`}{{{Bb{BMn}}{Bb{BMn}}}C`}{{{Bb{E@l}}{Bb{E@l}}}C`}{{{Bb{BHh}}{Bb{BHh}}}C`}{{{Bb{AOn}}{Bb{AOn}}}C`}{{{Bb{AAb}}{Bb{AAb}}}C`}{{{Bb{AAd}}{Bb{AAd}}}C`}{{{Bb{E@n}}{Bb{E@n}}}C`}{{{Bb{EA`}}{Bb{EA`}}}C`}{{Bb{Bb{c}}}C`{}}00000000{{{Bb{B@h}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{B@j}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BMn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{E@l}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BHh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AOn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{CB`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AAb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AAd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{E@n}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EA`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}00000{{{Bb{Mh}}}AOn}1111111111111111{ce{}{}}0000000000{AAdBf}{{{Bb{AOn}}{Bb{B`c}}}BdLb}{{{Bb{BMn}}}{{Bf{{Bb{E@l}}}}}}{AAdE@n}{{}Id}0000000000{{}c{}}000000000000000000000{{{I`{c}}}{{I`{Dl}}}{}}0000000000{{{Lj{c}}}{{Lj{Dl}}}{}}0000000000{{{Ll{c}}}{{Ll{Dl}}}{}}0000000000{{{Fl{c}}}e{}{}}00000000004444444444444444444444{{}c{}}0000000000{{E@lc}E@l{{Fj{Ab}}}}{{}E@l}{cAOn{{Fj{{AKj{Mh}}}}}}33333{{{Bb{CB`}}}B@j}{{cB@h}{{f{e}}}{{Fj{AOn}}}{}}0{E@nEA`}5{{cB@j}{{f{e}}}{{Fj{AOn}}}{}}6{{{Bb{{BHf{}{{BA`{c}}}}}}{Bb{c}}AAb}AAd{}}{Bbc{}}0000000000{{}{{Bl{c}}}{}}0000000000{c{{Bl{e}}}{}{}}0000000000{{}{{Bl{c}}}{}}0000000000{{}{{Bl{c{ABj{c}}}}}{}}0000000000{BbABl}0000000000{ce{}{}}0000000000{{}c{}}0000000000{{}AOn}{Bb{{Bf{{Bb{c}}}}}{}}0000000000{{{Bb{BMn}}}{{Bf{{Bb{E@l}}}}}}{AAdE@n}{{}c{}}0000000000{{E@lc}E@l{{Fj{Ab}}}}{B@hd}{B@jd}10{EAbE@l}0{EAdC`}{EAfC`}{EAhC`}0121001````````{eg{}{{l{c}}}{}}0{ce{}{}}0>>{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{EAj}}}EAj}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}88{{}EAl}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}088{{{Bb{{BNh{}{{Cb{c}}{EAn{e}}}}}}{Bb{c}}ADfAl}eDdEB`}{IdBd}0{{{Bb{EAj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EAl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{ce{}{}}0{{{Bb{EAl}}}{{Bf{{Bb{c}}}}}{}}{{{Bb{B`EAl}}}{{Bf{{Bb{B`c}}}}}{}}{{{Bb{EAl}}}C`}{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{{{Bb{EAj}}}An}{{{Bb{{BNh{}{{Cb{c}}{EAn{e}}}}}}{Bb{c}}AlADf}AEdDdEB`}2{{{Bb{EAj}}}Ij}{{{Bb{EAj}}}{{An{Ij}}}}1{{{Bb{EB`}}{Bb{EBb}}{Bb{EBd}}EBf{Bb{B`EAl}}{Bb{Al}}{Bb{EAj}}}Bd}{{{Bb{EAj}}}Dn}{{{Bb{EB`}}{Bb{B`EBh}}{Bb{EAl}}{Bb{EBj}}{Bb{{Al{Ij}}}}}Bd}{{{Bb{EAj}}}Kj}{{{Bb{B`EAl}}c}BdCn}{Bbc{}}{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{{Bb{{BNh{}{{Cb{c}}{EAn{e}}}}}}{Bb{B`c}}{Bb{Gb}}AlADf}{{Bf{{BHj{g}}}}}DdEB`{}}{{}c{}}0{{{An{Ij}}Kj}EAj}``````````````{eg{}{{l{c}}}{}}0000{ce{}{}}000066666{Bb{{Bb{Dl}}}}0000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000{EBlGh}{EBnj}{EBnG`}{EBlb}{EBld}{Bb{{Bb{c}}}{}}0000{{{Bb{B`}}}{{Bb{B`c}}}{}}0000{{{Fl{c}}}e{}{}}0000{{{Bb{AAf}}}AAf}{{{Bb{AAh}}}AAh}{{{Bb{EBn}}}EBn}{{{Bb{EBl}}}EBl}{{{Bb{EC`}}}EC`}{{Bb{Bb{B`c}}}Bd{}}0000{{BbGn}Bd}0000{ce{}{}}0000{{{Bb{El}}AAf}AAh}{{}c{}}{Id{{Bb{c}}}{}}0000{Id{{Bb{B`c}}}{}}0000>>>>>{IdBd}0000{{{Bb{AAf}}{Bb{AAf}}}C`}{{{Bb{AAh}}{Bb{AAh}}}C`}{{{Bb{EBn}}{Bb{EBn}}}C`}{{{Bb{EBl}}{Bb{EBl}}}C`}{{{Bb{EC`}}{Bb{EC`}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{AAf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AAh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EBn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EBl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EC`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000000000{ce{}{}}0000{AAhEBl}{{}Id}0000{{}c{}}000000000{{{I`{c}}}{{I`{Dl}}}{}}0000{{{Lj{c}}}{{Lj{Dl}}}{}}0000{{{Ll{c}}}{{Ll{Dl}}}{}}0000{{{Fl{c}}}e{}{}}00004444444444{{}c{}}0000{AAhEBn}{EBlEC`}{{{Bb{{BLh{}{{BA`{c}}}}}}{Bb{c}}AAf}AAh{}}{Bbc{}}0000{{}{{Bl{c}}}{}}0000{c{{Bl{e}}}{}{}}0000{{}{{Bl{c}}}{}}0000{{}{{Bl{c{ABj{c}}}}}{}}0000{BbABl}0000{ce{}{}}0000{{}c{}}0000{Bb{{Bf{{Bb{c}}}}}{}}0000{{}c{}}0000{EBnd}{{AAhc}AAh{{Fj{Ab}}}}{ECbMl}{ECdd}{ECbJb}`````````{eg{}{{l{c}}}{}}0{ce{}{}}099{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{A@f}}}A@f}{{{Bb{A@h}}}A@h}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0{A@hBf}::{{}c{}}{{}A@h}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}0;;{IdBd}0{{{Bb{A@f}}{Bb{A@f}}}C`}{{{Bb{A@h}}{Bb{A@h}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{A@f}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{A@h}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}000{ce{}{}}0{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}00{{{Bb{{BMf{}{{BA`{c}}}}}}{Bb{c}}A@f}A@h{}}{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0```````````````````````````{eg{}{{l{c}}}{}}00{{{CBd{cegi}}k}{{CBd{cegi}}}Ed{}AOdAMl{{Fj{Kb}}}}{{{CBd{cegi}}k}{{CBd{cegi}}}Ed{}AOdAMl{{Fj{K`}}}}{ce{}{}}00666{Bb{{Bb{Dl}}}}00{{{Bb{B`}}}{{Bb{B`Dl}}}}00{{{Bb{El}}}Ob}{Bb{{Bb{c}}}{}}00{{{Bb{B`}}}{{Bb{B`c}}}{}}00{{{Fl{c}}}e{}{}}00{{{CBd{cegi}}}{{CBd{cegi}}}Ed{}AOdAMl}{{{Bb{B`{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}}Id}Bd{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}{{{CBd{cegi}}k}{{CBd{cegi}}}Ed{}AOdAMlFj}{{{Bb{Ob}}}Ob}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}{{{CBd{cegi}}k}{{CBd{cegi}}}Ed{}AOdAMl{{Fj{b}}}}{AKlBf}{ObBf}{{{CBd{cegi}}{Bf{k}}}{{CBd{cegi}}}Ed{}AOdAMl{{Fj{b}}}}{ce{}{}}00{{{Bb{{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}}}Id{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}??{{}c{}}{{}{{CBd{cegi}}}Ed{}AOdAMl}{{}{{B@n{c}}}{DdAMd}}{{}Ob}{Id{{Bb{c}}}{}}00{Id{{Bb{B`c}}}{}}00{Bb{{Bb{c}}}{}}00{{{Bb{B`c}}{Bb{ADd}}ACfBbOb{Bb{Al}}}BdAMl}{{{Bb{{CBd{cegi}}}}{Bb{ACl}}{Bb{B`i}}{Bb{g}}{Bb{ADd}}ACfADf{Bb{Al}}}BdEd{}AOdAMl}{IdBd}00{{{Bb{Ob}}{Bb{Ob}}}C`}{{{Bb{{B@n{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}{D`AMd}}{{{Bb{Ob}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{CBd{cegi}}k}{{CBd{cegi}}}Ed{}AOdAMlFj}{AKlBf}{cc{}}00000{e{{CBd{cgik}}}Ed{{Fb{}{{F`{{AKl{c}}}}}}}{}AOdAMl}{ce{}{}}00{{{CBd{cegi}}k}{{CBd{cegi}}}Ed{}AOdAMl{{Fj{Gl}}}}4{{{Bb{B`{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}}{Bb{Mh}}}g{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}{{}Id}00{{}c{}}00000{{{I`{c}}}{{I`{Dl}}}{}}00{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}00{{{Fl{c}}}e{}{}}00444444{AN`{{AKj{Mh}}}}{{}c{}}00{{{Bb{B`B@n}}{Bb{c}}{Bb{AE`}}GlGl{Bb{Mh}}AEb{Bf{Ab}}BfKbK`AFbAFh}ADnAMl}{{{Bb{{CBd{cegi}}}}{Bb{B`ACl}}{Bb{i}}{Bb{AE`}}}ADnEd{}AOdAMl}{{{CBd{cegi}}k}{{CBd{cegi}}}Ed{}AOdAMl{{Fj{AEb}}}}{AKlBf}0{{{Bb{{CBd{cegi}}}}{Bb{ACl}}ACfADf{Bb{Al}}{Bb{i}}}AEdEd{}AOdAMl}{{{Bb{c}}}{{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}{{}{{CBd{cegi}}}Ed{}AOdAMl}777{{{CBd{cegi}}k}{{CBd{cegi}}}Ed{}AOdAMl{{Bj{c}{{Ah{e}}}}}}{AKlFh}{{{Bb{El}}}Ob}0{{{CBd{cegi}}k}{{CBd{cegi}}}Ed{}AOdAMl{{Fj{Ab}}}}{{{Bb{{CBd{cegi}}}}}{{An{Gl}}}Ed{}AOdAMl}8{{{Bb{{CBd{cegi}}}}}AFdEd{}AOdAMl}{AKlC`}{{{Bb{{AOd{}{{BA`{c}}}}}}{Bb{c}}}Ob{}}{{{CBd{cegi}}k}{{CBd{cegi}}}Ed{}AOdAMl{{Bj{{Bb{g}}}{{Ah{Ob}}}}}}6{{{Bb{{CBd{cegi}}}}}AFfEd{}AOdAMl}{AKlAKj}{Bbc{}}{{}{{Bl{c}}}{}}00{c{{Bl{e}}}{}{}}00{{}{{Bl{c}}}{}}00{{}{{Bl{c{ABj{c}}}}}{}}00{BbABl}00{ce{}{}}00{{}c{}}00<{Bb{{Bf{{Bb{c}}}}}{}}00{{{Bb{B`{ALj{}{{ALd{c}}{ALf{e}}{ALh{g}}}}}}{Bb{c}}}Bd{EhEd}{}{{ALn{}{{F`{{j{{ALl{Id}}e}}}}}}}}{{{Bb{B`{CBd{cegi}}}}{Bb{B`ACl}}{Bb{Gb}}ACfADf{Bb{i}}{Bb{B`AEj}}{Bb{B`{ACd{e}}}}{Bb{Al}}}BdEd{}AOdAMl}{{}c{}}00{{{CBd{cegi}}k}{{CBd{cegi}}}Ed{}AOdAMl{{Fj{Gl}}}}{e{{CBd{cgik}}}Ed{{AF`{{AFn{{AKl{c}}}}}}}{}AOdAMl}{{{CBd{cegi}}AFh}{{CBd{cegi}}}Ed{}AOdAMl}`````````````````````````````````````````````````````````````````{eg{}{{l{c}}}{}}0000000000{ce{}{}}000000000099999999999{Bb{{Bb{Dl}}}}0000000000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000000000{ANh{{Bb{Mh}}}}{A@lGh}{A@lG`}{Bb{{Bb{c}}}{}}0000000000{{{Bb{B`}}}{{Bb{B`c}}}{}}0000000000{{{Fl{c}}}e{}{}}0000000000{{{Bb{ANd}}}ANd}{{{Bb{ECf}}}ECf}{{{Bb{ECh}}}ECh}{{{Bb{ANb}}}ANb}{{{Bb{ANh}}}ANh}{{{Bb{{C@`{c}}}}}{{C@`{c}}}Ed}{{{Bb{BOn}}}BOn}{{{Bb{A@j}}}A@j}{{{Bb{A@l}}}A@l}{{Bb{Bb{B`c}}}Bd{}}00000000{{BbGn}Bd}00000000{ce{}{}}0000000000{{{Bb{{CAf{c}}}}}{{j{IdId}}}AMl}{{{Bb{El}}A@j}A@l}{{}c{}}{{}{{CAf{c}}}AMl}{{}ANb}{{}ANh}{Id{{Bb{c}}}{}}0000000000{Id{{Bb{B`c}}}{}}0000000000{{{Bb{ECh}}}ANf}{Bb{{Bb{c}}}{}}0000000000{IdBd}0000000000{ANbANh}{{{Bb{ANd}}{Bb{ANd}}}C`}{{{Bb{ECf}}{Bb{ECf}}}C`}{{{Bb{ECh}}{Bb{ECh}}}C`}{{{Bb{ANb}}{Bb{ANb}}}C`}{{{Bb{ANh}}{Bb{ANh}}}C`}{{{Bb{{C@`{c}}}}{Bb{{C@`{c}}}}}C`Eh}{{{Bb{BOn}}{Bb{BOn}}}C`}{{{Bb{A@j}}{Bb{A@j}}}C`}{{{Bb{A@l}}{Bb{A@l}}}C`}{{Bb{Bb{c}}}C`{}}00000000000{{{Bb{{CAf{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}AMl}{{{Bb{ANd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{ECf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{ECh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{ANb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{ANh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{{ECj{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}{D`ALj}}{{{Bb{{C@`{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{BOn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{A@j}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{A@l}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{B`{ECj{c}}}}}BdALj}{cc{}}000000000000000000000{BOn{{Bf{{C@`{c}}}}}{}}{ce{}{}}0000000000{A@lb}{{}Id}0000000000{{}c{}}000000000000000000000{{{I`{c}}}{{I`{Dl}}}{}}0000000000{{{Lj{c}}}{{Lj{Dl}}}{}}00000000{{{Ll{c}}}{{Ll{Dl}}}{}}0000000000{{{Fl{c}}}e{}{}}00000000004444444444444444444444{{}c{}}0000000000{{{Bb{ANd}}}C`}{{{Bb{{ECj{c}}}}}C`ALj}0{BOnBAl}{{{Bb{{CAf{c}}}}Id}{{Bf{ANb}}}AMl}{{{Bb{{CAf{c}}}}}IdAMl}{{{Bb{{CAf{c}}}}}{{Bf{ANh}}}AMl}{{{Bb{{CAf{c}}}}}{{`{{ALn{}{{F`{ANb}}}}}}}AMl}{BOnBAj}{{}{{CAf{c}}}AMl}999{{{Bb{B`{CAf{c}}}}ANd}BdAMl}{A@lb}{{{Bb{{CAf{c}}}}}{{Bf{Hb}}}AMl}1{BOnA@j}{{{Bb{{BLl{}{{BA`{c}}}}}}{Bb{c}}A@j}A@l{}}{{{Bb{{CAf{c}}}}}HbAMl}{ANbAKj}{BOnBf}{Bbc{}}00000000{{}{{Bl{c}}}{}}0000000000{c{{Bl{e}}}{}{}}0000000000{{}{{Bl{c}}}{}}0000000000{{}{{Bl{c{ABj{c}}}}}{}}0000000000{BbABl}0000000000{ce{}{}}0000000000{{}c{}}0000000000{{{Bb{B`{ECj{c}}}}}BdALj}{Bb{{Bf{{Bb{c}}}}}{}}0000000000{A@lb}{{}c{}}0000000000{EChECh}{{{Bb{Mh}}}{{CAf{c}}}AMl}{ANjANl}{EClC`}````{{}Fh}``````````````{eg{}{{l{c}}}{}}0000000{ce{}{}}0000000;;;;;;;;{Bb{{Bb{Dl}}}}0000000{{{Bb{B`}}}{{Bb{B`Dl}}}}0000000{O`Gh}{O`G`}{Bb{{Bb{c}}}{}}0000000{{{Bb{B`}}}{{Bb{B`c}}}{}}0000000{{{Fl{c}}}e{}{}}0000000{{{Bb{BNb}}}BNb}{{{Bb{ECn}}}ECn}{{{Bb{{BOl{c}}}}}{{BOl{c}}}Ed}{{{Bb{ED`}}}ED`}{{{Bb{B@b}}}B@b}{{{Bb{{EDb{c}}}}}{{EDb{c}}}{EdAMd}}{{{Bb{Nn}}}Nn}{{{Bb{O`}}}O`}{{Bb{Bb{B`c}}}Bd{}}0000000{{BbGn}Bd}0000000{BOlAGl}{ce{}{}}0000000`{{{Bb{{EDb{c}}}}}ECnAMd}{{{Bb{El}}Nn}O`}{{}c{}}{{}ECn}{{}{{EDb{c}}}{DdAMd}}{Id{{Bb{c}}}{}}0000000{Id{{Bb{B`c}}}{}}0000000{Bb{{Bb{c}}}{}}0000000{IdBd}0000000{{{Bb{ECn}}{Bb{ECn}}}C`}{{{Bb{B@b}}{Bb{B@b}}}C`}{{{Bb{Nn}}{Bb{Nn}}}C`}{{{Bb{O`}}{Bb{O`}}}C`}{{Bb{Bb{c}}}C`{}}00000000{{{Bb{BNb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}0{{{Bb{ECn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{{BOl{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}D`}{{{Bb{ED`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{B@b}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{{EDb{c}}}}{Bb{B`Jd}}}{{Bl{BdJf}}}{D`AMd}}{{{Bb{Nn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{O`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{c{{f{e}}}{{Fj{B@b}}}{}}{{{Bb{B`{EDb{c}}}}}BdAMd}0{BOl}{cc{}}000{HbB@b}1{{{Bb{Mh}}}B@b}22222222222{ce{}{}}0000000{{{Bb{B@b}}{Bb{B`c}}}BdLb}{O`b}{{}Id}0000000{{{Bb{B`BNb}}IdAGl}Bd}{{{Bb{B`BNb}}IdBNb}Bd}{{}c{}}000000000000000{{{I`{c}}}{{I`{Dl}}}{}}0000000{{{Lj{c}}}{{Lj{Dl}}}{}}0000000{{{Ll{c}}}{{Ll{Dl}}}{}}0000000{{{Fl{c}}}e{}{}}00000004444444444444444{{}c{}}0000000{{{Bb{BNb}}}C`}{{{Bb{{EDb{c}}}}}C`AMd}0{{{Bb{BNb}}}Id}{{cId}{{f{e}}}{{Fj{B@b}}}{}}{{{Bb{B`{EDb{c}}}}Id}BdAMd}0{c{{f{e}}}{{Fj{B@b}}}{}}{{{Bb{B`{EDb{c}}}}}BdAMd}0100{{{Bb{Mh}}}BNb}{cB@b{{Fj{{AKj{Mh}}}}}}{{}{{EDb{c}}}AMd}{{{Bb{BNb}}Id}Id};;{O`b}1{{{Bb{B`BNb}}Id}Bd}{{{Bb{B`BNb}}IdId}Bd}{{{Bb{BNb}}}BNb}{{{Bb{BNb}}IdId}BNb}:99{{{Bb{ECn}}{Bb{BNb}}}{{Bf{{j{IdId}}}}}}5{BOlED`}{BOlBf}{BOld}{{{Bb{ECn}}{Bb{BNb}}}EDd}{{{Bb{{BH`{}{{BA`{c}}}}}}{Bb{c}}Nn}O`{}}{Bbc{}}0000000{BbABh}{BbHb}{{}{{Bl{c}}}{}}0000000{c{{Bl{e}}}{}{}}0000000{{}{{Bl{c}}}{}}0000000{{}{{Bl{c{ABj{c}}}}}{}}0000000{BbABl}0000000{ce{}{}}0000000{{}c{}}0000000{{{Bb{B`{EDb{c}}}}}BdAMd}0{{}B@b}{{{Bb{BNb}}Id}BNb}{Bb{{Bf{{Bb{c}}}}}{}}0000000{O`b}{{}c{}}0000000{EDfC`}````{eg{}{{l{c}}}{}}{ce{}{}}9{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{EDd}}}EDd}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}8{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}7{IdBd}{{{Bb{EDd}}{Bb{EDd}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{EDd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}44{{}c{}}{Bbc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}{EDhId}0````````````````````````````{Hdb}{Enb}{{{Bb{Df}}}En}2{{{Bb{El}}}En}`33323``{{}BDf}000000000000000000000```````4{HfBDh}{BDhBDj}{BDlBDj}{BDnBDj}{BE`BDj}{BEbBDj}{BEdBDj}{BDjb}<{HfBEd}{HfC`}>{HfBDl}{HfBDn}:98765{Hdb}{HfBE`}161{HfBEb}=<;:98`````````{eg{}{{l{c}}}{}}0{ce{}{}}0{{}c{}}0{Bb{{Bb{Dl}}}}0{{{Bb{B`}}}{{Bb{B`Dl}}}}0{ABbb}0{ABbd}{Bb{{Bb{c}}}{}}0{{{Bb{B`}}}{{Bb{B`c}}}{}}0{{{Fl{c}}}e{}{}}0{{{Bb{AB`}}}AB`}{{{Bb{ABb}}}ABb}{{Bb{Bb{B`c}}}Bd{}}0{{BbGn}Bd}0<<{{{Bb{El}}AB`}ABb}{{}c{}}{Id{{Bb{c}}}{}}0{Id{{Bb{B`c}}}{}}0::{IdBd}0{{{Bb{AB`}}{Bb{AB`}}}C`}{{{Bb{ABb}}{Bb{ABb}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{AB`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{ABb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{ABbb}0{ABbd}{cc{}}000{ce{}{}}0{{}Id}0{{}c{}}000{{{I`{c}}}{{I`{Dl}}}{}}0{{{Lj{c}}}{{Lj{Dl}}}{}}0{{{Ll{c}}}{{Ll{Dl}}}{}}0{{{Fl{c}}}e{}{}}04444{{}c{}}0{{{Bb{{BM`{}{{BA`{c}}}}}}{Bb{c}}AB`}ABb{}}{Bbc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{ABj{c}}}}}{}}0{BbABl}0{ce{}{}}0{{}c{}}0{Bb{{Bf{{Bb{c}}}}}{}}0{{}c{}}0{EDjC`}{EDlC`}```````{eg{}{{l{c}}}{}}{ce{}{}}6{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{CAh}}}CAh}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}8{{}CAh}{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}8{IdBd}{{{Bb{CAh}}{Bb{CAh}}}C`}{{Bb{Bb{c}}}C`{}}00{{{Bb{CAh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}44{{}c{}}0{Bbc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}`````````````{EBlGh}{EBlb}{EBld}{{{Bb{El}}AAf}AAh}{{}c{}}{AAhEBl}{AAhEBn}{EBlEC`}{{{Bb{{BLh{}{{BA`{c}}}}}}{Bb{c}}AAf}AAh{}}{ECbMl}{ECdd}{ECbJb}````````````````````````````````````````````````````````````````````````````````{eg{}{{l{c}}}{}}00000000000{ce{}{}}00000000000{{}c{}}00000000000{Bb{{Bb{Dl}}}}00000000000{{{Bb{B`}}}{{Bb{B`Dl}}}}00000000000{{{Bb{AHd}}}{{Bb{{AFn{Gn}}}}}}{Bb{{Bb{c}}}{}}00000000000{{{Bb{B`}}}{{Bb{B`c}}}{}}00000000000{AHdAFl}{{{Fl{c}}}e{}{}}00000000000{{{Bb{EDn}}}EDn}{{{Bb{AHd}}}AHd}{{{Bb{Nd}}}Nd}{{{Bb{EE`}}}EE`}{{{Bb{EEb}}}EEb}{{{Bb{Nj}}}Nj}{{{Bb{BAb}}}BAb}{{{Bb{EEd}}}EEd}{{{Bb{BAd}}}BAd}{{{Bb{AEn}}}AEn}{{{Bb{EEf}}}EEf}{{Bb{Bb{B`c}}}Bd{}}0000000000{{BbGn}Bd}0000000000{Nj{{f{c}}}{}}{{}{{Fd{Nj}}}}0{{{Bb{Nj}}{Bb{Nj}}}Mj}{{{Bb{AEn}}{Bb{AEn}}}Mj}{{Bb{Bb{c}}}Mj{}}0{ce{}{}}00000000000{{{Bb{AHd}}{Al{Ij}}}{{Bl{AHdEEh}}}}{NdC`}{{}Nd}{{}BAb}{{}BAd}{Id{{Bb{c}}}{}}00000000000{Id{{Bb{B`c}}}{}}00000000000{Nj{{f{c}}}{}}{Bb{{Bb{c}}}{}}00000000000>{{NjEE`}{{f{c}}}{}}{IdBd}000000000003{Bbc{{AGn{AGl}}}}0{{{Bb{EEb}}{Bb{EEb}}}C`}{{{Bb{Nj}}{Bb{Nj}}}C`}{{{Bb{BAb}}{Bb{BAb}}}C`}{{{Bb{EEd}}{Bb{EEd}}}C`}{{{Bb{BAd}}{Bb{BAd}}}C`}{{{Bb{AEn}}{Bb{AEn}}}C`}{{Bb{Bb{c}}}C`{}}00000000000{{}{{Fd{{j{NjEEb}}}}}}{NdC`}{{{Bb{EDn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AHd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Nd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EE`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EEb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{Nj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}0{{{Bb{BAb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EEd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{BAd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{AEn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EEf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{}{{Fd{Lf}}}}{cc{}}000000000{LfAEn}11111111111111{ce{}{}}00000000000?{Nj{{f{c}}}{}}{{}{{f{{Bf{Nj}}}}}}{Nj{{f{C`}}}}{Nj{{f{{Bf{C`}}}}}}{Nj{{f{EEd}}}}3{Nj{{f{{Bf{Ad}}}}}}{Nj{{f{Kn}}}}{Nj{{f{d}}}}{Nj{{f{An}}}}{{{Bb{Nj}}{Bb{B`c}}}BdLb}`{NdBf}{{}Id}00000000000{{}c{}}00000000000000000000000{{{I`{c}}}{{I`{Dl}}}{}}00000000000{{{Lj{c}}}{{Lj{Dl}}}{}}0000000000{{{Ll{c}}}{{Ll{Dl}}}{}}00000000000{{{Fl{c}}}e{}{}}00000000000444444444444444444444444{EDn{{j{{H`{Gn}}{An{Ij}}}}}}{{}c{}}00000000000{NdBAb}9{{NjC`}{{f{c}}}{}}{NdC`};1{{NjAd}{{f{c}}}{}}{{c{An{Ij}}Kj}AHd{{Fj{AFl}}}}555{Nd{{j{Nj{f{Nj}}}}}}{{}{{Fd{Nj}}}}{{{Bb{Nj}}{Bb{Nj}}}{{Bf{Mj}}}}{{{Bb{AEn}}{Bb{AEn}}}{{Bf{Mj}}}}{NdEEj}{NdBAd}{{Nj{Bf{EEf}}}{{f{c}}}{}}9{{NjAn}{{f{c}}}{}}{{}{{Fd{{j{NjAn}}}}}}{{Nje}{{f{c}}}Cn{{Hh{EEl}{{Ah{c}}}}Cn}}{AHdKj}`{Nj{{f{AHd}}}}{{NjEDn}{{f{c}}}{}}{{NjBAb}{{f{c}}}{}}{{Nj{Bf{An}}}{{f{c}}}{}}0{{NjEEd}{{f{c}}}{}}{{NjC`}{{f{c}}}{}}2`{Nj{{f{c}}}{}}{AHdAn}{NdAn}{Bbc{}}0000000000{BbABh}{BbHb}55{NdC`}{{}{{Bl{c}}}{}}00000000000{c{{Bl{e}}}{}{}}00000000000{{}{{Bl{c}}}{}}00000000000{{}{{Bl{c{ABj{c}}}}}{}}00000000000{BbABl}00000000000{ce{}{}}00000000000{{}c{}}00000000000{{}Nj}{Bb{{Bf{{Bb{c}}}}}{}}000000000009{{}c{}}00000000000{EEnBf}{EEnAn}`````{eg{}{{l{c}}}{}}{ce{}{}}7{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}5{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}4{IdBd}{{{Bb{EF`}}{Bb{B`Jd}}}Jj}0{cc{}}{EFbEF`}{MfEF`}{EFdEF`}3{c{{Bl{EDnEF`}}}{{AF`{DAb}}}}{{{Bb{{AFn{Gn}}}}{Bf{EFf}}}{{Bl{EDnEF`}}}}{{{H`{Gn}}IjIj}{{Bl{EDnEFd}}}}{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}44{{}c{}}{{{Bb{EF`}}}{{Bf{{Bb{EFh}}}}}}{BbABh}{BbHb}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}`````````````````````````````````````````````````````````````````````{EFjEFl}{eg{}{{l{c}}}{}}000000000000000000000000000000000{{}EFn}0{ce{}{}}0000000000000000000000000000000006666666666666666666666666666666666{Bb{{Bb{Dl}}}}000000000000000000000000000000000{{{Bb{B`}}}{{Bb{B`Dl}}}}000000000000000000000000000000000{{{Bb{EFn}}}EG`}{{{Bb{EEl}}}EGb}{{{Bb{EFn}}}{{Bb{EG`}}}}{{{Bb{EEl}}}{{Bb{EGb}}}}{EGdBf}{EGdEFl}{Bb{{Bb{c}}}{}}00040300000000000000000000000000000{{{Bb{B`}}}{{Bb{B`c}}}{}}000000000000000000000000000000000{EG`EFn}{EGbEEl}{{{Fl{c}}}e{}{}}000000000000000000000000000000000{{{Bb{EGf}}}EGf}{{{Bb{EFj}}}EFj}{{{Bb{EGh}}}EGh}{{{Bb{EGj}}}EGj}{{{Bb{EFn}}}EFn}{{{Bb{EEl}}}EEl}{{{Bb{EGl}}}EGl}{{{Bb{EGd}}}EGd}{{{Bb{EGn}}}EGn}{{{Bb{EH`}}}EH`}{{{Bb{EHb}}}EHb}{{{Bb{EHd}}}EHd}{{{Bb{EHf}}}EHf}{{{Bb{EHh}}}EHh}{{{Bb{EHj}}}EHj}{{{Bb{EHl}}}EHl}{{{Bb{EHn}}}EHn}{{{Bb{EI`}}}EI`}{{{Bb{EIb}}}EIb}{{{Bb{EId}}}EId}{{{Bb{EIf}}}EIf}{{{Bb{EIh}}}EIh}{{{Bb{EIj}}}EIj}{{{Bb{EIl}}}EIl}{{{Bb{EIn}}}EIn}{{{Bb{EJ`}}}EJ`}{{{Bb{EJb}}}EJb}{{{Bb{EJd}}}EJd}{{{Bb{EJf}}}EJf}{{{Bb{EJh}}}EJh}{{{Bb{EJj}}}EJj}{{{Bb{EGb}}}EGb}{{{Bb{EG`}}}EG`}{{{Bb{EJl}}}EJl}{{Bb{Bb{B`c}}}Bd{}}000000000000000000000000000000000{{BbGn}Bd}000000000000000000000000000000000{ce{}{}}000000000000000000000000000000000{EHnBf}{EJjEFl}{Id{{Bb{c}}}{}}000000000000000000000000000000000{Id{{Bb{B`c}}}{}}000000000000000000000000000000000{EHjBf}{EIbEFl}{{{Bb{EJn}}}{{Bl{EFnEJl}}}}{{{Bb{EFn}}}{{Bl{EFnEJl}}}}{Bb{{Bb{c}}}{}}000000000000000000000000000000000{IdBd}000000000000000000000000000000000{{{Bb{EGf}}{Bb{EGf}}}C`}{{{Bb{EFj}}{Bb{EFj}}}C`}{{{Bb{EGh}}{Bb{EGh}}}C`}{{{Bb{EGj}}{Bb{EGj}}}C`}{{{Bb{EFn}}{Bb{EFn}}}C`}{{{Bb{EEl}}{Bb{EEl}}}C`}{{{Bb{EGl}}{Bb{EGl}}}C`}{{{Bb{EGd}}{Bb{EGd}}}C`}{{{Bb{EGn}}{Bb{EGn}}}C`}{{{Bb{EH`}}{Bb{EH`}}}C`}{{{Bb{EHb}}{Bb{EHb}}}C`}{{{Bb{EHd}}{Bb{EHd}}}C`}{{{Bb{EHf}}{Bb{EHf}}}C`}{{{Bb{EHh}}{Bb{EHh}}}C`}{{{Bb{EHj}}{Bb{EHj}}}C`}{{{Bb{EHl}}{Bb{EHl}}}C`}{{{Bb{EHn}}{Bb{EHn}}}C`}{{{Bb{EI`}}{Bb{EI`}}}C`}{{{Bb{EIb}}{Bb{EIb}}}C`}{{{Bb{EId}}{Bb{EId}}}C`}{{{Bb{EIf}}{Bb{EIf}}}C`}{{{Bb{EIh}}{Bb{EIh}}}C`}{{{Bb{EIj}}{Bb{EIj}}}C`}{{{Bb{EIl}}{Bb{EIl}}}C`}{{{Bb{EIn}}{Bb{EIn}}}C`}{{{Bb{EJ`}}{Bb{EJ`}}}C`}{{{Bb{EJb}}{Bb{EJb}}}C`}{{{Bb{EJd}}{Bb{EJd}}}C`}{{{Bb{EJf}}{Bb{EJf}}}C`}{{{Bb{EJh}}{Bb{EJh}}}C`}{{{Bb{EJj}}{Bb{EJj}}}C`}{{{Bb{EGb}}{Bb{EGb}}}C`}{{{Bb{EG`}}{Bb{EG`}}}C`}{{Bb{Bb{c}}}C`{}}00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000{EIfANl}{{{Bb{EGf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EFj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EGh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EGj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EFn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EEl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EGl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EGd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EGn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EH`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EHb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EHd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EHf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EHh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EHj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EHl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EHn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EI`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EIb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EId}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EIf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EIh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EIj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EIl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EIn}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EJ`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EJb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EJd}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EJf}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EJh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EJj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EGb}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EG`}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{{{Bb{EJl}}{Bb{B`Jd}}}{{Bl{BdJf}}}}0{cc{}}000000000000000000000000000000{EIdEGb}{EGdEGb}{EIlEGb}3{EIhEGb}{EJjEGb}{EI`EGb}{EJ`EGb}{EJbEGb}{EHlEGb}{EH`EGb}{EHdEGb}{EGjEGb}{EJdEGb}{EFjEGb}{EHhEGb}{EJhEGb}{EElEGb}{EHjEG`}{cc{}}{EGhEG`}{EGfEG`}{EHnEG`}{EHfEG`}{EHbEG`}{EGlEG`}{EInEG`}{EGnEG`}{EFnEG`}{EJfEG`}{EIbEG`}{EIjEG`}{EIfEG`}==================================={ce{}{}}000000000000000000000000000000000{EIjEFl}{EIlEFl}{{}EFn}{{{Bb{EGf}}{Bb{B`c}}}BdLb}{{{Bb{EFj}}{Bb{B`c}}}BdLb}{{{Bb{EGh}}{Bb{B`c}}}BdLb}{{{Bb{EGj}}{Bb{B`c}}}BdLb}{{{Bb{EFn}}{Bb{B`c}}}BdLb}{{{Bb{EEl}}{Bb{B`c}}}BdLb}{{{Bb{EGl}}{Bb{B`c}}}BdLb}{{{Bb{EGd}}{Bb{B`c}}}BdLb}{{{Bb{EGn}}{Bb{B`c}}}BdLb}{{{Bb{EH`}}{Bb{B`c}}}BdLb}{{{Bb{EHb}}{Bb{B`c}}}BdLb}{{{Bb{EHd}}{Bb{B`c}}}BdLb}{{{Bb{EHf}}{Bb{B`c}}}BdLb}{{{Bb{EHh}}{Bb{B`c}}}BdLb}{{{Bb{EHj}}{Bb{B`c}}}BdLb}{{{Bb{EHl}}{Bb{B`c}}}BdLb}{{{Bb{EHn}}{Bb{B`c}}}BdLb}{{{Bb{EI`}}{Bb{B`c}}}BdLb}{{{Bb{EIb}}{Bb{B`c}}}BdLb}{{{Bb{EId}}{Bb{B`c}}}BdLb}{{{Bb{EIf}}{Bb{B`c}}}BdLb}{{{Bb{EIh}}{Bb{B`c}}}BdLb}{{{Bb{EIj}}{Bb{B`c}}}BdLb}{{{Bb{EIl}}{Bb{B`c}}}BdLb}{{{Bb{EIn}}{Bb{B`c}}}BdLb}{{{Bb{EJ`}}{Bb{B`c}}}BdLb}{{{Bb{EJb}}{Bb{B`c}}}BdLb}{{{Bb{EJd}}{Bb{B`c}}}BdLb}{{{Bb{EJf}}{Bb{B`c}}}BdLb}{{{Bb{EJh}}{Bb{B`c}}}BdLb}{{{Bb{EJj}}{Bb{B`c}}}BdLb}{{{Bb{EGb}}{Bb{B`c}}}BdLb}{{{Bb{EG`}}{Bb{B`c}}}BdLb}{EJhBf}{EJhEK`}{EJ`Ij}{{}Id}000000000000000000000000000000000{{}c{}}0000000000000000000000000000000000000000000000000000000000000000000{{{I`{c}}}{{I`{Dl}}}{}}000000000000000000000000000000000{{{Lj{c}}}{{Lj{Dl}}}{}}00000000000000{{{Ll{c}}}{{Ll{Dl}}}{}}000000000000000000000000000000000{{{Fl{c}}}e{}{}}00000000000000000000000000000000044444444444444444444444444444444444444444444444444444444444444444444{{}c{}}000000000000000000000000000000000{EH`EFl}{{}EGf}{{{EFl{EKb}}}EFj}{{}EGh}{{{EFl{EKb}}}EGj}{{}EGl}{{{EFl{EKb}}}EGd}{{}EGn}{{{EFl{EKb}}}EH`}{{}EHb}{{{EFl{EKb}}}EHd}{{}EHf}{{{EFl{EKb}}}EHh}{{{Bf{{EFl{EKb}}}}ANl}EHj}{KnEHl}{{{Bf{{EFl{EKb}}}}ANl}EHn}{{{EK`{Ij}}}EI`}{{{EFl{EKb}}}EIb}{{{EFl{EKb}}}EId}{ANlEIf}{IjEIh}{{{EFl{EKb}}}EIj}{{{EFl{EKb}}}EIl}{{}EIn}{IjEJ`}{{{EFl{EKb}}}EJb}{{{EFl{EKb}}}EJd}{{}EJf}{{{EK`{EKd}}}EJh}{{{EFl{EKb}}}EJj}{EGjEFl}{EJbEFl}{EJdEFl}{{}EFn}0{EIhIj}{{{Bb{EKf}}}{{Bl{EG`EJl}}}}{Bb{{Bl{EG`EJl}}}}{{{Bb{EKh}}}{{Bl{EGbEJl}}}}{Bb{{Bl{EGbEJl}}}}{EHjANl}{EHnANl}{EIdEFl}{Bbc{}}000000000000000000000000000000000{BbABh}{BbHb}{{}{{Bl{c}}}{}}000000000000000000000000000000000{c{{Bl{e}}}{}{}}000000000000000000000000000000000{{}{{Bl{c}}}{}}000000000000000000000000000000000{{}{{Bl{c{ABj{c}}}}}{}}000000000000000000000000000000000{BbABl}000000000000000000000000000000000{EHhEFl}{EHhBf}{{}EFn}{ce{}{}}000000000000000000000000000000000{{}c{}}000000000000000000000000000000000{Bb{{Bf{{Bb{c}}}}}{}}000000000000000000000000000000000{EHlKn}{EI`Bf}{{}c{}}0000000000000000000000000000000006{EHdEFl}3{EI`EK`}{{{Bb{EKj}}}{{Bl{EElEJl}}}}{{{Bb{EEl}}}{{Bl{EElEJl}}}}:````{eg{}{{l{c}}}{}}{ce{}{}}:{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{AHdAFl}{{{Fl{c}}}e{}{}}6{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}5{IdBd}{{{Bb{EEh}}{Bb{B`Jd}}}{{Bl{BdJf}}}}0{cc{}}0{ce{}{}}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}};33{{}c{}}{AHdKj}{AHdAn}{BbABh}{BbHb}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}{{}c{}}``{eg{}{{l{c}}}{}}{EEjHb}{ce{}{}}5{Bb{{Bb{Dl}}}}{{{Bb{B`}}}{{Bb{B`Dl}}}}{Bb{{Bb{c}}}{}}{{{Bb{B`}}}{{Bb{B`c}}}{}}{{{Fl{c}}}e{}{}}{{{Bb{EEj}}}EEj}{{Bb{Bb{B`c}}}Bd{}}{{BbGn}Bd}8{NdC`}{{}EEj}{Id{{Bb{c}}}{}}{Id{{Bb{B`c}}}{}}9{IdBd}{{{Bb{EEj}}{Bb{EEj}}}C`}{{Bb{Bb{c}}}C`{}}006{{{Bb{EEj}}{Bb{B`Jd}}}{{Bl{BdJf}}}}{cc{}}0{ce{}{}}9{NdBf}{{}Id}{{}c{}}0{{{I`{c}}}{{I`{Dl}}}{}}{{{Lj{c}}}{{Lj{Dl}}}{}}{{{Ll{c}}}{{Ll{Dl}}}{}}{{{Fl{c}}}e{}{}}44{{}c{}}{NdBAb}8{NdC`}92{EEjC`}{NdEEj}{NdBAd}3{NdAn}{Bbc{}}5{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{ABj{c}}}}}{}}{BbABl}{ce{}{}}{{}c{}}{Bb{{Bf{{Bb{c}}}}}{}}={{}c{}}","D":"ADMdAEEbDBl","p":[[5,"Color",21033,23802],[1,"f32"],[5,"Task",21033,23803],[5,"Handle",6420,23803],[1,"tuple",null,null,1],[10,"TransformMatrix",23804],[5,"Radians",21033,23805],[5,"Degrees",21033,23805],[5,"Pixels",21033,23806],[5,"Point",21033,23807],[5,"Vector",21033,23808],[17,"Output"],[10,"Add",23809],[5,"Rectangle",21033,23810],[5,"Size",21033,23811],[0,"mut"],[1,"reference",null,null,1],[1,"unit"],[6,"Option",23812,null,1],[10,"MaybeSend",23813],[10,"Fn",23814],[6,"Result",23815,null,1],[5,"Settings",21033,23816],[1,"bool"],[17,"State"],[17,"Message"],[17,"Theme"],[10,"Program",21033,23817],[5,"Application",4336],[10,"Title",4336],[10,"Send",23818],[10,"Debug",23819],[10,"Update",4336],[10,"Default",23820],[10,"Base",21103,23821],[10,"View",4336],[6,"Rotation",21033,23822],[10,"Any",23823],[5,"Transformation",21033,23824],[1,"array"],[5,"Animation",21033,23825],[10,"Clone",23826],[10,"Copy",23818],[10,"PartialEq",23827],[10,"Float",4254],[6,"Theme",21033,23821],[5,"Style",21103,23821],[17,"Item"],[10,"IntoIterator",23828],[5,"Subscription",21033,23829],[5,"Shadow",21033,23830],[5,"Padding",21033,23831],[10,"Into",23832,null,1],[5,"BakedParameters",23833],[6,"Alignment",21033,23834],[5,"Border",21033,23835],[6,"Event",21033,23836],[5,"Font",21033,23837],[6,"Gradient",21033,23838],[6,"Background",21033,23839],[6,"ContentFit",21033,23840],[6,"Length",21033,23841],[1,"u8"],[5,"Vec",23842],[5,"String",23843],[5,"Palette",21103,23844],[5,"Extended",21104,23844],[10,"FnOnce",23814],[5,"Daemon",4481],[10,"Title",4481],[10,"View",4481],[5,"Box",23845,null,1],[5,"Duration",7055,23846],[1,"usize"],[10,"Float",23847],[10,"Num",23848],[1,"u32"],[6,"Easing",4254,23849],[10,"Executor",21033,23850],[6,"Family",4816,23837],[1,"u16"],[5,"Formatter",23819],[5,"Error",23819],[6,"Error",21033,23851],[8,"Result",23819],[10,"Display",23819],[6,"Error",23852],[6,"Vertical",4160,23834],[6,"Horizontal",4160,23834],[5,"Linear",4871,23838],[5,"Rgb",23853],[5,"Alpha",23854],[1,"f64"],[1,"i64"],[1,"u64"],[10,"Future",23855,null,1],[10,"Hasher",23856],[10,"Hash",23856],[5,"Instant",7055,23857],[10,"Interpolable",4254,23858],[5,"Arc",23859,null,1],[5,"Rc",23860,null,1],[10,"FnMut",23814],[10,"Mul",23809],[10,"Neg",23809],[6,"Infallible",23832],[5,"Error",23861],[1,"str"],[6,"Ordering",23827],[5,"Radius",4454,23835],[8,"Result",21033],[17,"Renderer"],[17,"Executor"],[5,"Settings",23800,23862],[10,"Stream",23863],[1,"fn"],[5,"Id",23800,23864],[6,"Stretch",4816,23837],[6,"Status",20543,23865],[5,"Style",20543,23865],[5,"Style",19978,23866],[6,"Status",16211,23867],[5,"Style",16211,23867],[6,"Status",9179,23868],[5,"Style",9179,23868],[6,"Status",18607,23869],[5,"Style",18607,23869],[6,"Status",18108,23870],[5,"Style",18108,23870],[5,"Style",18367,23871],[6,"Status",19691,23872],[5,"Style",19691,23872],[6,"Status",19985,23873],[5,"Style",19985,23873],[5,"Style",16414,23874],[5,"Style",18311,23875],[6,"Status",18810,23876],[5,"Style",18810,23876],[6,"Status",21286,23877],[5,"Style",21286,23877],[5,"Style",18081,23878],[5,"Style",18710,23879],[5,"Style",17156,23880],[6,"Status",21111,23881],[5,"Style",21111,23881],[6,"Style",4816,23837],[10,"Sub",23809],[5,"SmolStr",23882],[5,"OutOfBounds",23883],[5,"TypeId",23823],[8,"Element",21033],[6,"Weight",4816,23837],[10,"Sync",23818],[5,"Shell",3872,23884],[5,"Layout",3872,23885],[5,"Text",3872,23886],[10,"Widget",3872,23887],[5,"Tree",4130,23888],[10,"DoubleEndedIterator",23889],[10,"Renderer",3872,23890],[10,"Overlay",3872,23891],[5,"Style",2638,23890],[6,"Cursor",5942,23892],[6,"Status",4543,23836],[5,"Quad",2638,23890],[6,"InputMethod",23893],[5,"Node",2155,23894],[5,"Limits",2155,23895],[6,"LineHeight",19977,23886],[6,"Interaction",5942,23896],[10,"Operation",4130,23897],[5,"Element",2554,23898],[10,"Clipboard",3872,23899],[6,"Kind",1842,23899],[6,"RedrawRequest",23800,23900],[10,"AsRef",23832],[6,"Shaping",19977,23886],[6,"State",4131,23888],[5,"Tag",4131,23888],[6,"Wrapping",19977,23886],[5,"Null",1842,23899],[5,"Bytes",16540,23901],[1,"slice"],[5,"Image",16540,23902],[6,"Handle",16540,23902],[5,"Id",16540,23902],[6,"FilterMethod",16540,23902],[17,"Handle"],[10,"Renderer",16540,23902],[1,"char"],[10,"FromIterator",23828],[5,"BytesMut",23903],[10,"Sized",23818],[5,"Screenshot",23800,23904],[5,"PathBuf",23905],[10,"RangeBounds",23906],[15,"Rgba",16600],[6,"Axis",2273,23907],[5,"Element",23908],[5,"Click",2355,23909],[6,"Kind",2406,23909],[6,"Button",5942,23910],[15,"WheelScrolled",6211],[6,"ScrollDelta",5942,23911],[15,"CursorMoved",6211],[15,"Lines",6213],[15,"Pixels",6213],[5,"Group",2554,23912],[10,"Headless",2638,23890],[6,"Event",2662,23829],[6,"PlatformSpecific",2662,23829],[6,"MacOS",2662,23829],[10,"Recipe",2662,23829],[5,"FxHasher",23913],[5,"Pin",23914],[15,"Interaction",2806],[5,"Svg",2809,23915],[5,"Handle",2809,23915],[6,"Data",2809,23915],[10,"Renderer",2809,23915],[6,"Cow",23916],[5,"Span",19977,23886],[5,"Highlight",19977,23886],[17,"Font"],[10,"Editor",19977,23917],[17,"Settings"],[17,"Highlight"],[17,"Iterator"],[10,"Highlighter",19977,23918],[5,"Range",23906],[10,"Iterator",23919],[6,"Hit",19977,23886],[6,"Difference",19977,23886],[10,"Paragraph",19977,23920],[6,"Cursor",3529,23917],[17,"Paragraph"],[17,"Editor"],[10,"Renderer",19977,23886],[5,"Format",3631,23918],[10,"IntoFragment",19977,23886],[5,"Line",19985,23917],[6,"Action",19985,23917],[6,"Direction",3529,23917],[6,"LineEnding",19985,23917],[15,"Scroll",20541],[1,"i32"],[5,"PlainText",3631,23918],[5,"Plain",3696,23920],[5,"Text",4130,23866],[10,"Catalog",19978,23866],[5,"Id",4130,23921],[10,"Borrow",23922],[6,"Outcome",4024,23897],[10,"Focusable",4024,23923],[5,"Id",18810,23876],[5,"Id",16414,23874],[5,"Id",20543,23865],[10,"Scrollable",4024,23924],[10,"TextInput",4024,23925],[5,"AbsoluteOffset",18810,23924],[5,"RelativeOffset",18810,23924],[5,"Count",4001,23923],[5,"State",19978,23866],[17,"Class"],[6,"Level",23800,23926],[6,"Position",23800,23927],[6,"Error",4816,23928],[5,"ColorStop",4871,23838],[5,"Modifiers",5731,23929],[6,"Key",5731,23930],[6,"Event",5731,23931],[6,"Location",5731,23932],[10,"Ord",23827],[6,"Named",5732,23930],[5,"Iter",23933],[5,"IterNames",23933],[10,"PartialOrd",23827],[15,"KeyPressed",5220],[15,"KeyReleased",5220],[6,"Physical",5732,23930],[6,"Code",5732,23930],[6,"NativeCode",5732,23930],[6,"Event",5942,23911],[5,"State",17156,23880],[5,"Menu",17156,23880],[10,"ToString",23843],[10,"Catalog",17156,23880],[5,"Sender",23934],[5,"Information",6368,23935],[5,"Custom",21103,23821],[5,"LazyLock",23936],[5,"Background",21104,23844],[5,"Pair",21104,23844],[5,"Primary",21104,23844],[5,"Secondary",21104,23844],[5,"Success",21104,23844],[5,"Warning",21104,23844],[5,"Danger",21104,23844],[5,"Duration",23937],[1,"u128"],[10,"Deserializer",23938],[6,"Signature",23939],[6,"Error",23940],[5,"Instant",23941],[5,"Delay",23942],[5,"TimeSpec",23943],[10,"Serializer",23944],[5,"ConversionRange",23945],[5,"TryFromFloatSecsError",23846],[6,"Event",7253,23946],[5,"Finger",7253,23946],[15,"FingerPressed",7345],[15,"FingerMoved",7345],[15,"FingerLifted",7345],[15,"FingerLost",7345],[5,"Container",7420,23874],[10,"Catalog",16414,23874],[5,"Column",7420,23947],[5,"TextInput",7420,23865],[10,"Catalog",20543,23865],[5,"Row",7420,23948],[5,"Scrollable",7420,23876],[10,"Catalog",18810,23876],[6,"Anchor",18810,23876],[5,"Action",7420,23949],[5,"Pop",7420,23950],[5,"Themer",7420,23951],[5,"Button",7420,23868],[10,"Catalog",9179,23868],[5,"Canvas",7420,23952],[10,"Renderer",23953],[10,"Program",16204,23954],[5,"QRCode",7420,23871],[10,"Catalog",18367,23871],[5,"Checkbox",7420,23867],[10,"Catalog",16211,23867],[5,"MouseArea",7420,23955],[5,"Pin",7420,23956],[5,"Stack",7420,23957],[5,"ComboBox",7420,23958],[10,"Catalog",16365,23958],[5,"PaneGrid",7420,23878],[10,"Catalog",18081,23878],[5,"Tooltip",7420,23959],[5,"Lazy",7420,23960],[5,"PickList",7420,23870],[10,"Catalog",18108,23870],[5,"ProgressBar",7420,23875],[10,"Catalog",18311,23875],[5,"Radio",7420,23869],[10,"Catalog",18607,23869],[5,"Rule",7420,23879],[10,"Catalog",18710,23879],[5,"Slider",7420,23877],[10,"From",23832,null,1],[10,"Catalog",21286,23877],[5,"TextEditor",7420,23873],[10,"Catalog",19985,23873],[5,"Toggler",7420,23881],[10,"Catalog",21111,23881],[5,"VerticalSlider",7420,23961],[5,"Svg",7420,23872],[10,"Catalog",19691,23872],[5,"State",16365,23958],[10,"Component",7420,23962],[5,"Image",7420,23963],[6,"Direction",18810,23876],[10,"FromPrimitive",23964],[5,"Value",20543,23965],[5,"Responsive",7420,23966],[5,"Shader",7420,23967],[10,"Program",19352,23968],[10,"Renderer",23969],[5,"Renderer",23970],[5,"Renderer",23971],[6,"Renderer",23972],[5,"Space",7420,23973],[6,"Handle",18108,23870],[6,"Theme",23974],[5,"Highlighter",23974],[5,"Icon",16211,23867],[5,"Icon",20543,23865],[5,"KeyPress",19985,23873],[6,"Binding",19985,23873],[5,"Column",16651,23975],[5,"Url",16775,23976],[6,"Item",16775,23977],[5,"Settings",16775,23977],[10,"Catalog",16775,23977],[5,"State",18081,23978],[5,"Pane",18081,23979],[5,"Content",18081,23980],[5,"RangeInclusive",23906],[10,"Eq",23827],[5,"Content",19985,23873],[6,"Position",21216,23959],[5,"Data",18367,23871],[6,"DragEvent",18081,23878],[5,"ResizeEvent",18081,23878],[5,"Viewport",18810,23876],[17,"Event"],[5,"Rich",19978,23981],[5,"Wrapping",23948],[5,"Path",16204,23982],[5,"Group",16204,23983],[6,"Gradient",16204,23984],[5,"Fill",16204,23985],[5,"Stroke",16204,23986],[6,"LineCap",16204,23986],[6,"LineJoin",16204,23986],[5,"LineDash",16204,23986],[6,"Style",16204,23987],[5,"Text",16204,23988],[5,"Linear",9853,23984],[5,"Builder",10083,23989],[5,"Packed",9853,23984],[5,"Path",16118,23990],[6,"Rule",9840,23985],[5,"UnknownUnit",14748,23991],[5,"Transform2D",14748,23992],[5,"Arc",10083,23993],[5,"Elliptical",10084,23993],[5,"PathCommands",16118,23994],[5,"PathCommandsSlice",16118,23994],[5,"PathSlice",16118,23990],[5,"PathBuffer",16118,23995],[5,"PathBufferSlice",16118,23995],[5,"EndpointId",16118,23996],[5,"BuilderImpl",16118,23990],[5,"Point2D",14748,23997],[5,"BuilderWithAttributes",16118,23990],[5,"PathCommandsBuilder",11736,23994],[5,"NoAttributes",16165,23998],[5,"Builder",15834,23995],[5,"ArcFlags",16118,23999],[6,"Event",16118,24000],[5,"Iter",16118,23990],[5,"IterWithAttributes",16118,23990],[5,"IdIter",16118,23990],[5,"Polygon",16118,24001],[5,"IdPolygon",16118,24001],[6,"LineCap",16118,23996],[6,"LineJoin",16118,23996],[6,"Side",16118,23996],[6,"FillRule",16118,23996],[6,"Winding",16118,23996],[5,"ControlPointId",16118,23996],[5,"EventId",16118,23996],[5,"Events",11736,23994],[10,"AttributeStore",16118,23996],[5,"AttributeSlice",16118,23996],[10,"PositionStore",16118,23996],[10,"Position",16118,23996],[5,"PolygonIdIter",16120,24001],[5,"Iter",11736,23994],[5,"Reversed",16118,23990],[1,"i16"],[5,"Iter",15834,23995],[5,"PolygonIter",16120,24001],[5,"IdPolygonIter",16120,24001],[5,"PathEvents",16120,24001],[5,"CommandsPathSlice",11736,23994],[5,"NoAttributes",15631,24002],[5,"WithSvg",16165,23998],[10,"Transformation",15621,24003],[15,"Begin",11340],[15,"End",11340],[15,"Quadratic",11340],[15,"Cubic",11340],[15,"Line",11340],[10,"PathBuilder",16165,23998],[5,"Vector2D",14748,24004],[5,"Angle",15623,24005],[5,"LineSegment",15623,24006],[10,"SvgPathBuilder",16165,23998],[5,"Box2D",14748,24007],[5,"BorderRadii",16165,23998],[5,"Flattened",16165,23998],[5,"Transformed",16165,23998],[17,"PathType"],[10,"Build",16165,23998],[5,"PointEvents",11736,23994],[5,"LineEquation",15623,24006],[10,"Scalar",15623,24008],[5,"Triangle",15623,24009],[10,"AddAssign",23809],[17,"Scalar"],[10,"Segment",15623,24010],[5,"Arc",15623,23999],[5,"CubicBezierSegment",15623,24011],[5,"QuadraticBezierSegment",15623,24012],[8,"Rotation",15623,24013],[10,"Rem",23809],[10,"One",24014],[10,"FloatConst",23847],[10,"ApproxEq",15387,24015],[10,"NumCast",23964],[5,"SvgArc",15623,23999],[5,"Line",15623,24006],[5,"ArrayVec",12833,24016],[10,"Trig",14748,24017],[10,"Div",23809],[10,"DivAssign",23809],[5,"Flattened",12822,23999],[5,"Flattened",13304,24011],[5,"Flattened",15578,24012],[5,"FlattenedT",15578,24012],[8,"Size",15623],[8,"Transform",15623,24013],[8,"Box2D",15623,24018],[10,"MulAssign",23809],[10,"Zero",24014],[10,"Real",24019],[5,"Size2D",14748,24020],[10,"SubAssign",23809],[8,"Translation",15623,24013],[8,"Point",15623],[8,"Vector",15623],[5,"ArrayString",12833,24021],[5,"IntoIter",12833,24016],[5,"Path",23905],[5,"CapacityError",12833,24022],[5,"Drain",12833,24016],[5,"Utf8Error",24023],[5,"Arguments",23819],[1,"i128"],[1,"i8"],[6,"Endian",24024],[10,"Signed",24025],[5,"Size3D",14748,24020],[5,"Vector3D",14748,24004],[5,"Length",14748,24026],[5,"Point3D",14748,23997],[5,"Scale",14748,24027],[5,"SideOffsets2D",14748,24028],[5,"Translation2D",14748,24029],[5,"Translation3D",14748,24029],[5,"BoolVector2D",14748,24004],[5,"BoolVector3D",14748,24004],[5,"Rotation2D",14748,24030],[5,"Transform3D",14748,24031],[5,"Rotation3D",14748,24030],[5,"Rect",14748,24032],[5,"Box3D",14748,24033],[5,"RigidTransform3D",14748,24034],[10,"Ceil",15476,24035],[10,"One",15476,24035],[5,"HomogeneousVector",14748,24036],[10,"Zero",15476,24035],[10,"Euclid",24037],[10,"Floor",15476,24035],[10,"Round",15476,24035],[10,"Saturating",24038],[8,"Rotation2D",15468,24018],[8,"SideOffsets2D",15468,24018],[8,"Size3D",15468,24018],[8,"Rotation3D",15468,24018],[8,"Transform2D",15468,24018],[8,"Transform3D",15468,24018],[8,"Box3D",15468,24018],[8,"Rect",15468,24018],[8,"RigidTransform3D",15468,24018],[8,"HomogeneousVector",15468,24018],[8,"Point3D",15468,24018],[8,"Vector3D",15468,24018],[8,"Translation2D",15468,24018],[8,"Translation3D",15468,24018],[5,"FlatteningParameters",15578,24012],[5,"FromPolyline",15631,24002],[10,"PathIterator",15631,24002],[5,"Flattened",15631,24002],[5,"Transformed",15631,24002],[8,"Rotation",15795,24039],[8,"Size",15795,24039],[8,"Transform",15795,24039],[8,"Box2D",15795,24039],[8,"Angle",15795,24039],[8,"Point",15795,24039],[8,"Vector",15795,24039],[8,"Translation",15795,24039],[5,"BuilderWithAttributes",15834,23995],[5,"IterBridge",24040],[15,"Active",16362],[15,"Hovered",16362],[15,"Disabled",16362],[5,"Viewer",16544,24041],[5,"State",16604,24041],[6,"HeadingLevel",16775,24042],[5,"Text",16775,23977],[5,"Style",16775,23977],[10,"Viewer",16775,23977],[5,"Content",16775,23977],[6,"ParseError",24043],[6,"Host",24044],[5,"HashSet",24045],[5,"RangeFull",23906],[6,"Position",24046],[5,"RangeTo",23906],[5,"RangeFrom",23906],[5,"ParseOptions",23976],[6,"Origin",24047],[5,"Split",24048],[5,"PathSegmentsMut",24049],[5,"Parse",24050],[5,"UrlQuery",23976],[5,"Serializer",24050],[6,"IpAddr",24051],[6,"SocketAddr",24052],[15,"Image",17138],[15,"CodeBlock",17138],[15,"List",17138],[6,"Direction",18081,24053],[5,"TitleBar",18081,24054],[5,"Highlight",18081,23878],[10,"Draggable",18081,24055],[6,"Axis",18081,24056],[6,"Configuration",18081,24057],[6,"Node",18081,24058],[5,"Split",18081,24059],[6,"Target",18081,23878],[6,"Region",18081,23878],[6,"Edge",18081,23878],[5,"Line",18081,23878],[5,"Controls",18081,24060],[5,"Internal",18082,23978],[5,"BTreeMap",24061],[15,"Split",17997],[15,"Picked",18001],[15,"Dropped",18001],[15,"Canceled",18001],[15,"Split",18005],[6,"Action",18082,23978],[15,"Resizing",18104],[15,"Dragging",18104],[5,"Icon",18108,23870],[15,"Dynamic",18306],[15,"Arrow",18306],[15,"Opened",18309],[6,"Version",18367,23871],[6,"ErrorCorrection",18367,23871],[6,"Error",18367,23871],[6,"QrError",24062],[15,"Active",18708],[15,"Hovered",18708],[6,"FillMode",18710,23879],[5,"Scrollbar",18810,23876],[5,"Rail",18810,23876],[5,"Scroller",18810,23876],[15,"Both",19340],[15,"Active",19342],[15,"Hovered",19342],[15,"Dragged",19342],[5,"Viewport",19352,24063],[5,"Storage",19352,23969],[17,"Primitive"],[10,"Primitive",19352,23969],[5,"Device",24064],[5,"Queue",24065],[6,"TextureFormat",24066],[5,"CommandEncoder",24067],[5,"TextureView",24068],[5,"Handle",21286,23877],[5,"Rail",21286,23877],[6,"HandleShape",21286,23877],[15,"Rectangle",21291],[15,"Circle",21291],[6,"Edit",19985,23917],[6,"Motion",19985,23917],[5,"State",19985,23873],[15,"Focused",20542],[5,"Cursor",20543,24069],[6,"Side",20543,23865],[5,"State",20543,23865],[6,"State",20958,24069],[15,"Focused",20957],[15,"Selection",21006],[15,"Active",21214],[15,"Hovered",21214],[5,"Icon",23800,24070],[6,"Direction",23800,24071],[6,"Event",23800,24072],[6,"Mode",23800,24073],[6,"UserAttention",23800,24074],[6,"CropError",23727,23904],[5,"PlatformSpecific",23801,24075],[5,"WindowHandle",22002,24076],[15,"Opened",21949],[6,"Error",21951],[6,"ImageError",24077],[6,"Error",24070],[6,"ImageFormat",24078],[10,"Error",24079],[5,"AndroidNdkWindowHandle",22002,24080],[5,"NonNull",24081],[5,"DisplayHandle",22002,24076],[6,"RawDisplayHandle",22002,24082],[6,"RawWindowHandle",22002,24082],[5,"HaikuWindowHandle",22002,24083],[5,"AndroidDisplayHandle",22002,24080],[5,"AppKitDisplayHandle",22002,24084],[5,"AppKitWindowHandle",22002,24084],[5,"HaikuDisplayHandle",22002,24083],[5,"OhosDisplayHandle",22002,24085],[5,"OhosNdkWindowHandle",22002,24085],[5,"OrbitalDisplayHandle",22002,24086],[5,"OrbitalWindowHandle",22002,24086],[5,"UiKitDisplayHandle",22002,24087],[5,"UiKitWindowHandle",22002,24087],[5,"XlibDisplayHandle",22002,24088],[5,"XlibWindowHandle",22002,24088],[5,"XcbDisplayHandle",22002,24088],[5,"XcbWindowHandle",22002,24088],[5,"WaylandDisplayHandle",22002,24088],[5,"WaylandWindowHandle",22002,24088],[5,"DrmDisplayHandle",22002,24088],[5,"DrmWindowHandle",22002,24088],[5,"GbmDisplayHandle",22002,24088],[5,"GbmWindowHandle",22002,24088],[5,"WebDisplayHandle",22002,24089],[5,"WebWindowHandle",22002,24089],[5,"WebCanvasWindowHandle",22002,24089],[5,"WebOffscreenCanvasWindowHandle",22002,24089],[5,"WindowsDisplayHandle",22002,24090],[5,"Win32WindowHandle",22002,24090],[5,"WinRtWindowHandle",22002,24090],[6,"HandleError",22002,24082],[10,"HasDisplayHandle",22002,24076],[5,"NonZero",24091],[6,"c_void",24092],[1,"isize"],[10,"HasRawDisplayHandle",22002,24082],[10,"HasRawWindowHandle",22002,24082],[10,"HasWindowHandle",22002,24076],[8,"Renderer",21033],[8,"Fragment",19977],[8,"PathEvent",16118],[8,"IdEvent",16118],[6,"Action",23800]],"r":[[0,23821],[1,23834],[2,23825],[3,4336],[4,23802],[5,23839],[6,23835],[7,24093],[8,23821],[9,23821],[10,23821],[11,23821],[12,24094],[13,23834],[14,23802],[15,23839],[16,23840],[17,23840],[18,23840],[19,23821],[20,23837],[21,4481],[22,23821],[23,23805],[24,23821],[26,23834],[28,23851],[29,23836],[30,23850],[31,23817],[32,23851],[33,23821],[34,24095],[35,23840],[36,23841],[37,24095],[38,23841],[39,23841],[40,23822],[41,23837],[42,23838],[43,23839],[44,23851],[45,23821],[46,23821],[47,23824],[48,23810],[49,23811],[50,23836],[51,23821],[52,23821],[53,23821],[54,23836],[55,24096],[56,23841],[57,23821],[58,23838],[59,23837],[60,23817],[61,23821],[62,23836],[63,23821],[64,23840],[65,23821],[66,23807],[68,23821],[69,23805],[70,23831],[71,23806],[72,23807],[74,23817],[75,23805],[76,23805],[77,23805],[78,23810],[79,24097],[80,23817],[82,24096],[83,23822],[84,23840],[86,23816],[87,23830],[88,24095],[89,23841],[90,23811],[91,23821],[92,23821],[93,23822],[94,23834],[95,23817],[96,23829],[97,23802],[98,23803],[99,23821],[100,23817],[101,23821],[102,23821],[103,23821],[104,24093],[105,23836],[106,23824],[107,23811],[108,23808],[109,23802],[110,23836],[111,23851],[112,23831],[113,23806],[114,23811],[115,23808],[116,23802],[117,23803],[118,23803],[119,23829],[120,23851],[121,23834],[122,23825],[123,23835],[124,23836],[125,23837],[126,23838],[127,23831],[128,23821],[129,23805],[130,23805],[131,23839],[132,23802],[133,23840],[134,23841],[135,23806],[136,23807],[137,23810],[138,23822],[139,23816],[140,23830],[141,23811],[142,23824],[143,23808],[144,23805],[145,23805],[146,23806],[147,23806],[148,23807],[149,23810],[150,23811],[151,23808],[152,23805],[154,24098],[155,23803],[156,23803],[157,24098],[158,23816],[160,4336],[161,23822],[162,23810],[163,23803],[164,23829],[165,23851],[166,23834],[167,23825],[168,23835],[169,23836],[170,23837],[171,23838],[172,23831],[173,23821],[174,23805],[175,23805],[176,23839],[177,23802],[178,23840],[179,23841],[180,23806],[181,23807],[182,23810],[183,23822],[184,23816],[185,23830],[186,23811],[187,23824],[188,23808],[189,23803],[190,23829],[191,23851],[192,23834],[193,23825],[194,23835],[195,23836],[196,23837],[197,23838],[198,23831],[199,23821],[200,23805],[201,23805],[202,23839],[203,23802],[204,23840],[205,23841],[206,23806],[207,23807],[208,23810],[209,23822],[210,23816],[211,23830],[212,23811],[213,23824],[214,23808],[215,23803],[216,23829],[217,23851],[218,23834],[219,23825],[220,23835],[221,23836],[222,23837],[223,23838],[224,23831],[225,23821],[226,23805],[227,23805],[228,23839],[229,23802],[230,23840],[231,23841],[232,23806],[233,23807],[234,23810],[235,23822],[236,23816],[237,23830],[238,23811],[239,23824],[240,23808],[241,23803],[242,23829],[243,23851],[244,23834],[245,23825],[246,23835],[247,23836],[248,23837],[249,23838],[250,23831],[251,23821],[252,23805],[253,23805],[254,23839],[255,23802],[256,23840],[257,23841],[258,23806],[259,23807],[260,23810],[261,23822],[262,23816],[263,23830],[264,23811],[265,23824],[266,23808],[267,23824],[268,23825],[269,23802],[270,23821],[271,23803],[272,23829],[273,23830],[274,24098],[275,23803],[276,23829],[277,23851],[278,23834],[279,23825],[280,23835],[281,23836],[282,23837],[283,23838],[284,23831],[285,23821],[286,23805],[287,23805],[288,23839],[289,23802],[290,23840],[291,23841],[292,23806],[293,23807],[294,23810],[295,23822],[296,23816],[297,23830],[298,23811],[299,23824],[300,23808],[301,23803],[302,23829],[303,23851],[304,23834],[305,23825],[306,23835],[307,23836],[308,23837],[309,23838],[310,23831],[311,23821],[312,23805],[313,23805],[314,23839],[315,23802],[316,23840],[317,23841],[318,23806],[319,23807],[320,23810],[321,23822],[322,23816],[323,23830],[324,23811],[325,23824],[326,23808],[327,23831],[328,23831],[329,23803],[330,23829],[331,23851],[332,23834],[333,23825],[334,23835],[335,23836],[336,23837],[337,23838],[338,23831],[339,23821],[340,23805],[341,23805],[342,23839],[343,23802],[344,23840],[345,23841],[346,23806],[347,23807],[348,23810],[349,23822],[350,23816],[351,23830],[352,23811],[353,23824],[354,23808],[355,23810],[356,23810],[357,23810],[358,23803],[360,23834],[361,23825],[362,23835],[363,23836],[364,23837],[365,23838],[366,23831],[367,23821],[368,23805],[369,23805],[370,23839],[371,23802],[372,23840],[373,23841],[374,23806],[375,23807],[376,23810],[377,23822],[378,23816],[379,23830],[380,23811],[381,23824],[382,23808],[383,23834],[384,23825],[385,23835],[386,23836],[387,23837],[388,23838],[389,23831],[390,23821],[391,23805],[392,23805],[393,23839],[394,23802],[395,23840],[396,23841],[397,23806],[398,23807],[399,23810],[400,23822],[401,23816],[402,23830],[403,23811],[404,23824],[405,23808],[406,23834],[407,23825],[408,23835],[409,23836],[410,23837],[411,23838],[412,23831],[413,23821],[414,23805],[415,23805],[416,23839],[417,23802],[418,23840],[419,23841],[420,23806],[421,23807],[422,23810],[423,23822],[424,23816],[425,23830],[426,23811],[427,23824],[428,23808],[429,23821],[430,23803],[431,23835],[432,23835],[433,23830],[434,24098],[435,23803],[436,23829],[437,23851],[438,23834],[439,23825],[440,23835],[441,23836],[442,23837],[443,23838],[444,23831],[445,23821],[446,23805],[447,23805],[448,23839],[449,23802],[450,23840],[451,23841],[452,23806],[453,23807],[454,23810],[455,23822],[456,23816],[457,23830],[458,23811],[459,23824],[460,23808],[461,23810],[462,23821],[463,23821],[465,4481],[466,23835],[467,23837],[468,23831],[469,23821],[470,23821],[471,23821],[472,23821],[473,23821],[474,23821],[475,23821],[476,23821],[477,23821],[478,23821],[479,23821],[480,23821],[481,23821],[482,23821],[483,23821],[484,23821],[485,23821],[486,23821],[487,23802],[488,23840],[489,23806],[490,23807],[491,23810],[492,23822],[493,23816],[494,23830],[495,23811],[496,23824],[497,23808],[498,23816],[499,23816],[500,23822],[501,23825],[502,23803],[503,23829],[504,23851],[505,23834],[506,23825],[507,23835],[508,23836],[509,23837],[510,23838],[511,23831],[512,23821],[513,23805],[514,23805],[515,23839],[516,23802],[517,23840],[518,23841],[519,23806],[520,23807],[521,23810],[522,23822],[523,23816],[524,23830],[525,23811],[526,23824],[527,23808],[528,23803],[529,23829],[530,23851],[531,23834],[532,23825],[533,23835],[534,23836],[535,23837],[536,23838],[537,23831],[538,23821],[539,23805],[540,23805],[541,23839],[542,23802],[543,23840],[544,23841],[545,23806],[546,23807],[547,23810],[548,23822],[549,23816],[550,23830],[551,23811],[552,23824],[553,23808],[554,23803],[555,23807],[556,23810],[557,23805],[558,23805],[559,23806],[560,23806],[561,23806],[562,23803],[563,23803],[564,23829],[565,23851],[566,23834],[567,23825],[568,23835],[569,23836],[570,23837],[571,23838],[572,23831],[573,23821],[574,23805],[575,23805],[576,23839],[577,23802],[578,23840],[579,23841],[580,23806],[581,23807],[582,23810],[583,23822],[584,23816],[585,23830],[586,23811],[587,23824],[588,23808],[589,23803],[590,23829],[591,23851],[592,23834],[593,23825],[594,23835],[595,23836],[596,23837],[597,23838],[598,23831],[599,23821],[600,23805],[601,23805],[602,23839],[603,23802],[604,23840],[605,23841],[606,23806],[607,23807],[608,23810],[609,23822],[610,23816],[611,23830],[612,23811],[613,23824],[614,23808],[615,23825],[616,23825],[617,23841],[618,23850],[619,23834],[620,23835],[621,23836],[622,23837],[623,23838],[624,23831],[625,23821],[626,23805],[627,23805],[628,23805],[629,23805],[630,23839],[631,23802],[632,23840],[633,23841],[634,23806],[635,23807],[636,23810],[637,23822],[638,23830],[639,23811],[640,23824],[641,23808],[642,23834],[643,23834],[644,23834],[645,23837],[646,23837],[647,23837],[648,23840],[649,23840],[650,23840],[651,23807],[652,23807],[653,23807],[654,23810],[655,23810],[656,23810],[657,23811],[658,23811],[659,23811],[660,23808],[661,23808],[662,23808],[665,24099],[666,23810],[667,23811],[668,23821],[669,23837],[670,23841],[671,23831],[672,23840],[673,23841],[674,23829],[675,23851],[676,23851],[677,23834],[678,23825],[679,23835],[680,23836],[681,23837],[682,23838],[683,23831],[684,23821],[685,23821],[686,23805],[687,23805],[688,23805],[689,23839],[690,23802],[691,23840],[692,23840],[693,23841],[694,23806],[695,23807],[696,23807],[697,23810],[698,23822],[699,23816],[700,23830],[701,23811],[702,23824],[703,23808],[705,23816],[706,23803],[707,23803],[708,23829],[709,23851],[710,23851],[711,23834],[712,23834],[713,23834],[714,23825],[715,23835],[716,23836],[717,23837],[718,23838],[719,23838],[720,23831],[721,23831],[722,23831],[723,23831],[724,23831],[725,23831],[726,23821],[727,23805],[728,23805],[729,23805],[730,23805],[731,23805],[732,23805],[733,23805],[734,23839],[735,23839],[736,23839],[737,23839],[738,23802],[739,23802],[740,23802],[741,23802],[742,23802],[743,23840],[744,23841],[745,23841],[746,23841],[747,23841],[748,23806],[749,23806],[750,23806],[751,23807],[752,23807],[753,23807],[754,23810],[755,23810],[756,23822],[757,23822],[758,23822],[759,23816],[760,23830],[761,23811],[762,23811],[763,23811],[764,23811],[765,23811],[766,23824],[767,23808],[768,23808],[769,23808],[770,23803],[771,23829],[772,23851],[773,23834],[774,23825],[775,23835],[776,23836],[777,23837],[778,23838],[779,23831],[780,23821],[781,23805],[782,23805],[783,23839],[784,23802],[785,23840],[786,23841],[787,23806],[788,23807],[789,23810],[790,23822],[791,23816],[792,23830],[793,23811],[794,23824],[795,23808],[796,23805],[797,23805],[798,23805],[799,23805],[800,23802],[801,23802],[802,23802],[803,23802],[804,23802],[805,23803],[806,23829],[807,23851],[808,23834],[809,23825],[810,23835],[811,23836],[812,23837],[813,23838],[814,23831],[815,23821],[816,23805],[817,23805],[818,23839],[819,23802],[820,23840],[821,23841],[822,23806],[823,23807],[824,23810],[825,23822],[826,23816],[827,23830],[828,23811],[829,23824],[830,23808],[831,23805],[832,23805],[833,23803],[835,23802],[836,23825],[837,23825],[838,24098],[839,23834],[840,23837],[841,23840],[842,23811],[843,23810],[844,23811],[846,23831],[847,23816],[848,23803],[849,23829],[850,23851],[851,23834],[852,23825],[853,23835],[854,23836],[855,23837],[856,23838],[857,23831],[858,23821],[859,23805],[860,23805],[861,23839],[862,23802],[863,23840],[864,23841],[865,23806],[866,23807],[867,23810],[868,23822],[869,23816],[870,23830],[871,23811],[872,23824],[873,23808],[874,23825],[875,23825],[876,23810],[877,23810],[878,23803],[879,23829],[880,23851],[881,23834],[882,23825],[883,23835],[884,23836],[885,23837],[886,23838],[887,23831],[888,23821],[889,23805],[890,23805],[891,23839],[892,23802],[893,23840],[894,23841],[895,23806],[896,23807],[897,23810],[898,23822],[899,23816],[900,23830],[901,23811],[902,23824],[903,23808],[904,23803],[905,23829],[906,23851],[907,23834],[908,23825],[909,23835],[910,23836],[911,23837],[912,23838],[913,23831],[914,23821],[915,23805],[916,23805],[917,23839],[918,23802],[919,23840],[920,23841],[921,23806],[922,23807],[923,23810],[924,23822],[925,23816],[926,23830],[927,23811],[928,23824],[929,23808],[930,23803],[931,23829],[932,23851],[933,23834],[934,23825],[935,23835],[936,23836],[937,23837],[938,23838],[939,23831],[940,23821],[941,23805],[942,23805],[943,23839],[944,23802],[945,23840],[946,23841],[947,23806],[948,23807],[949,23810],[950,23822],[951,23816],[952,23830],[953,23811],[954,23824],[955,23808],[956,23851],[957,23834],[958,23825],[959,23835],[960,23836],[961,23837],[962,23838],[963,23831],[964,23821],[965,23805],[966,23805],[967,23839],[968,23802],[969,23840],[970,23841],[971,23806],[972,23807],[973,23810],[974,23822],[975,23816],[976,23830],[977,23811],[978,23824],[979,23808],[980,23803],[981,23829],[982,23851],[983,23834],[984,23825],[985,23835],[986,23836],[987,23837],[988,23838],[989,23831],[990,23821],[991,23805],[992,23805],[993,23839],[994,23802],[995,23840],[996,23841],[997,23806],[998,23807],[999,23810],[1000,23822],[1001,23816],[1002,23830],[1003,23811],[1004,23824],[1005,23808],[1006,23803],[1007,23829],[1008,23851],[1009,23834],[1010,23825],[1011,23835],[1012,23836],[1013,23837],[1014,23838],[1015,23831],[1016,23821],[1017,23805],[1018,23805],[1019,23839],[1020,23802],[1021,23840],[1022,23841],[1023,23806],[1024,23807],[1025,23810],[1026,23822],[1027,23816],[1028,23830],[1029,23811],[1030,23824],[1031,23808],[1032,23803],[1033,23829],[1034,23851],[1035,23834],[1036,23825],[1037,23835],[1038,23836],[1039,23837],[1040,23838],[1041,23831],[1042,23821],[1043,23805],[1044,23805],[1045,23839],[1046,23802],[1047,23840],[1048,23841],[1049,23806],[1050,23807],[1051,23810],[1052,23822],[1053,23816],[1054,23830],[1055,23811],[1056,23824],[1057,23808],[1058,23803],[1059,23829],[1060,23851],[1061,23834],[1062,23825],[1063,23835],[1064,23836],[1065,23837],[1066,23838],[1067,23831],[1068,23821],[1069,23805],[1070,23805],[1071,23839],[1072,23802],[1073,23840],[1074,23841],[1075,23806],[1076,23807],[1077,23810],[1078,23822],[1079,23816],[1080,23830],[1081,23811],[1082,23824],[1083,23808],[1084,23802],[1085,23802],[1086,23803],[1087,23829],[1088,23851],[1089,23834],[1090,23825],[1091,23835],[1092,23836],[1093,23837],[1094,23838],[1095,23831],[1096,23821],[1097,23805],[1098,23805],[1099,23839],[1100,23802],[1101,23840],[1102,23841],[1103,23806],[1104,23807],[1105,23810],[1106,23822],[1107,23816],[1108,23830],[1109,23811],[1110,23824],[1111,23808],[1112,23802],[1113,23802],[1114,23825],[1115,23841],[1116,23810],[1118,23831],[1119,23831],[1120,23803],[1121,23829],[1122,23811],[1123,23811],[1125,23805],[1126,23805],[1127,23805],[1128,23806],[1129,23806],[1130,23807],[1131,23810],[1132,23810],[1133,23810],[1134,23811],[1135,23811],[1136,23811],[1137,23824],[1138,23808],[1139,23808],[1140,23808],[1141,24098],[1142,23850],[1143,23825],[1144,23831],[1145,23807],[1146,23810],[1147,23811],[1148,23808],[1149,23803],[1150,23829],[1151,23835],[1152,23837],[1153,23831],[1154,23821],[1155,23802],[1156,23840],[1157,23806],[1158,23807],[1159,23810],[1160,23822],[1161,23816],[1162,23830],[1163,23811],[1164,23824],[1165,23808],[1166,23830],[1167,23824],[1169,24098],[1170,23821],[1171,23802],[1172,23805],[1173,23805],[1174,23805],[1175,23805],[1176,23806],[1177,23803],[1178,23810],[1179,23825],[1180,23802],[1181,23822],[1182,23822],[1183,23835],[1184,23805],[1185,23825],[1186,23825],[1187,23825],[1188,23831],[1189,23831],[1190,23810],[1191,23811],[1192,23835],[1194,23817],[1195,23817],[1196,23803],[1197,23829],[1198,23817],[1199,23817],[1200,23829],[1201,23824],[1202,23838],[1203,23839],[1204,23802],[1205,23817],[1206,23817],[1207,23824],[1208,23810],[1209,23810],[1210,23825],[1211,23810],[1212,23850],[1213,24100],[1214,23803],[1215,23837],[1216,23817],[1217,23817],[1218,23821],[1219,23821],[1220,23821],[1221,23821],[1222,23821],[1223,23821],[1224,23821],[1225,23821],[1226,23821],[1227,23821],[1228,23821],[1229,23821],[1230,23821],[1231,23821],[1232,23821],[1233,23821],[1234,23821],[1235,23837],[1236,23805],[1237,23807],[1238,23807],[1239,23810],[1240,23811],[1241,23808],[1242,23805],[1243,23817],[1244,23817],[1247,24098],[1248,23817],[1249,23817],[1250,23803],[1252,23817],[1253,23817],[1254,23805],[1255,23834],[1256,23825],[1257,23835],[1258,23836],[1259,23837],[1260,23838],[1261,23831],[1262,23821],[1263,23805],[1264,23805],[1265,23839],[1266,23802],[1267,23840],[1268,23841],[1269,23806],[1270,23807],[1271,23810],[1272,23822],[1273,23816],[1274,23830],[1275,23811],[1276,23824],[1277,23808],[1278,23851],[1279,23821],[1280,23805],[1281,23840],[1282,23807],[1283,23851],[1284,23821],[1285,23805],[1286,23840],[1287,23807],[1288,23831],[1289,23831],[1291,23824],[1292,23824],[1293,23803],[1294,23829],[1295,23851],[1296,23834],[1297,23825],[1298,23835],[1299,23836],[1300,23837],[1301,23838],[1302,23831],[1303,23821],[1304,23805],[1305,23805],[1306,23839],[1307,23802],[1308,23840],[1309,23841],[1310,23806],[1311,23807],[1312,23810],[1313,23822],[1314,23816],[1315,23830],[1316,23811],[1317,23824],[1318,23808],[1319,23803],[1320,23829],[1321,23851],[1322,23834],[1323,23825],[1324,23835],[1325,23836],[1326,23837],[1327,23838],[1328,23831],[1329,23821],[1330,23805],[1331,23805],[1332,23839],[1333,23802],[1334,23840],[1335,23841],[1336,23806],[1337,23807],[1338,23810],[1339,23822],[1340,23816],[1341,23830],[1342,23811],[1343,23824],[1344,23808],[1345,23803],[1346,23829],[1347,23851],[1348,23834],[1349,23825],[1350,23835],[1351,23836],[1352,23837],[1353,23838],[1354,23831],[1355,23821],[1356,23805],[1357,23805],[1358,23839],[1359,23802],[1360,23840],[1361,23841],[1362,23806],[1363,23807],[1364,23810],[1365,23822],[1366,23816],[1367,23830],[1368,23811],[1369,23824],[1370,23808],[1371,23803],[1372,23829],[1373,23851],[1374,23834],[1375,23825],[1376,23835],[1377,23836],[1378,23837],[1379,23838],[1380,23831],[1381,23821],[1382,23805],[1383,23805],[1384,23839],[1385,23802],[1386,23840],[1387,23841],[1388,23806],[1389,23807],[1390,23810],[1391,23822],[1392,23816],[1393,23830],[1394,23811],[1395,23824],[1396,23808],[1397,23803],[1398,23829],[1399,23851],[1400,23834],[1401,23825],[1402,23835],[1403,23836],[1404,23837],[1405,23838],[1406,23831],[1407,23821],[1408,23805],[1409,23805],[1410,23839],[1411,23802],[1412,23840],[1413,23841],[1414,23806],[1415,23807],[1416,23810],[1417,23822],[1418,23816],[1419,23830],[1420,23811],[1421,23824],[1422,23808],[1423,23803],[1424,23829],[1425,23851],[1426,23834],[1427,23825],[1428,23835],[1429,23836],[1430,23837],[1431,23838],[1432,23831],[1433,23821],[1434,23805],[1435,23805],[1436,23839],[1437,23802],[1438,23840],[1439,23841],[1440,23806],[1441,23807],[1442,23810],[1443,23822],[1444,23816],[1445,23830],[1446,23811],[1447,23824],[1448,23808],[1449,23803],[1450,23829],[1451,23851],[1452,23834],[1453,23825],[1454,23835],[1455,23836],[1456,23837],[1457,23838],[1458,23831],[1459,23821],[1460,23805],[1461,23805],[1462,23839],[1463,23802],[1464,23840],[1465,23841],[1466,23806],[1467,23807],[1468,23810],[1469,23822],[1470,23816],[1471,23830],[1472,23811],[1473,23824],[1474,23808],[1475,23810],[1476,23803],[1477,23829],[1478,23851],[1479,23834],[1480,23825],[1481,23835],[1482,23836],[1483,23837],[1484,23838],[1485,23831],[1486,23821],[1487,23805],[1488,23805],[1489,23839],[1490,23802],[1491,23840],[1492,23841],[1493,23806],[1494,23807],[1495,23810],[1496,23822],[1497,23816],[1498,23830],[1499,23811],[1500,23824],[1501,23808],[1502,23817],[1503,23825],[1504,23831],[1505,23825],[1506,23825],[1507,23817],[1508,23803],[1509,23829],[1510,23851],[1511,23834],[1512,23825],[1513,23835],[1514,23836],[1515,23837],[1516,23838],[1517,23831],[1518,23821],[1519,23805],[1520,23805],[1521,23839],[1522,23802],[1523,23840],[1524,23841],[1525,23806],[1526,23807],[1527,23810],[1528,23822],[1529,23816],[1530,23830],[1531,23811],[1532,23824],[1533,23808],[1534,23837],[1537,23835],[1538,23835],[1539,23810],[1540,23811],[1542,23829],[1543,23837],[1544,23810],[1545,23810],[1546,23810],[1547,23807],[1548,23810],[1549,23808],[1550,23807],[1551,23810],[1552,23808],[1553,23899],[1554,23885],[1555,23891],[1556,23890],[1557,23884],[1558,23886],[1559,23887],[1560,23885],[1561,23886],[1562,23884],[1563,23884],[1564,23885],[1565,23886],[1566,23884],[1567,23885],[1568,23886],[1569,23884],[1570,23885],[1571,23886],[1572,23884],[1573,23885],[1574,23886],[1575,23884],[1576,23885],[1577,23886],[1578,23884],[1579,23885],[1580,23886],[1581,23884],[1582,23885],[1583,23886],[1584,23885],[1585,23886],[1586,23884],[1587,23884],[1588,23887],[1589,23885],[1590,23890],[1591,24098],[1592,23885],[1593,23886],[1594,23885],[1595,23886],[1596,23885],[1597,23886],[1598,23885],[1599,23886],[1600,23884],[1601,23886],[1602,23885],[1603,23886],[1604,23884],[1605,23885],[1606,23886],[1607,23884],[1608,23887],[1609,23885],[1610,23886],[1611,23884],[1612,23891],[1613,23887],[1614,23885],[1615,23886],[1616,23884],[1617,23890],[1618,23890],[1619,23884],[1620,23890],[1621,23885],[1622,23886],[1623,23884],[1624,23886],[1625,23885],[1626,23886],[1627,23884],[1628,23885],[1629,23886],[1630,23884],[1631,23885],[1632,23886],[1633,23884],[1635,23886],[1636,24098],[1637,23885],[1638,23886],[1639,23884],[1640,23884],[1641,23884],[1642,23885],[1643,23886],[1644,23884],[1645,23885],[1646,23886],[1647,23884],[1648,23885],[1649,23886],[1650,23884],[1651,23885],[1652,23886],[1653,23884],[1654,23885],[1655,23886],[1656,23884],[1657,23885],[1658,23886],[1659,23884],[1660,23885],[1661,23886],[1662,23884],[1663,23885],[1664,23886],[1665,23884],[1666,23885],[1667,23886],[1668,23884],[1669,23884],[1670,23884],[1671,23884],[1672,23884],[1673,23884],[1674,23891],[1675,24098],[1676,23891],[1677,23887],[1678,23886],[1679,23884],[1680,24098],[1681,23891],[1682,23887],[1683,23885],[1684,23884],[1685,23891],[1686,23887],[1687,24098],[1688,23891],[1689,23887],[1690,23885],[1691,23884],[1692,23899],[1693,23884],[1694,24098],[1695,23884],[1696,23884],[1697,23884],[1698,23884],[1699,23884],[1700,23886],[1701,23887],[1702,23886],[1703,23887],[1704,23890],[1705,23890],[1706,23887],[1708,24098],[1709,23887],[1710,24098],[1711,23885],[1712,23886],[1713,23885],[1714,23886],[1715,23884],[1716,23885],[1717,23886],[1718,23884],[1719,23885],[1720,23886],[1721,23884],[1722,23885],[1723,23886],[1724,23884],[1725,23885],[1726,23886],[1727,23884],[1728,23885],[1729,23886],[1730,23884],[1731,23885],[1732,23886],[1733,23884],[1734,23885],[1735,23886],[1736,23884],[1737,23891],[1738,23887],[1739,23886],[1740,23885],[1741,23886],[1742,23884],[1744,23890],[1745,23885],[1746,23890],[1747,23890],[1748,23886],[1749,23899],[1750,23899],[1751,23899],[1752,23899],[1753,23899],[1754,23899],[1755,23899],[1756,23899],[1757,23899],[1758,23899],[1759,23899],[1760,23899],[1761,23899],[1762,23899],[1763,23899],[1764,23899],[1765,23899],[1766,23899],[1767,23899],[1768,23899],[1769,23899],[1770,23899],[1771,23899],[1772,23899],[1773,23899],[1774,23899],[1775,23899],[1776,23899],[1777,23899],[1778,23899],[1779,23899],[1780,23899],[1781,23899],[1782,23899],[1783,23899],[1784,23899],[1785,23899],[1786,23899],[1787,23899],[1788,23899],[1789,23899],[1790,23899],[1791,23899],[1792,23899],[1793,23899],[1794,23899],[1795,23899],[1796,23899],[1797,23899],[1798,23899],[1799,23899],[1800,23899],[1801,23899],[1802,23899],[1803,23899],[1804,23899],[1805,23899],[1806,23899],[1807,23899],[1808,23899],[1809,23899],[1810,23899],[1811,23899],[1812,23899],[1813,23899],[1814,23899],[1815,23899],[1816,23899],[1817,23899],[1818,23899],[1819,23899],[1820,23899],[1821,23899],[1822,23899],[1823,23899],[1824,23899],[1825,23899],[1826,23899],[1827,23899],[1828,23899],[1829,23899],[1830,23899],[1831,23899],[1832,23899],[1833,23899],[1834,23899],[1835,23899],[1836,23899],[1837,23899],[1838,23899],[1839,23899],[1840,23899],[1841,23899],[1842,23899],[1843,23901],[1844,23902],[1845,23902],[1846,23902],[1847,23902],[1848,23902],[1849,23902],[1850,23902],[1851,23902],[1852,23902],[1853,23902],[1854,23902],[1855,23901],[1856,23902],[1857,23902],[1858,23902],[1859,23902],[1860,23901],[1861,23901],[1862,23902],[1863,23902],[1864,23902],[1865,23902],[1866,23901],[1867,23902],[1868,23902],[1869,23902],[1870,23902],[1871,23901],[1872,23902],[1873,23902],[1874,23902],[1875,23902],[1876,23901],[1877,23902],[1878,23902],[1879,23902],[1880,23902],[1881,23901],[1882,23901],[1883,23901],[1884,23902],[1885,23902],[1886,23902],[1887,23902],[1888,23901],[1889,23902],[1890,23902],[1891,23902],[1892,23902],[1893,23901],[1894,23902],[1895,23902],[1896,23902],[1897,23902],[1898,23901],[1899,23901],[1900,23901],[1901,23902],[1902,23902],[1903,23902],[1904,23902],[1905,23901],[1906,23902],[1907,23902],[1908,23902],[1909,23902],[1910,23901],[1911,23902],[1912,23902],[1913,23902],[1914,23902],[1915,23901],[1916,23902],[1917,23901],[1918,23902],[1919,23901],[1920,23902],[1921,23902],[1922,23902],[1923,23902],[1924,23901],[1925,23901],[1926,23901],[1927,23902],[1928,23901],[1929,23901],[1930,23902],[1931,23902],[1932,23902],[1933,23902],[1934,23901],[1935,23902],[1936,23902],[1937,23902],[1938,23902],[1939,23901],[1940,23902],[1941,23902],[1942,23902],[1943,23902],[1944,23902],[1945,23901],[1946,23901],[1947,23902],[1948,23902],[1949,23902],[1950,23902],[1951,23901],[1952,23901],[1953,23901],[1954,23901],[1955,23901],[1956,23901],[1957,23901],[1958,23901],[1959,23901],[1960,23902],[1961,23902],[1962,23902],[1963,23902],[1964,23901],[1965,23901],[1966,23901],[1967,23902],[1968,23902],[1969,23902],[1970,23902],[1971,23902],[1972,23902],[1973,23902],[1974,23902],[1975,23902],[1976,23902],[1977,23902],[1978,23901],[1979,23901],[1980,23901],[1981,23902],[1982,23902],[1983,23902],[1984,23902],[1985,23901],[1986,23901],[1987,23901],[1988,23901],[1989,23901],[1990,23901],[1991,23901],[1992,23901],[1993,23902],[1994,23902],[1995,23902],[1996,23902],[1997,23902],[1998,23902],[1999,23902],[2000,23901],[2001,23902],[2002,23902],[2003,23902],[2004,23902],[2005,23902],[2006,23901],[2007,23901],[2008,23902],[2009,23902],[2010,23901],[2011,23901],[2012,23902],[2013,23902],[2014,23902],[2015,23902],[2016,23902],[2017,23901],[2018,23902],[2019,23902],[2020,23902],[2021,23901],[2022,23902],[2023,23902],[2024,23902],[2025,23902],[2026,23901],[2027,23902],[2028,23902],[2029,23902],[2030,23902],[2031,23901],[2032,23902],[2033,23902],[2034,23902],[2035,23902],[2036,23901],[2037,23902],[2038,23902],[2039,23902],[2040,23902],[2041,23901],[2042,23902],[2043,23902],[2044,23902],[2045,23902],[2046,23901],[2047,23902],[2048,23902],[2049,23902],[2050,23902],[2051,23901],[2052,23902],[2053,23902],[2054,23902],[2055,23902],[2056,23901],[2057,23902],[2058,23902],[2059,23902],[2060,23902],[2061,23901],[2062,23902],[2063,23902],[2064,23902],[2065,23902],[2066,23901],[2067,23901],[2068,23901],[2069,23902],[2070,23902],[2071,23902],[2072,23902],[2073,23901],[2074,23901],[2075,23901],[2076,23902],[2077,23901],[2078,23902],[2079,23901],[2080,23902],[2081,23902],[2082,23902],[2083,23901],[2084,23901],[2085,23901],[2086,23901],[2087,23901],[2088,23901],[2089,23902],[2090,23901],[2091,23902],[2092,23902],[2093,23901],[2094,23901],[2095,23902],[2096,23902],[2097,23901],[2098,23901],[2099,23901],[2100,23902],[2101,23902],[2102,23902],[2103,23902],[2104,23901],[2105,23901],[2106,23902],[2107,23902],[2108,23902],[2109,23902],[2110,23901],[2111,23902],[2112,23902],[2113,23902],[2114,23902],[2115,23901],[2116,23902],[2117,23902],[2118,23902],[2119,23902],[2120,23901],[2121,23902],[2122,23902],[2123,23902],[2124,23902],[2125,23901],[2126,23901],[2127,23902],[2128,23902],[2129,23902],[2130,23902],[2131,23901],[2132,23902],[2133,23902],[2134,23902],[2135,23902],[2136,23901],[2137,23902],[2138,23902],[2139,23902],[2140,23902],[2141,23901],[2142,23902],[2143,23902],[2144,23902],[2145,23902],[2146,23901],[2147,23902],[2148,23902],[2149,23902],[2150,23902],[2155,23885],[2156,23895],[2157,23895],[2158,23894],[2159,23895],[2160,23894],[2161,23894],[2162,23894],[2163,23895],[2164,23894],[2165,23895],[2166,23894],[2167,23895],[2168,23894],[2169,23895],[2170,23894],[2171,23885],[2172,23895],[2173,23894],[2174,23895],[2175,23894],[2176,23894],[2177,23895],[2178,23894],[2179,23894],[2180,23895],[2181,23894],[2182,23895],[2183,23894],[2184,23895],[2185,23894],[2186,23895],[2187,23894],[2188,23885],[2189,23894],[2190,23894],[2191,23895],[2192,23894],[2193,23895],[2194,23894],[2195,23895],[2196,23894],[2197,23895],[2198,23894],[2199,23895],[2200,23885],[2201,23895],[2202,23894],[2203,23895],[2204,23894],[2205,23895],[2206,23894],[2207,23895],[2208,23894],[2209,23895],[2210,23895],[2211,23894],[2212,23895],[2213,23894],[2214,23895],[2215,23894],[2216,23895],[2217,23894],[2218,23895],[2219,23894],[2220,23895],[2221,23894],[2222,23895],[2223,23894],[2224,23895],[2225,23894],[2226,23895],[2227,23894],[2228,23895],[2229,23894],[2230,23895],[2231,23895],[2232,23895],[2233,23895],[2234,23895],[2235,23895],[2236,23895],[2237,23894],[2238,23894],[2239,23895],[2240,23894],[2241,23885],[2242,23894],[2243,23885],[2244,23885],[2245,23895],[2246,23895],[2247,23894],[2248,23885],[2249,23895],[2250,23894],[2251,23894],[2252,23894],[2253,23895],[2254,23894],[2255,23895],[2256,23894],[2257,23895],[2258,23894],[2259,23895],[2260,23894],[2261,23895],[2262,23894],[2263,23895],[2264,23894],[2265,23895],[2266,23894],[2267,23895],[2268,23894],[2269,23895],[2270,23894],[2271,23895],[2272,23894],[2273,23907],[2274,23907],[2275,23907],[2276,23907],[2277,23907],[2278,23907],[2279,23907],[2280,23907],[2281,23907],[2282,23907],[2283,23907],[2284,23907],[2285,23907],[2286,23907],[2287,23907],[2288,23907],[2289,23907],[2290,23907],[2291,23907],[2292,23907],[2293,23907],[2294,23907],[2295,23907],[2296,23907],[2297,23907],[2298,23907],[2299,23907],[2300,23907],[2301,23907],[2302,23907],[2303,23907],[2304,23907],[2305,23907],[2306,23907],[2307,23907],[2308,23907],[2309,23907],[2310,23907],[2311,23907],[2312,23907],[2313,23892],[2314,23910],[2315,23910],[2316,23911],[2317,23911],[2318,23896],[2319,23909],[2320,23896],[2321,23896],[2322,23892],[2323,23911],[2324,23911],[2325,23911],[2326,23911],[2327,23910],[2328,23896],[2329,23896],[2330,23896],[2331,23896],[2332,23896],[2333,23910],[2334,23892],[2335,23911],[2336,23910],[2337,23896],[2338,23896],[2339,23896],[2340,23910],[2341,23911],[2342,23896],[2343,23896],[2344,23896],[2345,23896],[2346,23896],[2347,23910],[2348,23911],[2349,23896],[2350,23892],[2351,23911],[2352,23896],[2353,23896],[2354,23896],[2355,23909],[2356,23909],[2357,23909],[2358,23909],[2359,23909],[2360,23909],[2361,23909],[2362,23909],[2363,24101],[2364,23909],[2365,23909],[2366,23909],[2367,23909],[2368,23909],[2369,23909],[2370,23909],[2371,23909],[2372,23909],[2373,23909],[2374,23909],[2375,23909],[2376,23909],[2377,23909],[2378,23909],[2379,23909],[2380,23909],[2381,23909],[2382,23909],[2383,23909],[2384,23909],[2385,23909],[2386,23909],[2387,23909],[2388,23909],[2389,23909],[2390,23909],[2391,23909],[2392,23909],[2393,23909],[2394,23909],[2395,23909],[2396,23909],[2397,23909],[2398,23909],[2399,23909],[2406,23909],[2407,23909],[2408,23909],[2409,23909],[2410,23909],[2411,23909],[2412,23909],[2413,23909],[2414,23909],[2415,23909],[2416,23909],[2417,23909],[2418,23909],[2419,23909],[2420,23909],[2421,23909],[2422,23909],[2423,23909],[2424,23909],[2425,23909],[2426,23909],[2427,23909],[2428,23909],[2429,23909],[2430,23909],[2431,23909],[2432,23909],[2433,23909],[2434,23909],[2435,23909],[2436,23909],[2437,23909],[2438,23909],[2439,23909],[2440,23909],[2441,23909],[2442,23909],[2443,23909],[2444,23909],[2445,23909],[2446,23909],[2447,23909],[2448,23909],[2449,23909],[2450,23909],[2451,23909],[2452,23909],[2453,23909],[2454,23909],[2455,23898],[2456,23912],[2457,23891],[2458,23898],[2459,23912],[2460,23898],[2461,23912],[2462,23898],[2463,23912],[2464,23898],[2465,23912],[2466,23898],[2467,23912],[2468,23898],[2469,23912],[2470,23898],[2471,23912],[2472,23898],[2473,23912],[2474,23898],[2475,23912],[2476,23912],[2477,23898],[2478,23912],[2479,23898],[2480,23912],[2481,23898],[2482,23912],[2483,23891],[2484,23898],[2485,23912],[2486,23898],[2487,23912],[2488,23898],[2489,23898],[2490,23912],[2491,23898],[2492,23912],[2493,23891],[2494,23898],[2495,23912],[2496,23898],[2497,23912],[2498,23898],[2499,23912],[2500,23898],[2501,23912],[2502,23898],[2503,23912],[2504,23898],[2505,23912],[2506,23898],[2507,23912],[2508,23898],[2509,23912],[2510,23898],[2511,23912],[2512,23898],[2513,23912],[2514,23898],[2515,23912],[2516,23891],[2517,23891],[2518,23898],[2519,23912],[2520,23898],[2521,23898],[2522,23912],[2523,23891],[2524,23898],[2525,23912],[2526,23912],[2527,23898],[2528,23912],[2529,23891],[2530,23898],[2531,23912],[2532,23912],[2533,23891],[2534,23912],[2535,23898],[2536,23912],[2537,23898],[2538,23912],[2539,23898],[2540,23912],[2541,23898],[2542,23912],[2543,23898],[2544,23912],[2545,23898],[2546,23912],[2547,23898],[2548,23912],[2549,23898],[2550,23912],[2551,23898],[2552,23912],[2553,23891],[2554,23898],[2555,23912],[2556,23912],[2557,23890],[2558,23890],[2559,23890],[2560,23890],[2561,23890],[2562,23890],[2563,23890],[2564,23890],[2565,23890],[2566,23890],[2567,23890],[2568,23890],[2569,23890],[2570,23890],[2571,23890],[2572,23890],[2573,23890],[2574,23890],[2575,23890],[2576,23890],[2577,23890],[2578,23890],[2579,23890],[2580,23890],[2581,23890],[2582,23890],[2583,23890],[2584,23890],[2585,23890],[2586,23890],[2587,23890],[2588,23890],[2589,23890],[2590,23890],[2591,23890],[2592,23890],[2593,23890],[2594,23890],[2595,23890],[2596,23890],[2597,23890],[2598,23890],[2599,23890],[2600,23890],[2601,23890],[2602,23890],[2603,23890],[2604,23890],[2605,23890],[2606,23890],[2607,23890],[2608,23890],[2609,23890],[2610,23890],[2611,23890],[2612,23890],[2613,23890],[2614,23890],[2615,23890],[2616,23890],[2617,23890],[2618,23890],[2619,23890],[2620,23890],[2621,23890],[2622,23890],[2623,23890],[2624,23890],[2625,23890],[2626,23890],[2627,23890],[2628,23890],[2629,23890],[2630,23890],[2631,23890],[2632,23890],[2633,23890],[2634,23890],[2635,23890],[2636,23890],[2637,23890],[2638,23890],[2639,23890],[2640,23890],[2641,23890],[2642,23890],[2643,23890],[2644,23890],[2645,23890],[2646,23890],[2647,23890],[2648,23890],[2649,23890],[2650,23890],[2651,23890],[2652,23890],[2653,23890],[2654,23890],[2655,23890],[2656,23890],[2657,23890],[2658,23890],[2659,23890],[2660,23890],[2661,23890],[2662,23829],[2663,23829],[2664,23829],[2665,23829],[2666,23829],[2667,23829],[2668,23829],[2669,23829],[2670,23829],[2671,23829],[2672,23829],[2673,23829],[2674,23829],[2675,23829],[2676,23829],[2677,23829],[2678,23829],[2679,23829],[2680,23829],[2681,23829],[2682,23829],[2683,23829],[2684,23829],[2685,23829],[2686,23829],[2687,23829],[2688,23829],[2689,23829],[2690,23829],[2691,23829],[2692,23829],[2693,23829],[2694,23829],[2695,23829],[2696,23829],[2697,23829],[2698,23829],[2699,23829],[2700,23829],[2701,23829],[2702,23829],[2703,23829],[2704,23829],[2705,23829],[2706,23829],[2707,23829],[2708,23829],[2709,23829],[2710,23829],[2711,23829],[2712,23829],[2713,23829],[2714,23829],[2715,23829],[2716,23829],[2717,23829],[2718,23829],[2719,23829],[2720,23829],[2721,23829],[2722,23829],[2723,23829],[2724,23829],[2725,23829],[2726,23829],[2727,23829],[2728,23829],[2729,23829],[2730,23829],[2731,23829],[2732,23829],[2733,23829],[2734,23829],[2735,23829],[2736,23829],[2737,23829],[2738,23829],[2739,23829],[2740,23829],[2741,23829],[2742,23829],[2743,23829],[2744,23829],[2745,23829],[2746,23829],[2747,23829],[2748,23829],[2749,23829],[2750,23829],[2751,23829],[2752,23829],[2753,23829],[2754,23829],[2755,23829],[2756,23829],[2757,23829],[2758,23829],[2759,23829],[2760,23829],[2761,23829],[2762,23829],[2763,23829],[2764,23829],[2765,23829],[2766,23829],[2767,23829],[2768,23829],[2769,23829],[2770,23829],[2771,23829],[2772,23829],[2773,23829],[2774,23829],[2775,23829],[2776,23829],[2777,23829],[2778,23829],[2779,23829],[2780,23829],[2781,23829],[2782,23829],[2783,23829],[2784,23829],[2785,23829],[2786,23829],[2787,23829],[2788,23829],[2789,23829],[2790,23829],[2791,23829],[2792,23829],[2793,23829],[2794,23829],[2795,23829],[2796,23829],[2797,23829],[2798,23829],[2799,23829],[2800,23829],[2801,23829],[2802,23829],[2803,23829],[2804,23829],[2805,23829],[2809,23915],[2810,23915],[2811,23915],[2812,23915],[2813,23915],[2814,23915],[2815,23915],[2816,23915],[2817,23915],[2818,23915],[2819,23915],[2820,23915],[2821,23915],[2822,23915],[2823,23915],[2824,23915],[2825,23915],[2826,23915],[2827,23915],[2828,23915],[2829,23915],[2830,23915],[2831,23915],[2832,23915],[2833,23915],[2834,23915],[2835,23915],[2836,23915],[2837,23915],[2838,23915],[2839,23915],[2840,23915],[2841,23915],[2842,23915],[2843,23915],[2844,23915],[2845,23915],[2846,23915],[2847,23915],[2848,23915],[2849,23915],[2850,23915],[2851,23915],[2852,23915],[2853,23915],[2854,23915],[2855,23915],[2856,23915],[2857,23915],[2858,23915],[2859,23915],[2860,23915],[2861,23915],[2862,23915],[2863,23915],[2864,23915],[2865,23915],[2866,23915],[2867,23915],[2868,23915],[2869,23915],[2870,23915],[2871,23915],[2872,23915],[2873,23915],[2874,23915],[2875,23915],[2876,23915],[2877,23915],[2878,23915],[2879,23915],[2880,23915],[2881,23915],[2882,23915],[2883,23915],[2884,23915],[2885,23915],[2886,23915],[2887,23915],[2888,23915],[2889,23915],[2890,23915],[2891,23915],[2892,23915],[2893,23915],[2894,23915],[2895,23915],[2896,23915],[2897,23915],[2898,23915],[2899,23915],[2900,23915],[2901,23915],[2902,23915],[2903,23915],[2904,23915],[2905,23915],[2906,23915],[2907,23915],[2908,23915],[2909,23915],[2910,23915],[2911,23915],[2912,23915],[2913,23915],[2914,23915],[2915,23915],[2916,23915],[2917,23915],[2918,23915],[2919,23915],[2920,23915],[2921,23915],[2922,23915],[2923,23915],[2924,23915],[2925,23915],[2926,23915],[2927,23915],[2928,23915],[2929,23915],[2930,23915],[2931,23915],[2932,23915],[2933,23915],[2934,23915],[2935,23915],[2936,23915],[2937,23915],[2938,23915],[2939,23915],[2940,23915],[2941,23915],[2942,23915],[2943,23915],[2944,23915],[2945,23915],[2946,23915],[2947,23915],[2948,23915],[2949,23915],[2950,23915],[2951,23915],[2952,23915],[2953,23915],[2954,23915],[2955,23915],[2956,23915],[2957,23915],[2958,23915],[2959,23915],[2960,23915],[2961,23915],[2962,23886],[2963,23886],[2964,23886],[2965,23886],[2967,23886],[2968,23886],[2969,23886],[2970,23886],[2971,23917],[2972,23886],[2973,23917],[2974,23920],[2975,23886],[2976,23886],[2977,23886],[2978,23886],[2979,23918],[2980,23918],[2981,23886],[2982,23886],[2983,23886],[2984,23918],[2985,23886],[2986,23886],[2987,23886],[2989,23920],[2990,23886],[2991,23886],[2992,23886],[2993,23918],[2994,23886],[2995,23886],[2996,23886],[2997,23886],[2998,23886],[2999,23886],[3000,23886],[3001,23886],[3002,23886],[3003,23886],[3004,23886],[3005,23886],[3006,23886],[3007,23886],[3008,23886],[3009,23886],[3010,23886],[3011,23886],[3012,23886],[3013,23886],[3014,23886],[3015,23886],[3016,23886],[3017,23886],[3018,23886],[3019,23886],[3020,23886],[3021,23886],[3022,23886],[3023,23886],[3024,23886],[3025,23886],[3026,23886],[3027,23886],[3028,23886],[3029,23886],[3030,23886],[3031,23886],[3032,23886],[3033,23886],[3034,23886],[3035,23886],[3036,23886],[3037,23886],[3038,23886],[3039,23886],[3040,23886],[3041,23886],[3042,23886],[3043,23886],[3044,23886],[3045,23886],[3046,23886],[3047,23886],[3048,23886],[3049,23886],[3050,23886],[3051,23886],[3052,23886],[3053,23886],[3054,23886],[3055,23886],[3056,23917],[3057,23886],[3058,23886],[3059,23886],[3060,23886],[3061,23886],[3062,23886],[3063,23886],[3064,23886],[3065,23918],[3066,23886],[3067,23886],[3068,23886],[3069,23886],[3070,23886],[3071,23886],[3072,23886],[3073,23886],[3074,23886],[3075,23886],[3076,23886],[3077,23886],[3078,23886],[3079,23886],[3080,23886],[3081,23886],[3082,23886],[3083,23886],[3084,23886],[3085,23886],[3086,23886],[3087,23886],[3088,23886],[3089,23886],[3090,23920],[3091,23886],[3092,23886],[3093,23886],[3094,23886],[3095,23886],[3096,23886],[3097,23886],[3098,23886],[3099,23918],[3100,23917],[3101,23886],[3102,23917],[3103,23886],[3104,23886],[3105,23886],[3106,23886],[3107,23886],[3108,23886],[3109,23886],[3110,23886],[3111,23886],[3112,23886],[3113,23886],[3114,23886],[3115,23886],[3116,23886],[3117,23886],[3118,23886],[3119,23886],[3120,23886],[3121,23886],[3122,23886],[3123,23886],[3124,23886],[3125,23886],[3126,23886],[3127,23886],[3128,23886],[3129,23886],[3130,23886],[3131,23886],[3132,23886],[3133,23886],[3134,23886],[3135,23886],[3136,23886],[3137,23886],[3138,23886],[3139,23886],[3140,23886],[3141,23886],[3142,23886],[3143,23886],[3144,23886],[3145,23886],[3146,23886],[3147,23886],[3148,23886],[3149,23886],[3150,23886],[3151,23886],[3152,23886],[3153,23886],[3154,23886],[3155,23886],[3156,23886],[3157,23886],[3158,23886],[3159,23886],[3160,23886],[3161,23886],[3162,23886],[3163,23886],[3164,23886],[3165,23886],[3166,23886],[3167,23886],[3168,23886],[3169,23886],[3170,23886],[3171,23886],[3172,23886],[3173,23886],[3174,23886],[3175,23886],[3176,23886],[3177,23886],[3178,23886],[3179,23886],[3180,23886],[3181,23886],[3182,23886],[3183,23886],[3184,23886],[3185,23886],[3186,23886],[3187,23886],[3188,23886],[3189,23886],[3190,23886],[3191,23886],[3192,23920],[3193,23886],[3194,23886],[3195,23886],[3196,23917],[3197,23886],[3198,23918],[3199,23886],[3200,23920],[3201,23920],[3202,23920],[3203,23886],[3204,23886],[3205,23886],[3206,23886],[3207,23886],[3208,23886],[3209,23886],[3210,23886],[3211,23886],[3212,23886],[3213,23886],[3214,23886],[3215,23886],[3216,23886],[3217,23886],[3218,23886],[3219,23886],[3220,23886],[3221,23886],[3222,23886],[3223,23886],[3224,23886],[3225,23886],[3226,23886],[3227,23886],[3228,23886],[3229,23886],[3230,23886],[3231,23886],[3232,23886],[3233,23886],[3234,23886],[3235,23886],[3236,23886],[3237,23886],[3238,23886],[3239,23886],[3240,23886],[3241,23886],[3242,23886],[3243,23886],[3244,23886],[3245,23886],[3246,23886],[3247,23886],[3248,23886],[3249,23886],[3250,23886],[3251,23886],[3252,23886],[3253,23886],[3254,23886],[3255,23886],[3256,23886],[3257,23886],[3258,23886],[3259,23886],[3260,23886],[3261,23886],[3262,23886],[3263,23886],[3264,23886],[3265,23886],[3266,23886],[3267,23886],[3268,23886],[3269,23886],[3270,23886],[3271,23886],[3272,23886],[3273,23886],[3274,23886],[3275,23917],[3276,23917],[3277,23917],[3278,23886],[3279,23886],[3280,23886],[3281,23886],[3282,23886],[3283,23886],[3284,23917],[3285,23920],[3286,23920],[3287,23920],[3288,23918],[3289,23886],[3290,23886],[3291,23886],[3292,23886],[3293,23886],[3294,23886],[3295,23886],[3296,23886],[3297,23917],[3298,23920],[3299,23917],[3300,23886],[3301,23886],[3302,23886],[3303,23886],[3304,23920],[3305,23886],[3306,23886],[3307,23886],[3308,23886],[3309,23886],[3310,23886],[3311,23886],[3312,23886],[3313,23886],[3314,23886],[3315,23886],[3316,23886],[3317,23886],[3318,23886],[3319,23886],[3320,23886],[3321,23886],[3322,23886],[3323,23886],[3324,23886],[3325,23886],[3326,23886],[3327,23886],[3328,23886],[3329,23886],[3330,23886],[3331,23886],[3332,23886],[3333,23886],[3334,23886],[3335,23886],[3336,23886],[3337,23886],[3338,23886],[3339,23886],[3340,23886],[3341,23886],[3342,23886],[3343,23886],[3344,23886],[3345,23886],[3346,23886],[3347,23886],[3348,23886],[3349,23886],[3350,23886],[3351,23886],[3352,23886],[3353,23886],[3354,23886],[3355,23886],[3356,23886],[3357,23886],[3358,23886],[3359,23886],[3360,23886],[3361,23886],[3362,23886],[3363,23886],[3364,23886],[3365,23886],[3366,23886],[3367,23886],[3368,23886],[3369,23886],[3370,23886],[3371,23886],[3372,23886],[3373,23886],[3374,23886],[3375,23917],[3376,23918],[3377,23920],[3378,23886],[3379,23886],[3380,23886],[3381,23886],[3382,23886],[3383,23886],[3384,23886],[3385,23886],[3386,23920],[3387,23917],[3388,23920],[3389,23886],[3390,23917],[3391,23917],[3392,23917],[3393,23917],[3394,23917],[3395,23917],[3396,23917],[3397,23917],[3398,23917],[3399,23917],[3400,23917],[3401,23917],[3402,23917],[3403,23917],[3404,23917],[3405,23917],[3406,23917],[3407,23917],[3408,23917],[3409,23917],[3410,23917],[3411,23917],[3412,23917],[3413,23917],[3414,23917],[3415,23917],[3416,23917],[3417,23917],[3418,23917],[3419,23917],[3420,23917],[3421,23917],[3422,23917],[3423,23917],[3424,23917],[3425,23917],[3426,23917],[3427,23917],[3428,23917],[3429,23917],[3430,23917],[3431,23917],[3432,23917],[3433,23917],[3434,23917],[3435,23917],[3436,23917],[3437,23917],[3438,23917],[3439,23917],[3440,23917],[3441,23917],[3442,23917],[3443,23917],[3444,23917],[3445,23917],[3446,23917],[3447,23917],[3448,23917],[3449,23917],[3450,23917],[3451,23917],[3452,23917],[3453,23917],[3454,23917],[3455,23917],[3456,23917],[3457,23917],[3458,23917],[3459,23917],[3460,23917],[3461,23917],[3462,23917],[3463,23917],[3464,23917],[3465,23917],[3466,23917],[3467,23917],[3468,23917],[3469,23917],[3470,23917],[3471,23917],[3472,23917],[3473,23917],[3474,23917],[3475,23917],[3476,23917],[3477,23917],[3478,23917],[3479,23917],[3480,23917],[3481,23917],[3482,23917],[3483,23917],[3484,23917],[3485,23917],[3486,23917],[3487,23917],[3488,23917],[3489,23917],[3490,23917],[3491,23917],[3492,23917],[3493,23917],[3494,23917],[3495,23917],[3496,23917],[3497,23917],[3498,23917],[3499,23917],[3500,23917],[3501,23917],[3502,23917],[3503,23917],[3504,23917],[3505,23917],[3506,23917],[3507,23917],[3508,23917],[3509,23917],[3510,23917],[3511,23917],[3512,23917],[3513,23917],[3514,23917],[3515,23917],[3516,23917],[3517,23917],[3518,23917],[3519,23917],[3520,23917],[3521,23917],[3522,23917],[3523,23917],[3524,23917],[3525,23917],[3526,23917],[3527,23917],[3528,23917],[3529,23917],[3530,23917],[3531,23917],[3533,23918],[3534,23918],[3535,23918],[3536,23918],[3537,23918],[3538,23918],[3539,23918],[3540,23918],[3541,23918],[3542,23918],[3543,23918],[3544,23918],[3545,23918],[3546,23918],[3547,23918],[3548,23918],[3549,23918],[3550,23918],[3551,23918],[3552,23918],[3553,23918],[3554,23918],[3555,23918],[3556,23918],[3557,23918],[3558,23918],[3559,23918],[3560,23918],[3561,23918],[3562,23918],[3563,23918],[3564,23918],[3565,23918],[3566,23918],[3567,23918],[3568,23918],[3569,23918],[3570,23918],[3571,23918],[3572,23918],[3573,23918],[3574,23918],[3575,23918],[3576,23918],[3577,23918],[3578,23918],[3579,23918],[3580,23918],[3581,23918],[3582,23918],[3583,23918],[3584,23918],[3585,23918],[3586,23918],[3587,23918],[3588,23918],[3589,23918],[3590,23918],[3591,23918],[3592,23918],[3593,23918],[3594,23918],[3595,23918],[3596,23918],[3597,23918],[3598,23918],[3599,23918],[3600,23918],[3601,23918],[3602,23918],[3603,23918],[3604,23918],[3605,23918],[3606,23918],[3607,23918],[3608,23918],[3609,23918],[3610,23918],[3611,23918],[3612,23918],[3613,23918],[3614,23918],[3615,23918],[3616,23918],[3617,23918],[3618,23918],[3619,23918],[3620,23918],[3621,23918],[3622,23918],[3623,23918],[3624,23918],[3625,23918],[3626,23918],[3627,23918],[3628,23918],[3629,23918],[3630,23918],[3631,23918],[3632,23918],[3633,23918],[3634,23920],[3635,23920],[3636,23920],[3637,23920],[3638,23920],[3639,23920],[3640,23920],[3641,23920],[3642,23920],[3643,23920],[3644,23920],[3645,23920],[3646,23920],[3647,23920],[3648,23920],[3649,23920],[3650,23920],[3651,23920],[3652,23920],[3653,23920],[3654,23920],[3655,23920],[3656,23920],[3657,23920],[3658,23920],[3659,23920],[3660,23920],[3661,23920],[3662,23920],[3663,23920],[3664,23920],[3665,23920],[3666,23920],[3667,23920],[3668,23920],[3669,23920],[3670,23920],[3671,23920],[3672,23920],[3673,23920],[3674,23920],[3675,23920],[3676,23920],[3677,23920],[3678,23920],[3679,23920],[3680,23920],[3681,23920],[3682,23920],[3683,23920],[3684,23920],[3685,23920],[3686,23920],[3687,23920],[3688,23920],[3689,23920],[3690,23920],[3691,23920],[3692,23920],[3693,23920],[3694,23920],[3695,23920],[3696,23920],[3697,23920],[3698,23920],[3699,23920],[3700,23921],[3701,23897],[3702,23866],[3703,23888],[3704,23887],[3705,23866],[3706,23888],[3707,23921],[3708,23866],[3709,23866],[3710,23866],[3711,23888],[3712,23921],[3713,23866],[3714,23888],[3715,23921],[3716,23866],[3717,23888],[3718,23921],[3719,23866],[3720,23888],[3721,23921],[3722,23866],[3723,23888],[3724,23921],[3725,23866],[3726,23888],[3727,23921],[3728,23866],[3729,23888],[3730,23921],[3731,23866],[3732,23887],[3733,23888],[3734,23866],[3735,23921],[3736,23921],[3737,23921],[3738,23866],[3739,23866],[3740,23866],[3741,23888],[3742,23921],[3743,23897],[3744,23897],[3745,23866],[3746,23888],[3747,23921],[3748,23866],[3749,23888],[3750,23921],[3751,23887],[3752,23888],[3753,23888],[3754,23888],[3755,23866],[3756,23888],[3757,23921],[3758,23887],[3759,23866],[3760,23866],[3761,23888],[3762,23921],[3763,23888],[3764,23921],[3765,23921],[3766,23921],[3767,23921],[3768,23897],[3769,23888],[3770,23921],[3771,23897],[3772,23866],[3773,23866],[3774,23866],[3775,23888],[3776,23921],[3777,23921],[3778,23921],[3779,23921],[3780,23866],[3781,23888],[3782,23921],[3783,23866],[3784,23888],[3785,23921],[3786,23921],[3787,23866],[3788,23866],[3789,23888],[3790,23921],[3791,23866],[3792,23888],[3793,23921],[3794,23866],[3795,23888],[3796,23921],[3797,23866],[3798,23888],[3799,23921],[3800,23866],[3801,23921],[3802,23866],[3803,23888],[3804,23921],[3805,23866],[3806,23888],[3807,23921],[3808,23866],[3809,23888],[3810,23921],[3811,23866],[3812,23888],[3813,23921],[3814,23866],[3815,23888],[3816,23921],[3817,23887],[3818,23866],[3819,23866],[3820,23887],[3821,23866],[3822,23888],[3823,23921],[3825,23866],[3826,23887],[3827,23887],[3828,23887],[3829,23897],[3830,23866],[3831,23887],[3832,23866],[3833,23866],[3834,23887],[3835,23866],[3836,23887],[3837,23888],[3838,23866],[3839,23866],[3840,23887],[3841,23888],[3842,23887],[3843,23897],[3844,23897],[3845,23921],[3846,23887],[3847,23866],[3848,23888],[3849,23921],[3850,23866],[3851,23888],[3852,23921],[3853,23866],[3854,23888],[3855,23921],[3856,23866],[3857,23888],[3858,23921],[3859,23866],[3860,23888],[3861,23921],[3862,23866],[3863,23888],[3864,23921],[3865,23866],[3866,23888],[3867,23921],[3868,23921],[3869,23866],[3870,23888],[3871,23921],[3872,23887],[3873,23866],[3874,23888],[3875,23921],[3876,23866],[3877,23866],[3878,23897],[3879,23923],[3880,23897],[3881,23897],[3882,23897],[3883,23924],[3884,23897],[3885,23925],[3886,23897],[3887,23897],[3888,23897],[3889,23897],[3890,23897],[3891,23897],[3892,23897],[3893,23897],[3894,23897],[3895,23897],[3896,23897],[3897,23897],[3898,23897],[3899,23897],[3900,23897],[3901,23897],[3902,23897],[3903,23897],[3904,23923],[3905,23897],[3906,23897],[3907,23897],[3908,23897],[3909,23897],[3910,23897],[3911,23897],[3912,23897],[3913,23897],[3914,23897],[3915,23897],[3916,23897],[3917,23897],[3918,23897],[3919,23923],[3920,23897],[3921,23925],[3922,23925],[3923,23925],[3924,23897],[3925,23924],[3926,23924],[3927,23897],[3928,23897],[3929,23925],[3930,23924],[3931,23897],[3932,23897],[3933,23897],[3934,23897],[3935,23897],[3936,23897],[3937,23897],[3938,23897],[3939,23897],[3940,23897],[3941,23897],[3942,23923],[3943,23897],[3944,23897],[3945,23923],[3946,23923],[3947,23923],[3948,23923],[3949,23923],[3950,23923],[3951,23923],[3952,23923],[3953,23923],[3954,23923],[3955,23923],[3956,23923],[3957,23923],[3958,23923],[3959,23923],[3960,23923],[3961,23923],[3962,23923],[3963,23923],[3964,23923],[3965,23923],[3966,23923],[3967,23923],[3968,23923],[3969,23923],[3970,23923],[3971,23923],[3972,23923],[3973,23923],[3974,23923],[3975,23923],[3976,23923],[3977,23923],[3978,23923],[3979,23923],[3980,23923],[3981,23923],[3982,23923],[3983,23923],[3984,23923],[3985,23923],[3986,23923],[3987,23923],[3988,23923],[3989,23923],[3990,23923],[3991,23923],[3992,23923],[3993,23923],[3994,23923],[3995,23923],[3996,23923],[3997,23923],[3998,23923],[3999,23923],[4000,23923],[4001,23923],[4002,23923],[4003,23924],[4004,23924],[4005,23924],[4006,23924],[4007,23924],[4008,23924],[4009,23924],[4010,23924],[4011,23924],[4012,23924],[4013,23924],[4014,23924],[4015,23924],[4016,23925],[4017,23925],[4018,23925],[4019,23925],[4020,23925],[4021,23925],[4022,23925],[4023,23925],[4024,23925],[4025,23886],[4026,23886],[4027,23886],[4028,23866],[4029,23866],[4030,23886],[4031,23886],[4032,23886],[4033,23886],[4034,23886],[4035,23866],[4036,23866],[4037,23866],[4038,23866],[4039,23886],[4040,23886],[4041,23886],[4042,23866],[4043,23866],[4044,23866],[4045,23866],[4046,23866],[4047,23866],[4048,23866],[4049,23866],[4050,23866],[4051,23866],[4052,23866],[4053,23888],[4054,23888],[4055,23888],[4056,23888],[4057,23888],[4058,23888],[4059,23888],[4060,23888],[4061,23888],[4062,23888],[4063,23888],[4064,23888],[4065,23888],[4066,23888],[4067,23888],[4068,23888],[4069,23888],[4070,23888],[4071,23888],[4072,23888],[4073,23888],[4074,23888],[4075,23888],[4076,23888],[4077,23888],[4078,23888],[4079,23888],[4080,23888],[4081,23888],[4082,23888],[4083,23888],[4084,23888],[4085,23888],[4086,23888],[4087,23888],[4088,23888],[4089,23888],[4090,23888],[4091,23888],[4092,23888],[4093,23888],[4094,23888],[4095,23888],[4096,23888],[4097,23888],[4098,23888],[4099,23888],[4100,23888],[4101,23888],[4102,23888],[4103,23888],[4104,23888],[4105,23888],[4106,23888],[4107,23888],[4108,23888],[4109,23888],[4110,23888],[4111,23888],[4112,23888],[4113,23888],[4114,23888],[4115,23888],[4116,23888],[4117,23888],[4118,23888],[4119,23888],[4120,23888],[4121,23888],[4122,23888],[4123,23888],[4124,23888],[4125,23888],[4126,23888],[4127,23888],[4128,23888],[4129,23888],[4130,23888],[4131,23888],[4132,23888],[4133,23888],[4134,23888],[4135,23888],[4136,23888],[4137,23888],[4138,23888],[4139,23888],[4140,23888],[4141,23888],[4142,23888],[4143,23888],[4144,23888],[4145,23888],[4146,23888],[4147,23888],[4148,23888],[4149,23888],[4150,23834],[4151,23834],[4152,23834],[4153,23834],[4154,23834],[4155,23834],[4156,23834],[4157,23834],[4158,23834],[4159,23834],[4160,23834],[4161,23834],[4162,23834],[4163,23834],[4164,23834],[4165,23834],[4166,23834],[4167,23834],[4168,23834],[4169,23834],[4170,23834],[4171,23834],[4172,23834],[4173,23834],[4174,23834],[4175,23834],[4176,23834],[4177,23834],[4178,23834],[4179,23834],[4180,23834],[4181,23834],[4182,23834],[4183,23834],[4184,23834],[4185,23834],[4186,23834],[4187,23834],[4188,23834],[4189,23834],[4190,23834],[4191,23834],[4192,23834],[4193,23834],[4194,23834],[4195,23834],[4196,23834],[4197,23834],[4198,23834],[4199,23834],[4200,23834],[4201,23834],[4202,23834],[4203,23834],[4204,23834],[4205,23834],[4206,23834],[4207,23834],[4208,23834],[4209,23834],[4210,23834],[4211,23834],[4212,23834],[4213,23834],[4214,23834],[4215,23834],[4216,23834],[4217,23834],[4218,23834],[4219,23834],[4220,23834],[4221,23834],[4222,23834],[4223,23834],[4224,23834],[4225,23834],[4226,23834],[4227,23834],[4228,23834],[4229,23834],[4230,23834],[4231,23834],[4232,23834],[4233,23834],[4234,23834],[4235,23834],[4236,23834],[4237,23834],[4238,23834],[4239,23834],[4240,23834],[4241,23834],[4242,23834],[4243,23834],[4244,23834],[4245,23834],[4246,23834],[4247,23834],[4248,23834],[4249,23834],[4250,23834],[4251,23834],[4252,23834],[4253,23834],[4254,23825],[4255,23849],[4256,23849],[4257,23849],[4258,23849],[4259,23849],[4260,23849],[4261,23849],[4262,23849],[4263,23849],[4264,23849],[4265,23849],[4266,23849],[4267,23849],[4268,23849],[4269,23849],[4270,23849],[4271,23849],[4272,23849],[4273,23849],[4274,23849],[4275,23849],[4276,23849],[4277,23849],[4278,23849],[4279,23849],[4280,23849],[4281,23849],[4282,23849],[4283,23849],[4284,23849],[4285,23849],[4286,23849],[4288,23858],[4289,23849],[4290,23849],[4291,23849],[4292,23849],[4293,23849],[4294,23849],[4295,23849],[4296,23849],[4297,23849],[4298,23849],[4299,23849],[4300,23849],[4301,23849],[4302,23849],[4303,23849],[4304,23849],[4305,23849],[4306,23849],[4307,23849],[4309,23849],[4310,23849],[4311,23849],[4312,23849],[4313,23849],[4314,23858],[4315,23849],[4316,23849],[4317,23849],[4318,23849],[4319,23849],[4320,23849],[4321,23849],[4322,23849],[4323,23849],[4324,23849],[4325,23849],[4326,23849],[4327,23849],[4328,23849],[4329,23849],[4330,23849],[4331,23849],[4332,23849],[4333,23849],[4334,23849],[4335,23849],[4400,23835],[4401,23835],[4402,23835],[4403,23835],[4404,23835],[4405,23835],[4406,23835],[4407,23835],[4408,23835],[4409,23835],[4410,23835],[4411,23835],[4412,23835],[4413,23835],[4414,23835],[4415,23835],[4416,23835],[4417,23835],[4418,23835],[4419,23835],[4420,23835],[4421,23835],[4422,23835],[4423,23835],[4424,23835],[4425,23835],[4426,23835],[4427,23835],[4428,23835],[4429,23835],[4430,23835],[4431,23835],[4432,23835],[4433,23835],[4434,23835],[4435,23835],[4436,23835],[4437,23835],[4438,23835],[4439,23835],[4440,23835],[4441,23835],[4442,23835],[4443,23835],[4444,23835],[4445,23835],[4446,23835],[4447,23835],[4448,23835],[4449,23835],[4450,23835],[4451,23835],[4452,23835],[4453,23835],[4454,23835],[4455,23835],[4456,23835],[4457,23835],[4458,23835],[4459,23835],[4460,23835],[4461,23835],[4462,23835],[4463,23835],[4464,23835],[4465,23835],[4466,23835],[4467,23835],[4468,23835],[4469,23835],[4470,23835],[4471,23835],[4472,23835],[4473,23835],[4474,23835],[4475,23835],[4476,23835],[4477,24102],[4478,24102],[4479,24102],[4480,24102],[4534,23836],[4535,23836],[4536,23836],[4537,23836],[4538,23836],[4539,23836],[4540,23836],[4541,23836],[4542,23836],[4543,23836],[4544,23836],[4545,23836],[4546,23836],[4547,23836],[4548,23836],[4549,23836],[4550,23836],[4551,23836],[4552,23836],[4553,23836],[4554,23836],[4555,23836],[4556,23836],[4557,23836],[4558,23836],[4559,23836],[4560,23836],[4561,23836],[4562,23836],[4563,23836],[4564,23836],[4565,23836],[4566,23836],[4567,23836],[4568,23836],[4569,23836],[4570,23836],[4571,23836],[4572,23836],[4573,23836],[4574,23836],[4575,23836],[4576,23836],[4577,24103],[4578,24103],[4579,24103],[4580,24103],[4581,23836],[4582,23836],[4583,23836],[4584,23836],[4585,23836],[4586,23836],[4587,23836],[4588,23836],[4589,23836],[4590,23836],[4591,23836],[4593,23850],[4594,23850],[4595,23850],[4596,23850],[4597,23837],[4598,23837],[4599,23837],[4600,23837],[4601,23928],[4602,23837],[4603,23837],[4604,23837],[4605,23837],[4606,23837],[4607,23837],[4608,23837],[4609,23837],[4610,23837],[4611,23837],[4612,23837],[4613,23837],[4614,23837],[4615,23837],[4616,23837],[4617,23837],[4618,23837],[4619,23837],[4620,23837],[4621,23837],[4622,23837],[4623,23837],[4624,23837],[4625,23837],[4626,23837],[4627,23837],[4628,23837],[4629,23837],[4630,23928],[4631,23837],[4632,23837],[4633,23837],[4634,23837],[4635,23928],[4636,23837],[4637,23837],[4638,23837],[4639,23837],[4640,23928],[4641,23837],[4642,23837],[4643,23837],[4644,23837],[4645,23928],[4646,23837],[4647,23837],[4648,23837],[4649,23837],[4650,23928],[4651,23837],[4652,23837],[4653,23837],[4654,23837],[4655,23928],[4656,23837],[4657,23837],[4658,23837],[4659,23837],[4660,23928],[4661,23837],[4662,23837],[4663,23837],[4664,23837],[4665,23928],[4666,23837],[4667,23837],[4668,23837],[4669,23837],[4670,23928],[4671,23837],[4672,23837],[4673,23837],[4674,23837],[4675,23928],[4676,23837],[4677,23837],[4678,23837],[4679,23837],[4680,23928],[4681,23837],[4682,23837],[4683,23837],[4684,23837],[4685,23928],[4686,23837],[4687,23837],[4688,23837],[4689,23837],[4690,23837],[4691,23837],[4692,23837],[4693,23837],[4694,23928],[4695,23837],[4696,23837],[4697,23837],[4698,23837],[4699,23928],[4700,23837],[4701,23837],[4702,23837],[4703,23837],[4704,23928],[4705,23837],[4706,23837],[4707,23837],[4708,23837],[4709,23928],[4710,23837],[4711,23837],[4712,23837],[4713,23837],[4714,23928],[4715,23837],[4716,23837],[4717,23837],[4718,23837],[4719,23928],[4720,23928],[4721,23928],[4722,23837],[4723,23837],[4724,23837],[4725,23837],[4726,23837],[4727,23837],[4728,23837],[4729,23837],[4730,23837],[4731,23837],[4732,23837],[4733,23837],[4734,23837],[4735,23928],[4736,23837],[4737,23837],[4738,23837],[4739,23837],[4740,23928],[4741,23837],[4742,23837],[4743,23837],[4744,23837],[4745,23928],[4746,23837],[4747,23837],[4748,23837],[4749,23837],[4750,23928],[4751,23837],[4752,23837],[4753,23837],[4754,23837],[4755,23837],[4756,23837],[4757,23837],[4758,23837],[4759,23928],[4760,23837],[4761,23837],[4762,23837],[4763,23837],[4764,23928],[4765,23837],[4766,23837],[4767,23837],[4768,23837],[4769,23928],[4770,23837],[4771,23837],[4772,23837],[4773,23837],[4774,23928],[4775,23837],[4776,23837],[4777,23837],[4778,23837],[4779,23928],[4780,23837],[4781,23837],[4782,23837],[4783,23837],[4784,23928],[4785,23837],[4786,23837],[4787,23837],[4788,23837],[4789,23928],[4790,23837],[4791,23837],[4792,23837],[4793,23837],[4794,23928],[4795,23837],[4796,23837],[4797,23837],[4798,23837],[4799,23928],[4800,23837],[4801,23837],[4802,23837],[4803,23837],[4804,23928],[4805,23837],[4806,23837],[4807,23837],[4808,23837],[4809,23928],[4810,23837],[4811,23837],[4812,23837],[4813,23837],[4814,23837],[4815,23837],[4816,23928],[4817,23837],[4818,23837],[4819,23837],[4820,23837],[4821,23928],[4822,23837],[4823,23837],[4824,23837],[4825,23837],[4826,23928],[4827,23837],[4828,23837],[4829,23837],[4830,23837],[4831,23928],[4832,23837],[4833,23837],[4834,23837],[4835,23837],[4836,23928],[4837,23837],[4838,23837],[4839,23837],[4840,23837],[4841,23928],[4842,23837],[4843,23837],[4844,23837],[4845,23837],[4846,23928],[4847,23837],[4848,23837],[4849,23837],[4850,23837],[4851,23928],[4852,23837],[4853,23837],[4854,23837],[4855,23837],[4856,23928],[4857,23837],[4858,23837],[4859,23837],[4860,23837],[4861,23928],[4862,23837],[4863,23837],[4864,23837],[4865,23837],[4866,23837],[4867,23838],[4868,23838],[4869,23838],[4870,23838],[4871,23838],[4872,23838],[4873,23838],[4874,23838],[4875,23838],[4876,23838],[4877,23838],[4878,23838],[4879,23838],[4880,23838],[4881,23838],[4882,23838],[4883,23838],[4884,23838],[4885,23838],[4886,23838],[4887,23838],[4888,23838],[4889,23838],[4890,23838],[4891,23838],[4892,23838],[4893,23838],[4894,23838],[4895,23838],[4896,23838],[4897,23838],[4898,23838],[4899,23838],[4900,23838],[4901,23838],[4902,23838],[4903,23838],[4904,23838],[4905,23838],[4906,23838],[4907,23838],[4908,23838],[4909,23838],[4910,23838],[4911,23838],[4912,23838],[4913,23838],[4914,23838],[4915,23838],[4916,23838],[4917,23838],[4918,23838],[4919,23838],[4920,23838],[4921,23838],[4922,23838],[4923,23838],[4924,23838],[4925,23838],[4926,23838],[4927,23838],[4928,23838],[4929,23838],[4930,23838],[4931,23838],[4932,23838],[4933,23838],[4934,23838],[4935,23838],[4936,23838],[4937,23838],[4938,23838],[4939,23838],[4940,23838],[4941,23838],[4942,23838],[4943,23838],[4944,23838],[4945,23838],[4946,23838],[4947,23838],[4948,23838],[4949,23838],[4950,23838],[4951,23838],[4952,23838],[4953,23838],[4954,23838],[4955,23838],[4956,23838],[4957,23838],[4958,23838],[4959,23838],[4960,23838],[4961,23838],[4962,23838],[4963,23929],[4964,23929],[4965,23929],[4966,23930],[4967,23931],[4968,23930],[4969,23931],[4970,23931],[4971,23929],[4972,23932],[4973,23932],[4974,23929],[4975,23931],[4976,23930],[4977,23932],[4978,23932],[4979,23929],[4980,23932],[4981,23930],[4982,23930],[4983,23931],[4984,23932],[4985,23929],[4986,23929],[4987,23929],[4988,23930],[4989,23931],[4990,23932],[4991,23929],[4992,23930],[4993,23931],[4994,23932],[4995,23929],[4996,23930],[4997,23931],[4998,23932],[4999,23929],[5000,23930],[5001,23931],[5002,23932],[5003,23929],[5004,23930],[5005,23929],[5006,23929],[5007,23929],[5008,23929],[5009,23929],[5010,23929],[5011,23929],[5012,23929],[5013,23930],[5014,23931],[5015,23932],[5016,23929],[5017,23930],[5018,23931],[5019,23932],[5020,23929],[5021,23930],[5022,23931],[5023,23932],[5024,23929],[5025,23930],[5026,23931],[5027,23932],[5028,23929],[5029,23930],[5030,23931],[5031,23932],[5032,23929],[5033,23930],[5034,23931],[5035,23932],[5036,23929],[5037,23930],[5038,23929],[5039,23929],[5040,23930],[5041,23929],[5042,23929],[5043,23930],[5044,23931],[5045,23932],[5046,23929],[5047,23929],[5048,23929],[5049,23929],[5050,23930],[5051,23931],[5052,23932],[5053,23929],[5054,23930],[5055,23931],[5056,23932],[5057,23929],[5058,23929],[5059,23930],[5060,23931],[5061,23932],[5062,23929],[5063,23930],[5064,23931],[5065,23932],[5066,23929],[5067,23929],[5068,23930],[5069,23931],[5070,23932],[5071,23929],[5072,23930],[5073,23930],[5074,23930],[5075,23931],[5076,23931],[5077,23931],[5078,23932],[5079,23932],[5080,23932],[5081,23929],[5082,23929],[5083,23929],[5084,23929],[5085,23930],[5086,23931],[5087,23932],[5088,23929],[5089,23929],[5090,23929],[5091,23929],[5092,23929],[5093,23930],[5094,23930],[5095,23931],[5096,23932],[5097,23929],[5098,23930],[5099,23931],[5100,23932],[5101,23929],[5102,23929],[5103,23929],[5104,23929],[5105,23929],[5106,23929],[5107,23929],[5108,23930],[5109,23931],[5110,23932],[5111,23929],[5112,23930],[5113,23929],[5114,23930],[5115,23931],[5116,23932],[5117,23929],[5118,23929],[5119,23929],[5120,23929],[5121,23930],[5122,23931],[5123,23932],[5124,23929],[5125,23930],[5126,23931],[5127,23932],[5128,23929],[5129,23930],[5130,23931],[5131,23932],[5132,23929],[5133,23930],[5134,23931],[5135,23932],[5136,23929],[5137,23930],[5138,23931],[5139,23932],[5140,23929],[5141,23930],[5142,23931],[5143,23932],[5144,23929],[5145,23930],[5146,23931],[5147,23932],[5148,23929],[5149,23930],[5150,23931],[5151,23932],[5152,23929],[5153,23929],[5154,23930],[5155,23931],[5156,23932],[5157,23929],[5158,23929],[5159,23929],[5160,23929],[5161,23929],[5162,23929],[5163,24104],[5164,23929],[5165,23929],[5166,23929],[5167,23929],[5168,24105],[5169,24105],[5170,23930],[5171,23929],[5172,23929],[5173,23929],[5174,23929],[5175,23929],[5176,23929],[5177,23929],[5178,23930],[5179,23931],[5180,23932],[5181,23929],[5182,23929],[5183,23930],[5184,23931],[5185,23932],[5186,23929],[5187,23930],[5188,23931],[5189,23932],[5190,23929],[5191,23930],[5192,23931],[5193,23932],[5194,23929],[5195,23930],[5196,23931],[5197,23932],[5198,23929],[5199,23930],[5200,23931],[5201,23932],[5202,23929],[5203,23930],[5204,23931],[5205,23932],[5206,23929],[5207,23930],[5208,23931],[5209,23932],[5210,23929],[5211,23929],[5212,23930],[5213,23931],[5214,23932],[5215,23929],[5216,23930],[5217,23931],[5218,23932],[5219,23929],[5231,23930],[5232,23930],[5233,23930],[5234,23930],[5235,23930],[5236,23930],[5237,23930],[5238,23930],[5239,23930],[5240,23930],[5241,23930],[5242,23930],[5243,23930],[5244,23930],[5245,23930],[5246,23930],[5247,23930],[5248,23930],[5249,23930],[5250,23930],[5251,23930],[5252,23930],[5253,23930],[5254,23930],[5255,23930],[5256,23930],[5257,23930],[5258,23930],[5259,23930],[5260,23930],[5261,23930],[5262,23930],[5263,23930],[5264,23930],[5265,23930],[5266,23930],[5267,23930],[5268,23930],[5269,23930],[5270,23930],[5271,23930],[5272,23930],[5273,23930],[5274,23930],[5275,23930],[5276,23930],[5277,23930],[5278,23930],[5279,23930],[5280,23930],[5281,23930],[5282,23930],[5283,23930],[5284,23930],[5285,23930],[5286,23930],[5287,23930],[5288,23930],[5289,23930],[5290,23930],[5291,23930],[5292,23930],[5293,23930],[5294,23930],[5295,23930],[5296,23930],[5297,23930],[5298,23930],[5299,23930],[5300,23930],[5301,23930],[5302,23930],[5303,23930],[5304,23930],[5305,23930],[5306,23930],[5307,23930],[5308,23930],[5309,23930],[5310,23930],[5311,23930],[5312,23930],[5313,23930],[5314,23930],[5315,23930],[5316,23930],[5317,23930],[5318,23930],[5319,23930],[5320,23930],[5321,23930],[5322,23930],[5323,23930],[5324,23930],[5325,23930],[5326,23930],[5327,23930],[5328,23930],[5329,23930],[5330,23930],[5331,23930],[5332,23930],[5333,23930],[5334,23930],[5335,23930],[5336,23930],[5337,23930],[5338,23930],[5339,23930],[5340,23930],[5341,23930],[5342,23930],[5343,23930],[5344,23930],[5345,23930],[5346,23930],[5347,23930],[5348,23930],[5349,23930],[5350,23930],[5351,23930],[5352,23930],[5353,23930],[5354,23930],[5355,23930],[5356,23930],[5357,23930],[5358,23930],[5359,23930],[5360,23930],[5361,23930],[5362,23930],[5363,23930],[5364,23930],[5365,23930],[5366,23930],[5367,23930],[5368,23930],[5369,23930],[5370,23930],[5371,23930],[5372,23930],[5373,23930],[5374,23930],[5375,23930],[5376,23930],[5377,23930],[5378,23930],[5379,23930],[5380,23930],[5381,23930],[5382,23930],[5383,23930],[5384,23930],[5385,23930],[5386,23930],[5387,23930],[5388,23930],[5389,23930],[5390,23930],[5391,23930],[5392,23930],[5393,23930],[5394,23930],[5395,23930],[5396,23930],[5397,23930],[5398,23930],[5399,23930],[5400,23930],[5401,23930],[5402,23930],[5403,23930],[5404,23930],[5405,23930],[5406,23930],[5407,23930],[5408,23930],[5409,23930],[5410,23930],[5411,23930],[5412,23930],[5413,23930],[5414,23930],[5415,23930],[5416,23930],[5417,23930],[5418,23930],[5419,23930],[5420,23930],[5421,23930],[5422,23930],[5423,23930],[5424,23930],[5425,23930],[5426,23930],[5427,23930],[5428,23930],[5429,23930],[5430,23930],[5431,23930],[5432,23930],[5433,23930],[5434,23930],[5435,23930],[5436,23930],[5437,23930],[5438,23930],[5439,23930],[5440,23930],[5441,23930],[5442,23930],[5443,23930],[5444,23930],[5445,23930],[5446,23930],[5447,23930],[5448,23930],[5449,23930],[5450,23930],[5451,23930],[5452,23930],[5453,23930],[5454,23930],[5455,23930],[5456,23930],[5457,23930],[5458,23930],[5459,23930],[5460,23930],[5461,23930],[5462,23930],[5463,23930],[5464,23930],[5465,23930],[5466,23930],[5467,23930],[5468,23930],[5469,23930],[5470,23930],[5471,23930],[5472,23930],[5473,23930],[5474,23930],[5475,23930],[5476,23930],[5477,23930],[5478,23930],[5479,23930],[5480,23930],[5481,23930],[5482,23930],[5483,23930],[5484,23930],[5485,23930],[5486,23930],[5487,23930],[5488,23930],[5489,23930],[5490,23930],[5491,23930],[5492,23930],[5493,23930],[5494,23930],[5495,23930],[5496,23930],[5497,23930],[5498,23930],[5499,23930],[5500,23930],[5501,23930],[5502,23930],[5503,23930],[5504,23930],[5505,23930],[5506,23930],[5507,23930],[5508,23930],[5509,23930],[5510,23930],[5511,23930],[5512,23930],[5513,23930],[5514,23930],[5515,23930],[5516,23930],[5517,23930],[5518,23930],[5519,23930],[5520,23930],[5521,23930],[5522,23930],[5523,23930],[5524,23930],[5525,23930],[5526,23930],[5527,23930],[5528,23930],[5529,23930],[5530,23930],[5531,23930],[5532,23930],[5533,23930],[5534,23930],[5535,23930],[5536,23930],[5537,23930],[5538,23930],[5539,23930],[5540,23930],[5541,23930],[5542,23930],[5543,23930],[5544,23930],[5545,23930],[5546,23930],[5547,23930],[5548,23930],[5549,23930],[5550,23930],[5551,23930],[5552,23930],[5553,23930],[5554,23930],[5555,23930],[5556,23930],[5557,23930],[5558,23930],[5559,23930],[5560,23930],[5561,23930],[5562,23930],[5563,23930],[5564,23930],[5565,23930],[5566,23930],[5567,23930],[5568,23930],[5569,23930],[5570,23930],[5571,23930],[5572,23930],[5573,23930],[5574,23930],[5575,23930],[5576,23930],[5577,23930],[5578,23930],[5579,23930],[5580,23930],[5581,23930],[5582,23930],[5583,23930],[5584,23930],[5585,23930],[5586,23930],[5587,23930],[5588,23930],[5589,23930],[5590,23930],[5591,23930],[5592,23930],[5593,23930],[5594,23930],[5595,23930],[5596,23930],[5597,23930],[5598,23930],[5599,23930],[5600,23930],[5601,23930],[5602,23930],[5603,23930],[5604,23930],[5605,23930],[5606,23930],[5607,23930],[5608,23930],[5609,23930],[5610,23930],[5611,23930],[5612,23930],[5613,23930],[5614,23930],[5615,23930],[5616,23930],[5617,23930],[5618,23930],[5619,23930],[5620,23930],[5621,23930],[5622,23930],[5623,23930],[5624,23930],[5625,23930],[5626,23930],[5627,23930],[5628,23930],[5629,23930],[5630,23930],[5631,23930],[5632,23930],[5633,23930],[5634,23930],[5635,23930],[5636,23930],[5637,23930],[5638,23930],[5639,23930],[5640,23930],[5641,23930],[5642,23930],[5643,23930],[5644,23930],[5645,23930],[5646,23930],[5647,23930],[5648,23930],[5649,23930],[5650,23930],[5651,23930],[5652,23930],[5653,23930],[5654,23930],[5655,23930],[5656,23930],[5657,23930],[5658,23930],[5659,23930],[5660,23930],[5661,23930],[5662,23930],[5663,23930],[5664,23930],[5665,23930],[5666,23930],[5667,23930],[5668,23930],[5669,23930],[5670,23930],[5671,23930],[5672,23930],[5673,23930],[5674,23930],[5675,23930],[5676,23930],[5677,23930],[5678,23930],[5679,23930],[5680,23930],[5681,23930],[5682,23930],[5683,23930],[5684,23930],[5685,23930],[5686,23930],[5687,23930],[5688,23930],[5689,23930],[5690,23930],[5691,23930],[5692,23930],[5693,23930],[5694,23930],[5695,23930],[5696,23930],[5697,23930],[5698,23930],[5699,23930],[5700,23930],[5701,23930],[5702,23930],[5703,23930],[5704,23930],[5705,23930],[5706,23930],[5707,23930],[5708,23930],[5709,23930],[5710,23930],[5711,23930],[5712,23930],[5713,23930],[5714,23930],[5715,23930],[5716,23930],[5717,23930],[5718,23930],[5719,23930],[5720,23930],[5721,23930],[5722,23930],[5723,23930],[5724,23930],[5725,23930],[5726,23930],[5727,23930],[5728,23930],[5729,23930],[5730,23930],[5731,23930],[5732,23930],[5733,23930],[5734,23930],[5735,23930],[5736,23930],[5737,23930],[5738,23930],[5739,23930],[5740,23930],[5741,23930],[5742,23930],[5743,23930],[5744,23930],[5745,23930],[5746,23930],[5747,23930],[5748,23930],[5749,23930],[5750,23930],[5751,23930],[5752,23930],[5753,23930],[5754,23930],[5755,23930],[5756,23930],[5757,23930],[5758,23930],[5759,23930],[5760,23930],[5761,23930],[5762,23930],[5763,23930],[5764,23930],[5765,23930],[5766,23930],[5767,23930],[5768,23930],[5769,23930],[5770,23930],[5771,23930],[5772,23930],[5773,23930],[5774,23930],[5775,23930],[5776,23930],[5777,23930],[5778,23930],[5779,23930],[5780,23930],[5781,23930],[5782,23930],[5783,23930],[5784,23930],[5785,23930],[5786,23930],[5787,23930],[5788,23930],[5789,23930],[5790,23930],[5791,23930],[5792,23930],[5793,23930],[5794,23930],[5795,23930],[5796,23930],[5797,23930],[5798,23930],[5799,23930],[5800,23930],[5801,23930],[5802,23930],[5803,23930],[5804,23930],[5805,23930],[5806,23930],[5807,23930],[5808,23930],[5809,23930],[5810,23930],[5811,23930],[5812,23930],[5813,23930],[5814,23930],[5815,23930],[5816,23930],[5817,23930],[5818,23930],[5819,23930],[5820,23930],[5821,23930],[5822,23930],[5823,23930],[5824,23930],[5825,23930],[5826,23930],[5827,23930],[5828,23930],[5829,23930],[5830,23930],[5831,23930],[5832,23930],[5833,23930],[5834,23930],[5835,23930],[5836,23930],[5837,23930],[5838,23930],[5839,23930],[5840,23930],[5841,23930],[5842,23930],[5843,23930],[5844,23930],[5845,23930],[5846,23930],[5847,23930],[5848,23930],[5849,23930],[5850,23930],[5851,23930],[5852,23930],[5853,23930],[5854,23930],[5855,23930],[5856,23930],[5857,23930],[5858,23930],[5859,23930],[5860,23930],[5861,23930],[5862,23930],[5863,23930],[5864,23930],[5865,23930],[5866,23930],[5867,23930],[5868,23930],[5869,23930],[5870,23930],[5871,23930],[5872,23930],[5873,23930],[5874,23930],[5875,23930],[5876,23930],[5877,23930],[5878,23930],[5879,23930],[5880,23930],[5881,23930],[5882,23930],[5883,23930],[5884,23930],[5885,23930],[5886,23930],[5887,23930],[5888,23930],[5889,23930],[5890,23930],[5891,23930],[5892,23930],[5893,23930],[5894,23930],[5895,23930],[5896,23930],[5897,23930],[5898,23930],[5899,23930],[5900,23930],[5901,23930],[5902,23930],[5903,23930],[5904,23930],[5905,23930],[5906,23930],[5907,23930],[5908,23930],[5909,23930],[5910,23930],[5911,23930],[5912,23930],[5913,23930],[5914,23930],[5915,23930],[5916,23930],[5917,23930],[5918,23930],[5919,23930],[5920,23930],[5921,23930],[5922,23930],[5923,23930],[5924,23930],[5925,23930],[5926,23930],[5927,23930],[5928,23930],[5929,23930],[5930,23930],[5931,23930],[5932,23930],[5933,23930],[5934,23930],[5935,23930],[5936,23930],[5937,23930],[5938,23930],[5939,23930],[5940,23930],[5941,23930],[5942,23892],[5943,23910],[5944,23910],[5945,23911],[5946,23911],[5947,23896],[5948,23896],[5949,23896],[5950,23892],[5951,23911],[5952,23911],[5953,23911],[5954,23911],[5955,23910],[5956,23896],[5957,23896],[5958,23896],[5959,23896],[5960,23896],[5961,23910],[5962,23892],[5963,23911],[5964,23910],[5965,23896],[5966,23896],[5967,23896],[5968,23910],[5969,23911],[5970,23896],[5971,23896],[5972,23896],[5973,23896],[5974,23896],[5975,23910],[5976,23911],[5977,23896],[5978,23892],[5979,23911],[5980,23896],[5981,23896],[5982,23896],[5983,23910],[5984,23892],[5985,23911],[5986,23911],[5987,23896],[5988,23910],[5989,23892],[5990,23911],[5991,23911],[5992,23896],[5993,23910],[5994,23892],[5995,23911],[5996,23911],[5997,23896],[5998,23910],[5999,23892],[6000,23911],[6001,23911],[6002,23896],[6003,23910],[6004,23892],[6005,23911],[6006,23911],[6007,23896],[6008,23910],[6009,23892],[6010,23911],[6011,23911],[6012,23896],[6013,23910],[6014,23892],[6015,23911],[6016,23911],[6017,23896],[6018,23910],[6019,23892],[6020,23911],[6021,23911],[6022,23896],[6023,23910],[6024,23892],[6025,23911],[6026,23911],[6027,23896],[6028,23910],[6029,23892],[6030,23911],[6031,23911],[6032,23896],[6033,23910],[6034,23892],[6035,23911],[6036,23911],[6037,23896],[6038,23896],[6039,23896],[6040,23910],[6041,23892],[6042,23911],[6043,23911],[6044,23896],[6045,23892],[6046,23896],[6047,23910],[6048,23892],[6049,23911],[6050,23911],[6051,23896],[6052,23910],[6053,23892],[6054,23911],[6055,23911],[6056,23896],[6057,23910],[6058,23892],[6059,23911],[6060,23911],[6061,23896],[6062,23910],[6063,23892],[6064,23911],[6065,23911],[6066,23896],[6067,23910],[6068,23892],[6069,23911],[6070,23911],[6071,23896],[6072,23910],[6073,23910],[6074,23910],[6075,23896],[6076,23896],[6077,23896],[6078,23910],[6079,23892],[6080,23911],[6081,23911],[6082,23896],[6083,23910],[6084,23892],[6085,23911],[6086,23911],[6087,23896],[6088,23910],[6089,23892],[6090,23911],[6091,23911],[6092,23896],[6093,23910],[6094,23892],[6095,23911],[6096,23911],[6097,23896],[6098,23910],[6099,23910],[6100,23892],[6101,23911],[6102,23911],[6103,23896],[6104,23910],[6105,23892],[6106,23911],[6107,23911],[6108,23896],[6109,23910],[6110,23892],[6111,23911],[6112,23911],[6113,23896],[6114,23910],[6115,23892],[6116,23911],[6117,23911],[6118,23896],[6119,23910],[6120,23892],[6121,23911],[6122,23911],[6123,23896],[6124,23910],[6125,23892],[6126,23911],[6127,23911],[6128,23896],[6129,23910],[6130,23892],[6131,23911],[6132,23911],[6133,23896],[6134,23910],[6135,23892],[6136,23911],[6137,23911],[6138,23896],[6139,23910],[6140,23892],[6141,23911],[6142,23911],[6143,23896],[6144,23910],[6145,23892],[6146,23911],[6147,23911],[6148,23896],[6149,23892],[6150,23892],[6151,23892],[6152,23892],[6153,23892],[6154,23892],[6155,23896],[6156,23896],[6157,23892],[6158,23892],[6159,23892],[6160,23892],[6161,23910],[6162,23892],[6163,23911],[6164,23911],[6165,23896],[6166,23910],[6167,23892],[6168,23911],[6169,23911],[6170,23896],[6171,23910],[6172,23892],[6173,23911],[6174,23911],[6175,23896],[6176,23910],[6177,23892],[6178,23911],[6179,23911],[6180,23896],[6181,23910],[6182,23892],[6183,23911],[6184,23911],[6185,23896],[6186,23910],[6187,23892],[6188,23911],[6189,23911],[6190,23896],[6191,23910],[6192,23892],[6193,23911],[6194,23911],[6195,23896],[6196,23910],[6197,23892],[6198,23911],[6199,23911],[6200,23896],[6201,23910],[6202,23892],[6203,23911],[6204,23911],[6205,23896],[6206,23910],[6207,23892],[6208,23911],[6209,23911],[6210,23896],[6218,24106],[6219,23880],[6220,23880],[6221,23880],[6222,23880],[6223,23880],[6224,23880],[6225,23880],[6226,23880],[6227,23880],[6228,23880],[6229,23880],[6230,23880],[6231,23880],[6232,23880],[6233,23880],[6234,23880],[6235,23880],[6236,23880],[6237,23880],[6238,23880],[6239,23880],[6240,23880],[6241,23880],[6242,23880],[6243,23880],[6244,23880],[6245,23880],[6246,23880],[6247,23880],[6248,23880],[6249,23880],[6250,23880],[6251,23880],[6252,23880],[6253,23880],[6254,23880],[6255,23880],[6256,23880],[6257,23880],[6258,23880],[6259,23880],[6260,23880],[6261,23880],[6262,23880],[6263,23880],[6264,23880],[6265,23880],[6266,23880],[6267,23880],[6268,23880],[6269,23880],[6270,23880],[6271,23880],[6272,23880],[6273,23880],[6274,23880],[6275,23880],[6276,23880],[6277,23880],[6278,23880],[6279,23880],[6280,23880],[6281,23880],[6282,23880],[6283,23880],[6284,23880],[6285,23880],[6286,23880],[6287,23880],[6288,23880],[6289,23880],[6290,23880],[6291,23880],[6292,23880],[6293,23880],[6294,23880],[6295,23880],[6296,23880],[6297,23880],[6298,23880],[6299,23880],[6300,23880],[6301,23880],[6302,23880],[6303,23880],[6304,23880],[6305,23880],[6306,23880],[6307,23880],[6308,23880],[6309,23880],[6310,23880],[6311,23880],[6312,23880],[6313,23880],[6314,23880],[6315,23880],[6316,23880],[6317,23880],[6318,23880],[6319,23880],[6320,23880],[6321,23880],[6322,23880],[6323,23880],[6324,23880],[6325,23880],[6326,23880],[6327,23880],[6328,23880],[6329,23880],[6330,23880],[6331,23880],[6332,23880],[6333,23880],[6334,23880],[6335,23880],[6336,23880],[6337,23880],[6338,23880],[6339,23880],[6340,23880],[6341,23880],[6342,23880],[6343,23880],[6344,23880],[6345,23880],[6346,23880],[6347,23880],[6348,23880],[6349,23880],[6350,23880],[6351,23880],[6352,23880],[6353,23880],[6354,23880],[6355,23880],[6356,23831],[6357,23831],[6358,23831],[6359,23831],[6360,23831],[6361,23831],[6362,23831],[6363,23831],[6364,23831],[6365,23831],[6366,24107],[6367,24107],[6368,23935],[6369,23935],[6370,23935],[6371,23935],[6372,23935],[6373,23935],[6374,23935],[6375,23935],[6376,23935],[6377,23935],[6378,23935],[6379,23935],[6380,23935],[6381,23935],[6382,23935],[6383,23935],[6384,23935],[6385,23935],[6386,23935],[6387,24108],[6388,23935],[6389,23935],[6390,23935],[6391,23935],[6392,23935],[6393,23935],[6394,23935],[6395,23935],[6396,23935],[6397,23935],[6398,23935],[6399,23935],[6400,23935],[6401,23935],[6402,23935],[6403,23935],[6404,23935],[6405,23935],[6406,23935],[6407,23935],[6408,23935],[6409,23935],[6410,23935],[6411,23935],[6412,23935],[6413,23935],[6414,23935],[6415,23935],[6416,23935],[6417,23935],[6418,23935],[6419,23935],[6420,23803],[6421,23803],[6422,23803],[6423,23803],[6424,23803],[6425,23803],[6426,23803],[6427,23803],[6428,23803],[6429,23803],[6430,23803],[6431,23803],[6432,23803],[6433,23803],[6434,23803],[6435,23803],[6436,23803],[6437,23803],[6438,23803],[6439,23803],[6440,23803],[6441,23803],[6442,23803],[6443,23803],[6444,23803],[6445,23803],[6446,23803],[6447,23803],[6448,23803],[6449,23803],[6450,23803],[6451,23803],[6452,23803],[6453,23803],[6454,23803],[6455,23803],[6456,23803],[6457,23803],[6458,23803],[6459,23803],[6460,23803],[6461,23803],[6462,23803],[6463,23803],[6464,23803],[6465,23803],[6466,23821],[6467,23844],[6468,23844],[6469,23844],[6470,23844],[6471,23821],[6472,23821],[6473,23821],[6474,23821],[6475,23821],[6476,23821],[6477,23844],[6478,23844],[6479,23821],[6480,23821],[6481,23844],[6482,23821],[6483,23844],[6484,23844],[6485,23821],[6486,23821],[6487,23844],[6488,23844],[6489,23844],[6490,23821],[6491,23821],[6492,23821],[6493,23844],[6494,23821],[6495,23844],[6496,23821],[6497,23844],[6498,23844],[6499,23821],[6500,23821],[6501,23844],[6502,23821],[6503,23844],[6504,23844],[6505,23844],[6506,23821],[6507,23821],[6508,23821],[6509,23844],[6510,23844],[6511,23844],[6512,23821],[6513,23821],[6514,23821],[6515,23821],[6516,23844],[6517,23821],[6518,23821],[6519,23844],[6520,23821],[6521,23821],[6522,23844],[6523,23821],[6524,23821],[6525,23844],[6526,23821],[6527,23821],[6528,23844],[6529,23821],[6530,23821],[6531,23844],[6532,23821],[6533,23821],[6534,23844],[6535,23821],[6536,23821],[6537,23844],[6538,23821],[6539,23821],[6540,23844],[6541,23821],[6542,23821],[6543,23844],[6544,23821],[6545,23821],[6546,23844],[6547,23821],[6548,23821],[6549,23844],[6550,23821],[6551,23821],[6552,23844],[6553,23821],[6554,23821],[6555,23844],[6556,23821],[6557,23844],[6558,23821],[6559,23821],[6560,23844],[6561,23821],[6562,23821],[6563,23844],[6564,23821],[6565,23821],[6566,23844],[6567,23821],[6568,23821],[6569,23844],[6570,23821],[6571,23821],[6572,23844],[6573,23821],[6574,23821],[6575,23821],[6576,23844],[6577,23821],[6578,23821],[6579,23844],[6580,23821],[6581,23821],[6582,23844],[6583,23821],[6584,23821],[6585,23844],[6586,23821],[6587,23821],[6588,23844],[6589,23821],[6590,23821],[6591,23844],[6592,23821],[6593,23821],[6594,23844],[6595,23821],[6596,23821],[6597,23844],[6598,23821],[6599,23821],[6600,23844],[6601,23821],[6602,23821],[6603,23844],[6604,23821],[6605,23821],[6606,23844],[6607,23821],[6608,23821],[6609,23844],[6610,23821],[6611,23821],[6612,23844],[6613,23821],[6614,23821],[6615,23821],[6616,23821],[6617,23844],[6618,23844],[6619,23844],[6620,23821],[6621,23844],[6622,23821],[6623,23821],[6624,23821],[6625,23821],[6626,23844],[6627,23821],[6628,23821],[6629,23844],[6630,23821],[6631,23821],[6632,23844],[6633,23821],[6634,23821],[6635,23844],[6636,23821],[6637,23821],[6638,23844],[6639,23821],[6640,23821],[6641,23844],[6642,23821],[6643,23821],[6644,23844],[6645,23821],[6646,23821],[6647,23844],[6648,23821],[6649,23821],[6650,23844],[6651,23821],[6652,23821],[6653,23844],[6654,23821],[6655,23844],[6656,23844],[6657,23844],[6658,23844],[6659,23844],[6660,23844],[6661,23844],[6662,23844],[6663,23844],[6664,23844],[6665,23844],[6666,23844],[6667,23844],[6668,23844],[6669,23844],[6670,23844],[6671,23844],[6672,23844],[6673,23844],[6674,23844],[6675,23844],[6676,23844],[6677,23844],[6678,23844],[6679,23844],[6680,23844],[6681,23844],[6682,23844],[6683,23844],[6684,23844],[6685,23844],[6686,23844],[6687,23844],[6688,23844],[6689,23844],[6690,23844],[6691,23844],[6692,23844],[6693,23844],[6694,23844],[6695,23844],[6696,23844],[6697,23844],[6698,23844],[6699,23844],[6700,23844],[6701,23844],[6702,23844],[6703,23844],[6704,23844],[6705,23844],[6706,23844],[6707,23844],[6708,23844],[6709,23844],[6710,23844],[6711,23844],[6712,23844],[6713,23844],[6714,23844],[6715,23844],[6716,23844],[6717,23844],[6718,23844],[6719,23844],[6720,23844],[6721,23844],[6722,23844],[6723,23844],[6724,23844],[6725,23844],[6726,23844],[6727,23844],[6728,23844],[6729,23844],[6730,23844],[6731,23844],[6732,23844],[6733,23844],[6734,23844],[6735,23844],[6736,23844],[6737,23844],[6738,23844],[6739,23844],[6740,23844],[6741,23844],[6742,23844],[6743,23844],[6744,23844],[6745,23844],[6746,23844],[6747,23844],[6748,23844],[6749,23844],[6750,23844],[6751,23844],[6752,23844],[6753,23844],[6754,23844],[6755,23844],[6756,23844],[6757,23844],[6758,23844],[6759,23844],[6760,23844],[6761,23844],[6762,23844],[6763,23844],[6764,23844],[6765,23844],[6766,23844],[6767,23844],[6768,23844],[6769,23844],[6770,23844],[6771,23844],[6772,23844],[6773,23844],[6774,23844],[6775,23844],[6776,23844],[6777,23844],[6778,23844],[6779,23844],[6780,23844],[6781,23844],[6782,23844],[6783,23844],[6784,23844],[6785,23844],[6786,23844],[6787,23844],[6788,23844],[6789,23844],[6790,23844],[6791,23844],[6792,23844],[6793,23844],[6794,23844],[6795,23844],[6796,23844],[6797,23844],[6798,23844],[6799,23844],[6800,23844],[6801,23844],[6802,23844],[6803,23844],[6804,23844],[6805,23844],[6806,23844],[6807,23844],[6808,23844],[6809,23844],[6810,23844],[6811,23844],[6812,23844],[6813,23844],[6814,23844],[6815,23844],[6816,23844],[6817,23844],[6818,23844],[6819,23844],[6820,23844],[6821,23844],[6822,23844],[6823,23844],[6824,23844],[6825,23844],[6826,23844],[6827,23844],[6828,23844],[6829,23844],[6830,23844],[6831,23844],[6832,23844],[6833,23844],[6834,23844],[6835,23844],[6836,23844],[6837,23844],[6838,23844],[6839,23844],[6840,23844],[6841,23844],[6842,23844],[6843,23844],[6844,23844],[6845,23844],[6846,23844],[6847,23844],[6848,23844],[6849,23844],[6850,23844],[6851,23844],[6852,23844],[6853,23844],[6854,23844],[6855,23844],[6856,23844],[6857,23844],[6858,23844],[6859,23844],[6860,23844],[6861,23844],[6862,23844],[6863,23844],[6864,23844],[6865,23844],[6866,23844],[6867,23844],[6868,23844],[6869,23844],[6870,23844],[6871,23844],[6872,23844],[6873,23844],[6874,23844],[6875,23844],[6876,23844],[6877,23844],[6878,23844],[6879,23844],[6880,23844],[6881,23844],[6882,23844],[6883,23844],[6884,23844],[6885,23844],[6886,23844],[6887,23844],[6888,23844],[6889,23844],[6890,23844],[6891,23844],[6892,23844],[6893,23844],[6894,23844],[6895,23844],[6896,23844],[6897,23844],[6898,23844],[6899,23844],[6900,23844],[6901,23844],[6902,23844],[6903,23844],[6904,23844],[6905,23844],[6906,23844],[6907,23844],[6908,23844],[6909,23844],[6910,23844],[6911,23844],[6912,23844],[6913,23844],[6914,23844],[6915,23844],[6916,23844],[6917,23844],[6918,23844],[6919,23844],[6920,23844],[6921,23844],[6922,23844],[6923,23844],[6924,23844],[6925,23844],[6926,23844],[6927,23844],[6928,23844],[6929,23844],[6930,23844],[6931,23844],[6932,23844],[6933,23844],[6934,23844],[6935,23844],[6936,23844],[6937,23844],[6938,23844],[6939,23844],[6940,23844],[6941,23844],[6942,23844],[6943,23844],[6944,23844],[6945,23844],[6946,23844],[6947,23844],[6948,23844],[6949,23844],[6950,23844],[6951,23844],[6952,23844],[6953,23844],[6954,23844],[6955,23844],[6956,23844],[6957,23844],[6958,23844],[6959,23844],[6960,23844],[6961,23844],[6962,23844],[6963,23844],[6964,23844],[6965,23844],[6966,23844],[6967,23844],[6968,23844],[6969,23844],[6970,23844],[6971,23844],[6972,23844],[6973,23844],[6974,23844],[6975,23844],[6976,23844],[6977,23844],[6978,23844],[6979,23844],[6980,23844],[6981,23844],[6982,23844],[6983,23844],[6984,23844],[6985,23844],[6986,23844],[6987,23844],[6988,23844],[6989,23844],[6990,23844],[6991,23844],[6992,23844],[6993,23844],[6994,23844],[6995,23844],[6996,23844],[6997,23844],[6998,23844],[6999,23844],[7000,23844],[7001,23844],[7002,23844],[7003,23844],[7004,23844],[7005,23844],[7006,23844],[7007,23844],[7008,23844],[7009,23844],[7010,23844],[7011,23844],[7012,23844],[7013,23844],[7014,23844],[7015,23844],[7016,23844],[7017,23844],[7018,23844],[7019,23844],[7020,23844],[7021,23844],[7022,23844],[7023,23844],[7024,23844],[7025,23844],[7026,23844],[7027,23844],[7028,23844],[7029,23844],[7030,23844],[7031,23844],[7032,23844],[7033,23844],[7034,23844],[7035,23844],[7036,23844],[7037,23844],[7038,23844],[7039,23844],[7040,23844],[7041,23844],[7042,23844],[7043,23844],[7044,23844],[7045,23844],[7046,23844],[7047,23844],[7048,23844],[7049,23844],[7050,23844],[7051,23844],[7052,23844],[7053,23844],[7054,23844],[7055,23846],[7056,23857],[7057,23846],[7058,23846],[7059,23846],[7060,23846],[7061,23846],[7062,23846],[7063,23846],[7064,23857],[7065,23846],[7066,23857],[7067,23857],[7068,23846],[7069,23846],[7070,23857],[7071,23857],[7072,23846],[7073,23846],[7074,23857],[7075,23846],[7076,23857],[7077,23846],[7078,23857],[7079,23846],[7080,23857],[7081,23846],[7082,23846],[7083,23846],[7084,23846],[7085,23846],[7086,23846],[7087,23846],[7088,23846],[7089,23846],[7090,23857],[7091,23846],[7092,23846],[7093,23857],[7094,23846],[7095,23857],[7096,23846],[7097,23857],[7098,23846],[7099,23857],[7100,23846],[7101,23857],[7102,23846],[7103,23857],[7104,23846],[7105,23857],[7106,23857],[7107,23846],[7108,23857],[7109,23846],[7110,23857],[7111,23846],[7112,23857],[7113,23846],[7114,23857],[7115,23846],[7116,23857],[7117,23846],[7118,24109],[7119,23846],[7120,23857],[7121,23846],[7122,23857],[7123,23846],[7124,23846],[7125,23846],[7126,23846],[7127,23846],[7128,23846],[7129,23846],[7130,23846],[7131,23846],[7132,23846],[7133,23857],[7134,23846],[7135,23857],[7136,23846],[7137,23857],[7138,23857],[7139,23857],[7140,23857],[7141,23846],[7142,23846],[7143,23857],[7144,23857],[7145,23857],[7146,23846],[7147,23846],[7148,23846],[7149,24110],[7150,23857],[7151,23846],[7152,23857],[7153,23857],[7154,23846],[7155,23846],[7156,23846],[7157,23857],[7158,23846],[7159,23846],[7160,23846],[7161,23846],[7162,23846],[7163,23846],[7164,23846],[7165,23846],[7166,23846],[7167,23846],[7168,23857],[7169,23846],[7170,23846],[7171,23857],[7172,23846],[7173,24109],[7174,23857],[7175,23846],[7176,23857],[7177,23846],[7178,23857],[7179,23846],[7180,23857],[7181,23846],[7182,23857],[7183,23846],[7184,23857],[7185,23846],[7186,23857],[7187,23846],[7188,23857],[7189,23846],[7190,23857],[7191,23846],[7192,23857],[7193,23846],[7194,23846],[7195,24109],[7196,24109],[7197,23846],[7198,23846],[7199,23846],[7200,23846],[7201,23846],[7202,23857],[7203,23846],[7204,23857],[7205,23846],[7206,23846],[7207,24110],[7208,23846],[7209,23857],[7210,23846],[7211,23846],[7212,24109],[7213,23846],[7214,23846],[7215,23857],[7216,23857],[7217,23857],[7218,23857],[7219,23846],[7220,23846],[7221,23857],[7222,23857],[7223,23846],[7224,23846],[7225,23846],[7226,23846],[7227,23846],[7228,23846],[7229,23846],[7230,23857],[7231,23846],[7232,23857],[7233,23846],[7234,23857],[7235,23846],[7236,23846],[7237,23846],[7238,23846],[7239,23857],[7240,23846],[7241,23857],[7242,23846],[7243,23857],[7244,23846],[7245,23857],[7246,23846],[7247,23857],[7248,23846],[7249,23857],[7250,23846],[7251,23857],[7252,23846],[7253,23946],[7254,23946],[7255,23946],[7256,23946],[7257,23946],[7258,23946],[7259,23946],[7260,23946],[7261,23946],[7262,23946],[7263,23946],[7264,23946],[7265,23946],[7266,23946],[7267,23946],[7268,23946],[7269,23946],[7270,23946],[7271,23946],[7272,23946],[7273,23946],[7274,23946],[7275,23946],[7276,23946],[7277,23946],[7278,23946],[7279,23946],[7280,23946],[7281,23946],[7282,23946],[7283,23946],[7284,23946],[7285,23946],[7286,23946],[7287,23946],[7288,23946],[7289,23946],[7290,23946],[7291,23946],[7292,23946],[7293,23946],[7294,23946],[7295,23946],[7296,23946],[7297,23946],[7298,23946],[7299,23946],[7300,23946],[7301,23946],[7302,23946],[7303,23946],[7304,23946],[7305,23946],[7306,23946],[7307,23946],[7308,23946],[7309,23946],[7310,23946],[7311,23946],[7312,23946],[7313,23946],[7314,23946],[7315,23946],[7316,23946],[7317,23946],[7318,23946],[7319,23946],[7320,23946],[7321,23946],[7322,23946],[7323,23946],[7324,23946],[7325,23946],[7326,23946],[7327,23946],[7328,23946],[7329,23946],[7330,23946],[7331,23946],[7332,23946],[7333,23946],[7334,23946],[7335,23946],[7336,23946],[7337,23946],[7338,23946],[7339,23946],[7340,23946],[7341,23946],[7342,23946],[7343,23946],[7344,23946],[7353,23949],[7354,23868],[7355,23952],[7356,23821],[7357,23821],[7358,23821],[7359,23821],[7360,23867],[7361,23947],[7362,23958],[7363,23962],[7364,23874],[7365,23821],[7366,23875],[7367,23877],[7368,23869],[7369,23881],[7370,23869],[7371,23961],[7372,23821],[7373,23821],[7374,23962],[7375,23821],[7376,23821],[7377,23821],[7378,23963],[7379,23821],[7380,23821],[7381,23821],[7382,23960],[7383,23821],[7384,23821],[7385,23955],[7386,23821],[7387,23821],[7388,23821],[7389,23878],[7390,23870],[7391,23956],[7392,23950],[7394,23875],[7395,23871],[7396,23869],[7397,24097],[7398,23966],[7399,23948],[7400,23879],[7401,23876],[7403,23967],[7404,23877],[7405,23821],[7406,23821],[7407,23973],[7408,23957],[7409,23962],[7410,23872],[7411,24111],[7412,23873],[7413,23865],[7414,23821],[7415,23951],[7416,23881],[7417,23821],[7418,23821],[7419,23821],[7420,23959],[7421,23961],[7422,23947],[7423,23955],[7424,23956],[7425,23948],[7426,23957],[7427,23951],[7428,23868],[7429,23867],[7430,23958],[7431,23874],[7432,23878],[7433,23870],[7434,23950],[7435,23875],[7436,23869],[7437,23879],[7438,23876],[7439,23877],[7440,23873],[7441,23865],[7442,23881],[7443,23959],[7444,23961],[7445,23966],[7446,23960],[7447,23967],[7448,23872],[7449,23871],[7450,23949],[7451,23973],[7452,23963],[7453,23952],[7454,23874],[7455,23874],[7456,23874],[7457,23874],[7458,23947],[7459,23874],[7460,23865],[7461,23948],[7462,23874],[7463,23876],[7464,23876],[7465,23876],[7466,23876],[7467,23876],[7468,23876],[7469,23949],[7470,23950],[7471,23947],[7472,23955],[7473,23956],[7474,23948],[7475,23957],[7476,23951],[7477,23868],[7478,23867],[7479,23958],[7480,23874],[7481,23878],[7482,23870],[7483,23950],[7484,23875],[7485,23869],[7486,23879],[7487,23876],[7488,23877],[7489,23873],[7490,23865],[7491,23881],[7492,23959],[7493,23961],[7494,23966],[7495,23960],[7496,23967],[7497,23872],[7498,23871],[7499,23949],[7500,23973],[7501,23963],[7502,23952],[7503,23947],[7504,23955],[7505,23956],[7506,23948],[7507,23957],[7508,23951],[7509,23868],[7510,23867],[7511,23958],[7512,23874],[7513,23878],[7514,23870],[7515,23950],[7516,23875],[7517,23869],[7518,23879],[7519,23876],[7520,23877],[7521,23873],[7522,23865],[7523,23881],[7524,23959],[7525,23961],[7526,23966],[7527,23960],[7528,23967],[7529,23872],[7530,23871],[7531,23949],[7532,23973],[7533,23963],[7534,23952],[7535,23947],[7536,23955],[7537,23956],[7538,23948],[7539,23957],[7540,23951],[7541,23868],[7542,23867],[7543,23958],[7544,23874],[7545,23878],[7546,23870],[7547,23950],[7548,23875],[7549,23869],[7550,23879],[7551,23876],[7552,23877],[7553,23873],[7554,23865],[7555,23881],[7556,23959],[7557,23961],[7558,23966],[7559,23960],[7560,23967],[7561,23872],[7562,23871],[7563,23949],[7564,23973],[7565,23963],[7566,23952],[7567,23947],[7568,23955],[7569,23956],[7570,23948],[7571,23957],[7572,23951],[7573,23868],[7574,23867],[7575,23958],[7576,23874],[7577,23878],[7578,23870],[7579,23950],[7580,23875],[7581,23869],[7582,23879],[7583,23876],[7584,23877],[7585,23873],[7586,23865],[7587,23881],[7588,23959],[7589,23961],[7590,23966],[7591,23960],[7592,23967],[7593,23872],[7594,23871],[7595,23949],[7596,23973],[7597,23963],[7598,23952],[7599,23951],[7600,23947],[7601,23955],[7602,23956],[7603,23948],[7604,23957],[7605,23951],[7606,23868],[7607,23867],[7608,23958],[7609,23874],[7610,23878],[7611,23870],[7612,23950],[7613,23875],[7614,23869],[7615,23879],[7616,23876],[7617,23877],[7618,23873],[7619,23865],[7620,23881],[7621,23959],[7622,23961],[7623,23966],[7624,23960],[7625,23967],[7626,23872],[7627,23871],[7628,23949],[7629,23973],[7630,23963],[7631,23952],[7632,23947],[7633,23955],[7634,23956],[7635,23948],[7636,23957],[7637,23951],[7638,23868],[7639,23867],[7640,23958],[7641,23874],[7642,23878],[7643,23870],[7644,23950],[7645,23875],[7646,23869],[7647,23879],[7648,23876],[7649,23877],[7650,23873],[7651,23865],[7652,23881],[7653,23959],[7654,23961],[7655,23966],[7656,23960],[7657,23967],[7658,23872],[7659,23871],[7660,23949],[7661,23973],[7662,23963],[7663,23952],[7664,24112],[7665,24112],[7666,24112],[7667,24113],[7668,24112],[7669,23947],[7670,23955],[7671,23956],[7672,23948],[7673,23957],[7674,23951],[7675,23868],[7676,23867],[7677,23958],[7678,23874],[7679,23878],[7680,23870],[7681,23950],[7682,23875],[7683,23869],[7684,23879],[7685,23876],[7686,23877],[7687,23873],[7688,23865],[7689,23881],[7690,23959],[7691,23961],[7692,23966],[7693,23960],[7694,23967],[7695,23872],[7696,23871],[7697,23949],[7698,23973],[7699,23963],[7700,23952],[7701,24113],[7702,24112],[7703,23949],[7704,23871],[7705,24112],[7706,23874],[7707,24112],[7708,23874],[7709,24112],[7710,23874],[7711,24113],[7712,24112],[7713,23947],[7714,23955],[7715,23956],[7716,23948],[7717,23957],[7718,23951],[7719,23868],[7720,23958],[7721,23874],[7722,23878],[7723,23950],[7724,23876],[7725,23959],[7726,23960],[7727,23868],[7728,23867],[7729,23874],[7730,23878],[7731,23870],[7732,23875],[7733,23869],[7734,23879],[7735,23876],[7736,23877],[7737,23873],[7738,23865],[7739,23881],[7740,23959],[7741,23961],[7742,23872],[7743,23871],[7744,23947],[7745,23948],[7746,23868],[7747,23874],[7748,23949],[7749,23949],[7750,23949],[7751,24112],[7752,24113],[7753,24113],[7754,24112],[7755,24114],[7756,23947],[7757,23955],[7758,23956],[7759,23948],[7760,23957],[7761,23951],[7762,23868],[7763,23867],[7764,23958],[7765,23874],[7766,23878],[7767,23870],[7768,23950],[7769,23875],[7770,23869],[7771,23879],[7772,23876],[7773,23877],[7774,23873],[7775,23865],[7776,23881],[7777,23959],[7778,23961],[7779,23966],[7780,23960],[7781,23967],[7782,23872],[7783,23871],[7784,23949],[7785,23973],[7786,23963],[7787,23952],[7788,24113],[7789,24112],[7790,23872],[7791,23963],[7792,23947],[7793,23948],[7794,23957],[7795,23877],[7796,23961],[7797,23947],[7798,23955],[7799,23956],[7800,23948],[7801,23957],[7802,23951],[7803,23868],[7804,23867],[7805,23958],[7806,23874],[7807,23878],[7808,23870],[7809,23950],[7810,23875],[7811,23869],[7812,23879],[7813,23876],[7814,23877],[7815,23873],[7816,23865],[7817,23881],[7818,23959],[7819,23961],[7820,23966],[7821,23960],[7822,23967],[7823,23872],[7824,23871],[7825,23949],[7826,23973],[7827,23963],[7828,23952],[7829,23947],[7830,23955],[7831,23956],[7832,23948],[7833,23957],[7834,23951],[7835,23868],[7836,23867],[7837,23958],[7838,23874],[7839,23878],[7840,23870],[7841,23950],[7842,23875],[7843,23869],[7844,23879],[7845,23876],[7846,23877],[7847,23873],[7848,23865],[7849,23881],[7850,23959],[7851,23961],[7852,23966],[7853,23960],[7854,23967],[7855,23872],[7856,23871],[7857,23949],[7858,23973],[7859,23963],[7860,23952],[7861,23947],[7862,23955],[7863,23956],[7864,23948],[7865,23957],[7866,23951],[7867,23868],[7868,23874],[7869,23878],[7870,23950],[7871,23876],[7872,23865],[7873,23959],[7874,23960],[7875,23876],[7876,23947],[7877,23955],[7878,23956],[7879,23948],[7880,23957],[7881,23951],[7882,23868],[7883,23867],[7884,23958],[7885,23874],[7886,23878],[7887,23870],[7888,23950],[7889,23875],[7890,23869],[7891,23879],[7892,23876],[7893,23877],[7894,23873],[7895,23865],[7896,23881],[7897,23959],[7898,23961],[7899,23966],[7900,23960],[7901,23967],[7902,23872],[7903,23871],[7904,23949],[7905,23973],[7906,23963],[7907,23952],[7908,23947],[7909,23955],[7910,23956],[7911,23948],[7912,23957],[7913,23951],[7914,23868],[7915,23867],[7916,23958],[7917,23874],[7918,23878],[7919,23870],[7920,23950],[7921,23875],[7922,23869],[7923,23879],[7924,23876],[7925,23877],[7926,23873],[7927,23865],[7928,23865],[7929,23881],[7930,23959],[7931,23961],[7932,23966],[7933,23960],[7934,23967],[7935,23872],[7936,23871],[7937,23973],[7938,23963],[7939,23952],[7940,23947],[7941,23955],[7942,23956],[7943,23948],[7944,23957],[7945,23951],[7946,23868],[7947,23867],[7948,23958],[7949,23874],[7950,23878],[7951,23870],[7952,23950],[7953,23875],[7954,23869],[7955,23879],[7956,23876],[7957,23877],[7958,23873],[7959,23865],[7960,23881],[7961,23959],[7962,23961],[7963,23966],[7964,23960],[7965,23967],[7966,23872],[7967,23871],[7968,23949],[7969,23973],[7970,23963],[7971,23952],[7972,23947],[7973,23948],[7974,23957],[7975,23963],[7976,23949],[7977,23973],[7978,23963],[7979,23952],[7980,24112],[7981,24112],[7982,23867],[7983,23958],[7984,23870],[7985,23869],[7986,23873],[7987,23865],[7988,23881],[7989,23947],[7990,23955],[7991,23956],[7992,23948],[7993,23957],[7994,23951],[7995,23868],[7996,23867],[7997,23958],[7998,23874],[7999,23878],[8000,23870],[8001,23950],[8002,23875],[8003,23869],[8004,23879],[8005,23876],[8006,23877],[8007,23873],[8008,23865],[8009,23881],[8010,23959],[8011,23961],[8012,23966],[8013,23960],[8014,23967],[8015,23872],[8016,23871],[8017,23949],[8018,23973],[8019,23963],[8020,23952],[8021,23947],[8022,23955],[8023,23956],[8024,23948],[8025,23957],[8026,23951],[8027,23868],[8028,23867],[8029,23958],[8030,23874],[8031,23878],[8032,23870],[8033,23950],[8034,23875],[8035,23869],[8036,23879],[8037,23876],[8038,23877],[8039,23873],[8040,23865],[8041,23881],[8042,23959],[8043,23961],[8044,23966],[8045,23960],[8046,23967],[8047,23872],[8048,23871],[8049,23949],[8050,23973],[8051,23963],[8052,23952],[8053,23947],[8054,23948],[8055,23872],[8056,23947],[8057,23955],[8058,23956],[8059,23948],[8060,23957],[8061,23951],[8062,23868],[8063,23867],[8064,23958],[8065,23874],[8066,23878],[8067,23870],[8068,23950],[8069,23875],[8070,23869],[8071,23879],[8072,23876],[8073,23877],[8074,23873],[8075,23865],[8076,23881],[8077,23959],[8078,23961],[8079,23966],[8080,23960],[8081,23967],[8082,23872],[8083,23871],[8084,23949],[8085,23973],[8086,23963],[8087,23952],[8088,23947],[8089,23948],[8090,23957],[8091,23959],[8092,23875],[8093,23870],[8094,23947],[8095,23956],[8096,23948],[8097,23957],[8098,23868],[8099,23874],[8100,23878],[8101,23876],[8102,23877],[8103,23873],[8104,23961],[8105,23967],[8106,23872],[8107,23973],[8108,23963],[8109,23952],[8110,23873],[8111,23873],[8112,23879],[8113,23876],[8114,24112],[8115,24112],[8116,24112],[8117,24112],[8118,23867],[8119,23958],[8120,23865],[8121,23874],[8122,23876],[8123,23865],[8124,24113],[8125,24112],[8126,23947],[8127,23955],[8128,23956],[8129,23948],[8130,23957],[8131,23951],[8132,23868],[8133,23867],[8134,23958],[8135,23874],[8136,23878],[8137,23870],[8138,23950],[8139,23875],[8140,23869],[8141,23879],[8142,23876],[8143,23877],[8144,23873],[8145,23865],[8146,23881],[8147,23959],[8148,23961],[8149,23966],[8150,23960],[8151,23967],[8152,23872],[8153,23871],[8154,23949],[8155,23973],[8156,23963],[8157,23952],[8158,23958],[8159,23958],[8160,23955],[8161,23947],[8162,23955],[8163,23956],[8164,23948],[8165,23957],[8166,23951],[8167,23868],[8168,23867],[8169,23958],[8170,23874],[8171,23878],[8172,23870],[8173,23950],[8174,23875],[8175,23869],[8176,23879],[8177,23876],[8178,23877],[8179,23873],[8180,23865],[8181,23881],[8182,23959],[8183,23961],[8184,23966],[8185,23960],[8186,23967],[8187,23872],[8188,23871],[8189,23949],[8190,23973],[8191,23963],[8192,23952],[8193,23947],[8194,23955],[8195,23956],[8196,23948],[8197,23957],[8198,23951],[8199,23868],[8200,23867],[8201,23958],[8202,23874],[8203,23878],[8204,23870],[8205,23950],[8206,23875],[8207,23869],[8208,23879],[8209,23876],[8210,23877],[8211,23873],[8212,23865],[8213,23881],[8214,23959],[8215,23961],[8216,23966],[8217,23960],[8218,23967],[8219,23872],[8220,23871],[8221,23949],[8222,23973],[8223,23963],[8224,23952],[8225,23947],[8226,23955],[8227,23956],[8228,23948],[8229,23957],[8230,23951],[8231,23868],[8232,23867],[8233,23958],[8234,23874],[8235,23878],[8236,23870],[8237,23950],[8238,23875],[8239,23869],[8240,23879],[8241,23876],[8242,23877],[8243,23873],[8244,23865],[8245,23881],[8246,23959],[8247,23961],[8248,23966],[8249,23960],[8250,23967],[8251,23872],[8252,23871],[8253,23949],[8254,23973],[8255,23963],[8256,23952],[8257,23875],[8258,23869],[8259,23879],[8260,23967],[8261,23872],[8262,23949],[8263,23973],[8264,23963],[8265,23952],[8266,23947],[8267,23955],[8268,23956],[8269,23948],[8270,23957],[8271,23951],[8272,23868],[8273,23867],[8274,23958],[8275,23874],[8276,23878],[8277,23870],[8278,23950],[8279,23875],[8280,23869],[8281,23879],[8282,23876],[8283,23877],[8284,23873],[8285,23865],[8286,23881],[8287,23959],[8288,23961],[8289,23966],[8290,23960],[8291,23967],[8292,23872],[8293,23871],[8294,23949],[8295,23973],[8296,23963],[8297,23952],[8298,23947],[8299,23955],[8300,23956],[8301,23948],[8302,23957],[8303,23951],[8304,23868],[8305,23867],[8306,23958],[8307,23874],[8308,23878],[8309,23870],[8310,23950],[8311,23875],[8312,23869],[8313,23879],[8314,23876],[8315,23877],[8316,23873],[8317,23865],[8318,23881],[8319,23959],[8320,23961],[8321,23966],[8322,23960],[8323,23967],[8324,23872],[8325,23871],[8326,23949],[8327,23973],[8328,23963],[8329,23952],[8330,23947],[8331,23955],[8332,23956],[8333,23948],[8334,23957],[8335,23951],[8336,23868],[8337,23867],[8338,23958],[8339,23874],[8340,23878],[8341,23870],[8342,23950],[8343,23875],[8344,23869],[8345,23879],[8346,23876],[8347,23877],[8348,23873],[8349,23865],[8350,23881],[8351,23959],[8352,23961],[8353,23966],[8354,23960],[8355,23967],[8356,23872],[8357,23871],[8358,23949],[8359,23973],[8360,23963],[8361,23952],[8362,23947],[8363,23955],[8364,23956],[8365,23948],[8366,23957],[8367,23951],[8368,23868],[8369,23867],[8370,23958],[8371,23874],[8372,23878],[8373,23870],[8374,23950],[8375,23875],[8376,23869],[8377,23879],[8378,23876],[8379,23877],[8380,23873],[8381,23865],[8382,23881],[8383,23959],[8384,23961],[8385,23966],[8386,23960],[8387,23967],[8388,23872],[8389,23871],[8390,23949],[8391,23973],[8392,23963],[8393,23952],[8394,23949],[8395,23947],[8396,23955],[8397,23956],[8398,23948],[8399,23957],[8400,23951],[8401,23868],[8402,23867],[8403,23958],[8404,23874],[8405,23878],[8406,23870],[8407,23950],[8408,23875],[8409,23869],[8410,23879],[8411,23876],[8412,23877],[8413,23873],[8414,23865],[8415,23881],[8416,23959],[8417,23961],[8418,23966],[8419,23960],[8420,23967],[8421,23872],[8422,23871],[8423,23949],[8424,23973],[8425,23963],[8426,23952],[8427,23950],[8428,23873],[8429,24113],[8430,24112],[8431,24113],[8432,23881],[8433,23947],[8434,23955],[8435,23956],[8436,23948],[8437,23957],[8438,23951],[8439,23868],[8440,23867],[8441,23958],[8442,23874],[8443,23878],[8444,23870],[8445,23950],[8446,23875],[8447,23869],[8448,23879],[8449,23876],[8450,23877],[8451,23873],[8452,23865],[8453,23865],[8454,23881],[8455,23959],[8456,23961],[8457,23966],[8458,23960],[8459,23967],[8460,23872],[8461,23871],[8462,23973],[8463,23963],[8464,23952],[8465,24114],[8466,23875],[8467,23958],[8468,23873],[8469,23865],[8470,24113],[8472,23874],[8473,23873],[8474,23947],[8475,23874],[8476,23958],[8477,23870],[8478,23958],[8479,23870],[8480,23873],[8481,24112],[8482,23947],[8483,23955],[8484,23956],[8485,23948],[8486,23957],[8487,23951],[8488,23868],[8489,23867],[8490,23958],[8491,23874],[8492,23878],[8493,23870],[8494,23950],[8495,23869],[8496,23876],[8497,23877],[8498,23873],[8499,23865],[8500,23881],[8501,23959],[8502,23961],[8503,23966],[8504,23960],[8505,23967],[8506,23952],[8507,23947],[8508,23955],[8509,23956],[8510,23948],[8511,23957],[8512,23951],[8513,23868],[8514,23867],[8515,23958],[8516,23874],[8517,23878],[8518,23870],[8519,23950],[8520,23875],[8521,23869],[8522,23876],[8523,23877],[8524,23873],[8525,23865],[8526,23881],[8527,23959],[8528,23961],[8529,23966],[8530,23960],[8531,23967],[8532,23872],[8533,23871],[8534,23973],[8535,23963],[8536,23952],[8537,23947],[8538,23948],[8539,23957],[8540,23873],[8541,23878],[8542,23958],[8543,23870],[8544,23955],[8545,23878],[8546,23955],[8547,23955],[8548,23950],[8549,23958],[8550,23865],[8551,23865],[8552,23955],[8553,23955],[8554,23955],[8555,23958],[8556,23870],[8557,23958],[8558,23865],[8559,23865],[8560,23955],[8561,23868],[8562,23868],[8563,23868],[8564,23955],[8565,23877],[8566,23961],[8567,23878],[8568,23950],[8569,23955],[8570,23955],[8571,23955],[8572,23876],[8573,23950],[8574,23865],[8575,23865],[8576,23867],[8577,23881],[8578,23867],[8579,23881],[8580,23872],[8581,23963],[8582,24112],[8583,23947],[8584,23955],[8585,23956],[8586,23948],[8587,23957],[8588,23951],[8589,23868],[8590,23867],[8591,23874],[8592,23878],[8593,23950],[8594,23876],[8595,23873],[8596,23865],[8597,23962],[8598,23966],[8599,23960],[8600,24113],[8601,23947],[8602,23955],[8603,23956],[8604,23948],[8605,23957],[8606,23951],[8607,23868],[8608,23958],[8609,23874],[8610,23878],[8611,23870],[8612,23950],[8613,23876],[8614,23959],[8615,23966],[8616,23960],[8617,23947],[8618,23948],[8619,23868],[8620,23958],[8621,23874],[8622,23870],[8623,23873],[8624,23865],[8625,23959],[8626,24113],[8627,24112],[8628,24113],[8629,24112],[8630,24112],[8631,23870],[8632,23873],[8633,24113],[8634,24112],[8635,23956],[8636,24113],[8637,24112],[8638,23949],[8639,23947],[8640,23948],[8641,23957],[8642,23947],[8643,23948],[8644,23957],[8645,24113],[8646,24112],[8647,24113],[8648,24112],[8649,23949],[8650,23949],[8651,24114],[8652,24112],[8653,24113],[8654,24112],[8655,24112],[8656,23872],[8657,23963],[8658,24112],[8659,24113],[8660,24113],[8661,23963],[8662,24113],[8663,24112],[8664,23865],[8665,24113],[8666,24112],[8667,23877],[8668,23961],[8669,23947],[8670,23955],[8671,23956],[8672,23948],[8673,23957],[8674,23951],[8675,23868],[8676,23867],[8677,23867],[8678,23958],[8679,23958],[8680,23874],[8681,23878],[8682,23870],[8683,23950],[8684,23875],[8685,23869],[8686,23869],[8687,23879],[8688,23876],[8689,23877],[8690,23873],[8691,23873],[8692,23865],[8693,23865],[8694,23881],[8695,23881],[8696,23959],[8697,23961],[8698,23966],[8699,23960],[8700,23967],[8701,23872],[8702,23871],[8703,23973],[8704,23963],[8705,23952],[8706,23950],[8707,23959],[8708,23962],[8709,23960],[8710,24113],[8711,24112],[8712,23959],[8713,23947],[8714,23948],[8715,23867],[8716,23878],[8717,23869],[8718,23876],[8719,23881],[8720,24112],[8721,24112],[8722,24113],[8723,23955],[8724,23956],[8725,23951],[8726,23868],[8727,23867],[8728,23958],[8729,23874],[8730,23878],[8731,23870],[8732,23950],[8733,23869],[8734,23876],[8735,23877],[8736,23873],[8737,23865],[8738,23881],[8739,23959],[8740,23961],[8741,23966],[8742,23960],[8743,23967],[8744,23871],[8745,23952],[8746,23877],[8747,23961],[8748,23868],[8749,23867],[8750,23874],[8751,23878],[8752,23870],[8753,23875],[8754,23869],[8755,23879],[8756,23876],[8757,23877],[8758,23873],[8759,23865],[8760,23881],[8761,23959],[8762,23961],[8763,23872],[8764,23871],[8765,24113],[8766,24112],[8767,23955],[8768,23956],[8769,23951],[8770,23868],[8771,23867],[8772,23958],[8773,23874],[8774,23878],[8775,23870],[8776,23950],[8777,23869],[8778,23876],[8779,23877],[8780,23873],[8781,23865],[8782,23881],[8783,23959],[8784,23961],[8785,23966],[8786,23960],[8787,23967],[8788,23871],[8789,23952],[8790,24113],[8791,24112],[8792,24113],[8793,23881],[8794,23951],[8795,24113],[8796,24112],[8797,24113],[8798,24112],[8799,23867],[8800,23870],[8801,23869],[8802,23881],[8803,23867],[8804,23870],[8805,23869],[8806,23881],[8807,23867],[8808,23870],[8809,23869],[8810,23881],[8811,23867],[8812,23869],[8813,23881],[8814,24098],[8815,24112],[8816,23949],[8817,24113],[8818,24112],[8819,24113],[8820,24112],[8821,23871],[8822,23947],[8823,23955],[8824,23956],[8825,23948],[8826,23957],[8827,23951],[8828,23868],[8829,23867],[8830,23958],[8831,23874],[8832,23878],[8833,23870],[8834,23950],[8835,23875],[8836,23869],[8837,23879],[8838,23876],[8839,23877],[8840,23873],[8841,23865],[8842,23881],[8843,23959],[8844,23961],[8845,23966],[8846,23960],[8847,23967],[8848,23872],[8849,23871],[8850,23949],[8851,23973],[8852,23963],[8853,23952],[8854,23947],[8855,23955],[8856,23956],[8857,23948],[8858,23957],[8859,23951],[8860,23868],[8861,23867],[8862,23958],[8863,23874],[8864,23878],[8865,23870],[8866,23950],[8867,23875],[8868,23869],[8869,23879],[8870,23876],[8871,23877],[8872,23873],[8873,23865],[8874,23881],[8875,23959],[8876,23961],[8877,23966],[8878,23960],[8879,23967],[8880,23872],[8881,23871],[8882,23949],[8883,23973],[8884,23963],[8885,23952],[8886,23947],[8887,23955],[8888,23956],[8889,23948],[8890,23957],[8891,23951],[8892,23868],[8893,23867],[8894,23958],[8895,23874],[8896,23878],[8897,23870],[8898,23950],[8899,23875],[8900,23869],[8901,23879],[8902,23876],[8903,23877],[8904,23873],[8905,23865],[8906,23881],[8907,23959],[8908,23961],[8909,23966],[8910,23960],[8911,23967],[8912,23872],[8913,23871],[8914,23949],[8915,23973],[8916,23963],[8917,23952],[8918,23947],[8919,23955],[8920,23956],[8921,23948],[8922,23957],[8923,23951],[8924,23868],[8925,23867],[8926,23958],[8927,23874],[8928,23878],[8929,23870],[8930,23950],[8931,23875],[8932,23869],[8933,23879],[8934,23876],[8935,23877],[8936,23873],[8937,23865],[8938,23881],[8939,23959],[8940,23961],[8941,23966],[8942,23960],[8943,23967],[8944,23872],[8945,23871],[8946,23949],[8947,23973],[8948,23963],[8949,23952],[8950,23947],[8951,23955],[8952,23956],[8953,23948],[8954,23957],[8955,23951],[8956,23868],[8957,23867],[8958,23958],[8959,23874],[8960,23878],[8961,23870],[8962,23950],[8963,23875],[8964,23869],[8965,23879],[8966,23876],[8967,23877],[8968,23873],[8969,23865],[8970,23881],[8971,23959],[8972,23961],[8973,23966],[8974,23960],[8975,23967],[8976,23872],[8977,23871],[8978,23949],[8979,23973],[8980,23963],[8981,23952],[8982,23947],[8983,23955],[8984,23956],[8985,23948],[8986,23957],[8987,23951],[8988,23868],[8989,23867],[8990,23958],[8991,23874],[8992,23878],[8993,23870],[8994,23950],[8995,23875],[8996,23869],[8997,23879],[8998,23876],[8999,23877],[9000,23873],[9001,23865],[9002,23881],[9003,23959],[9004,23961],[9005,23966],[9006,23960],[9007,23967],[9008,23872],[9009,23871],[9010,23949],[9011,23973],[9012,23963],[9013,23952],[9014,23947],[9015,23955],[9016,23956],[9017,23948],[9018,23957],[9019,23951],[9020,23868],[9021,23867],[9022,23958],[9023,23874],[9024,23878],[9025,23870],[9026,23950],[9027,23875],[9028,23869],[9029,23879],[9030,23876],[9031,23877],[9032,23873],[9033,23865],[9034,23881],[9035,23959],[9036,23961],[9037,23966],[9038,23960],[9039,23967],[9040,23872],[9041,23871],[9042,23949],[9043,23973],[9044,23963],[9045,23952],[9046,23947],[9047,23955],[9048,23956],[9049,23948],[9050,23957],[9051,23951],[9052,23868],[9053,23867],[9054,23958],[9055,23874],[9056,23878],[9057,23870],[9058,23950],[9059,23875],[9060,23869],[9061,23879],[9062,23876],[9063,23877],[9064,23873],[9065,23865],[9066,23881],[9067,23959],[9068,23961],[9069,23966],[9070,23960],[9071,23967],[9072,23872],[9073,23871],[9074,23949],[9075,23973],[9076,23963],[9077,23952],[9078,23962],[9079,23947],[9080,23955],[9081,23956],[9082,23948],[9083,23957],[9084,23951],[9085,23868],[9086,23867],[9087,23958],[9088,23874],[9089,23878],[9090,23870],[9091,23950],[9092,23869],[9093,23876],[9094,23877],[9095,23873],[9096,23865],[9097,23881],[9098,23959],[9099,23961],[9100,23966],[9101,23960],[9102,23967],[9103,23952],[9104,24112],[9105,23875],[9106,23879],[9107,24112],[9108,24113],[9109,24112],[9110,24112],[9111,23962],[9112,23947],[9113,23955],[9114,23956],[9115,23948],[9116,23957],[9117,23951],[9118,23868],[9119,23867],[9120,23958],[9121,23874],[9122,23878],[9123,23870],[9124,23950],[9125,23875],[9126,23869],[9127,23879],[9128,23876],[9129,23877],[9130,23873],[9131,23865],[9132,23881],[9133,23959],[9134,23961],[9135,23966],[9136,23960],[9137,23967],[9138,23872],[9139,23871],[9140,23949],[9141,23973],[9142,23963],[9143,23952],[9144,23947],[9145,23956],[9146,23948],[9147,23957],[9148,23868],[9149,23867],[9150,23958],[9151,23874],[9152,23878],[9153,23870],[9154,23869],[9155,23876],[9156,23877],[9157,23873],[9158,23865],[9159,23881],[9160,23961],[9161,23967],[9162,23872],[9163,23973],[9164,23963],[9165,23952],[9166,23947],[9167,23948],[9168,23957],[9169,23947],[9170,23948],[9171,23957],[9172,23876],[9173,23973],[9174,23973],[9175,23948],[9176,23873],[9177,23956],[9178,23956],[9179,23868],[9180,23868],[9181,23868],[9182,23868],[9183,23868],[9184,23868],[9185,23868],[9186,23868],[9187,23868],[9188,23868],[9189,23868],[9190,23868],[9191,23868],[9192,23868],[9193,23868],[9194,23868],[9195,23868],[9196,23868],[9197,23868],[9198,23868],[9199,23868],[9200,23868],[9201,23868],[9202,23868],[9203,23868],[9204,23868],[9205,23868],[9206,23868],[9207,23868],[9208,23868],[9209,23868],[9210,23868],[9211,23868],[9212,23868],[9213,23868],[9214,23868],[9215,23868],[9216,23868],[9217,23868],[9218,23868],[9219,23868],[9220,23868],[9221,23868],[9222,23868],[9223,23868],[9224,23868],[9225,23868],[9226,23868],[9227,23868],[9228,23868],[9229,23868],[9230,23868],[9231,23868],[9232,23868],[9233,23868],[9234,23868],[9235,23868],[9236,23868],[9237,23868],[9238,23868],[9239,23868],[9240,23868],[9241,23868],[9242,23868],[9243,23868],[9244,23868],[9245,23868],[9246,23868],[9247,23868],[9248,23868],[9249,23868],[9250,23868],[9251,23868],[9252,23868],[9253,23868],[9254,23868],[9255,23868],[9256,23868],[9257,23868],[9258,23868],[9259,23868],[9260,23868],[9261,23868],[9262,23868],[9263,23868],[9264,23868],[9265,23868],[9266,23868],[9267,23868],[9268,23868],[9269,23868],[9270,23868],[9271,23868],[9272,23868],[9273,23868],[9274,23868],[9275,23868],[9276,23868],[9277,23868],[9278,23868],[9279,23868],[9280,23868],[9281,23868],[9282,23868],[9283,23868],[9284,23868],[9285,23868],[9286,23868],[9287,23868],[9288,23868],[9289,23949],[9290,23986],[9291,23986],[9292,23952],[9293,23952],[9294,23836],[9295,23985],[9296,23952],[9297,23952],[9298,23984],[9299,23987],[9300,23983],[9301,23902],[9302,23836],[9303,23836],[9304,23986],[9305,23986],[9306,23986],[9307,23984],[9308,23986],[9309,23836],[9310,23982],[9311,23954],[9312,23986],[9313,23986],[9314,23987],[9315,23986],[9316,23954],[9317,23986],[9318,23987],[9319,23988],[9320,23836],[9321,23836],[9322,23983],[9323,23984],[9324,23985],[9325,23982],[9326,23986],[9327,23986],[9328,23986],[9329,23986],[9330,23987],[9331,23988],[9332,23983],[9333,23984],[9334,23985],[9335,23982],[9336,23986],[9337,23986],[9338,23986],[9339,23986],[9340,23987],[9341,23988],[9342,23983],[9343,23984],[9344,23985],[9345,23982],[9346,23986],[9347,23986],[9348,23986],[9349,23986],[9350,23987],[9351,23988],[9352,23983],[9353,23984],[9354,23985],[9355,23982],[9356,23986],[9357,23986],[9358,23986],[9359,23986],[9360,23987],[9361,23988],[9362,23983],[9363,23984],[9364,23985],[9365,23982],[9366,23986],[9367,23986],[9368,23986],[9369,23986],[9370,23987],[9371,23988],[9372,23983],[9373,23984],[9374,23985],[9375,23982],[9376,23986],[9377,23986],[9378,23986],[9379,23986],[9380,23987],[9381,23988],[9382,23983],[9383,23984],[9384,23985],[9385,23982],[9386,23986],[9387,23986],[9388,23986],[9389,23986],[9390,23987],[9391,23988],[9392,23983],[9393,23984],[9394,23985],[9395,23982],[9396,23986],[9397,23986],[9398,23986],[9399,23986],[9400,23987],[9401,23988],[9402,23982],[9403,23983],[9404,23984],[9405,23985],[9406,23982],[9407,23986],[9408,23986],[9409,23986],[9410,23986],[9411,23987],[9412,23988],[9413,23983],[9414,23984],[9415,23985],[9416,23982],[9417,23986],[9418,23986],[9419,23986],[9420,23986],[9421,23987],[9422,23988],[9423,23983],[9424,23984],[9425,23985],[9426,23982],[9427,23986],[9428,23986],[9429,23986],[9430,23986],[9431,23987],[9432,23988],[9433,23983],[9434,23988],[9435,23983],[9436,23983],[9437,23984],[9438,23985],[9439,23982],[9440,23986],[9441,23986],[9442,23986],[9443,23986],[9444,23987],[9445,23988],[9446,23988],[9447,23985],[9448,23986],[9449,23986],[9450,23986],[9451,23986],[9452,23988],[9453,23983],[9454,23984],[9455,23985],[9456,23982],[9457,23986],[9458,23986],[9459,23986],[9460,23986],[9461,23987],[9462,23988],[9463,23983],[9464,23984],[9465,23985],[9466,23982],[9467,23986],[9468,23986],[9469,23986],[9470,23986],[9471,23987],[9472,23988],[9473,23983],[9474,23984],[9475,23985],[9476,23982],[9477,23986],[9478,23986],[9479,23986],[9480,23986],[9481,23987],[9482,23988],[9483,23954],[9484,23988],[9485,23983],[9486,23984],[9487,23985],[9488,23982],[9489,23986],[9490,23986],[9491,23986],[9492,23986],[9493,23987],[9494,23988],[9495,23983],[9496,23984],[9497,23987],[9498,23983],[9499,23983],[9500,23983],[9501,23953],[9502,23902],[9503,23983],[9504,23984],[9505,23985],[9506,23982],[9507,23986],[9508,23986],[9509,23986],[9510,23986],[9511,23987],[9512,23988],[9513,23988],[9514,23983],[9515,23984],[9516,23984],[9517,23985],[9518,23985],[9519,23985],[9520,23985],[9521,23982],[9522,23986],[9523,23986],[9524,23986],[9525,23986],[9526,23987],[9527,23987],[9528,23987],[9529,23988],[9530,23988],[9531,23988],[9532,23983],[9533,23984],[9534,23985],[9535,23982],[9536,23986],[9537,23986],[9538,23986],[9539,23986],[9540,23987],[9541,23988],[9542,23983],[9543,23984],[9544,23985],[9545,23982],[9546,23986],[9547,23986],[9548,23986],[9549,23986],[9550,23987],[9551,23988],[9552,24115],[9553,23902],[9554,23983],[9555,23988],[9556,23983],[9557,23984],[9558,23985],[9559,23982],[9560,23986],[9561,23986],[9562,23986],[9563,23986],[9564,23987],[9565,23988],[9566,23983],[9567,23984],[9568,23985],[9569,23982],[9570,23986],[9571,23986],[9572,23986],[9573,23986],[9574,23987],[9575,23988],[9576,23983],[9577,23984],[9578,23985],[9579,23982],[9580,23986],[9581,23986],[9582,23986],[9583,23986],[9584,23987],[9585,23988],[9586,23983],[9587,23984],[9588,23985],[9589,23982],[9590,23986],[9591,23986],[9592,23986],[9593,23986],[9594,23987],[9595,23988],[9596,23983],[9597,23984],[9598,23985],[9599,23982],[9600,23986],[9601,23986],[9602,23986],[9603,23986],[9604,23987],[9605,23988],[9606,23983],[9607,23984],[9608,23985],[9609,23982],[9610,23986],[9611,23986],[9612,23986],[9613,23986],[9614,23987],[9615,23988],[9616,23983],[9617,23984],[9618,23985],[9619,23982],[9620,23986],[9621,23986],[9622,23986],[9623,23986],[9624,23987],[9625,23988],[9626,23983],[9627,23984],[9628,23985],[9629,23982],[9630,23986],[9631,23986],[9632,23986],[9633,23986],[9634,23987],[9635,23988],[9636,23983],[9637,23984],[9638,23985],[9639,23982],[9640,23986],[9641,23986],[9642,23986],[9643,23986],[9644,23987],[9645,23988],[9646,23983],[9647,23984],[9648,23985],[9649,23982],[9650,23986],[9651,23986],[9652,23986],[9653,23986],[9654,23987],[9655,23988],[9656,23983],[9657,23982],[9658,23986],[9659,23986],[9660,23988],[9661,23986],[9662,23954],[9663,23982],[9664,23985],[9665,23986],[9666,23986],[9667,23986],[9668,23986],[9669,23988],[9670,23986],[9671,23902],[9672,23984],[9673,23983],[9674,23953],[9675,23988],[9676,23982],[9677,23982],[9678,23902],[9679,23982],[9680,23985],[9681,23986],[9682,23988],[9683,23988],[9684,23902],[9685,23953],[9686,23985],[9687,23986],[9688,23983],[9689,23984],[9690,23985],[9691,23982],[9692,23986],[9693,23986],[9694,23986],[9695,23986],[9696,23987],[9697,23988],[9698,23982],[9699,23983],[9700,23984],[9701,23985],[9702,23982],[9703,23986],[9704,23986],[9705,23986],[9706,23986],[9707,23987],[9708,23988],[9709,23983],[9710,23984],[9711,23985],[9712,23982],[9713,23986],[9714,23986],[9715,23986],[9716,23986],[9717,23987],[9718,23988],[9719,23983],[9720,23984],[9721,23985],[9722,23982],[9723,23986],[9724,23986],[9725,23986],[9726,23986],[9727,23987],[9728,23988],[9729,23983],[9730,23984],[9731,23985],[9732,23982],[9733,23986],[9734,23986],[9735,23986],[9736,23986],[9737,23987],[9738,23988],[9739,23983],[9740,23984],[9741,23985],[9742,23982],[9743,23986],[9744,23986],[9745,23986],[9746,23986],[9747,23987],[9748,23988],[9749,23983],[9750,23984],[9751,23985],[9752,23982],[9753,23986],[9754,23986],[9755,23986],[9756,23986],[9757,23987],[9758,23988],[9759,23983],[9760,23984],[9761,23985],[9762,23982],[9763,23986],[9764,23986],[9765,23986],[9766,23986],[9767,23987],[9768,23988],[9769,23983],[9770,23983],[9771,23984],[9772,23985],[9773,23982],[9774,23986],[9775,23986],[9776,23986],[9777,23986],[9778,23987],[9779,23988],[9780,23954],[9781,23988],[9782,23983],[9783,23984],[9784,23985],[9785,23982],[9786,23986],[9787,23986],[9788,23986],[9789,23986],[9790,23987],[9791,23988],[9792,23986],[9793,23986],[9794,23986],[9795,23986],[9796,23986],[9797,23985],[9798,23985],[9799,23987],[9800,23985],[9801,23985],[9802,23987],[9803,23987],[9804,23985],[9805,23985],[9806,23985],[9807,23985],[9808,23985],[9809,23985],[9810,23985],[9811,23985],[9812,23985],[9813,23985],[9814,23985],[9815,23985],[9816,23985],[9817,23985],[9818,23985],[9819,23985],[9820,23985],[9821,23985],[9822,23985],[9823,23985],[9824,23985],[9825,23985],[9826,23985],[9827,23985],[9828,23985],[9829,23985],[9830,23985],[9831,23985],[9832,23985],[9833,23985],[9834,23985],[9835,23985],[9836,23985],[9837,23985],[9838,23985],[9839,23985],[9840,23985],[9841,23985],[9842,23985],[9843,23985],[9844,23985],[9845,23985],[9846,23985],[9847,23985],[9848,23985],[9849,23985],[9850,23984],[9851,23984],[9852,23984],[9853,23984],[9854,23984],[9855,23984],[9856,23984],[9857,23984],[9858,23984],[9859,23984],[9860,23984],[9861,23984],[9862,23984],[9863,23984],[9864,23984],[9865,23984],[9866,23984],[9867,23984],[9868,23984],[9869,23984],[9870,23984],[9871,23984],[9872,23984],[9873,23984],[9874,23984],[9875,23984],[9876,23984],[9877,23984],[9878,23984],[9879,23984],[9880,23984],[9881,23984],[9882,23984],[9883,23984],[9884,23984],[9885,23984],[9886,23984],[9887,23984],[9888,23984],[9889,23984],[9890,23984],[9891,23984],[9892,23984],[9893,23984],[9894,23984],[9895,23984],[9896,23984],[9897,23984],[9898,23984],[9899,23984],[9900,23984],[9901,23984],[9902,23984],[9903,23984],[9904,23984],[9905,23984],[9906,23984],[9907,23984],[9908,23984],[9909,23984],[9910,23984],[9911,23984],[9912,23984],[9913,23984],[9914,23984],[9915,23984],[9916,23984],[9917,23984],[9918,23984],[9919,23984],[9920,23984],[9921,23984],[9922,23984],[9923,23984],[9924,23984],[9925,23984],[9926,23984],[9927,23984],[9928,23984],[9929,23984],[9930,23984],[9931,23984],[9932,23984],[9933,23984],[9934,23984],[9935,23984],[9936,23984],[9937,23984],[9938,23984],[9939,23984],[9940,23984],[9941,23984],[9942,23984],[9943,23984],[9944,23984],[9945,23993],[9946,23989],[9947,23982],[9948,23989],[9949,23993],[9950,23982],[9951,23989],[9952,23989],[9953,23989],[9954,23993],[9955,23989],[9956,23993],[9957,23989],[9958,23993],[9959,23989],[9960,23993],[9961,23989],[9962,23989],[9963,23993],[9964,23989],[9965,23993],[9966,23989],[9967,23989],[9968,23993],[9969,23993],[9970,23989],[9971,23993],[9972,23993],[9973,23993],[9974,23989],[9975,23989],[9976,23993],[9977,23989],[9978,23989],[9979,23993],[9980,23989],[9981,23993],[9982,23989],[9983,23993],[9984,23989],[9985,23993],[9986,23989],[9987,23993],[9988,23993],[9989,23989],[9990,23993],[9991,23989],[9992,23993],[9993,23989],[9994,23993],[9995,23989],[9996,23993],[9997,23989],[9998,23993],[9999,23989],[10000,23993],[10001,23989],[10002,23993],[10003,23989],[10004,23993],[10005,23989],[10006,23993],[10007,23989],[10008,23993],[10009,23989],[10010,23993],[10011,23989],[10012,23993],[10013,23989],[10014,23993],[10015,23989],[10016,23989],[10017,23989],[10018,23989],[10019,23989],[10020,23993],[10021,23989],[10022,23989],[10023,23993],[10024,23993],[10025,23989],[10026,23993],[10027,23989],[10028,23993],[10029,23989],[10030,23993],[10031,23989],[10032,23993],[10033,23989],[10034,23993],[10035,23989],[10036,23993],[10037,23989],[10038,23993],[10039,23989],[10040,23993],[10041,23989],[10042,23993],[10043,23993],[10044,23993],[10045,23993],[10046,23993],[10047,23993],[10048,23993],[10049,23993],[10050,23993],[10051,23993],[10052,23993],[10053,23993],[10054,23993],[10055,23993],[10056,23993],[10057,23993],[10058,23993],[10059,23993],[10060,23993],[10061,23993],[10062,23993],[10063,23993],[10064,23993],[10065,23993],[10066,23993],[10067,23993],[10068,23993],[10069,23993],[10070,23993],[10071,23993],[10072,23993],[10073,23993],[10074,23993],[10075,23993],[10076,23993],[10077,23993],[10078,23993],[10079,23993],[10080,23993],[10081,23993],[10082,23993],[10083,23993],[10084,23993],[10085,23993],[10086,23993],[10087,23993],[10088,23993],[10089,23993],[10090,23993],[10091,23993],[10092,23993],[10093,23993],[10094,23993],[10095,23999],[10096,23996],[10097,23996],[10098,23996],[10099,23996],[10102,24000],[10103,23996],[10104,23990],[10105,23990],[10106,23990],[10107,23996],[10108,23996],[10111,24000],[10114,24000],[10115,23996],[10116,23996],[10117,24000],[10118,23996],[10119,23996],[10120,23996],[10121,23996],[10122,23996],[10123,24000],[10124,23990],[10125,24001],[10126,23990],[10127,23990],[10130,24000],[10131,23996],[10132,23996],[10133,23996],[10134,23996],[10135,23996],[10136,23996],[10137,23996],[10138,23996],[10139,23990],[10140,23995],[10141,23995],[10142,23994],[10143,23994],[10144,24000],[10145,23990],[10146,24001],[10147,23996],[10148,23996],[10149,23996],[10150,23996],[10153,24000],[10154,23990],[10155,23996],[10156,23996],[10157,23996],[10158,23996],[10159,23996],[10160,23990],[10161,23999],[10162,23996],[10163,23994],[10164,23994],[10165,24000],[10166,23990],[10167,23990],[10168,23990],[10169,23990],[10170,23990],[10171,23990],[10172,23990],[10173,23995],[10174,23995],[10175,24001],[10176,24001],[10177,23996],[10178,23996],[10179,23996],[10180,23996],[10181,23996],[10182,23996],[10183,23996],[10184,23996],[10185,23990],[10186,23999],[10187,23996],[10188,23994],[10189,23994],[10190,24000],[10191,23990],[10192,23990],[10193,23990],[10194,23990],[10195,23990],[10196,23990],[10197,23990],[10198,23995],[10199,23995],[10200,24001],[10201,24001],[10202,23996],[10203,23996],[10204,23996],[10205,23996],[10206,23996],[10207,23996],[10208,23996],[10209,23996],[10210,23990],[10211,23999],[10212,23996],[10213,23994],[10214,23994],[10215,24000],[10216,23990],[10217,23990],[10218,23990],[10219,23990],[10220,23990],[10221,23990],[10222,23990],[10223,23995],[10224,23995],[10225,24001],[10226,24001],[10227,23996],[10228,23996],[10229,23996],[10230,23996],[10231,23996],[10232,23996],[10233,23996],[10234,23996],[10235,23990],[10236,23999],[10237,23996],[10238,23994],[10239,23994],[10240,24000],[10241,23990],[10242,23990],[10243,23990],[10244,23990],[10245,23990],[10246,23990],[10247,23990],[10248,23995],[10249,23995],[10250,24001],[10251,24001],[10252,23996],[10253,23996],[10254,23996],[10255,23996],[10256,23996],[10257,23996],[10258,23996],[10259,23996],[10260,23990],[10261,23999],[10262,23996],[10263,23994],[10264,23994],[10265,24000],[10266,23990],[10267,23990],[10268,23990],[10269,23990],[10270,23990],[10271,23990],[10272,23990],[10273,23995],[10274,23995],[10275,24001],[10276,24001],[10277,23996],[10278,23996],[10279,23996],[10280,23996],[10281,23996],[10282,23996],[10283,23996],[10284,23996],[10285,23994],[10286,23990],[10287,23995],[10288,23990],[10289,23990],[10290,23990],[10291,23990],[10292,23990],[10293,23990],[10294,23999],[10295,23996],[10296,23994],[10297,23994],[10298,24000],[10299,23990],[10300,23990],[10301,23990],[10302,23990],[10303,23990],[10304,23990],[10305,23990],[10306,23995],[10307,23995],[10308,24001],[10309,24001],[10310,23996],[10311,23996],[10312,23996],[10313,23996],[10314,23996],[10315,23996],[10316,23996],[10317,23996],[10318,23990],[10319,23999],[10320,23996],[10321,23994],[10322,23994],[10323,24000],[10324,23990],[10325,23990],[10326,23990],[10327,23990],[10328,23990],[10329,23990],[10330,23990],[10331,23995],[10332,23995],[10333,24001],[10334,24001],[10335,23996],[10336,23996],[10337,23996],[10338,23996],[10339,23996],[10340,23996],[10341,23996],[10342,23996],[10343,23990],[10344,23990],[10345,23990],[10346,23996],[10347,23994],[10348,23990],[10349,23995],[10350,23990],[10351,23990],[10352,23999],[10353,23996],[10354,23994],[10355,23994],[10356,24000],[10357,23990],[10358,23990],[10359,23990],[10360,23990],[10361,23990],[10362,23990],[10363,23990],[10364,23995],[10365,23995],[10366,24001],[10367,24001],[10368,23996],[10369,23996],[10370,23996],[10371,23996],[10372,23996],[10373,23996],[10374,23996],[10375,23996],[10376,23995],[10377,23999],[10378,23994],[10379,23994],[10380,24000],[10381,23990],[10382,23990],[10383,23990],[10384,23990],[10385,23990],[10386,23990],[10387,23990],[10388,23995],[10389,23995],[10390,24001],[10391,24001],[10392,23996],[10393,23996],[10394,23996],[10395,23996],[10396,23996],[10397,23996],[10398,23996],[10399,23996],[10400,23999],[10401,23994],[10402,23994],[10403,24000],[10404,23990],[10405,23990],[10406,23990],[10407,23990],[10408,23990],[10409,23990],[10410,23990],[10411,23995],[10412,23995],[10413,24001],[10414,24001],[10415,23996],[10416,23996],[10417,23996],[10418,23996],[10419,23996],[10420,23996],[10421,23996],[10422,23996],[10423,23999],[10424,23994],[10425,23994],[10426,24000],[10427,23990],[10428,23990],[10429,23990],[10430,23990],[10431,23990],[10432,23990],[10433,23990],[10434,23995],[10435,23995],[10436,24001],[10437,24001],[10438,23996],[10439,23996],[10440,23996],[10441,23996],[10442,23996],[10443,23996],[10444,23996],[10445,23996],[10446,24001],[10447,24001],[10448,23996],[10449,23990],[10450,23999],[10451,23996],[10452,23994],[10453,23994],[10454,24000],[10455,23990],[10456,23990],[10457,23990],[10458,23990],[10459,23990],[10460,23990],[10461,23990],[10462,23995],[10463,23995],[10464,24001],[10465,24001],[10466,23996],[10467,23996],[10468,23996],[10469,23996],[10470,23996],[10471,23996],[10472,23996],[10473,23996],[10474,23990],[10475,23990],[10476,23990],[10477,23999],[10478,23990],[10479,23990],[10480,23995],[10481,23990],[10482,23999],[10483,23996],[10484,23994],[10485,23994],[10486,24000],[10487,23990],[10488,23990],[10489,23990],[10490,23990],[10491,23990],[10492,23990],[10493,23990],[10494,23995],[10495,23995],[10496,24001],[10497,24001],[10498,23996],[10499,23996],[10500,23996],[10501,23996],[10502,23996],[10503,23996],[10504,23996],[10505,23996],[10506,23990],[10507,23999],[10508,23996],[10509,23994],[10510,23994],[10511,24000],[10512,23990],[10513,23990],[10514,23990],[10515,23990],[10516,23990],[10517,23990],[10518,23990],[10519,23995],[10520,23995],[10521,24001],[10522,24001],[10523,23996],[10524,23996],[10525,23996],[10526,23996],[10527,23996],[10528,23996],[10529,23996],[10530,23996],[10531,23990],[10532,23999],[10533,23996],[10534,23994],[10535,23994],[10536,24000],[10537,23990],[10538,23990],[10539,23990],[10540,23990],[10541,23990],[10542,23990],[10543,23990],[10544,23995],[10545,23995],[10546,24001],[10547,24001],[10548,23996],[10549,23996],[10550,23996],[10551,23996],[10552,23996],[10553,23996],[10554,23996],[10555,23996],[10556,23990],[10557,23999],[10558,23996],[10559,23994],[10560,23994],[10561,24000],[10562,23990],[10563,23990],[10564,23990],[10565,23990],[10566,23990],[10567,23990],[10568,23990],[10569,23995],[10570,23995],[10571,24001],[10572,24001],[10573,23996],[10574,23996],[10575,23996],[10576,23996],[10577,23996],[10578,23996],[10579,23996],[10580,23996],[10581,23990],[10582,23990],[10583,23990],[10584,23999],[10585,24000],[10586,23996],[10587,23996],[10588,23996],[10589,23996],[10590,23996],[10591,23996],[10592,23996],[10593,23996],[10594,24000],[10595,24000],[10596,24000],[10597,23996],[10598,23996],[10599,23996],[10600,23996],[10601,23996],[10602,23996],[10603,23996],[10604,23996],[10605,23996],[10606,23996],[10607,23996],[10608,23996],[10609,23994],[10610,23994],[10611,24001],[10612,24001],[10613,23994],[10614,23990],[10615,23990],[10616,23990],[10617,23990],[10618,23999],[10619,23994],[10620,23994],[10621,24000],[10622,23990],[10623,23990],[10624,23990],[10625,23995],[10626,23995],[10627,23996],[10628,23996],[10629,23996],[10630,23996],[10631,23996],[10632,23996],[10633,23996],[10634,23996],[10635,23990],[10636,23990],[10637,23999],[10638,23996],[10639,23994],[10640,23994],[10641,23994],[10642,24000],[10643,24000],[10644,23990],[10645,23990],[10646,23990],[10647,23990],[10648,23990],[10649,23990],[10650,23990],[10651,23990],[10652,23995],[10653,23995],[10654,24001],[10655,24001],[10656,23996],[10657,23996],[10658,23996],[10659,23996],[10660,23996],[10661,23996],[10662,23996],[10663,23996],[10664,23990],[10665,23999],[10666,23996],[10667,23994],[10668,23994],[10669,24000],[10670,23990],[10671,23990],[10672,23990],[10673,23990],[10674,23990],[10675,23990],[10676,23990],[10677,23995],[10678,23995],[10679,24001],[10680,24001],[10681,23996],[10682,23996],[10683,23996],[10684,23996],[10685,23996],[10686,23996],[10687,23996],[10688,23996],[10689,23990],[10690,23995],[10691,23990],[10692,23999],[10693,23996],[10694,23994],[10695,23994],[10696,24000],[10697,23990],[10698,23990],[10699,23990],[10700,23990],[10701,23990],[10702,23990],[10703,23990],[10704,23995],[10705,23995],[10706,24001],[10707,24001],[10708,23996],[10709,23996],[10710,23996],[10711,23996],[10712,23996],[10713,23996],[10714,23996],[10715,23996],[10716,23996],[10717,23996],[10718,23996],[10719,23996],[10720,23990],[10721,23990],[10722,23995],[10723,23995],[10724,23996],[10725,23990],[10726,23990],[10727,24001],[10728,23996],[10729,23990],[10730,23990],[10731,24001],[10732,24000],[10733,23996],[10734,23996],[10735,23996],[10736,23996],[10737,23990],[10738,23990],[10739,24001],[10740,23990],[10741,23990],[10742,23990],[10743,23990],[10744,24001],[10745,23995],[10746,23995],[10747,23990],[10748,23999],[10749,23996],[10750,23994],[10751,23994],[10752,24000],[10753,23990],[10754,23990],[10755,23990],[10756,23990],[10757,23990],[10758,23990],[10759,23990],[10760,23995],[10761,23995],[10762,24001],[10763,24001],[10764,23996],[10765,23996],[10766,23996],[10767,23996],[10768,23996],[10769,23996],[10770,23996],[10771,23996],[10772,23990],[10773,23999],[10774,23996],[10775,23994],[10776,23994],[10777,24000],[10778,23990],[10779,23990],[10780,23990],[10781,23990],[10782,23990],[10783,23990],[10784,23990],[10785,23995],[10786,23995],[10787,24001],[10788,24001],[10789,23996],[10790,23996],[10791,23996],[10792,23996],[10793,23996],[10794,23996],[10795,23996],[10796,23996],[10797,23990],[10798,23999],[10799,23996],[10800,23994],[10801,23994],[10802,24000],[10803,23990],[10804,23990],[10805,23990],[10806,23990],[10807,23990],[10808,23990],[10809,23990],[10810,23995],[10811,23995],[10812,24001],[10813,24001],[10814,23996],[10815,23996],[10816,23996],[10817,23996],[10818,23996],[10819,23996],[10820,23996],[10821,23996],[10822,23990],[10823,23999],[10824,23996],[10825,23994],[10826,23994],[10827,24000],[10828,23990],[10829,23990],[10830,23990],[10831,23990],[10832,23990],[10833,23990],[10834,23990],[10835,23995],[10836,23995],[10837,24001],[10838,24001],[10839,23996],[10840,23996],[10841,23996],[10842,23996],[10843,23996],[10844,23996],[10845,23996],[10846,23996],[10847,23990],[10848,23999],[10849,23996],[10850,23994],[10851,23994],[10852,24000],[10853,23990],[10854,23990],[10855,23990],[10856,23990],[10857,23990],[10858,23995],[10859,23995],[10860,24001],[10861,24001],[10862,23996],[10863,23996],[10864,23996],[10865,23996],[10866,23996],[10867,23996],[10868,23996],[10869,23996],[10870,23990],[10871,23999],[10872,23996],[10873,23994],[10874,23994],[10875,24000],[10876,23990],[10877,23990],[10878,23990],[10879,23990],[10880,23990],[10881,23990],[10882,23990],[10883,23995],[10884,23995],[10885,24001],[10886,24001],[10887,23996],[10888,23996],[10889,23996],[10890,23996],[10891,23996],[10892,23996],[10893,23996],[10894,23996],[10895,23990],[10896,23999],[10897,23996],[10898,23994],[10899,23994],[10900,24000],[10901,23990],[10902,23990],[10903,23990],[10904,23990],[10905,23990],[10906,23990],[10907,23990],[10908,23995],[10909,23995],[10910,24001],[10911,24001],[10912,23996],[10913,23996],[10914,23996],[10915,23996],[10916,23996],[10917,23996],[10918,23996],[10919,23996],[10920,23990],[10921,23999],[10922,23996],[10923,23994],[10924,23994],[10925,24000],[10926,23990],[10927,23990],[10928,23990],[10929,23990],[10930,23990],[10931,23990],[10932,23990],[10933,23995],[10934,23995],[10935,24001],[10936,24001],[10937,23996],[10938,23996],[10939,23996],[10940,23996],[10941,23996],[10942,23996],[10943,23996],[10944,23996],[10945,23990],[10946,23999],[10947,23996],[10948,23994],[10949,23994],[10950,24000],[10951,23990],[10952,23990],[10953,23990],[10954,23990],[10955,23990],[10956,23990],[10957,23990],[10958,23995],[10959,23995],[10960,24001],[10961,24001],[10962,23996],[10963,23996],[10964,23996],[10965,23996],[10966,23996],[10967,23996],[10968,23996],[10969,23996],[10970,23990],[10971,23994],[10972,23990],[10973,23990],[10974,23990],[10975,23990],[10976,23990],[10977,23990],[10978,23990],[10979,23990],[10980,23999],[10981,23996],[10982,23994],[10983,23994],[10984,24000],[10985,23990],[10986,23990],[10987,23990],[10988,23990],[10989,23990],[10990,23990],[10991,23990],[10992,23995],[10993,23995],[10994,24001],[10995,24001],[10996,23996],[10997,23996],[10998,23996],[10999,23996],[11000,23996],[11001,23996],[11002,23996],[11003,23996],[11004,24000],[11005,23990],[11006,23995],[11007,23995],[11008,23996],[11009,23996],[11010,23996],[11011,23996],[11012,23994],[11013,23994],[11014,23990],[11015,23990],[11016,23995],[11017,23995],[11018,24001],[11019,24001],[11020,23990],[11021,23990],[11022,23996],[11023,23999],[11024,23990],[11025,23990],[11026,23995],[11027,23995],[11028,23990],[11029,23990],[11030,23990],[11031,23996],[11032,23996],[11033,23990],[11034,23990],[11035,23990],[11036,23995],[11037,23990],[11038,23990],[11039,23990],[11040,23990],[11041,23994],[11042,23994],[11043,23994],[11044,23994],[11045,23999],[11046,23990],[11047,23990],[11048,23995],[11049,23996],[11050,23996],[11051,23990],[11052,23990],[11053,23990],[11054,23990],[11055,23990],[11056,23996],[11057,23996],[11058,23996],[11059,23996],[11060,23996],[11061,24001],[11062,23994],[11063,23990],[11064,24001],[11065,24001],[11066,23996],[11067,23996],[11068,23990],[11069,23990],[11070,23990],[11071,23990],[11072,23990],[11073,23990],[11074,23995],[11075,23990],[11076,23990],[11077,23990],[11078,23999],[11079,24000],[11080,23996],[11081,23999],[11082,23994],[11083,23994],[11084,24000],[11085,23990],[11086,23990],[11087,23990],[11088,23990],[11089,23990],[11090,23990],[11091,23990],[11092,23995],[11093,23995],[11094,24001],[11095,24001],[11096,23996],[11097,23996],[11098,23996],[11099,23996],[11100,23996],[11101,23996],[11102,23996],[11103,23996],[11104,23996],[11105,23996],[11106,23996],[11107,23996],[11108,24000],[11109,23990],[11110,23990],[11111,23999],[11112,23996],[11113,23994],[11114,23994],[11115,24000],[11116,23990],[11117,23990],[11118,23990],[11119,23990],[11120,23990],[11121,23990],[11122,23990],[11123,23995],[11124,23995],[11125,24001],[11126,24001],[11127,23996],[11128,23996],[11129,23996],[11130,23996],[11131,23996],[11132,23996],[11133,23996],[11134,23996],[11135,23990],[11136,23999],[11137,23996],[11138,23994],[11139,23994],[11140,24000],[11141,23990],[11142,23990],[11143,23990],[11144,23990],[11145,23990],[11146,23990],[11147,23990],[11148,23995],[11149,23995],[11150,24001],[11151,24001],[11152,23996],[11153,23996],[11154,23996],[11155,23996],[11156,23996],[11157,23996],[11158,23996],[11159,23996],[11160,23990],[11161,23999],[11162,23996],[11163,23994],[11164,23994],[11165,24000],[11166,23990],[11167,23990],[11168,23990],[11169,23990],[11170,23990],[11171,23990],[11172,23990],[11173,23995],[11174,23995],[11175,24001],[11176,24001],[11177,23996],[11178,23996],[11179,23996],[11180,23996],[11181,23996],[11182,23996],[11183,23996],[11184,23996],[11185,23990],[11186,23999],[11187,23996],[11188,23994],[11189,23994],[11190,24000],[11191,23990],[11192,23990],[11193,23990],[11194,23990],[11195,23990],[11196,23990],[11197,23990],[11198,23995],[11199,23995],[11200,24001],[11201,24001],[11202,23996],[11203,23996],[11204,23996],[11205,23996],[11206,23996],[11207,23996],[11208,23996],[11209,23996],[11210,23990],[11211,23999],[11212,23996],[11213,23994],[11214,23994],[11215,24000],[11216,23990],[11217,23990],[11218,23990],[11219,23990],[11220,23990],[11221,23990],[11222,23990],[11223,23995],[11224,23995],[11225,24001],[11226,24001],[11227,23996],[11228,23996],[11229,23996],[11230,23996],[11231,23996],[11232,23996],[11233,23996],[11234,23996],[11235,23990],[11236,23999],[11237,23996],[11238,23994],[11239,23994],[11240,24000],[11241,23990],[11242,23990],[11243,23990],[11244,23990],[11245,23990],[11246,23990],[11247,23990],[11248,23995],[11249,23995],[11250,24001],[11251,24001],[11252,23996],[11253,23996],[11254,23996],[11255,23996],[11256,23996],[11257,23996],[11258,23996],[11259,23996],[11260,23990],[11261,23999],[11262,23996],[11263,23994],[11264,23994],[11265,24000],[11266,23990],[11267,23990],[11268,23990],[11269,23990],[11270,23990],[11271,23990],[11272,23990],[11273,23995],[11274,23995],[11275,24001],[11276,24001],[11277,23996],[11278,23996],[11279,23996],[11280,23996],[11281,23996],[11282,23996],[11283,23996],[11284,23996],[11285,23990],[11286,23999],[11287,23996],[11288,23994],[11289,23994],[11290,24000],[11291,23990],[11292,23990],[11293,23990],[11294,23990],[11295,23990],[11296,23990],[11297,23990],[11298,23995],[11299,23995],[11300,24001],[11301,24001],[11302,23996],[11303,23996],[11304,23996],[11305,23996],[11306,23996],[11307,23996],[11308,23996],[11309,23996],[11310,23990],[11311,23999],[11312,23996],[11313,23994],[11314,23994],[11315,24000],[11316,23990],[11317,23990],[11318,23990],[11319,23990],[11320,23990],[11321,23990],[11322,23990],[11323,23995],[11324,23995],[11325,24001],[11326,24001],[11327,23996],[11328,23996],[11329,23996],[11330,23996],[11331,23996],[11332,23996],[11333,23996],[11334,23996],[11335,23990],[11336,23990],[11337,23995],[11338,24000],[11339,23990],[11379,23998],[11380,23998],[11381,23998],[11382,23998],[11383,23998],[11384,23998],[11385,23998],[11386,23998],[11387,23998],[11388,23998],[11389,23998],[11390,23998],[11391,23998],[11392,23998],[11393,23998],[11394,23998],[11395,23998],[11396,23998],[11397,23998],[11398,23998],[11399,23998],[11400,23998],[11401,23998],[11402,23998],[11403,23998],[11404,23998],[11405,23998],[11406,23998],[11407,23998],[11408,23998],[11409,23998],[11410,23998],[11411,23998],[11412,23998],[11413,23998],[11414,23998],[11415,23998],[11416,23998],[11417,23998],[11418,23998],[11419,23998],[11420,23998],[11421,23998],[11422,23998],[11423,23998],[11424,23998],[11425,23998],[11426,23998],[11427,23998],[11428,23998],[11429,23998],[11430,23998],[11431,23998],[11432,23998],[11433,23998],[11434,23998],[11435,23998],[11436,23998],[11437,23998],[11438,23998],[11439,23998],[11440,23998],[11441,23998],[11442,23998],[11443,23998],[11444,23998],[11445,23998],[11446,23998],[11447,23998],[11448,23998],[11449,23998],[11450,23998],[11451,23998],[11452,23998],[11453,23998],[11454,23998],[11455,23998],[11456,23998],[11457,23998],[11458,23998],[11459,23998],[11460,23998],[11461,23998],[11462,23998],[11463,23998],[11464,23998],[11465,23998],[11466,23998],[11467,23998],[11468,23998],[11469,23998],[11470,23998],[11471,23998],[11472,23998],[11473,23998],[11474,23998],[11475,23998],[11476,23998],[11477,23998],[11478,23998],[11479,23998],[11480,23998],[11481,23998],[11482,23998],[11483,23998],[11484,23998],[11485,23998],[11486,23998],[11487,23998],[11488,23998],[11489,23998],[11490,23998],[11491,23998],[11492,23998],[11493,23998],[11494,23998],[11495,23998],[11496,23998],[11497,23998],[11498,23998],[11499,23998],[11500,23998],[11501,23998],[11502,23998],[11503,23998],[11504,23998],[11505,23998],[11506,23998],[11507,23998],[11508,23998],[11509,23998],[11510,23998],[11511,23998],[11512,23998],[11513,23998],[11514,23998],[11515,23998],[11516,23998],[11517,23998],[11518,23998],[11519,23998],[11520,23998],[11521,23998],[11522,23998],[11523,23998],[11524,23998],[11525,23998],[11526,23998],[11527,23998],[11528,23998],[11529,23998],[11530,23998],[11531,23998],[11532,23998],[11533,23998],[11534,23998],[11535,23998],[11536,23998],[11537,23998],[11538,23998],[11539,23998],[11540,23998],[11541,23998],[11542,23998],[11543,23998],[11544,23998],[11545,23998],[11546,23998],[11547,23998],[11548,23998],[11549,23998],[11550,23998],[11551,23998],[11552,23998],[11553,23998],[11554,23998],[11555,23998],[11556,23998],[11557,23998],[11558,23998],[11559,23998],[11560,23998],[11561,23998],[11562,23998],[11563,23998],[11564,23998],[11565,23998],[11566,23998],[11567,23998],[11568,23998],[11569,23998],[11570,23998],[11571,23998],[11572,23998],[11573,23998],[11574,23998],[11575,23998],[11576,23998],[11577,23998],[11578,23998],[11579,23998],[11580,23998],[11581,23998],[11582,23998],[11583,23998],[11584,23998],[11585,23998],[11586,23998],[11587,23998],[11588,23998],[11589,23998],[11590,23998],[11591,23998],[11592,23998],[11593,23998],[11594,23998],[11595,23998],[11596,23998],[11597,23998],[11598,23998],[11599,23998],[11600,23998],[11601,23998],[11602,23998],[11603,23998],[11604,23998],[11605,23998],[11606,23998],[11607,23998],[11608,23998],[11609,23998],[11610,23998],[11611,23998],[11612,23998],[11613,23998],[11614,23998],[11615,23998],[11616,23998],[11617,23998],[11618,23998],[11619,23998],[11620,23998],[11621,23998],[11622,23998],[11623,23998],[11624,23998],[11625,23998],[11626,23998],[11627,23998],[11628,23998],[11629,23998],[11630,23998],[11631,23998],[11632,23998],[11633,23998],[11634,23998],[11635,23998],[11636,23998],[11637,23998],[11638,23998],[11639,23998],[11640,23998],[11641,23998],[11642,23998],[11643,23998],[11644,23998],[11645,23998],[11646,23998],[11647,23998],[11648,23998],[11649,23998],[11650,23998],[11651,23998],[11652,23998],[11653,23998],[11654,23998],[11655,23998],[11656,23998],[11657,23998],[11658,23998],[11659,23998],[11660,23998],[11661,23998],[11662,23998],[11663,23998],[11664,23998],[11665,23998],[11666,23998],[11667,23998],[11668,23998],[11669,23998],[11670,23998],[11671,23998],[11672,23998],[11673,23998],[11674,23998],[11675,23998],[11676,23998],[11677,23998],[11678,23998],[11679,23998],[11680,23998],[11681,23998],[11682,23998],[11683,23998],[11684,23998],[11685,23998],[11686,23998],[11687,23998],[11688,23998],[11689,23998],[11690,23998],[11691,23998],[11692,23998],[11693,23998],[11694,23998],[11695,23998],[11696,23998],[11697,23998],[11698,23998],[11699,23998],[11700,23998],[11701,23998],[11702,23998],[11703,23998],[11704,23998],[11705,23998],[11706,23998],[11707,23998],[11708,23998],[11709,23998],[11710,23998],[11711,23998],[11712,23998],[11713,23998],[11714,23998],[11715,23998],[11716,23998],[11717,23998],[11718,23998],[11719,23998],[11720,23998],[11721,23998],[11722,23998],[11723,23998],[11724,23998],[11725,23998],[11726,23998],[11727,23998],[11728,23998],[11729,23998],[11730,23998],[11731,23998],[11732,23998],[11733,23998],[11734,23998],[11735,23998],[11736,23994],[11737,23994],[11738,23994],[11739,23994],[11740,23994],[11741,23994],[11742,23994],[11743,23994],[11744,23994],[11745,23994],[11746,23994],[11747,23994],[11748,23994],[11749,23994],[11750,23994],[11751,23994],[11752,23994],[11753,23994],[11754,23994],[11755,23994],[11756,23994],[11757,23994],[11758,23994],[11759,23994],[11760,23994],[11761,23994],[11762,23994],[11763,23994],[11764,23994],[11765,23994],[11766,23994],[11767,23994],[11768,23994],[11769,23994],[11770,23994],[11771,23994],[11772,23994],[11773,23994],[11774,23994],[11775,23994],[11776,23994],[11777,23994],[11778,23994],[11779,23994],[11780,23994],[11781,23994],[11782,23994],[11783,23994],[11784,23994],[11785,23994],[11786,23994],[11787,23994],[11788,23994],[11789,23994],[11790,23994],[11791,23994],[11792,23994],[11793,23994],[11794,23994],[11795,23994],[11796,23994],[11797,23994],[11798,23994],[11799,23994],[11800,23994],[11801,23994],[11802,23994],[11803,23994],[11804,23994],[11805,23994],[11806,23994],[11807,23994],[11808,23994],[11809,23994],[11810,23994],[11811,23994],[11812,23994],[11813,23994],[11814,23994],[11815,23994],[11816,23994],[11817,23994],[11818,23994],[11819,23994],[11820,23994],[11821,23994],[11822,23994],[11823,23994],[11824,23994],[11825,23994],[11826,23994],[11827,23994],[11828,23994],[11829,23994],[11830,23994],[11831,23994],[11832,23994],[11833,23994],[11834,23994],[11835,23994],[11836,23994],[11837,23994],[11838,23994],[11839,23994],[11840,23994],[11841,23994],[11842,23994],[11843,23994],[11844,23994],[11845,23994],[11846,23994],[11847,23994],[11848,23994],[11849,23994],[11850,23994],[11851,23994],[11852,23994],[11853,23994],[11854,23994],[11855,23994],[11856,23994],[11857,23994],[11858,23994],[11859,23994],[11860,23994],[11861,23994],[11862,23994],[11863,23994],[11864,23994],[11865,23994],[11866,23994],[11867,23994],[11868,23994],[11869,23994],[11870,23994],[11871,23994],[11872,23994],[11873,23994],[11874,23994],[11875,23994],[11876,23994],[11877,23994],[11878,23994],[11879,23994],[11880,23994],[11881,23994],[11882,23994],[11883,23994],[11884,23994],[11885,23994],[11886,23994],[11887,23994],[11888,23994],[11889,23994],[11890,23994],[11891,23994],[11892,23994],[11893,23994],[11894,23994],[11895,23994],[11896,23994],[11897,23994],[11898,23994],[11899,23994],[11900,23994],[11901,23994],[11902,23994],[11903,23994],[11904,23994],[11905,23994],[11906,23994],[11907,23994],[11908,23994],[11909,23994],[11910,23994],[11911,23994],[11912,23994],[11913,23994],[11914,23994],[11915,23994],[11916,23994],[11917,23994],[11918,23994],[11919,23994],[11920,23994],[11921,23994],[11922,23994],[11923,23994],[11924,23994],[11925,23994],[11926,23994],[11927,23994],[11928,23994],[11929,23994],[11930,23994],[11931,23994],[11932,23994],[11933,23994],[11934,23994],[11935,23994],[11936,23994],[11937,23994],[11938,23994],[11939,23994],[11940,23994],[11941,23994],[11942,23994],[11943,23994],[11944,23994],[11945,23994],[11946,23994],[11947,23994],[11948,23994],[11949,23994],[11950,23994],[11951,23994],[11952,23994],[11953,23994],[11954,23994],[11955,23994],[11956,23994],[11957,23994],[11958,23994],[11959,23994],[11960,24005],[11961,23999],[11962,23999],[11963,24018],[11964,24011],[11965,24008],[11966,24008],[11967,24008],[11968,24008],[11969,24008],[11970,24008],[11971,24006],[11972,24006],[11973,24006],[11974,24008],[11975,24008],[11976,24008],[11977,24008],[11979,24012],[11980,24013],[11981,24008],[11982,24008],[11983,24008],[11984,24010],[11985,24018],[11986,24010],[11988,23999],[11989,24008],[11990,24008],[11991,24008],[11992,24013],[11993,24013],[11994,24009],[11996,24008],[11997,24006],[11998,24009],[11999,24009],[12000,24009],[12001,23999],[12002,23999],[12003,24011],[12004,24006],[12005,24006],[12006,24006],[12007,24012],[12008,24009],[12009,24005],[12010,24005],[12011,24005],[12012,24005],[12013,24010],[12014,23999],[12015,23999],[12016,24011],[12017,24011],[12018,24006],[12019,24006],[12020,24012],[12021,24012],[12022,24013],[12023,24005],[12024,24005],[12025,24005],[12026,24010],[12027,23999],[12028,23999],[12029,24011],[12030,24011],[12031,24006],[12032,24012],[12033,24013],[12034,23999],[12035,23999],[12036,24011],[12037,24006],[12038,24006],[12039,24006],[12040,24012],[12041,24009],[12042,24005],[12043,23999],[12044,23999],[12045,24011],[12046,24006],[12047,24006],[12048,24006],[12049,24012],[12050,24009],[12051,24005],[12052,23999],[12053,23999],[12054,24011],[12055,24006],[12056,24006],[12057,24006],[12058,24012],[12059,24009],[12060,24005],[12061,23999],[12062,23999],[12063,24011],[12064,24006],[12065,24006],[12066,24006],[12067,24012],[12068,24009],[12069,24005],[12070,24006],[12071,24009],[12072,24009],[12073,24011],[12074,24012],[12075,24009],[12076,24010],[12077,23999],[12078,23999],[12079,24011],[12080,24011],[12081,24006],[12082,24006],[12083,24012],[12084,24012],[12085,23999],[12086,23999],[12087,24011],[12088,24006],[12089,24006],[12090,24006],[12091,24012],[12092,24009],[12093,24005],[12094,23999],[12095,23999],[12096,24011],[12097,24006],[12098,24006],[12099,24006],[12100,24012],[12101,24009],[12102,24005],[12103,23999],[12104,24011],[12105,24006],[12106,24012],[12107,24009],[12108,23999],[12109,24011],[12110,24012],[12111,24009],[12112,23999],[12113,24011],[12114,24012],[12115,24009],[12116,24012],[12117,24006],[12118,24009],[12119,24009],[12120,23999],[12121,23999],[12122,24011],[12123,24006],[12124,24006],[12125,24006],[12126,24012],[12127,24009],[12128,24005],[12129,23999],[12130,24012],[12131,24005],[12132,24009],[12133,23999],[12134,23999],[12135,24006],[12136,24006],[12137,24006],[12138,23999],[12139,23999],[12140,24011],[12141,24006],[12142,24006],[12143,24006],[12144,24012],[12145,24009],[12146,24005],[12147,23999],[12148,23999],[12149,24011],[12150,24006],[12151,24006],[12152,24006],[12153,24012],[12154,24009],[12155,24005],[12156,23999],[12157,23999],[12158,24011],[12159,24006],[12160,24006],[12161,24006],[12162,24012],[12163,24009],[12164,24005],[12165,24006],[12166,24012],[12167,23999],[12168,23999],[12169,24011],[12170,24006],[12171,24006],[12172,24006],[12173,24012],[12174,24009],[12175,24005],[12176,24009],[12177,24006],[12178,24012],[12179,24011],[12180,24011],[12181,24013],[12182,24011],[12183,24011],[12184,24005],[12185,24005],[12186,23999],[12187,23999],[12188,24011],[12189,24006],[12190,24006],[12191,24006],[12192,24012],[12193,24009],[12194,24005],[12195,23999],[12196,23999],[12197,24011],[12198,24006],[12199,24006],[12200,24006],[12201,24012],[12202,24009],[12203,24005],[12204,24010],[12205,23999],[12206,24011],[12207,24011],[12208,24006],[12209,24012],[12210,24012],[12211,24006],[12212,24006],[12213,24006],[12214,24012],[12215,24005],[12216,24005],[12217,24005],[12218,23999],[12219,23999],[12220,24011],[12221,24006],[12222,24006],[12223,24006],[12224,24012],[12225,24009],[12226,24005],[12227,24011],[12228,24012],[12229,24011],[12230,23999],[12231,23999],[12232,24011],[12233,24006],[12234,24006],[12235,24006],[12236,24012],[12237,24009],[12238,24005],[12239,24010],[12240,24011],[12241,24011],[12242,24006],[12243,24012],[12244,24012],[12245,24010],[12246,24011],[12247,24011],[12248,24006],[12249,24012],[12250,24012],[12251,23999],[12252,24008],[12253,23999],[12254,23999],[12255,24011],[12256,24006],[12257,24006],[12258,24012],[12259,24009],[12260,24005],[12261,24006],[12262,24006],[12263,24006],[12264,24006],[12265,24005],[12266,24005],[12267,24005],[12268,23999],[12269,24011],[12270,24012],[12271,23999],[12272,24011],[12273,24012],[12274,23999],[12275,24011],[12276,24012],[12277,24011],[12278,24012],[12279,23999],[12280,23999],[12281,24011],[12282,24012],[12283,24012],[12284,24012],[12285,24010],[12286,23999],[12287,23999],[12288,24011],[12289,24011],[12290,24006],[12291,24006],[12292,24012],[12293,24012],[12294,23999],[12295,23999],[12296,24011],[12297,24006],[12298,24006],[12299,24006],[12300,24012],[12301,24009],[12302,24005],[12303,23999],[12304,23999],[12305,23999],[12306,23999],[12307,24011],[12308,24012],[12309,24010],[12310,23999],[12311,23999],[12312,23999],[12313,24011],[12314,24011],[12315,24006],[12316,24012],[12317,24012],[12318,24011],[12319,23999],[12320,24011],[12321,23999],[12322,24011],[12323,24011],[12324,24012],[12325,24011],[12326,24012],[12327,23999],[12328,23999],[12329,24011],[12330,23999],[12331,23999],[12332,24011],[12333,24011],[12334,24012],[12335,24011],[12336,24012],[12337,24011],[12338,24012],[12339,24011],[12340,24012],[12341,24005],[12342,24005],[12343,24005],[12344,24010],[12345,23999],[12346,23999],[12347,23999],[12348,23999],[12349,23999],[12350,24011],[12351,24011],[12352,24011],[12353,24006],[12354,24006],[12355,24006],[12356,24006],[12357,24006],[12358,24012],[12359,24012],[12360,24012],[12361,24009],[12362,24005],[12363,23999],[12364,24011],[12365,24006],[12366,24012],[12367,23999],[12368,23999],[12369,24011],[12370,24006],[12371,24006],[12372,24006],[12373,24012],[12374,24009],[12375,24005],[12376,23999],[12377,23999],[12378,24011],[12379,24006],[12380,24006],[12381,24006],[12382,24012],[12383,24009],[12384,24005],[12385,23999],[12386,24005],[12387,23999],[12388,24005],[12390,24006],[12391,24006],[12392,23999],[12393,23999],[12394,24011],[12395,24006],[12396,24006],[12397,24006],[12398,24012],[12399,24009],[12400,24005],[12401,24006],[12402,24006],[12403,24006],[12404,24006],[12405,24009],[12406,24006],[12407,24006],[12408,24009],[12409,23999],[12410,23999],[12411,24011],[12412,24006],[12413,24006],[12414,24006],[12415,24012],[12416,24009],[12417,24005],[12418,23999],[12419,23999],[12420,24011],[12421,24006],[12422,24006],[12423,24006],[12424,24012],[12425,24009],[12426,24005],[12427,23999],[12428,23999],[12429,24011],[12430,24006],[12431,24006],[12432,24006],[12433,24012],[12434,24009],[12435,24005],[12436,23999],[12437,23999],[12438,24011],[12439,24006],[12440,24006],[12441,24006],[12442,24012],[12443,24009],[12444,24005],[12445,23999],[12446,23999],[12447,24011],[12448,24006],[12449,24006],[12450,24006],[12451,24012],[12452,24009],[12453,24005],[12454,23999],[12455,23999],[12456,24011],[12457,24006],[12458,24006],[12459,24006],[12460,24012],[12461,24009],[12462,24005],[12463,23999],[12464,23999],[12465,24011],[12466,24006],[12467,24006],[12468,24006],[12469,24012],[12470,24009],[12471,24005],[12472,23999],[12473,23999],[12474,24011],[12475,24006],[12476,24006],[12477,24006],[12478,24012],[12479,24009],[12480,24005],[12481,23999],[12482,23999],[12483,24011],[12484,24006],[12485,24006],[12486,24006],[12487,24012],[12488,24009],[12489,24005],[12490,24006],[12491,24012],[12492,24005],[12493,24006],[12494,24011],[12495,24012],[12496,24011],[12497,24012],[12498,24011],[12499,23999],[12500,24006],[12501,24011],[12502,24012],[12503,24011],[12504,24012],[12505,23999],[12506,24006],[12507,24012],[12508,24005],[12509,24006],[12510,24006],[12511,24011],[12512,24012],[12513,24011],[12514,24012],[12515,24011],[12516,24012],[12517,24011],[12518,24012],[12519,24012],[12520,24012],[12521,24013],[12522,24013],[12523,24013],[12524,24013],[12525,24013],[12526,24013],[12527,24018],[12528,24006],[12529,24018],[12530,24005],[12531,24005],[12532,24005],[12533,24006],[12534,24006],[12535,24005],[12536,24011],[12537,24006],[12538,24006],[12539,24006],[12540,24006],[12541,24005],[12542,24005],[12543,24013],[12544,24006],[12545,24005],[12546,24006],[12547,24013],[12548,24011],[12549,24011],[12550,24005],[12551,24005],[12552,23999],[12553,23999],[12554,24010],[12555,23999],[12556,23999],[12557,24011],[12558,24011],[12559,24006],[12560,24006],[12561,24012],[12562,24012],[12563,23999],[12564,24006],[12565,24005],[12566,24006],[12567,24006],[12568,24005],[12569,24013],[12570,24011],[12571,24006],[12572,24011],[12573,24006],[12574,24006],[12575,24006],[12576,24006],[12577,24006],[12578,24010],[12579,23999],[12580,23999],[12581,24011],[12582,24011],[12583,24006],[12584,24006],[12585,24012],[12586,24012],[12587,24006],[12588,24010],[12589,23999],[12590,23999],[12591,24011],[12592,24011],[12593,24006],[12594,24006],[12595,24012],[12596,24012],[12597,24006],[12598,24006],[12599,24012],[12600,24006],[12601,23999],[12602,24005],[12603,24005],[12604,24005],[12605,24005],[12606,23999],[12607,23999],[12608,24006],[12609,24010],[12610,23999],[12611,23999],[12612,24011],[12613,24011],[12614,24006],[12615,24006],[12616,24012],[12617,24012],[12618,23999],[12619,24011],[12620,24006],[12621,24012],[12622,23999],[12623,24012],[12624,24005],[12625,24011],[12626,24006],[12627,24006],[12628,24012],[12629,24005],[12630,24011],[12631,24006],[12632,24006],[12633,24012],[12634,24005],[12635,24006],[12636,23999],[12637,23999],[12638,24011],[12639,24006],[12640,24006],[12641,24006],[12642,24012],[12643,24009],[12644,24005],[12645,24011],[12646,24011],[12647,23999],[12648,24006],[12649,24013],[12650,24009],[12651,24011],[12652,24006],[12653,24012],[12654,24006],[12655,24005],[12656,23999],[12657,23999],[12658,24011],[12659,24006],[12660,24006],[12661,24006],[12662,24012],[12663,24009],[12664,24005],[12665,23999],[12666,23999],[12667,24011],[12668,24006],[12669,24006],[12670,24006],[12671,24012],[12672,24009],[12673,24005],[12674,23999],[12675,23999],[12676,24011],[12677,24006],[12678,24006],[12679,24006],[12680,24012],[12681,24009],[12682,24005],[12683,23999],[12684,23999],[12685,24011],[12686,24006],[12687,24006],[12688,24006],[12689,24012],[12690,24009],[12691,24005],[12692,24005],[12693,23999],[12694,23999],[12695,24011],[12696,24006],[12697,24006],[12698,24006],[12699,24012],[12700,24009],[12701,24005],[12702,23999],[12703,23999],[12704,24011],[12705,24006],[12706,24006],[12707,24006],[12708,24012],[12709,24009],[12710,24005],[12711,23999],[12712,23999],[12713,24011],[12714,24006],[12715,24006],[12716,24006],[12717,24012],[12718,24009],[12719,24005],[12720,23999],[12721,23999],[12722,24011],[12723,24006],[12724,24006],[12725,24006],[12726,24012],[12727,24009],[12728,24005],[12729,24013],[12730,24008],[12731,24013],[12732,24006],[12733,24006],[12734,24006],[12735,23999],[12736,23999],[12737,24011],[12738,24006],[12739,24006],[12740,24006],[12741,24012],[12742,24009],[12743,24005],[12745,24010],[12746,23999],[12747,23999],[12748,24011],[12749,24011],[12750,24006],[12751,24006],[12752,24012],[12753,24012],[12754,24013],[12757,24011],[12758,24012],[12759,24011],[12760,24012],[12761,23999],[12762,23999],[12763,24010],[12764,23999],[12765,23999],[12766,24011],[12767,24011],[12768,24006],[12769,24006],[12770,24012],[12771,24012],[12772,24013],[12775,24011],[12776,24012],[12777,24011],[12778,24012],[12779,24005],[12780,23999],[12781,23999],[12782,23999],[12783,23999],[12784,23999],[12785,23999],[12786,23999],[12787,23999],[12788,23999],[12789,23999],[12790,23999],[12791,23999],[12792,23999],[12793,23999],[12794,23999],[12795,23999],[12796,23999],[12797,23999],[12798,23999],[12799,23999],[12800,23999],[12801,23999],[12802,23999],[12803,23999],[12804,23999],[12805,23999],[12806,23999],[12807,23999],[12808,23999],[12809,23999],[12810,23999],[12811,23999],[12812,23999],[12813,23999],[12814,23999],[12815,23999],[12816,23999],[12817,23999],[12818,23999],[12819,23999],[12820,23999],[12821,23999],[12822,23999],[12823,23999],[12824,23999],[12825,23999],[12826,23999],[12827,23999],[12828,23999],[12829,23999],[12830,23999],[12831,23999],[12832,23999],[12833,24021],[12834,24016],[12835,24022],[12836,24016],[12837,24016],[12838,24016],[12839,24016],[12840,24016],[12841,24021],[12842,24022],[12843,24016],[12844,24016],[12845,24016],[12846,24021],[12847,24022],[12848,24016],[12849,24016],[12850,24016],[12851,24021],[12852,24022],[12853,24016],[12854,24016],[12855,24016],[12856,24021],[12857,24022],[12858,24016],[12859,24016],[12860,24016],[12861,24021],[12862,24022],[12863,24016],[12864,24016],[12865,24021],[12866,24016],[12867,24016],[12868,24021],[12869,24016],[12870,24021],[12871,24016],[12872,24021],[12873,24021],[12874,24016],[12875,24016],[12876,24021],[12877,24016],[12878,24016],[12879,24016],[12880,24016],[12881,24021],[12882,24021],[12883,24022],[12884,24016],[12885,24016],[12886,24016],[12887,24016],[12888,24021],[12889,24021],[12890,24022],[12891,24016],[12892,24016],[12893,24016],[12894,24021],[12895,24022],[12896,24016],[12897,24021],[12898,24016],[12899,24021],[12900,24016],[12901,24016],[12902,24021],[12903,24022],[12904,24016],[12905,24021],[12906,24016],[12907,24016],[12908,24021],[12909,24022],[12910,24016],[12911,24016],[12912,24021],[12913,24022],[12914,24016],[12915,24021],[12916,24022],[12917,24016],[12918,24021],[12919,24022],[12920,24016],[12921,24016],[12922,24016],[12923,24021],[12924,24022],[12925,24016],[12926,24021],[12927,24016],[12928,24016],[12929,24016],[12930,24016],[12931,24021],[12932,24021],[12933,24022],[12934,24016],[12935,24016],[12936,24016],[12937,24016],[12938,24021],[12939,24021],[12940,24022],[12941,24016],[12942,24016],[12943,24016],[12944,24021],[12945,24022],[12946,24016],[12947,24016],[12948,24016],[12949,24016],[12950,24016],[12951,24016],[12952,24016],[12953,24021],[12954,24022],[12955,24022],[12956,24016],[12957,24016],[12958,24016],[12959,24016],[12960,24021],[12961,24021],[12962,24022],[12963,24016],[12964,24016],[12965,24016],[12966,24021],[12967,24021],[12968,24021],[12969,24022],[12970,24022],[12971,24022],[12972,24016],[12973,24016],[12974,24016],[12975,24016],[12976,24021],[12977,24021],[12978,24022],[12979,24022],[12980,24016],[12981,24016],[12982,24016],[12983,24016],[12984,24021],[12985,24021],[12986,24022],[12987,24016],[12988,24016],[12989,24016],[12990,24021],[12991,24022],[12992,24021],[12993,24016],[12994,24016],[12995,24016],[12996,24016],[12997,24021],[12998,24022],[12999,24021],[13000,24016],[13001,24021],[13002,24021],[13003,24016],[13004,24021],[13005,24021],[13006,24016],[13007,24021],[13008,24016],[13009,24016],[13010,24016],[13011,24021],[13012,24022],[13013,24016],[13014,24016],[13015,24016],[13016,24016],[13017,24021],[13018,24022],[13019,24016],[13020,24016],[13021,24016],[13022,24021],[13023,24022],[13024,24016],[13025,24016],[13026,24016],[13027,24021],[13028,24022],[13029,24016],[13030,24016],[13031,24016],[13032,24021],[13033,24022],[13034,24016],[13035,24016],[13036,24016],[13037,24021],[13038,24022],[13039,24016],[13040,24016],[13041,24016],[13042,24021],[13043,24022],[13044,24016],[13045,24016],[13046,24016],[13047,24021],[13048,24022],[13049,24016],[13050,24016],[13051,24016],[13052,24021],[13053,24022],[13054,24016],[13055,24016],[13056,24016],[13057,24016],[13058,24016],[13059,24016],[13060,24016],[13061,24016],[13062,24016],[13063,24016],[13064,24021],[13065,24022],[13066,24016],[13067,24021],[13068,24016],[13069,24021],[13070,24016],[13071,24021],[13072,24021],[13073,24016],[13074,24021],[13075,24021],[13076,24021],[13077,24016],[13078,24021],[13079,24021],[13080,24016],[13081,24016],[13082,24016],[13083,24016],[13084,24016],[13085,24016],[13086,24016],[13087,24016],[13088,24016],[13089,24016],[13090,24016],[13091,24016],[13092,24016],[13093,24016],[13094,24016],[13095,24016],[13096,24016],[13097,24016],[13098,24016],[13099,24016],[13100,24016],[13101,24016],[13102,24016],[13103,24016],[13104,24016],[13105,24016],[13106,24016],[13107,24021],[13108,24022],[13109,24016],[13110,24021],[13111,24016],[13112,24016],[13113,24016],[13114,24016],[13115,24016],[13116,24021],[13117,24016],[13118,24021],[13119,24021],[13120,24022],[13121,24016],[13122,24021],[13123,24016],[13124,24016],[13125,24021],[13126,24021],[13127,24016],[13128,24016],[13129,24021],[13130,24016],[13131,24021],[13132,24016],[13133,24016],[13134,24021],[13135,24022],[13136,24016],[13137,24016],[13138,24021],[13139,24016],[13140,24016],[13141,24016],[13142,24016],[13143,24016],[13144,24021],[13145,24022],[13146,24021],[13147,24022],[13148,24021],[13149,24022],[13150,24016],[13151,24021],[13152,24016],[13153,24016],[13154,24016],[13155,24021],[13156,24022],[13157,24016],[13158,24016],[13159,24016],[13160,24016],[13161,24016],[13162,24021],[13163,24021],[13164,24021],[13165,24022],[13166,24016],[13167,24016],[13168,24016],[13169,24016],[13170,24021],[13171,24022],[13172,24016],[13173,24016],[13174,24016],[13175,24021],[13176,24022],[13177,24016],[13178,24021],[13179,24021],[13180,24016],[13181,24016],[13182,24016],[13183,24021],[13184,24022],[13185,24016],[13186,24016],[13187,24016],[13188,24021],[13189,24022],[13190,24016],[13191,24016],[13192,24016],[13193,24021],[13194,24022],[13195,24016],[13196,24016],[13197,24016],[13198,24021],[13199,24022],[13200,24016],[13201,24016],[13202,24016],[13203,24021],[13204,24022],[13205,24016],[13206,24016],[13207,24016],[13208,24016],[13209,24016],[13210,24016],[13211,24016],[13212,24016],[13213,24016],[13214,24016],[13215,24016],[13216,24016],[13217,24016],[13218,24016],[13219,24016],[13220,24016],[13221,24016],[13222,24016],[13223,24016],[13224,24016],[13225,24016],[13226,24016],[13227,24016],[13228,24016],[13229,24016],[13230,24016],[13231,24016],[13232,24016],[13233,24016],[13234,24016],[13235,24016],[13236,24016],[13237,24016],[13238,24016],[13239,24016],[13240,24016],[13241,24016],[13242,24016],[13243,24016],[13244,24016],[13245,24016],[13246,24016],[13247,24016],[13248,24016],[13249,24016],[13250,24016],[13251,24016],[13252,24016],[13253,24016],[13254,24021],[13255,24016],[13256,24016],[13257,24016],[13258,24016],[13259,24016],[13260,24016],[13261,24016],[13262,24021],[13263,24016],[13264,24016],[13265,24016],[13266,24016],[13267,24016],[13268,24021],[13269,24011],[13270,24011],[13271,24011],[13272,24011],[13273,24011],[13274,24011],[13275,24011],[13276,24011],[13277,24011],[13278,24011],[13279,24011],[13280,24011],[13281,24011],[13282,24011],[13283,24011],[13284,24011],[13285,24011],[13286,24011],[13287,24011],[13288,24011],[13289,24011],[13290,24011],[13291,24011],[13292,24011],[13293,24011],[13294,24011],[13295,24011],[13296,24011],[13297,24011],[13298,24011],[13299,24011],[13300,24011],[13301,24011],[13302,24011],[13303,24011],[13304,24011],[13305,24011],[13306,24011],[13307,24011],[13308,24011],[13309,24011],[13310,24011],[13311,24011],[13312,24011],[13313,24005],[13314,24004],[13315,24004],[13316,24007],[13317,24033],[13318,24036],[13319,24026],[13320,23997],[13321,23997],[13322,24032],[13323,24034],[13324,24030],[13325,24030],[13326,24027],[13327,24028],[13328,24020],[13329,24020],[13330,23992],[13331,24031],[13332,24029],[13333,24029],[13334,24017],[13335,23991],[13336,24004],[13337,24004],[13338,24020],[13339,24020],[13340,24004],[13341,24004],[13342,24007],[13343,24033],[13344,24036],[13345,24026],[13346,23997],[13347,23997],[13348,24032],[13349,24034],[13350,24030],[13351,24030],[13352,24027],[13353,24028],[13354,24020],[13355,24020],[13356,24029],[13357,24029],[13358,24004],[13359,24004],[13360,23992],[13361,24031],[13362,24004],[13363,24004],[13364,23991],[13365,24026],[13366,24026],[13367,23997],[13368,23997],[13369,23997],[13370,23997],[13371,24027],[13372,24028],[13373,24020],[13374,24020],[13375,24020],[13376,24020],[13377,24029],[13378,24029],[13379,24004],[13380,24004],[13381,24004],[13382,24004],[13383,24026],[13384,23997],[13385,23997],[13386,23997],[13387,23997],[13388,24028],[13389,24020],[13390,24020],[13391,24029],[13392,24029],[13393,24004],[13394,24004],[13395,23997],[13396,23997],[13397,24004],[13398,24004],[13399,24004],[13400,24004],[13401,24030],[13402,24004],[13403,24004],[13404,24004],[13405,24004],[13406,24004],[13407,24026],[13408,23997],[13409,23997],[13410,24030],[13411,24030],[13412,24004],[13413,24004],[13414,23992],[13415,24031],[13416,23992],[13417,24031],[13418,24026],[13419,23997],[13420,23997],[13421,24030],[13422,24030],[13423,24004],[13424,24004],[13425,23992],[13426,23992],[13427,24031],[13428,24031],[13429,23991],[13430,23991],[13431,24007],[13432,24032],[13433,24020],[13434,24030],[13435,24030],[13436,24030],[13437,24030],[13438,24007],[13439,24033],[13440,24036],[13441,24026],[13442,23997],[13443,23997],[13444,24032],[13445,24034],[13446,24030],[13447,24030],[13448,24027],[13449,24028],[13450,24020],[13451,24020],[13452,24029],[13453,24029],[13454,24004],[13455,24004],[13456,23992],[13457,24031],[13458,24004],[13459,24004],[13460,23991],[13461,24007],[13462,24033],[13463,24036],[13464,24026],[13465,23997],[13466,23997],[13467,24032],[13468,24034],[13469,24030],[13470,24030],[13471,24027],[13472,24028],[13473,24020],[13474,24020],[13475,24029],[13476,24029],[13477,24004],[13478,24004],[13479,23992],[13480,24031],[13481,24004],[13482,24004],[13483,23991],[13484,24007],[13485,24033],[13486,24036],[13487,24026],[13488,23997],[13489,23997],[13490,24032],[13491,24034],[13492,24030],[13493,24030],[13494,24027],[13495,24028],[13496,24020],[13497,24020],[13498,24029],[13499,24029],[13500,24004],[13501,24004],[13502,23992],[13503,24031],[13504,24004],[13505,24004],[13506,23991],[13507,24007],[13508,24033],[13509,24036],[13510,24026],[13511,23997],[13512,23997],[13513,24032],[13514,24034],[13515,24030],[13516,24030],[13517,24027],[13518,24028],[13519,24020],[13520,24020],[13521,24029],[13522,24029],[13523,24004],[13524,24004],[13525,23992],[13526,24031],[13527,24004],[13528,24004],[13529,23991],[13530,24007],[13531,24033],[13532,24036],[13533,24026],[13534,23997],[13535,23997],[13536,24032],[13537,24034],[13538,24030],[13539,24030],[13540,24027],[13541,24028],[13542,24020],[13543,24020],[13544,24029],[13545,24029],[13546,24004],[13547,24004],[13548,23992],[13549,24031],[13550,24004],[13551,24004],[13552,23991],[13553,24007],[13554,24033],[13555,24036],[13556,24026],[13557,23997],[13558,23997],[13559,24032],[13560,24034],[13561,24030],[13562,24030],[13563,24027],[13564,24028],[13565,24020],[13566,24020],[13567,24029],[13568,24029],[13569,24004],[13570,24004],[13571,23992],[13572,24031],[13573,24004],[13574,24004],[13575,23991],[13576,24028],[13577,24033],[13578,24004],[13579,24004],[13580,24007],[13581,24033],[13582,24036],[13583,24026],[13584,23997],[13585,23997],[13586,24032],[13587,24034],[13588,24030],[13589,24030],[13590,24027],[13591,24028],[13592,24020],[13593,24020],[13594,24029],[13595,24029],[13596,24004],[13597,24004],[13598,23992],[13599,24031],[13600,24004],[13601,24004],[13602,23991],[13603,24007],[13604,24033],[13605,24026],[13606,23997],[13607,23997],[13608,24032],[13609,24027],[13610,24020],[13611,24020],[13612,24029],[13613,24029],[13614,24004],[13615,24004],[13616,23992],[13617,24031],[13618,24007],[13619,24033],[13620,24026],[13621,23997],[13622,23997],[13623,24032],[13624,24034],[13625,24030],[13626,24030],[13627,24020],[13628,24020],[13629,24004],[13630,24004],[13631,23997],[13632,23997],[13633,23997],[13634,23997],[13635,24020],[13636,24020],[13637,24020],[13638,24020],[13639,24004],[13640,24004],[13641,24004],[13642,24004],[13643,24007],[13644,24033],[13645,24032],[13646,23997],[13647,23997],[13648,24027],[13649,24020],[13650,24020],[13651,24004],[13652,24004],[13653,24004],[13654,24004],[13655,24007],[13656,24033],[13657,24036],[13658,24026],[13659,23997],[13660,23997],[13661,24032],[13662,24034],[13663,24030],[13664,24030],[13665,24027],[13666,24028],[13667,24020],[13668,24020],[13669,24029],[13670,24029],[13671,24004],[13672,24004],[13673,23992],[13674,24031],[13675,24004],[13676,24004],[13677,23991],[13678,24007],[13679,24033],[13680,24036],[13681,24026],[13682,23997],[13683,23997],[13684,24032],[13685,24034],[13686,24030],[13687,24030],[13688,24027],[13689,24028],[13690,24020],[13691,24020],[13692,24029],[13693,24029],[13694,24004],[13695,24004],[13696,23992],[13697,24031],[13698,24004],[13699,24004],[13700,23991],[13701,24007],[13702,24033],[13703,24036],[13704,24026],[13705,23997],[13706,23997],[13707,24032],[13708,24034],[13709,24030],[13710,24030],[13711,24027],[13712,24028],[13713,24020],[13714,24020],[13715,24029],[13716,24029],[13717,24004],[13718,24004],[13719,23992],[13720,24031],[13721,24004],[13722,24004],[13723,23991],[13724,24026],[13725,24027],[13726,23991],[13727,24026],[13728,24027],[13729,23991],[13730,24004],[13731,24004],[13732,24004],[13733,24004],[13734,24007],[13735,24033],[13736,24036],[13737,24026],[13738,23997],[13739,23997],[13740,24032],[13741,24034],[13742,24030],[13743,24030],[13744,24027],[13745,24028],[13746,24020],[13747,24020],[13748,24029],[13749,24029],[13750,24004],[13751,24004],[13752,23992],[13753,24031],[13754,24004],[13755,24004],[13756,23991],[13757,24007],[13758,24033],[13759,24032],[13760,24020],[13761,24020],[13762,24007],[13763,24033],[13764,24007],[13765,24033],[13766,24032],[13767,24017],[13768,24004],[13769,24004],[13770,24034],[13771,23991],[13772,24007],[13773,24033],[13774,24026],[13775,23997],[13776,23997],[13777,24032],[13778,24027],[13779,24028],[13780,24020],[13781,24020],[13782,24029],[13783,24029],[13784,24004],[13785,24004],[13786,23992],[13787,24031],[13788,23991],[13789,24017],[13790,24033],[13791,24020],[13792,24007],[13793,24033],[13794,24036],[13795,24026],[13796,23997],[13797,23997],[13798,24032],[13799,24034],[13800,24030],[13801,24030],[13802,24027],[13803,24028],[13804,24020],[13805,24020],[13806,24029],[13807,24029],[13808,24004],[13809,24004],[13810,23992],[13811,24031],[13812,24004],[13813,24004],[13814,23991],[13815,24007],[13816,24033],[13817,24036],[13818,24026],[13819,23997],[13820,23997],[13821,24032],[13822,24034],[13823,24030],[13824,24030],[13825,24027],[13826,24028],[13827,24020],[13828,24020],[13829,24029],[13830,24029],[13831,24004],[13832,24004],[13833,23992],[13834,24031],[13835,24004],[13836,24004],[13837,23991],[13838,23992],[13839,24031],[13840,23997],[13841,23997],[13842,24007],[13843,24007],[13844,24033],[13845,24033],[13846,24026],[13847,24026],[13848,24026],[13849,23997],[13850,23997],[13851,23997],[13852,23997],[13853,24032],[13854,24032],[13855,24028],[13856,24028],[13857,24020],[13858,24020],[13859,24020],[13860,24020],[13861,24004],[13862,24004],[13863,24004],[13864,24004],[13865,24007],[13866,24007],[13867,24033],[13868,24033],[13869,24026],[13870,23997],[13871,23997],[13872,23997],[13873,23997],[13874,24032],[13875,24032],[13876,24028],[13877,24028],[13878,24020],[13879,24020],[13880,24020],[13881,24020],[13882,24004],[13883,24004],[13884,24004],[13885,24004],[13886,23997],[13887,23997],[13888,24004],[13889,24004],[13890,24007],[13891,24033],[13892,24036],[13893,24026],[13894,23997],[13895,23997],[13896,24032],[13897,24034],[13898,24030],[13899,24030],[13900,24027],[13901,24028],[13902,24020],[13903,24020],[13904,24029],[13905,24029],[13906,24004],[13907,24004],[13908,23992],[13909,24031],[13910,24004],[13911,24004],[13912,23991],[13913,24007],[13914,24033],[13915,24036],[13916,24026],[13917,23997],[13918,23997],[13919,24032],[13920,24034],[13921,24030],[13922,24030],[13923,24027],[13924,24028],[13925,24020],[13926,24020],[13927,24029],[13928,24029],[13929,24004],[13930,24004],[13931,23992],[13932,24031],[13933,24004],[13934,24004],[13935,23991],[13936,24007],[13937,24033],[13938,24036],[13939,24026],[13940,23997],[13941,23997],[13942,24032],[13943,24034],[13944,24030],[13945,24030],[13946,24027],[13947,24028],[13948,24020],[13949,24020],[13950,24029],[13951,24029],[13952,24004],[13953,24004],[13954,23992],[13955,24031],[13956,24004],[13957,24004],[13958,23991],[13959,24020],[13960,24020],[13961,24004],[13962,24004],[13963,24007],[13964,24007],[13965,24007],[13966,24033],[13967,24033],[13968,24033],[13969,24036],[13970,24036],[13971,24036],[13972,24026],[13973,24026],[13974,24026],[13975,23997],[13976,23997],[13977,23997],[13978,23997],[13979,23997],[13980,23997],[13981,24032],[13982,24032],[13983,24032],[13984,24034],[13985,24034],[13986,24034],[13987,24030],[13988,24030],[13989,24030],[13990,24030],[13991,24030],[13992,24030],[13993,24027],[13994,24027],[13995,24027],[13996,24028],[13997,24028],[13998,24028],[13999,24020],[14000,24020],[14001,24020],[14002,24020],[14003,24020],[14004,24020],[14005,24029],[14006,24029],[14007,24029],[14008,24029],[14009,24029],[14010,24029],[14011,24004],[14012,24004],[14013,24004],[14014,24004],[14015,24004],[14016,24004],[14017,23992],[14018,23992],[14019,23992],[14020,24031],[14021,24031],[14022,24031],[14023,24004],[14024,24004],[14025,24004],[14026,24004],[14027,24004],[14028,24004],[14029,23991],[14030,23991],[14031,23991],[14032,24030],[14033,23997],[14034,24004],[14035,24017],[14036,23997],[14037,23997],[14038,23997],[14039,23997],[14040,24020],[14041,24020],[14042,24020],[14043,24020],[14044,24004],[14045,24004],[14046,24004],[14047,24004],[14048,24007],[14049,24033],[14050,24036],[14051,24026],[14052,23997],[14053,23997],[14054,24032],[14055,24034],[14056,24030],[14057,24030],[14058,24027],[14059,24028],[14060,24020],[14061,24020],[14062,24029],[14063,24029],[14064,24004],[14065,24004],[14066,23992],[14067,24031],[14068,24004],[14069,24004],[14070,23991],[14071,24007],[14072,24007],[14073,24033],[14074,24033],[14075,24036],[14076,24036],[14077,24036],[14078,24036],[14079,24036],[14080,24026],[14081,23997],[14082,23997],[14083,23997],[14084,23997],[14085,23997],[14086,23997],[14087,24032],[14088,24032],[14089,24034],[14090,24034],[14091,24034],[14092,24030],[14093,24030],[14094,24027],[14095,24028],[14096,24020],[14097,24020],[14098,24020],[14099,24020],[14100,24020],[14101,24020],[14102,24020],[14103,24020],[14104,24029],[14105,24029],[14106,24029],[14107,24029],[14108,24004],[14109,24004],[14110,24004],[14111,24004],[14112,24004],[14113,24004],[14114,24004],[14115,24004],[14116,24004],[14117,23992],[14118,23992],[14119,24031],[14120,24031],[14121,24004],[14122,24004],[14123,23991],[14124,24007],[14125,24033],[14126,24036],[14127,24026],[14128,23997],[14129,23997],[14130,24032],[14131,24034],[14132,24030],[14133,24030],[14134,24027],[14135,24028],[14136,24020],[14137,24020],[14138,24029],[14139,24029],[14140,24004],[14141,24004],[14142,23992],[14143,24031],[14144,24004],[14145,24004],[14146,23991],[14147,24004],[14148,23992],[14149,24031],[14150,23992],[14151,24031],[14152,24028],[14153,23997],[14154,23997],[14155,24028],[14156,24020],[14157,24020],[14158,24004],[14159,24004],[14160,24007],[14161,24033],[14162,24007],[14163,24033],[14164,24032],[14165,24034],[14166,24031],[14167,24007],[14168,24033],[14169,24032],[14170,24007],[14171,24033],[14172,24036],[14173,24026],[14174,23997],[14175,23997],[14176,24032],[14177,24034],[14178,24030],[14179,24030],[14180,24027],[14181,24028],[14182,24020],[14183,24020],[14184,24029],[14185,24029],[14186,24004],[14187,24004],[14188,23992],[14189,24031],[14190,24004],[14191,24004],[14192,23991],[14193,24034],[14194,24007],[14195,24033],[14196,23997],[14197,23997],[14198,24032],[14199,24034],[14200,24030],[14201,24030],[14202,24020],[14203,24020],[14204,24029],[14205,24029],[14206,24004],[14207,24004],[14208,23992],[14209,24031],[14210,24028],[14211,24028],[14212,24026],[14213,24027],[14214,24030],[14215,24020],[14216,24020],[14217,24004],[14218,24004],[14219,24007],[14220,24033],[14221,24036],[14222,24026],[14223,23997],[14224,23997],[14225,24032],[14226,24034],[14227,24030],[14228,24030],[14229,24027],[14230,24028],[14231,24020],[14232,24020],[14233,24029],[14234,24029],[14235,24004],[14236,24004],[14237,23992],[14238,24031],[14239,24004],[14240,24004],[14241,23991],[14242,24007],[14243,24033],[14244,24032],[14245,24020],[14246,24020],[14247,24028],[14248,24030],[14249,24034],[14250,24030],[14251,24030],[14252,24027],[14253,24029],[14254,24029],[14255,23992],[14256,24031],[14257,24007],[14258,24033],[14259,24032],[14260,24007],[14261,24033],[14262,24036],[14263,24026],[14264,23997],[14265,23997],[14266,24032],[14267,24034],[14268,24030],[14269,24030],[14270,24027],[14271,24028],[14272,24020],[14273,24020],[14274,24029],[14275,24029],[14276,24004],[14277,24004],[14278,23992],[14279,24031],[14280,24004],[14281,24004],[14282,23991],[14283,24007],[14284,24032],[14285,24007],[14286,24033],[14287,24032],[14288,24007],[14289,24033],[14290,24007],[14291,24033],[14292,24032],[14293,24007],[14294,24033],[14295,24036],[14296,24026],[14297,23997],[14298,23997],[14299,24032],[14300,24034],[14301,24030],[14302,24030],[14303,24027],[14304,24028],[14305,24020],[14306,24020],[14307,24029],[14308,24029],[14309,24004],[14310,24004],[14311,23992],[14312,24031],[14313,24004],[14314,24004],[14315,23991],[14316,24007],[14317,24033],[14318,24036],[14319,24026],[14320,23997],[14321,23997],[14322,24032],[14323,24034],[14324,24030],[14325,24030],[14326,24027],[14327,24028],[14328,24020],[14329,24020],[14330,24029],[14331,24029],[14332,24004],[14333,24004],[14334,23992],[14335,24031],[14336,24004],[14337,24004],[14338,23991],[14339,24007],[14340,24033],[14341,24036],[14342,24026],[14343,23997],[14344,23997],[14345,24032],[14346,24034],[14347,24030],[14348,24030],[14349,24027],[14350,24028],[14351,24020],[14352,24020],[14353,24029],[14354,24029],[14355,24004],[14356,24004],[14357,23992],[14358,24031],[14359,24004],[14360,24004],[14361,23991],[14362,24007],[14363,24033],[14364,24036],[14365,24026],[14366,23997],[14367,23997],[14368,24032],[14369,24034],[14370,24030],[14371,24030],[14372,24027],[14373,24028],[14374,24020],[14375,24020],[14376,24029],[14377,24029],[14378,24004],[14379,24004],[14380,23992],[14381,24031],[14382,24004],[14383,24004],[14384,23991],[14385,24007],[14386,24033],[14387,24036],[14388,24026],[14389,23997],[14390,23997],[14391,24032],[14392,24034],[14393,24030],[14394,24030],[14395,24027],[14396,24028],[14397,24020],[14398,24020],[14399,24029],[14400,24029],[14401,24004],[14402,24004],[14403,23992],[14404,24031],[14405,24004],[14406,24004],[14407,23991],[14408,24007],[14409,24033],[14410,24036],[14411,24026],[14412,23997],[14413,23997],[14414,24032],[14415,24034],[14416,24030],[14417,24030],[14418,24027],[14419,24028],[14420,24020],[14421,24020],[14422,24029],[14423,24029],[14424,24004],[14425,24004],[14426,23992],[14427,24031],[14428,24004],[14429,24004],[14430,23991],[14431,24007],[14432,24033],[14433,24036],[14434,24026],[14435,23997],[14436,23997],[14437,24032],[14438,24034],[14439,24030],[14440,24030],[14441,24027],[14442,24028],[14443,24020],[14444,24020],[14445,24029],[14446,24029],[14447,24004],[14448,24004],[14449,23992],[14450,24031],[14451,24004],[14452,24004],[14453,23991],[14454,24007],[14455,24033],[14456,24036],[14457,24026],[14458,23997],[14459,23997],[14460,24032],[14461,24034],[14462,24030],[14463,24030],[14464,24027],[14465,24028],[14466,24020],[14467,24020],[14468,24029],[14469,24029],[14470,24004],[14471,24004],[14472,23992],[14473,24031],[14474,24004],[14475,24004],[14476,23991],[14477,24007],[14478,24033],[14479,24036],[14480,24026],[14481,23997],[14482,23997],[14483,24032],[14484,24034],[14485,24030],[14486,24030],[14487,24027],[14488,24028],[14489,24020],[14490,24020],[14491,24029],[14492,24029],[14493,24004],[14494,24004],[14495,23992],[14496,24031],[14497,24004],[14498,24004],[14499,23991],[14500,24034],[14501,24030],[14502,24030],[14503,24027],[14504,24029],[14505,24029],[14506,23992],[14507,24031],[14508,24031],[14509,24031],[14510,24007],[14511,24033],[14512,24032],[14513,24020],[14514,24020],[14515,24007],[14516,24033],[14517,23997],[14518,23997],[14519,24032],[14520,24020],[14521,24020],[14522,24004],[14523,24004],[14524,24027],[14525,24029],[14526,24029],[14527,23992],[14528,24031],[14529,24007],[14530,24033],[14531,24030],[14532,24020],[14533,24020],[14534,24028],[14535,24030],[14536,24030],[14537,24028],[14538,24004],[14539,24004],[14540,24007],[14541,24033],[14542,24026],[14543,23997],[14544,23997],[14545,24032],[14546,24030],[14547,24020],[14548,24020],[14549,24004],[14550,24004],[14551,24020],[14552,24020],[14553,24004],[14554,24004],[14555,23992],[14556,24031],[14557,23992],[14558,24031],[14559,24031],[14560,24031],[14561,23992],[14562,24031],[14563,23992],[14564,24031],[14565,24031],[14566,24031],[14567,23992],[14568,24031],[14569,23992],[14570,24031],[14571,24031],[14572,24031],[14573,24031],[14574,24031],[14575,24031],[14576,24031],[14577,23997],[14578,23997],[14579,24004],[14580,24004],[14581,24026],[14582,23997],[14583,23997],[14584,24032],[14585,24027],[14586,24020],[14587,24020],[14588,24004],[14589,24004],[14590,24007],[14591,24033],[14592,24032],[14593,24032],[14594,24026],[14595,23997],[14596,23997],[14597,24032],[14598,24027],[14599,24020],[14600,24020],[14601,24004],[14602,24004],[14603,24007],[14604,24033],[14605,24032],[14606,24032],[14607,24007],[14608,24007],[14609,24033],[14610,24033],[14611,24026],[14612,24026],[14613,23997],[14614,23997],[14615,23997],[14616,23997],[14617,24032],[14618,24032],[14619,24027],[14620,24028],[14621,24028],[14622,24020],[14623,24020],[14624,24020],[14625,24020],[14626,24004],[14627,24004],[14628,24004],[14629,24004],[14630,24007],[14631,24007],[14632,24033],[14633,24033],[14634,24026],[14635,23997],[14636,23997],[14637,23997],[14638,23997],[14639,24032],[14640,24032],[14641,24028],[14642,24028],[14643,24020],[14644,24020],[14645,24020],[14646,24020],[14647,24004],[14648,24004],[14649,24004],[14650,24004],[14651,24031],[14652,24026],[14653,23997],[14654,23997],[14655,24028],[14656,24020],[14657,24020],[14658,24004],[14659,24004],[14660,24007],[14661,24033],[14662,24036],[14663,24026],[14664,23997],[14665,23997],[14666,24032],[14667,24034],[14668,24030],[14669,24027],[14670,24028],[14671,24020],[14672,24020],[14673,24029],[14674,24029],[14675,24004],[14676,24004],[14677,23992],[14678,24031],[14679,24031],[14680,24028],[14681,24034],[14682,24004],[14683,24004],[14684,24030],[14685,24030],[14686,24004],[14687,24004],[14688,24004],[14689,24004],[14690,24020],[14691,24020],[14692,24004],[14693,24004],[14694,24007],[14695,24033],[14696,24026],[14697,23997],[14698,23997],[14699,24032],[14700,24027],[14701,24028],[14702,24020],[14703,24020],[14704,24029],[14705,24029],[14706,24004],[14707,24004],[14708,23992],[14709,24031],[14710,23991],[14711,23991],[14712,24027],[14713,24004],[14714,24004],[14715,24004],[14716,24004],[14717,23997],[14718,23997],[14719,24032],[14720,24031],[14721,24007],[14722,24032],[14723,23992],[14724,24031],[14725,24031],[14726,23992],[14727,24031],[14728,24026],[14729,24027],[14730,23991],[14731,24031],[14732,23997],[14733,23997],[14734,23997],[14735,23992],[14736,24031],[14737,23992],[14738,24031],[14739,23992],[14740,24031],[14741,24004],[14742,24004],[14743,24031],[14744,24030],[14745,24030],[14746,24030],[14747,24005],[14748,24017],[14749,24032],[14750,24004],[14751,24004],[14752,23997],[14753,23997],[14754,24028],[14755,24004],[14756,24004],[14757,23992],[14758,24031],[14759,24034],[14760,24007],[14761,24033],[14762,23997],[14763,23997],[14764,23997],[14765,23997],[14766,24032],[14767,24020],[14768,24020],[14769,24020],[14770,24020],[14771,24004],[14772,24004],[14773,24004],[14774,24004],[14775,24007],[14776,24033],[14777,24032],[14778,24007],[14779,24033],[14780,24032],[14781,24026],[14782,24026],[14783,24007],[14784,24033],[14785,24032],[14786,23992],[14787,24031],[14788,24004],[14789,24004],[14790,24004],[14791,24004],[14792,24004],[14793,24004],[14794,24007],[14795,24017],[14796,24007],[14797,24033],[14798,24032],[14799,24020],[14800,24020],[14801,24031],[14802,24030],[14803,23997],[14804,23997],[14805,24020],[14806,24020],[14807,24029],[14808,24029],[14809,24004],[14810,24004],[14811,24004],[14812,24004],[14813,24030],[14814,24026],[14815,23997],[14816,23997],[14817,23997],[14818,23997],[14819,23997],[14820,23997],[14821,24027],[14822,24028],[14823,24020],[14824,24020],[14825,24029],[14826,24029],[14827,24004],[14828,24004],[14829,24026],[14830,23997],[14831,23997],[14832,23997],[14833,23997],[14834,24028],[14835,24020],[14836,24020],[14837,24029],[14838,24029],[14839,24004],[14840,24004],[14841,24026],[14842,24026],[14843,24020],[14844,24020],[14845,24020],[14846,24020],[14847,24004],[14848,24004],[14849,24004],[14850,24004],[14851,24017],[14852,24034],[14853,24030],[14854,24030],[14855,23992],[14856,24031],[14857,23992],[14858,24031],[14859,23992],[14860,24031],[14861,23992],[14862,24031],[14863,23997],[14864,24004],[14865,24031],[14866,23997],[14867,24030],[14868,24004],[14869,23992],[14870,23997],[14871,23997],[14872,24020],[14873,24020],[14874,24029],[14875,24029],[14876,24004],[14877,24004],[14878,23992],[14879,24031],[14880,23997],[14881,24004],[14882,23992],[14883,24031],[14884,23992],[14885,24031],[14886,24031],[14887,24032],[14888,24007],[14889,24033],[14890,23997],[14891,23997],[14892,24032],[14893,24020],[14894,24020],[14895,24029],[14896,24029],[14897,24004],[14898,24004],[14899,24007],[14900,24033],[14901,23997],[14902,23997],[14903,24032],[14904,24020],[14905,24020],[14906,24029],[14907,24029],[14908,24004],[14909,24004],[14910,24007],[14911,24033],[14912,23997],[14913,23997],[14914,24032],[14915,24020],[14916,24020],[14917,24029],[14918,24029],[14919,24004],[14920,24004],[14921,24007],[14922,24033],[14923,23997],[14924,23997],[14925,24032],[14926,24020],[14927,24020],[14928,24029],[14929,24029],[14930,24004],[14931,24004],[14932,24007],[14933,24033],[14934,24032],[14935,24007],[14936,24033],[14937,24036],[14938,24026],[14939,23997],[14940,23997],[14941,24032],[14942,24034],[14943,24030],[14944,24030],[14945,24027],[14946,24028],[14947,24020],[14948,24020],[14949,24029],[14950,24029],[14951,24004],[14952,24004],[14953,23992],[14954,24031],[14955,24004],[14956,24004],[14957,23991],[14958,24004],[14959,24004],[14960,24036],[14961,24036],[14962,24007],[14963,24004],[14964,24034],[14965,24030],[14966,24030],[14967,24029],[14968,24029],[14969,24004],[14970,24004],[14971,23997],[14972,23997],[14973,24020],[14974,24020],[14975,24029],[14976,24029],[14977,24004],[14978,24004],[14979,23997],[14980,24004],[14981,24007],[14982,24033],[14983,23997],[14984,23997],[14985,24032],[14986,24020],[14987,24020],[14988,24029],[14989,24029],[14990,24004],[14991,24004],[14992,24032],[14993,24020],[14994,24007],[14995,24033],[14996,23997],[14997,23997],[14998,24032],[14999,24034],[15000,24030],[15001,24030],[15002,24020],[15003,24020],[15004,24029],[15005,24029],[15006,24004],[15007,24004],[15008,23992],[15009,24031],[15010,24007],[15011,24033],[15012,23997],[15013,23997],[15014,24032],[15015,24020],[15016,24020],[15017,24029],[15018,24029],[15019,24004],[15020,24004],[15021,23997],[15022,23997],[15023,24020],[15024,24020],[15025,24029],[15026,24029],[15027,24028],[15028,24029],[15029,24027],[15030,24029],[15031,24027],[15032,24029],[15033,24030],[15034,24030],[15035,24027],[15036,24027],[15037,24029],[15038,24029],[15039,23992],[15040,23992],[15041,24030],[15042,24029],[15043,24031],[15044,24031],[15045,24030],[15046,24027],[15047,24029],[15048,24031],[15049,24031],[15050,24027],[15051,24029],[15052,24029],[15053,24027],[15054,24029],[15055,24029],[15056,24030],[15057,24030],[15058,24027],[15059,24027],[15060,24029],[15061,23992],[15062,23992],[15063,24030],[15064,24031],[15065,24030],[15066,24031],[15067,24007],[15068,24033],[15069,24032],[15070,23992],[15071,24031],[15072,24034],[15073,24007],[15074,24033],[15075,24026],[15076,23997],[15077,23997],[15078,24032],[15079,24027],[15080,24020],[15081,24020],[15082,24029],[15083,24029],[15084,24004],[15085,24004],[15086,23992],[15087,24031],[15088,24007],[15089,24033],[15090,24036],[15091,24026],[15092,23997],[15093,23997],[15094,24032],[15095,24034],[15096,24030],[15097,24030],[15098,24027],[15099,24028],[15100,24020],[15101,24020],[15102,24029],[15103,24029],[15104,24004],[15105,24004],[15106,23992],[15107,24031],[15108,24004],[15109,24004],[15110,23991],[15111,24007],[15112,24033],[15113,24036],[15114,24026],[15115,23997],[15116,23997],[15117,24032],[15118,24034],[15119,24030],[15120,24030],[15121,24027],[15122,24028],[15123,24020],[15124,24020],[15125,24029],[15126,24029],[15127,24004],[15128,24004],[15129,23992],[15130,24031],[15131,24004],[15132,24004],[15133,23991],[15134,24007],[15135,24033],[15136,24036],[15137,24026],[15138,23997],[15139,23997],[15140,24032],[15141,24034],[15142,24030],[15143,24030],[15144,24027],[15145,24028],[15146,24020],[15147,24020],[15148,24029],[15149,24029],[15150,24004],[15151,24004],[15152,23992],[15153,24031],[15154,24004],[15155,24004],[15156,23991],[15157,24007],[15158,24033],[15159,24036],[15160,24026],[15161,23997],[15162,23997],[15163,24032],[15164,24034],[15165,24030],[15166,24030],[15167,24027],[15168,24028],[15169,24020],[15170,24020],[15171,24029],[15172,24029],[15173,24004],[15174,24004],[15175,23992],[15176,24031],[15177,24004],[15178,24004],[15179,23991],[15180,24004],[15181,24004],[15182,24007],[15183,24033],[15184,24036],[15185,24026],[15186,23997],[15187,23997],[15188,24032],[15189,24034],[15190,24030],[15191,24030],[15192,24027],[15193,24028],[15194,24020],[15195,24020],[15196,24029],[15197,24029],[15198,24004],[15199,24004],[15200,23992],[15201,24031],[15202,24004],[15203,24004],[15204,23991],[15205,24007],[15206,24033],[15207,24036],[15208,24026],[15209,23997],[15210,23997],[15211,24032],[15212,24034],[15213,24030],[15214,24030],[15215,24027],[15216,24028],[15217,24020],[15218,24020],[15219,24029],[15220,24029],[15221,24004],[15222,24004],[15223,23992],[15224,24031],[15225,24004],[15226,24004],[15227,23991],[15228,24007],[15229,24033],[15230,24036],[15231,24026],[15232,23997],[15233,23997],[15234,24032],[15235,24034],[15236,24030],[15237,24030],[15238,24027],[15239,24028],[15240,24020],[15241,24020],[15242,24029],[15243,24029],[15244,24004],[15245,24004],[15246,23992],[15247,24031],[15248,24004],[15249,24004],[15250,23991],[15251,24007],[15252,24033],[15253,24032],[15254,24030],[15255,24007],[15256,24033],[15257,24036],[15258,24026],[15259,23997],[15260,23997],[15261,24032],[15262,24034],[15263,24030],[15264,24030],[15265,24027],[15266,24028],[15267,24020],[15268,24020],[15269,24029],[15270,24029],[15271,24004],[15272,24004],[15273,23992],[15274,24031],[15275,24004],[15276,24004],[15277,23991],[15278,24004],[15279,24004],[15280,24030],[15281,24028],[15282,24033],[15283,24020],[15284,24007],[15285,24033],[15286,24036],[15287,24026],[15288,23997],[15289,23997],[15290,24032],[15291,24034],[15292,24030],[15293,24030],[15294,24027],[15295,24028],[15296,24020],[15297,24020],[15298,24029],[15299,24029],[15300,24004],[15301,24004],[15302,23992],[15303,24031],[15304,24004],[15305,24004],[15306,23991],[15307,24036],[15308,24007],[15309,24033],[15310,24032],[15311,24020],[15312,24020],[15313,23992],[15314,24031],[15315,24004],[15316,24004],[15317,24004],[15318,24004],[15319,24004],[15320,23992],[15321,24031],[15322,24036],[15323,23997],[15324,23997],[15325,24029],[15326,24029],[15327,24004],[15328,24004],[15329,24004],[15330,24004],[15331,24007],[15332,24033],[15333,24032],[15334,23997],[15335,24004],[15336,24004],[15337,24033],[15338,23997],[15339,24004],[15340,24004],[15341,24033],[15342,24036],[15343,23997],[15344,23997],[15345,24029],[15346,24029],[15347,24004],[15348,24004],[15349,24004],[15350,24004],[15351,24007],[15352,24033],[15353,24032],[15354,23997],[15355,24004],[15356,23997],[15357,24004],[15358,24004],[15359,24033],[15360,24036],[15361,23997],[15362,24029],[15363,24004],[15364,24004],[15365,24033],[15366,24007],[15367,24033],[15368,24026],[15369,23997],[15370,23997],[15371,23997],[15372,23997],[15373,24032],[15374,24028],[15375,24020],[15376,24020],[15377,24020],[15378,24020],[15379,24004],[15380,24004],[15381,24004],[15382,24004],[15383,23997],[15384,23997],[15385,24004],[15386,24004],[15387,24015],[15388,24015],[15389,24015],[15390,24015],[15391,24116],[15392,24116],[15393,24018],[15394,24018],[15395,24018],[15396,24018],[15397,24018],[15398,24018],[15399,24018],[15400,24018],[15401,24018],[15402,24018],[15403,24018],[15404,24018],[15405,24018],[15406,24018],[15407,24018],[15408,24018],[15409,24018],[15410,24018],[15411,24018],[15412,24018],[15413,24018],[15414,24018],[15415,24018],[15417,24018],[15418,24018],[15419,24018],[15420,24018],[15421,24018],[15422,24018],[15423,24018],[15424,24018],[15425,24018],[15426,24018],[15427,24018],[15428,24018],[15429,24018],[15430,24018],[15431,24018],[15432,24018],[15433,24018],[15434,24018],[15435,24018],[15436,24018],[15437,24018],[15438,24018],[15439,24018],[15440,24018],[15441,24018],[15442,24018],[15443,24018],[15444,24018],[15445,24018],[15446,24018],[15447,24018],[15448,24018],[15449,24018],[15450,24018],[15451,24018],[15452,24018],[15453,24018],[15454,24018],[15455,24018],[15457,24018],[15459,24018],[15461,24018],[15462,24018],[15463,24018],[15464,24018],[15466,24018],[15468,24018],[15469,24018],[15470,24018],[15471,24018],[15472,24018],[15473,24018],[15474,24018],[15475,24018],[15476,24035],[15477,24035],[15478,24035],[15479,24035],[15480,24035],[15481,24035],[15482,24035],[15483,24035],[15484,24035],[15485,24035],[15486,24012],[15487,24012],[15488,24012],[15489,24012],[15490,24012],[15491,24012],[15492,24012],[15493,24012],[15494,24012],[15495,24012],[15496,24012],[15497,24012],[15498,24012],[15499,24012],[15500,24012],[15501,24012],[15502,24012],[15503,24012],[15504,24012],[15505,24012],[15506,24012],[15507,24012],[15508,24012],[15509,24012],[15510,24012],[15511,24012],[15512,24012],[15513,24012],[15514,24012],[15515,24012],[15516,24012],[15517,24012],[15518,24012],[15519,24012],[15520,24012],[15521,24012],[15522,24012],[15523,24012],[15524,24012],[15525,24012],[15526,24012],[15527,24012],[15528,24012],[15529,24012],[15530,24012],[15531,24012],[15532,24012],[15533,24012],[15534,24012],[15535,24012],[15536,24012],[15537,24012],[15538,24012],[15539,24012],[15540,24012],[15541,24012],[15542,24012],[15543,24012],[15544,24012],[15545,24012],[15546,24012],[15547,24012],[15548,24012],[15549,24012],[15550,24012],[15551,24012],[15552,24012],[15553,24012],[15554,24012],[15555,24012],[15556,24012],[15557,24012],[15558,24012],[15559,24012],[15560,24012],[15561,24012],[15562,24012],[15563,24012],[15564,24012],[15565,24012],[15566,24012],[15567,24012],[15568,24012],[15569,24012],[15570,24012],[15571,24012],[15572,24012],[15573,24012],[15574,24012],[15575,24012],[15576,24012],[15577,24012],[15578,24012],[15579,24012],[15580,24012],[15581,24012],[15582,24012],[15583,24012],[15584,24012],[15585,24012],[15586,24012],[15587,24012],[15588,24012],[15589,24012],[15590,24012],[15591,24012],[15592,24012],[15593,24012],[15594,24012],[15595,24012],[15596,24012],[15597,24012],[15598,24012],[15599,24012],[15600,24012],[15601,24012],[15602,24012],[15603,24012],[15604,24012],[15605,24010],[15606,24010],[15607,24003],[15608,24010],[15609,24010],[15610,24010],[15611,24010],[15612,24010],[15613,24010],[15614,24010],[15615,24010],[15616,24010],[15617,24010],[15618,24010],[15619,24010],[15620,24010],[15621,24003],[15622,24003],[15623,24010],[15624,24010],[15625,24117],[15626,24117],[15627,24117],[15628,24117],[15629,24117],[15630,24117],[15631,24002],[15632,24002],[15633,24002],[15634,24002],[15635,24002],[15636,24002],[15637,24002],[15638,24002],[15639,24002],[15640,24002],[15641,24002],[15642,24002],[15643,24002],[15644,24002],[15645,24002],[15646,24002],[15647,24002],[15648,24002],[15649,24002],[15650,24002],[15651,24002],[15652,24002],[15653,24002],[15654,24002],[15655,24002],[15656,24002],[15657,24002],[15658,24002],[15659,24002],[15660,24002],[15661,24002],[15662,24002],[15663,24002],[15664,24002],[15665,24002],[15666,24002],[15667,24002],[15668,24002],[15669,24002],[15670,24002],[15671,24002],[15672,24002],[15673,24002],[15674,24002],[15675,24002],[15676,24002],[15677,24002],[15678,24002],[15679,24002],[15680,24002],[15681,24002],[15682,24002],[15683,24002],[15684,24002],[15685,24002],[15686,24002],[15687,24002],[15688,24002],[15689,24002],[15690,24002],[15691,24002],[15692,24002],[15693,24002],[15694,24002],[15695,24002],[15696,24002],[15697,24002],[15698,24002],[15699,24002],[15700,24002],[15701,24002],[15702,24002],[15703,24002],[15704,24002],[15705,24002],[15706,24002],[15707,24002],[15708,24002],[15709,24002],[15710,24002],[15711,24002],[15712,24002],[15713,24002],[15714,24002],[15715,24002],[15716,24002],[15717,24002],[15718,24002],[15719,24002],[15720,24002],[15721,24002],[15722,24002],[15723,24002],[15724,24002],[15725,24002],[15726,24002],[15727,24002],[15728,24002],[15729,24002],[15730,24002],[15731,24002],[15732,24002],[15733,24002],[15734,24002],[15735,24002],[15736,24002],[15737,24002],[15738,24002],[15739,24002],[15740,24002],[15741,24002],[15742,24002],[15743,24002],[15744,24002],[15745,24002],[15746,24002],[15747,24002],[15748,24002],[15749,24002],[15750,24002],[15751,24002],[15752,24002],[15753,24002],[15754,24002],[15755,24002],[15756,24002],[15757,24002],[15758,24002],[15759,24002],[15760,24002],[15761,24002],[15762,24002],[15763,24002],[15764,24002],[15765,24002],[15766,24002],[15767,24002],[15768,24002],[15769,24002],[15770,24002],[15771,24002],[15772,24002],[15773,24002],[15774,24002],[15775,24002],[15776,24002],[15777,24002],[15778,24002],[15779,24002],[15780,24002],[15781,24002],[15782,24002],[15783,24002],[15784,24002],[15785,24002],[15786,24002],[15787,24002],[15788,24002],[15789,24002],[15790,24002],[15791,24002],[15792,24002],[15793,24002],[15794,24002],[15795,24039],[15796,24039],[15797,24039],[15798,24039],[15799,24039],[15800,24039],[15801,24039],[15802,24039],[15803,24039],[15804,24039],[15805,24039],[15806,24039],[15807,24039],[15808,24039],[15809,24039],[15810,24039],[15811,24039],[15812,24039],[15813,24039],[15814,24039],[15815,24039],[15816,24039],[15817,24039],[15818,24039],[15819,24039],[15820,24039],[15821,24039],[15822,24039],[15823,24039],[15824,24039],[15825,23990],[15826,23990],[15827,23990],[15828,23990],[15829,23990],[15830,23990],[15831,23990],[15832,23990],[15833,23990],[15834,23995],[15835,23995],[15836,23995],[15837,23995],[15838,23995],[15839,23995],[15840,23995],[15841,23995],[15842,23995],[15843,23995],[15844,23995],[15845,23995],[15846,23995],[15847,23995],[15848,23995],[15849,23995],[15850,23995],[15851,23995],[15852,23995],[15853,23995],[15854,23995],[15855,23995],[15856,23995],[15857,23995],[15858,23995],[15859,23995],[15860,23995],[15861,23995],[15862,23995],[15863,23995],[15864,23995],[15865,23995],[15866,23995],[15867,23995],[15868,23995],[15869,23995],[15870,23995],[15871,23995],[15872,23995],[15873,23995],[15874,23995],[15875,23995],[15876,23995],[15877,23995],[15878,23995],[15879,23995],[15880,23995],[15881,23995],[15882,23995],[15883,23995],[15884,23995],[15885,23995],[15886,23995],[15887,23995],[15888,23995],[15889,23995],[15890,23995],[15891,23995],[15892,23995],[15893,23995],[15894,23995],[15895,23995],[15896,23995],[15897,23995],[15898,23995],[15899,23995],[15900,23995],[15901,23995],[15902,23995],[15903,23995],[15904,23995],[15905,23995],[15906,23995],[15907,23995],[15908,23995],[15909,23995],[15910,23995],[15911,23995],[15912,23995],[15913,23995],[15914,23995],[15915,23995],[15916,23995],[15917,23995],[15918,23995],[15919,23995],[15920,23995],[15921,23995],[15922,23995],[15923,23995],[15924,23995],[15925,23995],[15926,23995],[15927,23995],[15928,23995],[15929,23995],[15930,23995],[15931,23995],[15932,23995],[15933,23995],[15934,23995],[15935,23995],[15936,23995],[15937,23995],[15938,23995],[15939,23995],[15940,23995],[15941,23995],[15942,23995],[15943,23995],[15944,23995],[15945,23995],[15946,23995],[15947,23995],[15948,23995],[15949,23995],[15950,23995],[15951,23995],[15952,23995],[15953,23995],[15954,23995],[15955,23995],[15956,23995],[15957,23995],[15958,23995],[15959,23995],[15960,23995],[15961,23995],[15962,23995],[15963,23995],[15964,23995],[15965,23995],[15966,23995],[15967,23995],[15968,23995],[15969,23995],[15970,23995],[15971,23995],[15972,23995],[15973,23995],[15974,23995],[15975,23995],[15976,23995],[15977,23995],[15978,23995],[15979,23995],[15980,23995],[15981,23995],[15982,23995],[15983,23995],[15984,24001],[15985,24001],[15986,24001],[15987,24001],[15988,24001],[15989,24001],[15990,24001],[15991,24001],[15992,24001],[15993,24001],[15994,24001],[15995,24001],[15996,24001],[15997,24001],[15998,24001],[15999,24001],[16000,24001],[16001,24001],[16002,24001],[16003,24001],[16004,24001],[16005,24001],[16006,24001],[16007,24001],[16008,24001],[16009,24001],[16010,24001],[16011,24001],[16012,24001],[16013,24001],[16014,24001],[16015,24001],[16016,24001],[16017,24001],[16018,24001],[16019,24001],[16020,24001],[16021,24001],[16022,24001],[16023,24001],[16024,24001],[16025,24001],[16026,24001],[16027,24001],[16028,24001],[16029,24001],[16030,24001],[16031,24001],[16032,24001],[16033,24001],[16034,24001],[16035,24001],[16036,24001],[16037,24001],[16038,24001],[16039,24001],[16040,24001],[16041,24001],[16042,24001],[16043,24001],[16044,24001],[16045,24001],[16046,24001],[16047,24001],[16048,24001],[16049,24001],[16050,24001],[16051,24001],[16052,24001],[16053,24001],[16054,24001],[16055,24001],[16056,24001],[16057,24001],[16058,24001],[16059,24001],[16060,24001],[16061,24001],[16062,24001],[16063,24001],[16064,24001],[16065,24001],[16066,24001],[16067,24001],[16068,24001],[16069,24001],[16070,24001],[16071,24001],[16072,24001],[16073,24001],[16074,24001],[16075,24001],[16076,24001],[16077,24001],[16078,24001],[16079,24001],[16080,24001],[16081,24001],[16082,24001],[16083,24001],[16084,24001],[16085,24001],[16086,24001],[16087,24001],[16088,24001],[16089,24001],[16090,24001],[16091,24001],[16092,24001],[16093,24001],[16094,24001],[16095,24001],[16096,24001],[16097,24001],[16098,24001],[16099,24001],[16100,24001],[16101,24001],[16102,24001],[16103,24001],[16104,24001],[16105,24001],[16106,24001],[16107,24001],[16108,24001],[16109,24001],[16110,24001],[16111,24001],[16112,24001],[16113,24001],[16114,24001],[16115,24001],[16116,24001],[16117,24001],[16118,24001],[16119,24001],[16120,24001],[16121,24001],[16122,24001],[16123,24001],[16124,24001],[16125,24001],[16126,24001],[16127,24001],[16128,24001],[16129,24001],[16130,24001],[16131,24001],[16132,24001],[16133,24001],[16134,24001],[16135,24001],[16136,24001],[16137,24001],[16138,24001],[16139,24001],[16140,24001],[16141,24001],[16142,24001],[16143,24001],[16144,24001],[16145,24001],[16146,24001],[16147,24001],[16148,24001],[16149,24001],[16150,24001],[16151,24001],[16152,24001],[16153,24001],[16154,24001],[16155,24001],[16156,24001],[16157,24001],[16158,24001],[16159,24001],[16160,23998],[16161,23998],[16162,24002],[16163,23998],[16164,23998],[16165,23998],[16166,23998],[16167,23998],[16168,23998],[16169,23998],[16170,23998],[16171,23998],[16172,23998],[16173,23998],[16174,23998],[16175,23998],[16176,23998],[16177,23998],[16178,23998],[16179,23998],[16180,23998],[16181,23998],[16182,23998],[16183,23998],[16184,23998],[16185,23998],[16186,23998],[16187,23998],[16188,23998],[16189,23998],[16190,23998],[16191,23986],[16192,23986],[16193,23987],[16194,23986],[16195,23986],[16196,23986],[16197,23986],[16198,23986],[16199,23986],[16200,23987],[16201,23986],[16202,23986],[16203,23987],[16204,23986],[16205,23986],[16206,23986],[16207,23986],[16208,23986],[16209,23986],[16210,23986],[16211,23867],[16212,23867],[16213,23867],[16214,23867],[16215,23867],[16216,23867],[16217,23867],[16218,23867],[16219,23867],[16220,23867],[16221,23867],[16222,23867],[16223,23867],[16224,23867],[16225,23867],[16226,23867],[16227,23867],[16228,23867],[16229,23867],[16230,23867],[16231,23867],[16232,23867],[16233,23867],[16234,23867],[16235,23867],[16236,23867],[16237,23867],[16238,23867],[16239,23867],[16240,23867],[16241,23867],[16242,23867],[16243,23867],[16244,23867],[16245,23867],[16246,23867],[16247,23867],[16248,23867],[16249,23867],[16250,23867],[16251,23867],[16252,23867],[16253,23867],[16254,23867],[16255,23867],[16256,23867],[16257,23867],[16258,23867],[16259,23867],[16260,23867],[16261,23867],[16262,23867],[16263,23867],[16264,23867],[16265,23867],[16266,23867],[16267,23867],[16268,23867],[16269,23867],[16270,23867],[16271,23867],[16272,23867],[16273,23867],[16274,23867],[16275,23867],[16276,23867],[16277,23867],[16278,23867],[16279,23867],[16280,23867],[16281,23867],[16282,23867],[16283,23867],[16284,23867],[16285,23867],[16286,23867],[16287,23867],[16288,23867],[16289,23867],[16290,23867],[16291,23867],[16292,23867],[16293,23867],[16294,23867],[16295,23867],[16296,23867],[16297,23867],[16298,23867],[16299,23867],[16300,23867],[16301,23867],[16302,23867],[16303,23867],[16304,23867],[16305,23867],[16306,23867],[16307,23867],[16308,23867],[16309,23867],[16310,23867],[16311,23867],[16312,23867],[16313,23867],[16314,23867],[16315,23867],[16316,23867],[16317,23867],[16318,23867],[16319,23867],[16320,23867],[16321,23867],[16322,23867],[16323,23867],[16324,23867],[16325,23867],[16326,23867],[16327,23867],[16328,23867],[16329,23867],[16330,23867],[16331,23867],[16332,23867],[16333,23867],[16334,23867],[16335,23867],[16336,23867],[16337,23867],[16338,23867],[16339,23867],[16340,23867],[16341,23867],[16342,23867],[16343,23867],[16344,23867],[16345,23867],[16346,23867],[16347,23867],[16348,23867],[16349,23867],[16350,23867],[16351,23867],[16352,23867],[16353,23867],[16354,23867],[16355,23867],[16356,23867],[16357,23867],[16358,23867],[16359,23867],[16360,23867],[16361,23867],[16365,23958],[16366,23958],[16367,23958],[16368,23958],[16369,23958],[16370,23958],[16371,23958],[16372,23958],[16373,23958],[16374,23958],[16375,23958],[16376,23958],[16377,23958],[16378,23958],[16379,23958],[16380,23958],[16381,23958],[16382,23958],[16383,23958],[16384,23958],[16385,23958],[16386,23958],[16387,23958],[16388,23958],[16389,23958],[16390,23958],[16391,23958],[16392,23958],[16393,23958],[16394,23958],[16395,23958],[16396,23958],[16397,23958],[16398,23958],[16399,23958],[16400,23958],[16401,23958],[16402,23958],[16403,23958],[16404,23958],[16405,23958],[16406,23958],[16407,23958],[16408,23958],[16409,23958],[16410,23958],[16411,23958],[16412,23958],[16413,23958],[16414,23874],[16415,23874],[16416,23874],[16417,23874],[16418,23874],[16419,23874],[16420,23874],[16421,23874],[16422,23874],[16423,23874],[16424,23874],[16425,23874],[16426,23874],[16427,23874],[16428,23874],[16429,23874],[16430,23874],[16431,23874],[16432,23874],[16433,23874],[16434,23874],[16435,23874],[16436,23874],[16437,23874],[16438,23874],[16439,23874],[16440,23874],[16441,23874],[16442,23874],[16443,23874],[16444,23874],[16445,23874],[16446,23874],[16447,23874],[16448,23874],[16449,23874],[16450,23874],[16451,23874],[16452,23874],[16453,23874],[16454,23874],[16455,23874],[16456,23874],[16457,23874],[16458,23874],[16459,23874],[16460,23874],[16461,23874],[16462,23874],[16463,23874],[16464,23874],[16465,23874],[16466,23874],[16467,23874],[16468,23874],[16469,23874],[16470,23874],[16471,23874],[16472,23874],[16473,23874],[16474,23874],[16475,23874],[16476,23874],[16477,23874],[16478,23874],[16479,23874],[16480,23874],[16481,23874],[16482,23874],[16483,23874],[16484,23874],[16485,23874],[16486,23874],[16487,23874],[16488,23874],[16489,23874],[16490,23874],[16491,23874],[16492,23874],[16493,23874],[16494,23874],[16495,23874],[16496,23874],[16497,23874],[16498,23874],[16499,23874],[16500,23874],[16501,23874],[16502,23874],[16503,23874],[16504,23874],[16505,23874],[16506,23874],[16507,23874],[16508,23874],[16509,23874],[16510,23874],[16511,23874],[16512,23874],[16513,23874],[16514,23874],[16515,23874],[16516,23874],[16517,23874],[16518,23874],[16519,23874],[16520,23874],[16521,23874],[16522,23874],[16523,23874],[16524,23874],[16525,23874],[16526,23874],[16527,23874],[16528,23874],[16529,23874],[16530,23874],[16531,23874],[16532,23874],[16533,23874],[16534,23874],[16535,23874],[16536,23902],[16537,23902],[16538,23902],[16539,23963],[16540,23902],[16541,23902],[16542,23902],[16543,23902],[16544,24041],[16545,24041],[16546,24041],[16547,24041],[16548,24041],[16549,24041],[16550,24041],[16551,24041],[16552,24041],[16553,24041],[16554,24041],[16555,24041],[16556,24041],[16557,24041],[16558,23963],[16559,24041],[16560,24041],[16561,24041],[16562,24041],[16563,24041],[16564,24041],[16565,24041],[16566,24041],[16567,24041],[16568,24041],[16569,24041],[16570,24041],[16571,24041],[16572,24041],[16573,24041],[16574,24041],[16575,24041],[16576,23963],[16577,24041],[16578,24041],[16579,24041],[16580,24041],[16581,24041],[16582,24041],[16583,24041],[16584,24041],[16585,24041],[16586,24041],[16587,24041],[16588,24041],[16589,24041],[16590,24041],[16591,24041],[16592,24041],[16593,24041],[16594,24041],[16595,24041],[16596,23963],[16597,23963],[16598,24041],[16599,24041],[16604,24041],[16605,24041],[16606,24041],[16607,24041],[16608,24041],[16609,24041],[16610,24041],[16611,24041],[16612,24041],[16613,24041],[16614,24041],[16615,24041],[16616,24041],[16617,24041],[16618,24041],[16619,24041],[16620,24041],[16621,24041],[16622,24041],[16623,24041],[16624,24041],[16625,24041],[16626,24041],[16627,24041],[16628,24041],[16629,24041],[16630,24041],[16631,24041],[16632,24041],[16633,24041],[16634,24041],[16635,24041],[16636,24041],[16637,24041],[16638,24041],[16639,24041],[16640,24041],[16641,24041],[16642,24041],[16643,24041],[16644,24041],[16645,24041],[16646,24041],[16647,24041],[16648,24041],[16649,24041],[16650,24041],[16651,23975],[16652,23975],[16653,23975],[16654,23975],[16655,23975],[16656,23975],[16657,23975],[16658,23975],[16659,23975],[16660,23975],[16661,23975],[16662,24118],[16663,23975],[16664,23975],[16665,23975],[16666,23975],[16667,23975],[16668,23975],[16669,23975],[16670,23975],[16671,23975],[16672,23975],[16673,23975],[16674,23975],[16675,23975],[16676,23975],[16677,23975],[16678,23975],[16679,23975],[16680,23975],[16681,23975],[16682,23975],[16683,23975],[16684,23975],[16685,23975],[16686,23975],[16687,23975],[16688,23975],[16689,23975],[16690,23975],[16691,23975],[16692,23975],[16693,23975],[16694,23975],[16695,23975],[16696,23975],[16697,23975],[16698,23975],[16699,23975],[16700,23975],[16701,23975],[16702,23975],[16703,23975],[16704,23975],[16705,23975],[16706,23975],[16707,23975],[16708,23975],[16709,23975],[16710,23975],[16711,23975],[16712,23975],[16713,23975],[16714,23977],[16715,23977],[16716,23977],[16717,24042],[16718,24042],[16719,24042],[16720,24042],[16721,24042],[16722,24042],[16723,23977],[16724,24042],[16725,23886],[16726,23977],[16727,23977],[16728,23977],[16729,23977],[16730,23977],[16731,23977],[16732,23977],[16733,23976],[16734,23977],[16735,23976],[16736,24042],[16737,23977],[16738,23977],[16739,23977],[16740,23977],[16741,23977],[16742,23976],[16743,24042],[16744,23977],[16745,23977],[16746,23977],[16747,23977],[16748,23977],[16749,23976],[16750,24042],[16751,23977],[16752,23977],[16753,23977],[16754,23977],[16755,23977],[16756,23976],[16757,24042],[16758,23977],[16759,23977],[16760,23977],[16761,23977],[16762,23977],[16763,23976],[16764,24042],[16765,23977],[16766,23977],[16767,23977],[16768,23977],[16769,23977],[16770,23976],[16771,23976],[16772,23976],[16773,23886],[16774,23886],[16775,23976],[16776,24042],[16777,23977],[16778,23977],[16779,23977],[16780,23977],[16781,23977],[16782,23976],[16783,24042],[16784,23977],[16785,23977],[16786,23977],[16787,23977],[16788,23977],[16789,23976],[16790,24042],[16791,23977],[16792,23977],[16793,23977],[16794,23977],[16795,23977],[16796,23976],[16797,23976],[16798,24042],[16799,23977],[16800,23977],[16801,23977],[16802,23977],[16803,23976],[16804,24042],[16805,23977],[16806,23977],[16807,23977],[16808,23977],[16809,23976],[16810,24042],[16811,23977],[16812,23977],[16813,23977],[16814,23977],[16815,23976],[16816,24042],[16817,23977],[16818,23977],[16819,23977],[16820,23977],[16821,23976],[16822,24042],[16823,23976],[16824,24042],[16825,23977],[16826,23977],[16827,23977],[16828,23977],[16829,23977],[16830,23977],[16831,23976],[16832,24042],[16833,23977],[16834,23977],[16835,23977],[16836,23977],[16837,23977],[16838,23976],[16839,24042],[16840,23977],[16841,23977],[16842,23977],[16843,23977],[16844,23977],[16845,23976],[16846,23976],[16847,23976],[16848,23976],[16849,23976],[16850,24042],[16851,23977],[16852,23977],[16853,23977],[16854,23977],[16855,23977],[16856,23976],[16857,24042],[16858,23977],[16859,23977],[16860,23977],[16861,23977],[16862,23977],[16863,23976],[16864,24042],[16865,23977],[16866,23976],[16867,23976],[16868,23976],[16869,24042],[16870,24042],[16871,24042],[16872,23976],[16873,23976],[16874,24042],[16875,24042],[16876,23977],[16877,23977],[16878,23977],[16879,23977],[16880,23977],[16881,23976],[16882,23976],[16883,24042],[16884,23977],[16885,23977],[16886,23977],[16887,23977],[16888,23977],[16889,23977],[16890,23977],[16891,23977],[16892,23977],[16893,23977],[16894,23976],[16895,24042],[16896,23977],[16897,23977],[16898,23977],[16899,23977],[16900,23977],[16901,23976],[16902,23976],[16903,23977],[16904,23976],[16905,24042],[16906,23977],[16907,23977],[16908,23977],[16909,23977],[16910,23977],[16911,23976],[16912,23977],[16913,23977],[16914,23977],[16915,23977],[16916,23977],[16917,23977],[16918,23976],[16919,23976],[16920,23976],[16921,24042],[16922,23977],[16923,23977],[16924,23976],[16925,23976],[16926,23977],[16927,23977],[16928,23976],[16929,23976],[16930,23976],[16931,23976],[16932,23976],[16933,24042],[16934,23977],[16935,23977],[16936,23977],[16937,23977],[16938,23977],[16939,23977],[16940,23977],[16941,23977],[16942,23976],[16943,24042],[16944,23977],[16945,23977],[16946,23977],[16947,23977],[16948,23977],[16949,23976],[16950,24042],[16951,23977],[16952,23977],[16953,23977],[16954,23977],[16955,23977],[16956,23976],[16957,24042],[16958,23977],[16959,23977],[16960,23977],[16961,23977],[16962,23977],[16963,23976],[16964,24042],[16965,23977],[16966,23977],[16967,23976],[16968,24042],[16969,23977],[16970,23977],[16971,23977],[16972,23977],[16973,23977],[16974,23976],[16975,24042],[16976,23977],[16977,23977],[16978,23977],[16979,23977],[16980,23977],[16981,23976],[16982,24042],[16983,23977],[16984,23977],[16985,23977],[16986,23977],[16987,23977],[16988,23976],[16989,24042],[16990,23977],[16991,23977],[16992,23977],[16993,23977],[16994,23977],[16995,23976],[16996,24042],[16997,23977],[16998,23977],[16999,23977],[17000,23977],[17001,23977],[17002,23976],[17003,23976],[17004,23977],[17005,23977],[17006,23976],[17007,23976],[17008,23976],[17009,23977],[17010,23976],[17011,23977],[17012,23977],[17013,23977],[17014,23976],[17015,23977],[17016,23977],[17017,23976],[17018,23977],[17019,23977],[17020,23977],[17021,23976],[17022,23977],[17023,23976],[17024,23976],[17025,24042],[17026,23976],[17027,23976],[17028,23976],[17029,23976],[17030,23976],[17031,23976],[17032,23977],[17033,23976],[17034,23976],[17035,23976],[17036,23976],[17037,23976],[17038,23976],[17039,23976],[17040,23976],[17041,23976],[17042,23976],[17043,23976],[17044,23976],[17045,23976],[17046,23976],[17047,23976],[17048,23976],[17049,23976],[17050,23977],[17051,23977],[17052,23976],[17053,23977],[17054,23977],[17055,23976],[17056,23976],[17057,24042],[17058,23977],[17059,23977],[17060,23977],[17061,23977],[17062,23976],[17063,24042],[17064,23976],[17065,24042],[17066,23976],[17067,24042],[17068,23977],[17069,23977],[17070,23977],[17071,23977],[17072,23977],[17073,23976],[17074,23976],[17075,24042],[17076,24042],[17077,23977],[17078,23977],[17079,23977],[17080,23977],[17081,23977],[17082,23976],[17083,24042],[17084,23977],[17085,23977],[17086,23977],[17087,23977],[17088,23977],[17089,23976],[17090,24042],[17091,23977],[17092,23977],[17093,23977],[17094,23977],[17095,23977],[17096,23976],[17097,24042],[17098,23977],[17099,23977],[17100,23977],[17101,23977],[17102,23977],[17103,23976],[17104,24042],[17105,23977],[17106,23977],[17107,23977],[17108,23977],[17109,23977],[17110,23976],[17111,24042],[17112,23977],[17113,23977],[17114,23977],[17115,23977],[17116,23977],[17117,23977],[17118,23977],[17119,23976],[17120,24042],[17121,23977],[17122,23977],[17123,23977],[17124,23977],[17125,23977],[17126,23976],[17127,23977],[17128,23977],[17129,23976],[17130,24042],[17131,23977],[17132,23977],[17133,23977],[17134,23977],[17135,23977],[17136,23977],[17137,23977],[17146,24106],[17147,23880],[17148,23880],[17149,23880],[17150,23880],[17151,23880],[17152,23880],[17153,23880],[17154,23880],[17155,23880],[17156,23880],[17157,23880],[17158,23880],[17159,23880],[17160,23880],[17161,24056],[17162,23878],[17163,23878],[17164,23878],[17165,23878],[17166,23878],[17167,24057],[17168,23980],[17169,24060],[17170,24053],[17171,24053],[17172,23878],[17173,24055],[17174,23878],[17175,23878],[17176,23878],[17177,23878],[17178,23878],[17179,24056],[17180,24053],[17181,23878],[17182,23878],[17183,24058],[17184,23979],[17185,24057],[17186,24058],[17187,23878],[17188,23878],[17189,23878],[17190,23878],[17191,23878],[17192,24053],[17193,23878],[17194,24059],[17195,24057],[17196,24058],[17197,23978],[17198,23878],[17199,23878],[17200,23878],[17201,24054],[17202,23878],[17203,24053],[17204,24056],[17205,23980],[17206,24060],[17207,24054],[17208,24056],[17209,24057],[17210,24053],[17211,24058],[17212,23979],[17213,24059],[17214,23978],[17215,23878],[17216,23878],[17217,23878],[17218,23878],[17219,23878],[17220,23878],[17221,23878],[17222,23878],[17223,23978],[17224,24054],[17225,23980],[17226,24060],[17227,24054],[17228,24056],[17229,24057],[17230,24053],[17231,24058],[17232,23979],[17233,24059],[17234,23978],[17235,23878],[17236,23878],[17237,23878],[17238,23878],[17239,23878],[17240,23878],[17241,23878],[17242,23878],[17243,23980],[17244,24060],[17245,24054],[17246,24056],[17247,24057],[17248,24053],[17249,24058],[17250,23979],[17251,24059],[17252,23978],[17253,23878],[17254,23878],[17255,23878],[17256,23878],[17257,23878],[17258,23878],[17259,23878],[17260,23878],[17261,23980],[17262,24060],[17263,24054],[17264,24056],[17265,24057],[17266,24053],[17267,24058],[17268,23979],[17269,24059],[17270,23978],[17271,23878],[17272,23878],[17273,23878],[17274,23878],[17275,23878],[17276,23878],[17277,23878],[17278,23878],[17279,23980],[17280,24060],[17281,24054],[17282,24056],[17283,24057],[17284,24053],[17285,24058],[17286,23979],[17287,24059],[17288,23978],[17289,23878],[17290,23878],[17291,23878],[17292,23878],[17293,23878],[17294,23878],[17295,23878],[17296,23878],[17297,23878],[17298,23878],[17299,23980],[17300,24060],[17301,24054],[17302,24056],[17303,24057],[17304,24053],[17305,24058],[17306,23979],[17307,24059],[17308,23978],[17309,23878],[17310,23878],[17311,23878],[17312,23878],[17313,23878],[17314,23878],[17315,23878],[17316,23878],[17317,23980],[17318,24060],[17319,24054],[17320,24056],[17321,24057],[17322,24053],[17323,24058],[17324,23979],[17325,24059],[17326,23978],[17327,23878],[17328,23878],[17329,23878],[17330,23878],[17331,23878],[17332,23878],[17333,23878],[17334,23878],[17335,23980],[17336,24060],[17337,24054],[17338,24056],[17339,24057],[17340,24053],[17341,24058],[17342,23979],[17343,24059],[17344,23978],[17345,23878],[17346,23878],[17347,23878],[17348,23878],[17349,23878],[17350,23878],[17351,23878],[17352,23878],[17353,24055],[17354,23980],[17355,23980],[17356,24054],[17357,24056],[17358,24057],[17359,24053],[17360,24058],[17361,23979],[17362,24059],[17363,23978],[17364,23878],[17365,23878],[17366,23878],[17367,23878],[17368,23878],[17369,23878],[17370,23878],[17371,23878],[17372,24056],[17373,24057],[17374,24053],[17375,24058],[17376,23979],[17377,24059],[17378,23978],[17379,23878],[17380,23878],[17381,23878],[17382,23878],[17383,23878],[17384,23878],[17385,23878],[17386,23878],[17387,24056],[17388,24057],[17389,24053],[17390,24058],[17391,23979],[17392,24059],[17393,23978],[17394,23878],[17395,23878],[17396,23878],[17397,23878],[17398,23878],[17399,23878],[17400,23878],[17401,23878],[17402,23978],[17403,23979],[17404,24059],[17405,23878],[17406,23979],[17407,24059],[17408,23980],[17409,24060],[17410,24054],[17411,24056],[17412,24057],[17413,24053],[17414,24058],[17415,23979],[17416,24059],[17417,23978],[17418,23878],[17419,23878],[17420,23878],[17421,23878],[17422,23878],[17423,23878],[17424,23878],[17425,23878],[17426,24054],[17427,23878],[17428,23878],[17429,23878],[17430,23980],[17431,24060],[17432,24054],[17433,24056],[17434,24057],[17435,24053],[17436,24058],[17437,23979],[17438,24059],[17439,23978],[17440,23878],[17441,23878],[17442,23878],[17443,23878],[17444,23878],[17445,23878],[17446,23878],[17447,23878],[17448,23980],[17449,24060],[17450,24054],[17451,24056],[17452,24057],[17453,24053],[17454,24058],[17455,23979],[17456,24059],[17457,23978],[17458,23878],[17459,23878],[17460,23878],[17461,23878],[17462,23878],[17463,23878],[17464,23878],[17465,23878],[17466,23980],[17467,24060],[17468,24054],[17469,24056],[17470,24057],[17471,24053],[17472,24058],[17473,23979],[17474,24059],[17475,23978],[17476,23878],[17477,23878],[17478,23878],[17479,23878],[17480,23878],[17481,23878],[17482,23878],[17483,23878],[17484,23980],[17485,24054],[17486,23980],[17487,24060],[17488,24054],[17489,24056],[17490,24057],[17491,24053],[17492,24058],[17493,23979],[17494,24059],[17495,23978],[17496,23978],[17497,23878],[17498,23878],[17499,23878],[17500,23878],[17501,23878],[17502,23878],[17503,23878],[17504,23878],[17505,24060],[17506,24056],[17507,24053],[17508,23979],[17509,24059],[17510,23878],[17511,23878],[17512,23878],[17513,24056],[17514,24056],[17515,24056],[17516,24053],[17517,24053],[17518,24053],[17519,23979],[17520,23979],[17521,23979],[17522,24059],[17523,24059],[17524,24059],[17525,24056],[17526,24057],[17527,24053],[17528,24058],[17529,23979],[17530,24059],[17531,23978],[17532,23878],[17533,23878],[17534,23878],[17535,23878],[17536,23878],[17537,23878],[17538,23878],[17539,23878],[17540,23980],[17541,23980],[17542,24060],[17543,24060],[17544,24054],[17545,24056],[17546,24057],[17547,24053],[17548,24058],[17549,23979],[17550,24059],[17551,23978],[17552,23878],[17553,23878],[17554,23878],[17555,23878],[17556,23878],[17557,23878],[17558,23878],[17559,23878],[17560,23980],[17561,24060],[17562,24054],[17563,24056],[17564,24057],[17565,24053],[17566,24058],[17567,23979],[17568,24059],[17569,23978],[17570,23878],[17571,23878],[17572,23878],[17573,23878],[17574,23878],[17575,23878],[17576,23878],[17577,23878],[17578,23980],[17579,24060],[17580,24054],[17581,24056],[17582,24057],[17583,24053],[17584,24058],[17585,23979],[17586,24059],[17587,23978],[17588,23878],[17589,23878],[17590,23878],[17591,23878],[17592,23878],[17593,23878],[17594,23878],[17595,23878],[17596,23978],[17597,23978],[17598,24056],[17599,24058],[17600,23979],[17601,24059],[17602,23878],[17603,23878],[17604,23980],[17605,24060],[17606,24054],[17607,24056],[17608,24057],[17609,24053],[17610,24058],[17611,23979],[17612,24059],[17613,23978],[17614,23878],[17615,23878],[17616,23878],[17617,23878],[17618,23878],[17619,23878],[17620,23878],[17621,23878],[17622,23978],[17623,23980],[17624,24060],[17625,24054],[17626,24056],[17627,24057],[17628,24053],[17629,24058],[17630,23979],[17631,24059],[17632,23978],[17633,23878],[17634,23878],[17635,23878],[17636,23878],[17637,23878],[17638,23878],[17639,23878],[17640,23878],[17641,23980],[17642,24060],[17643,24054],[17644,24056],[17645,24057],[17646,24053],[17647,24058],[17648,23979],[17649,24059],[17650,23978],[17651,23878],[17652,23878],[17653,23878],[17654,23878],[17655,23878],[17656,23878],[17657,23878],[17658,23878],[17659,23980],[17660,24060],[17661,24054],[17662,24056],[17663,24057],[17664,24053],[17665,24058],[17666,23979],[17667,24059],[17668,23978],[17669,23878],[17670,23878],[17671,23878],[17672,23878],[17673,23878],[17674,23878],[17675,23878],[17676,23878],[17677,24056],[17678,24057],[17679,24053],[17680,24058],[17681,23979],[17682,24059],[17683,23978],[17684,23878],[17685,23878],[17686,23878],[17687,23878],[17688,23878],[17689,23878],[17690,23878],[17691,23878],[17692,23980],[17693,24060],[17694,24054],[17695,24056],[17696,24057],[17697,24053],[17698,24058],[17699,23979],[17700,24059],[17701,23978],[17702,23878],[17703,23878],[17704,23878],[17705,23878],[17706,23878],[17707,23878],[17708,23878],[17709,23878],[17710,23980],[17711,24060],[17712,24054],[17713,24056],[17714,24057],[17715,24053],[17716,24058],[17717,23979],[17718,24059],[17719,23978],[17720,23878],[17721,23878],[17722,23878],[17723,23878],[17724,23878],[17725,23878],[17726,23878],[17727,23878],[17728,23980],[17729,24060],[17730,24054],[17731,24056],[17732,24057],[17733,24053],[17734,24058],[17735,23979],[17736,24059],[17737,23978],[17738,23878],[17739,23878],[17740,23878],[17741,23878],[17742,23878],[17743,23878],[17744,23878],[17745,23878],[17746,23980],[17747,24060],[17748,24054],[17749,24056],[17750,24057],[17751,24053],[17752,24058],[17753,23979],[17754,24059],[17755,23978],[17756,23878],[17757,23878],[17758,23878],[17759,23878],[17760,23878],[17761,23878],[17762,23878],[17763,23878],[17764,23980],[17765,24060],[17766,24054],[17767,24056],[17768,24057],[17769,24053],[17770,24058],[17771,23979],[17772,24059],[17773,23978],[17774,23878],[17775,23878],[17776,23878],[17777,23878],[17778,23878],[17779,23878],[17780,23878],[17781,23878],[17782,23978],[17783,24054],[17784,23978],[17785,23978],[17786,23978],[17787,23978],[17788,23978],[17789,23978],[17790,23978],[17791,23980],[17792,24060],[17793,24054],[17794,23978],[17795,23878],[17796,24054],[17797,24058],[17798,23978],[17799,23979],[17800,24059],[17801,23878],[17802,23878],[17803,23978],[17804,23978],[17805,24056],[17806,23978],[17807,23878],[17808,24056],[17809,24058],[17810,23978],[17811,24058],[17812,23878],[17813,23878],[17814,23980],[17815,24054],[17816,23978],[17817,23980],[17818,24056],[17819,24057],[17820,24053],[17821,24058],[17822,23979],[17823,24059],[17824,23978],[17825,23878],[17826,23878],[17827,23878],[17828,23878],[17829,23878],[17830,23878],[17831,23878],[17832,23878],[17833,23980],[17834,24060],[17835,24054],[17836,24056],[17837,24057],[17838,24053],[17839,24058],[17840,23979],[17841,24059],[17842,23978],[17843,23878],[17844,23878],[17845,23878],[17846,23878],[17847,23878],[17848,23878],[17849,23878],[17850,23878],[17851,23980],[17852,24060],[17853,24054],[17854,24056],[17855,24057],[17856,24053],[17857,24058],[17858,23979],[17859,24059],[17860,23978],[17861,23878],[17862,23878],[17863,23878],[17864,23878],[17865,23878],[17866,23878],[17867,23878],[17868,23878],[17869,23980],[17870,24060],[17871,24054],[17872,24056],[17873,24057],[17874,24053],[17875,24058],[17876,23979],[17877,24059],[17878,23978],[17879,23878],[17880,23878],[17881,23878],[17882,23878],[17883,23878],[17884,23878],[17885,23878],[17886,23878],[17887,23980],[17888,24060],[17889,24054],[17890,24056],[17891,24057],[17892,24053],[17893,24058],[17894,23979],[17895,24059],[17896,23978],[17897,23878],[17898,23878],[17899,23878],[17900,23878],[17901,23878],[17902,23878],[17903,23878],[17904,23878],[17905,23980],[17906,24060],[17907,24054],[17908,24056],[17909,24057],[17910,24053],[17911,24058],[17912,23979],[17913,24059],[17914,23978],[17915,23878],[17916,23878],[17917,23878],[17918,23878],[17919,23878],[17920,23878],[17921,23878],[17922,23878],[17923,23980],[17924,24060],[17925,24054],[17926,24056],[17927,24057],[17928,24053],[17929,24058],[17930,23979],[17931,24059],[17932,23978],[17933,23878],[17934,23878],[17935,23878],[17936,23878],[17937,23878],[17938,23878],[17939,23878],[17940,23878],[17941,23980],[17942,24060],[17943,24054],[17944,24056],[17945,24057],[17946,24053],[17947,24058],[17948,23979],[17949,24059],[17950,23978],[17951,23878],[17952,23878],[17953,23878],[17954,23878],[17955,23878],[17956,23878],[17957,23878],[17958,23878],[17959,23980],[17960,24060],[17961,24054],[17962,24056],[17963,24057],[17964,24053],[17965,24058],[17966,23979],[17967,24059],[17968,23978],[17969,23878],[17970,23878],[17971,23878],[17972,23878],[17973,23878],[17974,23878],[17975,23878],[17976,23878],[17977,23980],[17978,24060],[17979,24054],[17980,24056],[17981,24057],[17982,24053],[17983,24058],[17984,23979],[17985,24059],[17986,23978],[17987,23878],[17988,23878],[17989,23878],[17990,23878],[17991,23878],[17992,23878],[17993,23878],[17994,23878],[17995,23878],[17996,23978],[18010,23978],[18011,23978],[18012,23978],[18013,23978],[18014,23978],[18015,23978],[18016,23978],[18017,23978],[18018,23978],[18019,23978],[18020,23978],[18021,23978],[18022,23978],[18023,23978],[18024,23978],[18025,23978],[18026,23978],[18027,23978],[18028,23978],[18029,23978],[18030,23978],[18031,23978],[18032,23978],[18033,23978],[18034,23978],[18035,23978],[18036,23978],[18037,23978],[18038,23978],[18039,23978],[18040,23978],[18041,23978],[18042,23978],[18043,23978],[18044,23978],[18045,23978],[18046,23978],[18047,23978],[18048,23978],[18049,23978],[18050,23978],[18051,23978],[18052,23978],[18053,23978],[18054,23978],[18055,23978],[18056,23978],[18057,23978],[18058,23978],[18059,23978],[18060,23978],[18061,23978],[18062,23978],[18063,23978],[18064,23978],[18065,23978],[18066,23978],[18067,23978],[18068,23978],[18069,23978],[18070,23978],[18071,23978],[18072,23978],[18073,23978],[18074,23978],[18075,23978],[18076,23978],[18077,23978],[18078,23978],[18079,23978],[18080,23978],[18081,23978],[18082,23978],[18083,23978],[18084,23978],[18085,23978],[18086,23978],[18087,23978],[18088,23978],[18089,23978],[18090,23978],[18091,23978],[18092,23978],[18093,23978],[18094,23978],[18095,23978],[18096,23978],[18097,23978],[18098,23978],[18099,23978],[18100,23978],[18101,23978],[18102,23978],[18103,23978],[18108,23870],[18109,23870],[18110,23870],[18111,23870],[18112,23870],[18113,23870],[18114,23870],[18115,23870],[18116,23870],[18117,23870],[18118,23870],[18119,23870],[18120,23870],[18121,23870],[18122,23870],[18123,23870],[18124,23870],[18125,23870],[18126,23870],[18127,23870],[18128,23870],[18129,23870],[18130,23870],[18131,23870],[18132,23870],[18133,23870],[18134,23870],[18135,23870],[18136,23870],[18137,23870],[18138,23870],[18139,23870],[18140,23870],[18141,23870],[18142,23870],[18143,23870],[18144,23870],[18145,23870],[18146,23870],[18147,23870],[18148,23870],[18149,23870],[18150,23870],[18151,23870],[18152,23870],[18153,23870],[18154,23870],[18155,23870],[18156,23870],[18157,23870],[18158,23870],[18159,23870],[18160,23870],[18161,23870],[18162,23870],[18163,23870],[18164,23870],[18165,23870],[18166,23870],[18167,23870],[18168,23870],[18169,23870],[18170,23870],[18171,23870],[18172,23870],[18173,23870],[18174,23870],[18175,23870],[18176,23870],[18177,23870],[18178,23870],[18179,23870],[18180,23870],[18181,23870],[18182,23870],[18183,23870],[18184,23870],[18185,23870],[18186,23870],[18187,23870],[18188,23870],[18189,23870],[18190,23870],[18191,23870],[18192,23870],[18193,23870],[18194,23870],[18195,23870],[18196,23870],[18197,23870],[18198,23870],[18199,23870],[18200,23870],[18201,23870],[18202,23870],[18203,23870],[18204,23870],[18205,23870],[18206,23870],[18207,23870],[18208,23870],[18209,23870],[18210,23870],[18211,23870],[18212,23870],[18213,23870],[18214,23870],[18215,23870],[18216,23870],[18217,23870],[18218,23870],[18219,23870],[18220,23870],[18221,23870],[18222,23870],[18223,23870],[18224,23870],[18225,23870],[18226,23870],[18227,23870],[18228,23870],[18229,23870],[18230,23870],[18231,23870],[18232,23870],[18233,23870],[18234,23870],[18235,23870],[18236,23870],[18237,23870],[18238,23870],[18239,23870],[18240,23870],[18241,23870],[18242,23870],[18243,23870],[18244,23870],[18245,23870],[18246,23870],[18247,23870],[18248,23870],[18249,23870],[18250,23870],[18251,23870],[18252,23870],[18253,23870],[18254,23870],[18255,23870],[18256,23870],[18257,23870],[18258,23870],[18259,23870],[18260,23870],[18261,23870],[18262,23870],[18263,23870],[18264,23870],[18265,23870],[18266,23870],[18267,23870],[18268,23870],[18269,23870],[18270,23870],[18271,23870],[18272,23870],[18273,23870],[18274,23870],[18275,23870],[18276,23870],[18277,23870],[18278,23870],[18279,23870],[18280,23870],[18281,23870],[18282,23870],[18283,23870],[18284,23870],[18285,23870],[18286,23870],[18287,23870],[18288,23870],[18289,23870],[18290,23870],[18291,23870],[18292,23870],[18293,23870],[18294,23870],[18295,23870],[18296,23870],[18297,23870],[18298,23870],[18299,23870],[18300,23870],[18301,23870],[18302,23870],[18303,23870],[18304,23870],[18305,23870],[18310,23950],[18311,23875],[18312,23875],[18313,23875],[18314,23875],[18315,23875],[18316,23875],[18317,23875],[18318,23875],[18319,23875],[18320,23875],[18321,23875],[18322,23875],[18323,23875],[18324,23875],[18325,23875],[18326,23875],[18327,23875],[18328,23875],[18329,23875],[18330,23875],[18331,23875],[18332,23875],[18333,23875],[18334,23875],[18335,23875],[18336,23875],[18337,23875],[18338,23875],[18339,23875],[18340,23875],[18341,23875],[18342,23875],[18343,23875],[18344,23875],[18345,23875],[18346,23875],[18347,23875],[18348,23875],[18349,23875],[18350,23875],[18351,23875],[18352,23875],[18353,23875],[18354,23875],[18355,23875],[18356,23875],[18357,23875],[18358,23875],[18359,23875],[18360,23875],[18361,23875],[18362,23875],[18363,23875],[18364,23875],[18365,23875],[18366,23875],[18367,23871],[18368,23871],[18369,23871],[18370,23871],[18371,23871],[18372,23871],[18373,23871],[18374,23871],[18375,23871],[18376,23871],[18377,23871],[18378,23871],[18379,23871],[18380,23871],[18381,23871],[18382,23871],[18383,23871],[18384,23871],[18385,23871],[18386,23871],[18387,23871],[18388,23871],[18389,23871],[18390,23871],[18391,23871],[18392,23871],[18393,23871],[18394,23871],[18395,23871],[18396,23871],[18397,23871],[18398,23871],[18399,23871],[18400,23871],[18401,23871],[18402,23871],[18403,23871],[18404,23871],[18405,23871],[18406,23871],[18407,23871],[18408,23871],[18409,23871],[18410,23871],[18411,23871],[18412,23871],[18413,23871],[18414,23871],[18415,23871],[18416,23871],[18417,23871],[18418,23871],[18419,23871],[18420,23871],[18421,23871],[18422,23871],[18423,23871],[18424,23871],[18425,23871],[18426,23871],[18427,23871],[18428,23871],[18429,23871],[18430,23871],[18431,23871],[18432,23871],[18433,23871],[18434,23871],[18435,23871],[18436,23871],[18437,23871],[18438,23871],[18439,23871],[18440,23871],[18441,23871],[18442,23871],[18443,23871],[18444,23871],[18445,23871],[18446,23871],[18447,23871],[18448,23871],[18449,23871],[18450,23871],[18451,23871],[18452,23871],[18453,23871],[18454,23871],[18455,23871],[18456,23871],[18457,23871],[18458,23871],[18459,23871],[18460,23871],[18461,23871],[18462,23871],[18463,23871],[18464,23871],[18465,23871],[18466,23871],[18467,23871],[18468,23871],[18469,23871],[18470,23871],[18471,23871],[18472,23871],[18473,23871],[18474,23871],[18475,23871],[18476,23871],[18477,23871],[18478,23871],[18479,23871],[18480,23871],[18481,23871],[18482,23871],[18483,23871],[18484,23871],[18485,23871],[18486,23871],[18487,23871],[18488,23871],[18489,23871],[18490,23871],[18491,23871],[18492,23871],[18493,23871],[18494,23871],[18495,23871],[18496,23871],[18497,23871],[18498,23871],[18499,23871],[18500,23871],[18501,23871],[18502,23871],[18503,23871],[18504,23871],[18505,23871],[18506,23871],[18507,23871],[18508,23871],[18509,23871],[18510,23871],[18511,23871],[18512,23871],[18513,23871],[18514,23871],[18515,23871],[18516,23871],[18517,23871],[18518,23871],[18519,23871],[18520,23871],[18521,23871],[18522,23871],[18523,23871],[18524,23871],[18525,23871],[18526,23871],[18527,23871],[18528,23871],[18529,23871],[18530,23871],[18531,23871],[18532,23871],[18533,23871],[18534,23871],[18535,23871],[18536,23871],[18537,23871],[18538,23871],[18539,23871],[18540,23871],[18541,23871],[18542,23871],[18543,23871],[18544,23871],[18545,23871],[18546,23871],[18547,23871],[18548,23871],[18549,23871],[18550,23871],[18551,23871],[18552,23871],[18553,23871],[18554,23871],[18555,23871],[18556,23871],[18557,23871],[18558,23871],[18559,23871],[18560,23871],[18561,23871],[18562,23871],[18563,23871],[18564,23871],[18565,23871],[18566,23871],[18567,23871],[18568,23871],[18569,23871],[18570,23871],[18571,23871],[18572,23871],[18573,23871],[18574,23871],[18575,23871],[18576,23871],[18577,23871],[18578,23871],[18579,23871],[18580,23871],[18581,23871],[18582,23871],[18583,23871],[18584,23871],[18585,23871],[18586,23871],[18587,23871],[18588,23871],[18589,23871],[18590,23871],[18591,23871],[18592,23871],[18593,23871],[18594,23871],[18595,23871],[18596,23871],[18597,23871],[18598,23871],[18599,23871],[18600,23871],[18601,23871],[18602,23871],[18603,23871],[18604,23871],[18605,23871],[18606,23871],[18607,23869],[18608,23869],[18609,23869],[18610,23869],[18611,23869],[18612,23869],[18613,23869],[18614,23869],[18615,23869],[18616,23869],[18617,23869],[18618,23869],[18619,23869],[18620,23869],[18621,23869],[18622,23869],[18623,23869],[18624,23869],[18625,23869],[18626,23869],[18627,23869],[18628,23869],[18629,23869],[18630,23869],[18631,23869],[18632,23869],[18633,23869],[18634,23869],[18635,23869],[18636,23869],[18637,23869],[18638,23869],[18639,23869],[18640,23869],[18641,23869],[18642,23869],[18643,23869],[18644,23869],[18645,23869],[18646,23869],[18647,23869],[18648,23869],[18649,23869],[18650,23869],[18651,23869],[18652,23869],[18653,23869],[18654,23869],[18655,23869],[18656,23869],[18657,23869],[18658,23869],[18659,23869],[18660,23869],[18661,23869],[18662,23869],[18663,23869],[18664,23869],[18665,23869],[18666,23869],[18667,23869],[18668,23869],[18669,23869],[18670,23869],[18671,23869],[18672,23869],[18673,23869],[18674,23869],[18675,23869],[18676,23869],[18677,23869],[18678,23869],[18679,23869],[18680,23869],[18681,23869],[18682,23869],[18683,23869],[18684,23869],[18685,23869],[18686,23869],[18687,23869],[18688,23869],[18689,23869],[18690,23869],[18691,23869],[18692,23869],[18693,23869],[18694,23869],[18695,23869],[18696,23869],[18697,23869],[18698,23869],[18699,23869],[18700,23869],[18701,23869],[18702,23869],[18703,23869],[18704,23869],[18705,23869],[18706,23869],[18707,23869],[18710,23879],[18711,23879],[18712,23879],[18713,23879],[18714,23879],[18715,23879],[18716,23879],[18717,23879],[18718,23879],[18719,23879],[18720,23879],[18721,23879],[18722,23879],[18723,23879],[18724,23879],[18725,23879],[18726,23879],[18727,23879],[18728,23879],[18729,23879],[18730,23879],[18731,23879],[18732,23879],[18733,23879],[18734,23879],[18735,23879],[18736,23879],[18737,23879],[18738,23879],[18739,23879],[18740,23879],[18741,23879],[18742,23879],[18743,23879],[18744,23879],[18745,23879],[18746,23879],[18747,23879],[18748,23879],[18749,23879],[18750,23879],[18751,23879],[18752,23879],[18753,23879],[18754,23879],[18755,23879],[18756,23879],[18757,23879],[18758,23879],[18759,23879],[18760,23879],[18761,23879],[18762,23879],[18763,23879],[18764,23879],[18765,23879],[18766,23879],[18767,23879],[18768,23879],[18769,23879],[18770,23879],[18771,23879],[18772,23879],[18773,23879],[18774,23879],[18775,23879],[18776,23879],[18777,23879],[18778,23879],[18779,23879],[18780,23879],[18781,23879],[18782,23879],[18783,23879],[18784,23879],[18785,23879],[18786,23879],[18787,23879],[18788,23879],[18789,23879],[18790,23879],[18791,23879],[18792,23879],[18793,23879],[18794,23879],[18795,23879],[18796,23879],[18797,23879],[18798,23879],[18799,23879],[18800,23879],[18801,23879],[18802,23879],[18803,23879],[18804,23879],[18805,23879],[18806,23879],[18807,23879],[18808,23879],[18809,23879],[18810,23924],[18811,23876],[18812,23876],[18813,23876],[18814,23876],[18815,23876],[18816,23876],[18817,23876],[18818,23924],[18819,23876],[18820,23876],[18821,23876],[18822,23876],[18823,23876],[18824,23924],[18825,23924],[18826,23876],[18827,23876],[18828,23876],[18829,23876],[18830,23876],[18831,23876],[18832,23876],[18833,23876],[18834,23876],[18835,23876],[18836,23876],[18837,23924],[18838,23924],[18839,23876],[18840,23876],[18841,23876],[18842,23876],[18843,23876],[18844,23876],[18845,23876],[18846,23876],[18847,23876],[18848,23876],[18849,23924],[18850,23924],[18851,23876],[18852,23876],[18853,23876],[18854,23876],[18855,23876],[18856,23876],[18857,23876],[18858,23876],[18859,23876],[18860,23924],[18861,23924],[18862,23876],[18863,23876],[18864,23876],[18865,23876],[18866,23876],[18867,23876],[18868,23876],[18869,23876],[18870,23876],[18871,23924],[18872,23924],[18873,23876],[18874,23876],[18875,23876],[18876,23876],[18877,23876],[18878,23876],[18879,23876],[18880,23876],[18881,23876],[18882,23924],[18883,23924],[18884,23876],[18885,23876],[18886,23876],[18887,23876],[18888,23876],[18889,23876],[18890,23876],[18891,23876],[18892,23876],[18893,23876],[18894,23876],[18895,23876],[18896,23924],[18897,23924],[18898,23876],[18899,23876],[18900,23876],[18901,23876],[18902,23876],[18903,23876],[18904,23876],[18905,23876],[18906,23876],[18907,23924],[18908,23924],[18909,23876],[18910,23876],[18911,23876],[18912,23876],[18913,23876],[18914,23876],[18915,23876],[18916,23876],[18917,23876],[18918,23876],[18919,23924],[18920,23924],[18921,23876],[18922,23876],[18923,23876],[18924,23876],[18925,23876],[18926,23876],[18927,23876],[18928,23876],[18929,23876],[18930,23924],[18931,23924],[18932,23876],[18933,23876],[18934,23876],[18935,23876],[18936,23876],[18937,23876],[18938,23876],[18939,23876],[18940,23876],[18941,23924],[18942,23924],[18943,23876],[18944,23876],[18945,23876],[18946,23876],[18947,23876],[18948,23876],[18949,23876],[18950,23876],[18951,23876],[18952,23924],[18953,23924],[18954,23876],[18955,23876],[18956,23876],[18957,23876],[18958,23876],[18959,23876],[18960,23876],[18961,23876],[18962,23876],[18963,23876],[18964,23924],[18965,23924],[18966,23876],[18967,23876],[18968,23876],[18969,23876],[18970,23876],[18971,23876],[18972,23876],[18973,23876],[18974,23876],[18975,23876],[18976,23876],[18977,23876],[18978,23876],[18979,23924],[18980,23924],[18981,23876],[18982,23876],[18983,23876],[18984,23924],[18985,23924],[18986,23876],[18987,23876],[18988,23876],[18989,23876],[18990,23876],[18991,23876],[18992,23876],[18993,23876],[18994,23876],[18995,23924],[18996,23924],[18997,23876],[18998,23876],[18999,23876],[19000,23876],[19001,23876],[19002,23876],[19003,23876],[19004,23876],[19005,23876],[19006,23924],[19007,23924],[19008,23876],[19009,23876],[19010,23876],[19011,23876],[19012,23876],[19013,23876],[19014,23876],[19015,23876],[19016,23876],[19017,23924],[19018,23924],[19019,23876],[19020,23876],[19021,23876],[19022,23876],[19023,23876],[19024,23876],[19025,23876],[19026,23876],[19027,23876],[19028,23924],[19029,23924],[19030,23876],[19031,23876],[19032,23876],[19033,23876],[19034,23876],[19035,23876],[19036,23876],[19037,23876],[19038,23876],[19039,23876],[19040,23876],[19041,23876],[19042,23876],[19043,23876],[19044,23876],[19045,23876],[19046,23876],[19047,23924],[19048,23924],[19049,23876],[19050,23876],[19051,23876],[19052,23876],[19053,23876],[19054,23876],[19055,23876],[19056,23876],[19057,23876],[19058,23924],[19059,23924],[19060,23876],[19061,23876],[19062,23876],[19063,23876],[19064,23876],[19065,23876],[19066,23876],[19067,23876],[19068,23876],[19069,23876],[19070,23924],[19071,23924],[19072,23876],[19073,23876],[19074,23876],[19075,23876],[19076,23876],[19077,23876],[19078,23876],[19079,23876],[19080,23876],[19081,23924],[19082,23924],[19083,23876],[19084,23876],[19085,23876],[19086,23876],[19087,23876],[19088,23876],[19089,23876],[19090,23876],[19091,23876],[19092,23876],[19093,23876],[19094,23876],[19095,23876],[19096,23924],[19097,23924],[19098,23876],[19099,23876],[19100,23876],[19101,23876],[19102,23876],[19103,23876],[19104,23876],[19105,23876],[19106,23876],[19107,23924],[19108,23924],[19109,23876],[19110,23876],[19111,23876],[19112,23876],[19113,23876],[19114,23876],[19115,23876],[19116,23876],[19117,23876],[19118,23924],[19119,23924],[19120,23876],[19121,23876],[19122,23876],[19123,23876],[19124,23876],[19125,23876],[19126,23876],[19127,23876],[19128,23876],[19129,23924],[19130,23924],[19131,23876],[19132,23876],[19133,23876],[19134,23876],[19135,23876],[19136,23876],[19137,23876],[19138,23876],[19139,23876],[19140,23924],[19141,23924],[19142,23876],[19143,23876],[19144,23876],[19145,23876],[19146,23876],[19147,23876],[19148,23876],[19149,23876],[19150,23876],[19151,23924],[19152,23924],[19153,23876],[19154,23876],[19155,23876],[19156,23876],[19157,23876],[19158,23876],[19159,23876],[19160,23876],[19161,23876],[19162,23924],[19163,23924],[19164,23876],[19165,23876],[19166,23876],[19167,23876],[19168,23876],[19169,23876],[19170,23876],[19171,23876],[19172,23876],[19173,23924],[19174,23924],[19175,23876],[19176,23876],[19177,23876],[19178,23876],[19179,23876],[19180,23876],[19181,23876],[19182,23876],[19183,23876],[19184,23924],[19185,23924],[19186,23876],[19187,23876],[19188,23876],[19189,23876],[19190,23876],[19191,23876],[19192,23876],[19193,23876],[19194,23876],[19195,23924],[19196,23924],[19197,23876],[19198,23876],[19199,23876],[19200,23876],[19201,23876],[19202,23876],[19203,23876],[19204,23876],[19205,23876],[19206,23876],[19207,23876],[19208,23876],[19209,23924],[19210,23924],[19211,23876],[19212,23876],[19213,23876],[19214,23876],[19215,23876],[19216,23876],[19217,23876],[19218,23876],[19219,23876],[19220,23876],[19221,23876],[19222,23924],[19223,23924],[19224,23876],[19225,23876],[19226,23876],[19227,23876],[19228,23876],[19229,23876],[19230,23876],[19231,23876],[19232,23876],[19233,23924],[19234,23924],[19235,23876],[19236,23876],[19237,23876],[19238,23876],[19239,23876],[19240,23876],[19241,23876],[19242,23876],[19243,23876],[19244,23924],[19245,23924],[19246,23876],[19247,23876],[19248,23876],[19249,23876],[19250,23876],[19251,23876],[19252,23876],[19253,23876],[19254,23876],[19255,23924],[19256,23924],[19257,23876],[19258,23876],[19259,23876],[19260,23876],[19261,23876],[19262,23876],[19263,23876],[19264,23876],[19265,23876],[19266,23924],[19267,23924],[19268,23876],[19269,23876],[19270,23876],[19271,23876],[19272,23876],[19273,23876],[19274,23876],[19275,23876],[19276,23876],[19277,23924],[19278,23924],[19279,23876],[19280,23876],[19281,23876],[19282,23876],[19283,23876],[19284,23876],[19285,23876],[19286,23876],[19287,23876],[19288,23924],[19289,23924],[19290,23876],[19291,23876],[19292,23876],[19293,23876],[19294,23876],[19295,23876],[19296,23876],[19297,23876],[19298,23876],[19299,23924],[19300,23924],[19301,23876],[19302,23876],[19303,23876],[19304,23876],[19305,23876],[19306,23876],[19307,23876],[19308,23876],[19309,23876],[19310,23876],[19311,23924],[19312,23924],[19313,23876],[19314,23876],[19315,23876],[19316,23876],[19317,23876],[19318,23876],[19319,23876],[19320,23876],[19321,23876],[19322,23876],[19323,23876],[19324,23924],[19325,23924],[19326,23876],[19327,23876],[19328,23876],[19329,23876],[19330,23876],[19331,23876],[19332,23876],[19333,23876],[19334,23876],[19335,23876],[19336,23924],[19337,23924],[19338,23924],[19339,23924],[19352,23949],[19353,23969],[19354,23968],[19355,23968],[19356,23967],[19357,23968],[19358,23969],[19359,24063],[19360,24063],[19361,23969],[19362,24063],[19363,23969],[19364,24063],[19365,23969],[19366,24063],[19367,23969],[19368,24063],[19369,23969],[19370,24063],[19371,23969],[19372,24063],[19373,23969],[19374,24063],[19375,23969],[19376,24063],[19377,24063],[19378,24063],[19379,24063],[19380,23969],[19381,23969],[19382,24063],[19383,23969],[19384,24063],[19385,23969],[19386,24063],[19387,23969],[19388,23968],[19389,24063],[19390,23969],[19391,24063],[19392,23969],[19393,24063],[19394,23969],[19395,24063],[19396,23969],[19397,24063],[19398,23969],[19399,23969],[19400,23969],[19401,23969],[19402,24063],[19403,23969],[19404,24063],[19405,23969],[19406,24063],[19407,23969],[19408,24063],[19409,23969],[19410,24063],[19411,24063],[19412,23969],[19413,24063],[19414,23969],[19415,24063],[19416,23969],[19417,24063],[19418,23969],[19419,24063],[19420,23969],[19421,24063],[19422,23968],[19423,23969],[19424,24063],[19425,24063],[19426,24063],[19427,23969],[19428,24063],[19429,23969],[19430,24063],[19431,23969],[19432,24063],[19433,24063],[19434,23969],[19435,24063],[19436,23969],[19437,24063],[19438,23969],[19439,24063],[19440,23969],[19441,24063],[19442,23969],[19443,24063],[19444,23969],[19445,24063],[19446,23969],[19447,24063],[19448,23969],[19449,23968],[19450,24063],[19451,23969],[19452,24063],[19453,23877],[19454,23877],[19455,23877],[19456,23877],[19457,23877],[19458,23877],[19459,23877],[19460,23877],[19461,23877],[19462,23877],[19463,23877],[19464,23877],[19465,23877],[19466,23877],[19467,23877],[19468,23877],[19469,23877],[19470,23877],[19471,23877],[19472,23877],[19473,23877],[19474,23877],[19475,23877],[19476,23877],[19477,23877],[19478,23877],[19479,23877],[19480,23877],[19481,23877],[19482,23877],[19483,23877],[19484,23877],[19485,23877],[19486,23877],[19487,23877],[19488,23877],[19489,23877],[19490,23877],[19491,23877],[19492,23877],[19493,23877],[19494,23877],[19495,23877],[19496,23877],[19497,23877],[19498,23877],[19499,23877],[19500,23877],[19501,23877],[19502,23877],[19503,23877],[19504,23877],[19505,23877],[19506,23877],[19507,23877],[19508,23877],[19509,23877],[19510,23877],[19511,23877],[19512,23877],[19513,23877],[19514,23877],[19515,23877],[19516,23877],[19517,23877],[19518,23877],[19519,23877],[19520,23877],[19521,23877],[19522,23877],[19523,23877],[19524,23877],[19525,23877],[19526,23877],[19527,23877],[19528,23877],[19529,23877],[19530,23877],[19531,23877],[19532,23877],[19533,23877],[19534,23877],[19535,23877],[19536,23877],[19537,23877],[19538,23877],[19539,23877],[19540,23877],[19541,23877],[19542,23877],[19543,23877],[19544,23877],[19545,23877],[19546,23877],[19547,23877],[19548,23877],[19549,23877],[19550,23877],[19551,23877],[19552,23877],[19553,23877],[19554,23877],[19555,23877],[19556,23877],[19557,23877],[19558,23877],[19559,23877],[19560,23877],[19561,23877],[19562,23877],[19563,23877],[19564,23877],[19565,23877],[19566,23877],[19567,23877],[19568,23877],[19569,23877],[19570,23877],[19571,23877],[19572,23877],[19573,23877],[19574,23877],[19575,23877],[19576,23877],[19577,23877],[19578,23877],[19579,23877],[19580,23877],[19581,23877],[19582,23877],[19583,23877],[19584,23877],[19585,23877],[19586,23877],[19587,23877],[19588,23877],[19589,23877],[19590,23877],[19591,23877],[19592,23877],[19593,23877],[19594,23877],[19595,23877],[19596,23877],[19597,23877],[19598,23877],[19599,23877],[19600,23877],[19601,23877],[19602,23877],[19603,23877],[19604,23877],[19605,23877],[19606,23877],[19607,23877],[19608,23877],[19609,23877],[19610,23877],[19611,23877],[19612,23877],[19613,23877],[19614,23877],[19615,23877],[19616,23877],[19617,23877],[19618,23877],[19619,23877],[19620,23877],[19621,23877],[19622,23877],[19623,23877],[19624,23877],[19625,23877],[19626,23877],[19627,23877],[19628,23877],[19629,23877],[19630,23877],[19631,23877],[19632,23877],[19633,23877],[19634,23877],[19635,23877],[19636,23877],[19637,23877],[19638,23877],[19639,23877],[19640,23877],[19641,23877],[19642,23877],[19643,23877],[19644,23877],[19645,23877],[19646,23877],[19647,23877],[19648,23877],[19649,23877],[19650,23877],[19651,23877],[19652,23877],[19653,23877],[19654,23877],[19655,23877],[19656,23877],[19657,23877],[19658,23877],[19659,23877],[19660,23877],[19661,23877],[19662,23877],[19663,23877],[19664,23877],[19665,23877],[19666,23877],[19667,23877],[19668,23877],[19669,23877],[19670,23877],[19671,23877],[19672,23877],[19673,23877],[19674,23877],[19675,23877],[19676,23877],[19677,23877],[19678,23877],[19679,23877],[19680,23877],[19681,23877],[19682,23877],[19683,23877],[19684,23877],[19685,23877],[19686,23877],[19687,23877],[19691,23872],[19692,23872],[19693,23915],[19694,23872],[19695,23872],[19696,23872],[19697,23872],[19698,23872],[19699,23872],[19700,23872],[19701,23872],[19702,23872],[19703,23872],[19704,23872],[19705,23872],[19706,23872],[19707,23872],[19708,23872],[19709,23872],[19710,23872],[19711,23872],[19712,23872],[19713,23872],[19714,23872],[19715,23872],[19716,23872],[19717,23872],[19718,23872],[19719,23872],[19720,23872],[19721,23872],[19722,23872],[19723,23872],[19724,23872],[19725,23872],[19726,23872],[19727,23872],[19728,23872],[19729,23872],[19730,23872],[19731,23872],[19732,23872],[19733,23872],[19734,23872],[19735,23872],[19736,23872],[19737,23872],[19738,23872],[19739,23872],[19740,23872],[19741,23872],[19742,23872],[19743,23872],[19744,23872],[19745,23872],[19746,23872],[19747,23872],[19748,23872],[19749,23872],[19750,23872],[19751,23872],[19752,23872],[19753,23872],[19754,23872],[19755,23872],[19756,23872],[19757,23872],[19758,23872],[19759,23872],[19760,23872],[19761,23872],[19762,23872],[19763,23872],[19764,23872],[19765,23872],[19766,23872],[19767,23872],[19768,23872],[19769,23872],[19770,23872],[19771,23872],[19772,23872],[19773,23872],[19774,23872],[19775,23872],[19776,23872],[19777,23872],[19778,23872],[19779,23872],[19780,23872],[19781,23872],[19782,23872],[19783,23872],[19784,23872],[19785,23872],[19786,23872],[19787,23872],[19788,23872],[19789,23872],[19790,23886],[19791,23886],[19792,23886],[19794,23866],[19795,23866],[19796,23886],[19797,23886],[19798,23918],[19799,23918],[19800,23886],[19801,23918],[19802,23886],[19803,23886],[19805,23886],[19806,23981],[19807,23918],[19808,23886],[19809,23886],[19810,23866],[19811,23866],[19812,23866],[19813,24111],[19814,23886],[19815,23886],[19816,23886],[19817,23981],[19818,23866],[19819,23866],[19820,23981],[19821,23981],[19822,23981],[19823,23866],[19824,23866],[19825,23981],[19826,23866],[19827,23866],[19828,23981],[19829,23866],[19830,23866],[19831,23981],[19832,23866],[19833,23866],[19834,23866],[19835,23981],[19836,23866],[19837,23866],[19838,23981],[19839,23866],[19840,23866],[19841,23981],[19842,23866],[19843,23866],[19844,23981],[19845,23918],[19846,23981],[19847,23866],[19848,23866],[19849,23866],[19850,23981],[19851,23886],[19852,23866],[19853,23981],[19854,23981],[19855,23866],[19856,23866],[19857,23918],[19858,23866],[19859,23866],[19860,23866],[19861,23981],[19862,23866],[19863,23866],[19864,23981],[19865,23866],[19866,23866],[19867,23981],[19868,23866],[19869,23866],[19870,23981],[19871,23866],[19872,23866],[19873,23866],[19874,23981],[19875,23981],[19876,23866],[19877,23866],[19878,23866],[19879,23866],[19880,23866],[19881,23981],[19882,23886],[19883,23981],[19884,23866],[19885,23866],[19886,23981],[19887,23866],[19888,23866],[19889,23981],[19890,23981],[19891,23866],[19892,23866],[19893,23981],[19894,23886],[19895,23918],[19896,23981],[19897,23866],[19898,23866],[19899,23981],[19900,23866],[19901,23866],[19902,23981],[19903,23866],[19904,23866],[19905,23981],[19906,23866],[19907,23866],[19908,23866],[19909,23866],[19910,23981],[19911,23866],[19912,23866],[19913,23981],[19914,23866],[19915,23866],[19916,23981],[19917,23866],[19918,23866],[19919,23981],[19920,23866],[19921,23866],[19922,23886],[19923,23981],[19924,23866],[19925,23866],[19926,23866],[19927,23981],[19928,23981],[19929,23886],[19930,23886],[19931,23981],[19932,23918],[19933,23981],[19934,23981],[19935,23866],[19936,23866],[19937,23981],[19938,23886],[19939,23866],[19940,23866],[19941,23981],[19942,23981],[19943,23886],[19944,23981],[19945,23886],[19946,23866],[19947,23981],[19948,23866],[19949,23981],[19950,23886],[19951,23866],[19952,23981],[19953,23866],[19954,23866],[19955,23981],[19956,23866],[19957,23866],[19958,23981],[19959,23866],[19960,23866],[19961,23981],[19962,23866],[19963,23866],[19964,23981],[19965,23866],[19966,23866],[19967,23981],[19968,23866],[19969,23866],[19970,23981],[19971,23866],[19972,23866],[19973,23886],[19974,23981],[19975,23866],[19976,23866],[19977,23918],[19978,23981],[19979,23981],[19980,23866],[19981,23866],[19982,23981],[19983,23981],[19984,23981],[19985,23917],[19986,23873],[19987,23917],[19988,23873],[19989,23873],[19990,23873],[19991,23873],[19992,23917],[19993,23873],[19994,23873],[19995,23917],[19996,23917],[19997,23873],[19998,23873],[19999,23917],[20000,23873],[20001,23873],[20002,23917],[20003,23917],[20004,23917],[20005,23917],[20006,23917],[20007,23917],[20008,23917],[20009,23917],[20010,23873],[20011,23873],[20012,23917],[20013,23873],[20014,23917],[20015,23873],[20016,23873],[20017,23917],[20018,23917],[20019,23917],[20020,23917],[20021,23917],[20022,23917],[20023,23917],[20024,23873],[20025,23917],[20026,23917],[20027,23917],[20028,23917],[20029,23873],[20030,23917],[20031,23917],[20032,23917],[20033,23873],[20034,23917],[20035,23873],[20036,23917],[20037,23873],[20038,23917],[20039,23873],[20040,23873],[20041,23873],[20042,23873],[20043,23873],[20044,23873],[20045,23873],[20046,23873],[20047,23917],[20048,23917],[20049,23917],[20050,23873],[20051,23917],[20052,23917],[20053,23917],[20054,23917],[20055,23917],[20056,23873],[20057,23873],[20058,23873],[20059,23873],[20060,23873],[20061,23873],[20062,23917],[20063,23917],[20064,23917],[20065,23917],[20066,23917],[20067,23873],[20068,23873],[20069,23873],[20070,23873],[20071,23873],[20072,23873],[20073,23917],[20074,23917],[20075,23917],[20076,23917],[20077,23917],[20078,23873],[20079,23873],[20080,23873],[20081,23873],[20082,23873],[20083,23873],[20084,23917],[20085,23917],[20086,23917],[20087,23917],[20088,23917],[20089,23873],[20090,23873],[20091,23873],[20092,23873],[20093,23873],[20094,23873],[20095,23917],[20096,23917],[20097,23917],[20098,23917],[20099,23917],[20100,23873],[20101,23873],[20102,23873],[20103,23873],[20104,23873],[20105,23917],[20106,23873],[20107,23873],[20108,23873],[20109,23917],[20110,23917],[20111,23917],[20112,23917],[20113,23917],[20114,23873],[20115,23873],[20116,23873],[20117,23873],[20118,23873],[20119,23873],[20120,23917],[20121,23917],[20122,23917],[20123,23917],[20124,23917],[20125,23873],[20126,23873],[20127,23873],[20128,23873],[20129,23873],[20130,23873],[20131,23917],[20132,23917],[20133,23917],[20134,23917],[20135,23917],[20136,23873],[20137,23873],[20138,23873],[20139,23873],[20140,23873],[20141,23917],[20142,23917],[20143,23917],[20144,23917],[20145,23917],[20146,23873],[20147,23873],[20148,23873],[20149,23873],[20150,23917],[20151,23917],[20152,23917],[20153,23917],[20154,23917],[20155,23873],[20156,23873],[20157,23873],[20158,23873],[20159,23917],[20160,23917],[20161,23917],[20162,23917],[20163,23917],[20164,23873],[20165,23873],[20166,23873],[20167,23873],[20168,23873],[20169,23917],[20170,23917],[20171,23917],[20172,23917],[20173,23917],[20174,23873],[20175,23873],[20176,23873],[20177,23873],[20178,23873],[20179,23873],[20180,23873],[20181,23873],[20182,23873],[20183,23917],[20184,23917],[20185,23873],[20186,23917],[20187,23917],[20188,23917],[20189,23917],[20190,23917],[20191,23873],[20192,23873],[20193,23873],[20194,23873],[20195,23873],[20196,23873],[20197,23917],[20198,23917],[20199,23917],[20200,23917],[20201,23917],[20202,23873],[20203,23873],[20204,23873],[20205,23873],[20206,23873],[20207,23917],[20208,23873],[20209,23917],[20210,23917],[20211,23917],[20212,23917],[20213,23917],[20214,23873],[20215,23873],[20216,23873],[20217,23873],[20218,23873],[20219,23873],[20220,23917],[20221,23917],[20222,23917],[20223,23917],[20224,23917],[20225,23873],[20226,23873],[20227,23873],[20228,23873],[20229,23873],[20230,23917],[20231,23917],[20232,23917],[20233,23917],[20234,23917],[20235,23917],[20236,23873],[20237,23873],[20238,23873],[20239,23873],[20240,23917],[20241,23917],[20242,23917],[20243,23917],[20244,23917],[20245,23917],[20246,23873],[20247,23873],[20248,23873],[20249,23873],[20250,23873],[20251,23873],[20252,23873],[20253,23917],[20254,23917],[20255,23917],[20256,23917],[20257,23917],[20258,23873],[20259,23873],[20260,23873],[20261,23873],[20262,23873],[20263,23873],[20264,23873],[20265,23917],[20266,23917],[20267,23917],[20268,23917],[20269,23917],[20270,23873],[20271,23873],[20272,23873],[20273,23873],[20274,23873],[20275,23873],[20276,23917],[20277,23917],[20278,23917],[20279,23917],[20280,23917],[20281,23873],[20282,23873],[20283,23873],[20284,23873],[20285,23873],[20286,23873],[20287,23873],[20288,23917],[20289,23917],[20290,23917],[20291,23917],[20292,23917],[20293,23873],[20294,23873],[20295,23873],[20296,23873],[20297,23873],[20298,23873],[20299,23873],[20300,23917],[20301,23917],[20302,23917],[20303,23917],[20304,23917],[20305,23873],[20306,23873],[20307,23873],[20308,23873],[20309,23873],[20310,23873],[20311,23917],[20312,23917],[20313,23917],[20314,23917],[20315,23917],[20316,23873],[20317,23873],[20318,23873],[20319,23873],[20320,23873],[20321,23873],[20322,23917],[20323,23917],[20324,23917],[20325,23917],[20326,23917],[20327,23873],[20328,23873],[20329,23873],[20330,23873],[20331,23873],[20332,23873],[20333,23917],[20334,23917],[20335,23917],[20336,23917],[20337,23917],[20338,23873],[20339,23873],[20340,23873],[20341,23873],[20342,23873],[20343,23917],[20344,23917],[20345,23917],[20346,23917],[20347,23917],[20348,23873],[20349,23873],[20350,23873],[20351,23873],[20352,23873],[20353,23917],[20354,23917],[20355,23917],[20356,23917],[20357,23917],[20358,23873],[20359,23873],[20360,23873],[20361,23873],[20362,23873],[20363,23873],[20364,23917],[20365,23917],[20366,23917],[20367,23917],[20368,23917],[20369,23873],[20370,23873],[20371,23873],[20372,23873],[20373,23873],[20374,23873],[20375,23917],[20376,23917],[20377,23917],[20378,23917],[20379,23917],[20380,23873],[20381,23873],[20382,23873],[20383,23873],[20384,23873],[20385,23873],[20386,23917],[20387,23917],[20388,23917],[20389,23917],[20390,23917],[20391,23873],[20392,23873],[20393,23873],[20394,23873],[20395,23873],[20396,23873],[20397,23917],[20398,23917],[20399,23917],[20400,23917],[20401,23917],[20402,23873],[20403,23873],[20404,23873],[20405,23873],[20406,23873],[20407,23917],[20408,23873],[20409,23873],[20410,23873],[20411,23873],[20412,23873],[20413,23873],[20414,23873],[20415,23873],[20416,23873],[20417,23873],[20418,23917],[20419,23917],[20420,23873],[20421,23873],[20422,23873],[20423,23873],[20424,23873],[20425,23873],[20426,23873],[20427,23917],[20428,23873],[20429,23917],[20430,23917],[20431,23917],[20432,23917],[20433,23917],[20434,23873],[20435,23873],[20436,23873],[20437,23873],[20438,23873],[20439,23917],[20440,23917],[20441,23917],[20442,23917],[20443,23917],[20444,23873],[20445,23873],[20446,23873],[20447,23873],[20448,23873],[20449,23873],[20450,23917],[20451,23917],[20452,23917],[20453,23917],[20454,23917],[20455,23873],[20456,23873],[20457,23873],[20458,23873],[20459,23873],[20460,23873],[20461,23917],[20462,23917],[20463,23917],[20464,23917],[20465,23917],[20466,23873],[20467,23873],[20468,23873],[20469,23873],[20470,23873],[20471,23873],[20472,23917],[20473,23917],[20474,23917],[20475,23917],[20476,23917],[20477,23873],[20478,23873],[20479,23873],[20480,23873],[20481,23873],[20482,23873],[20483,23917],[20484,23917],[20485,23917],[20486,23917],[20487,23917],[20488,23873],[20489,23873],[20490,23873],[20491,23873],[20492,23873],[20493,23873],[20494,23917],[20495,23917],[20496,23917],[20497,23917],[20498,23917],[20499,23873],[20500,23873],[20501,23873],[20502,23873],[20503,23873],[20504,23873],[20505,23917],[20506,23917],[20507,23917],[20508,23917],[20509,23917],[20510,23873],[20511,23873],[20512,23873],[20513,23873],[20514,23873],[20515,23873],[20516,23873],[20517,23917],[20518,23917],[20519,23917],[20520,23917],[20521,23917],[20522,23873],[20523,23873],[20524,23873],[20525,23873],[20526,23873],[20527,23873],[20528,23873],[20529,23917],[20530,23917],[20531,23917],[20532,23917],[20533,23917],[20534,23873],[20535,23873],[20536,23873],[20537,23873],[20538,23873],[20539,23917],[20540,23873],[20543,23865],[20544,23865],[20545,23865],[20546,24069],[20547,23865],[20548,23865],[20549,23865],[20550,23865],[20551,23865],[20552,23865],[20553,23865],[20554,23865],[20555,23865],[20556,23865],[20557,23865],[20558,23865],[20559,23865],[20560,23865],[20561,23965],[20562,23965],[20563,24069],[20564,23865],[20565,23865],[20566,23865],[20567,23865],[20568,23865],[20569,23865],[20570,23965],[20571,24069],[20572,23865],[20573,23865],[20574,23865],[20575,23865],[20576,23865],[20577,23865],[20578,23965],[20579,24069],[20580,23865],[20581,23865],[20582,23865],[20583,23865],[20584,23865],[20585,23865],[20586,23965],[20587,24069],[20588,23865],[20589,23865],[20590,23865],[20591,23865],[20592,23865],[20593,23865],[20594,23965],[20595,24069],[20596,23865],[20597,23865],[20598,23865],[20599,23865],[20600,23865],[20601,23865],[20602,23865],[20603,23865],[20604,23965],[20605,24069],[20606,23865],[20607,23865],[20608,23865],[20609,23865],[20610,23865],[20611,23865],[20612,23965],[20613,24069],[20614,23865],[20615,23865],[20616,23865],[20617,23865],[20618,23865],[20619,23865],[20620,23965],[20621,24069],[20622,23865],[20623,23865],[20624,23865],[20625,23865],[20626,23865],[20627,23865],[20628,23965],[20629,24069],[20630,23865],[20631,23865],[20632,23865],[20633,23865],[20634,23865],[20635,23865],[20636,23965],[20637,24069],[20638,23865],[20639,23865],[20640,23865],[20641,23865],[20642,23865],[20643,23865],[20644,23965],[20645,24069],[20646,23865],[20647,23865],[20648,23865],[20649,23865],[20650,23865],[20651,23865],[20652,23865],[20653,23965],[20654,24069],[20655,23865],[20656,23865],[20657,23865],[20658,23865],[20659,23865],[20660,23865],[20661,23865],[20662,23865],[20663,23865],[20664,23865],[20665,24069],[20666,23865],[20667,23965],[20668,24069],[20669,23865],[20670,23865],[20671,23865],[20672,23865],[20673,23865],[20674,23865],[20675,23965],[20676,24069],[20677,23865],[20678,23865],[20679,23865],[20680,23865],[20681,23865],[20682,23865],[20683,23965],[20684,24069],[20685,23865],[20686,23865],[20687,23865],[20688,23865],[20689,23865],[20690,23865],[20691,23965],[20692,24069],[20693,23865],[20694,23865],[20695,23865],[20696,23865],[20697,23865],[20698,23865],[20699,24069],[20700,23865],[20701,23865],[20702,23865],[20703,24069],[20704,24069],[20705,24069],[20706,23865],[20707,23865],[20708,23865],[20709,23865],[20710,23865],[20711,23865],[20712,23965],[20713,23965],[20714,24069],[20715,23865],[20716,23865],[20717,23865],[20718,23865],[20719,23865],[20720,23865],[20721,23865],[20722,23865],[20723,23865],[20724,23865],[20725,23965],[20726,24069],[20727,23865],[20728,23865],[20729,23865],[20730,23865],[20731,23865],[20732,23865],[20733,23865],[20734,23865],[20735,23965],[20736,24069],[20737,23865],[20738,23865],[20739,23865],[20740,23865],[20741,23865],[20742,23865],[20743,23965],[20744,24069],[20745,23865],[20746,23865],[20747,23865],[20748,23865],[20749,23865],[20750,23865],[20751,23865],[20752,23865],[20753,23965],[20754,24069],[20755,23865],[20756,23865],[20757,23865],[20758,23865],[20759,23865],[20760,23865],[20761,23965],[20762,23965],[20763,23965],[20764,24069],[20765,23865],[20766,23865],[20767,23865],[20768,23865],[20769,23865],[20770,23865],[20771,23965],[20772,24069],[20773,23865],[20774,23865],[20775,23865],[20776,23865],[20777,23865],[20778,23865],[20779,23965],[20780,24069],[20781,23865],[20782,23865],[20783,23865],[20784,23865],[20785,23865],[20786,23865],[20787,23965],[20788,24069],[20789,23865],[20790,23865],[20791,23865],[20792,23865],[20793,23865],[20794,23865],[20795,23965],[20796,24069],[20797,23865],[20798,23865],[20799,23865],[20800,23865],[20801,23865],[20802,23865],[20803,23965],[20804,24069],[20805,23865],[20806,23865],[20807,23865],[20808,23865],[20809,23865],[20810,23865],[20811,23965],[20812,24069],[20813,23865],[20814,23865],[20815,23865],[20816,23865],[20817,23865],[20818,23865],[20819,23965],[20820,24069],[20821,23865],[20822,23865],[20823,23865],[20824,23865],[20825,23865],[20826,23865],[20827,23965],[20828,24069],[20829,23865],[20830,23865],[20831,23865],[20832,23865],[20833,23865],[20834,23865],[20835,23965],[20836,23865],[20837,23865],[20838,23965],[20839,23865],[20840,23865],[20841,23865],[20842,23865],[20843,23865],[20844,23865],[20845,23865],[20846,23865],[20847,23865],[20848,23965],[20849,23865],[20850,23865],[20851,23965],[20852,24069],[20853,23865],[20854,23865],[20855,23965],[20856,23965],[20857,23965],[20858,23965],[20859,23965],[20860,23865],[20861,23865],[20862,23865],[20863,24069],[20864,23865],[20865,23865],[20866,23865],[20867,23865],[20868,24069],[20869,23865],[20870,23965],[20871,24069],[20872,23865],[20873,23865],[20874,23865],[20875,23865],[20876,23865],[20877,23865],[20878,23965],[20879,23965],[20880,23965],[20881,24069],[20882,23865],[20883,23865],[20884,23865],[20885,23865],[20886,23865],[20887,23865],[20888,23965],[20889,24069],[20890,23865],[20891,23865],[20892,23865],[20893,23865],[20894,23865],[20895,23865],[20896,23965],[20897,24069],[20898,23865],[20899,23865],[20900,23865],[20901,23865],[20902,23865],[20903,23865],[20904,23965],[20905,24069],[20906,23865],[20907,23865],[20908,23865],[20909,23865],[20910,23865],[20911,23865],[20912,23965],[20913,24069],[20914,23865],[20915,23865],[20916,23865],[20917,23865],[20918,23865],[20919,23865],[20920,23965],[20921,24069],[20922,23865],[20923,23865],[20924,23865],[20925,23865],[20926,23865],[20927,23865],[20928,23965],[20929,24069],[20930,23865],[20931,23865],[20932,23865],[20933,23865],[20934,23865],[20935,23865],[20936,23865],[20937,23865],[20938,23865],[20939,23965],[20940,23965],[20941,24069],[20942,23865],[20943,23865],[20944,23865],[20945,23865],[20946,23865],[20947,23865],[20948,23865],[20949,23965],[20950,24069],[20951,23865],[20952,23865],[20953,23865],[20954,23865],[20955,23865],[20956,23865],[20958,24069],[20959,24069],[20960,24069],[20961,24069],[20962,24069],[20963,24069],[20964,24069],[20965,24069],[20966,24069],[20967,24069],[20968,24069],[20969,24069],[20970,24069],[20971,24069],[20972,24069],[20973,24069],[20974,24069],[20975,24069],[20976,24069],[20977,24069],[20978,24069],[20979,24069],[20980,24069],[20981,24069],[20982,24069],[20983,24069],[20984,24069],[20985,24069],[20986,24069],[20987,24069],[20988,24069],[20989,24069],[20990,24069],[20991,24069],[20992,24069],[20993,24069],[20994,24069],[20995,24069],[20996,24069],[20997,24069],[20998,24069],[20999,24069],[21000,24069],[21001,24069],[21002,24069],[21003,24069],[21004,24069],[21005,24069],[21008,23821],[21009,23821],[21010,23821],[21011,23821],[21012,23821],[21013,23821],[21014,23821],[21015,23821],[21016,23821],[21017,23821],[21018,23821],[21019,23821],[21020,23821],[21021,23821],[21022,23821],[21023,23821],[21024,23821],[21025,23821],[21026,23821],[21027,23821],[21028,23844],[21029,23821],[21030,23821],[21031,23821],[21032,23821],[21033,23821],[21034,23821],[21035,23821],[21036,23844],[21037,23821],[21038,23821],[21039,23844],[21040,23821],[21041,23821],[21042,23844],[21043,23844],[21044,23844],[21045,23821],[21046,23844],[21047,23844],[21048,23844],[21049,23844],[21050,23844],[21051,23844],[21052,23844],[21053,23844],[21054,23844],[21055,23844],[21056,23844],[21057,23844],[21058,23844],[21059,23844],[21060,23844],[21061,23844],[21062,23844],[21063,23844],[21064,23844],[21065,23844],[21066,23844],[21067,23844],[21068,23844],[21069,23844],[21070,23844],[21071,23844],[21072,23844],[21073,23844],[21074,23844],[21075,23844],[21076,23844],[21077,23844],[21078,23844],[21079,23844],[21080,23844],[21081,23844],[21082,23844],[21083,23844],[21084,23844],[21085,23844],[21086,23844],[21087,23844],[21088,23844],[21089,23844],[21090,23844],[21091,23844],[21092,23844],[21093,23844],[21094,23844],[21095,23844],[21096,23844],[21097,23844],[21098,23844],[21099,23844],[21100,23844],[21101,23844],[21102,23844],[21103,23844],[21104,23844],[21105,23844],[21106,23844],[21107,23844],[21108,23844],[21109,23844],[21110,23844],[21111,23881],[21112,23881],[21113,23881],[21114,23881],[21115,23881],[21116,23881],[21117,23881],[21118,23881],[21119,23881],[21120,23881],[21121,23881],[21122,23881],[21123,23881],[21124,23881],[21125,23881],[21126,23881],[21127,23881],[21128,23881],[21129,23881],[21130,23881],[21131,23881],[21132,23881],[21133,23881],[21134,23881],[21135,23881],[21136,23881],[21137,23881],[21138,23881],[21139,23881],[21140,23881],[21141,23881],[21142,23881],[21143,23881],[21144,23881],[21145,23881],[21146,23881],[21147,23881],[21148,23881],[21149,23881],[21150,23881],[21151,23881],[21152,23881],[21153,23881],[21154,23881],[21155,23881],[21156,23881],[21157,23881],[21158,23881],[21159,23881],[21160,23881],[21161,23881],[21162,23881],[21163,23881],[21164,23881],[21165,23881],[21166,23881],[21167,23881],[21168,23881],[21169,23881],[21170,23881],[21171,23881],[21172,23881],[21173,23881],[21174,23881],[21175,23881],[21176,23881],[21177,23881],[21178,23881],[21179,23881],[21180,23881],[21181,23881],[21182,23881],[21183,23881],[21184,23881],[21185,23881],[21186,23881],[21187,23881],[21188,23881],[21189,23881],[21190,23881],[21191,23881],[21192,23881],[21193,23881],[21194,23881],[21195,23881],[21196,23881],[21197,23881],[21198,23881],[21199,23881],[21200,23881],[21201,23881],[21202,23881],[21203,23881],[21204,23881],[21205,23881],[21206,23881],[21207,23881],[21208,23881],[21209,23881],[21210,23881],[21211,23881],[21212,23881],[21213,23881],[21216,23959],[21217,23959],[21218,23959],[21219,23959],[21220,23959],[21221,23959],[21222,23959],[21223,23959],[21224,23959],[21225,23959],[21226,23959],[21227,23959],[21228,23959],[21229,23959],[21230,23959],[21231,23959],[21232,23959],[21233,23959],[21234,23959],[21235,23959],[21236,23959],[21237,23959],[21238,23959],[21239,23959],[21240,23959],[21241,23959],[21242,23959],[21243,23959],[21244,23959],[21245,23959],[21246,23959],[21247,23959],[21248,23959],[21249,23959],[21250,23959],[21251,23959],[21252,23959],[21253,23959],[21254,23959],[21255,23959],[21256,23959],[21257,23959],[21258,23959],[21259,23959],[21260,23959],[21261,23959],[21262,23959],[21263,23959],[21264,23959],[21265,23959],[21266,23959],[21267,23959],[21268,23959],[21269,23877],[21270,23877],[21271,23877],[21272,23877],[21273,23877],[21274,23877],[21275,23877],[21276,23877],[21277,23877],[21278,23877],[21279,23877],[21280,23877],[21281,23961],[21282,23877],[21283,23877],[21284,23877],[21285,23877],[21286,23877],[21287,23877],[21288,23877],[21289,23877],[21290,23877],[21294,24119],[21295,23926],[21296,23926],[21297,23900],[21298,23927],[21300,24072],[21301,24072],[21302,24074],[21303,23927],[21304,24071],[21308,24071],[21310,24072],[21311,24072],[21312,24072],[21313,24072],[21314,24072],[21315,24073],[21326,24073],[21327,24070],[21328,24070],[21329,23864],[21330,24074],[21331,23926],[21334,24073],[21336,24072],[21337,23900],[21338,23926],[21339,24071],[21340,24071],[21341,24071],[21343,24072],[21344,23927],[21345,23900],[21346,24072],[21349,24072],[21351,23904],[21360,23862],[21362,24071],[21363,24071],[21364,24071],[21365,23927],[21366,23927],[21369,24072],[21370,24074],[21371,23900],[21372,24071],[21373,24073],[21375,24070],[21376,23904],[21377,23862],[21378,24071],[21379,24072],[21380,23864],[21381,23926],[21382,24073],[21383,23927],[21384,23900],[21385,24074],[21387,24070],[21388,23904],[21389,23862],[21390,24071],[21391,24072],[21392,23864],[21393,23926],[21394,24073],[21395,23927],[21396,23900],[21397,24074],[21399,24070],[21400,23904],[21401,23862],[21402,24071],[21403,24072],[21404,23864],[21405,23926],[21406,24073],[21407,23927],[21408,23900],[21409,24074],[21411,24070],[21412,23904],[21413,23862],[21414,24071],[21415,24072],[21416,23864],[21417,23926],[21418,24073],[21419,23927],[21420,23900],[21421,24074],[21423,24070],[21424,23904],[21425,23862],[21426,24071],[21427,24072],[21428,23864],[21429,23926],[21430,24073],[21431,23927],[21432,23900],[21433,24074],[21434,23904],[21436,24070],[21437,23904],[21438,23862],[21439,24071],[21440,24072],[21441,23864],[21442,23926],[21443,24073],[21444,23927],[21445,23900],[21446,24074],[21448,24070],[21449,23904],[21450,23862],[21451,24071],[21452,24072],[21453,23864],[21454,23926],[21455,24073],[21456,23927],[21457,23900],[21458,24074],[21459,23904],[21461,24070],[21462,23904],[21463,23862],[21464,24071],[21465,24072],[21466,23864],[21467,23926],[21468,24073],[21469,23927],[21470,23900],[21471,24074],[21472,24070],[21473,23904],[21474,23862],[21475,24071],[21476,24072],[21477,23864],[21478,23926],[21479,24073],[21480,23927],[21481,23900],[21482,24074],[21483,24070],[21484,23904],[21485,23862],[21486,24071],[21487,24072],[21488,23864],[21489,23926],[21490,24073],[21491,23927],[21492,23900],[21493,24074],[21494,24070],[21495,23904],[21496,23862],[21497,24071],[21498,24072],[21499,23864],[21500,23926],[21501,24073],[21502,23927],[21503,23900],[21504,24074],[21505,24119],[21506,24119],[21507,24119],[21508,23864],[21509,23900],[21510,23864],[21511,23900],[21513,24070],[21514,23904],[21515,23862],[21516,24071],[21517,24072],[21518,23864],[21519,23926],[21520,24073],[21521,23927],[21522,23900],[21523,24074],[21524,23904],[21525,23862],[21526,23862],[21527,23926],[21528,23927],[21530,24070],[21531,23904],[21532,23862],[21533,24071],[21534,24072],[21535,23864],[21536,23926],[21537,24073],[21538,23927],[21539,23900],[21540,24074],[21542,24070],[21543,23904],[21544,23862],[21545,24071],[21546,24072],[21547,23864],[21548,23926],[21549,24073],[21550,23927],[21551,23900],[21552,24074],[21553,24119],[21555,24070],[21556,23904],[21557,23862],[21558,24071],[21559,24072],[21560,23864],[21561,23926],[21562,24073],[21563,23927],[21564,23900],[21565,24074],[21566,24119],[21567,24119],[21569,24070],[21570,23904],[21571,23862],[21572,24071],[21573,24072],[21574,23864],[21575,23926],[21576,24073],[21577,23927],[21578,23900],[21579,24074],[21580,24119],[21581,23904],[21582,23904],[21583,24072],[21584,23864],[21585,23926],[21586,24073],[21587,23927],[21588,23900],[21589,23864],[21590,23864],[21591,23864],[21592,23926],[21593,23926],[21594,23926],[21595,24073],[21596,24073],[21597,24073],[21598,23900],[21599,23900],[21600,23900],[21601,24119],[21602,23862],[21603,24070],[21604,23904],[21605,23862],[21606,24071],[21607,24072],[21608,23864],[21609,23864],[21610,23926],[21611,24073],[21612,23927],[21613,23900],[21614,24074],[21615,24119],[21617,24070],[21618,23904],[21619,23862],[21620,24071],[21621,24072],[21622,23864],[21623,23926],[21624,24073],[21625,23927],[21626,23900],[21627,23900],[21628,24074],[21630,24070],[21631,23904],[21632,23862],[21633,24071],[21634,24072],[21635,23864],[21636,23926],[21637,24073],[21638,23927],[21639,23900],[21640,24074],[21642,24070],[21643,23904],[21644,23862],[21645,24071],[21646,24072],[21647,23864],[21648,23926],[21649,24073],[21650,23927],[21651,23900],[21652,24074],[21653,23862],[21654,24119],[21655,24119],[21656,24119],[21657,24119],[21658,24119],[21659,24119],[21660,24119],[21661,24119],[21662,24119],[21663,24119],[21664,23864],[21666,23862],[21668,24070],[21669,23904],[21670,23862],[21671,24071],[21672,24072],[21673,23864],[21674,23926],[21675,24073],[21676,23927],[21677,23900],[21678,24074],[21680,24070],[21681,23904],[21682,23862],[21683,24071],[21684,24072],[21685,23864],[21686,23926],[21687,24073],[21688,23927],[21689,23900],[21690,24074],[21692,24070],[21693,23904],[21694,23862],[21695,24071],[21696,24072],[21697,23864],[21698,23926],[21699,24073],[21700,23927],[21701,23900],[21702,24074],[21704,24070],[21705,23904],[21706,23862],[21707,24071],[21708,24072],[21709,23864],[21710,23926],[21711,24073],[21712,23927],[21713,23900],[21714,24074],[21715,24070],[21716,23904],[21717,23862],[21718,24071],[21719,24072],[21720,23864],[21721,23926],[21722,24073],[21723,23927],[21724,23900],[21725,24074],[21727,24070],[21728,23904],[21729,23862],[21730,24071],[21731,24072],[21732,23864],[21733,23926],[21734,24073],[21735,23927],[21736,23900],[21737,24074],[21739,24070],[21740,23904],[21741,23862],[21742,24071],[21743,24072],[21744,23864],[21745,23926],[21746,24073],[21747,23927],[21748,23900],[21749,24074],[21751,24070],[21752,23904],[21753,23862],[21754,24071],[21755,24072],[21756,23864],[21757,23926],[21758,24073],[21759,23927],[21760,23900],[21761,24074],[21763,24070],[21764,23904],[21765,23862],[21766,24071],[21767,24072],[21768,23864],[21769,23926],[21770,24073],[21771,23927],[21772,23900],[21773,24074],[21774,24070],[21776,24070],[21777,23904],[21778,23862],[21779,24071],[21780,24072],[21781,23864],[21782,23926],[21783,24073],[21784,23927],[21785,23900],[21786,24074],[21787,23862],[21788,23862],[21789,24119],[21790,23862],[21791,23862],[21792,24119],[21793,24119],[21794,23904],[21795,23862],[21796,23926],[21797,23927],[21798,24119],[21799,24119],[21800,23864],[21801,23900],[21802,23862],[21803,23862],[21804,24119],[21805,23862],[21806,24119],[21807,24119],[21808,24119],[21809,23904],[21810,24120],[21811,24119],[21812,24119],[21813,24119],[21814,24119],[21815,24119],[21816,24119],[21817,24119],[21818,24119],[21819,24120],[21820,24119],[21821,23904],[21822,23862],[21823,24070],[21824,23904],[21825,23862],[21826,24071],[21827,24072],[21828,23864],[21829,23926],[21830,24073],[21831,23927],[21832,23900],[21833,24074],[21834,23864],[21835,23864],[21836,24119],[21837,24119],[21838,23862],[21840,24070],[21841,23904],[21842,23862],[21843,24071],[21844,24072],[21845,23864],[21846,23926],[21847,24073],[21848,23927],[21849,23900],[21850,24074],[21852,24070],[21853,23904],[21854,23862],[21855,24071],[21856,24072],[21857,23864],[21858,23926],[21859,24073],[21860,23927],[21861,23900],[21862,24074],[21864,24070],[21865,23904],[21866,23862],[21867,24071],[21868,24072],[21869,23864],[21870,23926],[21871,24073],[21872,23927],[21873,23900],[21874,24074],[21876,24070],[21877,23904],[21878,23862],[21879,24071],[21880,24072],[21881,23864],[21882,23926],[21883,24073],[21884,23927],[21885,23900],[21886,24074],[21888,24070],[21889,23904],[21890,23862],[21891,24071],[21892,24072],[21893,23864],[21894,23926],[21895,24073],[21896,23927],[21897,23900],[21898,24074],[21900,24070],[21901,23904],[21902,23862],[21903,24071],[21904,24072],[21905,23864],[21906,23926],[21907,24073],[21908,23927],[21909,23900],[21910,24074],[21912,24070],[21913,23904],[21914,23862],[21915,24071],[21916,24072],[21917,23864],[21918,23926],[21919,24073],[21920,23927],[21921,23900],[21922,24074],[21923,23864],[21925,24070],[21926,23904],[21927,23862],[21928,24071],[21929,24072],[21930,23864],[21931,23926],[21932,24073],[21933,23927],[21934,23900],[21935,24074],[21936,23862],[21938,24070],[21939,23904],[21940,23862],[21941,24071],[21942,24072],[21943,23864],[21944,23926],[21945,24073],[21946,23927],[21947,23900],[21948,24074],[21952,24070],[21978,24070],[22002,24082],[22003,24080],[22004,24082],[22005,24080],[22006,24082],[22007,24082],[22008,24084],[22009,24084],[22010,24076],[22011,24082],[22012,24082],[22013,24088],[22014,24088],[22015,24082],[22016,24082],[22017,24088],[22018,24088],[22019,24082],[22020,24082],[22021,24083],[22022,24083],[22023,24082],[22024,24076],[22025,24082],[22026,24082],[22027,24076],[22028,24082],[22029,24082],[22030,24085],[22031,24082],[22032,24085],[22033,24082],[22034,24082],[22035,24086],[22036,24086],[22037,24082],[22038,24082],[22039,24082],[22040,24082],[22041,24087],[22042,24087],[22043,24082],[22044,24082],[22045,24082],[22046,24088],[22047,24088],[22048,24082],[22049,24082],[22050,24082],[22051,24089],[22052,24089],[22053,24082],[22054,24089],[22055,24089],[22056,24082],[22057,24090],[22058,24082],[22059,24090],[22060,24076],[22061,24082],[22062,24090],[22063,24082],[22064,24082],[22065,24088],[22066,24088],[22067,24082],[22068,24082],[22069,24088],[22070,24088],[22071,24080],[22072,24080],[22073,24080],[22074,24084],[22075,24084],[22076,24076],[22077,24076],[22078,24083],[22079,24083],[22080,24085],[22081,24085],[22082,24086],[22083,24086],[22084,24087],[22085,24087],[22086,24088],[22087,24088],[22088,24088],[22089,24088],[22090,24088],[22091,24088],[22092,24088],[22093,24088],[22094,24088],[22095,24088],[22096,24089],[22097,24089],[22098,24089],[22099,24089],[22100,24090],[22101,24090],[22102,24090],[22103,24082],[22104,24082],[22105,24082],[22106,24076],[22107,24076],[22108,24080],[22109,24080],[22110,24084],[22111,24084],[22112,24076],[22113,24076],[22114,24083],[22115,24083],[22116,24085],[22117,24085],[22118,24086],[22119,24086],[22120,24087],[22121,24087],[22122,24088],[22123,24088],[22124,24088],[22125,24088],[22126,24088],[22127,24088],[22128,24088],[22129,24088],[22130,24088],[22131,24088],[22132,24089],[22133,24089],[22134,24089],[22135,24089],[22136,24090],[22137,24090],[22138,24090],[22139,24082],[22140,24082],[22141,24082],[22142,24080],[22143,24080],[22144,24084],[22145,24084],[22146,24076],[22147,24076],[22148,24083],[22149,24083],[22150,24085],[22151,24085],[22152,24086],[22153,24086],[22154,24087],[22155,24087],[22156,24088],[22157,24088],[22158,24088],[22159,24088],[22160,24088],[22161,24088],[22162,24088],[22163,24088],[22164,24088],[22165,24088],[22166,24089],[22167,24089],[22168,24089],[22169,24089],[22170,24090],[22171,24090],[22172,24090],[22173,24082],[22174,24082],[22175,24082],[22176,24080],[22177,24080],[22178,24084],[22179,24084],[22180,24076],[22181,24076],[22182,24083],[22183,24083],[22184,24085],[22185,24085],[22186,24086],[22187,24086],[22188,24087],[22189,24087],[22190,24088],[22191,24088],[22192,24088],[22193,24088],[22194,24088],[22195,24088],[22196,24088],[22197,24088],[22198,24088],[22199,24088],[22200,24089],[22201,24089],[22202,24089],[22203,24089],[22204,24090],[22205,24090],[22206,24090],[22207,24082],[22208,24082],[22209,24082],[22210,24080],[22211,24080],[22212,24084],[22213,24084],[22214,24076],[22215,24076],[22216,24083],[22217,24083],[22218,24085],[22219,24085],[22220,24086],[22221,24086],[22222,24087],[22223,24087],[22224,24088],[22225,24088],[22226,24088],[22227,24088],[22228,24088],[22229,24088],[22230,24088],[22231,24088],[22232,24088],[22233,24088],[22234,24089],[22235,24089],[22236,24089],[22237,24089],[22238,24090],[22239,24090],[22240,24090],[22241,24082],[22242,24082],[22243,24082],[22244,24076],[22245,24076],[22246,24076],[22247,24076],[22248,24083],[22249,24083],[22250,24080],[22251,24080],[22252,24084],[22253,24084],[22254,24076],[22255,24076],[22256,24076],[22257,24076],[22258,24083],[22259,24083],[22260,24085],[22261,24085],[22262,24086],[22263,24086],[22264,24087],[22265,24087],[22266,24088],[22267,24088],[22268,24088],[22269,24088],[22270,24088],[22271,24088],[22272,24088],[22273,24088],[22274,24088],[22275,24088],[22276,24089],[22277,24089],[22278,24089],[22279,24089],[22280,24090],[22281,24090],[22282,24090],[22283,24082],[22284,24082],[22285,24082],[22286,24080],[22287,24080],[22288,24084],[22289,24084],[22290,24076],[22291,24076],[22292,24083],[22293,24083],[22294,24085],[22295,24085],[22296,24086],[22297,24086],[22298,24087],[22299,24087],[22300,24088],[22301,24088],[22302,24088],[22303,24088],[22304,24088],[22305,24088],[22306,24088],[22307,24088],[22308,24088],[22309,24088],[22310,24089],[22311,24089],[22312,24089],[22313,24089],[22314,24090],[22315,24090],[22316,24090],[22317,24082],[22318,24082],[22319,24082],[22320,24076],[22321,24076],[22322,24080],[22323,24080],[22324,24084],[22325,24084],[22326,24076],[22327,24076],[22328,24083],[22329,24083],[22330,24085],[22331,24085],[22332,24086],[22333,24086],[22334,24087],[22335,24087],[22336,24088],[22337,24088],[22338,24088],[22339,24088],[22340,24088],[22341,24088],[22342,24088],[22343,24088],[22344,24088],[22345,24088],[22346,24089],[22347,24089],[22348,24089],[22349,24089],[22350,24090],[22351,24090],[22352,24090],[22353,24082],[22354,24082],[22355,24082],[22356,24080],[22357,24080],[22358,24084],[22359,24084],[22360,24076],[22361,24076],[22362,24083],[22363,24083],[22364,24085],[22365,24085],[22366,24086],[22367,24086],[22368,24087],[22369,24087],[22370,24088],[22371,24088],[22372,24088],[22373,24088],[22374,24088],[22375,24088],[22376,24088],[22377,24088],[22378,24088],[22379,24088],[22380,24089],[22381,24089],[22382,24089],[22383,24089],[22384,24090],[22385,24090],[22386,24090],[22387,24082],[22388,24082],[22389,24082],[22390,24080],[22391,24080],[22392,24084],[22393,24084],[22394,24076],[22395,24076],[22396,24083],[22397,24083],[22398,24085],[22399,24085],[22400,24086],[22401,24086],[22402,24087],[22403,24087],[22404,24088],[22405,24088],[22406,24088],[22407,24088],[22408,24088],[22409,24088],[22410,24088],[22411,24088],[22412,24088],[22413,24088],[22414,24089],[22415,24089],[22416,24089],[22417,24089],[22418,24090],[22419,24090],[22420,24090],[22421,24082],[22422,24082],[22423,24082],[22424,24080],[22425,24080],[22426,24084],[22427,24084],[22428,24076],[22429,24076],[22430,24083],[22431,24083],[22432,24085],[22433,24085],[22434,24086],[22435,24086],[22436,24087],[22437,24087],[22438,24088],[22439,24088],[22440,24088],[22441,24088],[22442,24088],[22443,24088],[22444,24088],[22445,24088],[22446,24088],[22447,24088],[22448,24089],[22449,24089],[22450,24089],[22451,24089],[22452,24090],[22453,24090],[22454,24090],[22455,24082],[22456,24082],[22457,24082],[22458,24080],[22459,24080],[22460,24084],[22461,24084],[22462,24076],[22463,24076],[22464,24083],[22465,24083],[22466,24085],[22467,24085],[22468,24086],[22469,24086],[22470,24087],[22471,24087],[22472,24088],[22473,24088],[22474,24088],[22475,24088],[22476,24088],[22477,24088],[22478,24088],[22479,24088],[22480,24088],[22481,24088],[22482,24089],[22483,24089],[22484,24089],[22485,24089],[22486,24090],[22487,24090],[22488,24090],[22489,24082],[22490,24082],[22491,24082],[22492,24088],[22493,24090],[22494,24080],[22495,24080],[22496,24084],[22497,24084],[22498,24076],[22499,24076],[22500,24083],[22501,24083],[22502,24085],[22503,24085],[22504,24086],[22505,24086],[22506,24087],[22507,24087],[22508,24088],[22509,24088],[22510,24088],[22511,24088],[22512,24088],[22513,24088],[22514,24088],[22515,24088],[22516,24088],[22517,24088],[22518,24089],[22519,24089],[22520,24089],[22521,24089],[22522,24090],[22523,24090],[22524,24090],[22525,24082],[22526,24082],[22527,24082],[22528,24080],[22529,24080],[22530,24084],[22531,24084],[22532,24076],[22533,24076],[22534,24083],[22535,24083],[22536,24085],[22537,24085],[22538,24086],[22539,24086],[22540,24087],[22541,24087],[22542,24088],[22543,24088],[22544,24088],[22545,24088],[22546,24088],[22547,24088],[22548,24088],[22549,24088],[22550,24088],[22551,24088],[22552,24089],[22553,24089],[22554,24089],[22555,24089],[22556,24090],[22557,24090],[22558,24090],[22559,24082],[22560,24082],[22561,24082],[22562,24088],[22563,24088],[22564,24076],[22565,24076],[22566,24080],[22567,24080],[22568,24084],[22569,24084],[22570,24076],[22571,24076],[22572,24083],[22573,24083],[22574,24085],[22575,24085],[22576,24086],[22577,24086],[22578,24087],[22579,24087],[22580,24088],[22581,24088],[22582,24088],[22583,24088],[22584,24088],[22585,24088],[22586,24088],[22587,24088],[22588,24088],[22589,24088],[22590,24089],[22591,24089],[22592,24089],[22593,24089],[22594,24090],[22595,24090],[22596,24090],[22597,24082],[22598,24082],[22599,24082],[22600,24080],[22601,24080],[22602,24084],[22603,24084],[22604,24076],[22605,24076],[22606,24083],[22607,24083],[22608,24085],[22609,24085],[22610,24086],[22611,24086],[22612,24087],[22613,24087],[22614,24088],[22615,24088],[22616,24088],[22617,24088],[22618,24088],[22619,24088],[22620,24088],[22621,24088],[22622,24088],[22623,24088],[22624,24089],[22625,24089],[22626,24089],[22627,24089],[22628,24090],[22629,24090],[22630,24090],[22631,24082],[22632,24082],[22633,24082],[22634,24080],[22635,24080],[22636,24084],[22637,24084],[22638,24076],[22639,24076],[22640,24083],[22641,24083],[22642,24085],[22643,24085],[22644,24086],[22645,24086],[22646,24087],[22647,24087],[22648,24088],[22649,24088],[22650,24088],[22651,24088],[22652,24088],[22653,24088],[22654,24088],[22655,24088],[22656,24088],[22657,24088],[22658,24089],[22659,24089],[22660,24089],[22661,24089],[22662,24090],[22663,24090],[22664,24090],[22665,24082],[22666,24082],[22667,24080],[22668,24080],[22669,24080],[22670,24080],[22671,24080],[22672,24080],[22673,24084],[22674,24084],[22675,24084],[22676,24084],[22677,24084],[22678,24084],[22679,24076],[22680,24076],[22681,24076],[22682,24076],[22683,24076],[22684,24076],[22685,24083],[22686,24083],[22687,24083],[22688,24083],[22689,24083],[22690,24083],[22691,24085],[22692,24085],[22693,24085],[22694,24085],[22695,24085],[22696,24085],[22697,24086],[22698,24086],[22699,24086],[22700,24086],[22701,24086],[22702,24086],[22703,24087],[22704,24087],[22705,24087],[22706,24087],[22707,24087],[22708,24087],[22709,24088],[22710,24088],[22711,24088],[22712,24088],[22713,24088],[22714,24088],[22715,24088],[22716,24088],[22717,24088],[22718,24088],[22719,24088],[22720,24088],[22721,24088],[22722,24088],[22723,24088],[22724,24088],[22725,24088],[22726,24088],[22727,24088],[22728,24088],[22729,24088],[22730,24088],[22731,24088],[22732,24088],[22733,24088],[22734,24088],[22735,24088],[22736,24088],[22737,24088],[22738,24088],[22739,24089],[22740,24089],[22741,24089],[22742,24089],[22743,24089],[22744,24089],[22745,24089],[22746,24089],[22747,24089],[22748,24089],[22749,24089],[22750,24089],[22751,24090],[22752,24090],[22753,24090],[22754,24090],[22755,24090],[22756,24090],[22757,24090],[22758,24090],[22759,24090],[22760,24082],[22761,24082],[22762,24082],[22763,24082],[22764,24082],[22765,24082],[22766,24088],[22767,24080],[22768,24080],[22769,24084],[22770,24084],[22771,24076],[22772,24076],[22773,24083],[22774,24083],[22775,24085],[22776,24085],[22777,24086],[22778,24086],[22779,24087],[22780,24087],[22781,24088],[22782,24088],[22783,24088],[22784,24088],[22785,24088],[22786,24088],[22787,24088],[22788,24088],[22789,24088],[22790,24088],[22791,24089],[22792,24089],[22793,24089],[22794,24089],[22795,24090],[22796,24090],[22797,24090],[22798,24082],[22799,24082],[22800,24082],[22801,24082],[22802,24080],[22803,24080],[22804,24084],[22805,24084],[22806,24076],[22807,24076],[22808,24083],[22809,24083],[22810,24085],[22811,24085],[22812,24086],[22813,24086],[22814,24087],[22815,24087],[22816,24088],[22817,24088],[22818,24088],[22819,24088],[22820,24088],[22821,24088],[22822,24088],[22823,24088],[22824,24088],[22825,24088],[22826,24089],[22827,24089],[22828,24089],[22829,24089],[22830,24090],[22831,24090],[22832,24090],[22833,24082],[22834,24082],[22835,24082],[22836,24082],[22837,24082],[22838,24082],[22839,24082],[22840,24082],[22841,24082],[22842,24082],[22843,24082],[22844,24082],[22845,24082],[22846,24082],[22847,24082],[22848,24082],[22849,24082],[22850,24082],[22851,24082],[22852,24082],[22853,24082],[22854,24082],[22855,24082],[22856,24082],[22857,24082],[22858,24082],[22859,24082],[22860,24082],[22861,24082],[22862,24082],[22863,24082],[22864,24082],[22865,24082],[22866,24082],[22867,24080],[22868,24080],[22869,24084],[22870,24084],[22871,24076],[22872,24076],[22873,24083],[22874,24083],[22875,24085],[22876,24085],[22877,24086],[22878,24086],[22879,24087],[22880,24087],[22881,24088],[22882,24088],[22883,24088],[22884,24088],[22885,24088],[22886,24088],[22887,24088],[22888,24088],[22889,24088],[22890,24088],[22891,24089],[22892,24089],[22893,24089],[22894,24089],[22895,24090],[22896,24090],[22897,24090],[22898,24082],[22899,24082],[22900,24082],[22901,24080],[22902,24080],[22903,24084],[22904,24084],[22905,24076],[22906,24076],[22907,24083],[22908,24083],[22909,24085],[22910,24085],[22911,24086],[22912,24086],[22913,24087],[22914,24087],[22915,24088],[22916,24088],[22917,24088],[22918,24088],[22919,24088],[22920,24088],[22921,24088],[22922,24088],[22923,24088],[22924,24088],[22925,24089],[22926,24089],[22927,24089],[22928,24089],[22929,24090],[22930,24090],[22931,24090],[22932,24082],[22933,24082],[22934,24082],[22935,24088],[22936,24088],[22937,24076],[22938,24080],[22939,24080],[22940,24084],[22941,24084],[22942,24076],[22943,24076],[22944,24083],[22945,24083],[22946,24085],[22947,24085],[22948,24086],[22949,24086],[22950,24087],[22951,24087],[22952,24088],[22953,24088],[22954,24088],[22955,24088],[22956,24088],[22957,24088],[22958,24088],[22959,24088],[22960,24088],[22961,24088],[22962,24089],[22963,24089],[22964,24089],[22965,24089],[22966,24090],[22967,24090],[22968,24090],[22969,24082],[22970,24082],[22971,24090],[22972,24090],[22973,24089],[22974,24080],[22975,24080],[22976,24084],[22977,24084],[22978,24076],[22979,24076],[22980,24083],[22981,24083],[22982,24085],[22983,24085],[22984,24086],[22985,24086],[22986,24087],[22987,24087],[22988,24088],[22989,24088],[22990,24088],[22991,24088],[22992,24088],[22993,24088],[22994,24088],[22995,24088],[22996,24088],[22997,24088],[22998,24089],[22999,24089],[23000,24089],[23001,24089],[23002,24090],[23003,24090],[23004,24090],[23005,24082],[23006,24082],[23007,24082],[23008,24080],[23009,24080],[23010,24084],[23011,24084],[23012,24076],[23013,24076],[23014,24083],[23015,24083],[23016,24085],[23017,24085],[23018,24086],[23019,24086],[23020,24087],[23021,24087],[23022,24088],[23023,24088],[23024,24088],[23025,24088],[23026,24088],[23027,24088],[23028,24088],[23029,24088],[23030,24088],[23031,24088],[23032,24089],[23033,24089],[23034,24089],[23035,24089],[23036,24090],[23037,24090],[23038,24090],[23039,24082],[23040,24082],[23041,24082],[23042,24080],[23043,24080],[23044,24084],[23045,24084],[23046,24076],[23047,24076],[23048,24083],[23049,24083],[23050,24085],[23051,24085],[23052,24086],[23053,24086],[23054,24087],[23055,24087],[23056,24088],[23057,24088],[23058,24088],[23059,24088],[23060,24088],[23061,24088],[23062,24088],[23063,24088],[23064,24088],[23065,24088],[23066,24089],[23067,24089],[23068,24089],[23069,24089],[23070,24090],[23071,24090],[23072,24090],[23073,24082],[23074,24082],[23075,24082],[23076,24080],[23077,24080],[23078,24084],[23079,24084],[23080,24076],[23081,24076],[23082,24083],[23083,24083],[23084,24085],[23085,24085],[23086,24086],[23087,24086],[23088,24087],[23089,24087],[23090,24088],[23091,24088],[23092,24088],[23093,24088],[23094,24088],[23095,24088],[23096,24088],[23097,24088],[23098,24088],[23099,24088],[23100,24089],[23101,24089],[23102,24089],[23103,24089],[23104,24090],[23105,24090],[23106,24090],[23107,24082],[23108,24082],[23109,24082],[23110,24080],[23111,24084],[23112,24083],[23113,24085],[23114,24086],[23115,24087],[23116,24088],[23117,24088],[23118,24088],[23119,24088],[23120,24089],[23121,24089],[23122,24090],[23123,24090],[23124,24082],[23125,24080],[23126,24080],[23127,24084],[23128,24084],[23129,24076],[23130,24076],[23131,24083],[23132,24083],[23133,24085],[23134,24085],[23135,24086],[23136,24086],[23137,24087],[23138,24087],[23139,24088],[23140,24088],[23141,24088],[23142,24088],[23143,24088],[23144,24088],[23145,24088],[23146,24088],[23147,24088],[23148,24088],[23149,24089],[23150,24089],[23151,24089],[23152,24089],[23153,24090],[23154,24090],[23155,24090],[23156,24082],[23157,24082],[23158,24082],[23159,24080],[23160,24080],[23161,24084],[23162,24084],[23163,24076],[23164,24076],[23165,24083],[23166,24083],[23167,24085],[23168,24085],[23169,24086],[23170,24086],[23171,24087],[23172,24087],[23173,24088],[23174,24088],[23175,24088],[23176,24088],[23177,24088],[23178,24088],[23179,24088],[23180,24088],[23181,24088],[23182,24088],[23183,24089],[23184,24089],[23185,24089],[23186,24089],[23187,24090],[23188,24090],[23189,24090],[23190,24082],[23191,24082],[23192,24082],[23193,24080],[23194,24080],[23195,24084],[23196,24084],[23197,24076],[23198,24076],[23199,24083],[23200,24083],[23201,24085],[23202,24085],[23203,24086],[23204,24086],[23205,24087],[23206,24087],[23207,24088],[23208,24088],[23209,24088],[23210,24088],[23211,24088],[23212,24088],[23213,24088],[23214,24088],[23215,24088],[23216,24088],[23217,24089],[23218,24089],[23219,24089],[23220,24089],[23221,24090],[23222,24090],[23223,24090],[23224,24082],[23225,24082],[23226,24082],[23227,24080],[23228,24080],[23229,24084],[23230,24084],[23231,24076],[23232,24076],[23233,24083],[23234,24083],[23235,24085],[23236,24085],[23237,24086],[23238,24086],[23239,24087],[23240,24087],[23241,24088],[23242,24088],[23243,24088],[23244,24088],[23245,24088],[23246,24088],[23247,24088],[23248,24088],[23249,24088],[23250,24088],[23251,24089],[23252,24089],[23253,24089],[23254,24089],[23255,24090],[23256,24090],[23257,24090],[23258,24082],[23259,24082],[23260,24082],[23261,24080],[23262,24080],[23263,24084],[23264,24084],[23265,24076],[23266,24076],[23267,24083],[23268,24083],[23269,24085],[23270,24085],[23271,24086],[23272,24086],[23273,24087],[23274,24087],[23275,24088],[23276,24088],[23277,24088],[23278,24088],[23279,24088],[23280,24088],[23281,24088],[23282,24088],[23283,24088],[23284,24088],[23285,24089],[23286,24089],[23287,24089],[23288,24089],[23289,24090],[23290,24090],[23291,24090],[23292,24082],[23293,24082],[23294,24082],[23295,24085],[23296,24080],[23297,24080],[23298,24084],[23299,24084],[23300,24083],[23301,24083],[23302,24085],[23303,24085],[23304,24086],[23305,24086],[23306,24087],[23307,24087],[23308,24088],[23309,24088],[23310,24088],[23311,24088],[23312,24088],[23313,24088],[23314,24088],[23315,24088],[23316,24088],[23317,24088],[23318,24089],[23319,24089],[23320,24089],[23321,24089],[23322,24090],[23323,24090],[23324,24090],[23325,24084],[23326,24089],[23327,24089],[23328,24076],[23329,24076],[23330,24088],[23331,24082],[23332,24076],[23333,24082],[23334,24076],[23335,24088],[23336,24088],[23337,24088],[23338,24080],[23339,24080],[23340,24084],[23341,24084],[23342,24076],[23343,24076],[23344,24083],[23345,24083],[23346,24085],[23347,24085],[23348,24086],[23349,24086],[23350,24087],[23351,24087],[23352,24088],[23353,24088],[23354,24088],[23355,24088],[23356,24088],[23357,24088],[23358,24088],[23359,24088],[23360,24088],[23361,24088],[23362,24089],[23363,24089],[23364,24089],[23365,24089],[23366,24090],[23367,24090],[23368,24090],[23369,24082],[23370,24082],[23371,24082],[23372,24082],[23373,24082],[23374,24080],[23375,24080],[23376,24084],[23377,24084],[23378,24076],[23379,24076],[23380,24083],[23381,24083],[23382,24085],[23383,24085],[23384,24086],[23385,24086],[23386,24087],[23387,24087],[23388,24088],[23389,24088],[23390,24088],[23391,24088],[23392,24088],[23393,24088],[23394,24088],[23395,24088],[23396,24088],[23397,24088],[23398,24089],[23399,24089],[23400,24089],[23401,24089],[23402,24090],[23403,24090],[23404,24090],[23405,24082],[23406,24082],[23407,24082],[23408,24080],[23409,24080],[23410,24084],[23411,24084],[23412,24076],[23413,24076],[23414,24083],[23415,24083],[23416,24085],[23417,24085],[23418,24086],[23419,24086],[23420,24087],[23421,24087],[23422,24088],[23423,24088],[23424,24088],[23425,24088],[23426,24088],[23427,24088],[23428,24088],[23429,24088],[23430,24088],[23431,24088],[23432,24089],[23433,24089],[23434,24089],[23435,24089],[23436,24090],[23437,24090],[23438,24090],[23439,24082],[23440,24082],[23441,24082],[23442,24080],[23443,24080],[23444,24084],[23445,24084],[23446,24076],[23447,24076],[23448,24083],[23449,24083],[23450,24085],[23451,24085],[23452,24086],[23453,24086],[23454,24087],[23455,24087],[23456,24088],[23457,24088],[23458,24088],[23459,24088],[23460,24088],[23461,24088],[23462,24088],[23463,24088],[23464,24088],[23465,24088],[23466,24089],[23467,24089],[23468,24089],[23469,24089],[23470,24090],[23471,24090],[23472,24090],[23473,24082],[23474,24082],[23475,24082],[23476,24080],[23477,24080],[23478,24084],[23479,24084],[23480,24076],[23481,24076],[23482,24083],[23483,24083],[23484,24085],[23485,24085],[23486,24086],[23487,24086],[23488,24087],[23489,24087],[23490,24088],[23491,24088],[23492,24088],[23493,24088],[23494,24088],[23495,24088],[23496,24088],[23497,24088],[23498,24088],[23499,24088],[23500,24089],[23501,24089],[23502,24089],[23503,24089],[23504,24090],[23505,24090],[23506,24090],[23507,24082],[23508,24082],[23509,24082],[23510,24080],[23511,24080],[23512,24084],[23513,24084],[23514,24076],[23515,24076],[23516,24083],[23517,24083],[23518,24085],[23519,24085],[23520,24086],[23521,24086],[23522,24087],[23523,24087],[23524,24088],[23525,24088],[23526,24088],[23527,24088],[23528,24088],[23529,24088],[23530,24088],[23531,24088],[23532,24088],[23533,24088],[23534,24089],[23535,24089],[23536,24089],[23537,24089],[23538,24090],[23539,24090],[23540,24090],[23541,24082],[23542,24082],[23543,24082],[23544,24087],[23545,24087],[23546,24076],[23547,24080],[23548,24080],[23549,24084],[23550,24084],[23551,24076],[23552,24076],[23553,24083],[23554,24083],[23555,24085],[23556,24085],[23557,24086],[23558,24086],[23559,24087],[23560,24087],[23561,24088],[23562,24088],[23563,24088],[23564,24088],[23565,24088],[23566,24088],[23567,24088],[23568,24088],[23569,24088],[23570,24088],[23571,24089],[23572,24089],[23573,24089],[23574,24089],[23575,24090],[23576,24090],[23577,24090],[23578,24082],[23579,24082],[23580,24082],[23581,24080],[23582,24080],[23583,24084],[23584,24084],[23585,24076],[23586,24076],[23587,24083],[23588,24083],[23589,24085],[23590,24085],[23591,24086],[23592,24086],[23593,24087],[23594,24087],[23595,24088],[23596,24088],[23597,24088],[23598,24088],[23599,24088],[23600,24088],[23601,24088],[23602,24088],[23603,24088],[23604,24088],[23605,24089],[23606,24089],[23607,24089],[23608,24089],[23609,24090],[23610,24090],[23611,24090],[23612,24082],[23613,24082],[23614,24082],[23615,24080],[23616,24080],[23617,24084],[23618,24084],[23619,24076],[23620,24076],[23621,24083],[23622,24083],[23623,24085],[23624,24085],[23625,24086],[23626,24086],[23627,24087],[23628,24087],[23629,24088],[23630,24088],[23631,24088],[23632,24088],[23633,24088],[23634,24088],[23635,24088],[23636,24088],[23637,24088],[23638,24088],[23639,24089],[23640,24089],[23641,24089],[23642,24089],[23643,24090],[23644,24090],[23645,24090],[23646,24082],[23647,24082],[23648,24082],[23649,24088],[23650,24088],[23651,24080],[23652,24080],[23653,24084],[23654,24084],[23655,24076],[23656,24076],[23657,24083],[23658,24083],[23659,24085],[23660,24085],[23661,24086],[23662,24086],[23663,24087],[23664,24087],[23665,24088],[23666,24088],[23667,24088],[23668,24088],[23669,24088],[23670,24088],[23671,24088],[23672,24088],[23673,24088],[23674,24088],[23675,24089],[23676,24089],[23677,24089],[23678,24089],[23679,24090],[23680,24090],[23681,24090],[23682,24082],[23683,24082],[23684,24082],[23685,24076],[23686,24086],[23687,24088],[23688,24088],[23689,24076],[23690,24076],[23691,24076],[23692,23904],[23693,23904],[23694,23904],[23695,23904],[23696,23904],[23697,23904],[23698,23904],[23699,23904],[23700,23904],[23701,23904],[23702,23904],[23703,23904],[23704,23904],[23705,23904],[23706,23904],[23707,23904],[23708,23904],[23709,23904],[23710,23904],[23711,23904],[23712,23904],[23713,23904],[23714,23904],[23715,23904],[23716,23904],[23717,23904],[23718,23904],[23719,23904],[23720,23904],[23721,23904],[23722,23904],[23723,23904],[23724,23904],[23725,23904],[23726,23904],[23727,23904],[23728,23904],[23729,23904],[23730,23904],[23731,23904],[23732,23904],[23733,23904],[23734,23904],[23735,23904],[23736,23904],[23737,23904],[23738,24075],[23739,23862],[23740,24075],[23741,24075],[23742,24075],[23743,24075],[23744,24075],[23745,24075],[23746,24075],[23747,24075],[23748,24075],[23749,24075],[23750,24075],[23751,24075],[23752,24075],[23753,23862],[23754,24075],[23755,24075],[23756,24075],[23757,24075],[23758,24075],[23759,24075],[23760,24075],[23761,24075],[23762,24075],[23763,23862],[23764,24075],[23765,24075],[23766,24075],[23767,24075],[23768,23862],[23769,23862],[23770,24075],[23771,24075],[23772,24075],[23773,24075],[23774,24075],[23775,24075],[23776,24075],[23777,24075],[23778,24075],[23779,24075],[23780,23862],[23781,23862],[23782,23862],[23783,23862],[23784,24075],[23785,24075],[23786,23862],[23787,23862],[23788,23862],[23789,23862],[23790,24075],[23791,23862],[23792,24075],[23793,24075],[23794,24075],[23795,24075],[23796,24075],[23797,24075],[23798,24075],[23799,24075],[23800,23862],[23801,24075]],"b":[[144,"impl-Add%3CDegrees%3E-for-Radians"],[145,"impl-Add-for-Radians"],[146,"impl-Add-for-Pixels"],[147,"impl-Add%3Cf32%3E-for-Pixels"],[155,"impl-Task%3COption%3CT%3E%3E"],[156,"impl-Task%3CResult%3CT,+E%3E%3E"],[469,"impl-Catalog-for-Theme"],[470,"impl-Catalog-for-Theme"],[471,"impl-Catalog-for-Theme"],[472,"impl-Catalog-for-Theme"],[473,"impl-Catalog-for-Theme"],[474,"impl-Default-for-Theme"],[475,"impl-Catalog-for-Theme"],[476,"impl-Catalog-for-Theme"],[477,"impl-Catalog-for-Theme"],[478,"impl-Catalog-for-Theme"],[479,"impl-Catalog-for-Theme"],[480,"impl-Catalog-for-Theme"],[481,"impl-Catalog-for-Theme"],[482,"impl-Catalog-for-Theme"],[483,"impl-Catalog-for-Theme"],[484,"impl-Catalog-for-Theme"],[485,"impl-Catalog-for-Theme"],[486,"impl-Catalog-for-Theme"],[557,"impl-Div-for-Radians"],[558,"impl-Div%3Cf32%3E-for-Radians"],[559,"impl-Div-for-Pixels"],[560,"impl-Div%3Cu32%3E-for-Pixels"],[561,"impl-Div%3Cf32%3E-for-Pixels"],[626,"impl-PartialEq-for-Degrees"],[627,"impl-PartialEq%3Cf32%3E-for-Degrees"],[628,"impl-PartialEq%3Cf32%3E-for-Radians"],[629,"impl-PartialEq-for-Radians"],[675,"impl-Debug-for-Error"],[676,"impl-Display-for-Error"],[684,"impl-Display-for-Theme"],[685,"impl-Debug-for-Theme"],[687,"impl-Debug-for-Radians"],[688,"impl-Display-for-Radians"],[691,"impl-Debug-for-ContentFit"],[692,"impl-Display-for-ContentFit"],[695,"impl-Display-for-Point%3CT%3E"],[696,"impl-Debug-for-Point%3CT%3E"],[711,"impl-From%3CVertical%3E-for-Alignment"],[713,"impl-From%3CHorizontal%3E-for-Alignment"],[720,"impl-From%3Cf32%3E-for-Padding"],[722,"impl-From%3C%5Bf32;+2%5D%3E-for-Padding"],[723,"impl-From%3C%5Bu16;+2%5D%3E-for-Padding"],[724,"impl-From%3CPixels%3E-for-Padding"],[725,"impl-From%3Cu16%3E-for-Padding"],[727,"impl-From%3Cf32%3E-for-Degrees"],[728,"impl-From%3Cu8%3E-for-Degrees"],[731,"impl-From%3CDegrees%3E-for-Radians"],[732,"impl-From%3Cf32%3E-for-Radians"],[733,"impl-From%3Cu8%3E-for-Radians"],[734,"impl-From%3CColor%3E-for-Background"],[736,"impl-From%3CLinear%3E-for-Background"],[737,"impl-From%3CGradient%3E-for-Background"],[738,"impl-From%3C%5Bf32;+3%5D%3E-for-Color"],[739,"impl-From%3CAlpha%3CRgb,+f32%3E%3E-for-Color"],[740,"impl-From%3C%5Bf32;+4%5D%3E-for-Color"],[742,"impl-From%3CRgb%3E-for-Color"],[745,"impl-From%3Cf32%3E-for-Length"],[746,"impl-From%3Cu32%3E-for-Length"],[747,"impl-From%3CPixels%3E-for-Length"],[748,"impl-From%3Cf32%3E-for-Pixels"],[749,"impl-From%3Cu32%3E-for-Pixels"],[751,"impl-From%3C%5BT;+2%5D%3E-for-Point%3CT%3E"],[752,"impl-From%3C(T,+T)%3E-for-Point%3CT%3E"],[756,"impl-From%3Cf32%3E-for-Rotation"],[757,"impl-From%3CRadians%3E-for-Rotation"],[762,"impl-From%3C%5BT;+2%5D%3E-for-Size%3CT%3E"],[763,"impl-From%3C(T,+T)%3E-for-Size%3CT%3E"],[764,"impl-From%3CVector%3CT%3E%3E-for-Size%3CT%3E"],[765,"impl-From%3CPadding%3E-for-Size"],[768,"impl-From%3C%5BT;+2%5D%3E-for-Vector%3CT%3E"],[769,"impl-From%3CSize%3CT%3E%3E-for-Vector%3CT%3E"],[1126,"impl-Mul%3Cf32%3E-for-Radians"],[1127,"impl-Mul-for-Radians"],[1128,"impl-Mul%3Cf32%3E-for-Pixels"],[1129,"impl-Mul-for-Pixels"],[1131,"impl-Mul%3CVector%3CT%3E%3E-for-Rectangle%3CT%3E"],[1132,"impl-Mul%3Cf32%3E-for-Rectangle"],[1133,"impl-Mul%3CTransformation%3E-for-Rectangle"],[1134,"impl-Mul%3CVector%3CT%3E%3E-for-Size%3CT%3E"],[1135,"impl-Mul%3CTransformation%3E-for-Size"],[1136,"impl-Mul%3CT%3E-for-Size%3CT%3E"],[1138,"impl-Mul%3CTransformation%3E-for-Vector"],[1139,"impl-Mul%3CT%3E-for-Vector%3CT%3E"],[1172,"impl-PartialOrd-for-Degrees"],[1173,"impl-PartialOrd%3Cf32%3E-for-Degrees"],[1174,"impl-PartialOrd-for-Radians"],[1175,"impl-PartialOrd%3Cf32%3E-for-Radians"],[1218,"impl-Catalog-for-Theme"],[1219,"impl-Catalog-for-Theme"],[1220,"impl-Catalog-for-Theme"],[1221,"impl-Catalog-for-Theme"],[1222,"impl-Catalog-for-Theme"],[1223,"impl-Catalog-for-Theme"],[1224,"impl-Catalog-for-Theme"],[1225,"impl-Catalog-for-Theme"],[1226,"impl-Catalog-for-Theme"],[1227,"impl-Catalog-for-Theme"],[1228,"impl-Catalog-for-Theme"],[1229,"impl-Catalog-for-Theme"],[1230,"impl-Catalog-for-Theme"],[1231,"impl-Catalog-for-Theme"],[1232,"impl-Catalog-for-Theme"],[1233,"impl-Catalog-for-Theme"],[1234,"impl-Catalog-for-Theme"],[1237,"impl-Sub-for-Point%3CT%3E"],[1238,"impl-Sub%3CVector%3CT%3E%3E-for-Point%3CT%3E"],[1953,"impl-PartialEq%3Cstr%3E-for-Bytes"],[1954,"impl-PartialEq-for-Bytes"],[1955,"impl-PartialEq%3CBytesMut%3E-for-Bytes"],[1956,"impl-PartialEq%3C%26T%3E-for-Bytes"],[1957,"impl-PartialEq%3CString%3E-for-Bytes"],[1958,"impl-PartialEq%3CVec%3Cu8%3E%3E-for-Bytes"],[1959,"impl-PartialEq%3C%5Bu8%5D%3E-for-Bytes"],[1978,"impl-UpperHex-for-Bytes"],[1979,"impl-LowerHex-for-Bytes"],[1980,"impl-Debug-for-Bytes"],[1985,"impl-From%3CVec%3Cu8%3E%3E-for-Bytes"],[1986,"impl-From%3C%26%5Bu8%5D%3E-for-Bytes"],[1987,"impl-From%3C%26str%3E-for-Bytes"],[1989,"impl-From%3CScreenshot%3E-for-Bytes"],[1990,"impl-From%3CBytesMut%3E-for-Bytes"],[1991,"impl-From%3CString%3E-for-Bytes"],[1992,"impl-From%3CBox%3C%5Bu8%5D%3E%3E-for-Bytes"],[1996,"impl-From%3CT%3E-for-Handle"],[1997,"impl-From%3C%26Handle%3E-for-Handle"],[2066,"impl-IntoIterator-for-Bytes"],[2067,"impl-IntoIterator-for-%26Bytes"],[2083,"impl-PartialOrd%3CString%3E-for-Bytes"],[2084,"impl-PartialOrd%3Cstr%3E-for-Bytes"],[2085,"impl-PartialOrd%3C%5Bu8%5D%3E-for-Bytes"],[2086,"impl-PartialOrd%3C%26T%3E-for-Bytes"],[2087,"impl-PartialOrd-for-Bytes"],[2088,"impl-PartialOrd%3CVec%3Cu8%3E%3E-for-Bytes"],[2531,"impl-Overlay%3CMessage,+Theme,+Renderer%3E-for-Group%3C\'_,+Message,+Theme,+Renderer%3E"],[2532,"impl-Group%3C\'a,+Message,+Theme,+Renderer%3E"],[3171,"impl-From%3CPixels%3E-for-LineHeight"],[3172,"impl-From%3Cf32%3E-for-LineHeight"],[3776,"impl-From%3CId%3E-for-Id"],[3778,"impl-From%3CId%3E-for-Id"],[3779,"impl-From%3CId%3E-for-Id"],[3832,"impl-Text%3C\'a,+Theme,+Renderer%3E"],[3833,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-Text%3C\'_,+Theme,+Renderer%3E"],[4431,"impl-From%3Cu16%3E-for-Radius"],[4432,"impl-From%3Ci32%3E-for-Radius"],[4434,"impl-From%3Cf32%3E-for-Radius"],[4435,"impl-From%3Cu8%3E-for-Radius"],[5009,"impl-Flags-for-Modifiers"],[5010,"impl-Modifiers"],[5088,"impl-UpperHex-for-Modifiers"],[5089,"impl-Debug-for-Modifiers"],[5090,"impl-LowerHex-for-Modifiers"],[5091,"impl-Octal-for-Modifiers"],[5092,"impl-Binary-for-Modifiers"],[5103,"impl-Flags-for-Modifiers"],[5104,"impl-Modifiers"],[5819,"impl-PartialEq%3CPhysical%3E-for-Code"],[5820,"impl-PartialEq-for-Code"],[5821,"impl-PartialEq-for-NativeCode"],[5822,"impl-PartialEq%3CPhysical%3E-for-NativeCode"],[5823,"impl-PartialEq-for-Physical"],[5824,"impl-PartialEq%3CCode%3E-for-Physical"],[5825,"impl-PartialEq%3CNativeCode%3E-for-Physical"],[6573,"impl-Debug-for-Custom"],[6574,"impl-Display-for-Custom"],[7066,"impl-Add%3CDuration%3E-for-Instant"],[7067,"impl-Add%3CDuration%3E-for-Instant"],[7068,"impl-Add-for-Duration"],[7069,"impl-Add%3CDuration%3E-for-Duration"],[7070,"impl-AddAssign%3CDuration%3E-for-Instant"],[7071,"impl-AddAssign%3CDuration%3E-for-Instant"],[7072,"impl-AddAssign-for-Duration"],[7073,"impl-AddAssign%3CDuration%3E-for-Duration"],[7126,"impl-Div%3CDuration%3E-for-Duration"],[7127,"impl-Div%3Cu32%3E-for-Duration"],[7141,"impl-PartialEq-for-Duration"],[7142,"impl-PartialEq%3CDuration%3E-for-Duration"],[7154,"impl-From%3CDelay%3E-for-Duration"],[7155,"impl-From%3CTimeSpec%3E-for-Duration"],[7205,"impl-PartialOrd%3CDuration%3E-for-Duration"],[7206,"impl-PartialOrd-for-Duration"],[7216,"impl-Sub%3CDuration%3E-for-Instant"],[7217,"impl-Sub%3CDuration%3E-for-Instant"],[7218,"impl-Sub-for-Instant"],[7219,"impl-Sub%3CDuration%3E-for-Duration"],[7220,"impl-Sub-for-Duration"],[7221,"impl-SubAssign%3CDuration%3E-for-Instant"],[7222,"impl-SubAssign%3CDuration%3E-for-Instant"],[7223,"impl-SubAssign%3CDuration%3E-for-Duration"],[7224,"impl-SubAssign-for-Duration"],[7228,"impl-Sum%3C%26Duration%3E-for-Duration"],[7229,"impl-Sum-for-Duration"],[7927,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-TextInput%3C\'_,+Message,+Theme,+Renderer%3E"],[7928,"impl-TextInput%3C\'a,+Message,+Theme,+Renderer%3E"],[8452,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-TextInput%3C\'_,+Message,+Theme,+Renderer%3E"],[8453,"impl-TextInput%3C\'a,+Message,+Theme,+Renderer%3E"],[8676,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-Checkbox%3C\'_,+Message,+Theme,+Renderer%3E"],[8677,"impl-Checkbox%3C\'a,+Message,+Theme,+Renderer%3E"],[8678,"impl-ComboBox%3C\'a,+T,+Message,+Theme,+Renderer%3E"],[8679,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-ComboBox%3C\'_,+T,+Message,+Theme,+Renderer%3E"],[8685,"impl-Radio%3C\'a,+Message,+Theme,+Renderer%3E"],[8686,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-Radio%3C\'_,+Message,+Theme,+Renderer%3E"],[8690,"impl-TextEditor%3C\'a,+Highlighter,+Message,+Theme,+Renderer%3E"],[8691,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-TextEditor%3C\'_,+Highlighter,+Message,+Theme,+Renderer%3E"],[8692,"impl-TextInput%3C\'a,+Message,+Theme,+Renderer%3E"],[8693,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-TextInput%3C\'_,+Message,+Theme,+Renderer%3E"],[8694,"impl-Toggler%3C\'a,+Message,+Theme,+Renderer%3E"],[8695,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-Toggler%3C\'_,+Message,+Theme,+Renderer%3E"],[9517,"impl-From%3CGradient%3E-for-Fill"],[9519,"impl-From%3CLinear%3E-for-Fill"],[9520,"impl-From%3CColor%3E-for-Fill"],[9527,"impl-From%3CGradient%3E-for-Style"],[9528,"impl-From%3CColor%3E-for-Style"],[9529,"impl-From%3C%26str%3E-for-Text"],[9531,"impl-From%3CString%3E-for-Text"],[10291,"impl-BuilderWithAttributes"],[10292,"impl-PathBuilder-for-BuilderWithAttributes"],[10344,"impl-Build-for-BuilderWithAttributes"],[10345,"impl-BuilderWithAttributes"],[10475,"impl-BuilderWithAttributes"],[10476,"impl-PathBuilder-for-BuilderWithAttributes"],[10582,"impl-PathBuilder-for-BuilderWithAttributes"],[10583,"impl-BuilderWithAttributes"],[10740,"impl-Index%3CControlPointId%3E-for-Path"],[10741,"impl-Index%3CEndpointId%3E-for-Path"],[10742,"impl-Index%3CControlPointId%3E-for-PathSlice%3C\'l%3E"],[10743,"impl-Index%3CEndpointId%3E-for-PathSlice%3C\'l%3E"],[10973,"impl-IntoIterator-for-PathSlice%3C\'l%3E"],[10974,"impl-IntoIterator-for-%26PathSlice%3C\'l%3E"],[11029,"impl-PathBuilder-for-BuilderWithAttributes"],[11030,"impl-BuilderWithAttributes"],[11054,"impl-PathBuilder-for-BuilderWithAttributes"],[11055,"impl-BuilderWithAttributes"],[11069,"impl-PathBuilder-for-BuilderWithAttributes"],[11070,"impl-BuilderWithAttributes"],[11072,"impl-BuilderWithAttributes"],[11073,"impl-PathBuilder-for-BuilderWithAttributes"],[11442,"impl-NoAttributes%3CB%3E"],[11443,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[11457,"impl-Build-for-Flattened%3CBuilder%3E"],[11458,"impl-Flattened%3CBuilder%3E"],[11460,"impl-Build-for-WithSvg%3CBuilder%3E"],[11461,"impl-WithSvg%3CBuilder%3E"],[11462,"impl-NoAttributes%3CB%3E"],[11463,"impl-Build-for-NoAttributes%3CB%3E"],[11478,"impl-WithSvg%3CBuilder%3E"],[11479,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[11490,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[11491,"impl-WithSvg%3CBuilder%3E"],[11492,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[11493,"impl-NoAttributes%3CB%3E"],[11520,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[11521,"impl-NoAttributes%3CB%3E"],[11531,"impl-Display-for-BorderRadii"],[11532,"impl-Debug-for-BorderRadii"],[11609,"impl-WithSvg%3CBuilder%3E"],[11610,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[11611,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[11612,"impl-NoAttributes%3CB%3E"],[11614,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[11615,"impl-WithSvg%3CBuilder%3E"],[11635,"impl-WithSvg%3CBuilder%3E"],[11636,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[11637,"impl-NoAttributes%3CB%3E"],[11638,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[11659,"impl-WithSvg%3CBuilder%3E"],[11660,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[11661,"impl-NoAttributes%3CB%3E"],[11662,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[11848,"impl-Index%3CControlPointId%3E-for-CommandsPathSlice%3C\'l,+Endpoint,+ControlPoint%3E"],[11849,"impl-Index%3CEndpointId%3E-for-CommandsPathSlice%3C\'l,+Endpoint,+ControlPoint%3E"],[12010,"impl-Add%3C%26Angle%3CT%3E%3E-for-Angle%3CT%3E"],[12011,"impl-Add-for-Angle%3CT%3E"],[12014,"impl-Segment-for-Arc%3CS%3E"],[12015,"impl-Arc%3CS%3E"],[12016,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12017,"impl-CubicBezierSegment%3CS%3E"],[12018,"impl-LineSegment%3CS%3E"],[12019,"impl-Segment-for-LineSegment%3CS%3E"],[12020,"impl-QuadraticBezierSegment%3CS%3E"],[12021,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[12027,"impl-Segment-for-Arc%3CS%3E"],[12028,"impl-Arc%3CS%3E"],[12029,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12030,"impl-CubicBezierSegment%3CS%3E"],[12077,"impl-Segment-for-Arc%3CS%3E"],[12078,"impl-Arc%3CS%3E"],[12079,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12080,"impl-CubicBezierSegment%3CS%3E"],[12081,"impl-LineSegment%3CS%3E"],[12082,"impl-Segment-for-LineSegment%3CS%3E"],[12083,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[12084,"impl-QuadraticBezierSegment%3CS%3E"],[12206,"impl-CubicBezierSegment%3CS%3E"],[12207,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12209,"impl-QuadraticBezierSegment%3CS%3E"],[12210,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[12215,"impl-Div%3CT%3E-for-Angle%3CT%3E"],[12216,"impl-Div-for-Angle%3CT%3E"],[12240,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12241,"impl-CubicBezierSegment%3CS%3E"],[12243,"impl-QuadraticBezierSegment%3CS%3E"],[12244,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[12246,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12247,"impl-CubicBezierSegment%3CS%3E"],[12249,"impl-QuadraticBezierSegment%3CS%3E"],[12250,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[12286,"impl-Arc%3CS%3E"],[12287,"impl-Segment-for-Arc%3CS%3E"],[12288,"impl-CubicBezierSegment%3CS%3E"],[12289,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12290,"impl-Segment-for-LineSegment%3CS%3E"],[12291,"impl-LineSegment%3CS%3E"],[12292,"impl-QuadraticBezierSegment%3CS%3E"],[12293,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[12310,"impl-Arc%3CS%3E"],[12311,"impl-Segment-for-Arc%3CS%3E"],[12313,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12314,"impl-CubicBezierSegment%3CS%3E"],[12316,"impl-QuadraticBezierSegment%3CS%3E"],[12317,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[12345,"impl-Segment-for-Arc%3CS%3E"],[12347,"impl-From%3CSvgArc%3CS%3E%3E-for-Arc%3CS%3E"],[12348,"impl-Arc%3CS%3E"],[12350,"impl-CubicBezierSegment%3CS%3E"],[12352,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12353,"impl-LineSegment%3CS%3E"],[12354,"impl-Segment-for-LineSegment%3CS%3E"],[12358,"impl-QuadraticBezierSegment%3CS%3E"],[12360,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[12555,"impl-Segment-for-Arc%3CS%3E"],[12556,"impl-Arc%3CS%3E"],[12557,"impl-CubicBezierSegment%3CS%3E"],[12558,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12559,"impl-Segment-for-LineSegment%3CS%3E"],[12560,"impl-LineSegment%3CS%3E"],[12561,"impl-QuadraticBezierSegment%3CS%3E"],[12562,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[12579,"impl-Segment-for-Arc%3CS%3E"],[12580,"impl-Arc%3CS%3E"],[12581,"impl-CubicBezierSegment%3CS%3E"],[12582,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12583,"impl-Segment-for-LineSegment%3CS%3E"],[12584,"impl-LineSegment%3CS%3E"],[12585,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[12586,"impl-QuadraticBezierSegment%3CS%3E"],[12589,"impl-Segment-for-Arc%3CS%3E"],[12590,"impl-Arc%3CS%3E"],[12591,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12592,"impl-CubicBezierSegment%3CS%3E"],[12593,"impl-LineSegment%3CS%3E"],[12594,"impl-Segment-for-LineSegment%3CS%3E"],[12595,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[12596,"impl-QuadraticBezierSegment%3CS%3E"],[12604,"impl-Sum-for-Angle%3CT%3E"],[12605,"impl-Sum%3C%26Angle%3CT%3E%3E-for-Angle%3CT%3E"],[12610,"impl-Segment-for-Arc%3CS%3E"],[12611,"impl-Arc%3CS%3E"],[12612,"impl-CubicBezierSegment%3CS%3E"],[12613,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12614,"impl-Segment-for-LineSegment%3CS%3E"],[12615,"impl-LineSegment%3CS%3E"],[12616,"impl-QuadraticBezierSegment%3CS%3E"],[12617,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[12746,"impl-Segment-for-Arc%3CS%3E"],[12747,"impl-Arc%3CS%3E"],[12748,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12749,"impl-CubicBezierSegment%3CS%3E"],[12750,"impl-Segment-for-LineSegment%3CS%3E"],[12751,"impl-LineSegment%3CS%3E"],[12752,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[12753,"impl-QuadraticBezierSegment%3CS%3E"],[12764,"impl-Segment-for-Arc%3CS%3E"],[12765,"impl-Arc%3CS%3E"],[12766,"impl-CubicBezierSegment%3CS%3E"],[12767,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[12768,"impl-LineSegment%3CS%3E"],[12769,"impl-Segment-for-LineSegment%3CS%3E"],[12770,"impl-QuadraticBezierSegment%3CS%3E"],[12771,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[12872,"impl-AsRef%3CPath%3E-for-ArrayString%3CCAP%3E"],[12873,"impl-AsRef%3Cstr%3E-for-ArrayString%3CCAP%3E"],[12958,"impl-PartialEq-for-ArrayVec%3CT,+CAP%3E"],[12959,"impl-PartialEq%3C%5BT%5D%3E-for-ArrayVec%3CT,+CAP%3E"],[12960,"impl-PartialEq-for-ArrayString%3CCAP%3E"],[12961,"impl-PartialEq%3Cstr%3E-for-ArrayString%3CCAP%3E"],[12976,"impl-Debug-for-ArrayString%3CCAP%3E"],[12977,"impl-Display-for-ArrayString%3CCAP%3E"],[12978,"impl-Debug-for-CapacityError%3CT%3E"],[12979,"impl-Display-for-CapacityError%3CT%3E"],[13001,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[13002,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[13004,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[13005,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[13056,"impl-IntoIterator-for-ArrayVec%3CT,+CAP%3E"],[13057,"impl-IntoIterator-for-%26ArrayVec%3CT,+CAP%3E"],[13058,"impl-IntoIterator-for-%26mut+ArrayVec%3CT,+CAP%3E"],[13071,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[13072,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[13078,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[13079,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[13118,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[13119,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[13162,"impl-TryFrom%3CArguments%3C\'a%3E%3E-for-ArrayString%3CCAP%3E"],[13164,"impl-TryFrom%3C%26str%3E-for-ArrayString%3CCAP%3E"],[13365,"impl-Add-for-Length%3CT,+U%3E"],[13366,"impl-Add%3C%26Length%3CT,+U%3E%3E-for-Length%3CT,+U%3E"],[13367,"impl-Add%3CVector2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[13368,"impl-Add%3CSize2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[13369,"impl-Add%3CVector3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[13370,"impl-Add%3CSize3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[13373,"impl-Add%3C%26Size2D%3CT,+U%3E%3E-for-Size2D%3CT,+U%3E"],[13374,"impl-Add-for-Size2D%3CT,+U%3E"],[13375,"impl-Add-for-Size3D%3CT,+U%3E"],[13376,"impl-Add%3C%26Size3D%3CT,+U%3E%3E-for-Size3D%3CT,+U%3E"],[13379,"impl-Add%3C%26Vector2D%3CT,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[13380,"impl-Add-for-Vector2D%3CT,+U%3E"],[13381,"impl-Add-for-Vector3D%3CT,+U%3E"],[13382,"impl-Add%3C%26Vector3D%3CT,+U%3E%3E-for-Vector3D%3CT,+U%3E"],[13384,"impl-AddAssign%3CVector2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[13385,"impl-AddAssign%3CSize2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[13386,"impl-AddAssign%3CVector3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[13387,"impl-AddAssign%3CSize3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[13425,"impl-ApproxEq%3CT%3E-for-Transform2D%3CT,+Src,+Dst%3E"],[13426,"impl-Transform2D%3CT,+Src,+Dst%3E"],[13427,"impl-Transform3D%3CT,+Src,+Dst%3E"],[13428,"impl-ApproxEq%3CT%3E-for-Transform3D%3CT,+Src,+Dst%3E"],[13631,"impl-Ceil-for-Point2D%3CT,+U%3E"],[13632,"impl-Point2D%3CT,+U%3E"],[13633,"impl-Ceil-for-Point3D%3CT,+U%3E"],[13634,"impl-Point3D%3CT,+U%3E"],[13635,"impl-Ceil-for-Size2D%3CT,+U%3E"],[13636,"impl-Size2D%3CT,+U%3E"],[13637,"impl-Ceil-for-Size3D%3CT,+U%3E"],[13638,"impl-Size3D%3CT,+U%3E"],[13639,"impl-Vector2D%3CT,+U%3E"],[13640,"impl-Ceil-for-Vector2D%3CT,+U%3E"],[13641,"impl-Vector3D%3CT,+U%3E"],[13642,"impl-Ceil-for-Vector3D%3CT,+U%3E"],[13842,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Box2D%3CT,+U2%3E"],[13843,"impl-Div%3CT%3E-for-Box2D%3CT,+U%3E"],[13844,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Box3D%3CT,+U2%3E"],[13845,"impl-Div%3CT%3E-for-Box3D%3CT,+U%3E"],[13846,"impl-Div%3CT%3E-for-Length%3CT,+U%3E"],[13847,"impl-Div%3CLength%3CT,+Src%3E%3E-for-Length%3CT,+Dst%3E"],[13848,"impl-Div%3CScale%3CT,+Src,+Dst%3E%3E-for-Length%3CT,+Dst%3E"],[13849,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Point2D%3CT,+U2%3E"],[13850,"impl-Div%3CT%3E-for-Point2D%3CT,+U%3E"],[13851,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Point3D%3CT,+U2%3E"],[13852,"impl-Div%3CT%3E-for-Point3D%3CT,+U%3E"],[13853,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Rect%3CT,+U2%3E"],[13854,"impl-Div%3CT%3E-for-Rect%3CT,+U%3E"],[13855,"impl-Div%3CT%3E-for-SideOffsets2D%3CT,+U%3E"],[13856,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-SideOffsets2D%3CT,+U2%3E"],[13857,"impl-Div%3CT%3E-for-Size2D%3CT,+U%3E"],[13858,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Size2D%3CT,+U2%3E"],[13859,"impl-Div%3CT%3E-for-Size3D%3CT,+U%3E"],[13860,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Size3D%3CT,+U2%3E"],[13861,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Vector2D%3CT,+U2%3E"],[13862,"impl-Div%3CT%3E-for-Vector2D%3CT,+U%3E"],[13863,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Vector3D%3CT,+U2%3E"],[13864,"impl-Div%3CT%3E-for-Vector3D%3CT,+U%3E"],[13865,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Box2D%3CT,+U%3E"],[13866,"impl-DivAssign%3CT%3E-for-Box2D%3CT,+U%3E"],[13867,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Box3D%3CT,+U%3E"],[13868,"impl-DivAssign%3CT%3E-for-Box3D%3CT,+U%3E"],[13870,"impl-DivAssign%3CT%3E-for-Point2D%3CT,+U%3E"],[13871,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Point2D%3CT,+U%3E"],[13872,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Point3D%3CT,+U%3E"],[13873,"impl-DivAssign%3CT%3E-for-Point3D%3CT,+U%3E"],[13874,"impl-DivAssign%3CT%3E-for-Rect%3CT,+U%3E"],[13875,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Rect%3CT,+U%3E"],[13876,"impl-DivAssign%3CT%3E-for-SideOffsets2D%3CT,+U%3E"],[13877,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-SideOffsets2D%3CT,+U%3E"],[13878,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Size2D%3CT,+U%3E"],[13879,"impl-DivAssign%3CT%3E-for-Size2D%3CT,+U%3E"],[13880,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Size3D%3CT,+U%3E"],[13881,"impl-DivAssign%3CT%3E-for-Size3D%3CT,+U%3E"],[13882,"impl-DivAssign%3CT%3E-for-Vector2D%3CT,+U%3E"],[13883,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[13884,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Vector3D%3CT,+U%3E"],[13885,"impl-DivAssign%3CT%3E-for-Vector3D%3CT,+U%3E"],[14036,"impl-Floor-for-Point2D%3CT,+U%3E"],[14037,"impl-Point2D%3CT,+U%3E"],[14038,"impl-Point3D%3CT,+U%3E"],[14039,"impl-Floor-for-Point3D%3CT,+U%3E"],[14040,"impl-Size2D%3CT,+U%3E"],[14041,"impl-Floor-for-Size2D%3CT,+U%3E"],[14042,"impl-Size3D%3CT,+U%3E"],[14043,"impl-Floor-for-Size3D%3CT,+U%3E"],[14044,"impl-Floor-for-Vector2D%3CT,+U%3E"],[14045,"impl-Vector2D%3CT,+U%3E"],[14046,"impl-Floor-for-Vector3D%3CT,+U%3E"],[14047,"impl-Vector3D%3CT,+U%3E"],[14075,"impl-From%3CVector3D%3CT,+U%3E%3E-for-HomogeneousVector%3CT,+U%3E"],[14077,"impl-From%3CPoint2D%3CT,+U%3E%3E-for-HomogeneousVector%3CT,+U%3E"],[14078,"impl-From%3CPoint3D%3CT,+U%3E%3E-for-HomogeneousVector%3CT,+U%3E"],[14079,"impl-From%3CVector2D%3CT,+U%3E%3E-for-HomogeneousVector%3CT,+U%3E"],[14081,"impl-From%3C(T,+T)%3E-for-Point2D%3CT,+U%3E"],[14082,"impl-From%3C%5BT;+2%5D%3E-for-Point2D%3CT,+U%3E"],[14084,"impl-From%3C%5BT;+3%5D%3E-for-Point3D%3CT,+U%3E"],[14085,"impl-From%3C(T,+T,+T)%3E-for-Point3D%3CT,+U%3E"],[14090,"impl-From%3CRotation3D%3CT,+Src,+Dst%3E%3E-for-RigidTransform3D%3CT,+Src,+Dst%3E"],[14091,"impl-From%3CVector3D%3CT,+Dst%3E%3E-for-RigidTransform3D%3CT,+Src,+Dst%3E"],[14096,"impl-From%3CVector2D%3CT,+U%3E%3E-for-Size2D%3CT,+U%3E"],[14097,"impl-From%3C%5BT;+2%5D%3E-for-Size2D%3CT,+U%3E"],[14098,"impl-From%3C(T,+T)%3E-for-Size2D%3CT,+U%3E"],[14100,"impl-From%3C%5BT;+3%5D%3E-for-Size3D%3CT,+U%3E"],[14101,"impl-From%3C(T,+T,+T)%3E-for-Size3D%3CT,+U%3E"],[14102,"impl-From%3CVector3D%3CT,+U%3E%3E-for-Size3D%3CT,+U%3E"],[14108,"impl-From%3CSize2D%3CT,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[14109,"impl-From%3C%5BT;+2%5D%3E-for-Vector2D%3CT,+U%3E"],[14111,"impl-From%3CTranslation2D%3CT,+Src,+Dst%3E%3E-for-Vector2D%3CT,+Src%3E"],[14112,"impl-From%3C(T,+T)%3E-for-Vector2D%3CT,+U%3E"],[14113,"impl-From%3CTranslation3D%3CT,+Src,+Dst%3E%3E-for-Vector3D%3CT,+Src%3E"],[14115,"impl-From%3C%5BT;+3%5D%3E-for-Vector3D%3CT,+U%3E"],[14116,"impl-From%3C(T,+T,+T)%3E-for-Vector3D%3CT,+U%3E"],[14607,"impl-Mul%3CT%3E-for-Box2D%3CT,+U%3E"],[14608,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Box2D%3CT,+U1%3E"],[14609,"impl-Mul%3CT%3E-for-Box3D%3CT,+U%3E"],[14610,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Box3D%3CT,+U1%3E"],[14611,"impl-Mul%3CT%3E-for-Length%3CT,+U%3E"],[14612,"impl-Mul%3CScale%3CT,+Src,+Dst%3E%3E-for-Length%3CT,+Src%3E"],[14613,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Point2D%3CT,+U1%3E"],[14614,"impl-Mul%3CT%3E-for-Point2D%3CT,+U%3E"],[14615,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Point3D%3CT,+U1%3E"],[14616,"impl-Mul%3CT%3E-for-Point3D%3CT,+U%3E"],[14617,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Rect%3CT,+U1%3E"],[14618,"impl-Mul%3CT%3E-for-Rect%3CT,+U%3E"],[14620,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-SideOffsets2D%3CT,+U1%3E"],[14621,"impl-Mul%3CT%3E-for-SideOffsets2D%3CT,+U%3E"],[14622,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Size2D%3CT,+U1%3E"],[14623,"impl-Mul%3CT%3E-for-Size2D%3CT,+U%3E"],[14624,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Size3D%3CT,+U1%3E"],[14625,"impl-Mul%3CT%3E-for-Size3D%3CT,+U%3E"],[14626,"impl-Mul%3CT%3E-for-Vector2D%3CT,+U%3E"],[14627,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Vector2D%3CT,+U1%3E"],[14628,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Vector3D%3CT,+U1%3E"],[14629,"impl-Mul%3CT%3E-for-Vector3D%3CT,+U%3E"],[14630,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Box2D%3CT,+U%3E"],[14631,"impl-MulAssign%3CT%3E-for-Box2D%3CT,+U%3E"],[14632,"impl-MulAssign%3CT%3E-for-Box3D%3CT,+U%3E"],[14633,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Box3D%3CT,+U%3E"],[14635,"impl-MulAssign%3CT%3E-for-Point2D%3CT,+U%3E"],[14636,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Point2D%3CT,+U%3E"],[14637,"impl-MulAssign%3CT%3E-for-Point3D%3CT,+U%3E"],[14638,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Point3D%3CT,+U%3E"],[14639,"impl-MulAssign%3CT%3E-for-Rect%3CT,+U%3E"],[14640,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Rect%3CT,+U%3E"],[14641,"impl-MulAssign%3CT%3E-for-SideOffsets2D%3CT,+U%3E"],[14642,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-SideOffsets2D%3CT,+U%3E"],[14643,"impl-MulAssign%3CT%3E-for-Size2D%3CT,+U%3E"],[14644,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Size2D%3CT,+U%3E"],[14645,"impl-MulAssign%3CT%3E-for-Size3D%3CT,+U%3E"],[14646,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Size3D%3CT,+U%3E"],[14647,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[14648,"impl-MulAssign%3CT%3E-for-Vector2D%3CT,+U%3E"],[14649,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Vector3D%3CT,+U%3E"],[14650,"impl-MulAssign%3CT%3E-for-Vector3D%3CT,+U%3E"],[14762,"impl-Round-for-Point2D%3CT,+U%3E"],[14763,"impl-Point2D%3CT,+U%3E"],[14764,"impl-Point3D%3CT,+U%3E"],[14765,"impl-Round-for-Point3D%3CT,+U%3E"],[14767,"impl-Round-for-Size2D%3CT,+U%3E"],[14768,"impl-Size2D%3CT,+U%3E"],[14769,"impl-Round-for-Size3D%3CT,+U%3E"],[14770,"impl-Size3D%3CT,+U%3E"],[14771,"impl-Vector2D%3CT,+U%3E"],[14772,"impl-Round-for-Vector2D%3CT,+U%3E"],[14773,"impl-Vector3D%3CT,+U%3E"],[14774,"impl-Round-for-Vector3D%3CT,+U%3E"],[14815,"impl-Sub%3CVector2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[14816,"impl-Sub-for-Point2D%3CT,+U%3E"],[14817,"impl-Sub%3CSize2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[14818,"impl-Sub%3CSize3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[14819,"impl-Sub%3CVector3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[14820,"impl-Sub-for-Point3D%3CT,+U%3E"],[14830,"impl-SubAssign%3CVector2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[14831,"impl-SubAssign%3CSize2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[14832,"impl-SubAssign%3CVector3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[14833,"impl-SubAssign%3CSize3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[14841,"impl-Sum%3C%26Length%3CT,+U%3E%3E-for-Length%3CT,+U%3E"],[14842,"impl-Sum-for-Length%3CT,+U%3E"],[14843,"impl-Sum%3C%26Size2D%3CT,+U%3E%3E-for-Size2D%3CT,+U%3E"],[14844,"impl-Sum-for-Size2D%3CT,+U%3E"],[14845,"impl-Sum-for-Size3D%3CT,+U%3E"],[14846,"impl-Sum%3C%26Size3D%3CT,+U%3E%3E-for-Size3D%3CT,+U%3E"],[14847,"impl-Sum-for-Vector2D%3CT,+U%3E"],[14848,"impl-Sum%3C%26Vector2D%3CT,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[14849,"impl-Sum%3C%26Vector3D%3CT,+U%3E%3E-for-Vector3D%3CT,+U%3E"],[14850,"impl-Sum-for-Vector3D%3CT,+U%3E"],[15033,"impl-Rotation2D%3CT,+Src,+Dst%3E"],[15034,"impl-Transformation%3CS%3E-for-Rotation2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[15035,"impl-Scale%3CT,+Src,+Dst%3E"],[15036,"impl-Transformation%3CS%3E-for-Scale%3CS,+UnknownUnit,+UnknownUnit%3E"],[15037,"impl-Translation2D%3CT,+Src,+Dst%3E"],[15038,"impl-Transformation%3CS%3E-for-Translation2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[15039,"impl-Transform2D%3CT,+Src,+Dst%3E"],[15040,"impl-Transformation%3CS%3E-for-Transform2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[15056,"impl-Transformation%3CS%3E-for-Rotation2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[15057,"impl-Rotation2D%3CT,+Src,+Dst%3E"],[15058,"impl-Scale%3CT,+Src,+Dst%3E"],[15059,"impl-Transformation%3CS%3E-for-Scale%3CS,+UnknownUnit,+UnknownUnit%3E"],[15061,"impl-Transform2D%3CT,+Src,+Dst%3E"],[15062,"impl-Transformation%3CS%3E-for-Transform2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[15369,"impl-Point2D%3CT,+U%3E"],[15370,"impl-Zero-for-Point2D%3CT,+U%3E"],[15371,"impl-Zero-for-Point3D%3CT,+U%3E"],[15372,"impl-Point3D%3CT,+U%3E"],[15375,"impl-Zero-for-Size2D%3CT,+U%3E"],[15376,"impl-Size2D%3CT,+U%3E"],[15377,"impl-Size3D%3CT,+U%3E"],[15378,"impl-Zero-for-Size3D%3CT,+U%3E"],[15379,"impl-Zero-for-Vector2D%3CT,+U%3E"],[15380,"impl-Vector2D%3CT,+U%3E"],[15381,"impl-Vector3D%3CT,+U%3E"],[15382,"impl-Zero-for-Vector3D%3CT,+U%3E"],[15854,"impl-PathBuilder-for-Builder%3C\'l%3E"],[15855,"impl-Builder%3C\'l%3E"],[15856,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[15857,"impl-BuilderWithAttributes%3C\'l%3E"],[15864,"impl-Build-for-Builder%3C\'l%3E"],[15865,"impl-Builder%3C\'l%3E"],[15866,"impl-Build-for-BuilderWithAttributes%3C\'l%3E"],[15867,"impl-BuilderWithAttributes%3C\'l%3E"],[15877,"impl-Builder%3C\'l%3E"],[15878,"impl-PathBuilder-for-Builder%3C\'l%3E"],[15879,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[15880,"impl-BuilderWithAttributes%3C\'l%3E"],[15893,"impl-PathBuilder-for-Builder%3C\'l%3E"],[15894,"impl-Builder%3C\'l%3E"],[15895,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[15896,"impl-BuilderWithAttributes%3C\'l%3E"],[15937,"impl-PathBuilder-for-Builder%3C\'l%3E"],[15938,"impl-Builder%3C\'l%3E"],[15939,"impl-BuilderWithAttributes%3C\'l%3E"],[15940,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[15946,"impl-PathBuilder-for-Builder%3C\'l%3E"],[15947,"impl-Builder%3C\'l%3E"],[15948,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[15949,"impl-BuilderWithAttributes%3C\'l%3E"],[15950,"impl-Builder%3C\'l%3E"],[15951,"impl-PathBuilder-for-Builder%3C\'l%3E"],[15952,"impl-BuilderWithAttributes%3C\'l%3E"],[15953,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[16474,"impl-From%3CColor%3E-for-Style"],[16475,"impl-From%3CGradient%3E-for-Style"],[16476,"impl-From%3CLinear%3E-for-Style"],[16872,"impl-Debug-for-Url"],[16873,"impl-Display-for-Url"],[16874,"impl-Display-for-HeadingLevel"],[16875,"impl-Debug-for-HeadingLevel"],[16888,"impl-From%3CTheme%3E-for-Settings"],[16889,"impl-From%3C%26Theme%3E-for-Settings"],[16890,"impl-From%3C%26Theme%3E-for-Style"],[16891,"impl-From%3CPalette%3E-for-Style"],[16892,"impl-From%3CTheme%3E-for-Style"],[16928,"impl-Index%3CRangeFull%3E-for-Url"],[16929,"impl-Index%3CRangeTo%3CPosition%3E%3E-for-Url"],[16930,"impl-Index%3CRangeFrom%3CPosition%3E%3E-for-Url"],[16931,"impl-Index%3CRange%3CPosition%3E%3E-for-Url"],[18484,"impl-Debug-for-Error"],[18485,"impl-Display-for-Error"],[19941,"impl-Rich%3C\'a,+Link,+Message,+Theme,+Renderer%3E"],[19942,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-Rich%3C\'_,+Link,+Message,+Theme,+Renderer%3E"],[20408,"impl-State%3CHighlighter%3E"],[20409,"impl-Focusable-for-State%3CHighlighter%3E"],[20712,"impl-Debug-for-Value"],[20713,"impl-Display-for-Value"],[20722,"impl-Focusable-for-State%3CP%3E"],[20723,"impl-State%3CP%3E"],[20729,"impl-From%3CString%3E-for-Id"],[20731,"impl-From%3C%26str%3E-for-Id"],[20836,"impl-Focusable-for-State%3CP%3E"],[20837,"impl-State%3CP%3E"],[20840,"impl-State%3CP%3E"],[20841,"impl-TextInput-for-State%3CP%3E"],[20843,"impl-State%3CP%3E"],[20844,"impl-TextInput-for-State%3CP%3E"],[20846,"impl-State%3CP%3E"],[20847,"impl-TextInput-for-State%3CP%3E"],[20861,"impl-TextInput-for-State%3CP%3E"],[20862,"impl-State%3CP%3E"],[20936,"impl-State%3CP%3E"],[20937,"impl-Focusable-for-State%3CP%3E"],[21608,"impl-Display-for-Id"],[21609,"impl-Debug-for-Id"],[21969,"impl-Display-for-Error"],[21970,"impl-Debug-for-Error"],[21972,"impl-From%3CImageError%3E-for-Error"],[21973,"impl-From%3CError%3E-for-Error"],[21974,"impl-From%3CError%3E-for-Error"],[22800,"impl-Display-for-HandleError"],[22801,"impl-Debug-for-HandleError"],[22833,"impl-From%3CWaylandWindowHandle%3E-for-RawWindowHandle"],[22834,"impl-From%3CHaikuWindowHandle%3E-for-RawWindowHandle"],[22835,"impl-From%3CGbmWindowHandle%3E-for-RawWindowHandle"],[22837,"impl-From%3CDrmWindowHandle%3E-for-RawWindowHandle"],[22838,"impl-From%3CWinRtWindowHandle%3E-for-RawWindowHandle"],[22839,"impl-From%3CXcbWindowHandle%3E-for-RawWindowHandle"],[22840,"impl-From%3CWebWindowHandle%3E-for-RawWindowHandle"],[22841,"impl-From%3CWebCanvasWindowHandle%3E-for-RawWindowHandle"],[22842,"impl-From%3CXlibWindowHandle%3E-for-RawWindowHandle"],[22843,"impl-From%3COhosNdkWindowHandle%3E-for-RawWindowHandle"],[22844,"impl-From%3COrbitalWindowHandle%3E-for-RawWindowHandle"],[22845,"impl-From%3CAppKitWindowHandle%3E-for-RawWindowHandle"],[22846,"impl-From%3CWebOffscreenCanvasWindowHandle%3E-for-RawWindowHandle"],[22847,"impl-From%3CAndroidNdkWindowHandle%3E-for-RawWindowHandle"],[22848,"impl-From%3CUiKitWindowHandle%3E-for-RawWindowHandle"],[22849,"impl-From%3CWin32WindowHandle%3E-for-RawWindowHandle"],[22850,"impl-From%3CWindowHandle%3C\'_%3E%3E-for-RawWindowHandle"],[22851,"impl-From%3CXlibDisplayHandle%3E-for-RawDisplayHandle"],[22853,"impl-From%3CAppKitDisplayHandle%3E-for-RawDisplayHandle"],[22854,"impl-From%3CAndroidDisplayHandle%3E-for-RawDisplayHandle"],[22855,"impl-From%3CXcbDisplayHandle%3E-for-RawDisplayHandle"],[22856,"impl-From%3CUiKitDisplayHandle%3E-for-RawDisplayHandle"],[22857,"impl-From%3COrbitalDisplayHandle%3E-for-RawDisplayHandle"],[22858,"impl-From%3CHaikuDisplayHandle%3E-for-RawDisplayHandle"],[22859,"impl-From%3CWebDisplayHandle%3E-for-RawDisplayHandle"],[22860,"impl-From%3COhosDisplayHandle%3E-for-RawDisplayHandle"],[22861,"impl-From%3CDisplayHandle%3C\'_%3E%3E-for-RawDisplayHandle"],[22862,"impl-From%3CWindowsDisplayHandle%3E-for-RawDisplayHandle"],[22863,"impl-From%3CWaylandDisplayHandle%3E-for-RawDisplayHandle"],[22864,"impl-From%3CGbmDisplayHandle%3E-for-RawDisplayHandle"],[22865,"impl-From%3CDrmDisplayHandle%3E-for-RawDisplayHandle"],[23710,"impl-Debug-for-CropError"],[23711,"impl-Display-for-CropError"]],"c":"OjAAAAEAAAAAAAwAEAAAAMQczxzyHEweliEFIncjmCNrQgpWC1YkWyZb","e":"OjAAAAEAAAAAANFFEAAAABAhQABIAAABAAAIAgACgP////8D8P///////////////5/w/////////P//D/7/////////f/D//z/4////h////////8f3////////8P//////APj///+JBXvzvnxreP7////B////C0/+//8HAAAA/v///////////////////////////5////8BwP8/AP9/4AMCAMAA/v/vP2b/////wf/////////////////////////////v////8P//fwEAAO7/fw7++53D4c/B//8/AAAAAAD////jAPD/////8/P/7///CwD//////+///9////3////532e+8N0H//////8D8w/w/f+/////APPv7Z//zZv/fwAIzP//4P93//6DBh6cT/7vv/uX/wHw///d///4///Ptef/F4kS//8a/O/t/382P///Bv//DwD8////////P+6O///v/v//fwD/////uf/+/+rcjv//f+D///8HAAAAAPz///8f+P/5+///8AfP////+//HHzD6/x3gD/j//////+8PAHgAwN///////3/+8AcAAAAAAPj//c+/nzf//4D//w3w/+9v/x/v/P/7/3/H//0N+gfEfwSc//8P5/xw70367/j//wsEFEH//98dgO954f4AAH/z//4L3L/9DQAAAAAAAPj/93/zz5//P/H/fwD4/////1//+f///3///////P9/7///IX95cv8A8E/4Azz/+/4RBPgPoH9e7h/gXwD//9/9g//B+TjvuP///////////////38f/P8f/P////97/v//////B+P///3/+fn/F///DwCA5/8fxP////b89+//37944X/A////fwAZeP///+8fAIQAAABUAAQVAQAAAAAAABAAAAAAAAAAAAAAAAACMCAAAAAAIKA/BAAJ0gGAAAAAAQAAAEAEBBAoAKAAAAAAAgX4//////////////+H/3/4//////////9/cODB+eT///////////////8P/v/B/////z88/P//////DwD8//n/k/8//Mf//08A////DwD8P6/pH/gf/v93//4HAAAAAADg/4///8////Ef////wP///z8AAACA/////3+A//////9///z//////wP8/wP/AP//////////AAD/////////////AADu+wf4E/x//8Pzv90Atvn/x/DA5+I//z/w/////+fP//////8DAAAAAAAAAID///9/AAD//////////////////////v/////////B////PwD8/wAA4OD///8fzv///////////+/////////9/////x8eAAAAAMD//////v///wEAAACA////fwAAAAD8////////////////////////////////9////w/8/7//AwD4//8PAAAAHAAAAAAA/7/9/wMAAAAAAMA/v1f/XwDw//8HAAD//38AAACC/////////////////////////////////////////3////8B/v///wEAAAAAwP/8//z/8/P/H/D//wAAAAD4////////////9/////d//////8//P/9TA/f//+l/AP7///////////8BfgQA/vf///////////uf/0Hi//+7f/6H+f///z0////B//9j/Htz/yc///8I/v/PP//s/sH/4MIvDg4OwAf+//////////////////8/+f///////0f////////////////9/////////////////////////4P9/w+MAAD+//////9////j////HwAAwP/////////////////////////////3//9/Hhbk+sP7D/cP////r////////////////////////////////////////////w/gAwAA+v//9v99/499vv//v/t08H//4P////8/n/8fvKoqvFf96f/////fHwH/////7///////3+D//+D/////X//////////Qj8/X8f+/Unb7/////1/Z//8gwv9v+P//P/9//v9fa////6ra/x8JAc3/AFUFAMC1jvL//6v/rwH4//////////9PIMAQ/P39mpeJ0ZdVGXz7f77nP4T+///////////v/7kabHUQ/v/ef+//g////wHH///h//8////37//fP/D5/z/w////f/6H6////wf/AwCOf75//+P/////////////n/9/7///AwAAgP///////z8A//ljg///////////////////////4///DwAAAgBwAP///////////4f//z8G4f/n/v////9//v////9/+P//////////8P//////////EQD+///ZbRnubLfi//8PAED4//8HAADw//8/AfD//481AADg/////////////////////////////x8AAgAABADw//+Dh/fw///////vH0AMAID//wIBjgAwCAEAwAfwAIP/////HwAAAAIBAAAAAOD//38oABAAAAAAABCoAgCyAAIA/v////////////+f//////////9P//9/7P///wD4fMTPB28aCQD//7/A////+5nPm1L6/////8f/+P///////38BwPTk////////A/8P/////8+f/////w+Af9EGAP/////////jP/7//////////4H//////////+H/4f////////////8BAAIAAAAAwP+f//+d//8Pv+P//x/g////B/4/3/31P+B/4P+Nv//5n/9/Auz/twH8d7P+Jf6fgP//3T/9r3//TP86+n/ALwD/////D///3///w///f/3///8Dvj/+AQb+D8D///////8HIwAGQAAi/v///////z9//AEAAAAAAAAAwP///P//////////8////////8v//////7f//8f///////+f//37////XwEA/v///5/n/38AAPz/////////////////////fwAQAwD4////////////////////////////DwAA/v///589/v/j//8BAPD///z//3v6//8/+Pfw////L/j/////B+Djz+/+4X8AAPD//9//3/9//v/////Q/x/8//////n//////z8A/+P/5/2fn/9//v8fAP7/f/M/8/P/z///AwAAwP/9/////z/+/3///////+//8P///////////weC//9f/g+A/////////////398gP////////////9//+f/AAAA/v//3/OY/z8B/v8bAPD//x/8////n//////gfx/8/////+P//////38A4P//t/9/fv7/+/9/AAAAnP/3H4fD//uDP47//3eRg0L//797AAAAAAAAAAD4////////4///////////j/////7/f/////8B8H//938A/P////////////8EHMD////////////////+DwAA+P/////n///////fP/z///////8LFP///QPw/////////y8kYUCA///////////l3z/4///u/38AAAAAAAAAAAAAAAAAAP7H/8//H/z8//v/fwD//7/7/z8AAAAAAAAAAAAAAACA/////////////+///////+P/n/////t//t////P/AMj//z8A8v8A8P///////////3//D3AGAAD/H//////////////v//0/4P/vsf//BwAAAAAAAAAA/v///+f/////////////////////n/n///////////n//////////////////////////5///////////8f///////////////////////////////9//////wcAAADc/9//9///////////+P///4//////AQAAAPj/////////////////////////////////////////AQAAAPD4//////////////////////////////////H////////////////z////Pwj+/t0//6f/+6/pH4L+BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA","P":[[117,"T"],[118,"T,M,D"],[144,""],[148,"T"],[152,""],[155,"T,A,"],[156,"T,E,A,"],[158,""],[160,"State,,Message,,Theme,Renderer,"],[161,""],[163,"C,T"],[189,"C"],[215,""],[268,"T"],[269,""],[271,"T,"],[273,""],[275,"T"],[327,""],[328,""],[329,"WpParam,T"],[355,""],[358,"T"],[360,""],[361,"T"],[362,""],[375,"T"],[377,""],[380,"T"],[381,""],[382,"T"],[406,""],[430,"T"],[431,""],[432,""],[435,"C,T"],[461,""],[463,""],[465,"State,,Message,,Theme,Renderer,"],[466,""],[490,"T"],[492,""],[495,"T"],[496,""],[497,"T"],[498,""],[501,"T"],[554,"T,O"],[555,"T"],[556,""],[562,"T"],[589,""],[615,"T"],[617,""],[618,"R,"],[619,""],[635,"T"],[637,""],[639,"T"],[640,""],[641,"T"],[642,"K"],[665,"T"],[666,""],[668,""],[674,"T"],[675,""],[678,"T"],[679,""],[695,"T"],[698,""],[701,"T"],[702,""],[703,"T"],[705,""],[706,"T"],[710,""],[712,"T"],[713,""],[714,"T"],[719,""],[721,"T"],[722,""],[726,"T"],[727,""],[729,"T"],[731,""],[735,"T"],[736,""],[741,"T"],[742,""],[743,"T"],[745,""],[750,"T"],[754,""],[755,"T"],[756,""],[758,"T"],[765,""],[766,"T"],[796,""],[805,"U,T"],[831,""],[833,"T,"],[835,""],[836,"T"],[839,"__H"],[842,"T,__H"],[843,""],[874,"I"],[875,"T,I,"],[876,""],[878,"U"],[930,"T"],[1006,"WpParam,T"],[1032,"U"],[1084,""],[1086,"T"],[1112,""],[1114,"T"],[1115,""],[1118,""],[1119,""],[1120,"T,O,"],[1121,"T,A,F"],[1122,""],[1131,"T"],[1132,""],[1134,"T"],[1135,""],[1136,"T"],[1137,""],[1139,"T"],[1142,""],[1143,"T"],[1144,""],[1145,"T"],[1146,""],[1147,"T"],[1166,""],[1177,"A,,T,"],[1178,""],[1179,"T"],[1180,""],[1186,"T"],[1188,""],[1189,""],[1192,""],[1193,"State,,Message,,Theme,Renderer,"],[1194,"Program::State,Program::Message,Program::Theme,Program::Renderer,Program::Executor"],[1196,"A,,T,"],[1197,"T,S"],[1198,"Program::State,Program::Message,Program::Theme,Program::Renderer,Program::Executor,I"],[1200,"D,T,S"],[1201,""],[1205,"Program::State,Program::Message,Program::Theme,Program::Renderer,Program::Executor"],[1207,""],[1208,""],[1209,""],[1210,"T"],[1211,""],[1212,""],[1214,"T,"],[1215,""],[1216,"Program::State,Program::Message,Program::Theme,Program::Renderer,Program::Executor"],[1218,""],[1237,"T"],[1242,""],[1243,"Program::State,Program::Message,Program::Theme,Program::Renderer,Program::Executor"],[1250,"T,O,"],[1252,"Program::State,Program::Message,Program::Theme,Program::Renderer,Program::Executor"],[1254,""],[1255,"T"],[1278,""],[1288,""],[1289,""],[1293,"C"],[1319,"U,T"],[1345,"U"],[1397,""],[1423,"C,U"],[1449,"C"],[1475,""],[1476,"T"],[1502,"Program::State,Program::Message,Program::Theme,Program::Renderer,Program::Executor"],[1503,"T"],[1504,""],[1505,"T"],[1507,"Program::State,Program::Message,Program::Theme,Program::Renderer,Program::Executor"],[1508,"V"],[1534,""],[1537,""],[1538,""],[1542,"T,A"],[1543,""],[1545,"T"],[1546,""],[1560,"T,M,D"],[1563,"Message"],[1564,"C,T"],[1567,"C"],[1570,""],[1576,"T"],[1582,""],[1584,"WpParam,T"],[1587,"Message"],[1588,""],[1593,"Content,Font"],[1594,"T"],[1596,""],[1598,"C,T"],[1601,""],[1602,"T"],[1608,""],[1609,"T"],[1612,"Renderer,Theme"],[1614,""],[1619,"Message"],[1620,""],[1621,""],[1622,"Content,Font"],[1623,"Message"],[1624,""],[1625,"T"],[1631,"U,T"],[1635,""],[1640,"Message"],[1642,"U"],[1648,"T"],[1657,"WpParam,T"],[1660,"U"],[1666,"T"],[1669,"Message"],[1674,"Renderer"],[1678,""],[1679,"Message,B,"],[1681,"Renderer"],[1683,""],[1684,"Message"],[1685,"Renderer"],[1688,"Renderer,Message,Theme"],[1690,""],[1691,"Message"],[1692,""],[1693,"Message"],[1696,"Message,T"],[1697,"Message"],[1698,"Message,"],[1700,""],[1711,"T"],[1713,"C"],[1716,"U,T"],[1719,"U"],[1725,""],[1728,"C,U"],[1731,"C"],[1734,"T"],[1737,"Renderer,Message"],[1739,""],[1740,"V"],[1744,""],[1745,""],[1746,""],[1748,""],[1755,"T,M,D"],[1757,"C,T"],[1759,"C"],[1761,""],[1765,"T"],[1769,"WpParam,T"],[1771,""],[1773,"T"],[1775,""],[1777,"C,T"],[1779,"T"],[1785,""],[1788,"K"],[1791,""],[1793,"T"],[1797,"U,T"],[1799,""],[1801,"U"],[1805,"T"],[1811,"WpParam,T"],[1813,"U"],[1817,"T"],[1819,""],[1821,"T"],[1823,"C"],[1825,"U,T"],[1827,"U"],[1831,""],[1833,"C,U"],[1835,"C"],[1837,"T"],[1839,"V"],[1841,""],[1855,"T,M,D"],[1860,""],[1861,"C,T"],[1866,"C"],[1871,""],[1883,"T"],[1893,"WpParam,T"],[1898,""],[1901,"H"],[1902,""],[1905,"T"],[1910,""],[1917,"K"],[1919,"C,T"],[1924,""],[1928,"T"],[1929,""],[1930,"T"],[1944,"Renderer::Handle"],[1945,""],[1951,"U"],[1953,""],[1956,"T"],[1957,""],[1960,"H"],[1961,""],[1964,"K"],[1976,""],[1981,"H"],[1982,""],[1988,"T"],[1989,""],[1994,"T"],[1997,""],[1998,"T"],[2005,""],[2006,"T"],[2009,""],[2010,""],[2011,"U,T"],[2016,""],[2017,"H"],[2018,"__H"],[2020,""],[2026,"U"],[2036,"T"],[2051,"WpParam,T"],[2056,"U"],[2066,""],[2068,"T"],[2073,""],[2076,"Renderer::Handle"],[2077,""],[2078,""],[2079,"T"],[2081,""],[2082,""],[2086,"T"],[2087,""],[2091,""],[2092,""],[2093,""],[2094,""],[2099,"T"],[2104,""],[2105,"C"],[2110,"U,T"],[2115,"U"],[2125,""],[2131,"C,U"],[2136,"C"],[2141,"T"],[2146,"V"],[2151,""],[2159,"T,M,D"],[2161,""],[2163,"C,T"],[2165,"C"],[2167,""],[2171,","],[2172,"T"],[2176,""],[2177,"WpParam,T"],[2179,""],[2182,"T"],[2184,""],[2186,"C,T"],[2188,",,"],[2189,""],[2191,"T"],[2197,""],[2203,"T"],[2207,"U,T"],[2209,""],[2210,""],[2212,"U"],[2216,"T"],[2222,"WpParam,T"],[2224,"U"],[2228,"T"],[2230,""],[2237,""],[2239,""],[2241,","],[2242,"T"],[2243,",,,"],[2244,",,,,"],[2245,","],[2246,""],[2247,""],[2248,",,"],[2249,"T"],[2251,""],[2253,"C"],[2255,"U,T"],[2257,"U"],[2261,""],[2263,"C,U"],[2265,"C"],[2267,"T"],[2269,"V"],[2271,""],[2272,""],[2276,"T,M,D"],[2277,"C,T"],[2278,"C"],[2279,""],[2281,"T"],[2283,"WpParam,T"],[2284,"C,T"],[2285,"T"],[2288,""],[2290,"T"],[2292,"U,T"],[2293,""],[2294,"U"],[2296,"T"],[2299,"WpParam,T"],[2300,"U"],[2302,"T"],[2303,"Renderer,Message,Theme"],[2304,"C"],[2305,"U,T"],[2306,"U"],[2308,""],[2309,"C,U"],[2310,"C"],[2311,"T"],[2312,"V"],[2355,"T,M,D"],[2356,"C,T"],[2357,"C"],[2358,""],[2360,"T"],[2362,"WpParam,T"],[2364,""],[2365,"T"],[2366,""],[2367,"C,T"],[2368,"T"],[2371,""],[2373,"T"],[2375,"U,T"],[2376,""],[2377,"U"],[2379,"T"],[2382,"WpParam,T"],[2383,"U"],[2385,"T"],[2386,""],[2390,"T"],[2391,"C"],[2392,"U,T"],[2393,"U"],[2395,""],[2396,"C,U"],[2397,"C"],[2398,"T"],[2399,"V"],[2400,""],[2411,"T,M,D"],[2412,"C,T"],[2413,"C"],[2414,""],[2416,"T"],[2418,"WpParam,T"],[2419,""],[2420,"T"],[2421,""],[2422,"C,T"],[2423,"T"],[2426,""],[2428,"K"],[2431,""],[2432,"T"],[2434,"U,T"],[2435,""],[2436,"U"],[2438,"T"],[2441,"WpParam,T"],[2442,"U"],[2444,"T"],[2446,"C"],[2447,"U,T"],[2448,"U"],[2450,""],[2451,"C,U"],[2452,"C"],[2453,"T"],[2454,"V"],[2458,"T,M,D"],[2460,"C,T"],[2462,"C"],[2464,""],[2468,"T"],[2472,"WpParam,T"],[2474,"C,T"],[2476,"Message,Theme,Renderer"],[2477,"T"],[2483,"Renderer,Theme"],[2484,"Message,Theme,Renderer"],[2486,""],[2488,"T"],[2489,"Message,Theme,Renderer"],[2490,"T"],[2493,"Message,Theme,Renderer"],[2494,"U,T"],[2496,""],[2498,"U"],[2502,"T"],[2506,"WpParam,T"],[2508,"U"],[2512,"T"],[2514,"Message,Theme,Renderer"],[2516,"Renderer"],[2518,"Message,Theme,Renderer"],[2520,"Message,Theme,Renderer,B"],[2521,"Message,Theme,Renderer"],[2523,"Renderer"],[2524,"Message,Theme,Renderer"],[2526,"T"],[2527,"Message,Theme,Renderer"],[2529,"Renderer"],[2530,"Message,Theme,Renderer"],[2533,"Renderer,Message,Theme"],[2534,"Message,Theme,Renderer,"],[2535,"C"],[2537,"U,T"],[2539,"U"],[2543,""],[2545,"C,U"],[2547,"C"],[2549,"T"],[2551,"Message,Theme,Renderer"],[2553,"Renderer,Message"],[2554,"V"],[2556,"Message,Theme,Renderer"],[2561,"T,M,D"],[2563,"C,T"],[2565,"C"],[2567,""],[2572,"T"],[2576,""],[2577,"WpParam,T"],[2579,""],[2582,"T"],[2584,""],[2586,"C,T"],[2588,""],[2590,"T"],[2596,""],[2602,""],[2603,""],[2605,"T"],[2609,"U,T"],[2611,""],[2613,"U"],[2617,"T"],[2623,"WpParam,T"],[2625,"U"],[2629,"T"],[2631,""],[2632,"T"],[2634,""],[2639,"T"],[2641,"C"],[2643,"U,T"],[2645,"U"],[2649,""],[2651,"C,U"],[2653,"C"],[2655,"T"],[2657,"V"],[2659,""],[2673,"T,M,D"],[2676,"C,T"],[2679,"C"],[2682,""],[2688,"T"],[2694,"WpParam,T"],[2697,""],[2700,"T"],[2703,""],[2706,"C,T"],[2709,"T"],[2718,""],[2724,"K"],[2730,""],[2733,"T"],[2739,"T,"],[2740,"U,T"],[2743,"Recipe::Output"],[2744,""],[2747,"U"],[2753,"T"],[2762,"WpParam,T"],[2765,"U"],[2771,"T"],[2775,"Recipe::Output"],[2776,"T"],[2779,"C"],[2782,"U,T"],[2785,"U"],[2791,""],[2794,"C,U"],[2797,"C"],[2800,"T"],[2803,"V"],[2806,""],[2815,"T,M,D"],[2818,"C,T"],[2821,"C"],[2824,""],[2830,"T"],[2836,"WpParam,T"],[2839,"H"],[2840,""],[2842,"T"],[2845,""],[2848,""],[2849,""],[2850,"C,T"],[2853,""],[2854,"T"],[2863,""],[2867,"H"],[2868,""],[2870,"K"],[2876,"H"],[2877,""],[2879,"T"],[2880,""],[2881,"T"],[2887,""],[2889,"U,T"],[2892,""],[2893,"H"],[2894,"__H"],[2895,""],[2899,"U"],[2905,"T"],[2914,"WpParam,T"],[2917,"U"],[2923,"T"],[2926,""],[2927,""],[2929,""],[2930,""],[2931,""],[2932,"T"],[2935,"C"],[2938,"U,T"],[2941,"U"],[2947,""],[2950,"C,U"],[2953,"C"],[2956,"T"],[2959,"V"],[3001,"T,M,D"],[3008,"C,T"],[3015,"C"],[3022,""],[3036,"Link,Font,"],[3037,""],[3038,"Link,Font,"],[3040,""],[3041,"Link,Font,"],[3042,"T"],[3056,"Editor::Font"],[3057,""],[3058,"WpParam,T"],[3065,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[3066,""],[3071,"Link,Font"],[3072,""],[3073,"T"],[3080,""],[3087,"Link,Font,"],[3088,""],[3089,"Link,Font,"],[3090,"Paragraph::Font"],[3091,"C,T"],[3098,""],[3099,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[3100,"Editor::Font"],[3101,""],[3102,"Editor::Font"],[3103,""],[3106,"Link,Font"],[3107,"Renderer::Font,Renderer::Paragraph,Renderer::Editor"],[3109,"T"],[3130,""],[3143,"Link,Font"],[3144,""],[3145,"K"],[3154,"Renderer::Font,Renderer::Paragraph,Renderer::Editor"],[3157,""],[3162,"Link,Font"],[3163,""],[3164,"Link,Font,"],[3165,""],[3167,"Link,Font,"],[3168,"T"],[3171,""],[3173,"T"],[3176,"Link,Font"],[3177,"T"],[3185,"U,T"],[3192,"Paragraph::Font"],[3193,"__H"],[3195,"H"],[3196,"Editor::Font,H,"],[3197,""],[3198,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[3200,"Paragraph::Font"],[3203,""],[3211,"U"],[3225,"T"],[3246,"WpParam,T"],[3253,"U"],[3267,""],[3268,"T"],[3275,"Editor::Font"],[3278,"Link,Font,"],[3279,""],[3281,"Link,Font,"],[3282,""],[3283,"Link,Font,"],[3284,"Editor::Font"],[3285,"Paragraph::Font"],[3288,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[3289,",Link,Font"],[3290,"T"],[3294,"Link,Font,"],[3295,""],[3297,"Editor::Font"],[3298,"Paragraph::Font"],[3299,"Editor::Font"],[3300,""],[3301,"Link,Font,"],[3302,""],[3304,"Paragraph::Font"],[3305,"Link,Font"],[3306,""],[3309,"T"],[3316,"Link,Font"],[3317,"C"],[3324,"U,T"],[3331,"U"],[3345,""],[3352,"C,U"],[3359,"C"],[3366,"Link,Font"],[3367,""],[3368,"T"],[3375,"Editor::Font,"],[3376,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[3377,"Paragraph::Font"],[3378,""],[3379,"V"],[3386,"Link,Paragraph::Font"],[3387,"Editor::Font"],[3388,"Paragraph::Font"],[3389,""],[3434,"T,M,D"],[3436,"C,T"],[3438,"C"],[3440,""],[3444,"T"],[3448,"Editor::Font"],[3449,"WpParam,T"],[3451,""],[3453,"T"],[3455,""],[3457,"C,T"],[3459,"Editor::Font"],[3461,"T"],[3467,""],[3471,"K"],[3474,""],[3476,"T"],[3480,"U,T"],[3482,"Editor::Font,H,"],[3483,""],[3485,"U"],[3489,"T"],[3495,"WpParam,T"],[3497,"U"],[3501,"T"],[3503,"Editor::Font"],[3509,""],[3510,"T"],[3512,"C"],[3514,"U,T"],[3516,"U"],[3520,""],[3522,"C,U"],[3524,"C"],[3526,"T"],[3528,"Editor::Font,"],[3529,"V"],[3531,"Editor::Font"],[3532,""],[3539,"T,M,D"],[3541,"C,T"],[3543,"C"],[3545,""],[3549,"T"],[3553,"WpParam,T"],[3555,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[3556,""],[3558,"Font"],[3559,"T"],[3561,""],[3564,"C,T"],[3566,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[3567,""],[3568,"Font"],[3569,"T"],[3575,""],[3577,"Font"],[3578,""],[3579,"Font"],[3580,""],[3581,"T"],[3585,"U,T"],[3587,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[3588,""],[3591,"U"],[3595,"T"],[3601,"WpParam,T"],[3603,"U"],[3607,"T"],[3609,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[3610,""],[3611,"T"],[3614,"C"],[3616,"U,T"],[3618,"U"],[3622,""],[3624,"C,U"],[3626,"C"],[3628,"T"],[3630,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[3631,""],[3632,"V"],[3637,"T,M,D"],[3638,"C,T"],[3639,"C"],[3640,""],[3642,"T"],[3644,"WpParam,T"],[3645,"P"],[3646,"T"],[3647,""],[3648,"Paragraph::Font"],[3649,"C,T"],[3650,"P"],[3651,"T"],[3654,""],[3655,"P"],[3656,"T"],[3658,"U,T"],[3659,"Paragraph::Font"],[3663,"P"],[3664,""],[3665,"U"],[3667,"T"],[3670,"WpParam,T"],[3671,"U"],[3673,"T"],[3674,"Paragraph::Font"],[3675,"P"],[3676,"Paragraph::Font"],[3677,"P"],[3678,"Paragraph::Font"],[3679,"P"],[3681,"T"],[3682,"P"],[3683,"Paragraph::Font"],[3685,"T"],[3686,"C"],[3687,"U,T"],[3688,"U"],[3690,""],[3691,"C,U"],[3692,"C"],[3693,"T"],[3694,"P"],[3695,"Paragraph::Font"],[3696,"P"],[3697,"V"],[3698,"Link,Paragraph::Font"],[3699,"Paragraph::Font"],[3705,"T,M,D"],[3708,"Theme,Renderer,"],[3710,"C,T"],[3713,"C"],[3716,""],[3722,"T"],[3728,"WpParam,T"],[3731,"Theme,Renderer"],[3732,""],[3734,"Theme,Renderer,"],[3735,""],[3736,"T"],[3737,""],[3738,"Theme,Renderer,"],[3740,"C,T"],[3743,""],[3745,"T"],[3751,""],[3752,""],[3754,"T,,"],[3755,"T"],[3758,"Renderer,Theme"],[3759,"Theme,Renderer"],[3760,""],[3765,"K"],[3768,"T"],[3769,""],[3772,"Theme,Renderer,"],[3773,"Theme,Renderer"],[3774,"T"],[3776,""],[3777,"T"],[3778,""],[3780,"T"],[3783,"U,T"],[3786,"__H"],[3787,"Theme,Renderer,"],[3788,""],[3791,"U"],[3797,"T"],[3805,"WpParam,T"],[3808,"U"],[3814,"T"],[3817,"Renderer"],[3818,"Theme,Renderer"],[3819,"Theme,Renderer,"],[3820,"Renderer"],[3821,",Theme,Renderer"],[3822,""],[3824,"T,"],[3825,"Theme,Renderer"],[3826,"Renderer"],[3828,"Renderer,Message,Theme"],[3829,""],[3830,"Theme,Renderer"],[3831,""],[3832,"Theme,Renderer,"],[3833,"Theme,Renderer"],[3834,""],[3835,"Theme,Renderer"],[3836,""],[3838,"Theme,Renderer,"],[3839,"Theme,Renderer"],[3840,""],[3845,"T"],[3847,"C"],[3850,"U,T"],[3853,"U"],[3859,""],[3862,"C,U"],[3865,"C"],[3868,""],[3869,"T"],[3872,"Renderer,Message"],[3873,"V"],[3876,"Theme,Renderer,"],[3877,"Theme,Renderer"],[3886,"T,M,D"],[3887,"C,T"],[3888,"C"],[3889,""],[3891,"O"],[3892,"T"],[3894,"WpParam,T"],[3895,"C,T"],[3896,""],[3898,"T"],[3901,""],[3902,"T"],[3904,""],[3907,"T"],[3909,"U,T"],[3910,""],[3911,"U"],[3913,"T"],[3915,"WpParam,T"],[3916,"U"],[3918,"T"],[3919,""],[3920,"A,,B,"],[3921,""],[3924,"T,"],[3925,""],[3934,"A,,B,O"],[3935,"C"],[3936,"U,T"],[3937,"U"],[3939,""],[3940,"C,U"],[3941,"C"],[3942,""],[3943,"T"],[3944,"V"],[3947,"T,M,D"],[3948,"C,T"],[3949,"C"],[3950,""],[3952,"T"],[3954,"WpParam,T"],[3955,""],[3956,"T"],[3957,""],[3958,"C,T"],[3959,""],[3961,"T"],[3964,""],[3966,"K"],[3969,""],[3971,"T"],[3972,""],[3973,"T"],[3975,""],[3976,"T"],[3978,"U,T"],[3979,""],[3980,"U"],[3982,"T"],[3985,"WpParam,T"],[3986,"U"],[3988,"T"],[3989,""],[3990,"T"],[3992,""],[3993,"C"],[3994,"U,T"],[3995,"U"],[3997,""],[3998,"C,U"],[3999,"C"],[4000,""],[4001,"T"],[4002,"V"],[4006,"T"],[4007,""],[4008,"T"],[4009,""],[4010,"T"],[4011,""],[4017,"T"],[4018,""],[4019,"T"],[4020,""],[4021,"T"],[4022,""],[4023,"T"],[4024,""],[4046,"Catalog::Class"],[4047,"Renderer"],[4049,""],[4051,"Catalog::Class"],[4052,""],[4058,"T,M,D"],[4060,"C,T"],[4062,"C"],[4064,""],[4068,"T"],[4072,"WpParam,T"],[4074,""],[4076,"T"],[4077,""],[4079,"K"],[4080,"C,T"],[4082,"T"],[4086,"T,,,"],[4087,"T"],[4091,""],[4094,"K"],[4097,""],[4099,"T"],[4103,"U,T"],[4105,"__H"],[4106,""],[4108,"U"],[4112,"T"],[4117,"WpParam,T"],[4119,"U"],[4123,"T"],[4126,""],[4131,"T"],[4132,"C"],[4134,"U,T"],[4136,"U"],[4140,""],[4142,"C,U"],[4144,"C"],[4146,"T"],[4148,"V"],[4162,"T,M,D"],[4164,"C,T"],[4166,"C"],[4168,""],[4172,"T"],[4176,"WpParam,T"],[4178,""],[4180,"T"],[4182,""],[4184,"C,T"],[4186,"T"],[4192,""],[4196,"K"],[4202,""],[4204,"T"],[4205,""],[4206,"T"],[4207,""],[4208,"T"],[4210,"U,T"],[4212,"__H"],[4214,""],[4216,"U"],[4220,"T"],[4226,"WpParam,T"],[4228,"U"],[4232,"T"],[4236,"C"],[4238,"U,T"],[4240,"U"],[4244,""],[4246,"C,U"],[4248,"C"],[4250,"T"],[4252,"V"],[4290,"T,M,D"],[4291,"C,T"],[4292,"C"],[4293,""],[4295,"T"],[4297,"WpParam,T"],[4298,""],[4299,"T"],[4300,""],[4301,"C,T"],[4302,""],[4303,"T"],[4306,""],[4310,"T"],[4312,"U,T"],[4313,""],[4315,"U"],[4317,"T"],[4320,"WpParam,T"],[4321,"U"],[4323,"T"],[4326,"C"],[4327,"U,T"],[4328,"U"],[4330,""],[4331,"C,U"],[4332,"C"],[4333,"T"],[4334,""],[4335,"V"],[4340,"T,M,D"],[4341,"P"],[4342,"State,,Message,,Theme,Renderer,"],[4343,"C,T"],[4344,"C"],[4345,""],[4347,"T"],[4349,"WpParam,T"],[4350,"P"],[4351,"C,T"],[4352,"P"],[4354,"T"],[4357,""],[4358,"P"],[4361,"P,"],[4362,"T"],[4364,"U,T"],[4365,""],[4366,"U"],[4368,"T"],[4371,"WpParam,T"],[4372,"U"],[4374,"T"],[4375,"P"],[4379,"P,I"],[4380,"P,"],[4381,"P"],[4382,"P,"],[4385,"State"],[4386,"P"],[4387,"C"],[4388,"U,T"],[4389,"U"],[4391,""],[4392,"C,U"],[4393,"C"],[4394,"T"],[4395,"State,Message"],[4396,"State,Message,Theme,Renderer"],[4397,"V"],[4398,"P"],[4399,"P,"],[4402,"T,M,D"],[4403,"C,T"],[4404,"C"],[4405,""],[4407,"T"],[4409,""],[4413,""],[4414,""],[4416,""],[4417,"WpParam,T"],[4418,""],[4419,"T"],[4420,""],[4421,""],[4422,""],[4423,"C,T"],[4424,""],[4425,"T"],[4428,""],[4433,"T"],[4434,""],[4436,"T"],[4437,"U,T"],[4438,""],[4439,"U"],[4441,"T"],[4444,"WpParam,T"],[4445,"U"],[4447,"T"],[4448,""],[4451,"T"],[4452,""],[4453,""],[4454,""],[4457,"T"],[4458,""],[4462,""],[4463,""],[4465,""],[4466,"C"],[4467,"U,T"],[4468,"U"],[4470,""],[4471,"C,U"],[4472,"C"],[4473,"T"],[4474,"V"],[4475,""],[4476,""],[4479,"T"],[4480,"Message"],[4484,"T,M,D"],[4485,"P"],[4486,"C,T"],[4487,"C"],[4488,""],[4490,"T"],[4492,"WpParam,T"],[4493,"C,T"],[4494,"State,,Message,,Theme,Renderer,"],[4495,"P"],[4496,"T"],[4499,""],[4500,"P"],[4502,"P,"],[4503,"T"],[4505,"U,T"],[4506,""],[4507,"U"],[4509,"T"],[4512,"WpParam,T"],[4513,"U"],[4515,"T"],[4516,"P"],[4517,"P,I"],[4518,"P,"],[4519,"P"],[4520,"P,"],[4523,"State"],[4524,"C"],[4525,"U,T"],[4526,"U"],[4528,""],[4529,"C,U"],[4530,"C"],[4531,"T"],[4532,"State,Message,Theme,Renderer"],[4533,"V"],[4543,"T,M,D"],[4544,"C,T"],[4545,"C"],[4546,""],[4548,"T"],[4550,"WpParam,T"],[4551,""],[4552,"T"],[4553,""],[4554,"C,T"],[4555,"T"],[4558,""],[4560,"K"],[4563,""],[4564,"T"],[4566,"U,T"],[4567,""],[4568,"U"],[4570,"T"],[4573,"WpParam,T"],[4574,"U"],[4576,"T"],[4577,""],[4578,"Message"],[4579,""],[4580,"Message"],[4581,""],[4582,"T"],[4583,"C"],[4584,"U,T"],[4585,"U"],[4587,""],[4588,"C,U"],[4589,"C"],[4590,"T"],[4591,"V"],[4594,"R,"],[4595,""],[4596,""],[4630,"T,M,D"],[4635,"C,T"],[4640,"C"],[4645,""],[4655,"T"],[4665,"WpParam,T"],[4670,""],[4675,"T"],[4680,""],[4685,"C,T"],[4690,""],[4694,"T"],[4709,""],[4719,"K"],[4734,""],[4740,"T"],[4750,"U,T"],[4755,"__H"],[4759,""],[4764,"U"],[4774,"T"],[4789,"WpParam,T"],[4794,"U"],[4804,"T"],[4809,""],[4810,"T"],[4814,""],[4816,"T"],[4821,"C"],[4826,"U,T"],[4831,"U"],[4841,""],[4846,"C,U"],[4851,"C"],[4856,"T"],[4861,"V"],[4866,""],[4871,"T,M,D"],[4873,""],[4874,""],[4875,""],[4876,"C,T"],[4878,"C"],[4880,""],[4884,"T"],[4888,"WpParam,T"],[4890,""],[4892,"T"],[4894,""],[4897,"C,T"],[4899,""],[4900,"T"],[4906,""],[4912,"T"],[4916,"U,T"],[4918,""],[4920,"U"],[4924,"T"],[4930,"WpParam,T"],[4932,"U"],[4936,"T"],[4938,""],[4939,"T"],[4940,""],[4943,"T"],[4945,"C"],[4947,"U,T"],[4949,"U"],[4953,""],[4955,"C,U"],[4957,"C"],[4959,"T"],[4961,"V"],[4982,"T,M,D"],[4986,""],[4988,"C,T"],[4992,"C"],[4996,""],[5013,"T"],[5021,"WpParam,T"],[5025,"C"],[5026,""],[5029,"T"],[5033,""],[5037,"C"],[5038,""],[5040,"K"],[5042,""],[5043,"C,T"],[5047,""],[5050,"T"],[5058,""],[5059,"T"],[5063,""],[5068,"C"],[5069,""],[5072,"K"],[5084,"T"],[5085,"C"],[5086,""],[5093,"T"],[5094,""],[5095,"T"],[5102,""],[5106,"T"],[5107,""],[5108,"U,T"],[5112,"C,__H"],[5113,"__H"],[5114,""],[5121,"U"],[5129,"T"],[5141,"WpParam,T"],[5145,"U"],[5153,""],[5154,"T"],[5158,""],[5167,"T"],[5168,"Message"],[5170,"C"],[5171,""],[5178,"T"],[5182,""],[5183,"C"],[5187,"U,T"],[5191,"U"],[5199,""],[5203,"C,U"],[5207,"C"],[5211,""],[5212,"T"],[5216,"V"],[5220,""],[5746,"T,M,D"],[5750,"C,T"],[5754,"C"],[5758,""],[5766,"T"],[5774,"WpParam,T"],[5778,""],[5782,"T"],[5786,""],[5794,"K"],[5798,"C,T"],[5802,"T"],[5814,""],[5826,"K"],[5838,""],[5842,"T"],[5850,"U,T"],[5854,"__H"],[5858,""],[5862,"U"],[5870,"T"],[5882,"WpParam,T"],[5886,"U"],[5894,"T"],[5898,""],[5902,"T"],[5906,"C"],[5910,"U,T"],[5914,"U"],[5922,""],[5926,"C,U"],[5930,"C"],[5934,"T"],[5938,"V"],[5983,"T,M,D"],[5988,"C,T"],[5993,"C"],[5998,""],[6008,"T"],[6018,"WpParam,T"],[6023,""],[6028,"T"],[6033,""],[6039,"K"],[6040,"C,T"],[6045,""],[6047,"T"],[6062,""],[6072,"K"],[6078,""],[6083,"T"],[6093,"U,T"],[6098,"__H"],[6099,""],[6104,"U"],[6114,"T"],[6129,"WpParam,T"],[6134,"U"],[6144,"T"],[6149,""],[6154,"T"],[6156,""],[6161,"T"],[6166,"C"],[6171,"U,T"],[6176,"U"],[6186,""],[6191,"C,U"],[6196,"C"],[6201,"T"],[6206,"V"],[6211,""],[6225,"T,M,D"],[6228,"C,T"],[6231,"C"],[6234,""],[6242,"T"],[6248,"WpParam,T"],[6251,""],[6252,"T"],[6253,""],[6254,"C,T"],[6257,""],[6258,"Catalog::Class"],[6259,""],[6260,"Catalog::Class"],[6262,"T"],[6271,""],[6277,"T,Message,Theme,Renderer,"],[6278,"T"],[6284,"U,T"],[6287,""],[6290,"U"],[6296,"T"],[6303,"WpParam,T"],[6306,"U"],[6312,"T"],[6315,"T,Message,,Theme,Renderer"],[6316,""],[6317,"T"],[6318,"T,Message,Theme,Renderer"],[6319,"T,Message,Theme,Renderer,P"],[6320,""],[6322,"Catalog::Class"],[6323,""],[6324,"T,Message,Theme,Renderer,"],[6325,"T,Message,Theme,Renderer"],[6326,"T,Message,Theme,Renderer,"],[6327,"T"],[6328,"C"],[6331,"U,T"],[6334,"U"],[6340,""],[6343,"C,U"],[6346,"C"],[6349,"T"],[6352,"V"],[6355,"T,Message,Theme,Renderer"],[6357,""],[6359,""],[6360,""],[6361,""],[6362,""],[6363,""],[6364,""],[6365,""],[6366,"T,F,"],[6367,"T,E,F,"],[6369,"T,M,D"],[6370,"C,T"],[6371,"C"],[6372,""],[6374,"T"],[6376,"WpParam,T"],[6377,""],[6378,"T"],[6379,""],[6380,"C,T"],[6381,""],[6383,"T"],[6386,""],[6389,"T"],[6391,"U,T"],[6392,""],[6395,"U"],[6397,"T"],[6400,"WpParam,T"],[6401,"U"],[6403,"T"],[6404,""],[6410,"T"],[6411,"C"],[6412,"U,T"],[6413,"U"],[6415,""],[6416,"C,U"],[6417,"C"],[6418,"T"],[6419,"V"],[6422,""],[6424,"T,M,D"],[6425,"C,T"],[6426,"C"],[6427,""],[6429,"T"],[6431,"WpParam,T"],[6432,""],[6433,"T"],[6434,""],[6435,"C,T"],[6436,"T"],[6439,""],[6442,"T"],[6444,"U,T"],[6445,""],[6446,"U"],[6448,"T"],[6451,"WpParam,T"],[6452,"U"],[6454,"T"],[6455,""],[6456,"T"],[6457,"C"],[6458,"U,T"],[6459,"U"],[6461,""],[6462,"C,U"],[6463,"C"],[6464,"T"],[6465,"V"],[6516,"T,M,D"],[6519,"C,T"],[6522,"C"],[6525,""],[6534,"T"],[6540,"WpParam,T"],[6543,""],[6546,"T"],[6549,""],[6552,"C,T"],[6555,""],[6557,"T"],[6566,""],[6576,"T"],[6582,"U,T"],[6585,""],[6588,"U"],[6594,"T"],[6603,"WpParam,T"],[6606,"U"],[6612,"T"],[6615,""],[6621,"T"],[6624,""],[6626,"C"],[6629,"U,T"],[6632,"U"],[6638,""],[6641,"C,U"],[6644,"C"],[6647,"T"],[6650,"V"],[6653,""],[6654,""],[6657,""],[6686,"T,M,D"],[6694,"C,T"],[6702,"C"],[6710,""],[6734,"T"],[6750,"WpParam,T"],[6758,""],[6766,"T"],[6774,""],[6783,"C,T"],[6791,""],[6793,"T"],[6817,""],[6841,"T"],[6857,"U,T"],[6865,""],[6879,"U"],[6895,"T"],[6919,"WpParam,T"],[6927,"U"],[6943,"T"],[6951,""],[6967,"T"],[6975,"C"],[6983,"U,T"],[6991,"U"],[7007,""],[7015,"C,U"],[7023,"C"],[7031,"T"],[7039,"V"],[7047,""],[7064,"T,M,D"],[7066,""],[7074,"C,T"],[7076,"C"],[7078,""],[7090,"T"],[7091,"Borrowed"],[7092,"T"],[7095,"WpParam,T"],[7097,""],[7108,"T"],[7110,""],[7114,"K"],[7116,"C,T"],[7118,""],[7120,"T"],[7124,"D"],[7125,""],[7133,"T"],[7135,""],[7143,"K"],[7149,""],[7152,"T"],[7153,""],[7156,"T"],[7159,""],[7168,"U,T"],[7170,""],[7171,"__H"],[7173,""],[7176,"U"],[7180,"T"],[7186,"WpParam,T"],[7188,"U"],[7192,"T"],[7194,""],[7203,"T"],[7204,""],[7207,"T,F"],[7208,""],[7213,"S"],[7214,""],[7228,"I"],[7230,"T"],[7232,"C"],[7234,"U,T"],[7235,""],[7236,"U,T"],[7237,""],[7239,"U"],[7243,""],[7245,"C,U"],[7247,"C"],[7249,"T"],[7251,"V"],[7259,"T,M,D"],[7261,"C,T"],[7263,"C"],[7265,""],[7269,"T"],[7273,"WpParam,T"],[7275,""],[7277,"T"],[7279,""],[7281,"C,T"],[7283,"T"],[7289,""],[7293,"K"],[7296,""],[7298,"T"],[7302,"U,T"],[7304,"__H"],[7305,""],[7307,"U"],[7311,"T"],[7317,"WpParam,T"],[7319,"U"],[7323,"T"],[7327,"C"],[7329,"U,T"],[7331,"U"],[7335,""],[7337,"C,U"],[7339,"C"],[7341,"T"],[7343,"V"],[7345,""],[7422,"T,M,D"],[7454,"Message,Theme,Renderer,"],[7463,"Message,Theme,Renderer"],[7469,"Message"],[7470,"Message,Theme,Renderer,"],[7471,"C,T"],[7503,"C"],[7535,""],[7599,"Message,Theme,NewTheme,F,Renderer"],[7600,"T"],[7664,"Message,Theme,Renderer,"],[7669,"WpParam,T"],[7702,"Message,Theme,Renderer,P"],[7703,"Message"],[7704,"Theme,"],[7705,"Message,Theme,Renderer,"],[7712,",Message,Theme,Renderer"],[7713,"Message,Theme,Renderer"],[7718,"Message,Theme,NewTheme,F,Renderer"],[7719,"Message,Theme,Renderer"],[7720,"T,Message,Theme,Renderer"],[7721,"Message,Theme,Renderer"],[7726,"Message,Theme,Renderer,Dependency,View"],[7727,"Message,Theme,Renderer,"],[7731,"T,L,V,Message,Theme,Renderer,"],[7732,"Theme,"],[7733,"Message,Theme,Renderer,"],[7734,"Theme,"],[7735,"Message,Theme,Renderer,"],[7736,"T,Message,Theme,"],[7737,"Highlighter,Message,Theme,Renderer,"],[7738,"Message,Theme,Renderer,"],[7741,"T,Message,Theme,"],[7742,"Theme,"],[7744,"Message,Theme,Renderer"],[7748,"Message"],[7749,"T"],[7750,""],[7751,"Message,Theme,Renderer,"],[7754,"T,Message,,Theme,Renderer"],[7755,"Message,Theme,Renderer,C"],[7756,"C,T"],[7789,"Message,Theme,Renderer,"],[7790,"Theme"],[7791,"Handle"],[7792,"Message,Renderer"],[7795,"T,Message,Theme,"],[7797,"T"],[7861,"Message,Theme,Renderer"],[7866,"Message,Theme,NewTheme,F,Renderer"],[7867,"Message,Theme,Renderer"],[7874,"Message,Theme,Renderer,Dependency,View"],[7875,"Message,Theme,Renderer,"],[7876,"T"],[7908,"Message,Theme,Renderer"],[7913,"Message,Theme,NewTheme,F,Renderer"],[7914,"Message,Theme,Renderer"],[7916,"T,Message,Theme,Renderer"],[7917,"Message,Theme,Renderer"],[7919,"T,L,V,Message,Theme,Renderer"],[7920,"Message,Theme,Renderer"],[7921,"Theme,Renderer"],[7922,"Message,Theme,Renderer"],[7923,"Theme,Renderer"],[7924,"Message,Theme,Renderer"],[7925,"T,Message,Theme,Renderer"],[7926,"Highlighter,Message,Theme,Renderer"],[7927,"Message,Theme,Renderer"],[7931,"T,Message,Theme,Renderer"],[7932,"Message,Theme,Renderer"],[7933,"Message,Theme,Renderer,Dependency,View"],[7934,"Message,P,Renderer,Theme"],[7935,"Theme,Renderer"],[7936,"Theme"],[7937,"Renderer,Theme"],[7938,"Handle,Renderer,Theme"],[7939,"Message,Theme,Renderer,P"],[7940,""],[7972,"Message,Theme,Renderer,"],[7975,"Handle"],[7976,"Message"],[7977,""],[7978,"Handle"],[7979,"Message,Theme,Renderer,P"],[7980,"T"],[7982,"Message,Theme,Renderer,"],[7983,"T,Message,Theme,Renderer"],[7984,"T,L,V,Message,Theme,Renderer,"],[7985,"Message,Theme,Renderer,"],[7986,"Highlighter,Message,Theme,Renderer,"],[7987,"Message,Theme,Renderer"],[7988,"Message,Theme,Renderer,"],[7989,"T"],[8053,"Message,Theme,Renderer,T"],[8055,",Theme"],[8056,"U,T"],[8088,"Message,Theme,Renderer"],[8091,"Message,Theme,Renderer,"],[8092,"Theme,"],[8093,"T,L,V,Message,Theme,Renderer"],[8094,"Message,Theme,Renderer,"],[8102,"T,Message,Theme,"],[8103,"Highlighter,Message,Theme,Renderer,"],[8104,"T,Message,Theme,"],[8105,"Message,P,"],[8106,"Theme,"],[8107,""],[8108,"Handle,"],[8109,"Message,Theme,Renderer,P,"],[8110,"Highlighter,Message,Theme,Renderer"],[8111,"Highlighter,Message,Theme,Renderer,H"],[8112,",Theme"],[8113,"Message,Theme,Renderer"],[8114,",Theme"],[8115,""],[8116,"Message,Theme,Renderer,,"],[8117,",Message,Theme,Renderer"],[8118,"Message,Theme,Renderer"],[8119,"T,Message,Theme,Renderer"],[8120,"Message,Theme,Renderer"],[8121,"Message,Theme,Renderer,"],[8125,"Handle,"],[8126,""],[8158,"T,Message,Theme,Renderer,"],[8160,"Message,Theme,Renderer"],[8161,"U"],[8225,"T"],[8298,"WpParam,T"],[8330,"U"],[8394,"Message"],[8395,"T"],[8427,"Message,Theme,Renderer,"],[8428,"Highlighter,Message,Theme,Renderer,"],[8430,"Key,Message,Theme,Renderer,"],[8432,"Message,Theme,Renderer,"],[8433,"Message,Theme,Renderer"],[8438,"Message,Theme,NewTheme,F,Renderer"],[8439,"Message,Theme,Renderer"],[8441,"T,Message,Theme,Renderer"],[8442,"Message,Theme,Renderer"],[8444,"T,L,V,Message,Theme,Renderer"],[8445,"Message,Theme,Renderer"],[8446,"Theme,Renderer"],[8447,"Message,Theme,Renderer"],[8448,"Theme,Renderer"],[8449,"Message,Theme,Renderer"],[8450,"T,Message,Theme,Renderer"],[8451,"Highlighter,Message,Theme,Renderer"],[8452,"Message,Theme,Renderer"],[8456,"T,Message,Theme,Renderer"],[8457,"Message,Theme,Renderer"],[8458,"Message,Theme,Renderer,Dependency,View"],[8459,"Message,P,Renderer"],[8460,"Theme,Renderer"],[8461,"Theme"],[8462,"Renderer"],[8463,"Handle,Renderer"],[8464,"Message,Theme,Renderer,P"],[8465,"Dependency,Message,Theme,Renderer,View,"],[8466,"Theme,"],[8467,"T,Message,Theme,Renderer,"],[8468,"Highlighter,Message,Theme,Renderer,"],[8469,"Message,Theme,Renderer,"],[8471,",,Theme,Renderer"],[8472,"Message,Theme,Renderer,"],[8473,"Highlighter,Message,Theme,Renderer,"],[8474,"Message,Theme,Renderer,"],[8476,"T,Message,Theme,Renderer,"],[8477,"T,L,V,Message,Theme,Renderer,"],[8478,"T,Message,Theme,Renderer,"],[8479,"T,L,V,Message,Theme,Renderer,"],[8480,"Highlighter,Message,Theme,Renderer,"],[8481,"Message,Theme,Renderer,"],[8482,"Message,Theme,Renderer"],[8487,"Message,Theme,NewTheme,F,Renderer"],[8488,"Message,Theme,Renderer"],[8490,"T,Message,Theme,Renderer"],[8491,"Message,Theme,Renderer"],[8493,"T,L,V,Message,Theme,Renderer"],[8494,"Message,Theme,Renderer"],[8497,"T,Message,Theme,Renderer"],[8498,"Highlighter,Message,Theme,Renderer"],[8499,"Message,Theme,Renderer"],[8502,"T,Message,Theme,Renderer"],[8503,"Message,Theme,Renderer"],[8504,"Message,Theme,Renderer,Dependency,View"],[8505,"Message,P,Renderer"],[8506,"Message,Theme,Renderer,P"],[8507,"Message,Theme,Renderer"],[8508,"Message,Theme,Renderer,"],[8510,"Message,Theme,Renderer"],[8512,"Theme,NewTheme,F,Message,Renderer,T"],[8513,"Message,Theme,Renderer,"],[8514,",Message,Theme,Renderer"],[8515,"T,Message,,Theme,Renderer"],[8516,"Message,Theme,Renderer,"],[8517,"T,Message,Theme,Renderer,"],[8518,"T,L,V,Message,,Theme,Renderer"],[8519,"Message,Theme,Renderer,"],[8520,"Theme"],[8521,",V,Message,F,Theme,Renderer"],[8522,"Message,Theme,Renderer,"],[8523,"T,Message,F,Theme"],[8524,"Renderer,Message,Theme"],[8525,"Message,Theme,Renderer"],[8527,"Message,Theme,Renderer,,"],[8528,"T,Message,F,Theme"],[8529,"Message,Theme,Renderer,"],[8530,"Dependency,Message,Theme,Renderer,View,"],[8531,"Message,P"],[8532,",Theme"],[8533,"Theme"],[8534,","],[8535,"Handle,"],[8536,"Message,Theme,Renderer,P"],[8537,"T"],[8540,"Highlighter,Message,Theme,Renderer,"],[8541,"Message,Theme,Renderer,F"],[8542,"T,Message,Theme,Renderer"],[8543,"T,L,V,Message,Theme,Renderer"],[8544,"Message,Theme,Renderer"],[8545,"Message,Theme,Renderer,F"],[8546,"Message,Theme,Renderer"],[8549,"T,Message,Theme,Renderer,"],[8550,"Message,Theme,Renderer,"],[8552,"Message,Theme,Renderer"],[8554,"Message,Theme,Renderer,"],[8555,"T,Message,Theme,Renderer"],[8556,"T,L,V,Message,Theme,Renderer"],[8557,"T,Message,Theme,Renderer,"],[8558,"Message,Theme,Renderer,"],[8560,"Message,Theme,Renderer"],[8563,"Message,Theme,Renderer,"],[8564,"Message,Theme,Renderer"],[8565,"T,Message,Theme"],[8567,"Message,Theme,Renderer,,F"],[8568,"Message,Theme,Renderer,"],[8569,"Message,Theme,Renderer"],[8571,"Message,Theme,Renderer,"],[8574,"Message,Theme,Renderer"],[8576,"Message,Theme,Renderer,F"],[8577,"Message,Theme,Renderer,"],[8578,"Message,Theme,Renderer,F"],[8579,"Message,Theme,Renderer,"],[8580,"Theme,"],[8581,"Handle,"],[8582,"Message,Theme,Renderer,"],[8583,"Message,Theme,Renderer"],[8588,"Message,Theme,NewTheme,F,Renderer"],[8589,"Message,Theme,Renderer"],[8595,"Highlighter,Message,Theme,Renderer"],[8596,"Message,Theme,Renderer"],[8597,"Component::State,Component::Event"],[8598,"Message,Theme,Renderer"],[8599,"Message,Theme,Renderer,Dependency,View"],[8601,"Message,Theme,Renderer"],[8606,"Message,Theme,NewTheme,F,Renderer"],[8607,"Message,Theme,Renderer"],[8608,"T,Message,Theme,Renderer"],[8609,"Message,Theme,Renderer"],[8611,"T,L,V,Message,Theme,Renderer"],[8612,"Message,Theme,Renderer"],[8616,"Message,Theme,Renderer,Dependency,View"],[8617,"Message,Theme,Renderer,P"],[8620,"T,Message,Theme,Renderer,"],[8621,"Message,Theme,Renderer,P"],[8622,"T,L,V,Message,Theme,Renderer,P"],[8623,"Highlighter,Message,Theme,Renderer,"],[8624,"Message,Theme,Renderer,P"],[8625,"Message,Theme,Renderer,"],[8627,"T,Message,Theme,Renderer,"],[8629,"T,L,V,Message,,Theme,Renderer"],[8630,"Message,Theme,Renderer,"],[8631,"T,L,V,Message,Theme,Renderer,"],[8632,"Highlighter,Message,Theme,Renderer,"],[8634,"Message,Theme,Renderer,"],[8637,"Theme"],[8638,"Message"],[8639,"Message,Theme,Renderer,"],[8646,"Theme"],[8648,",V,Message,,Theme,Renderer"],[8649,"Message"],[8651,"Message,Theme,Renderer,"],[8652,"Link,,Message,Theme,Renderer"],[8654,"Message,Theme,Renderer,"],[8656,"Theme,"],[8657,"Handle,"],[8658,"Message,Theme,Renderer,"],[8661,"Handle,"],[8663,"Message,Theme,Renderer,"],[8664,"Message,Theme,Renderer"],[8666,"Message,P"],[8667,"T,Message,Theme,"],[8669,"Message,Theme,Renderer"],[8674,"Message,Theme,NewTheme,F,Renderer"],[8675,"Message,Theme,Renderer"],[8677,"Message,Theme,Renderer,"],[8678,"T,Message,Theme,Renderer"],[8680,"Message,Theme,Renderer"],[8682,"T,L,V,Message,Theme,Renderer"],[8683,"Message,Theme,Renderer"],[8684,"Theme"],[8685,"Message,Theme,Renderer,"],[8686,"Message,Theme,Renderer"],[8687,"Theme"],[8688,"Message,Theme,Renderer"],[8689,"T,Message,Theme"],[8690,"Highlighter,Message,Theme,Renderer,"],[8691,"Highlighter,Message,Theme,Renderer"],[8692,"Message,Theme,Renderer,"],[8693,"Message,Theme,Renderer"],[8694,"Message,Theme,Renderer,"],[8695,"Message,Theme,Renderer"],[8697,"T,Message,Theme"],[8698,"Message,Theme,Renderer"],[8699,"Message,Theme,Renderer,Dependency,View"],[8700,"Message,P"],[8701,"Theme"],[8703,""],[8704,"Handle"],[8705,"Message,Theme,Renderer,P"],[8706,"Message,Theme,Renderer"],[8708,"Component::State,Component::Event"],[8709,"Message,Theme,Renderer,Dependency,View"],[8711,"T,Message,,Theme"],[8712,"Message,Theme,Renderer"],[8713,"Message,Theme,Renderer,"],[8720,",Link,Font"],[8721,"Message,Theme,Renderer,"],[8723,"Message,Theme,Renderer"],[8725,"Message,Theme,NewTheme,F,Renderer"],[8726,"Message,Theme,Renderer"],[8728,"T,Message,Theme,Renderer"],[8729,"Message,Theme,Renderer"],[8731,"T,L,V,Message,Theme,Renderer"],[8732,"Message,Theme,Renderer"],[8735,"T,Message,Theme"],[8736,"Highlighter,Message,Theme,Renderer"],[8737,"Message,Theme,Renderer"],[8740,"T,Message,Theme"],[8741,"Message,Theme,Renderer"],[8742,"Message,Theme,Renderer,Dependency,View"],[8743,"Message,P"],[8744,"Theme"],[8745,"Message,Theme,Renderer,P"],[8746,"T,Message,Theme,"],[8747,"T,Message,Theme"],[8748,"Message,Theme,Renderer,"],[8752,"T,L,V,Message,Theme,Renderer,"],[8753,"Theme,"],[8754,"Message,Theme,Renderer,"],[8755,"Theme,"],[8756,"Message,Theme,Renderer,"],[8757,"T,Message,Theme,"],[8758,"Highlighter,Message,Theme,Renderer,"],[8759,"Message,Theme,Renderer,"],[8762,"T,Message,Theme,"],[8763,"Theme,"],[8766,",Theme"],[8767,"Message,Theme,Renderer"],[8769,"Message,Theme,NewTheme,F,Renderer"],[8770,"Message,Theme,Renderer"],[8772,"T,Message,Theme,Renderer"],[8773,"Message,Theme,Renderer"],[8775,"T,L,V,Message,Theme,Renderer"],[8776,"Message,Theme,Renderer"],[8779,"T,Message,Theme"],[8780,"Highlighter,Message,Theme,Renderer"],[8781,"Message,Theme,Renderer"],[8784,"T,Message,Theme"],[8785,"Message,Theme,Renderer"],[8786,"Message,Theme,Renderer,Dependency,View"],[8787,"Message,P"],[8788,"Theme"],[8789,"Message,Theme,Renderer,P"],[8791,",Theme,Renderer"],[8793,"Message,Theme,Renderer"],[8794,"Message,Theme,NewTheme,F,Renderer"],[8796,"Renderer,Message,Theme"],[8798,"Message,Theme,Renderer"],[8799,"Message,Theme,Renderer,"],[8800,"T,L,V,Message,Theme,Renderer,"],[8801,"Message,Theme,Renderer,"],[8803,"Message,Theme,Renderer"],[8804,"T,L,V,Message,Theme,Renderer"],[8805,"Message,Theme,Renderer"],[8807,"Message,Theme,Renderer,"],[8808,"T,L,V,Message,Theme,Renderer,"],[8809,"Message,Theme,Renderer,"],[8811,"Message,Theme,Renderer"],[8815,"NewTheme,Message,Renderer,,OldTheme"],[8816,"T"],[8818,"Message,Theme,Renderer"],[8820,"Message,Theme,Renderer,,"],[8821,"Theme,"],[8822,"C"],[8854,"U,T"],[8886,"U"],[8950,""],[8982,"C,U"],[9014,"C"],[9046,"T"],[9078,"Component::State,Component::Event,Message"],[9079,"Message,Theme,Renderer"],[9084,"Message,Theme,NewTheme,F,Renderer"],[9085,"Message,Theme,Renderer"],[9087,"T,Message,Theme,Renderer"],[9088,"Message,Theme,Renderer"],[9090,"T,L,V,Message,Theme,Renderer"],[9091,"Message,Theme,Renderer"],[9094,"T,Message,Theme,Renderer"],[9095,"Highlighter,Message,Theme,Renderer"],[9096,"Message,Theme,Renderer"],[9099,"T,Message,Theme,Renderer"],[9100,"Message,Theme,Renderer"],[9101,"Message,Theme,Renderer,Dependency,View"],[9102,"Message,P,Renderer"],[9103,"Message,Theme,Renderer,P"],[9104,",Theme,Renderer"],[9105,"Theme"],[9106,",Theme"],[9109,"T,Message,,Theme"],[9110,""],[9111,"Component::State,Component::Event,Theme,Renderer"],[9112,"V"],[9144,"Message,Theme,Renderer,"],[9150,"T,Message,Theme,Renderer,"],[9151,"Message,Theme,Renderer,"],[9153,"T,L,V,Message,Theme,Renderer,"],[9154,"Message,Theme,Renderer,"],[9156,"T,Message,Theme,"],[9157,"Highlighter,Message,Theme,Renderer,"],[9158,"Message,Theme,Renderer,"],[9160,"T,Message,Theme,"],[9161,"Message,P,"],[9162,"Theme,"],[9163,""],[9164,"Handle,"],[9165,"Message,Theme,Renderer,P,"],[9166,"Message,Theme,Renderer"],[9169,"Message,Theme,Renderer,"],[9172,"Message,Theme,Renderer,,"],[9173,""],[9175,"Message,Theme,Renderer"],[9176,"Highlighter,Message,Theme,Renderer"],[9177,"Message,Theme,Renderer,"],[9189,"T,M,D"],[9191,"C,T"],[9193,"C"],[9195,""],[9201,"T"],[9205,"WpParam,T"],[9207,""],[9209,"T"],[9211,""],[9213,"C,T"],[9215,""],[9216,"Catalog::Class"],[9217,""],[9218,"T"],[9224,""],[9228,"K"],[9231,""],[9233,"T"],[9237,"U,T"],[9239,""],[9241,"U"],[9245,"T"],[9251,"WpParam,T"],[9253,"U"],[9257,"T"],[9260,""],[9263,"Catalog::Class"],[9264,""],[9267,"T"],[9269,"C"],[9271,"U,T"],[9273,"U"],[9277,""],[9279,"C,U"],[9281,"C"],[9283,"T"],[9285,"V"],[9287,""],[9288,""],[9322,"T,M,D"],[9332,"C,T"],[9342,"C"],[9352,""],[9372,"T"],[9392,"WpParam,T"],[9402,""],[9413,"T"],[9423,""],[9435,"K"],[9436,"C,T"],[9446,""],[9453,"T"],[9483,"Program::State,Renderer,Theme"],[9484,""],[9485,""],[9498,"K"],[9502,""],[9514,"T"],[9515,""],[9516,"T"],[9517,""],[9518,"T"],[9519,""],[9521,"T"],[9527,""],[9530,"T"],[9531,""],[9532,"T"],[9542,"U,T"],[9553,""],[9554,"__H"],[9555,""],[9566,"U"],[9586,"T"],[9616,"WpParam,T"],[9626,"U"],[9646,"T"],[9656,""],[9662,"Program::State"],[9663,""],[9664,"T"],[9670,""],[9688,"T"],[9698,""],[9699,"C"],[9709,"U,T"],[9719,"U"],[9739,""],[9749,"C,U"],[9759,"C"],[9769,""],[9770,"T"],[9780,"Program::State,Message"],[9781,""],[9782,"V"],[9792,""],[9804,"T,M,D"],[9805,"C,T"],[9806,"C"],[9807,""],[9809,"T"],[9811,"WpParam,T"],[9812,""],[9813,"T"],[9814,""],[9815,"C,T"],[9816,"T"],[9819,""],[9821,"K"],[9824,""],[9825,"T"],[9827,"U,T"],[9828,""],[9829,"U"],[9831,"T"],[9834,"WpParam,T"],[9835,"U"],[9837,"T"],[9838,""],[9840,"T"],[9841,"C"],[9842,"U,T"],[9843,"U"],[9845,""],[9846,"C,U"],[9847,"C"],[9848,"T"],[9849,"V"],[9854,"T,M,D"],[9856,""],[9857,""],[9858,"C,T"],[9860,"C"],[9862,""],[9866,"T"],[9870,"WpParam,T"],[9872,""],[9874,"T"],[9876,""],[9878,"C,T"],[9880,"T"],[9886,""],[9893,"T"],[9897,"U,T"],[9899,""],[9901,"U"],[9905,"T"],[9911,"WpParam,T"],[9913,"U"],[9917,"T"],[9920,""],[9925,"T"],[9927,"C"],[9929,"U,T"],[9931,"U"],[9935,""],[9937,"C,U"],[9939,"C"],[9941,"T"],[9943,"V"],[9948,"T,M,D"],[9951,""],[9953,"C,T"],[9955,"C"],[9957,""],[9962,"T"],[9966,""],[9967,"WpParam,T"],[9969,""],[9972,"T"],[9973,""],[9975,"C,T"],[9977,""],[9978,"T"],[9984,""],[9989,"T"],[9993,"U,T"],[9995,""],[9997,"U"],[10001,"T"],[10007,"WpParam,T"],[10009,"U"],[10013,"T"],[10015,""],[10018,"T"],[10019,""],[10024,"T"],[10025,"C"],[10027,"U,T"],[10029,"U"],[10033,""],[10035,"C,U"],[10037,"C"],[10039,"T"],[10041,"V"],[10045,"T,M,D"],[10046,"C,T"],[10047,"C"],[10048,""],[10050,"T"],[10052,"WpParam,T"],[10053,""],[10056,"T"],[10057,""],[10058,"C,T"],[10059,"T"],[10062,""],[10067,"T"],[10069,"U,T"],[10070,""],[10071,"U"],[10073,"T"],[10076,"WpParam,T"],[10077,"U"],[10079,"T"],[10080,""],[10085,"T"],[10086,"C"],[10087,"U,T"],[10088,"U"],[10090,""],[10091,"C,U"],[10092,"C"],[10093,"T"],[10094,"V"],[10135,""],[10160,"T,M,D"],[10185,"C,T"],[10210,"C"],[10235,""],[10293,"T"],[10343,""],[10351,"WpParam,T"],[10376,""],[10380,"Endpoint,ControlPoint"],[10381,""],[10390,"T"],[10391,""],[10400,"T"],[10423,""],[10449,"C,T"],[10474,""],[10481,"T"],[10556,""],[10585,"Endpoint,ControlPoint"],[10586,""],[10594,"K"],[10609,""],[10611,"T"],[10612,""],[10613,"Endpoint,ControlPoint"],[10614,""],[10621,"Endpoint,ControlPoint"],[10622,""],[10635,"F"],[10636,"T"],[10641,""],[10642,"Ep,Cp"],[10643,"T"],[10646,""],[10647,"T"],[10691,"U,T"],[10716,""],[10727,"Endpoint"],[10728,""],[10731,"Endpoint"],[10732,"Endpoint,ControlPoint,__H"],[10733,"__H"],[10737,""],[10739,"T"],[10740,""],[10744,"T"],[10745,""],[10772,"U"],[10822,"T"],[10895,"WpParam,T"],[10920,"U"],[10970,"I"],[10971,""],[10975,"I"],[10978,""],[10979,"T"],[11004,"Ep,Cp"],[11005,""],[11018,"T"],[11019,""],[11045,"T"],[11049,""],[11061,"T"],[11062,"Endpoint,ControlPoint"],[11063,""],[11079,"Ep,Cp"],[11080,""],[11081,"T"],[11104,""],[11108,"T"],[11110,"C"],[11135,"U,T"],[11160,"U"],[11210,""],[11235,"C,U"],[11260,"C"],[11285,"T"],[11310,"V"],[11335,""],[11338,"Ep,Cp"],[11339,""],[11388,"T,M,D"],[11393,""],[11395,"B"],[11396,""],[11398,"B"],[11399,""],[11401,"B"],[11402,""],[11404,"B"],[11405,""],[11409,"B"],[11410,""],[11412,"B"],[11413,""],[11415,"B"],[11416,"Builder"],[11417,""],[11418,"Builder"],[11419,"C,T"],[11424,"C"],[11429,""],[11440,"Builder"],[11441,"Builder,Transform"],[11442,"B"],[11444,"T"],[11454,""],[11456,"Build::PathType"],[11457,"Builder"],[11459,"Builder,Transform"],[11460,"Builder"],[11462,"P,B"],[11463,"B"],[11464,"WpParam,T"],[11469,""],[11470,"B"],[11471,"T"],[11473,""],[11478,"Builder"],[11480,"B"],[11481,"C,T"],[11486,""],[11488,"Builder"],[11489,"Builder,Transform"],[11490,"Builder"],[11492,"B"],[11494,"Builder"],[11495,""],[11496,"B"],[11497,"T"],[11512,""],[11518,"Builder"],[11519,"Builder,Transform"],[11520,"B"],[11522,""],[11523,"B"],[11524,""],[11529,"Builder"],[11530,"B"],[11531,""],[11533,"B"],[11534,"T"],[11544,"U,T"],[11549,"B,__H"],[11550,""],[11551,"Builder"],[11552,""],[11557,"B"],[11559,"U"],[11569,"T"],[11584,"WpParam,T"],[11589,"U"],[11599,"B"],[11600,"T"],[11605,""],[11607,"Builder"],[11608,"Builder,Transform"],[11609,"Builder"],[11611,"B"],[11613,""],[11614,"Builder"],[11617,"Builder,Transform"],[11618,"Builder"],[11619,""],[11620,"B"],[11621,"T"],[11623,""],[11624,"Builder"],[11625,"Builder,Transform"],[11626,"B"],[11627,""],[11630,"B"],[11631,""],[11633,"Builder"],[11634,"Builder,Transform"],[11635,"Builder"],[11637,"B"],[11639,""],[11640,"Builder"],[11641,""],[11642,"Builder"],[11643,""],[11644,"Builder"],[11645,""],[11646,"Builder"],[11647,""],[11648,"Builder"],[11649,""],[11650,"Builder"],[11651,""],[11652,"Builder"],[11653,""],[11657,"Builder"],[11658,"Builder,Transform"],[11659,"Builder"],[11661,"B"],[11663,"Builder"],[11664,"Builder,Transform"],[11666,""],[11667,"Builder"],[11668,""],[11669,"Builder"],[11670,""],[11671,"Builder"],[11672,""],[11673,"Builder"],[11674,"T"],[11676,""],[11680,"Transform"],[11682,"Builder,Transform"],[11683,"B,Transform"],[11684,"C"],[11689,"U,T"],[11694,"U"],[11704,""],[11709,"C,U"],[11714,"C"],[11719,"T"],[11724,""],[11725,"Builder"],[11726,"V"],[11731,"B"],[11732,""],[11734,"B"],[11743,"T,M,D"],[11748,"C,T"],[11753,"C"],[11758,""],[11769,"T"],[11779,""],[11780,"WpParam,T"],[11785,"Endpoint,ControlPoint"],[11786,""],[11787,"Endpoint,ControlPoint"],[11788,""],[11789,"Endpoint,ControlPoint"],[11790,"T"],[11795,""],[11800,"C,T"],[11805,""],[11807,"T"],[11822,""],[11828,"Endpoint,ControlPoint"],[11830,""],[11831,"T"],[11841,"U,T"],[11846,"Endpoint,ControlPoint"],[11850,""],[11855,"U"],[11865,"T"],[11877,"WpParam,T"],[11882,"U"],[11892,"I"],[11895,"T"],[11900,"Endpoint,ControlPoint"],[11901,""],[11903,"Endpoint,ControlPoint"],[11904,""],[11905,"Endpoint,ControlPoint"],[11906,"T"],[11907,"Ep,Cp"],[11908,""],[11909,"T"],[11914,"C"],[11919,"U,T"],[11924,"U"],[11934,""],[11939,"C,U"],[11944,"C"],[11949,"T"],[11954,"V"],[11959,""],[11997,"S"],[11998,""],[11999,"S"],[12001,"T,M,D"],[12010,"T"],[12013,"Segment::Scalar"],[12014,"S"],[12022,""],[12023,"T"],[12026,"Segment::Scalar"],[12027,"S"],[12034,"C,T"],[12043,"C"],[12052,""],[12070,"S"],[12071,""],[12072,"S"],[12076,"Segment::Scalar"],[12077,"S"],[12085,"T"],[12103,"S"],[12118,""],[12119,"S"],[12120,"WpParam,T"],[12129,"S,NewS"],[12131,"T,NewT"],[12132,"S"],[12133,""],[12134,"S"],[12146,"T"],[12156,""],[12165,"S"],[12167,"C,T"],[12176,"S"],[12178,""],[12182,"S"],[12184,"T"],[12204,"Segment::Scalar"],[12205,"S"],[12215,"T"],[12227,"S"],[12230,""],[12239,"Segment::Scalar"],[12240,"S"],[12245,"Segment::Scalar"],[12246,"S"],[12252,""],[12253,"S"],[12260,"T"],[12261,"S"],[12262,"K"],[12268,"S"],[12279,""],[12280,"S"],[12285,"Segment::Scalar"],[12286,"S"],[12302,"T"],[12303,"S,F"],[12309,"Segment::Scalar"],[12310,"S,F"],[12311,"S"],[12312,"S,F"],[12313,"S"],[12314,"S,F"],[12315,"S"],[12316,"S,F"],[12317,"S"],[12318,"S,F"],[12341,"T"],[12344,"Segment::Scalar"],[12345,"S"],[12346,"T"],[12347,"S"],[12349,"T"],[12350,"S"],[12351,"T"],[12352,"S"],[12355,"T"],[12358,"S"],[12359,"T"],[12360,"S"],[12361,"T"],[12363,""],[12367,"T"],[12376,"U,T"],[12385,"S"],[12386,"T"],[12387,"S"],[12388,"T,__H"],[12389,""],[12390,"S"],[12392,""],[12401,"S"],[12409,"U"],[12427,"T"],[12454,"WpParam,T"],[12463,"U"],[12481,"T"],[12490,"S"],[12492,"T"],[12493,"S"],[12505,""],[12506,"S"],[12508,"T"],[12509,"S"],[12521,""],[12528,"S"],[12529,""],[12530,"T"],[12533,"S"],[12535,"T"],[12536,"S"],[12541,"T"],[12543,"S"],[12544,""],[12545,"T"],[12546,"S"],[12550,"T"],[12551,""],[12554,"Segment::Scalar"],[12555,"S"],[12565,"T"],[12566,"S"],[12568,"T"],[12569,"S"],[12578,"Segment::Scalar"],[12579,"S"],[12588,"Segment::Scalar"],[12589,"S"],[12601,""],[12602,"T"],[12604,"T,I"],[12606,""],[12608,"S"],[12609,"Segment::Scalar"],[12610,"S"],[12618,""],[12622,"S"],[12624,"T"],[12625,"S"],[12629,"T"],[12630,"S"],[12634,"T"],[12635,"S"],[12636,"T"],[12645,"S"],[12650,"S,T"],[12654,"S"],[12655,"T,NewT"],[12656,"C"],[12665,"U,T"],[12674,"U"],[12692,"T"],[12693,""],[12702,"C,U"],[12711,"C"],[12720,"T"],[12730,""],[12731,"S"],[12732,""],[12733,"S"],[12735,"V"],[12744,""],[12745,"Segment::Scalar"],[12746,"S"],[12754,""],[12757,"S"],[12761,""],[12763,"Segment::Scalar"],[12764,"S"],[12772,""],[12775,"S"],[12779,"T"],[12784,"T,M,D"],[12785,"C,T"],[12786,"C"],[12787,""],[12789,"T"],[12791,"WpParam,T"],[12792,""],[12793,"C,T"],[12794,"T"],[12797,""],[12799,"T"],[12800,""],[12801,"T"],[12802,"U,T"],[12803,""],[12804,"U"],[12806,"T"],[12809,"WpParam,T"],[12810,"U"],[12812,"I"],[12813,"T"],[12814,""],[12815,"S"],[12816,""],[12822,"C"],[12823,"U,T"],[12824,"U"],[12826,""],[12827,"C,U"],[12828,"C"],[12829,"T"],[12830,"V"],[12831,""],[12838,"T,M,D"],[12843,"C,T"],[12848,"C"],[12853,""],[12863,"T"],[12865,""],[12866,"T"],[12868,""],[12869,"T"],[12870,""],[12871,"T"],[12872,""],[12874,"T"],[12876,""],[12877,"T"],[12881,""],[12882,"T"],[12889,""],[12890,"T"],[12891,"WpParam,T"],[12896,"T"],[12897,""],[12898,"T"],[12899,""],[12900,"T"],[12902,""],[12903,"T"],[12905,""],[12906,"T"],[12910,""],[12914,"T"],[12915,""],[12916,"T"],[12917,"K"],[12920,"C,T"],[12925,"T"],[12926,""],[12927,"T"],[12931,""],[12932,"T"],[12939,""],[12940,"T"],[12946,"T,R"],[12947,""],[12948,"T"],[12949,""],[12950,"T"],[12951,""],[12952,"T"],[12953,""],[12955,"T"],[12956,"U"],[12958,"T"],[12960,""],[12962,"T"],[12963,"K"],[12972,"T,I"],[12973,""],[12974,"T"],[12976,""],[12978,"T"],[12984,""],[12985,"T"],[12992,""],[12993,"T,I"],[12994,"U,T"],[12999,""],[13000,"T"],[13001,""],[13003,"T"],[13004,""],[13006,"T,H"],[13007,"H"],[13008,""],[13013,"T"],[13014,"U"],[13024,"T"],[13039,"WpParam,T"],[13044,"U"],[13054,"T"],[13059,"I"],[13061,"T"],[13067,""],[13068,"T"],[13069,""],[13070,"T"],[13071,""],[13073,"T"],[13074,""],[13077,"T"],[13078,""],[13080,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ"],[13081,"FromA,FromB,FromC,FromD"],[13082,"FromA,FromB,FromC,FromD,FromE"],[13083,"FromA,FromB,FromC,FromD,FromE,FromF"],[13084,"FromA,FromB,FromC,FromD,FromE,FromF,FromG"],[13085,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ,FromK"],[13086,"FromA,FromB,FromC"],[13087,"FromA,FromB"],[13088,"FromA"],[13089,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH"],[13090,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ,FromK,FromL"],[13091,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI"],[13092,""],[13093,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH"],[13094,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ,FromK"],[13095,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ"],[13096,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI"],[13097,"FromA,FromB,FromC,FromD"],[13098,""],[13099,"FromA,FromB"],[13100,"FromA,FromB,FromC,FromD,FromE"],[13101,"FromA,FromB,FromC,FromD,FromE,FromF"],[13102,"FromA"],[13103,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ,FromK,FromL"],[13104,"FromA,FromB,FromC"],[13105,"FromA,FromB,FromC,FromD,FromE,FromF,FromG"],[13106,"T"],[13107,""],[13108,"T"],[13110,""],[13111,"T"],[13118,""],[13120,"T"],[13122,""],[13123,"T"],[13125,""],[13127,"T"],[13129,""],[13130,"T"],[13131,""],[13132,"T,F"],[13133,"T"],[13134,""],[13135,"T"],[13138,""],[13139,"T"],[13146,""],[13150,"T"],[13151,""],[13152,"C"],[13157,"T"],[13158,"U,T"],[13159,"T"],[13160,"U,T"],[13162,""],[13163,"U,T"],[13164,""],[13165,"U,T"],[13166,"T"],[13167,"U"],[13177,"T"],[13178,""],[13185,"C,U"],[13190,"C"],[13195,"T"],[13200,"V"],[13205,""],[13271,"T,M,D"],[13272,"C,T"],[13273,"C"],[13274,""],[13276,"T"],[13278,"WpParam,T"],[13279,"C,T"],[13280,""],[13282,"T"],[13285,""],[13286,"T"],[13287,""],[13288,"T"],[13289,"U,T"],[13290,""],[13291,"U"],[13293,"T"],[13296,"WpParam,T"],[13297,"U"],[13299,"I"],[13300,"T"],[13301,"S"],[13303,""],[13304,"C"],[13305,"U,T"],[13306,"U"],[13308,""],[13309,"C,U"],[13310,"C"],[13311,"T"],[13312,"V"],[13338,"T,U"],[13342,"T,M,D"],[13365,"T,U"],[13371,"T,Src,Dst"],[13372,"T,U"],[13377,"T,Src,Dst1,Dst2"],[13379,"T,U"],[13391,"T,Src,Dst"],[13393,"T,U"],[13397,""],[13402,"T,U"],[13405,""],[13407,"T"],[13408,"T,U"],[13410,"T"],[13412,"T,U"],[13414,"T"],[13416,"T,Src,Dst"],[13418,"T,U"],[13421,"T,Src,Dst"],[13423,"T,U"],[13425,"T,Src,Dst"],[13431,"T,U"],[13434,"T,Src,Dst"],[13438,"C,T"],[13461,"C"],[13484,""],[13530,"T"],[13576,""],[13577,"T,U"],[13578,""],[13580,"WpParam,T"],[13603,"T,U,NewT"],[13609,"T,Src,Dst,NewT"],[13610,"T,U,NewT"],[13612,"T,Src,Dst,NewT"],[13614,"T,U,NewT"],[13616,"T,Src,Dst,NewT"],[13618,"T,U,V"],[13624,"T,Src,Dst,Src2,Dst2"],[13627,"T,U,V"],[13631,"T,U"],[13648,"T,Src,Dst"],[13649,"T,U"],[13662,"T,Src,Dst"],[13666,"T,U"],[13669,"T,Src,Dst"],[13671,"T,U"],[13673,"T,Src,Dst"],[13675,""],[13678,"T"],[13701,""],[13724,"T,U"],[13725,"T,Src,Dst"],[13726,""],[13727,"K"],[13730,"T,U"],[13734,"C,T"],[13757,"T,U"],[13767,""],[13768,"T,U"],[13770,"T,Src,Dst"],[13772,"T,U"],[13778,"T,Src,Dst"],[13779,"T,U"],[13782,"T,Src,Dst"],[13784,"T,U"],[13786,"T,Src,Dst"],[13788,""],[13790,"T,U"],[13791,""],[13792,"T"],[13838,"T,Src,Dst"],[13840,"T,U"],[13842,"T,U2,U1"],[13843,"T,U"],[13844,"T,U2,U1"],[13845,"T,U"],[13847,"T,Dst,Src"],[13849,"T,U2,U1"],[13850,"T,U"],[13851,"T,U2,U1"],[13852,"T,U"],[13853,"T,U2,U1"],[13854,"T,U"],[13856,"T,U2,U1"],[13857,"T,U"],[13858,"T,U2,U1"],[13859,"T,U"],[13860,"T,U2,U1"],[13862,"T,U"],[13863,"T,U2,U1"],[13864,"T,U"],[13890,"T"],[13913,""],[13936,"T,U"],[13943,"T,Src,Dst"],[13947,"T,U"],[13950,"T,Src,Dst"],[13952,"T,U"],[13954,"T,Src,Dst"],[13956,""],[13959,"T,U"],[13963,"K"],[14032,"T,Src,Dst"],[14033,"T,U"],[14035,""],[14036,"T,U"],[14055,"T,Src,Dst"],[14059,"T,U"],[14062,"T,Src,Dst"],[14064,"T,U"],[14066,"T,Src,Dst"],[14068,""],[14071,"T,U"],[14072,"T"],[14074,"T,U"],[14076,"T"],[14077,"T,U"],[14080,"T"],[14081,"T,U"],[14083,"T"],[14084,"T,U"],[14086,"T"],[14087,"T,U"],[14088,"T"],[14090,"T,Src,Dst"],[14091,"T,Dst,Src"],[14092,"T"],[14096,"T,U"],[14099,"T"],[14100,"T,U"],[14103,"T"],[14105,"T,Src,Dst"],[14107,"T"],[14108,"T,U"],[14110,"T"],[14111,"T,Src,Dst"],[14112,"T,U"],[14113,"T,Src,Dst"],[14114,"T"],[14115,"T,U"],[14117,"T"],[14118,"T,Src,Dst"],[14119,"T"],[14120,"T,Src,Dst"],[14121,"T"],[14147,"T,U"],[14148,"T,Src,Dst"],[14152,"T,U"],[14162,"I,T,U"],[14165,"T,Src,Dst"],[14167,"T,U"],[14170,"U,T"],[14193,"T,Dst,Src"],[14194,"T,U"],[14199,"T,Src,Dst"],[14202,"T,U"],[14204,"T,Src,Dst"],[14206,"T,U"],[14208,"T,Src,Dst"],[14210,"T,U"],[14213,"T,Src,Dst"],[14215,"T,U"],[14219,"T,U,H"],[14226,"T,Src,Dst,H"],[14230,"T,U,H"],[14233,"T,Src,Dst,H"],[14235,"T,U,H"],[14237,"T,Src,Dst,H"],[14239,"__H"],[14242,"T,U"],[14245,""],[14247,"T,U"],[14248,""],[14249,"T,Src,Dst"],[14257,"T,U"],[14260,""],[14283,"T,U"],[14293,"U"],[14339,"T"],[14408,"WpParam,T"],[14431,"U"],[14477,"T"],[14500,"T,Src,Dst"],[14510,"T,U"],[14524,"T,Src,Dst"],[14529,"T,U"],[14531,"T,Src,Dst"],[14532,"T,U"],[14535,""],[14538,"T,U"],[14546,"T,Src,Dst"],[14547,"T,U"],[14555,""],[14577,"T,U,V,F"],[14581,"T,U"],[14585,"T,Src,Dst"],[14586,"T,U"],[14590,""],[14592,"T,U"],[14598,"T,Src,Dst"],[14599,"T,U"],[14603,""],[14605,"T,U"],[14608,"T,U1,U2"],[14609,"T,U"],[14610,"T,U1,U2"],[14611,"T,U"],[14612,"T,Src,Dst"],[14613,"T,U1,U2"],[14614,"T,U"],[14615,"T,U1,U2"],[14616,"T,U"],[14617,"T,U1,U2"],[14618,"T,U"],[14619,"T,A,B,C"],[14620,"T,U1,U2"],[14621,"T,U"],[14622,"T,U1,U2"],[14623,"T,U"],[14624,"T,U1,U2"],[14625,"T,U"],[14627,"T,U1,U2"],[14629,"T,U"],[14651,"T,Src,Dst"],[14652,"T,U"],[14667,"T,Src,Dst"],[14670,"T,U"],[14673,"T,Src,Dst"],[14675,"T,U"],[14677,"T,Src,Dst"],[14680,"T,U"],[14681,"T,Src,Dst"],[14682,""],[14684,"T,Src,Dst"],[14686,"T,U"],[14688,""],[14690,"T,U"],[14694,"T"],[14712,"T,Src,Dst"],[14713,"T,U"],[14715,""],[14717,"T,U"],[14719,""],[14720,"T,Src,Dst"],[14721,"T,U"],[14723,"T,Src,Dst"],[14728,"T,U"],[14729,"T,Src,Dst"],[14730,""],[14731,"T,Src,Dst"],[14732,"T,U"],[14734,"U"],[14735,"T,Src,Dst"],[14741,"T,U"],[14743,"T,Src,Dst"],[14745,""],[14746,"T,Src,Dst"],[14747,""],[14749,"T,U"],[14754,""],[14755,"T,U"],[14757,"T,Src,Dst"],[14759,""],[14760,"T,U"],[14783,"S,T,U"],[14786,"T,Src,Dst"],[14788,"T,U"],[14795,""],[14796,"T,U"],[14798,""],[14799,"T,U"],[14801,"T,Src,Dst"],[14803,"T,U"],[14807,"T,Src,Dst"],[14809,"T,U"],[14813,"T,Src,Dst"],[14814,"T,U"],[14821,"T,Src,Dst"],[14822,"T,U"],[14825,"T,Src,Dst2,Dst1"],[14827,"T,U"],[14837,"T,Src,Dst"],[14839,"T,U"],[14841,"T,U,I"],[14851,""],[14852,"T,Src,Dst,Dst2"],[14853,"T,Src,Dst,NewSrc"],[14854,"T,Src,Dst,NewDst"],[14857,"T,Src,Dst"],[14863,"T,U"],[14865,"T,Src,Dst"],[14866,"T,U"],[14867,"T,Src,Dst"],[14868,"T,U"],[14869,"T,Src,Dst"],[14870,"T,U"],[14874,"T,Src,Dst"],[14876,"T,U"],[14878,"T,Src,Dst"],[14880,"T,U"],[14882,"T,Src,Dst"],[14887,"T,U"],[14895,"T,Src,Dst"],[14897,"T,U"],[14906,"T,Src,Dst"],[14908,"T,U"],[14917,"T,Src,Dst"],[14919,"T,U"],[14928,"T,Src,Dst"],[14930,"T,U"],[14935,"T"],[14958,"T,U"],[14964,"T,Src,Dst"],[14969,"T,U"],[14975,"T,Src,Dst"],[14977,"T,U"],[14988,"T,Src,Dst"],[14990,"T,U"],[14999,"T,Src,Dst"],[15002,"T,U"],[15004,"T,Src,Dst"],[15006,"T,U"],[15008,"T,Src,Dst"],[15010,"T,U"],[15017,"T,Src,Dst"],[15019,"T,U"],[15025,"T,Src,Dst"],[15027,""],[15028,"T,Src,Dst"],[15034,"S"],[15035,"T,Src,Dst"],[15036,"S"],[15037,"T,Src,Dst"],[15038,"S"],[15039,"T,Src,Dst"],[15040,"S"],[15041,"T,Src,Dst"],[15056,"S"],[15057,"T,Src,Dst"],[15059,"S"],[15061,"T,Src,Dst"],[15062,"S"],[15063,"T,Src,Dst"],[15067,"T,U"],[15070,"T,Src,Dst"],[15072,""],[15073,"T,U,NewT"],[15079,"T,Src,Dst,NewT"],[15080,"T,U,NewT"],[15082,"T,Src,Dst,NewT"],[15084,"T,U,NewT"],[15086,"T,Src,Dst,NewT"],[15088,"C"],[15111,"U,T"],[15134,"U"],[15180,"T,U"],[15182,""],[15205,"C,U"],[15228,"C"],[15251,"T,U"],[15254,"T,Src,Dst"],[15255,"T"],[15278,"T,U"],[15280,"T,Src,Dst"],[15281,"T,U"],[15284,"V"],[15307,""],[15308,"T,U"],[15311,""],[15313,"T,Src,Dst,NewDst"],[15315,"T,U"],[15320,"T,Src,Dst,NewSrc"],[15322,""],[15331,"T,U"],[15336,""],[15337,"T,U"],[15340,""],[15341,"T,U"],[15342,""],[15351,"T,U"],[15358,""],[15359,"T,U"],[15360,""],[15365,"T,U"],[15383,"T,U,V,F"],[15388,"Eps"],[15389,""],[15390,"Eps"],[15391,"T"],[15413,""],[15490,"T,M,D"],[15493,"C,T"],[15496,"C"],[15499,""],[15505,"T"],[15511,"WpParam,T"],[15514,"C,T"],[15517,""],[15518,"T"],[15527,""],[15530,"T"],[15533,""],[15534,"T"],[15537,"U,T"],[15540,""],[15543,"U"],[15549,"T"],[15558,"WpParam,T"],[15561,"U"],[15567,"I"],[15569,"T"],[15572,"S"],[15577,""],[15578,"C"],[15581,"U,T"],[15584,"U"],[15590,""],[15593,"C,U"],[15596,"C"],[15599,"T"],[15602,"V"],[15608,"Segment::Scalar"],[15621,"S"],[15623,"Segment::Scalar"],[15625,"S"],[15636,"T,M,D"],[15640,"C,T"],[15644,"C"],[15648,""],[15656,"T"],[15664,"WpParam,T"],[15668,"Iter"],[15669,"C,T"],[15673,"T"],[15685,""],[15691,"T"],[15699,"U,T"],[15703,""],[15707,"U"],[15715,"T"],[15727,"WpParam,T"],[15731,"U"],[15739,"I"],[15743,"T"],[15747,"Iter"],[15748,"T,I"],[15749,"Iter"],[15752,"I,T"],[15753,"Iter"],[15756,"T"],[15758,"C"],[15762,"U,T"],[15766,"U"],[15774,""],[15778,"C,U"],[15782,"C"],[15786,"T"],[15790,"V"],[15794,"Iter"],[15804,""],[15839,"T,M,D"],[15842,"C,T"],[15845,"C"],[15848,""],[15858,"T"],[15864,""],[15868,"WpParam,T"],[15871,""],[15872,"T"],[15873,""],[15874,"C,T"],[15877,""],[15881,"T"],[15890,""],[15897,"T"],[15903,"U,T"],[15906,""],[15909,"U"],[15915,"T"],[15924,"WpParam,T"],[15927,"U"],[15933,"I"],[15934,"T"],[15937,""],[15955,"T"],[15956,"C"],[15959,"U,T"],[15962,"U"],[15968,""],[15971,"C,U"],[15974,"C"],[15977,"T"],[15980,"V"],[15983,""],[15990,"T,M,D"],[15994,"C,T"],[15998,"C"],[16002,""],[16010,"T"],[16018,"WpParam,T"],[16022,""],[16023,"T"],[16025,""],[16026,"T"],[16030,""],[16036,"C,T"],[16040,"T"],[16052,""],[16056,"T"],[16064,"U,T"],[16068,""],[16072,"U"],[16080,"T"],[16092,"WpParam,T"],[16096,"U"],[16104,"I"],[16108,"T"],[16112,""],[16114,"T"],[16116,""],[16117,"T"],[16118,""],[16120,"T"],[16124,"C"],[16128,"U,T"],[16132,"U"],[16140,""],[16144,"C,U"],[16148,"C"],[16152,"T"],[16156,"V"],[16165,""],[16167,"Build::PathType"],[16168,""],[16221,"T,M,D"],[16224,"C,T"],[16227,"C"],[16230,""],[16238,"T"],[16244,"WpParam,T"],[16247,"Font"],[16248,""],[16250,"T"],[16253,""],[16257,"C,T"],[16260,""],[16261,"Catalog::Class"],[16262,"T"],[16271,""],[16274,"Font"],[16275,""],[16277,"K"],[16280,"Font"],[16281,""],[16284,"T"],[16290,"U,T"],[16293,""],[16297,"U"],[16303,"T"],[16312,"WpParam,T"],[16315,"U"],[16321,"T"],[16324,""],[16329,"Catalog::Class"],[16330,""],[16332,"T"],[16335,"C"],[16338,"U,T"],[16341,"U"],[16347,""],[16350,"C,U"],[16353,"C"],[16356,"T"],[16359,"V"],[16362,""],[16368,"T,M,D"],[16369,"C,T"],[16370,"C"],[16371,""],[16373,"T"],[16375,"WpParam,T"],[16376,"T"],[16378,""],[16379,"C,T"],[16380,"T"],[16381,"Catalog::Class"],[16383,"T"],[16386,""],[16387,"T"],[16390,"U,T"],[16391,""],[16392,"U"],[16394,"T"],[16396,"WpParam,T"],[16397,"U"],[16399,"T"],[16404,"C"],[16405,"U,T"],[16406,"U"],[16408,""],[16409,"C,U"],[16410,"C"],[16411,"T"],[16412,"V"],[16413,"T"],[16420,"T,M,D"],[16422,"C,T"],[16424,"C"],[16426,""],[16430,""],[16432,""],[16433,""],[16434,""],[16436,"T"],[16440,"WpParam,T"],[16442,""],[16444,"T"],[16446,""],[16448,""],[16449,"C,T"],[16451,""],[16453,"Catalog::Class"],[16454,""],[16455,"T"],[16461,"Renderer"],[16462,""],[16466,"K"],[16469,""],[16472,"T"],[16474,""],[16477,"T"],[16479,"U,T"],[16481,"__H"],[16482,""],[16484,"U"],[16488,"T"],[16494,"WpParam,T"],[16496,"U"],[16500,"T"],[16502,""],[16504,"T"],[16505,""],[16508,""],[16509,""],[16510,"Catalog::Class"],[16511,""],[16513,"T"],[16515,"Theme"],[16516,"C"],[16518,"U,T"],[16520,"U"],[16524,""],[16526,"C,U"],[16528,"C"],[16530,""],[16531,"T"],[16533,""],[16534,"V"],[16545,"T,M,D"],[16546,"C,T"],[16547,"C"],[16548,""],[16550,"T"],[16552,"WpParam,T"],[16553,"C,T"],[16554,"Handle"],[16555,"T"],[16558,"Handle,Renderer"],[16559,"Handle,Renderer,Theme"],[16560,""],[16561,"Handle"],[16562,"T"],[16564,"U,T"],[16565,"Handle,"],[16566,""],[16567,"U"],[16569,"T"],[16572,"WpParam,T"],[16573,"U"],[16575,"T"],[16576,"Handle,Renderer"],[16578,"Handle"],[16580,"Handle,Renderer"],[16581,"Handle,T"],[16582,"Handle,"],[16583,"Handle"],[16587,"C"],[16588,"U,T"],[16589,"U"],[16591,""],[16592,"C,U"],[16593,"C"],[16594,"T"],[16595,"Handle,Renderer,Message"],[16597,"Handle"],[16598,"V"],[16599,"Handle,"],[16600,""],[16606,"T,M,D"],[16607,"C,T"],[16608,"C"],[16609,""],[16611,"T"],[16613,"WpParam,T"],[16614,""],[16615,"T"],[16616,""],[16617,"C,T"],[16618,""],[16619,"T"],[16622,""],[16624,"T"],[16626,"U,T"],[16627,""],[16628,"U"],[16630,"T"],[16633,"WpParam,T"],[16634,"U"],[16636,"T"],[16637,""],[16639,"T"],[16640,"Renderer"],[16641,"T"],[16642,"C"],[16643,"U,T"],[16644,"U"],[16646,""],[16647,"C,U"],[16648,"C"],[16649,"T"],[16650,"V"],[16652,"T,M,D"],[16653,"Key,Message,Theme,Renderer"],[16654,"C,T"],[16655,"C"],[16656,""],[16658,"T"],[16660,"WpParam,T"],[16661,"Key,Message,Theme,Renderer"],[16663,"C,T"],[16664,"Key,Message,Renderer"],[16665,"T"],[16667,"Key,Message,Theme,Renderer"],[16668,"T"],[16669,"Key,Message,Theme,Renderer"],[16670,""],[16671,"Key,Message,Theme,Renderer,"],[16672,"T"],[16674,"U,T"],[16675,"Key,Message,Theme,Renderer"],[16676,"Key,Message,Theme,Renderer,"],[16677,""],[16678,"U"],[16680,"T"],[16682,"WpParam,T"],[16683,"U"],[16685,"T"],[16686,"Key,Message,Theme,Renderer"],[16687,"Key,Message,Theme,Renderer,"],[16688,"Key,Message,Theme,Renderer"],[16690,"T"],[16691,"Key,Message,Theme,Renderer"],[16693,"Key,Message,Theme,Renderer,P"],[16694,"Key,Message,Theme,Renderer,"],[16696,"Key,Message,Theme,Renderer"],[16697,"Key,Message,Theme,Renderer,"],[16698,"Key,Message,Theme,Renderer"],[16700,"C"],[16701,"U,T"],[16702,"U"],[16704,""],[16705,"C,U"],[16706,"C"],[16707,"T"],[16708,"Key,Message,Theme,Renderer"],[16709,"V"],[16710,"Key,Message,Theme,Renderer,"],[16711,"Key,Message,Theme,Renderer"],[16712,"Key,Message,Theme,Renderer,"],[16735,"T,M,D"],[16742,"C,T"],[16749,"C"],[16756,""],[16775,"T"],[16789,"WpParam,T"],[16796,""],[16803,"T"],[16809,""],[16817,"Message,,Theme,Renderer"],[16818,"Catalog::Class"],[16819,"Message,Theme,Renderer"],[16820,""],[16821,"K"],[16823,"C,T"],[16830,""],[16831,"T"],[16845,"D"],[16847,""],[16849,"T"],[16856,""],[16866,"K"],[16872,""],[16882,"T"],[16888,""],[16893,"T"],[16901,"P"],[16903,""],[16904,"U,T"],[16911,""],[16920,"H"],[16921,"__H"],[16922,"Message,,Theme,Renderer"],[16923,"Message,Theme,Renderer"],[16924,""],[16926,"Message,Theme,Renderer"],[16927,""],[16942,"U"],[16956,"T"],[16974,"WpParam,T"],[16981,"U"],[16995,"T"],[17002,""],[17004,"Message,Theme,Renderer,"],[17005,""],[17012,"T"],[17013,"Message"],[17014,""],[17015,"Message,Theme,Renderer,"],[17016,"Message,Theme,Renderer"],[17017,""],[17018,"Message,,Theme,Renderer"],[17019,"Message,Theme,Renderer"],[17020,""],[17023,"I"],[17024,""],[17037,"S"],[17039,""],[17049,""],[17050,""],[17056,"T"],[17062,""],[17066,"C"],[17073,""],[17074,"U,T"],[17076,""],[17077,"U,T"],[17082,"U"],[17096,""],[17103,"C,U"],[17110,"C"],[17117,"Message,Theme,Renderer,"],[17118,"Message,Theme,Renderer"],[17119,"T"],[17126,""],[17127,",,Theme,Renderer"],[17128,",,Message,Theme,Renderer,"],[17129,"V"],[17136,""],[17137,","],[17138,""],[17156,"Catalog::Class"],[17157,""],[17159,"Catalog::Class"],[17160,""],[17205,"T,M,D"],[17223,"T"],[17224,"Message,Theme,Renderer"],[17225,"C,T"],[17243,"C"],[17261,""],[17299,"T"],[17335,"WpParam,T"],[17353,""],[17354,"Message,Theme,Renderer"],[17355,"Message,Theme,Renderer,"],[17357,""],[17358,"T"],[17359,""],[17363,"T"],[17364,""],[17372,"T"],[17387,""],[17402,"T"],[17403,""],[17406,"K"],[17408,"C,T"],[17426,"Message,Theme,Renderer,"],[17427,""],[17428,"Catalog::Class"],[17429,""],[17430,"T"],[17484,"Message,Theme,Renderer"],[17486,""],[17496,"T"],[17497,""],[17505,"Message,Theme,Renderer,,"],[17506,""],[17513,"K"],[17525,""],[17526,"T"],[17527,""],[17531,"T"],[17532,""],[17540,"T"],[17541,"Message,Theme,Renderer,T"],[17542,"T"],[17543,"Message,Theme,Renderer"],[17544,"T"],[17578,"U,T"],[17596,"T"],[17598,"__H"],[17599,"H"],[17600,"__H"],[17602,""],[17623,"U"],[17659,"T"],[17710,"WpParam,T"],[17728,"U"],[17764,"T"],[17783,"Message,Theme,Renderer"],[17784,"T"],[17791,"Message,Theme,Renderer,"],[17794,"T"],[17796,"Message,Theme,Renderer,P"],[17797,""],[17803,"T"],[17805,""],[17806,"T"],[17807,""],[17810,"T"],[17811,""],[17813,"Catalog::Class"],[17814,"Message,Theme,Renderer,"],[17816,"T"],[17817,"Message,Theme,Renderer"],[17818,"T"],[17833,"C"],[17851,"U,T"],[17869,"U"],[17905,""],[17923,"C,U"],[17941,"C"],[17959,"T"],[17977,"V"],[17995,""],[17996,"T,"],[17997,""],[18016,"T,M,D"],[18018,"C,T"],[18020,"C"],[18022,""],[18026,"T"],[18030,"WpParam,T"],[18032,""],[18034,"T"],[18036,""],[18038,"C,T"],[18040,""],[18041,"T"],[18047,""],[18052,"T"],[18057,"U,T"],[18059,""],[18062,"U"],[18066,"T"],[18072,"WpParam,T"],[18074,"U"],[18078,"T"],[18081,""],[18084,"T"],[18086,"C"],[18088,"U,T"],[18090,"U"],[18094,""],[18096,"C,U"],[18098,"C"],[18100,"T"],[18102,"V"],[18104,""],[18123,"T,M,D"],[18127,"C,T"],[18131,"C"],[18135,""],[18145,"T"],[18153,"WpParam,T"],[18157,"Font"],[18159,""],[18161,"T"],[18165,""],[18170,"C,T"],[18174,""],[18175,"Catalog::Class"],[18176,"Font"],[18177,"Catalog::Class"],[18178,"T"],[18190,""],[18194,"Font"],[18196,""],[18198,"K"],[18201,"Font"],[18203,""],[18206,"T"],[18214,"U,T"],[18218,""],[18223,"U"],[18231,"T"],[18243,"WpParam,T"],[18247,"U"],[18255,"T"],[18259,""],[18260,"T"],[18261,""],[18264,"Catalog::Class"],[18265,""],[18266,"T"],[18270,"C"],[18274,"U,T"],[18278,"U"],[18286,""],[18290,"C,U"],[18294,"C"],[18298,"T"],[18302,"V"],[18306,""],[18316,"T,M,D"],[18317,"C,T"],[18318,"C"],[18319,""],[18324,"T"],[18326,"WpParam,T"],[18327,""],[18328,"T"],[18329,""],[18330,"C,T"],[18331,""],[18332,"Catalog::Class"],[18333,"T"],[18336,""],[18339,"T"],[18341,"U,T"],[18342,""],[18343,"U"],[18345,"T"],[18348,"WpParam,T"],[18349,"U"],[18351,"T"],[18352,""],[18354,"Catalog::Class"],[18355,""],[18356,"T"],[18357,"C"],[18358,"U,T"],[18359,"U"],[18361,""],[18362,"C,U"],[18363,"C"],[18364,"T"],[18365,"V"],[18366,""],[18387,"T,M,D"],[18392,"C,T"],[18397,"C"],[18402,""],[18413,"T"],[18423,"WpParam,T"],[18428,""],[18433,"T"],[18437,""],[18441,"C,T"],[18446,""],[18447,"Catalog::Class"],[18448,"T"],[18463,""],[18472,"K"],[18481,""],[18487,"T"],[18491,""],[18492,"T"],[18498,"U,T"],[18503,""],[18508,"U"],[18518,"T"],[18532,"WpParam,T"],[18537,"U"],[18547,"T"],[18552,""],[18553,"Catalog::Class"],[18554,"T"],[18558,""],[18560,"C"],[18565,"U,T"],[18570,"U"],[18580,""],[18585,"C,U"],[18590,"C"],[18595,"T"],[18600,"V"],[18605,""],[18615,"T,M,D"],[18617,"C,T"],[18619,"C"],[18621,""],[18628,"T"],[18632,"WpParam,T"],[18634,""],[18636,"T"],[18638,""],[18640,"C,T"],[18642,""],[18643,"Catalog::Class"],[18644,"T"],[18648,""],[18649,"T"],[18651,""],[18655,"K"],[18658,""],[18660,"T"],[18664,"U,T"],[18666,""],[18668,"U"],[18672,"T"],[18678,"WpParam,T"],[18680,"U"],[18684,"T"],[18686,"Catalog::Class"],[18687,""],[18688,"T"],[18690,"C"],[18692,"U,T"],[18694,"U"],[18698,""],[18700,"C,U"],[18702,"C"],[18704,"T"],[18706,"V"],[18708,""],[18720,"T,M,D"],[18722,"C,T"],[18724,"C"],[18726,""],[18730,"T"],[18734,"WpParam,T"],[18736,""],[18738,"T"],[18740,""],[18743,"C,T"],[18745,""],[18746,"Catalog::Class"],[18747,"T"],[18753,""],[18761,"T"],[18765,"U,T"],[18767,""],[18769,"U"],[18773,"T"],[18779,"WpParam,T"],[18781,"U"],[18785,"T"],[18787,""],[18788,"Catalog::Class"],[18789,"T"],[18791,"C"],[18793,"U,T"],[18795,"U"],[18799,""],[18801,"C,U"],[18803,"C"],[18805,"T"],[18807,"V"],[18809,""],[18837,"T,M,D"],[18848,""],[18849,"C,T"],[18860,"C"],[18871,""],[18896,"T"],[18918,""],[18919,"WpParam,T"],[18930,""],[18941,"T"],[18952,""],[18964,"C,T"],[18975,""],[18978,"Catalog::Class"],[18979,""],[18984,"T"],[19017,""],[19038,"K"],[19047,""],[19058,"T"],[19064,""],[19065,"T"],[19081,"U,T"],[19092,""],[19093,"__H"],[19094,""],[19107,"U"],[19129,"T"],[19162,"WpParam,T"],[19173,"U"],[19195,"T"],[19206,""],[19207,""],[19208,""],[19209,"T"],[19214,""],[19215,",T"],[19217,""],[19218,""],[19219,",T"],[19220,""],[19221,"Catalog::Class"],[19222,"T"],[19233,"C"],[19244,"U,T"],[19255,"U"],[19277,""],[19288,"C,U"],[19299,"C"],[19310,""],[19311,"T"],[19322,""],[19324,"V"],[19335,""],[19336,""],[19360,"T,M,D"],[19362,"C,T"],[19364,"C"],[19366,""],[19370,"T"],[19374,"WpParam,T"],[19376,""],[19377,"T"],[19378,""],[19379,"C,T"],[19381,""],[19382,"T"],[19388,"Program::State,Program::Primitive"],[19389,""],[19393,"T"],[19397,"U,T"],[19399,"T"],[19401,""],[19404,"U"],[19408,"T"],[19413,"WpParam,T"],[19415,"U"],[19419,"T"],[19421,""],[19422,"Program::State,Program::Primitive"],[19423,"T"],[19424,""],[19431,"T"],[19433,"C"],[19435,"U,T"],[19437,"U"],[19441,""],[19443,"C,U"],[19445,"C"],[19447,"T"],[19449,"Program::State,Program::Primitive,Message"],[19450,"V"],[19452,""],[19467,"T,M,D"],[19472,"C,T"],[19477,"C"],[19482,""],[19497,"T"],[19507,"WpParam,T"],[19512,""],[19517,"T"],[19522,""],[19527,"C,T"],[19532,""],[19533,"Catalog::Class"],[19534,"T"],[19549,""],[19559,"K"],[19562,""],[19567,"T"],[19577,"U,T"],[19582,""],[19588,"U"],[19598,"T"],[19613,"WpParam,T"],[19618,"U"],[19628,"T"],[19633,""],[19635,"Catalog::Class"],[19636,"T"],[19641,"C"],[19646,"U,T"],[19651,"U"],[19661,""],[19666,"C,U"],[19671,"C"],[19676,"T"],[19681,"V"],[19686,""],[19687,""],[19688,""],[19700,"T,M,D"],[19702,"C,T"],[19704,"C"],[19706,""],[19710,"T"],[19714,"WpParam,T"],[19716,""],[19718,"T"],[19720,""],[19723,"C,T"],[19725,"Catalog::Class"],[19726,""],[19727,"T"],[19733,""],[19737,"K"],[19740,""],[19742,"T"],[19746,"U,T"],[19748,""],[19750,"U"],[19754,"T"],[19760,"WpParam,T"],[19762,"U"],[19766,"T"],[19769,"Catalog::Class"],[19770,"T"],[19772,"C"],[19774,"U,T"],[19776,"U"],[19780,""],[19782,"C,U"],[19784,"C"],[19786,"T"],[19788,"V"],[19817,"T,M,D"],[19820,"Link,Message,Theme,Renderer,"],[19822,"C,T"],[19825,"C"],[19828,""],[19835,"T"],[19841,"WpParam,T"],[19844,"Link,Message,Theme,Renderer"],[19845,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[19846,"Link,Message,Theme,Renderer,"],[19847,""],[19848,"T"],[19849,""],[19850,"Link,Message,Theme,Renderer,"],[19851,""],[19853,"Link,Message,Theme,Renderer,"],[19854,"C,T"],[19857,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[19858,""],[19860,"Catalog::Class"],[19861,"Link,Message,Theme,Renderer"],[19862,"P"],[19863,""],[19864,"T"],[19873,"Renderer"],[19874,"Link,Message,Theme,Renderer"],[19875,""],[19879,"P"],[19880,""],[19881,"Link,Message,Theme,Renderer,"],[19882,""],[19883,"T"],[19889,"Link,T,Message,Theme,Renderer"],[19890,"U,T"],[19893,"Link,Message,Theme,Renderer,"],[19894,""],[19895,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[19896,""],[19899,"U"],[19905,"T"],[19913,"WpParam,T"],[19916,"U"],[19922,""],[19923,"T"],[19926,"Renderer"],[19927,"Link,Message,Theme,Renderer"],[19928,"Link,Message,Theme,Renderer,"],[19929,""],[19931,"Link,Message,Theme,Renderer"],[19932,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[19933,"Link,Message,Theme,Renderer"],[19934,"T"],[19937,"Link,Message,Theme,Renderer,"],[19938,""],[19941,"Link,Message,Theme,Renderer,"],[19942,"Link,Message,Theme,Renderer"],[19943,""],[19944,"Link,Message,Theme,Renderer"],[19945,""],[19946,"Catalog::Class"],[19947,"Link,Message,Theme,Renderer,"],[19948,""],[19949,"Link,Message,Theme,Renderer"],[19950,""],[19951,"T"],[19952,"C"],[19955,"U,T"],[19958,"U"],[19964,""],[19967,"C,U"],[19970,"C"],[19973,""],[19974,"T"],[19977,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[19978,"Link,Message,Theme,Renderer"],[19979,"V"],[19982,"Link,Message,Theme,Renderer,"],[19983,"Link,,Message,Theme,Renderer"],[19984,"Link,Message,Theme,Renderer"],[20050,"T,M,D"],[20061,"C,T"],[20072,"C"],[20083,""],[20108,"T"],[20130,"WpParam,T"],[20141,""],[20146,"Message"],[20147,""],[20150,"T"],[20159,""],[20168,"C,T"],[20179,"R"],[20180,""],[20181,"Catalog::Class"],[20182,"Renderer"],[20183,""],[20185,"T"],[20207,""],[20208,"T"],[20219,""],[20236,"Message"],[20237,""],[20240,"K"],[20252,"Renderer"],[20253,""],[20258,"Highlighter"],[20259,"Message"],[20260,""],[20263,"Highlighter"],[20264,"T"],[20286,"Message"],[20287,"U,T"],[20298,""],[20310,"U"],[20332,"T"],[20363,"WpParam,T"],[20374,"U"],[20396,"T"],[20407,""],[20408,"Highlighter"],[20410,""],[20411,"R"],[20415,""],[20416,"R"],[20417,"T"],[20420,"R"],[20421,""],[20422,"R"],[20423,""],[20425,"Catalog::Class"],[20426,"R"],[20427,""],[20429,"T"],[20438,"C"],[20449,"U,T"],[20460,"U"],[20482,""],[20493,"C,U"],[20504,"C"],[20515,"Highlighter"],[20516,"T"],[20527,""],[20528,"V"],[20539,""],[20540,"R"],[20541,""],[20562,"T,M,D"],[20570,"C,T"],[20578,"C"],[20586,""],[20604,"T"],[20620,"WpParam,T"],[20628,""],[20630,"Font"],[20631,""],[20633,"P"],[20634,""],[20636,"T"],[20644,""],[20653,"C,T"],[20662,"P"],[20663,""],[20664,"Catalog::Class"],[20665,""],[20666,"P"],[20667,"T"],[20691,""],[20703,"K"],[20712,""],[20715,"Font"],[20716,""],[20718,"P"],[20719,""],[20721,",T"],[20722,"P"],[20724,""],[20725,"T"],[20729,""],[20730,"T"],[20731,""],[20732,"T"],[20743,"U,T"],[20751,"__H"],[20752,""],[20763,"U"],[20779,"T"],[20803,"WpParam,T"],[20811,"U"],[20827,"T"],[20835,""],[20836,"P"],[20838,""],[20839,",T"],[20840,"P"],[20842,",T"],[20843,"P"],[20845,",T"],[20846,"P"],[20848,""],[20849,""],[20850,"P"],[20851,""],[20852,"T"],[20854,""],[20860,",T"],[20861,"P"],[20863,""],[20869,"Catalog::Class"],[20870,"T"],[20878,""],[20880,"C"],[20888,"U,T"],[20896,"U"],[20912,""],[20920,"C,U"],[20928,"C"],[20936,"P"],[20938,""],[20940,"T"],[20948,""],[20949,"V"],[20957,""],[20962,"T,M,D"],[20963,"C,T"],[20964,"C"],[20965,""],[20967,"T"],[20969,"WpParam,T"],[20970,""],[20971,"T"],[20972,""],[20973,"C,T"],[20974,"T"],[20977,""],[20979,"K"],[20982,""],[20983,"T"],[20985,"U,T"],[20986,""],[20987,"U"],[20989,"T"],[20992,"WpParam,T"],[20993,"U"],[20995,"T"],[20997,"C"],[20998,"U,T"],[20999,"U"],[21001,""],[21002,"C,U"],[21003,"C"],[21004,"T"],[21005,"V"],[21006,""],[21120,"T,M,D"],[21122,"C,T"],[21124,"C"],[21126,""],[21133,"T"],[21137,"WpParam,T"],[21139,""],[21141,"T"],[21143,""],[21145,"C,T"],[21147,""],[21148,"Catalog::Class"],[21149,"T"],[21155,""],[21159,"K"],[21162,""],[21167,"T"],[21171,"U,T"],[21173,""],[21175,"U"],[21179,"T"],[21185,"WpParam,T"],[21187,"U"],[21191,"T"],[21193,"Catalog::Class"],[21194,"T"],[21196,"C"],[21198,"U,T"],[21200,"U"],[21204,""],[21206,"C,U"],[21208,"C"],[21210,"T"],[21212,"V"],[21214,""],[21223,"T,M,D"],[21224,"C,T"],[21225,"C"],[21226,""],[21228,"T"],[21230,"WpParam,T"],[21231,""],[21232,"T"],[21233,""],[21234,"C,T"],[21235,""],[21236,"T"],[21239,""],[21241,"K"],[21244,""],[21245,"T"],[21247,"U,T"],[21248,""],[21249,"U"],[21251,"T"],[21254,"WpParam,T"],[21255,"U"],[21257,"T"],[21260,"C"],[21261,"U,T"],[21262,"U"],[21264,""],[21265,"C,U"],[21266,"C"],[21267,"T"],[21268,"V"],[21282,""],[21286,"Catalog::Class"],[21287,""],[21290,"Catalog::Class"],[21291,""],[21374,"T,M,D"],[21386,"C,T"],[21398,"C"],[21410,""],[21435,"T"],[21459,""],[21460,"WpParam,T"],[21472,""],[21483,"T"],[21494,""],[21505,"T"],[21506,""],[21510,"K"],[21512,"C,T"],[21524,""],[21529,"T"],[21553,"Message"],[21554,"T"],[21568,""],[21580,"Message"],[21581,"U"],[21583,""],[21589,"K"],[21601,""],[21616,"T"],[21626,""],[21627,"T"],[21641,"U,T"],[21653,""],[21654,"T"],[21655,""],[21664,"__H"],[21666,""],[21679,"U"],[21703,"T"],[21738,"WpParam,T"],[21750,"U"],[21774,""],[21775,"T"],[21787,""],[21789,"T"],[21790,""],[21792,"T"],[21794,""],[21795,"T"],[21798,""],[21804,"T"],[21805,""],[21806,"T"],[21807,""],[21808,"T,"],[21809,""],[21812,"T"],[21821,""],[21823,"T"],[21834,""],[21836,"T"],[21838,""],[21839,"C"],[21851,"U,T"],[21863,"U"],[21887,""],[21899,"C,U"],[21911,"C"],[21923,""],[21924,"T"],[21936,""],[21937,"V"],[21949,""],[21956,"T,M,D"],[21957,"C,T"],[21958,"C"],[21959,""],[21961,"T"],[21963,"WpParam,T"],[21964,"C,T"],[21965,"T"],[21968,""],[21971,"T"],[21972,""],[21975,"T"],[21976,"P"],[21977,""],[21979,"U,T"],[21980,""],[21981,"U"],[21983,"T"],[21986,"WpParam,T"],[21987,"U"],[21989,"T"],[21990,""],[21993,"C"],[21994,"U,T"],[21995,"U"],[21997,""],[21998,"C,U"],[21999,"C"],[22000,"T"],[22001,"V"],[22071,""],[22072,"T,M,D"],[22106,""],[22108,"C,T"],[22142,"C"],[22176,""],[22250,"T"],[22254,""],[22255,"T"],[22256,""],[22257,"T"],[22320,""],[22322,"WpParam,T"],[22356,""],[22390,"T"],[22424,""],[22458,"C,T"],[22492,""],[22494,"T"],[22562,""],[22566,"T"],[22600,""],[22667,"K"],[22766,""],[22802,"T"],[22833,""],[22836,"T"],[22837,""],[22852,"T"],[22853,""],[22866,"T"],[22901,"U,T"],[22935,""],[22938,"__H"],[22971,""],[23008,"U"],[23076,"T"],[23159,"WpParam,T"],[23193,"U"],[23261,"T"],[23295,""],[23338,"T"],[23372,""],[23374,"C"],[23408,"U,T"],[23442,"U"],[23510,""],[23547,"C,U"],[23581,"C"],[23615,"T"],[23649,""],[23651,"V"],[23685,""],[23696,"T,M,D"],[23697,"C,T"],[23698,"C"],[23699,""],[23701,"T"],[23703,""],[23704,"WpParam,T"],[23705,"C,T"],[23706,"T"],[23709,""],[23712,"T"],[23714,"U,T"],[23715,""],[23716,"U"],[23718,"T"],[23721,"WpParam,T"],[23722,"U"],[23724,"T"],[23725,""],[23729,"C"],[23730,"U,T"],[23731,"U"],[23733,""],[23734,"C,U"],[23735,"C"],[23736,"T"],[23737,"V"],[23740,"T,M,D"],[23741,""],[23742,"C,T"],[23743,"C"],[23744,""],[23746,"T"],[23748,"WpParam,T"],[23749,""],[23750,"T"],[23751,""],[23752,"C,T"],[23753,""],[23755,"T"],[23758,""],[23760,"K"],[23763,""],[23765,"T"],[23767,"U,T"],[23768,""],[23771,"U"],[23773,"T"],[23776,"WpParam,T"],[23777,"U"],[23779,"T"],[23780,""],[23784,"T"],[23785,""],[23790,"T"],[23791,""],[23792,"C"],[23793,"U,T"],[23794,"U"],[23796,""],[23797,"C,U"],[23798,"C"],[23799,"T"],[23800,""],[23801,"V"]]}],["iced_core",{"t":"EETGEEFPPGPFFEPPPPPEEPTTTEEEGPTETEFFTTFFEGPFFFPFFPETEEFTFTETTTONNNNNNNNNNNNNNNNNNNNNNNNNNNCCONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOQNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNCONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOCNNNOOOCCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCCNNNNNCNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNONCCNNNNNNNNNONNNNCNNNNNNNNNNNNNNNNNNNNNCCCCNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCOOCNNNOOOOOOGPPPPPGPPPPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPGKKPNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFFNNNNNNNNNNHNHNOHNONNNNNNNNHNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNHOHNHNNNHNHNOHNONNNNNNNNNNNNNNNNHNOKGFPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNMNPGPPPPGPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNPPPPTPPPPPGPFPPTPPPPPPPPPPPPGGPPPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONFGFPNNNNNONNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNONNNNNNNNNNNNNNNNNNNNNNNNNNNFPGGRFFPPPKPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNONNNNNNNNNONNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOPPPPGGPPPPFPGPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOTTTGEPPTPGFPPPTPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOOOOOPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPGPGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFFTFNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNHNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNHNHNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGPPNNNNNNNNNNNNNNNNNHNNNNNNNNPPGPPPEPPGPPPGPPPPPGPPPPPPPPPPPPPPPGPPPPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOFPGPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFFKNNNNNNNNNNNNNNNMNNNNNNNHNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFTNHNNNNHNONNNNNNNNNNNNNNNNNNNNNNNNHNONNHNONHNONNNNNNNNNKFKFNNNNNNONNNNONNMNNNNNNNNNNMMNNMNNNNNNNNNNNNNNNNNNNNMNNMOMMONNNNNNNNNNNNNNNNNNNNNPGFPKFNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNMNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNMNNONONNNNNNNNNNNNNNNNNNNNNNNNNNNTPPPPPTPGERRIPFEGTKGPPPERPKPGFFPPGNNNNNNNNNNNNNNNNNNNNNNNNNONNONNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNONNNNNMMCNNNNNNNMMMNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOCONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNOONONNNNNNNOCONOONOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNOGPPPPPGPGPPPPGPKPPRPPPPPPFGGPPPPPPPPPPPPPPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMMNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMMMMNNMMONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNMOFRKRFRNNNNNNNNNNNNMNNNNNNNONNMNNNNNONNNNNNMNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNMNNNRKFNNNNNNNNNMNNNNNNMMMMNNNNNNNMNNNNNNNNMMNNNNNNNNNMNNMMTKPPPPFPPPPPPPPPPPPPPEPPFGPPPNNNNNNNNNOMNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFTTTTTTFJJJJJJJJJJJJJJJJJJJJJJFTTTTTTTTTTTFFFTTFFTTTFNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNOOOOOOOOOOOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOOFFTTTTTTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNHHNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGFPPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOOFEEEKNNNNNNNNNNNNMNNNNNNNNNNNNMNNNCNMNNNCNCNNNNNNNNNNPEPKGEPENNNHNNNNMNNNCNNNNNNNNNNHHCNNCNHNNNNNNNNFKNNNNNNNNNNHNNHNHMHHONNNNNNNNNMNNONNNNNNNMNFTFTKNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHMHMHMNNNNNNNNNNNNNNNNNNOOOOKHMHMHMHMKREEFFIFENNNNNNNNNNNHNNNNNNNNNNNNNNNONNNNHHMNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNHHNNNNMNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNPPGFFNNNNNNNNNNNNNNNNNNONNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONONNNNNNNNNNNNNNNNNNNNNNNNNPPPPPPPPGPGPPPPPPEFPGGPPPPPPPGGPPEEPPPPPPGPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOPPGFNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOGPFPNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNFFNNONNNNNNNNNNNNNNNNNNONNNONNNNNNNNOONNNNNNNNNNNNOOOONNOOOOONNONNNNNNNNNNNNNNONN","n":["Alignment","Animation","BLACK","Background","Border","Clipboard","Color","","Contain","ContentFit","Cover","Degrees","Element","Event","Fill","","FillPortion","Fixed","Floating","Font","Gradient","","IDENTITY","INFINITE","INFINITY","Image","InputMethod","Layout","Length","None","ORIGIN","Overlay","PI","Padding","Pixels","Point","RANGE","","Radians","Rectangle","Renderer","Rotation","ScaleDown","Settings","Shadow","Shell","Shrink","Size","SmolStr","Solid","Svg","TRANSPARENT","Text","Theme","Transformation","UNIT","Vector","WHITE","Widget","ZERO","","","a","adapt_into_using","","","","","","","","","","","","","","","","","","add","","","","","","","","add_assign","alignment","animation","antialiasing","apply","are_widgets_invalid","area","arrays_from","","","","","","","","","","","","","","","","","","arrays_into","","","","","","","","","","","","","","","","","","as_ref","","as_str","as_widget","as_widget_mut","b","blur_radius","border","borrow","","","","","","","","","","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","","","","","","","cam16_into_unclamped","","","","","","","","","","","","","","","","","","capture_event","center","center_x","center_y","clipboard","clone","","","","","","","","","","","","","","","","clone_into","","","","","","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","","","","","","cmp","color","","components_from","","","","","","","","","","","","","","","","","","contains","default","","","","","","","","","","","","default_font","default_text_size","degrees","deref","distance","","div","","","","","enclose","eq","","","","","","","","","","","","","","","","","","","","","event","event_status","expand","","explain","fill_factor","fit","fluid","fmt","","","","","","","","","","","","","","","","","","","","","font","fonts","from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","","","","","","","","","from_f64","","from_i64","","from_iter","","","","from_linear_rgba","from_rgb","from_rgb8","from_rgba","from_rgba8","from_stimulus","","","","","","","","","","","","","","","","","","from_str","from_u64","","g","gradient","hash","","","height","","id","image","input_method","","input_method_mut","intersection","intersects","into","","","","","","","","","","","","","","","","","","into_angle","","","","","","","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","","","","","","","into_color","","","","","","","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","","","","","","","into_linear","into_rgba8","into_stimulus","","","","","","","","","","","","","","","","","","invalidate_layout","invalidate_widgets","inverse","invert","is_empty","","is_event_captured","is_fill","is_heap_allocated","is_layout_invalid","is_within","keyboard","layout","len","map","max","merge","min","mouse","mul","","","","","","","","","","","","","","","neg","never","new","","","","","","","new_inline","new_inline_from_ascii","new_static","null_value","","","","","","","","","","","","offset","orthographic","overlay","padding","parse","partial_cmp","","","","","","position","publish","r","radians","radians_mut","redraw_request","rem","renderer","replace_redraw_request","request_input_method","request_redraw","request_redraw_at","revalidate_layout","rotate","","scale","scale_alpha","","scale_factor","shrink","size","snap","sub","","","","","","sub_assign","svg","text","theme","time","to_distance","to_owned","","","","","","","","","","","","","","","","to_smolstr","","","","to_string","","","","","touch","translate","translation","try_components_into","","","","","","","","","","","","","","","","","","try_from","","","","","","","","","","","","","","","","","","try_into","","","","","","","","","","","","","","","","","","try_into_color","","","","","","","","","","","","","","","","","","type_id","","","","","","","","","","","","","","","","","","uints_from","","","","","","","","","","","","","","","","","","uints_into","","","","","","","","","","","","","","","","","","union","vzip","","","","","","","","","","","","","","","","","","widget","width","","window","with_radius","with_size","with_vertices","x","","","y","","","Alignment","Bottom","Center","","","End","Horizontal","Left","Right","Start","Top","Vertical","adapt_into_using","","","arrays_from","","","arrays_into","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","","","clone_into","","","clone_to_uninit","","","components_from","","","eq","","","fmt","","","from","","","","","","","from_angle","","","from_stimulus","","","hash","","","into","","","into_angle","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","to_owned","","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","vzip","","","Animation","Custom","EaseIn","EaseInBack","EaseInBounce","EaseInCirc","EaseInCubic","EaseInElastic","EaseInExpo","EaseInOut","EaseInOutBack","EaseInOutBounce","EaseInOutCirc","EaseInOutCubic","EaseInOutElastic","EaseInOutExpo","EaseInOutQuad","EaseInOutQuart","EaseInOutQuint","EaseInQuad","EaseInQuart","EaseInQuint","EaseOut","EaseOutBack","EaseOutBounce","EaseOutCirc","EaseOutCubic","EaseOutElastic","EaseOutExpo","EaseOutQuad","EaseOutQuart","EaseOutQuint","Easing","Float","Interpolable","Linear","adapt_into_using","","arrays_from","","arrays_into","","auto_reverse","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","default","delay","duration","easing","eq","float_value","fmt","","from","","from_angle","","from_stimulus","","go","go_mut","interpolate","interpolate_with","interpolated","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","is_animating","new","null_value","quick","remaining","repeat","repeat_forever","slow","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","value","","very_quick","very_slow","vzip","","Border","Radius","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","bottom","","bottom_left","","","bottom_right","","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","color","","","components_from","","default","","eq","","fmt","","from","","","","","","from_angle","","from_stimulus","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","left","","new","null_value","","radius","","right","","rounded","","to_owned","","top","","top_left","","","top_right","","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","width","","","Clipboard","Kind","Null","Primary","Standard","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","eq","fmt","","from","","from_angle","","from_stimulus","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","read","","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","write","","Captured","Event","Ignored","InputMethod","Keyboard","Mouse","Status","Touch","Window","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","eq","","fmt","","from","","from_angle","","from_stimulus","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","merge","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","Black","Bold","Condensed","Cursive","DEFAULT","Expanded","ExtraBold","ExtraCondensed","ExtraExpanded","ExtraLight","Family","Fantasy","Font","Italic","Light","MONOSPACE","Medium","Monospace","Name","Normal","","","Oblique","SansSerif","SemiCondensed","SemiExpanded","Semibold","Serif","Stretch","Style","Thin","UltraCondensed","UltraExpanded","Weight","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","borrow","","","","","borrow_mut","","","","","cam16_into_unclamped","","","","","clone","","","","","clone_into","","","","","clone_to_uninit","","","","","components_from","","","","","default","","","","","eq","","","","","family","fmt","","","","","from","","","","","from_angle","","","","","from_stimulus","","","","","hash","","","","","into","","","","","into_angle","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_stimulus","","","","","null_value","","","","","stretch","style","to_owned","","","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","vzip","","","","","weight","with_name","ColorStop","Gradient","Linear","","adapt_into_using","","","add_stop","add_stops","angle","arrays_from","","","arrays_into","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","","","clone_into","","","clone_to_uninit","","","color","components_from","","","default","eq","","","fmt","","","from","","","","from_angle","","","from_stimulus","","","into","","","into_angle","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","new","null_value","offset","scale_alpha","","stops","to_owned","","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","vzip","","","Bytes","","FilterMethod","Handle","","Id","Image","Linear","Nearest","Path","Renderer","Rgba","adapt_into_using","","","","","advance","arrays_from","","","","","arrays_into","","","","","as_ref","borrow","","","","","","borrow_mut","","","","","cam16_into_unclamped","","","","","chunk","clear","clone","","","","","clone_into","","","","","clone_to_uninit","","","","","cmp","","components_from","","","","","copy_from_slice","copy_to_bytes","default","","deref","draw_image","drop","encode_hex","encode_hex_upper","eq","","","","","","","","","","","filter_method","","fmt","","","","","","","from","","","","","","","","","","","","","","","from_angle","","","","","from_bytes","from_iter","from_owner","from_path","from_rgba","from_static","from_stimulus","","","","","handle","hash","","","id","into","","","","","into_angle","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_iter","","into_stimulus","","","","","is_empty","is_unique","len","measure_image","new","","null_value","","opacity","","partial_cmp","","","","","","","remaining","rotation","","slice","slice_ref","snap","","split_off","split_to","to_owned","","","","","truncate","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","try_into_mut","type_id","","","","","uints_from","","","","","uints_into","","","","","vzip","","","","","height","id","pixels","width","Allowed","Closed","Commit","Disabled","Event","InputMethod","None","Normal","Open","Opened","Preedit","","Purpose","Secure","Terminal","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","as_ref","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","clone","","","","clone_into","","","","clone_to_uninit","","","","components_from","","","","content","default","","eq","","","","fmt","","","","from","","","","from_angle","","","","from_stimulus","","","","hash","into","","","","into_angle","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_stimulus","","","","is_open","merge","new","null_value","","selection","to_owned","","","","","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","vzip","","","","position","preedit","purpose","ALT","COMMAND","CTRL","Event","Key","KeyPressed","KeyReleased","LOGO","Left","Location","Modifiers","ModifiersChanged","Numpad","Right","SHIFT","Standard","adapt_into_using","","","all","alt","arrays_from","","","arrays_into","","","bitand","bitand_assign","bitor","bitor_assign","bits","","bitxor","bitxor_assign","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","","","clone_into","","","clone_to_uninit","","","cmp","command","complement","components_from","","","contains","control","default","difference","empty","eq","","","extend","fmt","","","","","","","from","","","from_angle","","","from_bits","from_bits_retain","","from_bits_truncate","from_iter","from_name","from_stimulus","","","hash","insert","intersection","intersects","into","","","into_angle","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_iter","into_stimulus","","","is_all","is_empty","iter","iter_names","jump","key","logo","macos_command","not","null_value","partial_cmp","remove","set","shift","sub","sub_assign","symmetric_difference","to_owned","","","toggle","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","union","vzip","","","key","","location","","modified_key","","modifiers","","physical_key","","text","AVRInput","AVRPower","Abort","Accept","Again","","AllCandidates","Alphanumeric","Alt","AltGraph","AltLeft","AltRight","Android","AppSwitch","ArrowDown","","ArrowLeft","","ArrowRight","","ArrowUp","","Attn","AudioBalanceLeft","AudioBalanceRight","AudioBassBoostDown","AudioBassBoostToggle","AudioBassBoostUp","AudioFaderFront","AudioFaderRear","AudioSurroundModeNext","AudioTrebleDown","AudioTrebleUp","AudioVolumeDown","","AudioVolumeMute","","AudioVolumeUp","","Backquote","Backslash","Backspace","","BracketLeft","BracketRight","BrightnessDown","BrightnessUp","BrowserBack","","BrowserFavorites","","BrowserForward","","BrowserHome","","BrowserRefresh","","BrowserSearch","","BrowserStop","","Call","Camera","CameraFocus","Cancel","CapsLock","","ChannelDown","ChannelUp","Character","Clear","Close","ClosedCaptionToggle","Code","","CodeInput","ColorF0Red","ColorF1Green","ColorF2Yellow","ColorF3Blue","ColorF4Grey","ColorF5Brown","Comma","Compose","ContextMenu","","Control","ControlLeft","ControlRight","Convert","","Copy","","CrSel","Cut","","DVR","Delete","","Digit0","Digit1","Digit2","Digit3","Digit4","Digit5","Digit6","Digit7","Digit8","Digit9","Dimmer","DisplaySwap","Eisu","Eject","","End","","EndCall","Enter","","Equal","EraseEof","Escape","","ExSel","Execute","Exit","F1","","F10","","F11","","F12","","F13","","F14","","F15","","F16","","F17","","F18","","F19","","F2","","F20","","F21","","F22","","F23","","F24","","F25","","F26","","F27","","F28","","F29","","F3","","F30","","F31","","F32","","F33","","F34","","F35","","F4","","F5","","F6","","F7","","F8","","F9","","FavoriteClear0","FavoriteClear1","FavoriteClear2","FavoriteClear3","FavoriteRecall0","FavoriteRecall1","FavoriteRecall2","FavoriteRecall3","FavoriteStore0","FavoriteStore1","FavoriteStore2","FavoriteStore3","FinalMode","Find","","Fn","","FnLock","","GoBack","GoHome","GroupFirst","GroupLast","GroupNext","GroupPrevious","Guide","GuideNextDay","GuidePreviousDay","HangulMode","HanjaMode","Hankaku","HeadsetHook","Help","","Hibernate","Hiragana","","HiraganaKatakana","Home","","Hyper","","Info","Insert","","InstantReplay","IntlBackslash","IntlRo","IntlYen","JunjaMode","KanaMode","","KanjiMode","Katakana","","Key","Key11","Key12","KeyA","KeyB","KeyC","KeyD","KeyE","KeyF","KeyG","KeyH","KeyI","KeyJ","KeyK","KeyL","KeyM","KeyN","KeyO","KeyP","KeyQ","KeyR","KeyS","KeyT","KeyU","KeyV","KeyW","KeyX","KeyY","KeyZ","Lang1","Lang2","Lang3","Lang4","Lang5","LastNumberRedial","LaunchApp1","LaunchApp2","LaunchApplication1","LaunchApplication2","LaunchCalendar","LaunchContacts","LaunchMail","","LaunchMediaPlayer","LaunchMusicPlayer","LaunchPhone","LaunchScreenSaver","LaunchSpreadsheet","LaunchWebBrowser","LaunchWebCam","LaunchWordProcessor","Link","ListProgram","LiveContent","Lock","LogOff","MacOS","MailForward","MailReply","MailSend","MannerMode","MediaApps","MediaAudioTrack","MediaClose","MediaFastForward","MediaLast","MediaPause","MediaPlay","MediaPlayPause","","MediaRecord","MediaRewind","MediaSelect","MediaSkipBackward","MediaSkipForward","MediaStepBackward","MediaStepForward","MediaStop","","MediaTopMenu","MediaTrackNext","","MediaTrackPrevious","","Meta","","MicrophoneToggle","MicrophoneVolumeDown","MicrophoneVolumeMute","MicrophoneVolumeUp","Minus","ModeChange","Named","","NativeCode","NavigateIn","NavigateNext","NavigateOut","NavigatePrevious","New","NextCandidate","NextFavoriteChannel","NextUserProfile","NonConvert","","Notification","NumLock","","Numpad0","Numpad1","Numpad2","Numpad3","Numpad4","Numpad5","Numpad6","Numpad7","Numpad8","Numpad9","NumpadAdd","NumpadBackspace","NumpadClear","NumpadClearEntry","NumpadComma","NumpadDecimal","NumpadDivide","NumpadEnter","NumpadEqual","NumpadHash","NumpadMemoryAdd","NumpadMemoryClear","NumpadMemoryRecall","NumpadMemoryStore","NumpadMemorySubtract","NumpadMultiply","NumpadParenLeft","NumpadParenRight","NumpadStar","NumpadSubtract","OnDemand","Open","","PageDown","","PageUp","","Pairing","Paste","","Pause","","Period","Physical","PinPDown","PinPMove","PinPToggle","PinPUp","Play","PlaySpeedDown","PlaySpeedReset","PlaySpeedUp","Power","","PowerOff","PreviousCandidate","Print","PrintScreen","","Process","Props","","Quote","RandomToggle","RcLowBattery","RecordSpeedNext","Redo","Resume","RfBypass","Romaji","STBInput","STBPower","Save","ScanChannelsToggle","ScreenModeNext","ScrollLock","","Select","","Semicolon","Settings","Shift","ShiftLeft","ShiftRight","SingleCandidate","Slash","Sleep","Soft1","Soft2","Soft3","Soft4","Space","","SpeechCorrectionList","SpeechInputToggle","SpellCheck","SplitScreenToggle","Standby","Subtitle","Super","SuperLeft","SuperRight","Suspend","Symbol","SymbolLock","TV","TV3DMode","TVAntennaCable","TVAudioDescription","TVAudioDescriptionMixDown","TVAudioDescriptionMixUp","TVContentsMenu","TVDataService","TVInput","TVInputComponent1","TVInputComponent2","TVInputComposite1","TVInputComposite2","TVInputHDMI1","TVInputHDMI2","TVInputHDMI3","TVInputHDMI4","TVInputVGA1","TVMediaContext","TVNetwork","TVNumberEntry","TVPower","TVRadioService","TVSatellite","TVSatelliteBS","TVSatelliteCS","TVSatelliteToggle","TVTerrestrialAnalog","TVTerrestrialDigital","TVTimer","Tab","","Teletext","Turbo","Undo","","Unidentified","","","VideoModeNext","VoiceDial","WakeUp","","Windows","Wink","Xkb","Zenkaku","ZenkakuHankaku","ZoomIn","ZoomOut","ZoomToggle","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","as_ref","borrow","","","","","borrow_mut","","","","","cam16_into_unclamped","","","","","clone","","","","","clone_into","","","","","clone_to_uninit","","","","","cmp","","","","","components_from","","","","","eq","","","","","","","","","fmt","","","","","from","","","","","","from_angle","","","","","from_stimulus","","","","","hash","","","","","into","","","","","into_angle","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_stimulus","","","","","partial_cmp","","","","","to_owned","","","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","vzip","","","","","Layout","Limits","NONE","Node","adapt_into_using","","","align","align_mut","arrays_from","","","arrays_into","","","atomic","borrow","","","borrow_mut","","","bounds","","cam16_into_unclamped","","","children","","clone","","","clone_into","","","clone_to_uninit","","","components_from","","","contained","container","default","eq","flex","fmt","","","from","","","from_angle","","","from_stimulus","","","height","into","","","into_angle","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","loose","max","max_height","max_width","min","min_height","min_width","move_to","move_to_mut","new","","","next_to_each_other","null_value","padded","position","positioned","resolve","shrink","size","sized","to_owned","","","translate","translate_mut","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","vzip","","","width","with_children","with_offset","Axis","Horizontal","Vertical","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","components_from","fmt","from","from_angle","from_stimulus","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","resolve","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vzip","Available","Back","Button","ButtonPressed","ButtonReleased","Cell","Click","Copy","Crosshair","Cursor","CursorEntered","CursorLeft","CursorMoved","Event","Forward","Grab","Grabbing","Help","Idle","Interaction","Left","Levitating","Lines","Middle","Move","None","NotAllowed","Other","Pixels","Pointer","ResizingDiagonallyDown","ResizingDiagonallyUp","ResizingHorizontally","ResizingVertically","Right","ScrollDelta","Text","Unavailable","WheelScrolled","Working","ZoomIn","ZoomOut","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","borrow","","","","","borrow_mut","","","","","cam16_into_unclamped","","","","","click","clone","","","","","clone_into","","","","","clone_to_uninit","","","","","cmp","components_from","","","","","default","","eq","","","","","fmt","","","","","from","","","","","from_angle","","","","","from_stimulus","","","","","hash","into","","","","","into_angle","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_stimulus","","","","","is_levitating","is_over","land","levitate","mul","null_value","","partial_cmp","position","position_from","position_in","position_over","to_owned","","","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","vzip","","","","","delta","position","x","","y","","Click","Double","Kind","Single","Triple","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","eq","fmt","","from","","from_angle","","from_stimulus","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","kind","mul","new","position","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","Element","Group","Overlay","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","components_from","","default","draw","","","from","","","from_angle","","from_children","from_stimulus","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","is_over","","","layout","","","map","mouse_interaction","","","new","","null_value","operate","","","overlay","","","","push","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","update","","","vzip","","with_children","Padding","ZERO","adapt_into_using","all","arrays_from","arrays_into","borrow","borrow_mut","bottom","","","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","default","eq","fit","fmt","from","","","","","","from_angle","from_stimulus","horizontal","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","left","","","new","null_value","right","","","to_owned","top","","","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vertical","vzip","Headless","Quad","Renderer","Style","adapt_into_using","","arrays_from","","arrays_into","","border","borrow","","borrow_mut","","bounds","cam16_into_unclamped","","clear","clone","","clone_into","","clone_to_uninit","","components_from","","default","","end_layer","end_transformation","eq","","fill_quad","fmt","","from","","from_angle","","from_stimulus","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","new","null_value","","screenshot","shadow","start_layer","start_transformation","text_color","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","with_layer","with_transformation","with_translation","Bytes","Data","Handle","Path","Renderer","Svg","adapt_into_using","","","arrays_from","","","arrays_into","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","","","clone_into","","","clone_to_uninit","","","color","","components_from","","","data","draw_svg","eq","","","fmt","","","from","","","","","from_angle","","","from_memory","from_path","from_stimulus","","","handle","hash","","id","into","","","into_angle","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","measure_svg","new","opacity","","rotation","","to_owned","","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","vzip","","","ARROW_DOWN_ICON","Absolute","Advanced","Basic","Borrowed","Bounds","CHECKMARK_ICON","CharOffset","Difference","Editor","","Font","Fragment","Glyph","Highlight","Highlighter","Hit","ICON_FONT","IntoFragment","LineHeight","None","","Owned","Paragraph","","Relative","Renderer","Shape","Shaping","Span","Text","Word","WordOrGlyph","Wrapping","adapt_into_using","","","","","","","","arrays_from","","","","","","","","arrays_into","","","","","","","","background","","background_maybe","border","","border_maybe","borrow","","","","","","","","borrow_mut","","","","","","","","bounds","cam16_into_unclamped","","","","","","","","clone","","","","","","","","clone_into","","","","","","","","clone_to_uninit","","","","","","","","color","","color_maybe","components_from","","","","","","","","content","cursor","default","","","","default_font","default_size","editor","eq","","","","","","","fill_editor","fill_paragraph","fill_text","fmt","","","","","","","","font","","","font_maybe","from","","","","","","","","","","","from_angle","","","","","","","","from_stimulus","","","","","","","","hash","","","highlight","highlighter","horizontal_alignment","into","","","","","","","","into_angle","","","","","","","","into_cam16_unclamped","","","","","","","","into_color","","","","","","","","into_color_unclamped","","","","","","","","into_fragment","","","into_stimulus","","","","","","","","line_height","","","link","","link_maybe","new","null_value","","","","padding","","paragraph","shaping","size","","","strikethrough","","text","to_absolute","to_owned","","","","","","","","to_static","try_components_into","","","","","","","","try_from","","","","","","","","try_into","","","","","","","","try_into_color","","","","","","","","type_id","","","","","","","","uints_from","","","","","","","","uints_into","","","","","","","","underline","","vertical_alignment","vzip","","","","","","","","wrapping","Action","Backspace","Caret","Click","Cr","CrLf","Cursor","Delete","Direction","DocumentEnd","DocumentStart","Down","Drag","Edit","","Editor","End","Enter","Font","Home","Insert","Left","","Lf","LfCr","Line","LineEnding","Motion","Move","None","PageDown","PageUp","Paste","Right","","Scroll","Select","SelectAll","SelectLine","SelectWord","Selection","Up","WordLeft","WordRight","adapt_into_using","","","","","","","arrays_from","","","","","","","arrays_into","","","","","","","as_str","borrow","","","","","","","borrow_mut","","","","","","","bounds","cam16_into_unclamped","","","","","","","clone","","","","","","","clone_into","","","","","","","clone_to_uninit","","","","","","","components_from","","","","","","","cursor","cursor_position","default","","direction","ending","eq","","","","","","fmt","","","","","","","from","","","","","","","from_angle","","","","","","","from_stimulus","","","","","","","highlight","into","","","","","","","into_angle","","","","","","","into_cam16_unclamped","","","","","","","into_color","","","","","","","into_color_unclamped","","","","","","","into_stimulus","","","","","","","is_edit","is_empty","line","line_count","min_bounds","null_value","","perform","selection","text","to_owned","","","","","","","try_components_into","","","","","","","try_from","","","","","","","try_into","","","","","","","try_into_color","","","","","","","type_id","","","","","","","uints_from","","","","","","","uints_into","","","","","","","update","vzip","","","","","","","widen","with_text","lines","Format","Highlight","Highlighter","Iterator","PlainText","Settings","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","change_line","","clone","","clone_into","","clone_to_uninit","","color","components_from","","current_line","","default","eq","fmt","","font","from","","from_angle","","from_stimulus","","highlight_line","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","new","","null_value","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","update","","vzip","","Font","Paragraph","Plain","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","compare","components_from","default","fmt","from","from_angle","from_stimulus","grapheme_position","hit_span","hit_test","horizontal_alignment","","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","min_bounds","","min_height","","min_width","","new","null_value","raw","resize","span_bounds","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","update","vertical_alignment","","vzip","with_spans","with_text","ALL","Base","CatppuccinFrappe","CatppuccinLatte","CatppuccinMacchiato","CatppuccinMocha","Custom","","Dark","Dracula","Ferra","GruvboxDark","GruvboxLight","KanagawaDragon","KanagawaLotus","KanagawaWave","Light","Moonfly","Nightfly","Nord","Oxocarbon","Palette","SolarizedDark","SolarizedLight","Style","Theme","TokyoNight","TokyoNightLight","TokyoNightStorm","adapt_into_using","","","arrays_from","","","arrays_into","","","background_color","base","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","","","clone_into","","","clone_to_uninit","","","components_from","","","custom","custom_with_fn","default","","","eq","","","extended_palette","fmt","","","","","from","","","from_angle","","","from_stimulus","","","into","","","into_angle","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","new","null_value","palette","","style","text_color","to_owned","","","to_smolstr","","to_string","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","vzip","","","with_fn","Background","CATPPUCCIN_FRAPPE","CATPPUCCIN_LATTE","CATPPUCCIN_MACCHIATO","CATPPUCCIN_MOCHA","DARK","DRACULA","Danger","EXTENDED_CATPPUCCIN_FRAPPE","EXTENDED_CATPPUCCIN_LATTE","EXTENDED_CATPPUCCIN_MACCHIATO","EXTENDED_CATPPUCCIN_MOCHA","EXTENDED_DARK","EXTENDED_DRACULA","EXTENDED_FERRA","EXTENDED_GRUVBOX_DARK","EXTENDED_GRUVBOX_LIGHT","EXTENDED_KANAGAWA_DRAGON","EXTENDED_KANAGAWA_LOTUS","EXTENDED_KANAGAWA_WAVE","EXTENDED_LIGHT","EXTENDED_MOONFLY","EXTENDED_NIGHTFLY","EXTENDED_NORD","EXTENDED_OXOCARBON","EXTENDED_SOLARIZED_DARK","EXTENDED_SOLARIZED_LIGHT","EXTENDED_TOKYO_NIGHT","EXTENDED_TOKYO_NIGHT_LIGHT","EXTENDED_TOKYO_NIGHT_STORM","Extended","FERRA","GRUVBOX_DARK","GRUVBOX_LIGHT","KANAGAWA_DRAGON","KANAGAWA_LOTUS","KANAGAWA_WAVE","LIGHT","MOONFLY","NIGHTFLY","NORD","OXOCARBON","Pair","Palette","Primary","SOLARIZED_DARK","SOLARIZED_LIGHT","Secondary","Success","TOKYO_NIGHT","TOKYO_NIGHT_LIGHT","TOKYO_NIGHT_STORM","Warning","adapt_into_using","","","","","","","","","arrays_from","","","","","","","","","arrays_into","","","","","","","","","background","","base","","","","","","borrow","","","","","","","","","borrow_mut","","","","","","","","","cam16_into_unclamped","","","","","","","","","clone","","","","","","","","","clone_into","","","","","","","","","clone_to_uninit","","","","","","","","","color","components_from","","","","","","","","","danger","","eq","","","","","","","","","fmt","","","","","","","","","from","","","","","","","","","from_angle","","","","","","","","","from_stimulus","","","","","","","","","generate","","","","","","into","","","","","","","","","into_angle","","","","","","","","","into_cam16_unclamped","","","","","","","","","into_color","","","","","","","","","into_color_unclamped","","","","","","","","","into_stimulus","","","","","","","","","is_dark","new","","primary","","secondary","strong","","","","","","success","","text","","to_owned","","","","","","","","","try_components_into","","","","","","","","","try_from","","","","","","","","","try_into","","","","","","","","","try_into_color","","","","","","","","","type_id","","","","","","","","","uints_from","","","","","","","","","uints_into","","","","","","","","","vzip","","","","","","","","","warning","","weak","","","","","","Duration","Instant","MAX","MICROSECOND","MILLISECOND","NANOSECOND","SECOND","ZERO","abs_diff","adapt_into_using","","add","","add_assign","","arrays_from","","arrays_into","","as_micros","as_millis","as_millis_f32","as_millis_f64","as_nanos","as_secs","as_secs_f32","as_secs_f64","borrow","","","borrow_mut","","cam16_into_unclamped","","checked_add","","checked_div","checked_duration_since","checked_mul","checked_sub","","clone","","clone_into","","clone_to_uninit","","cmp","","components_from","","days","default","deserialize","deserializer_for_signature","div","div_assign","div_duration_f32","div_duration_f64","div_f32","div_f64","duration_since","elapsed","elapsed_since","eq","","fmt","","from","","","from_angle","","from_days","from_hours","from_micros","from_millis","from_mins","from_nanos","from_secs","from_secs_f32","from_secs_f64","from_stimulus","","from_weeks","hash","","hours","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","is_zero","milliseconds","minutes","mul","mul_assign","mul_f32","mul_f64","new","now","null_value","partial_cmp","","saturating_add","saturating_duration_since","saturating_mul","saturating_sub","seconds","serialize","signature","sub","","","sub_assign","","subsec_micros","subsec_millis","subsec_nanos","sum","","to_owned","","try_components_into","","try_from","","try_from_secs_f32","try_from_secs_f64","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","Event","Finger","FingerLifted","FingerLost","FingerMoved","FingerPressed","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","eq","","fmt","","from","","from_angle","","from_stimulus","","hash","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","id","","","","position","","","","Id","Operation","Text","Tree","Widget","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","children","clone","clone_into","clone_to_uninit","components_from","diff","draw","eq","fmt","from","from_angle","from_stimulus","hash","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","layout","mouse_interaction","new","operate","operation","overlay","size","size_hint","state","tag","text","to_owned","tree","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","unique","update","vzip","Chain","Focusable","None","Operation","Outcome","Scrollable","Some","TextInput","adapt_into_using","arrays_from","arrays_into","black_box","borrow","borrow_mut","cam16_into_unclamped","components_from","container","custom","finish","fmt","focusable","","from","from_angle","from_stimulus","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","map","scope","scrollable","","text","text_input","","then","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vzip","Count","Focusable","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","count","default","eq","find_focused","fmt","focus","","focus_next","focus_previous","focused","from","from_angle","from_stimulus","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","is_focused","null_value","to_owned","total","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","unfocus","vzip","AbsoluteOffset","END","RelativeOffset","START","Scrollable","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","default","","eq","","fmt","","from","","from_angle","","from_stimulus","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","null_value","","scroll_by","","scroll_to","","snap_to","","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","x","","y","","TextInput","move_cursor_to","","move_cursor_to_end","","move_cursor_to_front","","select_all","","Catalog","Class","LineHeight","Shaping","State","Style","StyleFn","Text","Wrapping","adapt_into_using","","","align_x","align_y","arrays_from","","","arrays_into","","","base","borrow","","","borrow_mut","","","cam16_into_unclamped","","","center","class","clone","clone_into","clone_to_uninit","color","","color_maybe","components_from","","","danger","default","","","","draw","","eq","fmt","","font","from","","","","from_angle","","","from_stimulus","","","height","into","","","into_angle","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","layout","","line_height","new","null_value","","operate","primary","secondary","shaping","size","","state","style","","success","tag","to_owned","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","vzip","","","width","wrapping","None","Some","State","Tag","Tree","adapt_into_using","","","arrays_from","","","arrays_into","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","children","clone","clone_into","clone_to_uninit","cmp","components_from","","","diff","diff_children","diff_children_custom","diff_children_custom_with_search","downcast_mut","downcast_ref","empty","eq","fmt","","","from","","","from_angle","","","from_stimulus","","","hash","into","","","into_angle","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","new","","of","partial_cmp","state","stateless","tag","to_owned","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","vzip","","","AlwaysOnBottom","AlwaysOnTop","At","Centered","CloseRequested","Closed","Critical","Default","Direction","East","Event","FileDropped","FileHovered","FilesHoveredLeft","Focused","Fullscreen","Hidden","Icon","Id","Informational","Level","Mode","Moved","NextFrame","Normal","North","NorthEast","NorthWest","Opened","Position","RedrawRequest","RedrawRequested","Resized","Screenshot","Settings","South","SouthEast","SouthWest","Specific","SpecificWith","Unfocused","UserAttention","Wait","West","Windowed","adapt_into_using","","","","","","","","arrays_from","","","","","","","","arrays_into","","","","","","","","borrow","","","","","","","","borrow_mut","","","","","","","","cam16_into_unclamped","","","","","","","","clone","","","","","","","","clone_into","","","","","","","","clone_to_uninit","","","","","","","","cmp","","components_from","","","","","","","","default","","eq","","","","","","fmt","","","","","","","","","from","","","","","","","","","from_angle","","","","","","","","from_stimulus","","","","","","","","hash","icon","into","","","","","","","","into_angle","","","","","","","","into_cam16_unclamped","","","","","","","","into_color","","","","","","","","into_color_unclamped","","","","","","","","into_stimulus","","","","","","","","null_value","","partial_cmp","","screenshot","settings","to_owned","","","","","","","","to_smolstr","to_string","try_components_into","","","","","","","","try_from","","","","","","","","try_into","","","","","","","","try_into_color","","","","","","","","type_id","","","","","","","","uints_from","","","","","","","","uints_into","","","","","","","","unique","vzip","","","","","","","","position","size","ByteCountNotDivisibleBy4","DimensionsVsPixelCount","Error","Icon","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","clone_into","clone_to_uninit","components_from","","fmt","","","from","","from_angle","","from_rgba","from_stimulus","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_raw","into_stimulus","","to_owned","to_smolstr","to_string","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","byte_count","height","pixel_count","width","width_x_height","CropError","OutOfBounds","Screenshot","Zero","adapt_into_using","","arrays_from","","arrays_into","","as_ref","borrow","","borrow_mut","","bytes","cam16_into_unclamped","","clone","clone_into","clone_to_uninit","components_from","","crop","encode_hex","encode_hex_upper","fmt","","","from","","from_angle","","from_stimulus","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","new","scale_factor","size","to_owned","to_smolstr","to_string","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","PlatformSpecific","Settings","adapt_into_using","","application_id","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","decorations","default","","eq","exit_on_close_request","fmt","","from","","from_angle","","from_stimulus","","fullscreen","icon","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","level","max_size","maximized","min_size","null_value","","override_redirect","platform_specific","position","resizable","size","to_owned","","transparent","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","visible","vzip",""],"q":[[0,"iced_core"],[868,"iced_core::alignment"],[977,"iced_core::animation"],[1095,"iced_core::border"],[1196,"iced_core::clipboard"],[1264,"iced_core::event"],[1334,"iced_core::font"],[1538,"iced_core::gradient"],[1644,"iced_core::image"],[1883,"iced_core::image::Handle"],[1887,"iced_core::input_method"],[2035,"iced_core::input_method::InputMethod"],[2038,"iced_core::keyboard"],[2197,"iced_core::keyboard::Event"],[2208,"iced_core::keyboard::key"],[2894,"iced_core::layout"],[3024,"iced_core::layout::flex"],[3053,"iced_core::mouse"],[3262,"iced_core::mouse::Event"],[3264,"iced_core::mouse::ScrollDelta"],[3268,"iced_core::mouse::click"],[3336,"iced_core::overlay"],[3418,"iced_core::padding"],[3474,"iced_core::renderer"],[3557,"iced_core::svg"],[3671,"iced_core::text"],[4009,"iced_core::text::editor"],[4284,"iced_core::text::editor::Action"],[4285,"iced_core::text::highlighter"],[4364,"iced_core::text::paragraph"],[4419,"iced_core::theme"],[4560,"iced_core::theme::palette"],[4924,"iced_core::time"],[5073,"iced_core::touch"],[5140,"iced_core::touch::Event"],[5148,"iced_core::widget"],[5201,"iced_core::widget::operation"],[5248,"iced_core::widget::operation::focusable"],[5292,"iced_core::widget::operation::scrollable"],[5371,"iced_core::widget::operation::text_input"],[5380,"iced_core::widget::text"],[5505,"iced_core::widget::tree"],[5607,"iced_core::window"],[5907,"iced_core::window::Event"],[5909,"iced_core::window::icon"],[5972,"iced_core::window::icon::Error"],[5977,"iced_core::window::screenshot"],[6046,"iced_core::window::settings"],[6127,"iced_core::color"],[6128,"palette::chromatic_adaptation"],[6129,"iced_core::angle"],[6130,"iced_core::pixels"],[6131,"iced_core::point"],[6132,"iced_core::vector"],[6133,"core::ops::arith"],[6134,"iced_core::rectangle"],[6135,"iced_core::size"],[6136,"iced_core::settings"],[6137,"iced_core::rotation"],[6138,"iced_core::shell"],[6139,"smol_str"],[6140,"iced_core::transformation"],[6141,"iced_core::element"],[6142,"iced_core::shadow"],[6143,"palette::cam16::parameters"],[6144,"iced_core::background"],[6145,"iced_core::content_fit"],[6146,"iced_core::length"],[6147,"core::clone"],[6148,"core::cmp"],[6149,"core::default"],[6150,"num_traits::float"],[6151,"num_traits"],[6152,"alloc::string"],[6153,"core::convert"],[6154,"core::fmt"],[6155,"core::result"],[6156,"alloc::vec"],[6157,"alloc::sync"],[6158,"alloc::borrow"],[6159,"alloc::boxed"],[6160,"palette::rgb"],[6161,"core::option"],[6162,"core::iter::traits::collect"],[6163,"core::hash"],[6164,"core::ops::function"],[6165,"core::marker"],[6166,"iced_core::window::redraw_request"],[6167,"palette::convert::try_from_into_color"],[6168,"core::any"],[6169,"lilt::animated"],[6170,"core::time"],[6171,"std::time"],[6172,"lilt::traits"],[6173,"bytes::bytes"],[6174,"bytes::bytes_mut"],[6175,"std::path"],[6176,"core::ops::range"],[6177,"iced_core::keyboard::modifiers"],[6178,"iced_core::keyboard::event"],[6179,"iced_core::keyboard::location"],[6180,"bitflags::iter"],[6181,"iced_core::layout::node"],[6182,"iced_core::layout::limits"],[6183,"core::iter::traits::double_ended"],[6184,"iced_core::mouse::button"],[6185,"iced_core::mouse::cursor"],[6186,"iced_core::mouse::event"],[6187,"iced_core::mouse::interaction"],[6188,"iced_core::overlay::group"],[6189,"iced_core::overlay::element"],[6190,"core::iter::traits::iterator"],[6191,"std::sync::lazy_lock"],[6192,"serde::de"],[6193,"zvariant_utils::signature"],[6194,"zvariant::error"],[6195,"nix::sys::time"],[6196,"serde::ser"],[6197,"iced_core::widget::id"],[6198,"core::borrow"],[6199,"iced_core::window::direction"],[6200,"iced_core::window::event"],[6201,"iced_core::window::id"],[6202,"iced_core::window::level"],[6203,"iced_core::window::mode"],[6204,"iced_core::window::position"],[6205,"iced_core::window::user_attention"],[6206,"iced_core::window::settings::platform"]],"i":"``b````ChCj`0```0Cl00Bd``3BlAfAh````5n`h```j1````8```7``6`:```3`:`l4A`<;368:B`CdBf:<588669;:58``2=0;4378ChbCjCl:=?Bd765?Bl;:9=>5432=j2:987l257>=<46A`BhC`46>=<;358:B`CdBf:<50;;;`479ChbCjCl:Af298Ah2=;`>=j2:987l257>=<46A`6Bh<;2479B`Cd8:311;26977444<222225577?>=<469;08:3`Bf:9C`>?>44799ChbCj0Cl:<>>Af0222:98Ah00002===<8?h8765?n35=<;24?j202????99999?;02:987l257?>=46A`Bh35<`0;676B```Bf0992C`68ChbCjCl9;>Bd7Cd7?Bl;:7=?6543<>Af3:29Ah2=<9?h9876?n36=5<24?>;j2;:98l258?7>46A`Bh?35>=<;247:B`:Bf8:3??2C`68ChbCjCl9;>Bd7Cd7?Bl;8855:883:8Af``;8Ah:0`?h0??n3332224???`>;03<2?>>>>98l147>635A`76``;Bhj05537Bf>;;06`00000879?>98886558736````6216?>=<458;B`;8:437>6337>6`::3C`38ChbCjCl:;>Bd6Cd8?Bl<;7:?6543=>Af392:Ah2>=935A`Bh>j5>=<;437:B`:Bf8:43C`38ChbCjCl;:>Bd7Cd7?Bl<;7:?6543>=Af3:29Ah2>=96=35A`5Bh>j5>=<;437:B`:Bf8:4`98`999594594`KbJnK`21`0012`1021021021021021021021021021021021021110022102102102102102102102102102102102102102102102102102102`Kh000000000000000000000000000000```00Kd101001010101010101010001Kf212121211111Kn323232323232223222223232323232323232322232``LbL`10101010`0`00`0010101010`11101010101000001010101010101010`0010`1`0`110`0`00`001010101010101010`11```Lf00Lh101010101010101010110101010101010101010Lj121212121212121212101Eb`0Ll00`000101010101010101010101010101010101010101011010101010101010101M`0MbLnDf23223`1`Md41422430023342``433`12430124301243012430124301243012430124301243012430124301243011243012430124301243012430124301243012430124301243012430124301112430124301243012430124301243012430124301243011```Gh0MfGf000210210210210210210210210121012102102210210210210210210210210210011200210210210210210210210210210`Ml``Nd``N`02`2MhMj4Mn3221503215032221503215032150322215032150321503202150322232422222222221503112221503222222221155503215035225522150312035215032150321503215032150322215032224212311222222021122112221503221503215032150321503221503215032150321503Od000IbOj01``1Oh21`1`002Of12301230120301230123012301230123012301200130123012301230123012230123012301230123012301233001033001230123012301230123012301230123012Ol00On00``A@`01A@b``10020102221021022222222210210210210210210222210222222102210222221021022222221022222102102102102102210222222`2222222222210221021021021021021021022102A@hA@l101010101AA`0AAb110111100AAd22121212122222222222212121112111222121212121212122222122A@j333`A@n44444443443433434344344333333333334444343443344344443434343434343434343434343434343434343434343434343434343434343434343434444444444444434343444444444444443443443434434333443443`4433333333333333333333333333333334334444434444444444444244444444444434434444434434343444434`1`44444444434433333333333333333333333333333334434343443433`4444444443444434433444434444444434334433433444443444444433344444444444444444444444444444444434343120444324244444143201432014320114320143201432014320143201432014320143201433220001432011432014320143201432014320143201432014320143201432014320143201432014320143201432014320143201432014320``AAl`0AAjAAn11210210`2102101021010210210210210`112`2102102102102210210210210210210222222211210`1`0`221`21011210210210210210210210210210`ABb000000000000000000`00000000ABhABf`ABj0ABn`00`111`20000`23ABl311130111113`142111342013420134201342013420134201`3420134201342011342014134201342013420134201342013342013420134201342013420134201444444114444342013420134201342013420134201342013420134201AC`ACbACdACf10`ACj`00ACh10101010101010101011010101010101010101010000010101010101010101```ADbACl1010101010100ACn2122121`2121212121212121002122102112102110121212121212121210211`Ed0`0000`00000000000000000000000000`0000`000`00000000000````ADfAD`101011010110Eh21212121210021021212121212121212121ADh3203112323232323232323232111ADn``0``ADjADl2102102102102102102102102111020AE`21321322113213112132131213213213213213213022222213213213213213213213213213GbAElAEh0AFnAF`4AEn``55`AEj```6``023`65`2```00`AEf51623AEbAEd273845102738451010110127384510273845102273845102738451027384510273845101112738451024738199`73845109992738451012112738884511027384510273845107381`22738451027384510273845102738451027384510AFl77384956212322222849222`3232222938495621238495621384956213849562138495621384956213849562138495621223384956213`AGdAGjAGbAG`0`3`AGf002`2`04AFj151AGh33```432262044444522246205AGl457316045731604457316045731604257316045731604573160457316045731604220430573104573160457316045731604573160425731604573160457316045731604573160457316045222204220573160457316045731604573160457316045731604573160457316042573160432AHb`AGn`0`0AHnAH`10101010102110101001021001001010102110101010101021010101010101010102110AFh``AI`000000001000000111100000001010100001100000000010011AIf`0000`00000000000000`00``0000AIhAIb2102100AId332132132132132132132133`3332133322132132132132132132132132132123`33132132323213213213213213213213212`AIj00000````````````````````````00000000000```00``000`0AIlAJdAJbAJfAJhAJjAJlAJn87654321087654321087543210876543210876543210876543210876543210876543210876543210687654321087876543210876543210876543210876543210876543210743210876543210876543210876543210876543210876543210876543210765877543210878687654321087654321087654321087654321087654321087654321087654321087654321087654321087543210``Kj000000Kl10101010111111111011010101101010101010101`11111111100001010110111111111101101`0101010101011``1111101011011`11001011111101010111010101010101``AKn0000AL`10101010101010101010101010100101010101010101010101010101010ALbALdALfALh3210`````ALj00000Cb1111001111111111110010`00000`1`1111111101AMd`0```0`000`0000ADd001`0111111111```00`0`11111111``AN`000000000`00`0`AMf``11111111110111111111101`ANd`0`ANb101010101010101010101010101010101010101010101`AMj`0`01212121212121212121212``AMl`0`0`0`G````````GdANfAIn22210210`21021021022000202210``310`2010222102102102210210210210210210`222102``222232`2021021021021021021021021022ALl0```0ABdALn21021021021021010000210111`2210210210210210021021021021021021021001010210210210210210210210210AOb0JdAOfANn0AOh2`ANl`2222AOd0``2``3561113``33``111443`51013AO`71563240715632407156324071563240715632407156324071563240715632407156306240715637540715624007156324071566324071563240715630`2407156324071563240715632407156324071563240715637506``240715630024071563240715632407156324071563240715632407156324071563024071563AOj0AOn0``AOl10101010101000010110101`0101010101010010110101010101010101B@`B@b000`B@d`0Nl1010100101001000010000110101010101010101010000110101010101010101``B@fB@h11010101010101010100101010101010001010101010100000101000010010101010101010010","f":"``````````````````````````````````````````````````````````````{bd}{eg{}{{f{c}}}{}}00000000000000000{{hj}c{}}{{hh}c{}}{{ld}l}{{ll}l}{{{n{c}}{A`{c}}}{{n{c}}}{{Ad{}{{Ab{}}}}}}{{{Af{c}}{A`{c}}}{{Af{c}}}{{Ad{}{{Ab{}}}}}}{{{Ah{c}}{Ah{c}}}e{{Ad{}{{Ab{}}}}}{}}{{{A`{c}}{A`{c}}}{{A`{c}}}{{Ad{}{{Ab{}}}}}}{{{Al{Ajh}}h}An}``{B`Bb}{{BdAh}Ah}{{{Al{{Bf{c}}}}}Bb{}}{{{Al{{Af{d}}}}}d}{ce{}{}}00000000000000000{{}c{}}00000000000000000{{{Al{Bh}}}{{Al{Bj}}}}{{{Al{Bl}}}{{Al{{Bn{d}}}}}}1{{{Al{{C`{ceg}}}}}{{Al{Cb}}}{}{}{}}{{{Al{Aj{C`{ceg}}}}}{{Al{AjCb}}}{}{}{}}{bd}{Cdd}`{Al{{Al{c}}}{}}604{{{Al{{Al{{C`{ceg}}}}}}}{{Al{Cb}}}{}{}{}}1111111111111111{{{Al{Aj}}}{{Al{Ajc}}}{}}00000000000000000{{{Cf{c}}}e{}{}}00000000000000000{{{Al{Aj{Bf{c}}}}}An{}}{{{Al{{Af{d}}}}}n}>>`{{{Al{Bh}}}Bh}{{{Al{j}}}j}{{{Al{h}}}h}{{{Al{Ch}}}Ch}{{{Al{b}}}b}{{{Al{Cj}}}Cj}{{{Al{Cl}}}Cl}{{{Al{l}}}l}{{{Al{{n{c}}}}}{{n{c}}}Cn}{{{Al{{Af{c}}}}}{{Af{c}}}Cn}{{{Al{Bd}}}Bd}{{{Al{B`}}}B`}{{{Al{Cd}}}Cd}{{{Al{{Ah{c}}}}}{{Ah{c}}}Cn}{{{Al{Bl}}}Bl}{{{Al{{A`{c}}}}}{{A`{c}}}Cn}{{Al{Al{Ajc}}}An{}}000000000000000{{AlD`}An}000000000000000{{{Al{Bh}}{Al{Bh}}}Db}{Cdb}`{ce{}{}}00000000000000000{{{Al{{Af{d}}}}n}Bb}{{}Bh}{{}b}{{}Cj}{{}l}{{}{{n{c}}}Dd}{{}{{Af{c}}}Dd}{{}Bd}{{}B`}{{}Cd}{{}{{Ah{c}}}Dd}{{}Bl}{{}{{A`{c}}}Dd}{B`Df}{B`l}{Bdj}{{{Al{Bh}}}{{Al{Bj}}}}{{{Al{{n{c}}}}{n{c}}}c{DhDj}}{{{Al{{Af{d}}}}n}d}{{hd}c{}}{{hh}c{}}{{ll}l}{{ld}l}{{lDl}l}{{ClCl}Cl}{{{Al{Bh}}{Al{{Al{Bj}}}}}Bb}{{{Al{Bh}}{Al{{Al{Dn}}}}}Bb}{{{Al{Bh}}{Al{Dn}}}Bb}{{{Al{Bh}}{Al{Bj}}}Bb}{{{Al{Bh}}{Al{Bh}}}Bb}{{{Al{j}}{Al{j}}}Bb}{{{Al{j}}{Al{d}}}Bb}{{{Al{h}}{Al{d}}}Bb}{{{Al{h}}{Al{h}}}Bb}{{{Al{Ch}}{Al{Ch}}}Bb}{{{Al{b}}{Al{b}}}Bb}{{{Al{Cj}}{Al{Cj}}}Bb}{{{Al{Cl}}{Al{Cl}}}Bb}{{{Al{l}}{Al{l}}}Bb}{{{Al{{n{c}}}}{Al{{n{c}}}}}BbE`}{{{Al{{Af{c}}}}{Al{{Af{c}}}}}BbE`}{{{Al{Bd}}{Al{Bd}}}Bb}{{{Al{Cd}}{Al{Cd}}}Bb}{{{Al{{Ah{c}}}}{Al{{Ah{c}}}}}BbE`}{{{Al{Bl}}{Al{Bl}}}Bb}{{{Al{{A`{c}}}}{Al{{A`{c}}}}}BbE`}`{{{Al{{Bf{c}}}}}Eb{}}{{{Af{d}}c}{{Af{d}}}{{Ef{Ed}}}}{{Ahc}Ah{{Ef{Ah}}}}{{{C`{ceg}}i}{{C`{ceg}}}{}{}Eh{{Ef{b}}}}{{{Al{Cl}}}Ej}{{{Al{Cj}}AhAh}Ah}{{{Al{Cl}}}Cl}{{{Al{Bh}}{Al{AjEl}}}{{F`{AnEn}}}}0{{{Al{j}}{Al{AjEl}}}Fb}{{{Al{h}}{Al{AjEl}}}Fb}0{{{Al{Ch}}{Al{AjEl}}}Fb}{{{Al{b}}{Al{AjEl}}}Fb}{{{Al{Cj}}{Al{AjEl}}}Fb}0{{{Al{Cl}}{Al{AjEl}}}Fb}{{{Al{l}}{Al{AjEl}}}Fb}{{{Al{{n{c}}}}{Al{AjEl}}}FbFd}{{{Al{{n{c}}}}{Al{AjEl}}}FbFf}{{{Al{{Af{c}}}}{Al{AjEl}}}FbFd}{{{Al{Bd}}{Al{AjEl}}}Fb}{{{Al{B`}}{Al{AjEl}}}Fb}{{{Al{Cd}}{Al{AjEl}}}Fb}{{{Al{{Bf{c}}}}{Al{AjEl}}}FbFd}{{{Al{{Ah{c}}}}{Al{AjEl}}}FbFd}{{{Al{Bl}}{Al{AjEl}}}Fb}{{{Al{{A`{c}}}}{Al{AjEl}}}FbFd}`{B`Fh}{{{Al{Dn}}}Bh}{cc{}}{{{Fj{Bj}}}Bh}{{{Fl{Bj}}}Bh}{{{Fn{Bj}}}Bh}{DnBh}{{{Al{Bj}}}Bh}{{{Al{AjBj}}}Bh}{{{Al{Bj}}}{{C`{ceg}}}{}G`Gb}{{{Gd{ce}}}{{C`{gce}}}G`Gb{}}8{dj}{D`j}:{dh}{D`h}<{jh}{bCh}{GfCh}{GhCh}{cc{}}{Gjb}1{{{Bn{d}}}b}0{Glb}3{DlCl}{dCl}{lCl}6{Dll}7{dl}{{{Bn{c}}}{{n{c}}}Dj}9{{{Gn{cc}}}{{n{c}}}Dj}{{{Af{Dl}}}{{Af{d}}}};{dBd}<{hBd}===={{{A`{c}}}{{Ah{c}}}{}}{{{Gn{cc}}}{{Ah{c}}}{}}{{{Bn{c}}}{{Ah{c}}}{}}{EdAh}{cc{}}0{{{Ah{c}}}{{A`{c}}}{}}{{{Bn{c}}}{{A`{c}}}{}}222222222222222222{H`{{Hb{j}}}}{H`{{Hb{h}}}}{Hd{{Hb{j}}}}{Hd{{Hb{h}}}}{cBh{{Hh{}{{Hf{{Al{Dn}}}}}}}}{cBh{{Hh{}{{Hf{Hj}}}}}}{cBh{{Hh{}{{Hf{Dn}}}}}}{cBh{{Hh{}{{Hf{{Al{Bj}}}}}}}}{{dddd}b}{{ddd}b}{{D`D`D`}b}2{{D`D`D`d}b}{ce{}{}}00000000000000000{{{Al{Bj}}}{{F`{Bh}}}}{Hl{{Hb{j}}}}{Hl{{Hb{h}}}}{bd}`{{{Al{Bh}}{Al{Ajc}}}AnHn}{{{Al{Cj}}{Al{Ajc}}}AnHn}{{{Al{{Ah{c}}}}{Al{Aje}}}AnI`Hn}{Af}{Ah}{B`Hb}``{{{Al{{Bf{c}}}}}{{Al{Ib}}}{}}{{{Al{Aj{Bf{c}}}}}{{Al{AjIb}}}{}}{{{Al{{Af{d}}}}{Al{{Af{d}}}}}{{Hb{{Af{d}}}}}}{{{Al{{Af{d}}}}{Al{{Af{d}}}}}Bb}{{}c{}}00000000000000000000000000000000000{{{Cf{c}}}e{}{}}00000000000000000111111111111111111111111111111111111{b{{Bn{d}}}}{b{{Bn{D`}}}}{{}c{}}00000000000000000{{{Al{Aj{Bf{c}}}}}An{}}0{bb}{{{Al{Ajb}}}An}{{{Al{Bh}}}Bb}{{{Al{{Bf{c}}}}}Bb{}}0{{{Al{Cl}}}Bb}21{{{Al{{Af{d}}}}{Al{Af}}}Bb}``{{{Al{Bh}}}Id}{{{C`{ceg}}k}{{C`{ieg}}}{}{}Eh{}{{If{c}{{Ab{i}}}}}}{{AhAh}Ah}{{{Al{Aj{Bf{c}}}}{Bf{e}}g}An{}{}{{If{e}{{Ab{c}}}}}}1`{{jd}c{}}{{hh}c{}}{{hd}c{}}{{ld}l}{{ll}l}{{nBl}n}{{{Af{d}}d}{{Af{d}}}}{{AfBl}Af}{{{Af{c}}{A`{c}}}{{Af{c}}}{{Ih{}{{Ab{}}}}Ij}}{{{Ah{c}}{A`{c}}}e{{Ih{}{{Ab{}}}}Ij}{}}{{AhBl}Ah}{{{Ah{c}}c}e{{Ih{}{{Ab{}}}}Ij}{}}{{BlBl}Bl}{{{A`{c}}c}{{A`{c}}}{{Ih{}{{Ab{}}}}Ij}}{{A`Bl}A`}{{{A`{c}}}e{{Il{}{{Ab{}}}}}{}}{Inc{}}{cBh{{J`{Bj}}}}{i{{C`{ceg}}}{}{}Eh{{Cb{ceg}}}}{{cc}{{n{c}}}Dj}{{nAh}{{Af{d}}}}{{{Al{Aj{Fh{c}}}}}{{Bf{c}}}{}}{{cc}{{Ah{c}}}{}}{{cc}{{A`{c}}}{}}{{{Al{Bj}}}Bh}{{Id{Al{{Jb{D`}}}}}Bh}1{{}c{}}00000000000{CdA`}{{DlDl}Bl}``{{{Al{Bj}}}{{Hb{b}}}}{{{Al{Bh}}{Al{Bh}}}{{Hb{Db}}}}{{{Al{j}}{Al{d}}}{{Hb{Db}}}}{{{Al{j}}{Al{j}}}{{Hb{Db}}}}{{{Al{h}}{Al{h}}}{{Hb{Db}}}}{{{Al{h}}{Al{d}}}{{Hb{Db}}}}{{{Al{l}}{Al{l}}}{{Hb{Db}}}}{{{Al{{Af{d}}}}}n}{{{Al{Aj{Bf{c}}}}c}An{}}{bd}{Bdh}{{{Al{AjBd}}}{{Al{Ajh}}}}{{{Al{{Bf{c}}}}}Jd{}}{{hh}c{}}`{{{Al{Aj{Bf{c}}}}Jd}An{}}{{{Al{Aj{Bf{c}}}}{Al{{Ib{e}}}}}An{}{{J`{Bj}}}}{{{Al{Aj{Bf{c}}}}}An{}}{{{Al{Aj{Bf{c}}}}e}An{}{{Ef{Jd}}}}{{{Al{Aj{Bf{c}}}}e}An{}Jf}{{{Af{d}}h}{{Af{d}}}}{{Ahh}Ah}{dBl}{{Chd}Ch}{{bd}b}{{{Al{Bl}}}d}{{{Af{d}}c}{{Af{d}}}{{Ef{Ed}}}}{{{Al{{Af{d}}}}}Ah}{{{Af{d}}}{{Hb{{Af{Dl}}}}}}{{hh}c{}}{{{n{c}}{n{c}}}{{A`{c}}}{{Jh{}{{Ab{}}}}}}{{{n{c}}{A`{c}}}{{n{c}}}{{Jh{}{{Ab{}}}}}}{{{Af{c}}{A`{c}}}{{Af{c}}}{{Jh{}{{Ab{}}}}}}{{{Ah{c}}{Ah{c}}}e{{Jh{}{{Ab{}}}}}{}}{{{A`{c}}{A`{c}}}{{A`{c}}}{{Jh{}{{Ab{}}}}}}{{{Al{Ajh}}h}An}````{{{Al{h}}{Al{Af}}}{{Gn{nn}}}}{Alc{}}000000000000000{AlBh}000{AlDn}{{{Al{Bh}}}Dn}111`{{dd}Bl}{{{Al{Bl}}}A`}{{}{{F`{c}}}{}}00000000000000000{c{{F`{e}}}{}{}}00000000000000000{{}{{F`{c}}}{}}00000000000000000{{}{{F`{c{Jj{c}}}}}{}}00000000000000000{AlJl}00000000000000000{ce{}{}}00000000000000000{{}c{}}00000000000000000{{{Al{{Af{d}}}}{Al{{Af{d}}}}}{{Af{d}}}}{{}c{}}00000000000000000`{Af}{Ah}`{d{{Af{d}}}}{{{Ah{c}}}{{Af{c}}}Dd}{{nnn}{{Gn{Afh}}}}{n}5{A`}160````````````{eg{}{{f{c}}}{}}00{ce{}{}}00;;;{Al{{Al{c}}}{}}00{{{Al{Aj}}}{{Al{Ajc}}}{}}00{{{Cf{c}}}e{}{}}00{{{Al{Jn}}}Jn}{{{Al{K`}}}K`}{{{Al{Kb}}}Kb}{{Al{Al{Ajc}}}An{}}00{{AlD`}An}00888{{{Al{Jn}}{Al{Jn}}}Bb}{{{Al{K`}}{Al{K`}}}Bb}{{{Al{Kb}}{Al{Kb}}}Bb}{{{Al{Jn}}{Al{AjEl}}}Fb}{{{Al{K`}}{Al{AjEl}}}Fb}{{{Al{Kb}}{Al{AjEl}}}Fb}{cc{}}{K`Jn}{KbJn}{JnK`}33{JnKb}444{ce{}{}}00{{{Al{Jn}}{Al{Ajc}}}AnHn}{{{Al{K`}}{Al{Ajc}}}AnHn}{{{Al{Kb}}{Al{Ajc}}}AnHn}{{}c{}}00000{{{Cf{c}}}e{}{}}00111111{{}c{}}00{Alc{}}00{{}{{F`{c}}}{}}00{c{{F`{e}}}{}{}}00{{}{{F`{c}}}{}}00{{}{{F`{c{Jj{c}}}}}{}}00{AlJl}00{ce{}{}}00{{}c{}}00{{}c{}}00````````````````````````````````````{eg{}{{f{c}}}{}}0{ce{}{}}033{{{Kd{c}}}{{Kd{c}}}{CnIjE`Kf}}{Al{{Al{c}}}{}}0{{{Al{Aj}}}{{Al{Ajc}}}{}}0??{{{Al{Kh}}}Kh}{{{Al{{Kd{c}}}}}{{Kd{c}}}{CnIjE`KfCn}}{{Al{Al{Ajc}}}An{}}0{{AlD`}An}077{{}Kh}{{{Kd{c}}Kj}{{Kd{c}}}{CnIjE`Kf}}0{{{Kd{c}}Kh}{{Kd{c}}}{CnIjE`Kf}}{{{Al{Kh}}{Al{Kh}}}Bb}{{{Al{Kf}}}d}{{{Al{Kh}}{Al{AjEl}}}{{F`{AnEn}}}}{{{Al{{Kd{c}}}}{Al{AjEl}}}Fb{CnIjE`KfFd}}{cc{}}000{ce{}{}}0{{{Kd{c}}c}{{Kd{c}}}{CnIjE`Kf}}{{{Al{Aj{Kd{c}}}}c}An{CnIjE`Kf}}{{{Al{{Kd{Bb}}}}ccKl}c{KnCn}}{{{Al{{Kd{c}}}}gKl}e{CnIjE`Kf}Kn{{If{c}{{Ab{e}}}}}}{{{Al{Kn}}Knd}Kn}{{}c{}}000{{{Cf{c}}}e{}{}}01111{{}c{}}0{{{Al{{Kd{c}}}}Kl}Bb{CnIjE`Kf}}{c{{Kd{c}}}{CnIjE`Kf}}2{{{Kd{c}}}{{Kd{c}}}{CnIjE`Kf}}{{{Al{{Kd{Bb}}}}Kl}Kj}{{{Kd{c}}Dl}{{Kd{c}}}{CnIjE`Kf}}22{Alc{}}0{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{{}{{F`{c}}}{}}0{{}{{F`{c{Jj{c}}}}}{}}0{AlJl}0{ce{}{}}0{{}c{}}0{{Khd}d}{{{Al{{Kd{c}}}}}c{CnIjE`Kf}}<<{{}c{}}0``{eg{}{{f{c}}}{}}0{ce{}{}}055{Al{{Al{c}}}{}}0{{{Al{Aj}}}{{Al{Ajc}}}{}}0{cL`{{Ef{l}}}}{{L`c}L`{{Ef{l}}}}10{L`d}210{{{Cf{c}}}e{}{}}0{{{Al{Lb}}}Lb}{{{Al{L`}}}L`}{{Al{Al{Ajc}}}An{}}0{{AlD`}An}0{cLb{{Ef{b}}}}{{Lbc}Lb{{Ef{b}}}}{Lbb}=={{}Lb}{{}L`}{{{Al{Lb}}{Al{Lb}}}Bb}{{{Al{L`}}{Al{L`}}}Bb}{{{Al{Lb}}{Al{AjEl}}}Fb}{{{Al{L`}}{Al{AjEl}}}Fb}{cc{}}{LdL`}{D`L`}2{EjL`}{dL`}44{ce{}{}}0{{}c{}}000{{{Cf{c}}}e{}{}}01111{{}c{}}0{cL`{{Ef{l}}}}{{L`c}L`{{Ef{l}}}}1221{LbL`}21{cLb{{Ef{L`}}}}{{Lbc}Lb{{Ef{L`}}}}{Alc{}}05454{L`d}650{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{{}{{F`{c}}}{}}0{{}{{F`{c{Jj{c}}}}}{}}0{AlJl}0{ce{}{}}0{{}c{}}0{{}c{}}0{cLb{{Ef{l}}}}{{Lbc}Lb{{Ef{l}}}}{Lbd}`````{eg{}{{f{c}}}{}}0{ce{}{}}066{Al{{Al{c}}}{}}0{{{Al{Aj}}}{{Al{Ajc}}}{}}0{{{Cf{c}}}e{}{}}0{{{Al{Lf}}}Lf}{{{Al{Lh}}}Lh}{{Al{Al{Ajc}}}An{}}0{{AlD`}An}077{{{Al{Lf}}{Al{Lf}}}Bb}{{{Al{Lf}}{Al{AjEl}}}Fb}{{{Al{Lh}}{Al{AjEl}}}Fb}{cc{}}000{ce{}{}}0{{}c{}}000::0000{{}c{}}0{{{Al{Lj}}Lf}{{Hb{Dn}}}}{{{Al{Lh}}Lf}{{Hb{Dn}}}}{Alc{}}0{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{{}{{F`{c}}}{}}0{{}{{F`{c{Jj{c}}}}}{}}0{AlJl}0{ce{}{}}0{{}c{}}0{{}c{}}0{{{Al{AjLj}}LfDn}An}{{{Al{AjLh}}LfDn}An}`````````{eg{}{{f{c}}}{}}0{ce{}{}}055{Al{{Al{c}}}{}}0{{{Al{Aj}}}{{Al{Ajc}}}{}}0{{{Cf{c}}}e{}{}}0{{{Al{Ll}}}Ll}{{{Al{Eb}}}Eb}{{Al{Al{Ajc}}}An{}}0{{AlD`}An}077{{{Al{Ll}}{Al{Ll}}}Bb}{{{Al{Eb}}{Al{Eb}}}Bb}{{{Al{Ll}}{Al{AjEl}}}Fb}{{{Al{Eb}}{Al{AjEl}}}Fb}{cc{}}000{ce{}{}}0{{}c{}}000;;0000{{}c{}}0{{EbEb}Eb}{Alc{}}0{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{{}{{F`{c}}}{}}0{{}{{F`{c{Jj{c}}}}}{}}0{AlJl}0{ce{}{}}0{{}c{}}0{{}c{}}0``````````````````````````````````{eg{}{{f{c}}}{}}0000{ce{}{}}000033333{Al{{Al{c}}}{}}0000{{{Al{Aj}}}{{Al{Ajc}}}{}}0000{{{Cf{c}}}e{}{}}0000{{{Al{Df}}}Df}{{{Al{Ln}}}Ln}{{{Al{M`}}}M`}{{{Al{Mb}}}Mb}{{{Al{Md}}}Md}{{Al{Al{Ajc}}}An{}}0000{{AlD`}An}0000:::::{{}Df}{{}Ln}{{}M`}{{}Mb}{{}Md}{{{Al{Df}}{Al{Df}}}Bb}{{{Al{Ln}}{Al{Ln}}}Bb}{{{Al{M`}}{Al{M`}}}Bb}{{{Al{Mb}}{Al{Mb}}}Bb}{{{Al{Md}}{Al{Md}}}Bb}{DfLn}{{{Al{Df}}{Al{AjEl}}}Fb}{{{Al{Ln}}{Al{AjEl}}}Fb}{{{Al{M`}}{Al{AjEl}}}Fb}{{{Al{Mb}}{Al{AjEl}}}Fb}{{{Al{Md}}{Al{AjEl}}}Fb}{cc{}}000000000{ce{}{}}0000{{{Al{Df}}{Al{Ajc}}}AnHn}{{{Al{Ln}}{Al{Ajc}}}AnHn}{{{Al{M`}}{Al{Ajc}}}AnHn}{{{Al{Mb}}{Al{Ajc}}}AnHn}{{{Al{Md}}{Al{Ajc}}}AnHn}{{}c{}}000000000{{{Cf{c}}}e{}{}}00001111111111{{}c{}}000000000{DfMb}{DfMd}{Alc{}}0000{{}{{F`{c}}}{}}0000{c{{F`{e}}}{}{}}0000{{}{{F`{c}}}{}}0000{{}{{F`{c{Jj{c}}}}}{}}0000{AlJl}0000{ce{}{}}0000{{}c{}}0000{{}c{}}0000{DfM`}{{{Al{Bj}}}Df}````{eg{}{{f{c}}}{}}00{{Gfdb}Gf}{{Gfc}Gf{{Hh{}{{Hf{Mf}}}}}}{Gfh}{ce{}{}}00888{Al{{Al{c}}}{}}00{{{Al{Aj}}}{{Al{Ajc}}}{}}00{{{Cf{c}}}e{}{}}00{{{Al{Gh}}}Gh}{{{Al{Mf}}}Mf}{{{Al{Gf}}}Gf}{{Al{Al{Ajc}}}An{}}00{{AlD`}An}00{Mfb}999{{}Mf}{{{Al{Gh}}{Al{Gh}}}Bb}{{{Al{Mf}}{Al{Mf}}}Bb}{{{Al{Gf}}{Al{Gf}}}Bb}{{{Al{Gh}}{Al{AjEl}}}Fb}{{{Al{Mf}}{Al{AjEl}}}Fb}{{{Al{Gf}}{Al{AjEl}}}Fb}{GfGh}{cc{}}00000{ce{}{}}00{{}c{}}00000{{{Cf{c}}}e{}{}}00111111{{}c{}}00{cGf{{Ef{h}}}}1{Mfd}{{Ghd}Gh}{{Gfd}Gf}{GfBn}{Alc{}}00{{}{{F`{c}}}{}}00{c{{F`{e}}}{}{}}00{{}{{F`{c}}}{}}00{{}{{F`{c{Jj{c}}}}}{}}00{AlJl}00{ce{}{}}00{{}c{}}00{{}c{}}00````````````{eg{}{{f{c}}}{}}0000{{{Al{AjMh}}Id}An}{ce{}{}}000044444{{{Al{Mh}}}{{Al{{Jb{D`}}}}}}{Al{{Al{c}}}{}}10000{{{Al{Aj}}}{{Al{Ajc}}}{}}0000{{{Cf{c}}}e{}{}}00003{{{Al{AjMh}}}An}{{{Al{Mh}}}Mh}{{{Al{{Mj{c}}}}}{{Mj{c}}}Cn}{{{Al{Ml}}}Ml}{{{Al{Mn}}}Mn}{{{Al{N`}}}N`}{{Al{Al{Ajc}}}An{}}0000{{AlD`}An}0000{{{Al{Mh}}{Al{Mh}}}Db}{{{Al{Mn}}{Al{Mn}}}Db}>>>>>{{{Al{{Jb{D`}}}}}Mh}{{{Al{AjMh}}Id}Mh}{{}Mh}{{}N`}{{{Al{Mh}}}{{Al{{Jb{D`}}}}}}{{{Al{Aj{Nd{}{{Nb{c}}}}}}{Mj{c}}Af}AnCn}?{Alc{{Nf{Hj}}}}0{{{Al{Mh}}{Al{Nh}}}Bb}{{{Al{Mh}}{Al{{Al{c}}}}}BbNj}{{{Al{Mh}}{Al{Dn}}}Bb}{{{Al{Mh}}{Al{{Fh{D`}}}}}Bb}{{{Al{Mh}}{Al{Bj}}}Bb}{{{Al{Mh}}{Al{{Jb{D`}}}}}Bb}{{{Al{Mh}}{Al{Mh}}}Bb}{{{Al{{Mj{c}}}}{Al{{Mj{c}}}}}BbE`}{{{Al{Ml}}{Al{Ml}}}Bb}{{{Al{Mn}}{Al{Mn}}}Bb}{{{Al{N`}}{Al{N`}}}Bb}{{{Mj{Ml}}N`}{{Mj{Ml}}}}{MjN`}{{{Al{Mh}}{Al{AjEl}}}{{F`{AnEn}}}}00{{{Al{{Mj{c}}}}{Al{AjEl}}}FbFd}{{{Al{Ml}}{Al{AjEl}}}Fb}{{{Al{Mn}}{Al{AjEl}}}Fb}{{{Al{N`}}{Al{AjEl}}}Fb}{{{Al{{Jb{D`}}}}}Mh}{cc{}}{{{Al{Bj}}}Mh}{{{Fh{D`}}}Mh}{{{Fn{{Jb{D`}}}}}Mh}{DnMh}{NhMh}{NlMh}{{{Al{Ml}}}Mj}77{cMl{{Ef{Nn}}}}{{{Al{Ml}}}Ml}9999999{cMl{{Ef{Mh}}}}{cMh{{Hh{}{{Hf{D`}}}}}}{cMh{{J`{{Jb{D`}}}}O`}}4{{DlDlc}Ml{{Ef{Mh}}}}>{ce{}{}}0000{Mj}{{{Al{Mh}}{Al{Ajc}}}AnHn}{{{Al{Mn}}{Al{Ajc}}}AnHn}{{{Al{N`}}{Al{Ajc}}}AnHn}{{{Al{Ml}}}Mn}{{}c{}}000000000{{{Cf{c}}}e{}{}}00001111111111{{{Al{Mh}}}}{Mh}{{}c{}}0000{{{Al{Mh}}}Bb}0{{{Al{Mh}}}Id}{{{Al{{Nd{}{{Nb{c}}}}}}{Al{c}}}{{Ah{Dl}}}Cn}{{}Mh}{c{{Mj{Ml}}}{{Ef{Ml}}}}55{{{Mj{Ml}}c}{{Mj{Ml}}}{{Ef{d}}}}{Mjd}{{{Al{Mh}}{Al{Bj}}}{{Hb{Db}}}}{{{Al{Mh}}{Al{Mh}}}{{Hb{Db}}}}{{{Al{Mh}}{Al{{Al{c}}}}}{{Hb{Db}}}Nj}{{{Al{Mh}}{Al{Dn}}}{{Hb{Db}}}}{{{Al{Mh}}{Al{{Jb{D`}}}}}{{Hb{Db}}}}{{{Al{Mh}}{Al{{Fh{D`}}}}}{{Hb{Db}}}}{{{Al{Mn}}{Al{Mn}}}{{Hb{Db}}}}<{{{Mj{Ml}}c}{{Mj{Ml}}}{{Ef{h}}}}{Mjh}{{{Al{Mh}}c}Mh{{Ob{Id}}}}{{{Al{Mh}}{Al{{Jb{D`}}}}}Mh}{{{Mj{Ml}}Bb}{{Mj{Ml}}}}{MjBb}{{{Al{AjMh}}Id}Mh}0{Alc{}}0000{{{Al{AjMh}}Id}An}{{}{{F`{c}}}{}}0000{c{{F`{e}}}{}{}}0000{{}{{F`{c}}}{}}0000{{}{{F`{c{Jj{c}}}}}{}}0000{Mh{{F`{NhMh}}}}{AlJl}0000{ce{}{}}0000{{}c{}}0000{{}c{}}0000{OdDl}{OdMn}{OdMh}2```````````````{eg{}{{f{c}}}{}}000{ce{}{}}0006666{{{Al{Of}}}{{Of{{Al{Bj}}}}}}{Al{{Al{c}}}{}}000{{{Al{Aj}}}{{Al{Ajc}}}{}}000{{{Cf{c}}}e{}{}}000{{{Al{{Ib{c}}}}}{{Ib{c}}}Cn}{{{Al{{Of{c}}}}}{{Of{c}}}Cn}{{{Al{Oh}}}Oh}{{{Al{Oj}}}Oj}{{Al{Al{Ajc}}}An{}}000{{AlD`}An}000::::{Of}{{}{{Of{c}}}Dd}{{}Oh}{{{Al{{Ib{c}}}}{Al{{Ib{c}}}}}BbE`}{{{Al{{Of{c}}}}{Al{{Of{c}}}}}BbE`}{{{Al{Oh}}{Al{Oh}}}Bb}{{{Al{Oj}}{Al{Oj}}}Bb}{{{Al{{Ib{c}}}}{Al{AjEl}}}FbFd}{{{Al{{Of{c}}}}{Al{AjEl}}}FbFd}{{{Al{Oh}}{Al{AjEl}}}Fb}{{{Al{Oj}}{Al{AjEl}}}Fb}{cc{}}0000000{ce{}{}}000{{{Al{Oj}}{Al{Ajc}}}AnHn}{{}c{}}0000000{{{Cf{c}}}e{}{}}00011111111{{}c{}}000{{{Al{Ib}}}Bb}{{{Al{AjIb}}{Al{{Ib{c}}}}}An{{J`{Bj}}}}{{}{{Of{c}}}Dd}33{OfHb}{{{Al{{Ib{c}}}}}Ib{{J`{Bj}}}}{Alc{}}{{{Al{{Of{c}}}}}Of{{J`{Bj}}}}111{{}{{F`{c}}}{}}000{c{{F`{e}}}{}{}}000{{}{{F`{c}}}{}}000{{}{{F`{c{Jj{c}}}}}{}}000{AlJl}000{ce{}{}}000{{}c{}}000{{}c{}}000{Oln}{OlHb}{OlOh}````````````````{eg{}{{f{c}}}{}}00{{}On}{OnBb}{ce{}{}}00888{{OnOn}On}{{{Al{AjOn}}On}An}10{{{Al{On}}}Dl}021{Al{{Al{c}}}{}}00{{{Al{Aj}}}{{Al{Ajc}}}{}}00{{{Cf{c}}}e{}{}}00{{{Al{A@`}}}A@`}{{{Al{A@b}}}A@b}{{{Al{On}}}On}{{Al{Al{Ajc}}}An{}}00{{AlD`}An}00{{{Al{On}}{Al{On}}}Db}={OnOn}==={{{Al{On}}On}Bb}?{{}On}>0{{{Al{A@`}}{Al{A@`}}}Bb}{{{Al{A@b}}{Al{A@b}}}Bb}{{{Al{On}}{Al{On}}}Bb}{{{Al{AjOn}}c}An{{Hh{}{{Hf{On}}}}}}{{{Al{A@`}}{Al{AjEl}}}Fb}{{{Al{A@b}}{Al{AjEl}}}Fb}{{{Al{On}}{Al{AjEl}}}Fb}0000{cc{}}00000{Dl{{Hb{On}}}}{DlOn}00{cOn{{Hh{}{{Hf{On}}}}}}{{{Al{Bj}}}{{Hb{On}}}}{ce{}{}}00{{{Al{On}}{Al{Ajc}}}AnHn}{{{Al{AjOn}}On}An}{{OnOn}On}{{{Al{On}}On}Bb}{{}c{}}00000{{{Cf{c}}}e{}{}}00111111{Onc{}}{{}c{}}00{{{Al{On}}}Bb}0{{{Al{On}}}{{A@d{On}}}}{{{Al{On}}}{{A@f{On}}}}{OnBb}`00{OnOn}5{{{Al{On}}{Al{On}}}{{Hb{Db}}}}<{{{Al{AjOn}}OnBb}An}3<=<{Alc{}}00>{{}{{F`{c}}}{}}00{c{{F`{e}}}{}{}}00{{}{{F`{c}}}{}}00{{}{{F`{c{Jj{c}}}}}{}}00{AlJl}00{ce{}{}}00{{}c{}}00{{OnOn}On}{{}c{}}00{A@hA@j}{A@lA@j}{A@hA@b}{A@lA@b}32{A@hOn}{A@lOn}{A@hA@n}{A@lA@n}{A@hHb}```````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````{eg{}{{f{c}}}{}}0000{ce{}{}}0000====={{{Al{A@j}}}{{A@j{{Al{Bj}}}}}}{Al{{Al{c}}}{}}0000{{{Al{Aj}}}{{Al{Ajc}}}{}}0000{{{Cf{c}}}e{}{}}0000{{{Al{{A@j{c}}}}}{{A@j{c}}}Cn}{{{Al{AA`}}}AA`}{{{Al{AAb}}}AAb}{{{Al{AAd}}}AAd}{{{Al{A@n}}}A@n}{{Al{Al{Ajc}}}An{}}0000{{AlD`}An}0000{{{Al{{A@j{c}}}}{Al{{A@j{c}}}}}DbAAf}{{{Al{AA`}}{Al{AA`}}}Db}{{{Al{AAb}}{Al{AAb}}}Db}{{{Al{AAd}}{Al{AAd}}}Db}{{{Al{A@n}}{Al{A@n}}}Db}{ce{}{}}0000{{{Al{{A@j{c}}}}{Al{{A@j{c}}}}}BbE`}{{{Al{AA`}}{Al{AA`}}}Bb}{{{Al{AAb}}{Al{AAb}}}Bb}{{{Al{AAb}}{Al{A@n}}}Bb}{{{Al{AAd}}{Al{A@n}}}Bb}{{{Al{AAd}}{Al{AAd}}}Bb}{{{Al{A@n}}{Al{AAb}}}Bb}{{{Al{A@n}}{Al{A@n}}}Bb}{{{Al{A@n}}{Al{AAd}}}Bb}{{{Al{{A@j{c}}}}{Al{AjEl}}}FbFd}{{{Al{AA`}}{Al{AjEl}}}Fb}{{{Al{AAb}}{Al{AjEl}}}Fb}{{{Al{AAd}}{Al{AjEl}}}Fb}{{{Al{A@n}}{Al{AjEl}}}Fb}{cc{}}{AA`A@j}111111111{ce{}{}}0000{{{Al{{A@j{c}}}}{Al{Aje}}}AnI`Hn}{{{Al{AA`}}{Al{Ajc}}}AnHn}{{{Al{AAb}}{Al{Ajc}}}AnHn}{{{Al{AAd}}{Al{Ajc}}}AnHn}{{{Al{A@n}}{Al{Ajc}}}AnHn}{{}c{}}000000000{{{Cf{c}}}e{}{}}00001111111111{{}c{}}0000{{{Al{{A@j{c}}}}{Al{{A@j{c}}}}}{{Hb{Db}}}AAh}{{{Al{AA`}}{Al{AA`}}}{{Hb{Db}}}}{{{Al{AAb}}{Al{AAb}}}{{Hb{Db}}}}{{{Al{AAd}}{Al{AAd}}}{{Hb{Db}}}}{{{Al{A@n}}{Al{A@n}}}{{Hb{Db}}}}{Alc{}}0000{{}{{F`{c}}}{}}0000{c{{F`{e}}}{}{}}0000{{}{{F`{c}}}{}}0000{{}{{F`{c{Jj{c}}}}}{}}0000{AlJl}0000{ce{}{}}0000{{}c{}}0000{{}c{}}0000````{eg{}{{f{c}}}{}}00{{AAjJnJnAh}AAj}{{{Al{AjAAj}}JnJnAh}An}{ce{}{}}00555{{{Al{AAl}}ce}AAj{{Ef{Cl}}}{{Ef{Cl}}}}{Al{{Al{c}}}{}}00{{{Al{Aj}}}{{Al{Ajc}}}{}}00{{{Al{AAj}}}Af}{{{Al{AAn}}}Af}{{{Cf{c}}}e{}{}}00{{{Al{AAj}}}{{Al{{Jb{AAj}}}}}}{AAn{{`{{AB`{}{{Hf{AAn}}}}}}}}{{{Al{AAl}}}AAl}{{{Al{AAj}}}AAj}{{{Al{AAn}}}AAn}{{Al{Al{Ajc}}}An{}}00{{AlD`}An}00==={{{Al{AAl}}ceg}AAj{{Ef{Cl}}}{{Ef{Cl}}}{{Jf{{Al{AAl}}}{{Ab{AAj}}}}}}{{AAjEd}AAj}{{}AAj}{{{Al{AAl}}{Al{AAl}}}Bb}`{{{Al{AAl}}{Al{AjEl}}}Fb}{{{Al{AAj}}{Al{AjEl}}}Fb}{{{Al{AAn}}{Al{AjEl}}}Fb}{cc{}}00000{ce{}{}}00{{AAlc}AAl{{Ef{Cl}}}}{{}c{}}00000{{{Cf{c}}}e{}{}}00111111{{}c{}}00{{{Al{AAl}}}AAl}{{{Al{AAl}}}Ah}{{AAld}AAl}0100{{AAjc}AAj{{Ef{n}}}}{{{Al{AjAAj}}c}An{{Ef{n}}}}{{AhAh}AAl}{AhAAj}{{{Al{AAj}}}AAn}{{{Al{AAl}}dce}AAj{{Jf{{Al{AAl}}}{{Ab{AAj}}}}}{{Jf{{Al{AAl}}}{{Ab{AAj}}}}}}9{{{Al{AAl}}cegi}AAj{{Ef{Cl}}}{{Ef{Cl}}}{{Ef{Ed}}}{{Jf{{Al{AAl}}}{{Ab{AAj}}}}}}{{{Al{AAn}}}n}{{{Al{AAl}}cegik}AAj{{Ef{Cl}}}{{Ef{Cl}}}{{Ef{Ed}}}{{Jf{{Al{AAl}}}{{Ab{AAj}}}}}{{Jf{AAjAh}{{Ab{AAj}}}}}}{{{Al{AAl}}ceAh}Ah{{Ef{Cl}}}{{Ef{Cl}}}}{{{Al{AAl}}c}AAl{{Ef{Ah}}}}{{{Al{AAj}}}Ah}{{{Al{AAl}}ceg}AAj{{Ef{Cl}}}{{Ef{Cl}}}{{Jf{{Al{AAl}}}{{Ab{Ah}}}}}}{Alc{}}00{{AAjc}AAj{{Ef{A`}}}}{{{Al{AjAAj}}c}An{{Ef{A`}}}}{{}{{F`{c}}}{}}00{c{{F`{e}}}{}{}}00{{}{{F`{c}}}{}}00{{}{{F`{c{Jj{c}}}}}{}}00{AlJl}00{ce{}{}}00{{}c{}}00{{}c{}}00{{AAlc}AAl{{Ef{Cl}}}}{{Ah{Fh{AAj}}}AAj}{{A`{Al{AAj}}}AAn}```{eg{}{{f{c}}}{}}{ce{}{}}6{Al{{Al{c}}}{}}{{{Al{Aj}}}{{Al{Ajc}}}{}}{{{Cf{c}}}e{}{}}3{{{Al{ABb}}{Al{AjEl}}}Fb}{cc{}}0{ce{}{}}{{}c{}}0400{{}c{}}{{ABb{Al{c}}{Al{AAl}}ClClEddJn{Al{{Jb{{C`{egc}}}}}}{Al{Aj{Jb{ABd}}}}}AAjEh{}{}}{{}{{F`{c}}}{}}{c{{F`{e}}}{}{}}{{}{{F`{c}}}{}}{{}{{F`{c{Jj{c}}}}}{}}{AlJl}{ce{}{}}{{}c{}}{{}c{}}``````````````````````````````````````````{eg{}{{f{c}}}{}}0000{ce{}{}}000033333{Al{{Al{c}}}{}}0000{{{Al{Aj}}}{{Al{Ajc}}}{}}0000{{{Cf{c}}}e{}{}}0000`{{{Al{ABf}}}ABf}{{{Al{ABh}}}ABh}{{{Al{ABj}}}ABj}{{{Al{ABl}}}ABl}{{{Al{ABn}}}ABn}{{Al{Al{Ajc}}}An{}}0000{{AlD`}An}0000{{{Al{ABn}}{Al{ABn}}}Db};;;;;{{}ABh}{{}ABn}{{{Al{ABf}}{Al{ABf}}}Bb}{{{Al{ABh}}{Al{ABh}}}Bb}{{{Al{ABj}}{Al{ABj}}}Bb}{{{Al{ABl}}{Al{ABl}}}Bb}{{{Al{ABn}}{Al{ABn}}}Bb}{{{Al{ABf}}{Al{AjEl}}}Fb}{{{Al{ABh}}{Al{AjEl}}}Fb}{{{Al{ABj}}{Al{AjEl}}}Fb}{{{Al{ABl}}{Al{AjEl}}}Fb}{{{Al{ABn}}{Al{AjEl}}}Fb}{cc{}}000000000{ce{}{}}0000{{{Al{ABf}}{Al{Ajc}}}AnHn}{{}c{}}000000000{{{Cf{c}}}e{}{}}00001111111111{{}c{}}0000{ABhBb}{{ABhAf}Bb}{ABhABh}0{{ABhBl}ABh}44{{{Al{ABn}}{Al{ABn}}}{{Hb{Db}}}}{ABh{{Hb{n}}}}{{ABhn}{{Hb{n}}}}{{ABhAf}{{Hb{n}}}}0{Alc{}}0000{{}{{F`{c}}}{}}0000{c{{F`{e}}}{}{}}0000{{}{{F`{c}}}{}}0000{{}{{F`{c{Jj{c}}}}}{}}0000{AlJl}0000{ce{}{}}0000{{}c{}}0000{{}c{}}0000{AC`ABl}{ACbn}{ACdd}{ACfd}10`````{eg{}{{f{c}}}{}}0{ce{}{}}077{Al{{Al{c}}}{}}0{{{Al{Aj}}}{{Al{Ajc}}}{}}0{{{Cf{c}}}e{}{}}0{{{Al{ACh}}}ACh}{{{Al{ACj}}}ACj}{{Al{Al{Ajc}}}An{}}0{{AlD`}An}077{{{Al{ACj}}{Al{ACj}}}Bb}{{{Al{ACh}}{Al{AjEl}}}Fb}{{{Al{ACj}}{Al{AjEl}}}Fb}{cc{}}000{ce{}{}}0{{}c{}}000::0000{{}c{}}0{{{Al{ACh}}}ACj}{{AChBl}ACh}{{nABf{Hb{ACh}}}ACh}{{{Al{ACh}}}n}{Alc{}}0{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{{}{{F`{c}}}{}}0{{}{{F`{c{Jj{c}}}}}{}}0{AlJl}0{ce{}{}}0{{}c{}}0{{}c{}}0```{eg{}{{f{c}}}{}}0{ce{}{}}033{Al{{Al{c}}}{}}0{{{Al{Aj}}}{{Al{Ajc}}}{}}0{{{Cf{c}}}e{}{}}033{{}{{ACl{ceg}}}{}{}Eh}{{{Al{ACn}}{Al{Ajc}}{Al{e}}{Al{AD`}}AAnABh}AnEh{}}{{{Al{{ADb{ceg}}}}{Al{Ajg}}{Al{e}}{Al{AD`}}AAnABh}An{}{}Eh}{{{Al{{ACl{ceg}}}}{Al{Ajg}}{Al{e}}{Al{AD`}}AAnABh}An{}{}Eh}{{{ACl{ceg}}}{{ADb{ceg}}}{}{}Eh}{cc{}}000{{{Al{Aj{Jb{{C`{ceg}}}}}}{Al{AjABd}}AAn{Al{g}}A`}{{Hb{{ADb{ceg}}}}}{}{}Eh}{ce{}{}}0{{}c{}}000990000{{}c{}}0{{{Al{{ADb{ceg}}}}AAn{Al{g}}n}Bb{}{}Eh}{{{Al{{ACl{ceg}}}}AAn{Al{g}}n}Bb{}{}Eh}{{{Al{ACn}}AAn{Al{c}}n}BbEh}{{{Al{AjACn}}{Al{c}}Ah}AAjEh}{{{Al{Aj{ADb{ceg}}}}{Al{g}}Ah}AAj{}{}Eh}{{{Al{Aj{ACl{ceg}}}}{Al{g}}Ah}AAj{}{}Eh}{{{ADb{ceg}}{Al{If}}}{{ADb{ieg}}}{}{}Eh{}}{{{Al{{ADb{ceg}}}}AAnABh{Al{Af}}{Al{g}}}ABn{}{}Eh}{{{Al{{ACl{ceg}}}}AAnABh{Al{Af}}{Al{g}}}ABn{}{}Eh}{{{Al{ACn}}AAnABh{Al{Af}}{Al{c}}}ABnEh}{{{Fn{ACn}}}{{ADb{ceg}}}{}{}Eh}{{}{{ACl{ceg}}}{}{}Eh}<{{{Al{Aj{ADb{ceg}}}}AAn{Al{g}}{Al{AjADd}}}An{}{}Eh}{{{Al{Aj{ACl{ceg}}}}AAn{Al{g}}{Al{AjADd}}}An{}{}Eh}{{{Al{AjACn}}AAn{Al{c}}{Al{AjADd}}}AnEh}{{{Al{Aj{ADb{ceg}}}}AAn{Al{g}}}{{Hb{{ADb{ceg}}}}}{}{}Eh}{{{ACl{ceg}}}{{ADb{ceg}}}{}{}Eh}{{{Al{Aj{ACl{ceg}}}}AAn{Al{g}}}{{Hb{{ADb{ceg}}}}}{}{}Eh}{{{Al{AjACn}}AAn{Al{c}}}{{Hb{{ADb{egc}}}}}Eh{}{}}{{{ACl{ceg}}i}{{ACl{ceg}}}{}{}Eh{{Ef{{ADb{ceg}}}}}}{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{{}{{F`{c}}}{}}0{{}{{F`{c{Jj{c}}}}}{}}0{AlJl}0{ce{}{}}0{{}c{}}0{{{Al{Aj{ADb{ceg}}}}{Al{Ll}}AAnABh{Al{g}}{Al{AjLj}}{Al{Aj{Bf{c}}}}}An{}{}Eh}{{{Al{Aj{ACl{ceg}}}}{Al{Ll}}AAnABh{Al{g}}{Al{AjLj}}{Al{Aj{Bf{c}}}}}An{}{}Eh}{{{Al{AjACn}}{Al{Ll}}AAnABh{Al{c}}{Al{AjLj}}{Al{Aj{Bf{e}}}}}AnEh{}}{{}c{}}0{{{Fh{{ADb{ceg}}}}}{{ACl{ceg}}}{}{}Eh}``{eg{}{{f{c}}}{}}{cEd{{Ef{l}}}}{ce{}{}}8{Al{{Al{c}}}{}}{{{Al{Aj}}}{{Al{Ajc}}}{}}3{{Edc}Ed{{Ef{l}}}}{Edd}{{{Cf{c}}}e{}{}}{{{Al{Ed}}}Ed}{{Al{Al{Ajc}}}An{}}{{AlD`}An}8{{}Ed}{{{Al{Ed}}{Al{Ed}}}Bb}{{EdAhAh}Ed}{{{Al{Ed}}{Al{AjEl}}}Fb}{cc{}}{EjEd}{lEd}{{{Bn{Ej}}}Ed}{dEd}{{{Bn{d}}}Ed}5{ce{}{}}?{{}c{}}0?00{{}c{}}{cEd{{Ef{l}}}}{{Edc}Ed{{Ef{l}}}}{Edd}73210{Alc{}}321{{}{{F`{c}}}{}}{c{{F`{e}}}{}{}}{{}{{F`{c}}}{}}{{}{{F`{c{Jj{c}}}}}{}}{AlJl}{ce{}{}}{{}c{}}8{{}c{}}````{eg{}{{f{c}}}{}}0{ce{}{}}033{ADfLb}{Al{{Al{c}}}{}}0{{{Al{Aj}}}{{Al{Ajc}}}{}}0{ADfAf}{{{Cf{c}}}e{}{}}0{{{Al{AjEh}}}An}{{{Al{ADf}}}ADf}{{{Al{AD`}}}AD`}{{Al{Al{Ajc}}}An{}}0{{AlD`}An}0::{{}ADf}{{}AD`}66{{{Al{ADf}}{Al{ADf}}}Bb}{{{Al{AD`}}{Al{AD`}}}Bb}{{{Al{AjEh}}ADfc}An{{Ef{Ch}}}}{{{Al{ADf}}{Al{AjEl}}}Fb}{{{Al{AD`}}{Al{AjEl}}}Fb}{cc{}}000{ce{}{}}0{{}c{}}000??0000{{}c{}}0{{Dfl}ADh}11{{{Al{AjADh}}{Ah{Dl}}db}{{Fh{D`}}}}{ADfCd}{{{Al{AjEh}}Af}An}{{{Al{AjEh}}Bl}An}{AD`b}{Alc{}}0{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{{}{{F`{c}}}{}}0{{}{{F`{c{Jj{c}}}}}{}}0{AlJl}0{ce{}{}}0{{}c{}}0{{}c{}}0{{{Al{AjEh}}Afc}An{{Jf{{Al{AjEh}}}}}}{{{Al{AjEh}}Blc}An{{Jf{{Al{AjEh}}}}}}{{{Al{AjEh}}A`c}An{{Jf{{Al{AjEh}}}}}}``````{eg{}{{f{c}}}{}}00{ce{}{}}00666{Al{{Al{c}}}{}}00{{{Al{Aj}}}{{Al{Ajc}}}{}}00{{{Cf{c}}}e{}{}}00{{{Al{{ADj{c}}}}}{{ADj{c}}}Cn}{{{Al{ADl}}}ADl}{{{Al{ADn}}}ADn}{{Al{Al{Ajc}}}An{}}00{{AlD`}An}00{{{ADj{ADl}}c}{{ADj{ADl}}}{{Ef{b}}}}{ADjHb}:::{{{Al{ADl}}}{{Al{ADn}}}}{{{Al{AjAE`}}ADjAf}An}{{{Al{{ADj{c}}}}{Al{{ADj{c}}}}}BbE`}{{{Al{ADl}}{Al{ADl}}}Bb}{{{Al{ADn}}{Al{ADn}}}Bb}{{{Al{{ADj{c}}}}{Al{AjEl}}}FbFd}{{{Al{ADl}}{Al{AjEl}}}Fb}{{{Al{ADn}}{Al{AjEl}}}Fb}{{{Al{ADl}}}ADj}{cc{}}{cADl{{Ef{Nn}}}}11111{cADl{{Ef{{Fl{{Jb{D`}}}}}}}}{cADl{{Ef{Nn}}}}{ce{}{}}00{ADj}{{{Al{ADl}}{Al{Ajc}}}AnHn}{{{Al{ADn}}{Al{Ajc}}}AnHn}{{{Al{ADl}}}Hl}{{}c{}}00000{{{Cf{c}}}e{}{}}00111111{{}c{}}00{{{Al{AE`}}{Al{ADl}}}{{Ah{Dl}}}}{c{{ADj{ADl}}}{{Ef{ADl}}}}{{{ADj{ADl}}c}{{ADj{ADl}}}{{Ef{d}}}}{ADjd}{{{ADj{ADl}}c}{{ADj{ADl}}}{{Ef{h}}}}{ADjh}{Alc{}}00{{}{{F`{c}}}{}}00{c{{F`{e}}}{}{}}00{{}{{F`{c}}}{}}00{{}{{F`{c{Jj{c}}}}}{}}00{AlJl}00{ce{}{}}00{{}c{}}00{{}c{}}00``````````````````````````````````{eg{}{{f{c}}}{}}0000000{ce{}{}}000000033333333{{{AEb{ce}}g}{{AEb{ce}}}{}{}{{Ef{Ch}}}}{AEdCh}{{{AEb{ce}}{Hb{g}}}{{AEb{ce}}}{}{}{{Ef{Ch}}}}{{{AEb{ce}}g}{{AEb{ce}}}{}{}{{Ef{Lb}}}}{AEdLb}{{{AEb{ce}}{Hb{g}}}{{AEb{ce}}}{}{}{{Ef{Lb}}}}{Al{{Al{c}}}{}}0000000{{{Al{Aj}}}{{Al{Ajc}}}{}}0000000{AEfAh}{{{Cf{c}}}e{}{}}0000000{{{Al{{AEf{ce}}}}}{{AEf{ce}}}CnCn}{{{Al{AEh}}}AEh}{{{Al{AEj}}}AEj}{{{Al{AEl}}}AEl}{{{Al{AEn}}}AEn}{{{Al{AF`}}}AF`}{{{Al{{AEb{ce}}}}}{{AEb{ce}}}CnCn}{{{Al{AEd}}}AEd}{{Al{Al{Ajc}}}An{}}0000000{{AlD`}An}0000000{{{AEb{ce}}g}{{AEb{ce}}}{}{}{{Ef{b}}}}{AEbHb}{{{AEb{ce}}{Hb{g}}}{{AEb{ce}}}{}{}{{Ef{b}}}}{ce{}{}}0000000{AEf}{AEnId}{{}AEh}{{}AEj}{{}AEl}{{}{{AEb{ce}}}{}{}}{{{Al{{Gb{}{{AFb{c}}{AFd{e}}{AFf{g}}}}}}}c{IjE`}{{AFh{}{{AFb{c}}}}}{{AFj{}{{AFb{c}}}}}}{{{Al{{Gb{}{{AFb{c}}{AFd{e}}{AFf{g}}}}}}}l{IjE`}{{AFh{}{{AFb{c}}}}}{{AFj{}{{AFb{c}}}}}}`{{{Al{AEh}}{Al{AEh}}}Bb}{{{Al{AEj}}{Al{AEj}}}Bb}{{{Al{AEl}}{Al{AEl}}}Bb}{{{Al{AEn}}{Al{AEn}}}Bb}{{{Al{AF`}}{Al{AF`}}}Bb}{{{Al{{AEb{ce}}}}{Al{{AEb{ce}}}}}Bb{}E`}{{{Al{AEd}}{Al{AEd}}}Bb}{{{Al{Aj{Gb{}{{AFb{c}}{AFd{e}}{AFf{g}}}}}}{Al{g}}nbAf}An{IjE`}{{AFh{}{{AFb{c}}}}}{{AFj{}{{AFb{c}}}}}}{{{Al{Aj{Gb{}{{AFb{c}}{AFd{e}}{AFf{g}}}}}}{Al{e}}nbAf}An{IjE`}{{AFh{}{{AFb{c}}}}}{{AFj{}{{AFb{c}}}}}}{{{Al{Aj{Gb{}{{AFb{c}}{AFd{e}}{AFf{g}}}}}}{AEf{Dnc}}nbAf}An{IjE`}{{AFh{}{{AFb{c}}}}}{{AFj{}{{AFb{c}}}}}}{{{Al{{AEf{ce}}}}{Al{AjEl}}}FbFdFd}{{{Al{AEh}}{Al{AjEl}}}Fb}{{{Al{AEj}}{Al{AjEl}}}Fb}{{{Al{AEl}}{Al{AjEl}}}Fb}{{{Al{AEn}}{Al{AjEl}}}Fb}{{{Al{AF`}}{Al{AjEl}}}Fb}{{{Al{{AEb{ce}}}}{Al{AjEl}}}FbFdFd}{{{Al{AEd}}{Al{AjEl}}}Fb}{{{AEb{ce}}g}{{AEb{ce}}}{}{}{{Ef{e}}}}{AEf}{AEbHb}{{{AEb{ce}}{Hb{g}}}{{AEb{ce}}}{}{}{{Ef{e}}}}{cc{}}000{lAEl}{dAEl}222{{{Al{Bj}}}{{AEb{ce}}}{}{}}333333333{ce{}{}}0000000{{{Al{AEh}}{Al{Ajc}}}AnHn}{{{Al{AEj}}{Al{Ajc}}}AnHn}{{{Al{AEl}}{Al{Ajc}}}AnHn}9`{AEfK`}{{}c{}}000000000000000{{{Cf{c}}}e{}{}}00000001111111111111111{AFlAFn}{{{Al{AFn}}}AFn}{AFnAFn}{{}c{}}0000000{{{AEb{ce}}g}{{AEb{ce}}}{}{}{{Ef{AEl}}}}{AEfAEl}{AEbHb}{{{AEb{ce}}g}{{AEb{ce}}}{}{}{{Ef{c}}}}1{{{AEb{ce}}{Hb{g}}}{{AEb{ce}}}{}{}{{Ef{c}}}}{c{{AEb{eg}}}AFl{}{}}6666{{{AEb{ce}}g}{{AEb{ce}}}{}{}{{Ef{Ed}}}}{AEbEd}`{AEfAEh}{{{AEb{ce}}g}{{AEb{ce}}}{}{}{{Ef{l}}}}{AEfl}8{{{AEb{ce}}Bb}{{AEb{ce}}}{}{}}{AEbBb}{AEbAFn}{{AEll}l}{Alc{}}0000000{{{AEb{ce}}}{{AEb{ce}}}{}{}}{{}{{F`{c}}}{}}0000000{c{{F`{e}}}{}{}}0000000{{}{{F`{c}}}{}}0000000{{}{{F`{c{Jj{c}}}}}{}}0000000{AlJl}0000000{ce{}{}}0000000{{}c{}}0000000<;{AEfKb}{{}c{}}0000000{AEfAEj}````````````````````````````````````````````{eg{}{{f{c}}}{}}000000{ce{}{}}0000005555555{AG`{{Al{Bj}}}}{Al{{Al{c}}}{}}000000{{{Al{Aj}}}{{Al{Ajc}}}{}}000000{{{Al{{AFj{}{{AFb{c}}}}}}}Ah{IjE`Dd}}{{{Cf{c}}}e{}{}}000000{{{Al{AGb}}}AGb}{{{Al{AGd}}}AGd}{{{Al{AGf}}}AGf}{{{Al{AGh}}}AGh}{{{Al{AGj}}}AGj}{{{Al{AGl}}}AGl}{{{Al{AG`}}}AG`}{{Al{Al{Ajc}}}An{}}000000{{AlD`}An}000000>>>>>>>{{{Al{{AFj{}{{AFb{c}}}}}}}AGj{IjE`Dd}}{{{Al{{AFj{}{{AFb{c}}}}}}}{{Gn{IdId}}}{IjE`Dd}}{{}AGl}{{}AG`}{{{Al{AGf}}}AGh}{AGlAG`}{{{Al{AGb}}{Al{AGb}}}Bb}{{{Al{AGd}}{Al{AGd}}}Bb}{{{Al{AGf}}{Al{AGf}}}Bb}{{{Al{AGh}}{Al{AGh}}}Bb}{{{Al{AGl}}{Al{AGl}}}Bb}{{{Al{AG`}}{Al{AG`}}}Bb}{{{Al{AGb}}{Al{AjEl}}}Fb}{{{Al{AGd}}{Al{AjEl}}}Fb}{{{Al{AGf}}{Al{AjEl}}}Fb}{{{Al{AGh}}{Al{AjEl}}}Fb}{{{Al{AGj}}{Al{AjEl}}}Fb}{{{Al{AGl}}{Al{AjEl}}}Fb}{{{Al{AG`}}{Al{AjEl}}}Fb}{cc{}}0000000000000{ce{}{}}000000{{{Al{Aj{AFj{}{{AFb{c}}}}}}c{Al{Aje}}g}An{IjE`Dd}AGn{{If{Al}{{Ab{{AH`{c}}}}}}}}{{}c{}}0000000000000{{{Cf{c}}}e{}{}}00000011111111111111{{}c{}}000000{{{Al{AGb}}}Bb}{{{Al{{AFj{}{{AFb{c}}}}}}}Bb{IjE`Dd}}{{{Al{{AFj{}{{AFb{c}}}}}}Id}{{Hb{AGl}}}{IjE`Dd}}{{{Al{{AFj{}{{AFb{c}}}}}}}Id{IjE`Dd}}{{{Al{{AFj{}{{AFb{c}}}}}}}Ah{IjE`Dd}}55{{{Al{Aj{AFj{}{{AFb{c}}}}}}AGb}An{IjE`Dd}}{{{Al{{AFj{}{{AFb{c}}}}}}}{{Hb{Dn}}}{IjE`Dd}}{AGlFl}{Alc{}}000000{{}{{F`{c}}}{}}000000{c{{F`{e}}}{}{}}000000{{}{{F`{c}}}{}}000000{{}{{F`{c{Jj{c}}}}}{}}000000{AlJl}000000{ce{}{}}000000{{}c{}}000000{{{Al{Aj{AFj{}{{AFb{c}}}}}}AhclAElAEj{Al{Aje}}}An{IjE`Dd}AGn}{{}c{}}000000{AGfAGf}{{{Al{Bj}}}{{AFj{}{{AFb{c}}}}}{IjE`Dd}}{AHbLd}``````{eg{}{{f{c}}}{}}0{ce{}{}}077{Al{{Al{c}}}{}}0{{{Al{Aj}}}{{Al{Ajc}}}{}}0{{{Cf{c}}}e{}{}}0{{{Al{Aj{AGn{}{{AHd{c}}{AHf{e}}{AHh{g}}}}}}Id}An{E`Cn}{}{{AHl{}{{Hf{{Gn{{AHj{Id}}e}}}}}}}}{{{Al{AjAHn}}Id}An}{{{Al{AHn}}}AHn}{{{Al{{AH`{c}}}}}{{AH`{c}}}Cn}{{Al{Al{Ajc}}}An{}}0{{AlD`}An}0{AH`Hb}::{{{Al{{AGn{}{{AHd{c}}{AHf{e}}{AHh{g}}}}}}}Id{E`Cn}{}{{AHl{}{{Hf{{Gn{{AHj{Id}}e}}}}}}}}{{{Al{AHn}}}Id}{{}{{AH`{c}}}{}}{{{Al{{AH`{c}}}}{Al{{AH`{c}}}}}BbE`}{{{Al{AHn}}{Al{AjEl}}}Fb}{{{Al{{AH`{c}}}}{Al{AjEl}}}FbFd}6{cc{}}000{ce{}{}}0{{{Al{Aj{AGn{}{{AHd{c}}{AHf{e}}{AHh{g}}}}}}{Al{Bj}}}g{E`Cn}{}{{AHl{}{{Hf{{Gn{{AHj{Id}}e}}}}}}}}{{{Al{AjAHn}}{Al{Bj}}}c{}}{{}c{}}000{{{Cf{c}}}e{}{}}01111{{}c{}}0{{{Al{c}}}{{AGn{}{{AHd{c}}{AHf{e}}{AHh{g}}}}}{E`Cn}{}{{AHl{}{{Hf{{Gn{{AHj{Id}}e}}}}}}}}{{{Al{c}}}AHn{}}2{Alc{}}0{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{{}{{F`{c}}}{}}0{{}{{F`{c{Jj{c}}}}}{}}0{AlJl}0{ce{}{}}0{{}c{}}0{{{Al{Aj{AGn{}{{AHd{c}}{AHf{e}}{AHh{g}}}}}}{Al{c}}}An{E`Cn}{}{{AHl{}{{Hf{{Gn{{AHj{Id}}e}}}}}}}}{{{Al{AjAHn}}{Al{c}}}An{}}{{}c{}}0```{eg{}{{f{c}}}{}}{ce{}{}}5{Al{{Al{c}}}{}}{{{Al{Aj}}}{{Al{Ajc}}}{}}{{{Cf{c}}}e{}{}}{{{Al{{AI`{c}}}}}{{AI`{c}}}{CnAFh}}{{Al{Al{Ajc}}}An{}}{{AlD`}An}{{{Al{{AFh{}{{AFb{c}}}}}}{AEf{Anc}}}AF`{IjE`}}7{{}{{AI`{c}}}{DdAFh}}{{{Al{{AI`{c}}}}{Al{AjEl}}}Fb{FdAFh}}{cc{}}0{ce{}{}}{{{Al{{AFh{}{{AFb{c}}}}}}IdId}{{Hb{n}}}{IjE`}}{{{Al{{AFh{}{{AFb{c}}}}}}n}{{Hb{Id}}}{IjE`}}{{{Al{{AFh{}{{AFb{c}}}}}}n}{{Hb{AEn}}}{IjE`}}{{{Al{{AFh{}{{AFb{c}}}}}}}K`{IjE`}}{{{Al{{AI`{c}}}}}K`AFh}{{}c{}}0>00{{}c{}}{{{Al{{AFh{}{{AFb{c}}}}}}}Ah{IjE`}}{{{Al{{AI`{c}}}}}AhAFh}{{{Al{{AFh{}{{AFb{c}}}}}}}d{IjE`}}{{{Al{{AI`{c}}}}}dAFh}10{{{AEf{{Al{Bj}}}}}{{AI`{c}}}AFh}5{{{Al{{AI`{c}}}}}{{Al{c}}}AFh}{{{Al{Aj{AFh{}{{AFb{c}}}}}}Ah}An{IjE`}}{{{Al{{AFh{}{{AFb{c}}}}}}Id}{{Fh{Af}}}{IjE`}}{Alc{}}{{}{{F`{c}}}{}}{c{{F`{e}}}{}{}}{{}{{F`{c}}}{}}{{}{{F`{c{Jj{c}}}}}{}}{AlJl}{ce{}{}}{{}c{}}{{{Al{Aj{AI`{c}}}}{AEf{{Al{Bj}}}}}AnAFh}{{{Al{{AFh{}{{AFb{c}}}}}}}Kb{IjE`}}{{{Al{{AI`{c}}}}}KbAFh}{{}c{}}{{{AEf{{Al{{Jb{{AEb{ce}}}}}}e}}}{{AFh{}{{AFb{e}}}}}{}{IjE`}}{{{AEf{{Al{Bj}}c}}}{{AFh{}{{AFb{c}}}}}{IjE`}}`````````````````````````````{eg{}{{f{c}}}{}}00{ce{}{}}00888{AIbb}{{{Al{AId}}}AIb}{{{Al{AIf}}}AIb}{Al{{Al{c}}}{}}00{{{Al{Aj}}}{{Al{Ajc}}}{}}00{{{Cf{c}}}e{}{}}00{{{Al{AIf}}}AIf}{{{Al{AIh}}}AIh}{{{Al{AIb}}}AIb}{{Al{Al{Ajc}}}An{}}00{{AlD`}An}00;;;{{DnAIj}AIf}{{DnAIjc}AIf{{Jf{AIj}{{Ab{AIl}}}}}}:{{}c{}}{{}AIf}{{{Al{AIf}}{Al{AIf}}}Bb}{{{Al{AIh}}{Al{AIh}}}Bb}{{{Al{AIb}}{Al{AIb}}}Bb}{{{Al{AIf}}}{{Al{AIl}}}}{{{Al{AIf}}{Al{AjEl}}}Fb}0{{{Al{AIh}}{Al{AjEl}}}Fb}0{{{Al{AIb}}{Al{AjEl}}}Fb}{cc{}}00000{ce{}{}}00{{}c{}}00000{{{Cf{c}}}e{}{}}00111111{{}c{}}00{{DnAIj}AIh}1`{{{Al{AIf}}}AIj}{{{Al{AIf}}{Al{c}}}AIn{}}{AIbb}{Alc{}}00{AlBh}0{AlDn}0{{}{{F`{c}}}{}}00{c{{F`{e}}}{}{}}00{{}{{F`{c}}}{}}00{{}{{F`{c{Jj{c}}}}}{}}00{AlJl}00{ce{}{}}00{{}c{}}00{{}c{}}00{{DnAIjc}AIh{{Jf{AIj}{{Ab{AIl}}}}}}````````{{}AJ`}000000000000000000000```````````````````````{eg{}{{f{c}}}{}}00000000{ce{}{}}00000000555555555{AIjb}{AIlAJb}{AJbAJd}{AJfAJd}{AJhAJd}{AJjAJd}{AJlAJd}{AJnAJd}{Al{{Al{c}}}{}}00000000{{{Al{Aj}}}{{Al{Ajc}}}{}}00000000{{{Cf{c}}}e{}{}}00000000{{{Al{AIj}}}AIj}{{{Al{AIl}}}AIl}{{{Al{AJd}}}AJd}{{{Al{AJb}}}AJb}{{{Al{AJf}}}AJf}{{{Al{AJh}}}AJh}{{{Al{AJj}}}AJj}{{{Al{AJl}}}AJl}{{{Al{AJn}}}AJn}{{Al{Al{Ajc}}}An{}}00000000{{AlD`}An}00000000{AJdb}{ce{}{}}00000000{AIjb}{AIlAJn}{{{Al{AIj}}{Al{AIj}}}Bb}{{{Al{AIl}}{Al{AIl}}}Bb}{{{Al{AJd}}{Al{AJd}}}Bb}{{{Al{AJb}}{Al{AJb}}}Bb}{{{Al{AJf}}{Al{AJf}}}Bb}{{{Al{AJh}}{Al{AJh}}}Bb}{{{Al{AJj}}{Al{AJj}}}Bb}{{{Al{AJl}}{Al{AJl}}}Bb}{{{Al{AJn}}{Al{AJn}}}Bb}{{{Al{AIj}}{Al{AjEl}}}Fb}{{{Al{AIl}}{Al{AjEl}}}Fb}{{{Al{AJd}}{Al{AjEl}}}Fb}{{{Al{AJb}}{Al{AjEl}}}Fb}{{{Al{AJf}}{Al{AjEl}}}Fb}{{{Al{AJh}}{Al{AjEl}}}Fb}{{{Al{AJj}}{Al{AjEl}}}Fb}{{{Al{AJl}}{Al{AjEl}}}Fb}{{{Al{AJn}}{Al{AjEl}}}Fb}{cc{}}00000000000000000{ce{}{}}00000000{AIjAIl}{{bbb}AJf}{{bb}AJh}{{bbb}AJj}{{bbb}AJl}{{bbb}AJn}{{}c{}}00000000000000000{{{Cf{c}}}e{}{}}00000000111111111111111111{{}c{}}00000000{AIlBb}{{bb}AJd}{{bb}AJb}{AIjb}{AIlAJf}{AIlAJh}{AJbAJd}{AJfAJd}{AJhAJd}{AJjAJd}{AJlAJd}{AJnAJd}8{AIlAJj}9{AJdb}{Alc{}}00000000{{}{{F`{c}}}{}}00000000{c{{F`{e}}}{}{}}00000000{{}{{F`{c}}}{}}00000000{{}{{F`{c{Jj{c}}}}}{}}00000000{AlJl}00000000{ce{}{}}00000000{{}c{}}00000000{{}c{}}00000000{AIjb}{AIlAJl}{AJbAJd}{AJfAJd}{AJhAJd}{AJjAJd}{AJlAJd}{AJnAJd}````````{{KjKj}Kj}{eg{}{{f{c}}}{}}0{{KlKj}Kl}2{{{Al{AjKl}}Kj}An}{{{Al{AjKj}}Kj}An}{ce{}{}}0??{{{Al{Kj}}}AK`}0{{{Al{Kj}}}d}{{{Al{Kj}}}H`}2{{{Al{Kj}}}Hl}21{Al{{Al{c}}}{}}{Al{{Al{c}}}{}}1{{{Al{Aj}}}{{Al{Ajc}}}{}}0{{{Cf{c}}}e{}{}}0{{{Al{Kl}}Kj}{{Hb{Kl}}}}{{KjKj}{{Hb{Kj}}}}{{KjDl}{{Hb{Kj}}}}{{{Al{Kl}}Kl}{{Hb{Kj}}}}132{{{Al{Kl}}}Kl}{{{Al{Kj}}}Kj}{{Al{Al{Ajc}}}An{}}0{{AlD`}An}0{{{Al{Kl}}{Al{Kl}}}Db}{{{Al{Kj}}{Al{Kj}}}Db}{ce{}{}}0{HlKj}{{}Kj}{c{{F`{Kj}}}AKb}{{{Al{AKd}}}{{F`{AKf}}}}{{KjDl}Kj}{{{Al{AjKj}}Dl}An}{{KjKj}d}{{KjKj}H`}{{Kjd}Kj}{{KjH`}Kj}{{{Al{Kl}}Kl}Kj}{{{Al{Kl}}}Kj}{{KlKl}d}{{{Al{Kl}}{Al{Kl}}}Bb}{{{Al{Kj}}{Al{Kj}}}Bb}{{{Al{Kl}}{Al{AjEl}}}{{F`{AnEn}}}}{{{Al{Kj}}{Al{AjEl}}}{{F`{AnEn}}}}{cc{}}{AKhKj}111{HlKj}000000{dKj}{H`Kj}{ce{}{}}03{{{Al{Kl}}{Al{Ajc}}}AnHn}{{{Al{Kj}}{Al{Ajc}}}AnHn}5{{}c{}}000{{{Cf{c}}}e{}{}}01111{{}c{}}0{{{Al{Kj}}}Bb}99{{KjDl}Kj}{{{Al{AjKj}}Dl}An}{{Kjd}Kj}{{KjH`}Kj}{{HlDl}Kj}{{}Kl}7{{{Al{Kl}}{Al{Kl}}}{{Hb{Db}}}}{{{Al{Kj}}{Al{Kj}}}{{Hb{Db}}}}{{KjKj}Kj}{{{Al{Kl}}Kl}Kj}91{HlKj}{{{Al{Kj}}c}F`AKj}{AlAKd}{{KlKj}Kl}{{KlKl}Kj}6{{{Al{AjKl}}Kj}An}{{{Al{AjKj}}Kj}An}{{{Al{Kj}}}Dl}00{cKj{{AHl{}{{Hf{{Al{Kj}}}}}}}}{cKj{{AHl{}{{Hf{Kj}}}}}}{Alc{}}0{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{d{{F`{KjAKl}}}}{H`{{F`{KjAKl}}}}{{}{{F`{c}}}{}}0{{}{{F`{c{Jj{c}}}}}{}}0{AlJl}0{ce{}{}}0{{}c{}}0{{}c{}}0``````{eg{}{{f{c}}}{}}0{ce{}{}}033{Al{{Al{c}}}{}}0{{{Al{Aj}}}{{Al{Ajc}}}{}}0{{{Cf{c}}}e{}{}}0{{{Al{AKn}}}AKn}{{{Al{AL`}}}AL`}{{Al{Al{Ajc}}}An{}}0{{AlD`}An}077{{{Al{AKn}}{Al{AKn}}}Bb}{{{Al{AL`}}{Al{AL`}}}Bb}{{{Al{AKn}}{Al{AjEl}}}Fb}{{{Al{AL`}}{Al{AjEl}}}Fb}{cc{}}000{ce{}{}}0{{{Al{AL`}}{Al{Ajc}}}AnHn}{{}c{}}000<<0000{{}c{}}0{Alc{}}0{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{{}{{F`{c}}}{}}0{{}{{F`{c{Jj{c}}}}}{}}0{AlJl}0{ce{}{}}0{{}c{}}0{{}c{}}0{ALbAL`}{ALdAL`}{ALfAL`}{ALhAL`}{ALbn}{ALdn}{ALfn}{ALhn}`````{eg{}{{f{c}}}{}}{ce{}{}};{Al{{Al{c}}}{}}{{{Al{Aj}}}{{Al{Ajc}}}{}}{{{Cf{c}}}e{}{}}{{{Al{Cb}}}{{Fh{ABd}}}}{{{Al{ALj}}}ALj}{{Al{Al{Ajc}}}An{}}{{AlD`}An}7{{{Al{Cb}}{Al{AjABd}}}An}{{{Al{Cb}}{Al{ABd}}{Al{Ajc}}{Al{e}}{Al{AD`}}AAnABh{Al{Af}}}AnEh{}}{{{Al{ALj}}{Al{ALj}}}Bb}{{{Al{ALj}}{Al{AjEl}}}Fb}{cc{}}0{ce{}{}}{{{Al{ALj}}{Al{Ajc}}}AnHn}{{}c{}}0<00{{}c{}}{{{Al{Cb}}{Al{AjABd}}{Al{c}}{Al{AAl}}}AAjEh}{{{Al{Cb}}{Al{ABd}}AAnABh{Al{Af}}{Al{c}}}ABnEh}{cALj{{Ef{{Fl{Bj}}}}}}{{{Al{Cb}}{Al{AjABd}}AAn{Al{c}}{Al{AjADd}}}AnEh}`{{{Al{AjCb}}{Al{AjABd}}AAn{Al{c}}A`}{{Hb{{ADb{egc}}}}}Eh{}{}}{{{Al{Cb}}}{{Ah{Cl}}}}0{{{Al{Cb}}}ALl}{{{Al{Cb}}}ALn}`{Alc{}}`{{}{{F`{c}}}{}}{c{{F`{e}}}{}{}}{{}{{F`{c}}}{}}{{}{{F`{c{Jj{c}}}}}{}}{AlJl}{ce{}{}}{{}c{}}{{}ALj}{{{Al{AjCb}}{Al{AjABd}}{Al{Ll}}AAnABh{Al{c}}{Al{AjLj}}{Al{Aj{Bf{e}}}}{Al{Af}}}AnEh{}}{{}c{}}````````{eg{}{{f{c}}}{}}{ce{}{}}5{{{Al{AjADd}}}{{`{{ADd{c}}}}}{}}{Al{{Al{c}}}{}}{{{Al{Aj}}}{{Al{Ajc}}}{}}{{{Cf{c}}}e{}{}}4{{{Al{AjADd}}{Hb{{Al{ALj}}}}Af{Al{AjAM`}}}An}{{{Al{AjADd}}{Hb{{Al{ALj}}}}Af{Al{AjAMb}}}An}{{{Al{ADd}}}{{AMd{c}}}{}}{{{Al{{AMd{c}}}}{Al{AjEl}}}FbFd}`{{{Al{AjADd}}{Hb{{Al{ALj}}}}Af{Al{AjAMf}}}An}{cc{}}0{ce{}{}}{{}c{}}0800{{}c{}}{{ei}{{`{{ADd{g}}}}}{}{{ADd{c}}}{}{{If{c}{{Ab{g}}}}O`AMh}}{{ALje}{{`{{ADd{c}}}}}{}{{ADd{c}}}}`{{{Al{AjADd}}{Hb{{Al{ALj}}}}AfAfA`{Al{AjAMj}}}An}{{{Al{AjADd}}{Hb{{Al{ALj}}}}Af{Al{Bj}}}An}`{{{Al{AjADd}}{Hb{{Al{ALj}}}}Af{Al{AjAMl}}}An}{{e{AMn{c}{{Ab{i}}}}}{{`{{ADd{g}}}}}{}{{ADd{c}}}O`{{ADd{g}}}}{{}{{F`{c}}}{}}{c{{F`{e}}}{}{}}{{}{{F`{c}}}{}}{{}{{F`{c{Jj{c}}}}}{}}{AlJl}{ce{}{}}{{}c{}}{{}c{}}``{eg{}{{f{c}}}{}}{ce{}{}}3{Al{{Al{c}}}{}}{{{Al{Aj}}}{{Al{Ajc}}}{}}{{{Cf{c}}}e{}{}}{{{Al{AN`}}}AN`}{{Al{Al{Ajc}}}An{}}{{AlD`}An}6{{}{{`{{ADd{AN`}}}}}}{{}AN`}{{{Al{AN`}}{Al{AN`}}}Bb}{{}{{`{{ADd{ALj}}}}}}{{{Al{AN`}}{Al{AjEl}}}Fb}{ALj{{`{{ADd{c}}}}}{}}{{{Al{AjAMf}}}An}{{}{{`{{ADd{c}}}}}O`}0{AN`Hb}{cc{}}0{ce{}{}}{{}c{}}0?00{{}c{}}{{{Al{AMf}}}Bb}1{Alc{}}{AN`Id}{{}{{F`{c}}}{}}{c{{F`{e}}}{}{}}{{}{{F`{c}}}{}}{{}{{F`{c{Jj{c}}}}}{}}{AlJl}{ce{}{}}{{}c{}}{{{Al{AjAMf}}}An}{{}c{}}`````{eg{}{{f{c}}}{}}0{ce{}{}}044{Al{{Al{c}}}{}}0{{{Al{Aj}}}{{Al{Ajc}}}{}}0{{{Cf{c}}}e{}{}}0{{{Al{ANb}}}ANb}{{{Al{ANd}}}ANd}{{Al{Al{Ajc}}}An{}}0{{AlD`}An}077{{}ANb}{{}ANd}{{{Al{ANb}}{Al{ANb}}}Bb}{{{Al{ANd}}{Al{ANd}}}Bb}{{{Al{ANb}}{Al{AjEl}}}Fb}{{{Al{ANd}}{Al{AjEl}}}Fb}{cc{}}000{ce{}{}}0{{}c{}}000==0000{{}c{}}000{{ALjANb}{{`{{ADd{c}}}}}{}}{{{Al{AjAMj}}ANbAfAf}An}1{{{Al{AjAMj}}ANb}An}{{ALjANd}{{`{{ADd{c}}}}}{}}{{{Al{AjAMj}}ANd}An}{Alc{}}0{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{{}{{F`{c}}}{}}0{{}{{F`{c{Jj{c}}}}}{}}0{AlJl}0{ce{}{}}0{{}c{}}0{{}c{}}0{ANbd}{ANdd}10`{{ALjId}{{`{{ADd{c}}}}}{}}{{{Al{AjAMl}}Id}An}{ALj{{`{{ADd{c}}}}}{}}{{{Al{AjAMl}}}An}1010`````````{eg{}{{f{c}}}{}}00{{{Gd{ce}}g}{{Gd{ce}}}G`Gb{{Ef{K`}}}}{{{Gd{ce}}g}{{Gd{ce}}}G`Gb{{Ef{Kb}}}}{ce{}{}}00;;;{{{Al{AIf}}}AIn}{Al{{Al{c}}}{}}00{{{Al{Aj}}}{{Al{Ajc}}}{}}00{{{Cf{c}}}e{}{}}00{{{Gd{ce}}}{{Gd{ce}}}G`Gb}{{{Gd{ce}}g}{{Gd{ce}}}G`GbEf}{{{Al{AIn}}}AIn}{{Al{Al{Ajc}}}An{}}{{AlD`}An}{{{Gd{ce}}g}{{Gd{ce}}}G`Gb{{Ef{b}}}}{AInHb}{{{Gd{ce}}{Hb{g}}}{{Gd{ce}}}G`Gb{{Ef{b}}}}<<<;;{{}c{}}{{}{{ANf{c}}}{DdAFh}}{{}AIn}{{{Al{Ajc}}{Al{AD`}}AAnAlAIn{Al{Af}}}AnGb}{{{Al{{Gd{ce}}}}{Al{ABd}}{Al{Aje}}{Al{c}}{Al{AD`}}AAnABh{Al{Af}}}AnG`Gb}{{{Al{AIn}}{Al{AIn}}}Bb}{{{Al{{ANf{c}}}}{Al{AjEl}}}Fb{FdAFh}}{{{Al{AIn}}{Al{AjEl}}}Fb}>{cc{}}{{{Al{Bj}}}{{Gd{ce}}}G`Gb}11111{ce{}{}}00{{{Gd{ce}}g}{{Gd{ce}}}G`Gb{{Ef{Cl}}}}{{}c{}}00000{{{Cf{c}}}e{}{}}00111111{{}c{}}00{{{Al{AjANf}}{Al{c}}{Al{AAl}}ClCl{Al{Bj}}AEl{Hb{l}}HbK`KbAEhAEj}AAjGb}{{{Al{{Gd{ce}}}}{Al{AjABd}}{Al{e}}{Al{AAl}}}AAjG`Gb}{{{Gd{ce}}g}{{Gd{ce}}}G`Gb{{Ef{AEl}}}}{c{{Gd{eg}}}AFlG`Gb}44{{{Al{{Gd{ce}}}}{Al{AjABd}}AAn{Al{e}}{Al{AjADd}}}AnG`Gb}{{{Al{AIf}}}AIn}0{{{Gd{ce}}AEh}{{Gd{ce}}}G`Gb}{{{Gd{ce}}g}{{Gd{ce}}}G`Gb{{Ef{l}}}}{{{Al{{Gd{ce}}}}}{{Ah{Cl}}}G`Gb}{{{Al{{Gd{ce}}}}}ALlG`Gb}{{{Al{{G`{}{{ANh{c}}}}}}{Al{c}}}AIn{}}{{{Gd{ce}}g}{{Gd{ce}}}G`Gb{{If{{Al{c}}}{{Ab{AIn}}}}}}6{{{Al{{Gd{ce}}}}}ALnG`Gb}{Alc{}}{{}{{F`{c}}}{}}00{c{{F`{e}}}{}{}}00{{}{{F`{c}}}{}}00{{}{{F`{c{Jj{c}}}}}{}}00{AlJl}00{ce{}{}}00{{}c{}}00{{}c{}}00{{{Gd{ce}}g}{{Gd{ce}}}G`Gb{{Ef{Cl}}}}{{{Gd{ce}}AEj}{{Gd{ce}}}G`Gb}`````{eg{}{{f{c}}}{}}00{ce{}{}}00555{Al{{Al{c}}}{}}00{{{Al{Aj}}}{{Al{Ajc}}}{}}00{{{Cf{c}}}e{}{}}00{ABdFh}{{{Al{ALn}}}ALn}{{Al{Al{Ajc}}}An{}}{{AlD`}An}{{{Al{ALn}}{Al{ALn}}}Db}888{{{Al{AjABd}}c}An{{ANj{Cb}}}}{{{Al{AjABd}}{Al{{Jb{c}}}}}An{{ANj{Cb}}}}{{{Al{AjABd}}{Al{{Jb{c}}}}eg}An{}{{If{{Al{AjABd}}{Al{c}}}}}{{If{{Al{c}}}{{Ab{ABd}}}}}}{{{Al{Aj{Fh{ABd}}}}{Al{{Jb{c}}}}egi}An{}{{If{{Al{AjABd}}{Al{c}}}}}{{If{Id}{{Ab{Bb}}}}}{{If{{Al{c}}}{{Ab{ABd}}}}}}{{{Al{AjALl}}}{{Al{Ajc}}}{}}{{{Al{ALl}}}{{Al{c}}}{}}{{}ABd}{{{Al{ALn}}{Al{ALn}}}Bb}{{{Al{ALl}}{Al{AjEl}}}Fb}{{{Al{ABd}}{Al{AjEl}}}Fb}{{{Al{ALn}}{Al{AjEl}}}Fb}{cc{}}00000{ce{}{}}00{{{Al{ALn}}{Al{Ajc}}}AnHn}{{}c{}}00000{{{Cf{c}}}e{}{}}00111111{{}c{}}00{cALl{}}{cABd{{ANj{Cb}}}}{{}ALn}{{{Al{ALn}}{Al{ALn}}}{{Hb{Db}}}}{ABdALl}2{ABdALn}{Alc{}}{{}{{F`{c}}}{}}00{c{{F`{e}}}{}{}}00{{}{{F`{c}}}{}}00{{}{{F`{c{Jj{c}}}}}{}}00{AlJl}00{ce{}{}}00{{}c{}}00{{}c{}}00`````````````````````````````````````````````{eg{}{{f{c}}}{}}0000000{ce{}{}}000000033333333{Al{{Al{c}}}{}}0000000{{{Al{Aj}}}{{Al{Ajc}}}{}}0000000{{{Cf{c}}}e{}{}}0000000{{{Al{ANl}}}ANl}{{{Al{ANn}}}ANn}{{{Al{AO`}}}AO`}{{{Al{AOb}}}AOb}{{{Al{AOd}}}AOd}{{{Al{AOf}}}AOf}{{{Al{Jd}}}Jd}{{{Al{AOh}}}AOh}{{Al{Al{Ajc}}}An{}}0000000{{AlD`}An}0000000{{{Al{AO`}}{Al{AO`}}}Db}{{{Al{Jd}}{Al{Jd}}}Db}????????{{}AOb}{{}AOf}{{{Al{ANn}}{Al{ANn}}}Bb}{{{Al{AO`}}{Al{AO`}}}Bb}{{{Al{AOb}}{Al{AOb}}}Bb}{{{Al{AOd}}{Al{AOd}}}Bb}{{{Al{AOf}}{Al{AOf}}}Bb}{{{Al{Jd}}{Al{Jd}}}Bb}{{{Al{ANl}}{Al{AjEl}}}Fb}{{{Al{ANn}}{Al{AjEl}}}Fb}{{{Al{AO`}}{Al{AjEl}}}Fb}0{{{Al{AOb}}{Al{AjEl}}}Fb}{{{Al{AOd}}{Al{AjEl}}}Fb}{{{Al{AOf}}{Al{AjEl}}}Fb}{{{Al{Jd}}{Al{AjEl}}}Fb}{{{Al{AOh}}{Al{AjEl}}}Fb}{cc{}}000000{KlJd}111111111{ce{}{}}0000000{{{Al{AO`}}{Al{Ajc}}}AnHn}`{{}c{}}000000000000000{{{Cf{c}}}e{}{}}00000001111111111111111{{}c{}}000000000{{{Al{AO`}}{Al{AO`}}}{{Hb{Db}}}}{{{Al{Jd}}{Al{Jd}}}{{Hb{Db}}}}``{Alc{}}0000000{AlBh}{AlDn}{{}{{F`{c}}}{}}0000000{c{{F`{e}}}{}{}}0000000{{}{{F`{c}}}{}}0000000{{}{{F`{c{Jj{c}}}}}{}}0000000{AlJl}0000000{ce{}{}}0000000{{}c{}}0000000{{}AO`}{{}c{}}0000000{AOjHb}{AOjAh}````{eg{}{{f{c}}}{}}0{ce{}{}}066{Al{{Al{c}}}{}}0{{{Al{Aj}}}{{Al{Ajc}}}{}}0{{{Cf{c}}}e{}{}}0{{{Al{AOl}}}AOl}{{Al{Al{Ajc}}}An{}}{{AlD`}An}66{{{Al{AOl}}{Al{AjEl}}}Fb}{{{Al{AOn}}{Al{AjEl}}}Fb}0{cc{}}000{{{Fh{D`}}DlDl}{{F`{AOlAOn}}}}{ce{}{}}0{{}c{}}000990000{AOl{{Gn{{Fh{D`}}{Ah{Dl}}}}}}{{}c{}}0{Alc{}}{AlBh}{AlDn}{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{{}{{F`{c}}}{}}0{{}{{F`{c{Jj{c}}}}}{}}0{AlJl}0{ce{}{}}0{{}c{}}0{{}c{}}0{B@`Id}{B@bDl}{B@bId}10````{eg{}{{f{c}}}{}}0{ce{}{}}066{{{Al{Nl}}}{{Al{{Jb{D`}}}}}}{Al{{Al{c}}}{}}0{{{Al{Aj}}}{{Al{Ajc}}}{}}0{NlMh}{{{Cf{c}}}e{}{}}0{{{Al{Nl}}}Nl}{{Al{Al{Ajc}}}An{}}{{AlD`}An}88{{{Al{Nl}}{Af{Dl}}}{{F`{NlB@d}}}}{Alc{{Nf{Hj}}}}0{{{Al{Nl}}{Al{AjEl}}}Fb}{{{Al{B@d}}{Al{AjEl}}}Fb}0{cc{}}000{ce{}{}}0{{}c{}}000::0000{{}c{}}0{{c{Ah{Dl}}H`}Nl{{Ef{Mh}}}}{NlH`}{NlAh}{Alc{}}{AlBh}{AlDn}{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{{}{{F`{c}}}{}}0{{}{{F`{c{Jj{c}}}}}{}}0{AlJl}0{ce{}{}}0{{}c{}}0{{}c{}}0``{eg{}{{f{c}}}{}}0{B@fDn}{ce{}{}}044{Al{{Al{c}}}{}}0{{{Al{Aj}}}{{Al{Ajc}}}{}}0{{{Cf{c}}}e{}{}}0{{{Al{B@f}}}B@f}{{{Al{B@h}}}B@h}{{Al{Al{Ajc}}}An{}}0{{AlD`}An}077{B@hBb}{{}B@f}{{}B@h}{{{Al{B@f}}{Al{B@f}}}Bb}3{{{Al{B@f}}{Al{AjEl}}}Fb}{{{Al{B@h}}{Al{AjEl}}}Fb}{cc{}}000{ce{}{}}07{B@hHb}{{}c{}}000>>0000{{}c{}}0{B@hAOb}3;311{B@fBb}{B@hB@f}{B@hAOf}>{B@hAh}{Alc{}}0{B@hBb}{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{{}{{F`{c}}}{}}0{{}{{F`{c{Jj{c}}}}}{}}0{AlJl}0{ce{}{}}0{{}c{}}07{{}c{}}0","D":"O@f","p":[[5,"Color",0,6127],[1,"f32"],[10,"TransformMatrix",6128],[5,"Radians",0,6129],[5,"Degrees",0,6129],[5,"Pixels",0,6130],[5,"Point",0,6131],[5,"Vector",0,6132],[17,"Output"],[10,"Add",6133],[5,"Rectangle",0,6134],[5,"Size",0,6135],[0,"mut"],[1,"reference",null,null,1],[1,"unit"],[5,"Settings",0,6136],[1,"bool"],[6,"Rotation",0,6137],[5,"Shell",0,6138],[5,"SmolStr",0,6139],[1,"str"],[5,"Transformation",0,6140],[1,"array"],[5,"Element",0,6141],[10,"Widget",5148],[5,"Shadow",0,6142],[5,"BakedParameters",6143],[6,"Background",0,6144],[6,"ContentFit",0,6145],[6,"Length",0,6146],[10,"Clone",6147],[1,"u8"],[6,"Ordering",6148],[10,"Default",6149],[5,"Font",1334],[10,"Float",6150],[10,"Num",6151],[1,"u32"],[5,"String",6152],[10,"PartialEq",6148],[6,"Status",1264],[5,"Padding",3418],[10,"Into",6153,null,1],[10,"Renderer",3474],[1,"u16"],[5,"Formatter",6154],[5,"Error",6154],[6,"Result",6155,null,1],[8,"Result",6154],[10,"Debug",6154],[10,"Display",6154],[5,"Vec",6156],[5,"Arc",6157,null,1],[6,"Cow",6158],[5,"Box",6159,null,1],[10,"Catalog",5380],[10,"Renderer",3671],[5,"Text",5380],[5,"Linear",1538],[6,"Gradient",1538],[8,"Srgb",6160],[8,"Srgba",6160],[1,"tuple",null,null,1],[1,"f64"],[6,"Option",6161,null,1],[1,"i64"],[17,"Item"],[10,"IntoIterator",6162],[1,"char"],[1,"u64"],[10,"Hasher",6163],[10,"Hash",6163],[6,"InputMethod",1887],[1,"usize"],[10,"Fn",6164],[10,"Mul",6133],[10,"Copy",6165],[10,"Neg",6133],[6,"Infallible",6153],[10,"AsRef",6153],[1,"slice"],[6,"RedrawRequest",5607,6166],[10,"FnOnce",6164],[10,"Sub",6133],[5,"OutOfBounds",6167],[5,"TypeId",6168],[6,"Alignment",868],[6,"Horizontal",868],[6,"Vertical",868],[5,"Animation",977],[10,"Float",977],[6,"Easing",977,6169],[5,"Duration",4924,6170],[5,"Instant",4924,6171],[10,"Interpolable",977,6172],[5,"Radius",1095],[5,"Border",1095],[1,"i32"],[6,"Kind",1196],[5,"Null",1196],[10,"Clipboard",1196],[6,"Event",1264],[6,"Family",1334],[6,"Weight",1334],[6,"Stretch",1334],[6,"Style",1334],[5,"ColorStop",1538],[5,"Bytes",1644,6173],[5,"Image",1644],[6,"Handle",1644],[5,"Id",1644],[6,"FilterMethod",1644],[17,"Handle"],[10,"Renderer",1644],[10,"FromIterator",6162],[5,"BytesMut",6174],[10,"Sized",6165],[5,"Screenshot",5977],[5,"PathBuf",6175],[10,"Send",6165],[10,"RangeBounds",6176],[15,"Rgba",1883],[5,"Preedit",1887],[6,"Purpose",1887],[6,"Event",1887],[15,"Open",2035],[5,"Modifiers",2038,6177],[6,"Event",2038,6178],[6,"Location",2038,6179],[5,"Iter",6180],[5,"IterNames",6180],[15,"KeyPressed",2197],[6,"Key",2208],[15,"KeyReleased",2197],[6,"Physical",2208],[6,"Named",2208],[6,"Code",2208],[6,"NativeCode",2208],[10,"Ord",6148],[10,"PartialOrd",6148],[5,"Node",2894,6181],[5,"Limits",2894,6182],[5,"Layout",2894],[10,"DoubleEndedIterator",6183],[6,"Axis",3024],[5,"Tree",5505],[6,"Button",3053,6184],[6,"Cursor",3053,6185],[6,"Event",3053,6186],[6,"ScrollDelta",3053,6186],[6,"Interaction",3053,6187],[15,"WheelScrolled",3262],[15,"CursorMoved",3262],[15,"Lines",3264],[15,"Pixels",3264],[5,"Click",3268],[6,"Kind",3268],[5,"Group",3336,6188],[10,"Overlay",3336],[5,"Style",3474],[5,"Element",3336,6189],[10,"Operation",5201],[5,"Quad",3474],[10,"Headless",3474],[5,"Svg",3557],[5,"Handle",3557],[6,"Data",3557],[10,"Renderer",3557],[5,"Span",3671],[5,"Highlight",3671],[5,"Text",3671],[6,"Shaping",3671],[6,"Wrapping",3671],[6,"LineHeight",3671],[6,"Hit",3671],[6,"Difference",3671],[17,"Font"],[17,"Paragraph"],[17,"Editor"],[10,"Paragraph",4364],[10,"Editor",4009],[10,"IntoFragment",3671],[8,"Fragment",3671],[6,"LineEnding",4009],[6,"Action",4009],[6,"Edit",4009],[6,"Motion",4009],[6,"Direction",4009],[6,"Cursor",4009],[5,"Line",4009],[10,"Highlighter",4285],[5,"Format",4285],[15,"Scroll",4284],[17,"Settings"],[17,"Highlight"],[17,"Iterator"],[5,"Range",6176],[10,"Iterator",6190],[5,"PlainText",4285],[5,"Plain",4364],[5,"Style",4419],[10,"Base",4419],[6,"Theme",4419],[5,"Custom",4419],[5,"Palette",4560],[5,"Extended",4560],[5,"Style",5380],[5,"LazyLock",6191],[5,"Background",4560],[5,"Pair",4560],[5,"Primary",4560],[5,"Secondary",4560],[5,"Success",4560],[5,"Warning",4560],[5,"Danger",4560],[1,"u128"],[10,"Deserializer",6192],[6,"Signature",6193],[6,"Error",6194],[5,"TimeSpec",6195],[10,"Serializer",6196],[5,"TryFromFloatSecsError",6170],[6,"Event",5073],[5,"Finger",5073],[15,"FingerPressed",5140],[15,"FingerMoved",5140],[15,"FingerLifted",5140],[15,"FingerLost",5140],[5,"Id",5148,6197],[6,"State",5505],[5,"Tag",5505],[10,"FnMut",6164],[10,"Any",6168],[6,"Outcome",5201],[10,"Focusable",5248],[10,"Sync",6165],[10,"Scrollable",5292],[10,"TextInput",5371],[1,"fn"],[5,"Count",5248],[5,"AbsoluteOffset",5292],[5,"RelativeOffset",5292],[5,"State",5380],[17,"Class"],[10,"Borrow",6198],[6,"Direction",5607,6199],[6,"Event",5607,6200],[5,"Id",5607,6201],[6,"Level",5607,6202],[6,"Mode",5607,6203],[6,"Position",5607,6204],[6,"UserAttention",5607,6205],[15,"Opened",5907],[5,"Icon",5909],[6,"Error",5909],[15,"ByteCountNotDivisibleBy4",5972],[15,"DimensionsVsPixelCount",5972],[6,"CropError",5977],[5,"PlatformSpecific",6046,6206],[5,"Settings",6046]],"r":[[0,868],[1,977],[2,6127],[3,6144],[4,1095],[5,1196],[6,6127],[7,6144],[8,6145],[9,6145],[10,6145],[11,6129],[12,6141],[13,1264],[14,6145],[15,6146],[16,6146],[17,6146],[18,6137],[19,1334],[20,1538],[21,6144],[22,6140],[23,6134],[24,6135],[25,1644],[26,1887],[27,2894],[28,6146],[29,6145],[30,6131],[31,3336],[32,6129],[33,3418],[34,6130],[35,6131],[36,6129],[37,6129],[38,6129],[39,6134],[40,3474],[41,6137],[42,6145],[43,6136],[44,6142],[45,6138],[46,6146],[47,6135],[48,6139],[49,6137],[50,3557],[51,6127],[52,3671],[53,4419],[54,6140],[55,6135],[56,6132],[57,6127],[58,5148],[59,6130],[60,6135],[61,6132],[62,6127],[63,6139],[64,6141],[65,6129],[66,6129],[67,6144],[68,6127],[69,6145],[70,6146],[71,6130],[72,6131],[73,6134],[74,6137],[75,6136],[76,6142],[77,6138],[78,6135],[79,6140],[80,6132],[81,6129],[82,6129],[83,6130],[84,6130],[85,6131],[86,6134],[87,6135],[88,6132],[89,6129],[92,6136],[93,6137],[94,6138],[95,6134],[96,6139],[97,6141],[98,6129],[99,6129],[100,6144],[101,6127],[102,6145],[103,6146],[104,6130],[105,6131],[106,6134],[107,6137],[108,6136],[109,6142],[110,6138],[111,6135],[112,6140],[113,6132],[114,6139],[115,6141],[116,6129],[117,6129],[118,6144],[119,6127],[120,6145],[121,6146],[122,6130],[123,6131],[124,6134],[125,6137],[126,6136],[127,6142],[128,6138],[129,6135],[130,6140],[131,6132],[132,6139],[133,6140],[134,6139],[135,6141],[136,6141],[137,6127],[138,6142],[140,6139],[141,6139],[142,6141],[143,6141],[144,6141],[145,6129],[146,6129],[147,6144],[148,6127],[149,6145],[150,6146],[151,6130],[152,6131],[153,6134],[154,6137],[155,6136],[156,6142],[157,6138],[158,6135],[159,6140],[160,6132],[161,6139],[162,6141],[163,6129],[164,6129],[165,6144],[166,6127],[167,6145],[168,6146],[169,6130],[170,6131],[171,6134],[172,6137],[173,6136],[174,6142],[175,6138],[176,6135],[177,6140],[178,6132],[179,6139],[180,6141],[181,6129],[182,6129],[183,6144],[184,6127],[185,6145],[186,6146],[187,6130],[188,6131],[189,6134],[190,6137],[191,6136],[192,6142],[193,6138],[194,6135],[195,6140],[196,6132],[197,6138],[198,6134],[199,6134],[200,6134],[202,6139],[203,6129],[204,6129],[205,6144],[206,6127],[207,6145],[208,6146],[209,6130],[210,6131],[211,6134],[212,6137],[213,6136],[214,6142],[215,6135],[216,6140],[217,6132],[218,6139],[219,6129],[220,6129],[221,6144],[222,6127],[223,6145],[224,6146],[225,6130],[226,6131],[227,6134],[228,6137],[229,6136],[230,6142],[231,6135],[232,6140],[233,6132],[234,6139],[235,6129],[236,6129],[237,6144],[238,6127],[239,6145],[240,6146],[241,6130],[242,6131],[243,6134],[244,6137],[245,6136],[246,6142],[247,6135],[248,6140],[249,6132],[250,6139],[251,6142],[253,6139],[254,6141],[255,6129],[256,6129],[257,6144],[258,6127],[259,6145],[260,6146],[261,6130],[262,6131],[263,6134],[264,6137],[265,6136],[266,6142],[267,6138],[268,6135],[269,6140],[270,6132],[271,6134],[272,6139],[273,6127],[274,6145],[275,6130],[276,6131],[277,6134],[278,6137],[279,6136],[280,6142],[281,6135],[282,6140],[283,6132],[284,6136],[285,6136],[286,6137],[287,6139],[288,6131],[289,6134],[290,6129],[291,6129],[292,6130],[293,6130],[294,6130],[295,6146],[296,6139],[297,6139],[298,6139],[299,6139],[300,6139],[301,6129],[302,6129],[303,6129],[304,6129],[305,6144],[306,6127],[307,6145],[308,6146],[309,6130],[310,6131],[311,6134],[312,6137],[313,6142],[314,6135],[315,6140],[316,6132],[318,6138],[319,6134],[320,6135],[321,6141],[322,6146],[323,6145],[324,6146],[325,6139],[326,6139],[327,6129],[328,6129],[329,6129],[330,6144],[331,6127],[332,6145],[333,6145],[334,6146],[335,6130],[336,6131],[337,6131],[338,6134],[339,6137],[340,6136],[341,6142],[342,6138],[343,6135],[344,6140],[345,6132],[347,6136],[348,6139],[349,6139],[350,6139],[351,6139],[352,6139],[353,6139],[354,6139],[355,6139],[356,6141],[357,6141],[358,6141],[359,6129],[360,6129],[361,6129],[362,6129],[363,6129],[364,6129],[365,6129],[366,6144],[367,6144],[368,6144],[369,6144],[370,6127],[371,6127],[372,6127],[373,6127],[374,6127],[375,6145],[376,6146],[377,6146],[378,6146],[379,6146],[380,6130],[381,6130],[382,6130],[383,6131],[384,6131],[385,6131],[386,6134],[387,6134],[388,6137],[389,6137],[390,6137],[391,6136],[392,6142],[393,6138],[394,6135],[395,6135],[396,6135],[397,6135],[398,6135],[399,6140],[400,6132],[401,6132],[402,6132],[403,6139],[404,6141],[405,6129],[406,6129],[407,6144],[408,6127],[409,6145],[410,6146],[411,6130],[412,6131],[413,6134],[414,6137],[415,6136],[416,6142],[417,6138],[418,6135],[419,6140],[420,6132],[421,6129],[422,6129],[423,6129],[424,6129],[425,6139],[426,6139],[427,6139],[428,6139],[429,6127],[430,6127],[431,6127],[432,6127],[433,6127],[434,6139],[435,6141],[436,6129],[437,6129],[438,6144],[439,6127],[440,6145],[441,6146],[442,6130],[443,6131],[444,6134],[445,6137],[446,6136],[447,6142],[448,6138],[449,6135],[450,6140],[451,6132],[452,6139],[453,6129],[454,6129],[455,6127],[457,6139],[458,6145],[459,6135],[460,6134],[461,6135],[462,6136],[465,6138],[466,6138],[467,6134],[468,6134],[469,6139],[470,6141],[471,6129],[472,6129],[473,6144],[474,6127],[475,6145],[476,6146],[477,6130],[478,6131],[479,6134],[480,6137],[481,6136],[482,6142],[483,6138],[484,6135],[485,6140],[486,6132],[487,6139],[488,6141],[489,6129],[490,6129],[491,6144],[492,6127],[493,6145],[494,6146],[495,6130],[496,6131],[497,6134],[498,6137],[499,6136],[500,6142],[501,6138],[502,6135],[503,6140],[504,6132],[505,6139],[506,6141],[507,6129],[508,6129],[509,6144],[510,6127],[511,6145],[512,6146],[513,6130],[514,6131],[515,6134],[516,6137],[517,6136],[518,6142],[519,6138],[520,6135],[521,6140],[522,6132],[523,6139],[524,6141],[525,6129],[526,6129],[527,6144],[528,6127],[529,6145],[530,6146],[531,6130],[532,6131],[533,6134],[534,6137],[535,6136],[536,6142],[537,6138],[538,6135],[539,6140],[540,6132],[541,6139],[542,6141],[543,6129],[544,6129],[545,6144],[546,6127],[547,6145],[548,6146],[549,6130],[550,6131],[551,6134],[552,6137],[553,6136],[554,6142],[555,6138],[556,6135],[557,6140],[558,6132],[559,6127],[560,6127],[561,6139],[562,6141],[563,6129],[564,6129],[565,6144],[566,6127],[567,6145],[568,6146],[569,6130],[570,6131],[571,6134],[572,6137],[573,6136],[574,6142],[575,6138],[576,6135],[577,6140],[578,6132],[579,6138],[580,6138],[581,6127],[582,6127],[583,6139],[584,6138],[585,6138],[586,6146],[587,6139],[588,6138],[589,6134],[592,6139],[593,6141],[594,6135],[595,6138],[596,6135],[598,6129],[599,6129],[600,6129],[601,6130],[602,6130],[603,6131],[604,6134],[605,6134],[606,6134],[607,6135],[608,6135],[609,6135],[610,6140],[611,6132],[612,6132],[613,6132],[615,6139],[616,6141],[617,6131],[618,6134],[619,6138],[620,6135],[621,6132],[622,6139],[623,6139],[624,6139],[625,6139],[626,6127],[627,6145],[628,6130],[629,6131],[630,6134],[631,6137],[632,6136],[633,6142],[634,6135],[635,6140],[636,6132],[637,6142],[638,6140],[641,6127],[642,6139],[643,6129],[644,6129],[645,6129],[646,6129],[647,6130],[648,6134],[649,6138],[650,6127],[651,6137],[652,6137],[653,6138],[654,6129],[656,6138],[657,6138],[658,6138],[659,6138],[660,6138],[661,6134],[662,6135],[663,6140],[664,6144],[665,6127],[666,6140],[667,6134],[668,6134],[669,6134],[670,6129],[671,6131],[672,6131],[673,6134],[674,6135],[675,6132],[676,6129],[681,6129],[682,6139],[683,6129],[684,6129],[685,6144],[686,6127],[687,6145],[688,6146],[689,6130],[690,6131],[691,6134],[692,6137],[693,6136],[694,6142],[695,6135],[696,6140],[697,6132],[698,6139],[699,6129],[700,6145],[701,6131],[702,6139],[703,6139],[704,6129],[705,6145],[706,6131],[708,6140],[709,6140],[710,6139],[711,6141],[712,6129],[713,6129],[714,6144],[715,6127],[716,6145],[717,6146],[718,6130],[719,6131],[720,6134],[721,6137],[722,6136],[723,6142],[724,6138],[725,6135],[726,6140],[727,6132],[728,6139],[729,6141],[730,6129],[731,6129],[732,6144],[733,6127],[734,6145],[735,6146],[736,6130],[737,6131],[738,6134],[739,6137],[740,6136],[741,6142],[742,6138],[743,6135],[744,6140],[745,6132],[746,6139],[747,6141],[748,6129],[749,6129],[750,6144],[751,6127],[752,6145],[753,6146],[754,6130],[755,6131],[756,6134],[757,6137],[758,6136],[759,6142],[760,6138],[761,6135],[762,6140],[763,6132],[764,6139],[765,6141],[766,6129],[767,6129],[768,6144],[769,6127],[770,6145],[771,6146],[772,6130],[773,6131],[774,6134],[775,6137],[776,6136],[777,6142],[778,6138],[779,6135],[780,6140],[781,6132],[782,6139],[783,6141],[784,6129],[785,6129],[786,6144],[787,6127],[788,6145],[789,6146],[790,6130],[791,6131],[792,6134],[793,6137],[794,6136],[795,6142],[796,6138],[797,6135],[798,6140],[799,6132],[800,6139],[801,6141],[802,6129],[803,6129],[804,6144],[805,6127],[806,6145],[807,6146],[808,6130],[809,6131],[810,6134],[811,6137],[812,6136],[813,6142],[814,6138],[815,6135],[816,6140],[817,6132],[818,6139],[819,6141],[820,6129],[821,6129],[822,6144],[823,6127],[824,6145],[825,6146],[826,6130],[827,6131],[828,6134],[829,6137],[830,6136],[831,6142],[832,6138],[833,6135],[834,6140],[835,6132],[836,6134],[837,6139],[838,6141],[839,6129],[840,6129],[841,6144],[842,6127],[843,6145],[844,6146],[845,6130],[846,6131],[847,6134],[848,6137],[849,6136],[850,6142],[851,6138],[852,6135],[853,6140],[854,6132],[856,6134],[857,6135],[859,6134],[860,6134],[861,6134],[862,6131],[863,6134],[864,6132],[865,6131],[866,6134],[867,6132],[978,6169],[979,6169],[980,6169],[981,6169],[982,6169],[983,6169],[984,6169],[985,6169],[986,6169],[987,6169],[988,6169],[989,6169],[990,6169],[991,6169],[992,6169],[993,6169],[994,6169],[995,6169],[996,6169],[997,6169],[998,6169],[999,6169],[1000,6169],[1001,6169],[1002,6169],[1003,6169],[1004,6169],[1005,6169],[1006,6169],[1007,6169],[1008,6169],[1009,6169],[1011,6172],[1012,6169],[1013,6169],[1015,6169],[1017,6169],[1020,6169],[1022,6169],[1024,6169],[1026,6169],[1028,6169],[1030,6169],[1032,6169],[1034,6169],[1038,6169],[1040,6169],[1042,6169],[1044,6169],[1046,6169],[1052,6172],[1053,6169],[1055,6169],[1057,6169],[1059,6169],[1061,6169],[1063,6169],[1067,6169],[1073,6169],[1075,6169],[1077,6169],[1079,6169],[1081,6169],[1083,6169],[1085,6169],[1087,6169],[1089,6169],[1093,6169],[1644,6173],[1656,6173],[1661,6173],[1662,6173],[1667,6173],[1672,6173],[1673,6173],[1674,6173],[1679,6173],[1684,6173],[1689,6173],[1690,6173],[1691,6173],[1696,6173],[1701,6173],[1706,6173],[1708,6173],[1713,6173],[1714,6173],[1715,6173],[1717,6173],[1719,6173],[1720,6173],[1721,6173],[1722,6173],[1723,6173],[1724,6173],[1725,6173],[1726,6173],[1727,6173],[1728,6173],[1735,6173],[1736,6173],[1737,6173],[1742,6173],[1743,6173],[1744,6173],[1745,6173],[1746,6173],[1747,6173],[1748,6173],[1749,6173],[1757,6173],[1763,6173],[1764,6173],[1767,6173],[1768,6173],[1774,6173],[1778,6173],[1783,6173],[1788,6173],[1793,6173],[1798,6173],[1803,6173],[1804,6173],[1805,6173],[1810,6173],[1811,6173],[1812,6173],[1814,6173],[1816,6173],[1820,6173],[1821,6173],[1822,6173],[1823,6173],[1824,6173],[1825,6173],[1827,6173],[1830,6173],[1831,6173],[1834,6173],[1835,6173],[1836,6173],[1841,6173],[1842,6173],[1847,6173],[1852,6173],[1857,6173],[1862,6173],[1863,6173],[1868,6173],[1873,6173],[1878,6173],[2038,6177],[2039,6177],[2040,6177],[2041,6178],[2042,2208],[2043,6178],[2044,6178],[2045,6177],[2046,6179],[2047,6179],[2048,6177],[2049,6178],[2050,6179],[2051,6179],[2052,6177],[2053,6179],[2054,6178],[2055,6179],[2056,6177],[2057,6177],[2058,6177],[2059,6178],[2060,6179],[2061,6177],[2062,6178],[2063,6179],[2064,6177],[2065,6177],[2066,6177],[2067,6177],[2068,6177],[2069,6177],[2070,6177],[2071,6177],[2072,6177],[2073,6178],[2074,6179],[2075,6177],[2076,6178],[2077,6179],[2078,6177],[2079,6178],[2080,6179],[2081,6177],[2082,6178],[2083,6179],[2084,6177],[2085,6178],[2086,6179],[2087,6177],[2088,6178],[2089,6179],[2090,6177],[2091,6177],[2092,6177],[2093,6177],[2094,6178],[2095,6179],[2096,6177],[2097,6177],[2098,6177],[2099,6177],[2100,6177],[2101,6177],[2102,6178],[2103,6179],[2104,6177],[2105,6177],[2106,6178],[2107,6179],[2108,6177],[2109,6177],[2110,6177],[2111,6177],[2112,6177],[2113,6178],[2114,6179],[2115,6177],[2116,6178],[2117,6179],[2118,6177],[2119,6177],[2120,6177],[2121,6177],[2122,6177],[2123,6177],[2124,6177],[2125,6178],[2126,6179],[2127,6177],[2128,6177],[2129,6177],[2130,6177],[2131,6177],[2132,6178],[2133,6179],[2134,6177],[2135,6178],[2136,6179],[2137,6177],[2138,6178],[2139,6179],[2140,6177],[2141,6178],[2142,6179],[2143,6177],[2144,6178],[2145,6179],[2146,6177],[2147,6177],[2148,6178],[2149,6179],[2150,6177],[2151,6177],[2152,6177],[2153,6177],[2154,6177],[2155,6177],[2157,6177],[2158,6177],[2159,6177],[2160,6177],[2161,6177],[2162,6177],[2163,6177],[2164,6177],[2165,6177],[2166,6177],[2167,6177],[2168,6178],[2169,6179],[2170,6177],[2171,6177],[2172,6178],[2173,6179],[2174,6177],[2175,6178],[2176,6179],[2177,6177],[2178,6178],[2179,6179],[2180,6177],[2181,6178],[2182,6179],[2183,6177],[2184,6178],[2185,6179],[2186,6177],[2187,6178],[2188,6179],[2189,6177],[2190,6178],[2191,6179],[2192,6177],[2193,6177],[2194,6178],[2195,6179],[2196,6177],[2895,6182],[2896,6182],[2897,6181],[2898,6182],[2899,6181],[2901,6181],[2902,6181],[2903,6182],[2904,6181],[2906,6182],[2907,6181],[2910,6182],[2911,6181],[2913,6182],[2914,6181],[2916,6181],[2918,6182],[2919,6181],[2921,6181],[2923,6182],[2924,6181],[2926,6182],[2927,6181],[2929,6182],[2930,6181],[2932,6182],[2933,6181],[2936,6181],[2937,6181],[2938,6182],[2940,6182],[2941,6181],[2943,6182],[2944,6181],[2946,6182],[2947,6181],[2949,6182],[2950,6181],[2952,6182],[2953,6182],[2954,6181],[2956,6182],[2957,6181],[2959,6182],[2960,6181],[2962,6182],[2963,6181],[2965,6182],[2966,6181],[2968,6182],[2969,6181],[2971,6182],[2972,6182],[2973,6182],[2974,6182],[2975,6182],[2976,6182],[2977,6182],[2978,6181],[2979,6181],[2980,6182],[2981,6181],[2984,6181],[2988,6182],[2989,6182],[2990,6181],[2992,6182],[2993,6181],[2995,6181],[2996,6181],[2997,6182],[2998,6181],[3000,6182],[3001,6181],[3003,6182],[3004,6181],[3006,6182],[3007,6181],[3009,6182],[3010,6181],[3012,6182],[3013,6181],[3015,6182],[3016,6181],[3018,6182],[3019,6181],[3021,6182],[3022,6181],[3053,6185],[3054,6184],[3055,6184],[3056,6186],[3057,6186],[3058,6187],[3059,3268],[3060,6187],[3061,6187],[3062,6185],[3063,6186],[3064,6186],[3065,6186],[3066,6186],[3067,6184],[3068,6187],[3069,6187],[3070,6187],[3071,6187],[3072,6187],[3073,6184],[3074,6185],[3075,6186],[3076,6184],[3077,6187],[3078,6187],[3079,6187],[3080,6184],[3081,6186],[3082,6187],[3083,6187],[3084,6187],[3085,6187],[3086,6187],[3087,6184],[3088,6186],[3089,6187],[3090,6185],[3091,6186],[3092,6187],[3093,6187],[3094,6187],[3095,6184],[3096,6185],[3097,6186],[3098,6186],[3099,6187],[3100,6184],[3101,6185],[3102,6186],[3103,6186],[3104,6187],[3105,6184],[3106,6185],[3107,6186],[3108,6186],[3109,6187],[3110,6184],[3111,6185],[3112,6186],[3113,6186],[3114,6187],[3115,6184],[3116,6185],[3117,6186],[3118,6186],[3119,6187],[3120,6184],[3121,6185],[3122,6186],[3123,6186],[3124,6187],[3126,6184],[3127,6185],[3128,6186],[3129,6186],[3130,6187],[3131,6184],[3132,6185],[3133,6186],[3134,6186],[3135,6187],[3136,6184],[3137,6185],[3138,6186],[3139,6186],[3140,6187],[3141,6187],[3142,6184],[3143,6185],[3144,6186],[3145,6186],[3146,6187],[3147,6185],[3148,6187],[3149,6184],[3150,6185],[3151,6186],[3152,6186],[3153,6187],[3154,6184],[3155,6185],[3156,6186],[3157,6186],[3158,6187],[3159,6184],[3160,6185],[3161,6186],[3162,6186],[3163,6187],[3164,6184],[3165,6185],[3166,6186],[3167,6186],[3168,6187],[3169,6184],[3170,6185],[3171,6186],[3172,6186],[3173,6187],[3174,6184],[3175,6184],[3176,6185],[3177,6186],[3178,6186],[3179,6187],[3180,6184],[3181,6185],[3182,6186],[3183,6186],[3184,6187],[3185,6184],[3186,6185],[3187,6186],[3188,6186],[3189,6187],[3190,6184],[3191,6185],[3192,6186],[3193,6186],[3194,6187],[3195,6184],[3196,6185],[3197,6186],[3198,6186],[3199,6187],[3200,6184],[3201,6185],[3202,6186],[3203,6186],[3204,6187],[3205,6185],[3206,6185],[3207,6185],[3208,6185],[3209,6185],[3210,6185],[3211,6187],[3212,6187],[3213,6185],[3214,6185],[3215,6185],[3216,6185],[3217,6184],[3218,6185],[3219,6186],[3220,6186],[3221,6187],[3222,6184],[3223,6185],[3224,6186],[3225,6186],[3226,6187],[3227,6184],[3228,6185],[3229,6186],[3230,6186],[3231,6187],[3232,6184],[3233,6185],[3234,6186],[3235,6186],[3236,6187],[3237,6184],[3238,6185],[3239,6186],[3240,6186],[3241,6187],[3242,6184],[3243,6185],[3244,6186],[3245,6186],[3246,6187],[3247,6184],[3248,6185],[3249,6186],[3250,6186],[3251,6187],[3252,6184],[3253,6185],[3254,6186],[3255,6186],[3256,6187],[3257,6184],[3258,6185],[3259,6186],[3260,6186],[3261,6187],[3336,6189],[3337,6188],[3339,6189],[3340,6188],[3341,6189],[3342,6188],[3343,6189],[3344,6188],[3345,6189],[3346,6188],[3347,6189],[3348,6188],[3349,6189],[3350,6188],[3351,6189],[3352,6188],[3353,6188],[3355,6189],[3356,6188],[3357,6189],[3358,6189],[3359,6188],[3360,6189],[3361,6188],[3363,6189],[3364,6188],[3365,6189],[3366,6188],[3367,6189],[3368,6188],[3369,6189],[3370,6188],[3371,6189],[3372,6188],[3373,6189],[3374,6188],[3375,6189],[3376,6188],[3377,6189],[3378,6188],[3381,6189],[3382,6188],[3383,6189],[3384,6189],[3385,6188],[3387,6189],[3388,6188],[3389,6188],[3390,6189],[3391,6188],[3393,6189],[3394,6188],[3395,6188],[3397,6188],[3398,6189],[3399,6188],[3400,6189],[3401,6188],[3402,6189],[3403,6188],[3404,6189],[3405,6188],[3406,6189],[3407,6188],[3408,6189],[3409,6188],[3410,6189],[3411,6188],[3412,6189],[3413,6188],[3415,6189],[3416,6188],[3417,6188],[3680,4009],[3686,4285],[3694,4364],[4440,4560],[4924,6170],[4925,6171],[4926,6170],[4927,6170],[4928,6170],[4929,6170],[4930,6170],[4931,6170],[4932,6170],[4933,6171],[4934,6170],[4935,6171],[4936,6170],[4937,6171],[4938,6170],[4939,6171],[4940,6170],[4941,6171],[4942,6170],[4943,6170],[4944,6170],[4945,6170],[4946,6170],[4947,6170],[4948,6170],[4949,6170],[4950,6170],[4951,6171],[4952,6170],[4953,6170],[4954,6171],[4955,6170],[4956,6171],[4957,6170],[4958,6171],[4959,6170],[4960,6170],[4961,6171],[4962,6170],[4963,6171],[4964,6170],[4965,6171],[4966,6170],[4967,6171],[4968,6170],[4969,6171],[4970,6170],[4971,6171],[4972,6170],[4973,6171],[4974,6170],[4976,6170],[4977,6170],[4978,6170],[4979,6170],[4980,6170],[4981,6170],[4982,6170],[4983,6170],[4984,6170],[4985,6171],[4986,6171],[4987,6171],[4988,6171],[4989,6170],[4990,6171],[4991,6170],[4992,6171],[4993,6170],[4994,6170],[4995,6171],[4996,6170],[4997,6170],[4998,6170],[4999,6170],[5000,6170],[5001,6170],[5002,6170],[5003,6170],[5004,6170],[5005,6170],[5006,6171],[5007,6170],[5008,6170],[5009,6171],[5010,6170],[5012,6171],[5013,6170],[5014,6171],[5015,6170],[5016,6171],[5017,6170],[5018,6171],[5019,6170],[5020,6171],[5021,6170],[5022,6171],[5023,6170],[5024,6170],[5027,6170],[5028,6170],[5029,6170],[5030,6170],[5031,6170],[5032,6171],[5033,6170],[5034,6171],[5035,6170],[5036,6170],[5037,6171],[5038,6170],[5039,6170],[5041,6170],[5042,6170],[5043,6171],[5044,6171],[5045,6170],[5046,6171],[5047,6170],[5048,6170],[5049,6170],[5050,6170],[5051,6170],[5052,6170],[5053,6171],[5054,6170],[5055,6171],[5056,6170],[5057,6171],[5058,6170],[5059,6170],[5060,6170],[5061,6171],[5062,6170],[5063,6171],[5064,6170],[5065,6171],[5066,6170],[5067,6171],[5068,6170],[5069,6171],[5070,6170],[5071,6171],[5072,6170],[5148,6197],[5149,5201],[5150,5380],[5151,5505],[5153,6197],[5154,6197],[5155,6197],[5156,6197],[5157,6197],[5158,6197],[5160,6197],[5161,6197],[5162,6197],[5163,6197],[5166,6197],[5167,6197],[5168,6197],[5169,6197],[5170,6197],[5171,6197],[5172,6197],[5173,6197],[5174,6197],[5175,6197],[5176,6197],[5177,6197],[5180,6197],[5189,6197],[5191,6197],[5192,6197],[5193,6197],[5194,6197],[5195,6197],[5196,6197],[5197,6197],[5198,6197],[5200,6197],[5202,5248],[5206,5292],[5208,5371],[5382,3671],[5383,3671],[5388,3671],[5607,6202],[5608,6202],[5609,6166],[5610,6204],[5611,6200],[5612,6200],[5613,6205],[5614,6204],[5615,6199],[5616,6199],[5617,6200],[5618,6200],[5619,6200],[5620,6200],[5621,6200],[5622,6203],[5623,6203],[5624,5909],[5625,6201],[5626,6205],[5627,6202],[5628,6203],[5629,6200],[5630,6166],[5631,6202],[5632,6199],[5633,6199],[5634,6199],[5635,6200],[5636,6204],[5637,6166],[5638,6200],[5639,6200],[5640,5977],[5641,6046],[5642,6199],[5643,6199],[5644,6199],[5645,6204],[5646,6204],[5647,6200],[5648,6205],[5649,6166],[5650,6199],[5651,6203],[5652,6199],[5653,6200],[5654,6201],[5655,6202],[5656,6203],[5657,6204],[5658,6166],[5659,6205],[5660,6199],[5661,6200],[5662,6201],[5663,6202],[5664,6203],[5665,6204],[5666,6166],[5667,6205],[5668,6199],[5669,6200],[5670,6201],[5671,6202],[5672,6203],[5673,6204],[5674,6166],[5675,6205],[5676,6199],[5677,6200],[5678,6201],[5679,6202],[5680,6203],[5681,6204],[5682,6166],[5683,6205],[5684,6199],[5685,6200],[5686,6201],[5687,6202],[5688,6203],[5689,6204],[5690,6166],[5691,6205],[5692,6199],[5693,6200],[5694,6201],[5695,6202],[5696,6203],[5697,6204],[5698,6166],[5699,6205],[5700,6199],[5701,6200],[5702,6201],[5703,6202],[5704,6203],[5705,6204],[5706,6166],[5707,6205],[5708,6199],[5709,6200],[5710,6201],[5711,6202],[5712,6203],[5713,6204],[5714,6166],[5715,6205],[5716,6199],[5717,6200],[5718,6201],[5719,6202],[5720,6203],[5721,6204],[5722,6166],[5723,6205],[5724,6201],[5725,6166],[5726,6199],[5727,6200],[5728,6201],[5729,6202],[5730,6203],[5731,6204],[5732,6166],[5733,6205],[5734,6202],[5735,6204],[5736,6200],[5737,6201],[5738,6202],[5739,6203],[5740,6204],[5741,6166],[5742,6199],[5743,6200],[5744,6201],[5745,6201],[5746,6202],[5747,6203],[5748,6204],[5749,6166],[5750,6205],[5751,6199],[5752,6200],[5753,6201],[5754,6202],[5755,6203],[5756,6204],[5757,6166],[5758,6166],[5759,6205],[5760,6199],[5761,6200],[5762,6201],[5763,6202],[5764,6203],[5765,6204],[5766,6166],[5767,6205],[5768,6199],[5769,6200],[5770,6201],[5771,6202],[5772,6203],[5773,6204],[5774,6166],[5775,6205],[5776,6201],[5778,6199],[5779,6200],[5780,6201],[5781,6202],[5782,6203],[5783,6204],[5784,6166],[5785,6205],[5786,6199],[5787,6200],[5788,6201],[5789,6202],[5790,6203],[5791,6204],[5792,6166],[5793,6205],[5794,6199],[5795,6200],[5796,6201],[5797,6202],[5798,6203],[5799,6204],[5800,6166],[5801,6205],[5802,6199],[5803,6200],[5804,6201],[5805,6202],[5806,6203],[5807,6204],[5808,6166],[5809,6205],[5810,6199],[5811,6200],[5812,6201],[5813,6202],[5814,6203],[5815,6204],[5816,6166],[5817,6205],[5818,6199],[5819,6200],[5820,6201],[5821,6202],[5822,6203],[5823,6204],[5824,6166],[5825,6205],[5826,6202],[5827,6204],[5828,6201],[5829,6166],[5832,6199],[5833,6200],[5834,6201],[5835,6202],[5836,6203],[5837,6204],[5838,6166],[5839,6205],[5840,6201],[5841,6201],[5842,6199],[5843,6200],[5844,6201],[5845,6202],[5846,6203],[5847,6204],[5848,6166],[5849,6205],[5850,6199],[5851,6200],[5852,6201],[5853,6202],[5854,6203],[5855,6204],[5856,6166],[5857,6205],[5858,6199],[5859,6200],[5860,6201],[5861,6202],[5862,6203],[5863,6204],[5864,6166],[5865,6205],[5866,6199],[5867,6200],[5868,6201],[5869,6202],[5870,6203],[5871,6204],[5872,6166],[5873,6205],[5874,6199],[5875,6200],[5876,6201],[5877,6202],[5878,6203],[5879,6204],[5880,6166],[5881,6205],[5882,6199],[5883,6200],[5884,6201],[5885,6202],[5886,6203],[5887,6204],[5888,6166],[5889,6205],[5890,6199],[5891,6200],[5892,6201],[5893,6202],[5894,6203],[5895,6204],[5896,6166],[5897,6205],[5898,6201],[5899,6199],[5900,6200],[5901,6201],[5902,6202],[5903,6203],[5904,6204],[5905,6166],[5906,6205],[6046,6206],[6048,6206],[6050,6206],[6051,6206],[6053,6206],[6055,6206],[6057,6206],[6059,6206],[6061,6206],[6063,6206],[6065,6206],[6067,6206],[6070,6206],[6072,6206],[6074,6206],[6076,6206],[6078,6206],[6080,6206],[6084,6206],[6086,6206],[6088,6206],[6090,6206],[6092,6206],[6094,6206],[6100,6206],[6102,6206],[6107,6206],[6110,6206],[6112,6206],[6114,6206],[6116,6206],[6118,6206],[6120,6206],[6122,6206],[6125,6206]],"b":[[81,"impl-Add%3CDegrees%3E-for-Radians"],[82,"impl-Add-for-Radians"],[83,"impl-Add%3Cf32%3E-for-Pixels"],[84,"impl-Add-for-Pixels"],[143,"impl-Borrow%3Cdyn+Widget%3CMessage,+Theme,+Renderer%3E%3E-for-Element%3C\'a,+Message,+Theme,+Renderer%3E"],[144,"impl-Borrow%3Cdyn+Widget%3CMessage,+Theme,+Renderer%3E%3E-for-%26Element%3C\'a,+Message,+Theme,+Renderer%3E"],[290,"impl-Div%3Cf32%3E-for-Radians"],[291,"impl-Div-for-Radians"],[292,"impl-Div-for-Pixels"],[293,"impl-Div%3Cf32%3E-for-Pixels"],[294,"impl-Div%3Cu32%3E-for-Pixels"],[296,"impl-PartialEq%3C%26str%3E-for-SmolStr"],[297,"impl-PartialEq%3C%26String%3E-for-SmolStr"],[298,"impl-PartialEq%3CString%3E-for-SmolStr"],[299,"impl-PartialEq%3Cstr%3E-for-SmolStr"],[300,"impl-PartialEq-for-SmolStr"],[301,"impl-PartialEq-for-Degrees"],[302,"impl-PartialEq%3Cf32%3E-for-Degrees"],[303,"impl-PartialEq%3Cf32%3E-for-Radians"],[304,"impl-PartialEq-for-Radians"],[325,"impl-Display-for-SmolStr"],[326,"impl-Debug-for-SmolStr"],[328,"impl-Display-for-Radians"],[329,"impl-Debug-for-Radians"],[332,"impl-Display-for-ContentFit"],[333,"impl-Debug-for-ContentFit"],[336,"impl-Debug-for-Point%3CT%3E"],[337,"impl-Display-for-Point%3CT%3E"],[348,"impl-From%3C%26String%3E-for-SmolStr"],[350,"impl-From%3CArc%3Cstr%3E%3E-for-SmolStr"],[351,"impl-From%3CCow%3C\'a,+str%3E%3E-for-SmolStr"],[352,"impl-From%3CBox%3Cstr%3E%3E-for-SmolStr"],[353,"impl-From%3CString%3E-for-SmolStr"],[354,"impl-From%3C%26str%3E-for-SmolStr"],[355,"impl-From%3C%26mut+str%3E-for-SmolStr"],[356,"impl-From%3C%26str%3E-for-Element%3C\'a,+Message,+Theme,+Renderer%3E"],[357,"impl-From%3CText%3C\'a,+Theme,+Renderer%3E%3E-for-Element%3C\'a,+Message,+Theme,+Renderer%3E"],[359,"impl-From%3Cf32%3E-for-Degrees"],[360,"impl-From%3Cu8%3E-for-Degrees"],[362,"impl-From%3Cf32%3E-for-Radians"],[363,"impl-From%3Cu8%3E-for-Radians"],[365,"impl-From%3CDegrees%3E-for-Radians"],[366,"impl-From%3CColor%3E-for-Background"],[367,"impl-From%3CLinear%3E-for-Background"],[368,"impl-From%3CGradient%3E-for-Background"],[370,"impl-From%3CRgb%3E-for-Color"],[372,"impl-From%3C%5Bf32;+3%5D%3E-for-Color"],[373,"impl-From%3C%5Bf32;+4%5D%3E-for-Color"],[374,"impl-From%3CAlpha%3CRgb,+f32%3E%3E-for-Color"],[376,"impl-From%3Cu32%3E-for-Length"],[377,"impl-From%3Cf32%3E-for-Length"],[378,"impl-From%3CPixels%3E-for-Length"],[380,"impl-From%3Cu32%3E-for-Pixels"],[382,"impl-From%3Cf32%3E-for-Pixels"],[383,"impl-From%3C%5BT;+2%5D%3E-for-Point%3CT%3E"],[385,"impl-From%3C(T,+T)%3E-for-Point%3CT%3E"],[388,"impl-From%3Cf32%3E-for-Rotation"],[390,"impl-From%3CRadians%3E-for-Rotation"],[395,"impl-From%3CVector%3CT%3E%3E-for-Size%3CT%3E"],[396,"impl-From%3C(T,+T)%3E-for-Size%3CT%3E"],[397,"impl-From%3C%5BT;+2%5D%3E-for-Size%3CT%3E"],[398,"impl-From%3CPadding%3E-for-Size"],[401,"impl-From%3CSize%3CT%3E%3E-for-Vector%3CT%3E"],[402,"impl-From%3C%5BT;+2%5D%3E-for-Vector%3CT%3E"],[425,"impl-FromIterator%3C%26String%3E-for-SmolStr"],[426,"impl-FromIterator%3Cchar%3E-for-SmolStr"],[427,"impl-FromIterator%3CString%3E-for-SmolStr"],[428,"impl-FromIterator%3C%26str%3E-for-SmolStr"],[599,"impl-Mul-for-Radians"],[600,"impl-Mul%3Cf32%3E-for-Radians"],[601,"impl-Mul%3Cf32%3E-for-Pixels"],[602,"impl-Mul-for-Pixels"],[604,"impl-Mul%3Cf32%3E-for-Rectangle"],[605,"impl-Mul%3CTransformation%3E-for-Rectangle"],[606,"impl-Mul%3CVector%3CT%3E%3E-for-Rectangle%3CT%3E"],[607,"impl-Mul%3CVector%3CT%3E%3E-for-Size%3CT%3E"],[608,"impl-Mul%3CTransformation%3E-for-Size"],[609,"impl-Mul%3CT%3E-for-Size%3CT%3E"],[611,"impl-Mul%3CT%3E-for-Vector%3CT%3E"],[612,"impl-Mul%3CTransformation%3E-for-Vector"],[643,"impl-PartialOrd%3Cf32%3E-for-Degrees"],[644,"impl-PartialOrd-for-Degrees"],[645,"impl-PartialOrd-for-Radians"],[646,"impl-PartialOrd%3Cf32%3E-for-Radians"],[671,"impl-Sub-for-Point%3CT%3E"],[672,"impl-Sub%3CVector%3CT%3E%3E-for-Point%3CT%3E"],[917,"impl-From%3CHorizontal%3E-for-Alignment"],[918,"impl-From%3CVertical%3E-for-Alignment"],[1135,"impl-From%3Ci32%3E-for-Radius"],[1136,"impl-From%3Cu8%3E-for-Radius"],[1138,"impl-From%3Cu16%3E-for-Radius"],[1139,"impl-From%3Cf32%3E-for-Radius"],[1722,"impl-PartialEq%3CBytesMut%3E-for-Bytes"],[1723,"impl-PartialEq%3C%26T%3E-for-Bytes"],[1724,"impl-PartialEq%3CString%3E-for-Bytes"],[1725,"impl-PartialEq%3CVec%3Cu8%3E%3E-for-Bytes"],[1726,"impl-PartialEq%3Cstr%3E-for-Bytes"],[1727,"impl-PartialEq%3C%5Bu8%5D%3E-for-Bytes"],[1728,"impl-PartialEq-for-Bytes"],[1735,"impl-LowerHex-for-Bytes"],[1736,"impl-UpperHex-for-Bytes"],[1737,"impl-Debug-for-Bytes"],[1742,"impl-From%3C%26%5Bu8%5D%3E-for-Bytes"],[1744,"impl-From%3C%26str%3E-for-Bytes"],[1745,"impl-From%3CVec%3Cu8%3E%3E-for-Bytes"],[1746,"impl-From%3CBox%3C%5Bu8%5D%3E%3E-for-Bytes"],[1747,"impl-From%3CString%3E-for-Bytes"],[1748,"impl-From%3CBytesMut%3E-for-Bytes"],[1749,"impl-From%3CScreenshot%3E-for-Bytes"],[1753,"impl-From%3CT%3E-for-Handle"],[1754,"impl-From%3C%26Handle%3E-for-Handle"],[1803,"impl-IntoIterator-for-%26Bytes"],[1804,"impl-IntoIterator-for-Bytes"],[1820,"impl-PartialOrd%3Cstr%3E-for-Bytes"],[1821,"impl-PartialOrd-for-Bytes"],[1822,"impl-PartialOrd%3C%26T%3E-for-Bytes"],[1823,"impl-PartialOrd%3CString%3E-for-Bytes"],[1824,"impl-PartialOrd%3C%5Bu8%5D%3E-for-Bytes"],[1825,"impl-PartialOrd%3CVec%3Cu8%3E%3E-for-Bytes"],[2069,"impl-Modifiers"],[2070,"impl-Flags-for-Modifiers"],[2108,"impl-UpperHex-for-Modifiers"],[2109,"impl-Debug-for-Modifiers"],[2110,"impl-Binary-for-Modifiers"],[2111,"impl-Octal-for-Modifiers"],[2112,"impl-LowerHex-for-Modifiers"],[2120,"impl-Modifiers"],[2121,"impl-Flags-for-Modifiers"],[2781,"impl-PartialEq-for-Code"],[2782,"impl-PartialEq%3CPhysical%3E-for-Code"],[2783,"impl-PartialEq%3CPhysical%3E-for-NativeCode"],[2784,"impl-PartialEq-for-NativeCode"],[2785,"impl-PartialEq%3CCode%3E-for-Physical"],[2786,"impl-PartialEq-for-Physical"],[2787,"impl-PartialEq%3CNativeCode%3E-for-Physical"],[3394,"impl-Group%3C\'a,+Message,+Theme,+Renderer%3E"],[3395,"impl-Overlay%3CMessage,+Theme,+Renderer%3E-for-Group%3C\'_,+Message,+Theme,+Renderer%3E"],[3439,"impl-From%3Cu16%3E-for-Padding"],[3440,"impl-From%3CPixels%3E-for-Padding"],[3441,"impl-From%3C%5Bu16;+2%5D%3E-for-Padding"],[3442,"impl-From%3Cf32%3E-for-Padding"],[3443,"impl-From%3C%5Bf32;+2%5D%3E-for-Padding"],[3830,"impl-From%3CPixels%3E-for-LineHeight"],[3831,"impl-From%3Cf32%3E-for-LineHeight"],[3900,"impl-IntoFragment%3C\'a%3E-for-%26Cow%3C\'_,+str%3E"],[3901,"impl-IntoFragment%3C\'a%3E-for-Cow%3C\'a,+str%3E"],[4484,"impl-Catalog-for-Theme"],[4485,"impl-Default-for-Theme"],[4490,"impl-Display-for-Theme"],[4491,"impl-Debug-for-Theme"],[4492,"impl-Display-for-Custom"],[4493,"impl-Debug-for-Custom"],[5043,"impl-Sub%3CDuration%3E-for-Instant"],[5044,"impl-Sub-for-Instant"],[5051,"impl-Sum%3C%26Duration%3E-for-Duration"],[5052,"impl-Sum-for-Duration"],[5471,"impl-Text%3C\'a,+Theme,+Renderer%3E"],[5472,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-Text%3C\'_,+Theme,+Renderer%3E"],[5744,"impl-Display-for-Id"],[5745,"impl-Debug-for-Id"],[5931,"impl-Display-for-Error"],[5932,"impl-Debug-for-Error"],[6004,"impl-Debug-for-CropError"],[6005,"impl-Display-for-CropError"]],"c":"OjAAAAEAAAAAAAAAEAAAAHAC","e":"OzAAAAEAAGwQpwEBAAEABQABAA4AAAAUAAEAGgACACAAAAAiAAAAKQAAADMAAAA1AAEAOwAAAEAAGgBhACYAjQA4AMsAMAD+ABEAEQELACABAAAjAQQAKQEUAEYBFABdAQAAXwEHAGgBAQBrAQEAbgEDAHMBAAB1AQIAeQECAH0BAAB/AQEAggEBAIUBAACHAQAAjAEDAJIBGwCzARQAygECAOgBRwAyAhEASAIAAEwCAABRAgAAVwIPAGgCAABwAgAAcgILAIMCBQCPAgAAnwIGAKsCGADHAn0ARgMRAHEDIwCWAwIAmwMJAKgDKQDTAx8A9QMGAP0DDgAPBAMAFQQDAB0EAAAgBAkALAQAADIEEABGBAEASgQJAFwEBwBnBAcAcAQBAHMEBQB7BAkAiAQBAJAEAQCaBA8AsgQWAMsEAwDRBAkA3AQSAPAEAAD6BBcAFAUDABoFCQAlBRQAPAUEAEQFAQBHBQAASgUDAE8FAgBVBQIAWQU7AJYFBACgBQ4AtAUdANQFLAAHBgIADQYXACYGCgA0BgUAPQYOAE0GAABSBhoAeQYhAJwGFQCzBgMAuAYNAMgGBwDRBgYA2gYBAN4GBADkBgAA6QYEAO8GAgD4BhoAGQcBAB0HBwAtBwQAMwcTAEgHEwBvBwsAfAcbAJkHCQCnBwgAtAcTAMsHAQDPBwAA0QciAPsHAAAHCAIADAgFABcIAAAaCBIALwgCADQIAAA3CAIAOwgGAEUIAgBKCAAATggDAFgIDwBxCAEAeQgCAH0IFACTCAIAowgAAKgIAADDCAAAxQgAAMcIAADTCAAA2QgAANsIAADdCAAA4QgAAB0JAACCCQAAjQkBAJYJAAC+CQAAxgkAAMgJBgDTCQAA4QkAAOQJAADqCQAA7QkAAO8JAgAACgAAGQoAAD8KAABDCgAASwoAAFUKAABcCgAAXgoAAG4KAABwCgAAkgoAAJkKAACbCgAApAoOALQKNQDrCgAA8AoOAAQLSgBTCwIAWAsFAF8LBQBnCwIAbAsLAHoLAQB9CwIAgwsFAI0LDgCpCwAAsQsCALYLFwDUCwcA3QsBAOALBADmCwcA8wsDAP0LAwAGDAIACwwEABIMAAAVDCAANwwgAF0MCgBtDBgAigwDAJIMLADKDBYA4wwDAOkMCQD0DAAA9wwRAAwNDgAdDQEAIQ0BACQNAQAoDQkAMw0AADcNAAA6DQAAPg0AAEANAABEDQAARw0NAFYNAABYDQEAXQ0AAF8NAwBmDQYAbg0AAHANBgB5DQQAgg0AAIYNAACKDQYAkg0AAJcNBQCeDQMAow0BAKYNCQCyDQEAtQ0BALkNAwC/DQkAyg0BANENEQDsDRoACQ4CAA4OBgAWDgAAGQ4CAB4OAgAiDgEAKA4OAD0OGgBhDgAAZw4AAG8OAAB6DhcAmA4PAKkOHwDMDgcA1g4DAN0OBgDnDgcA9w4BAPwOAAD+DhIAHA8fAD0PCQBODwMAXQ8HAGYPNwChDwcA1g8UAOwPDQD7DyIAIBABACQQDAA4EA0AThAiAHYQAQB7EDcAtBAGAMQQCwDREAYA2RABANwQBADkEAMA6RAAAOwQCQD3EBEAChECABARCAAaEQIAHhEBACYRBAAyEQAANhEHAEERAABZEQAAYREIAGwRFQCFEQQAixEEAJMRBQCcEQ4ArBEAAK8RAACxER4ABhIaACkSNQBgEggAaxIRAIYSEQCnEiwA5BJQAEYTAQBJEwYAWBMGAGYTCQBxEwQAfBMEAIITAACEEwEAjxMBAJITAQCXEwkApBMBAKoTAgCyEwIAthMCALwTBwDGEwsA2BMXAPITBAD5EyMAHhQCACIUBQApFAMALxQBADIUAgA2FAQARhQAAEgUBgBRFAAAUxQAAFcUAABZFAMAXhQDAGUUAABpFAEAbBQEAHkUBwCDFAkAjhQBAJEUAACYFAEAmxQEAKEUAQCkFAYArBQAALIUGQDOFAMA1BQLAOYUEQAHFQEADRUDABMVBQAaFQgAJRUCACsVAgAxFQEANBUDADoVAAA9FQUARxUOAFcVAABaFQIAYRUBAGYVGQCHFREAmhUGAKgVAwCvFQYAuRUOAMsVAADPFRgA+RUAAAkWAQAVFmIAfxYAAIEWEACbFisAyRZBAAwXBwAaFxMAMBcBADMXAQA3FwcAQBcUAF4XCgBqFwYAchcEAHkXAwB/FwkAjBcSAKEXAQCkFxEAtxcCALsXAQC/FwMAxxcJANUXAQDcFwEA3xcNAO4XAQA=","P":[[63,"T,M,D"],[81,"Add::Output"],[83,""],[85,"T"],[87,"T,Add::Output"],[88,"T"],[89,""],[94,"Message"],[95,""],[96,"C,T"],[114,"C"],[132,""],[135,"Message,Theme,Renderer"],[137,""],[140,"T"],[141,""],[142,"T"],[143,"Message,Theme,Renderer"],[145,"T"],[179,"WpParam,T"],[197,"Message"],[198,""],[210,"T"],[212,""],[215,"T"],[216,""],[217,"T"],[234,""],[253,"C,T"],[271,""],[276,"T"],[278,""],[281,"T"],[282,""],[283,"T"],[284,""],[288,"T"],[289,""],[290,"Div::Output"],[292,""],[310,"T"],[312,""],[314,"T"],[315,""],[316,"T"],[318,"Message"],[319,""],[321,"Message,Theme,Renderer,C"],[322,""],[336,"T"],[339,""],[342,"Message"],[343,"T"],[344,""],[345,"T"],[347,""],[349,"T"],[350,""],[356,"Message,Theme,Renderer"],[357,"Theme,Renderer,Message"],[358,"T"],[359,""],[361,"T"],[362,""],[364,"T"],[365,""],[369,"T"],[370,""],[371,"T"],[372,""],[375,"T"],[376,""],[379,"T"],[380,""],[381,"T"],[382,""],[383,"T"],[386,""],[387,"T"],[388,""],[389,"T"],[390,""],[391,"T"],[398,""],[399,"T"],[421,""],[425,"I"],[429,""],[434,"U,T"],[452,""],[457,"H"],[458,"__H"],[459,"T,__H"],[460,""],[465,"Message"],[467,""],[469,"U"],[505,"WpParam,T"],[523,"U"],[559,""],[561,"T"],[579,"Message"],[581,""],[584,"Message"],[586,""],[588,"Message"],[589,""],[593,"Message,Theme,Renderer,B,"],[594,""],[595,"Message,B,"],[596,""],[598,"Mul::Output"],[601,""],[606,"T"],[607,"T,Mul::Output"],[608,""],[609,"T,Mul::Output"],[610,""],[611,"T"],[612,""],[613,"T,Neg::Output"],[614,"T"],[616,"Message,Theme,Renderer,"],[617,"T"],[618,""],[619,"Message"],[620,"T"],[622,""],[625,"T"],[637,""],[649,"Message"],[650,""],[653,"Message"],[654,"Rem::Output"],[656,"Message"],[657,"Message,T"],[658,"Message"],[659,"Message,"],[661,""],[667,""],[668,""],[670,"Sub::Output"],[671,"T"],[674,"T,Sub::Output"],[675,"T"],[676,""],[682,"T"],[698,""],[710,"C"],[728,"U,T"],[746,"U"],[782,""],[800,"C,U"],[818,"C"],[836,""],[837,"V"],[856,""],[860,"T"],[861,""],[880,"T,M,D"],[883,"C,T"],[886,"C"],[889,"T"],[895,"WpParam,T"],[898,""],[901,"T"],[904,""],[907,"C,T"],[910,""],[916,"T"],[917,""],[920,"T"],[922,""],[923,"T"],[926,"U,T"],[929,"__H"],[932,"U"],[938,"WpParam,T"],[941,"U"],[947,"T"],[953,"C"],[956,"U,T"],[959,"U"],[965,""],[968,"C,U"],[971,"C"],[974,"V"],[1013,"T,M,D"],[1015,"C,T"],[1017,"C"],[1019,"T"],[1024,"WpParam,T"],[1026,""],[1027,"T"],[1030,""],[1032,"C,T"],[1034,""],[1035,"T"],[1038,""],[1041,"T"],[1046,"U,T"],[1048,"T"],[1050,"I"],[1051,"T,I,"],[1052,""],[1053,"U"],[1057,"WpParam,T"],[1059,"U"],[1063,"T"],[1069,""],[1070,"T"],[1075,"C"],[1077,"U,T"],[1079,"U"],[1083,""],[1085,"C,U"],[1087,"C"],[1089,""],[1090,"T"],[1093,"V"],[1097,"T,M,D"],[1099,"C,T"],[1101,"C"],[1103,"T"],[1107,""],[1111,""],[1112,""],[1114,""],[1115,"WpParam,T"],[1117,""],[1119,"T"],[1121,""],[1123,""],[1125,""],[1126,"C,T"],[1128,""],[1134,"T"],[1135,""],[1137,"T"],[1138,""],[1140,"T"],[1142,"U,T"],[1144,"U"],[1148,"WpParam,T"],[1150,"U"],[1154,"T"],[1156,""],[1159,"T"],[1161,""],[1162,""],[1163,""],[1167,"T"],[1169,""],[1173,""],[1174,""],[1176,""],[1177,"C"],[1179,"U,T"],[1181,"U"],[1185,""],[1187,"C,U"],[1189,"C"],[1191,"V"],[1193,""],[1195,""],[1201,"T,M,D"],[1203,"C,T"],[1205,"C"],[1207,"T"],[1211,"WpParam,T"],[1213,""],[1215,"T"],[1217,""],[1219,"C,T"],[1221,""],[1224,"T"],[1228,"U,T"],[1230,"U"],[1234,"WpParam,T"],[1236,"U"],[1240,"T"],[1242,""],[1244,"T"],[1246,"C"],[1248,"U,T"],[1250,"U"],[1254,""],[1256,"C,U"],[1258,"C"],[1260,"V"],[1262,""],[1273,"T,M,D"],[1275,"C,T"],[1277,"C"],[1279,"T"],[1283,"WpParam,T"],[1285,""],[1287,"T"],[1289,""],[1291,"C,T"],[1293,""],[1297,"T"],[1301,"U,T"],[1303,"U"],[1307,"WpParam,T"],[1309,"U"],[1313,"T"],[1315,""],[1316,"T"],[1318,"C"],[1320,"U,T"],[1322,"U"],[1326,""],[1328,"C,U"],[1330,"C"],[1332,"V"],[1368,"T,M,D"],[1373,"C,T"],[1378,"C"],[1383,"T"],[1393,"WpParam,T"],[1398,""],[1403,"T"],[1408,""],[1413,"C,T"],[1418,""],[1434,"T"],[1444,"U,T"],[1449,"__H"],[1454,"U"],[1464,"WpParam,T"],[1469,"U"],[1479,"T"],[1489,""],[1491,"T"],[1496,"C"],[1501,"U,T"],[1506,"U"],[1516,""],[1521,"C,U"],[1526,"C"],[1531,"V"],[1536,""],[1542,"T,M,D"],[1545,""],[1546,""],[1547,""],[1548,"C,T"],[1551,"C"],[1554,"T"],[1560,"WpParam,T"],[1563,""],[1566,"T"],[1569,""],[1573,"C,T"],[1576,""],[1584,"T"],[1590,"U,T"],[1593,"U"],[1599,"WpParam,T"],[1602,"U"],[1608,"T"],[1611,""],[1612,"T"],[1613,""],[1617,"T"],[1620,"C"],[1623,"U,T"],[1626,"U"],[1632,""],[1635,"C,U"],[1638,"C"],[1641,"V"],[1656,"T,M,D"],[1661,""],[1662,"C,T"],[1667,"C"],[1672,""],[1673,"T"],[1674,""],[1675,"T"],[1684,"WpParam,T"],[1689,""],[1692,"H"],[1693,""],[1696,"T"],[1701,""],[1708,"C,T"],[1713,""],[1718,"Renderer::Handle"],[1719,""],[1720,"U"],[1722,""],[1723,"T"],[1724,""],[1729,"H"],[1730,""],[1738,"H"],[1739,""],[1743,"T"],[1744,""],[1751,"T"],[1754,""],[1755,"T"],[1762,""],[1763,"T"],[1766,""],[1767,""],[1768,"U,T"],[1773,""],[1774,"H"],[1775,"__H"],[1777,""],[1778,"U"],[1788,"WpParam,T"],[1793,"U"],[1803,""],[1805,"T"],[1810,""],[1813,"Renderer::Handle"],[1814,""],[1815,""],[1816,"T"],[1818,""],[1819,""],[1822,"T"],[1823,""],[1828,""],[1829,""],[1830,""],[1831,""],[1836,"T"],[1841,""],[1842,"C"],[1847,"U,T"],[1852,"U"],[1862,""],[1868,"C,U"],[1873,"C"],[1878,"V"],[1883,""],[1902,"T,M,D"],[1906,"C,T"],[1910,"C"],[1914,""],[1915,"T"],[1923,"WpParam,T"],[1927,"T"],[1929,""],[1931,"T"],[1935,""],[1939,"C,T"],[1943,""],[1944,"T"],[1945,""],[1946,"T"],[1948,""],[1950,"T"],[1952,""],[1954,"T"],[1962,"U,T"],[1966,"__H"],[1967,"U"],[1975,"WpParam,T"],[1979,"U"],[1987,"T"],[1991,""],[1992,"T"],[1996,""],[1997,"T"],[2003,"C"],[2007,"U,T"],[2011,"U"],[2019,""],[2023,"C,U"],[2027,"C"],[2031,"V"],[2035,""],[2054,"T,M,D"],[2057,""],[2059,"C,T"],[2062,"C"],[2065,""],[2073,"T"],[2079,"WpParam,T"],[2082,""],[2085,"T"],[2088,""],[2094,"C,T"],[2097,""],[2105,"T"],[2106,""],[2113,"T"],[2119,""],[2123,"T"],[2124,""],[2125,"U,T"],[2128,"__H"],[2129,""],[2132,"U"],[2138,"WpParam,T"],[2141,"U"],[2147,"IntoIterator::IntoIter"],[2148,"T"],[2151,""],[2160,"T"],[2161,""],[2168,"T"],[2171,""],[2172,"C"],[2175,"U,T"],[2178,"U"],[2184,""],[2187,"C,U"],[2190,"C"],[2193,""],[2194,"V"],[2197,""],[2723,"T,M,D"],[2728,"C,T"],[2733,"C"],[2738,""],[2739,"T"],[2749,"WpParam,T"],[2754,"C"],[2755,""],[2759,"T"],[2764,""],[2769,"C"],[2770,""],[2774,"C,T"],[2779,"C"],[2780,""],[2788,"C"],[2789,""],[2793,"T"],[2794,""],[2795,"T"],[2804,"U,T"],[2809,"C,__H"],[2810,"__H"],[2814,"U"],[2824,"WpParam,T"],[2829,"U"],[2839,"T"],[2844,"C"],[2845,""],[2849,"T"],[2854,"C"],[2859,"U,T"],[2864,"U"],[2874,""],[2879,"C,U"],[2884,"C"],[2889,"V"],[2898,"T,M,D"],[2901,""],[2903,"C,T"],[2906,"C"],[2909,","],[2910,"T"],[2916,""],[2918,"WpParam,T"],[2921,""],[2926,"T"],[2929,""],[2932,"C,T"],[2935,",,"],[2936,""],[2943,"T"],[2949,"U,T"],[2952,""],[2953,"U"],[2959,"WpParam,T"],[2962,"U"],[2968,"T"],[2971,""],[2978,""],[2980,""],[2983,","],[2984,"T"],[2985,",,,"],[2986,""],[2987,",,,,"],[2988,","],[2989,""],[2990,""],[2991,",,"],[2992,"T"],[2995,""],[2997,"C"],[3000,"U,T"],[3003,"U"],[3009,""],[3012,"C,U"],[3015,"C"],[3018,"V"],[3021,""],[3022,""],[3027,"T,M,D"],[3028,"C,T"],[3029,"C"],[3030,"T"],[3032,"WpParam,T"],[3033,"C,T"],[3034,""],[3035,"T"],[3037,"U,T"],[3038,"U"],[3040,"WpParam,T"],[3041,"U"],[3043,"T"],[3044,"Renderer,Message,Theme"],[3045,"C"],[3046,"U,T"],[3047,"U"],[3049,""],[3050,"C,U"],[3051,"C"],[3052,"V"],[3095,"T,M,D"],[3100,"C,T"],[3105,"C"],[3110,"T"],[3120,"WpParam,T"],[3126,""],[3131,"T"],[3136,""],[3142,"C,T"],[3147,""],[3159,"T"],[3169,"U,T"],[3174,"__H"],[3175,"U"],[3185,"WpParam,T"],[3190,"U"],[3200,"T"],[3205,""],[3210,"T"],[3212,""],[3217,"T"],[3222,"C"],[3227,"U,T"],[3232,"U"],[3242,""],[3247,"C,U"],[3252,"C"],[3257,"V"],[3262,""],[3273,"T,M,D"],[3275,"C,T"],[3277,"C"],[3279,"T"],[3283,"WpParam,T"],[3285,""],[3287,"T"],[3289,""],[3291,"C,T"],[3293,""],[3296,"T"],[3300,"U,T"],[3302,"U"],[3306,"WpParam,T"],[3308,"U"],[3312,"T"],[3314,""],[3318,"T"],[3320,"C"],[3322,"U,T"],[3324,"U"],[3328,""],[3330,"C,U"],[3332,"C"],[3334,"V"],[3339,"T,M,D"],[3341,"C,T"],[3343,"C"],[3345,"T"],[3349,"WpParam,T"],[3351,"C,T"],[3353,"Message,Theme,Renderer"],[3354,"Renderer,Theme"],[3355,"Message,Theme,Renderer"],[3358,"T"],[3362,"Message,Theme,Renderer"],[3363,"U,T"],[3365,"U"],[3369,"WpParam,T"],[3371,"U"],[3375,"T"],[3377,"Message,Theme,Renderer"],[3379,"Renderer"],[3381,"Message,Theme,Renderer"],[3383,"Message,Theme,Renderer,B"],[3384,"Message,Theme,Renderer"],[3386,"Renderer"],[3387,"Message,Theme,Renderer"],[3389,"T"],[3390,"Message,Theme,Renderer"],[3392,"Renderer"],[3393,"Message,Theme,Renderer"],[3396,"Renderer,Message,Theme"],[3397,"Message,Theme,Renderer,"],[3398,"C"],[3400,"U,T"],[3402,"U"],[3406,""],[3408,"C,U"],[3410,"C"],[3412,"Message,Theme,Renderer"],[3414,"Renderer,Message"],[3415,"V"],[3417,"Message,Theme,Renderer"],[3420,"T,M,D"],[3421,""],[3422,"C,T"],[3423,"C"],[3424,"T"],[3426,""],[3428,""],[3429,"WpParam,T"],[3430,""],[3431,"T"],[3432,""],[3433,"C,T"],[3434,""],[3438,"T"],[3439,""],[3444,"T"],[3445,"U,T"],[3446,""],[3447,"U"],[3449,"WpParam,T"],[3450,"U"],[3452,"T"],[3453,""],[3455,""],[3457,"T"],[3458,""],[3460,""],[3461,"T"],[3462,""],[3464,""],[3465,"C"],[3466,"U,T"],[3467,"U"],[3469,""],[3470,"C,U"],[3471,"C"],[3472,""],[3473,"V"],[3478,"T,M,D"],[3480,"C,T"],[3482,"C"],[3484,""],[3485,"T"],[3489,""],[3490,"WpParam,T"],[3492,""],[3495,"T"],[3497,""],[3499,"C,T"],[3501,""],[3507,""],[3508,""],[3510,"T"],[3514,"U,T"],[3516,"U"],[3520,"WpParam,T"],[3522,"U"],[3526,"T"],[3528,""],[3529,"T"],[3531,""],[3536,"T"],[3538,"C"],[3540,"U,T"],[3542,"U"],[3546,""],[3548,"C,U"],[3550,"C"],[3552,"V"],[3554,""],[3563,"T,M,D"],[3566,"C,T"],[3569,"C"],[3572,"T"],[3578,"WpParam,T"],[3581,"H"],[3582,""],[3584,"T"],[3587,""],[3590,""],[3591,""],[3592,"C,T"],[3595,""],[3597,"H"],[3598,""],[3600,"H"],[3601,""],[3604,"T"],[3611,""],[3613,"U,T"],[3616,""],[3617,"H"],[3618,"__H"],[3619,""],[3620,"U"],[3626,"WpParam,T"],[3629,"U"],[3635,"T"],[3638,""],[3639,""],[3641,""],[3642,""],[3643,""],[3644,"T"],[3647,"C"],[3650,"U,T"],[3653,"U"],[3659,""],[3662,"C,U"],[3665,"C"],[3668,"V"],[3705,"T,M,D"],[3713,"C,T"],[3721,"C"],[3729,"Link,Font,"],[3730,""],[3731,"Link,Font,"],[3733,""],[3734,"Link,Font,"],[3735,"T"],[3751,""],[3752,"WpParam,T"],[3760,"Content,Font"],[3761,""],[3766,"Link,Font"],[3767,""],[3768,"T"],[3776,""],[3784,"Link,Font,"],[3785,""],[3786,"Link,Font,"],[3787,"C,T"],[3795,""],[3800,"Link,Font"],[3801,"Renderer::Font,Renderer::Paragraph,Renderer::Editor"],[3804,""],[3809,"Link,Font"],[3810,""],[3811,"Renderer::Font,Renderer::Paragraph,Renderer::Editor"],[3814,"Content,Font"],[3815,""],[3820,"Link,Font"],[3821,""],[3822,"Link,Font,"],[3823,""],[3825,"Link,Font,"],[3826,"T"],[3830,""],[3832,"T"],[3835,"Link,Font"],[3836,"T"],[3845,"U,T"],[3853,"__H"],[3855,"H"],[3856,""],[3859,"U"],[3875,"WpParam,T"],[3883,"U"],[3899,""],[3902,"T"],[3910,"Link,Font,"],[3911,""],[3913,"Link,Font,"],[3914,""],[3915,"Link,Font,"],[3916,",Link,Font"],[3917,"T"],[3921,"Link,Font,"],[3922,""],[3925,"Link,Font,"],[3926,""],[3928,"Link,Font"],[3929,""],[3932,"T"],[3940,"Link,Font"],[3941,"C"],[3949,"U,T"],[3957,"U"],[3973,""],[3981,"C,U"],[3989,"C"],[3997,"Link,Font"],[3998,""],[4000,"V"],[4008,""],[4053,"T,M,D"],[4060,"C,T"],[4067,"C"],[4074,""],[4075,"T"],[4089,"Editor::Font"],[4090,"WpParam,T"],[4097,""],[4104,"T"],[4111,""],[4118,"C,T"],[4125,"Editor::Font"],[4127,""],[4144,"T"],[4158,"U,T"],[4165,"Editor::Font,H,"],[4166,"U"],[4180,"WpParam,T"],[4187,"U"],[4201,"T"],[4208,""],[4209,"Editor::Font"],[4213,"T"],[4215,"Editor::Font"],[4217,""],[4218,"T"],[4225,"C"],[4232,"U,T"],[4239,"U"],[4253,""],[4260,"C,U"],[4267,"C"],[4274,"Editor::Font,"],[4275,"V"],[4282,""],[4283,"Editor::Font"],[4284,""],[4291,"T,M,D"],[4293,"C,T"],[4295,"C"],[4297,"T"],[4301,"WpParam,T"],[4303,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[4304,""],[4306,"Font"],[4307,"T"],[4309,""],[4312,"C,T"],[4314,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[4315,""],[4316,"Font"],[4318,""],[4319,"Font"],[4320,""],[4321,"T"],[4325,"U,T"],[4327,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[4328,"Highlighter::Iterator"],[4329,"U"],[4333,"WpParam,T"],[4335,"U"],[4339,"T"],[4341,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[4342,"Highlighter::Settings"],[4343,"T"],[4346,"C"],[4348,"U,T"],[4350,"U"],[4354,""],[4356,"C,U"],[4358,"C"],[4360,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[4361,"Highlighter::Settings"],[4362,"V"],[4367,"T,M,D"],[4368,"C,T"],[4369,"C"],[4370,"T"],[4372,"WpParam,T"],[4373,"P"],[4374,"T"],[4375,""],[4376,"Paragraph::Font"],[4377,"C,T"],[4378,"P"],[4380,"T"],[4382,"U,T"],[4383,"Paragraph::Font"],[4387,"P"],[4388,"U"],[4390,"WpParam,T"],[4391,"U"],[4393,"T"],[4394,"Paragraph::Font"],[4395,"P"],[4396,"Paragraph::Font"],[4397,"P"],[4398,"Paragraph::Font"],[4399,"P"],[4401,"T"],[4402,"P"],[4403,"Paragraph::Font"],[4405,"T"],[4406,"C"],[4407,"U,T"],[4408,"U"],[4410,""],[4411,"C,U"],[4412,"C"],[4413,"P"],[4414,"Paragraph::Font"],[4415,"P"],[4416,"V"],[4417,"Link,Paragraph::Font"],[4418,"Paragraph::Font"],[4448,"T,M,D"],[4451,"C,T"],[4454,"C"],[4457,""],[4460,"T"],[4466,"WpParam,T"],[4469,""],[4472,"T"],[4475,""],[4478,"C,T"],[4481,""],[4482,""],[4483,""],[4484,"Catalog::Class"],[4485,""],[4495,"T"],[4501,"U,T"],[4504,"U"],[4510,"WpParam,T"],[4513,"U"],[4519,"T"],[4522,""],[4523,"T"],[4525,""],[4526,"Catalog::Class"],[4527,""],[4528,"T"],[4531,""],[4535,"C"],[4538,"U,T"],[4541,"U"],[4547,""],[4550,"C,U"],[4553,"C"],[4556,"V"],[4559,""],[4568,""],[4613,"T,M,D"],[4622,"C,T"],[4631,"C"],[4640,""],[4648,"T"],[4666,"WpParam,T"],[4675,""],[4684,"T"],[4693,""],[4703,"C,T"],[4712,""],[4732,"T"],[4750,"U,T"],[4759,""],[4765,"U"],[4783,"WpParam,T"],[4792,"U"],[4810,"T"],[4819,""],[4835,"T"],[4844,"C"],[4853,"U,T"],[4862,"U"],[4880,""],[4889,"C,U"],[4898,"C"],[4907,"V"],[4916,""],[4933,"T,M,D"],[4935,""],[4939,"C,T"],[4941,"C"],[4943,""],[4951,"T"],[4952,"Borrowed"],[4953,"T"],[4956,"WpParam,T"],[4958,""],[4967,"T"],[4969,""],[4973,"C,T"],[4975,""],[4977,"D"],[4978,""],[4992,"T"],[4993,""],[4994,"T"],[4997,""],[5006,"U,T"],[5008,""],[5009,"__H"],[5011,""],[5012,"U"],[5016,"WpParam,T"],[5018,"U"],[5022,"T"],[5024,""],[5033,"T"],[5034,""],[5041,"S"],[5042,""],[5051,"I"],[5053,"T"],[5055,"C"],[5057,"U,T"],[5059,""],[5061,"U"],[5065,""],[5067,"C,U"],[5069,"C"],[5071,"V"],[5079,"T,M,D"],[5081,"C,T"],[5083,"C"],[5085,"T"],[5089,"WpParam,T"],[5091,""],[5093,"T"],[5095,""],[5097,"C,T"],[5099,""],[5103,"T"],[5107,"U,T"],[5109,"__H"],[5110,"U"],[5114,"WpParam,T"],[5116,"U"],[5120,"T"],[5124,"C"],[5126,"U,T"],[5128,"U"],[5132,""],[5134,"C,U"],[5136,"C"],[5138,"V"],[5140,""],[5153,"T,M,D"],[5154,"C,T"],[5155,"C"],[5156,"T"],[5158,"WpParam,T"],[5159,""],[5161,"T"],[5162,""],[5163,"C,T"],[5164,""],[5165,"Renderer,Theme"],[5166,""],[5168,"T"],[5170,"U,T"],[5171,"__H"],[5172,"U"],[5174,"WpParam,T"],[5175,"U"],[5177,"T"],[5178,"Renderer"],[5180,""],[5181,"Renderer"],[5183,"Renderer,Message,Theme"],[5184,""],[5189,"T"],[5191,"C"],[5192,"U,T"],[5193,"U"],[5195,""],[5196,"C,U"],[5197,"C"],[5198,""],[5199,"Renderer,Message"],[5200,"V"],[5209,"T,M,D"],[5210,"C,T"],[5211,"C"],[5212,"O"],[5213,"T"],[5215,"WpParam,T"],[5216,"C,T"],[5217,""],[5219,"T"],[5222,""],[5223,"T"],[5225,"U,T"],[5226,"U"],[5228,"WpParam,T"],[5229,"U"],[5231,"T"],[5232,"A,,B,"],[5233,"T,"],[5235,""],[5239,"A,,B,O"],[5240,"C"],[5241,"U,T"],[5242,"U"],[5244,""],[5245,"C,U"],[5246,"C"],[5247,"V"],[5250,"T,M,D"],[5251,"C,T"],[5252,"C"],[5253,"T"],[5255,"WpParam,T"],[5256,""],[5257,"T"],[5258,""],[5259,"C,T"],[5260,""],[5265,"T"],[5266,""],[5267,"T"],[5269,""],[5270,"T"],[5272,"U,T"],[5273,"U"],[5275,"WpParam,T"],[5276,"U"],[5278,"T"],[5279,""],[5280,"T"],[5282,""],[5283,"C"],[5284,"U,T"],[5285,"U"],[5287,""],[5288,"C,U"],[5289,"C"],[5290,""],[5291,"V"],[5297,"T,M,D"],[5299,"C,T"],[5301,"C"],[5303,"T"],[5307,"WpParam,T"],[5309,""],[5311,"T"],[5313,""],[5315,"C,T"],[5317,""],[5323,"T"],[5327,"U,T"],[5329,"U"],[5333,"WpParam,T"],[5335,"U"],[5339,"T"],[5344,""],[5345,"T"],[5346,""],[5347,"T"],[5348,""],[5349,"T"],[5351,"C"],[5353,"U,T"],[5355,"U"],[5359,""],[5361,"C,U"],[5363,"C"],[5365,"V"],[5367,""],[5372,"T"],[5373,""],[5374,"T"],[5375,""],[5376,"T"],[5377,""],[5378,"T"],[5379,""],[5389,"T,M,D"],[5392,"Theme,Renderer,"],[5394,"C,T"],[5397,"C"],[5400,""],[5401,"T"],[5407,"WpParam,T"],[5410,"Theme,Renderer"],[5411,"Theme,Renderer,"],[5412,""],[5413,"T"],[5414,""],[5415,"Theme,Renderer,"],[5416,""],[5417,"Theme,Renderer,"],[5418,"C,T"],[5421,""],[5423,"Catalog::Class"],[5424,"P"],[5425,""],[5426,"Renderer"],[5427,"Theme,Renderer"],[5428,""],[5429,"P"],[5430,""],[5431,"Theme,Renderer,"],[5432,"T"],[5433,"Theme,Renderer"],[5434,"T"],[5439,"U,T"],[5442,"Theme,Renderer,"],[5443,"U"],[5449,"WpParam,T"],[5452,"U"],[5458,"T"],[5461,"Renderer"],[5462,"Theme,Renderer"],[5463,"Theme,Renderer,"],[5464,",Theme,Renderer"],[5465,"T"],[5467,"Theme,Renderer"],[5468,""],[5470,"Theme,Renderer"],[5471,"Theme,Renderer,"],[5472,"Theme,Renderer"],[5474,"Catalog::Class"],[5475,"Theme,Renderer,"],[5476,""],[5477,"Theme,Renderer"],[5478,"T"],[5479,"C"],[5482,"U,T"],[5485,"U"],[5491,""],[5494,"C,U"],[5497,"C"],[5500,"V"],[5503,"Theme,Renderer,"],[5504,"Theme,Renderer"],[5510,"T,M,D"],[5513,"C,T"],[5516,"C"],[5519,"T"],[5525,"WpParam,T"],[5528,""],[5530,"T"],[5531,""],[5533,"C,T"],[5536,""],[5538,"T,,"],[5539,"T,,,"],[5540,"T"],[5542,""],[5547,"T"],[5553,"U,T"],[5556,"__H"],[5557,"U"],[5563,"WpParam,T"],[5566,"U"],[5572,"T"],[5576,""],[5577,""],[5582,"T"],[5583,"C"],[5586,"U,T"],[5589,"U"],[5595,""],[5598,"C,U"],[5601,"C"],[5604,"V"],[5652,"T,M,D"],[5660,"C,T"],[5668,"C"],[5676,"T"],[5692,"WpParam,T"],[5700,""],[5708,"T"],[5716,""],[5726,"C,T"],[5734,""],[5751,"T"],[5758,""],[5759,"T"],[5768,"U,T"],[5776,"__H"],[5778,"U"],[5794,"WpParam,T"],[5802,"U"],[5818,"T"],[5828,""],[5832,"T"],[5840,""],[5842,"C"],[5850,"U,T"],[5858,"U"],[5874,""],[5882,"C,U"],[5890,"C"],[5898,""],[5899,"V"],[5907,""],[5913,"T,M,D"],[5915,"C,T"],[5917,"C"],[5919,"T"],[5923,"WpParam,T"],[5925,""],[5926,"T"],[5927,""],[5928,"C,T"],[5930,""],[5933,"T"],[5937,""],[5938,"U,T"],[5940,"U"],[5944,"WpParam,T"],[5946,"U"],[5950,""],[5951,"T"],[5954,""],[5956,"C"],[5958,"U,T"],[5960,"U"],[5964,""],[5966,"C,U"],[5968,"C"],[5970,"V"],[5972,""],[5981,"T,M,D"],[5983,"C,T"],[5985,"C"],[5987,""],[5988,"T"],[5992,""],[5993,"WpParam,T"],[5995,""],[5996,"T"],[5997,""],[5998,"C,T"],[6000,""],[6001,"U"],[6003,""],[6006,"T"],[6010,"U,T"],[6012,"U"],[6016,"WpParam,T"],[6018,"U"],[6022,"T"],[6024,""],[6025,""],[6027,"T"],[6028,""],[6030,"C"],[6032,"U,T"],[6034,"U"],[6038,""],[6040,"C,U"],[6042,"C"],[6044,"V"],[6048,"T,M,D"],[6050,""],[6051,"C,T"],[6053,"C"],[6055,"T"],[6059,"WpParam,T"],[6061,""],[6063,"T"],[6065,""],[6067,"C,T"],[6069,""],[6076,"T"],[6080,"U,T"],[6082,""],[6084,"U"],[6088,"WpParam,T"],[6090,"U"],[6094,"T"],[6096,""],[6100,"T"],[6102,""],[6107,"T"],[6109,""],[6110,"C"],[6112,"U,T"],[6114,"U"],[6118,""],[6120,"C,U"],[6122,"C"],[6124,""],[6125,"V"]]}],["iced_futures",{"t":"IIEKKFENNNCNNHNNNENCCNNNNENNNNNNCNNNCCNNNNNNNNNCCCCCCCFNNNNNNNNNNNNNNNNNNNCNNNNNNNNHFNNNNNNNNNNNNNNNNNNNCNNNNNNNNHINNCINNNCHHFNNNNNNNNNNNNNNNNNNNCNNNNNNNNHHHHKNMMHHHHGIIPGPRGPPKFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOO","n":["BoxFuture","BoxStream","Executor","MaybeSend","MaybeSync","Runtime","Subscription","adapt_into_using","arrays_from","arrays_into","backend","borrow","borrow_mut","boxed_stream","broadcast","cam16_into_unclamped","components_from","core","enter","event","executor","fmt","from","from_angle","from_stimulus","futures","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","keyboard","new","run","spawn","stream","subscription","track","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vzip","default","native","null","async_std","smol","thread_pool","tokio","Executor","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","components_from","fmt","from","from_angle","from_stimulus","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","new","spawn","time","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vzip","every","Executor","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","components_from","fmt","from","from_angle","from_stimulus","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","new","spawn","time","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vzip","every","Executor","new","spawn","time","Executor","enter","new","spawn","time","every","repeat","Executor","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","components_from","fmt","from","from_angle","from_stimulus","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","new","spawn","time","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vzip","listen","listen_raw","listen_url","listen_with","Executor","enter","new","spawn","on_key_press","on_key_release","channel","try_channel","Event","EventStream","Hasher","Interaction","MacOS","","Output","PlatformSpecific","","ReceivedUrl","Recipe","Subscription","Tracker","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","batch","borrow","","","","","borrow_mut","","","","","broadcast","cam16_into_unclamped","","","","","clone","","","clone_into","","","clone_to_uninit","","","components_from","","","","","default","eq","","","fmt","","","","","from","","","","","from_angle","","","","","from_recipe","from_stimulus","","","","","hash","into","","","","","into_angle","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_recipes","into_stimulus","","","","","map","new","none","null_value","run","run_with","stream","to_owned","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","update","vzip","","","","","with","event","status","window"],"q":[[0,"iced_futures"],[47,"iced_futures::backend"],[50,"iced_futures::backend::native"],[54,"iced_futures::backend::native::async_std"],[83,"iced_futures::backend::native::async_std::time"],[84,"iced_futures::backend::native::smol"],[113,"iced_futures::backend::native::smol::time"],[114,"iced_futures::backend::native::thread_pool"],[118,"iced_futures::backend::native::tokio"],[123,"iced_futures::backend::native::tokio::time"],[125,"iced_futures::backend::null"],[154,"iced_futures::event"],[158,"iced_futures::executor"],[162,"iced_futures::keyboard"],[164,"iced_futures::stream"],[166,"iced_futures::subscription"],[334,"iced_futures::subscription::Event"],[337,"palette::chromatic_adaptation"],[338,"iced_futures::platform"],[339,"futures_core::stream"],[340,"core::marker"],[341,"iced_futures::runtime"],[342,"iced_futures::maybe::platform"],[343,"futures_channel::mpsc"],[344,"futures_sink"],[345,"core::clone"],[346,"palette::cam16::parameters"],[347,"core::ops::function"],[348,"core::fmt"],[349,"alloc::boxed"],[350,"core::iter::traits::collect"],[351,"core::result"],[352,"palette::convert::try_from_into_color"],[353,"core::any"],[354,"std::io::error"],[355,"core::future::future"],[356,"core::time"],[357,"std::time"],[358,"iced_core::event"],[359,"iced_core::window::id"],[360,"core::option"],[361,"alloc::string"],[362,"iced_core::keyboard::key"],[363,"iced_core::keyboard::modifiers"],[364,"iced_futures::subscription::tracker"],[365,"alloc::vec"],[366,"core::hash"],[367,"core::iter::traits::iterator"]],"i":"```````A`00`00`000`0``0000`000000`000``000000000````````Cn000000000000000000`00000000``Dj000000000000000000`00000000``Dl0``Dn00````Eb000000000000000000`00000000`````Af00```````Ab`FhCb`2Fj```DhFf542105421054211054210542010542542542542105420542105421054210542`1054231054210542105421054210542`105421010113542105421054210542105421054210542105420105421H`00","f":"```````{eg{}{{b{c}}}{}}{ce{}{}}{{}c{}}`{d{{d{c}}}{}}{{{d{f}}}{{d{fc}}}{}}{e{{h{c}}}{}{{l{}{{j{c}}}}n}}{{{d{f{A`{cge}}}}Ab}AdAfAh{{An{e}{{Aj{Al}}}}B`AhBb}}{{{Bd{c}}}e{}{}}6`{{{d{{A`{cge}}}}k}iAfAh{{An{e}{{Aj{Al}}}}B`AhBb}{}{{Bh{}{{Bf{i}}}}}}``{{{d{{A`{ceg}}}}{d{fBj}}}BlBnBnBn}{cc{}}0{ce{}{}}`{{}c{}}0500{{}c{}}`{{cg}{{A`{cge}}}AfAh{{An{e}{{Aj{Al}}}}B`AhBb}}{{{d{f{A`{cge}}}}{h{e}}}AdAfAh{{An{e}{{Aj{Al}}}}B`AhBb}}{{{d{f{A`{cge}}}}{C`{e}}}AdAfAh{{An{e}{{Aj{Al}}}}B`AhBb}}``{{{d{f{A`{cge}}}}i}AdAfAh{{An{e}{{Aj{Al}}}}B`AhBb}{{Cf{}{{j{{Cd{Cb}}}}}}}}{{}{{Ch{c}}}{}}{c{{Ch{e}}}{}{}}{{}{{Ch{c}}}{}}{{}{{Ch{c{Cj{c}}}}}{}}{dCl}{ce{}{}}{{}c{}}{{}c{}}````````{eg{}{{b{c}}}{}}{ce{}{}}3{d{{d{c}}}{}}{{{d{f}}}{{d{fc}}}{}}{{{Bd{c}}}e{}{}}3{{{d{Cn}}{d{fBj}}}Bl}{cc{}}0{ce{}{}}{{}c{}}0400{{}c{}}{{}{{Ch{CnD`}}}}{{{d{Cn}}c}Ad{{Db{}{{Bf{Ad}}}}n}}`{{}{{Ch{c}}}{}}{c{{Ch{e}}}{}{}}{{}{{Ch{c}}}{}}{{}{{Ch{c{Cj{c}}}}}{}}{dCl}{ce{}{}}{{}c{}}{{}c{}}{Dd{{Dh{Df}}}}`{eg{}{{b{c}}}{}}{ce{}{}}4{d{{d{c}}}{}}{{{d{f}}}{{d{fc}}}{}}{{{Bd{c}}}e{}{}}3{{{d{Dj}}{d{fBj}}}Bl}{cc{}}0{ce{}{}}{{}c{}}0400{{}c{}}{{}{{Ch{DjD`}}}}{{{d{Dj}}c}Ad{{Db{}{{Bf{Ad}}}}n}}`{{}{{Ch{c}}}{}}{c{{Ch{e}}}{}{}}{{}{{Ch{c}}}{}}{{}{{Ch{c{Cj{c}}}}}{}}{dCl}{ce{}{}}{{}c{}}{{}c{}}{Dd{{Dh{Df}}}}`{{}{{Ch{DlD`}}}}{{{d{Dl}}c}Ad{{Db{}{{Bf{Ad}}}}n}}``{{{d{Dn}}e}c{}{{Bh{}{{Bf{c}}}}}}{{}{{Ch{DnD`}}}}{{{d{Dn}}c}Ad{{Db{}{{Bf{Ad}}}}n}}`5{{{E`{}{{Bf{e}}}}Dd}{{Dh{c}}}Ah{{Db{}{{Bf{c}}}}Ah}}`{eg{}{{b{c}}}{}}{ce{}{}}:{d{{d{c}}}{}}{{{d{f}}}{{d{fc}}}{}}{{{Bd{c}}}e{}{}}3{{{d{Eb}}{d{fBj}}}Bl}{cc{}}0{ce{}{}}{{}c{}}0400{{}c{}}{{}{{Ch{EbD`}}}}{{{d{Eb}}c}Ad{{Db{}{{Bf{Ad}}}}n}}`{{}{{Ch{c}}}{}}{c{{Ch{e}}}{}{}}{{}{{Ch{c}}}{}}{{}{{Ch{c{Cj{c}}}}}{}}{dCl}{ce{}{}}{{}c{}}{{}c{}}{{}{{Dh{Ed}}}}{{{E`{EdEfEh}{{Bf{{Ej{c}}}}}}}{{Dh{c}}}Ah}{{}{{Dh{El}}}}1`{{{d{Af}}e}c{}{{Bh{}{{Bf{c}}}}}}{{}{{Ch{AfD`}}}}{{{d{Af}}c}Ad{{Db{}{{Bf{Ad}}}}Ah}}{{{E`{EnF`}{{Bf{{Ej{c}}}}}}}{{Dh{c}}}Ah}0{{Fbg}{{`{{l{}{{j{c}}}}}}}{}{{Db{}{{Bf{Ad}}}}}{{Bh{{Fd{c}}}{{Bf{e}}}}}}{{Fbi}{{`{{l{}{{j{{Ch{ce}}}}}}}}}{}{}{{Db{}{{Bf{{Ch{Ade}}}}}}}{{Bh{{Fd{c}}}{{Bf{g}}}}}}`````````````{eg{}{{b{c}}}{}}0000{ce{}{}}0000<<<<<{e{{Dh{c}}}{}{{Cf{}{{j{{Dh{c}}}}}}}}{d{{d{c}}}{}}0000{{{d{f}}}{{d{fc}}}{}}0000{{{d{fFf}}Ab}Ad}{{{Bd{c}}}e{}{}}0000{{{d{Ab}}}Ab}{{{d{Fh}}}Fh}{{{d{Fj}}}Fj}{{d{d{fc}}}Ad{}}00{{dFl}Ad}00:::::{{}Ff}{{{d{Ab}}{d{Ab}}}Fn}{{{d{Fh}}{d{Fh}}}Fn}{{{d{Fj}}{d{Fj}}}Fn}{{{d{{Dh{c}}}}{d{fBj}}}Bl{}}{{{d{Ff}}{d{fBj}}}Bl}{{{d{Ab}}{d{fBj}}}Bl}{{{d{Fh}}{d{fBj}}}Bl}{{{d{Fj}}{d{fBj}}}Bl}{cc{}}000000000{e{{Dh{c}}}{}{{Cb{}{{Bf{c}}}}}}{ce{}{}}0000{{{d{{Cb{}{{Bf{c}}}}}}{d{fG`}}}Ad{}}{{}c{}}000000000{{{Bd{c}}}e{}{}}00001111111111{{{Dh{c}}}{{Gb{{Cd{Cb}}}}}{}}{{}c{}}0000{{{Dh{c}}g}{{Dh{e}}}{}{}{{Gd{c}{{Bf{e}}}}AhBb}}{{}Ff}{{}{{Dh{c}}}{}}3{{{E`{}{{Bf{e}}}}}{{Dh{c}}}{}{{l{}{{j{c}}}}Ah}}{{c{E`{{d{c}}}{{Bf{g}}}}}{{Dh{e}}}Gf{}{{l{}{{j{e}}}}Ah}}{{{Cd{{Cb{}{{Bf{c}}}}}}Gh}{{h{c}}}{}}{dc{}}00{{}{{Ch{c}}}{}}0000{c{{Ch{e}}}{}{}}0000{{}{{Ch{c}}}{}}0000{{}{{Ch{c{Cj{c}}}}}{}}0000{dCl}0000{ce{}{}}0000{{}c{}}0000{{{d{fFf}}cg}{{Gb{{C`{Ad}}}}}{{Gj{}{{j{{Cd{Cb}}}}}}}Ah{{An{e}{{Aj{Al}}}}B`AhBb}}{{}c{}}0000{{{Dh{c}}e}{{Dh{{Gl{ec}}}}}{}{GfBbnGn}}{H`Ed}{H`Ef}{H`Eh}","D":"Lf","p":[[10,"TransformMatrix",337],[1,"reference",null,null,1],[0,"mut"],[8,"BoxStream",0,338],[17,"Item"],[10,"Stream",339],[10,"Send",340],[5,"Runtime",0,341],[6,"Event",166],[1,"unit"],[10,"Executor",158],[10,"MaybeSend",0,342],[17,"Error"],[5,"SendError",343],[10,"Sink",344],[10,"Unpin",340],[10,"Clone",345],[5,"BakedParameters",346],[17,"Output"],[10,"FnOnce",347],[5,"Formatter",348],[8,"Result",348],[10,"Debug",348],[8,"BoxFuture",0,338],[10,"Recipe",166],[5,"Box",349,null,1],[10,"IntoIterator",350],[6,"Result",351,null,1],[5,"OutOfBounds",352],[5,"TypeId",353],[5,"Executor",54],[5,"Error",354],[10,"Future",355,null,1],[5,"Duration",356],[5,"Instant",357],[5,"Subscription",166],[5,"Executor",84],[8,"Executor",114],[8,"Executor",118],[1,"fn"],[5,"Executor",125],[6,"Event",358],[6,"Status",358],[5,"Id",359],[6,"Option",360,null,1],[5,"String",361],[6,"Key",362],[5,"Modifiers",363],[1,"usize"],[5,"Sender",343],[5,"Tracker",166,364],[6,"PlatformSpecific",166],[6,"MacOS",166],[1,"u8"],[1,"bool"],[8,"Hasher",166],[5,"Vec",365],[10,"Fn",347],[10,"Hash",366],[8,"EventStream",166],[10,"Iterator",367],[1,"tuple",null,null,1],[10,"Sync",340],[15,"Interaction",334]],"r":[[0,338],[1,338],[2,158],[3,342],[4,342],[5,341],[6,166],[7,341],[8,341],[9,341],[11,341],[12,341],[13,338],[14,341],[15,341],[16,341],[18,341],[21,341],[22,341],[23,341],[24,341],[26,341],[27,341],[28,341],[29,341],[30,341],[31,341],[33,341],[34,341],[35,341],[38,341],[39,341],[40,341],[41,341],[42,341],[43,341],[44,341],[45,341],[46,341],[178,364],[180,364],[185,364],[190,364],[196,364],[201,364],[205,364],[207,364],[221,364],[225,364],[230,364],[235,364],[240,364],[246,364],[252,364],[257,364],[262,364],[267,364],[272,364],[278,364],[283,364],[285,364],[293,364],[298,364],[303,364],[308,364],[313,364],[318,364],[323,364],[327,364],[329,364]],"b":[],"c":"OjAAAAAAAAA=","e":"OzAAAAEAAO4AIAADAAAABwADAAwAAQAQAAIAFgAAABgAAgAcAAQAKAAHADgABwBBAAEARAAGAEwABwBWAAcAXwABAGIABgBqAAcAdAABAHgAAgB/AAcAiAABAIsABgCTAAcAtAAOAMQACQDPABsA8AAEAPYABAABARMAFgEEAB4BAAAiASUASQEEAA==","P":[[7,"T,M,D"],[8,"C,T"],[9,"C"],[11,"T"],[13,"T,S"],[14,"Executor,Message,Sender"],[15,"WpParam,T"],[16,"C,T"],[18,"Executor,Message,Sender,R,"],[21,"Executor,Sender,Message"],[22,"T"],[24,"U,T"],[26,"U"],[28,"WpParam,T"],[29,"U"],[31,"T"],[33,"Executor,Message,Sender"],[38,"Executor,Message,Sender,"],[39,"C"],[40,"U,T"],[41,"U"],[43,""],[44,"C,U"],[45,"C"],[46,"V"],[55,"T,M,D"],[56,"C,T"],[57,"C"],[58,"T"],[60,"WpParam,T"],[61,"C,T"],[62,""],[63,"T"],[65,"U,T"],[66,"U"],[68,"WpParam,T"],[69,"U"],[71,"T"],[72,""],[73,""],[75,"C"],[76,"U,T"],[77,"U"],[79,""],[80,"C,U"],[81,"C"],[82,"V"],[83,""],[85,"T,M,D"],[86,"C,T"],[87,"C"],[88,"T"],[90,"WpParam,T"],[91,"C,T"],[92,""],[93,"T"],[95,"U,T"],[96,"U"],[98,"WpParam,T"],[99,"U"],[101,"T"],[102,""],[103,""],[105,"C"],[106,"U,T"],[107,"U"],[109,""],[110,"C,U"],[111,"C"],[112,"V"],[113,""],[116,""],[119,"R,"],[120,""],[121,""],[123,""],[124,"T,F"],[126,"T,M,D"],[127,"C,T"],[128,"C"],[129,"T"],[131,"WpParam,T"],[132,"C,T"],[133,""],[134,"T"],[136,"U,T"],[137,"U"],[139,"WpParam,T"],[140,"U"],[142,"T"],[143,""],[144,""],[146,"C"],[147,"U,T"],[148,"U"],[150,""],[151,"C,U"],[152,"C"],[153,"V"],[154,""],[155,"Message"],[156,""],[157,"Message"],[159,"R,"],[160,""],[161,""],[162,"Message"],[164,"T,F,"],[165,"T,E,F,"],[179,"T,M,D"],[184,"C,T"],[189,"C"],[194,"T,"],[195,"T"],[205,""],[206,"WpParam,T"],[211,""],[214,"T"],[217,""],[220,"C,T"],[225,""],[229,"T"],[230,""],[234,"T"],[244,"T,"],[245,"U,T"],[250,"Recipe::Output"],[251,"U"],[261,"WpParam,T"],[266,"U"],[276,"T"],[282,"T,A,F"],[283,""],[284,"T"],[286,"T,S"],[287,"D,T,S"],[288,"Recipe::Output"],[289,"T"],[292,"C"],[297,"U,T"],[302,"U"],[312,""],[317,"C,U"],[322,"C"],[327,",Message,Receiver"],[328,"V"],[333,"T,A"],[334,""]]}],["iced_graphics",{"t":"GEEEEEEPPPPEFEFNNNONNNNNNNNNNNNCNNNNNNNNNNNNCNNNCECNOONNNNNNNNNNNCNNNNNNNNNNNNECCCNNNNNNNNNNNNNNNNNNNNNCNCNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNFRKPPFGNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOSFNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNKRKFPPPRRGPKNNONNNNONNNNNNNNNNNMMMNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNMMNNNNNNNNNNNNNNNNNNNMHHHPPGPPPGPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOFEERREPFEEEEKPEGFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNONNNNNNNNNNNNNMNNNNNNNNNCNONNNNNOCNNNNNNNNNNNNNNNNNNNNNEOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNMNNNNOOCONNOOOONOCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNPFPGENNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNKFRNNNNNNMNNNNMMNMNNMNMNMNNNNMNNNNNNNMNNNMMNMNMNMNMNMNMNMNMNNNNNNNNNMNNNEFFNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNENNNNNNNNNNNNNNNNNNNNNNNNNNNNFFNNNNNNNNNNNNOONNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNOOOOONNNNNNNNNNNNNNNNNNPPGFGPPPPFENNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOONNNNOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNGFPFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNGPPNNNNNNNNNNNNNNNNNNNENNNNNNNHNNNNNNNNNKFNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNMMNNNNNNNNNMFPFFGKPFNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOONOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNOOOOOOEPEPSFEPFPGFNNNNNNNNNNNNNNNNNNNNOCNNNNONNNNNNNNNNONNNNENNNNNNNNNNNNNCNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNCNONHHNNNHHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOOOOOOOOOOOOOOOOFFFINNNNNNNNNNNNNNNNOONNNNNNNNNONNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNOONNNNNNNNNNNNNNNNNNNNNNNNNNFFNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNONNNN","n":["Antialiasing","Cache","Compositor","Error","Gradient","Image","Layer","MSAAx16","MSAAx2","MSAAx4","MSAAx8","Mesh","Settings","Text","Viewport","adapt_into_using","","","antialiasing","arrays_from","","","arrays_into","","","borrow","","","borrow_mut","","","cache","cam16_into_unclamped","","","clone","","","clone_into","","","clone_to_uninit","","","color","components_from","","","compositor","core","damage","default","default_font","default_text_size","deref","","","deref_mut","","","drop","","","eq","","error","fmt","","","from","","","from_angle","","","from_stimulus","","","futures","geometry","gradient","image","init","","","into","","","into_angle","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","layer","logical_size","mesh","null_value","physical_height","physical_size","physical_width","projection","sample_count","scale_factor","text","to_owned","","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","vzip","","","with_physical_size","Cache","","Cached","Empty","Filled","Group","State","adapt_into_using","","","arrays_from","","","arrays_into","","","borrow","","","borrow_mut","","","cache","cam16_into_unclamped","","","clear","clone","","clone_into","","clone_to_uninit","","cmp","components_from","","","default","deref","","","deref_mut","","","drop","","","eq","","fmt","","","from","","","from_angle","","","from_stimulus","","","group","hash","init","","","into","","","into_angle","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","is_singleton","load","new","null_value","partial_cmp","put","state","to_owned","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","unique","vzip","","","with_group","current","previous","GAMMA_CORRECTION","Packed","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components","components_from","deref","deref_mut","drop","eq","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","is_valid_bit_pattern","pack","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vzip","Compositor","","Default","Information","Lost","OutOfMemory","Outdated","Renderer","Surface","SurfaceError","Timeout","Window","adapt_into_using","","adapter","arrays_from","","arrays_into","","backend","borrow","","borrow_mut","","cam16_into_unclamped","","clone","clone_into","clone_to_uninit","components_from","","configure_surface","create_renderer","create_surface","deref","","deref_mut","","drop","","eq","fetch_information","fmt","","","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","load_font","new","present","screenshot","to_owned","to_smolstr","to_string","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","with_backend","diff","group","list","BackendError","DidNotMatch","Error","GraphicsAdapterNotFound","List","NoAvailablePixelFormat","Reason","RequestFailed","VersionNotSupported","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","deref","","deref_mut","","drop","","eq","","fmt","","","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","to_owned","","to_smolstr","to_string","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","backend","reason","preferred_backend","Cache","Fill","Frame","","Geometry","Gradient","","Image","LineCap","LineDash","LineJoin","Path","Renderer","Solid","Stroke","Style","Svg","Text","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","borrow","","","","","borrow_mut","","","","","cam16_into_unclamped","","","","","clear","clone","","","","clone_into","","","","clone_to_uninit","","","","color","","","components_from","","","","","content","default","","deref","","","","","deref_mut","","","","","draw","draw_geometry","draw_with","drop","","","","","eq","","","fill","filter_method","","fmt","","","","","font","frame","from","","","","","","","","","","","from_angle","","","","","from_stimulus","","","","","gradient","handle","","horizontal_alignment","init","","","","","into","","","","","into_angle","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_stimulus","","","","","line_height","new","","","new_frame","null_value","","opacity","","","","path","position","rotation","","","","shaping","size","snap","","stroke","to_owned","","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","vertical_alignment","vzip","","","","","with_group","EvenOdd","Fill","NonZero","Rule","Style","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","default","deref","","deref_mut","","drop","","eq","fmt","","from","","","","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","null_value","rule","style","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","Backend","Frame","Geometry","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","center","","components_from","deref","deref_mut","draft","draw_image","","draw_svg","","drop","fill","","fill_rectangle","","fill_text","","from","from_angle","from_stimulus","height","","init","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_geometry","","into_stimulus","new","paste","pop_transform","","push_transform","","rotate","","scale","","scale_nonuniform","","size","","stroke","","stroke_rectangle","","translate","","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vzip","width","","with_clip","with_save","Arc","Builder","Path","adapt_into_using","","arc","","arc_to","arrays_from","","arrays_into","","bezier_curve_to","borrow","","borrow_mut","","build","cam16_into_unclamped","","circle","","clone","clone_into","clone_to_uninit","close","components_from","","default","deref","","deref_mut","","drop","","ellipse","fmt","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","line","line_to","lyon_path","move_to","new","","null_value","quadratic_curve_to","raw","rectangle","","rounded_rectangle","","to_owned","transform","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","Arc","Elliptical","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","center","","clone","","clone_into","","clone_to_uninit","","components_from","","deref","","deref_mut","","drop","","end_angle","","fmt","","from","","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","radii","radius","rotation","start_angle","","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","Bevel","Butt","LineCap","LineDash","LineJoin","Miter","Round","","Square","Stroke","Style","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","clone","","","","clone_into","","","","clone_to_uninit","","","","components_from","","","","default","","","","deref","","","","deref_mut","","","","drop","","","","fmt","","","","from","","","","from_angle","","","","from_stimulus","","","","init","","","","into","","","","into_angle","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_stimulus","","","","line_cap","line_dash","line_join","null_value","","","","offset","segments","style","to_owned","","","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","vzip","","","","width","with_color","with_line_cap","with_line_join","with_width","Gradient","Linear","","Packed","adapt_into_using","","","add_stop","add_stops","arrays_from","","","arrays_into","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","","","clone_into","","","clone_to_uninit","","","components_from","","","deref","","","deref_mut","","","drop","","","end","eq","","","fmt","","","from","","","","from_angle","","","from_stimulus","","","init","","","into","","","into_angle","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","is_valid_bit_pattern","new","pack","","","start","stops","to_owned","","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","vzip","","","Image","Raster","Vector","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","bounds","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","deref","deref_mut","drop","eq","fmt","from","from_angle","from_stimulus","image_rs","init","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","load","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vzip","Layer","Stack","adapt_into_using","arrays_from","arrays_into","as_slice","borrow","borrow_mut","cam16_into_unclamped","clear","components_from","current_mut","default","deref","deref_mut","drop","flush","","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","iter","iter_mut","new","null_value","pop_clip","pop_transformation","push_clip","push_transformation","reset","resize","transformation","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vzip","with_bounds","AttributeCount","Gradient","GradientVertex2D","Indexed","Mesh","Renderer","Solid","SolidVertex2D","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","attribute_count_of","borrow","","","","","borrow_mut","","","","","cam16_into_unclamped","","","","","clip_bounds","clone","","","","","clone_into","","","","","clone_to_uninit","","","","","color","components_from","","","","","default","deref","","","","","deref_mut","","","","","draw_mesh","drop","","","","","eq","","","","fmt","","","","","from","","","","","from_angle","","","","","from_stimulus","","","","","gradient","gradient_vertices","gradients","indices","","","init","","","","","into","","","","","into_angle","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_stimulus","","","","","is_valid_bit_pattern","","null_value","position","","solid_vertices","solids","to_owned","","","","","transformation","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","vertices","vzip","","","","","buffers","","clip_bounds","","transformation","","Cache","Cached","Editor","","FIRA_SANS_REGULAR","FontSystem","Paragraph","","Raw","","Text","Version","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","borrow","","","","borrow_mut","","","","buffer","cache","cam16_into_unclamped","","","","clip_bounds","clone","","","clone_into","","","clone_to_uninit","","","cmp","color","components_from","","","","cosmic_text","default","deref","","","","deref_mut","","","","drop","","","","editor","eq","","","fmt","","","font_system","from","","","","from_angle","","","","from_stimulus","","","","hash","init","","","","into","","","","into_angle","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_stimulus","","","","load_font","measure","null_value","paragraph","partial_cmp","position","raw","to_attributes","to_color","to_owned","","","to_shaping","to_wrap","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","version","visible_bounds","vzip","","","","bounds","clip_bounds","","","color","","","content","editor","font","horizontal_alignment","line_height","paragraph","position","","raw","shaping","size","transformation","","","vertical_alignment","Cache","Entry","Key","KeyHash","adapt_into_using","","","allocate","arrays_from","","","arrays_into","","","borrow","","","borrow_mut","","","bounds","buffer","cam16_into_unclamped","","","clone","clone_into","clone_to_uninit","components_from","","","content","default","deref","","","deref_mut","","","drop","","","fmt","","","font","from","","","from_angle","","","from_stimulus","","","get","init","","","into","","","into_angle","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","line_height","min_bounds","new","null_value","shaping","size","to_owned","trim","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","vzip","","","Editor","Weak","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","bounds","","buffer","cam16_into_unclamped","","clone","clone_into","clone_to_uninit","components_from","","cursor","cursor_position","default","deref","","deref_mut","","downgrade","drop","","eq","","fmt","","from","","from_angle","","from_stimulus","","highlight","init","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","is_empty","line","line_count","min_bounds","new","null_value","perform","selection","to_owned","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","update","upgrade","vzip","","with_text","Paragraph","Weak","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","buffer","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","compare","components_from","","default","deref","","deref_mut","","downgrade","drop","","eq","","fmt","","from","","from_angle","","from_stimulus","","grapheme_position","hit_span","hit_test","horizontal_alignment","","init","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","min_bounds","","new","null_value","resize","span_bounds","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upgrade","vertical_alignment","","vzip","","with_spans","with_text"],"q":[[0,"iced_graphics"],[142,"iced_graphics::cache"],[261,"iced_graphics::cache::State"],[263,"iced_graphics::color"],[302,"iced_graphics::compositor"],[391,"iced_graphics::damage"],[394,"iced_graphics::error"],[474,"iced_graphics::error::Error"],[476,"iced_graphics::error::Reason"],[477,"iced_graphics::geometry"],[708,"iced_graphics::geometry::fill"],[787,"iced_graphics::geometry::frame"],[859,"iced_graphics::geometry::path"],[947,"iced_graphics::geometry::path::arc"],[1025,"iced_graphics::geometry::stroke"],[1187,"iced_graphics::gradient"],[1304,"iced_graphics::image"],[1344,"iced_graphics::layer"],[1393,"iced_graphics::mesh"],[1590,"iced_graphics::mesh::Mesh"],[1596,"iced_graphics::text"],[1761,"iced_graphics::text::Text"],[1783,"iced_graphics::text::cache"],[1892,"iced_graphics::text::editor"],[1977,"iced_graphics::text::paragraph"],[2067,"palette::chromatic_adaptation"],[2068,"iced_graphics::settings"],[2069,"core::option"],[2070,"palette::cam16::parameters"],[2071,"iced_graphics::antialiasing"],[2072,"iced_graphics::viewport"],[2073,"iced_core::font"],[2074,"iced_core::pixels"],[2075,"core::fmt"],[2076,"iced_core::size"],[2077,"iced_core::transformation"],[2078,"core::result"],[2079,"palette::convert::try_from_into_color"],[2080,"core::any"],[2081,"core::clone"],[2082,"core::cmp"],[2083,"core::hash"],[2084,"core::cell"],[2085,"iced_core::color"],[2086,"core::convert"],[2087,"alloc::string"],[2088,"alloc::borrow"],[2089,"core::future::future"],[2090,"alloc::vec"],[2091,"smol_str"],[2092,"iced_core::rectangle"],[2093,"core::ops::function"],[2094,"iced_graphics::geometry::cache"],[2095,"iced_graphics::geometry::style"],[2096,"iced_graphics::geometry::text"],[2097,"iced_core::image"],[2098,"iced_core::svg"],[2099,"iced_core::alignment"],[2100,"iced_core::text"],[2101,"iced_core::point"],[2102,"iced_core::angle"],[2103,"iced_core::vector"],[2104,"iced_graphics::geometry::path::builder"],[2105,"lyon_path::path"],[2106,"iced_core::border"],[2107,"lyon_path::math"],[2108,"iced_core::gradient"],[2109,"core::iter::traits::collect"],[2110,"image::color"],[2111,"bytes::bytes"],[2112,"image::buffer_"],[2113,"image::error"],[2114,"core::iter::traits::iterator"],[2115,"alloc::sync"],[2116,"std::sync::poison::rwlock"],[2117,"cosmic_text::buffer"],[2118,"cosmic_text::font::system"],[2119,"cosmic_text::attrs"],[2120,"cosmic_text::shape"],[2121,"cosmic_text::layout"],[2122,"iced_core::text::editor"],[2123,"iced_core::text::highlighter"]],"i":"```````n000````0dA`1210210210210`210210210210`210```11121021021021`210210210210````210210210210210210210`0`1000020`2102102102102102102102102100`Cd`Cl0``CjCf21021021021023102102020201021102102102021021021021021010210210210210210210203110110210210210210210210210201021DhDj``Dl00000000000000000000000000`000000000`ACj``Eh00En0`1`1Ed020200202020222201112020202122020202020202020202020111122220202020202020201```FhGh`111`0110101010101010101010101010101101010101010101010101010111010101010101010Gj0Gl```H`0`Hb``````0````Gn1HdHfHh3421034210342103421034210342104210421002034210232342103421035234210410`11342102`344422211003421034210`1023421034210342103421034210342103421023105321010`210102211`4210342103421034210342103421034210342102342103K``0``Jn1010101010101010101001010110100001010101010101010101000010101010101010101``IbHj00000100001101001010100001000000010001101010101010101010000000001000```KhId`11101011010110100001101101010101010101010101010101001`1101101010001010101010101010``KjKl10101010101010101010101010101010010101010101010101001010101010101010101010LfLd```1010``Kf12Lh123012301230123012301230123012301230123012301230123012301230123012301230123012301230123012301230111123000112301230123012301230123012301230123011111``Il`0KbM`112102102102102102102102102102102102101210210221021021021021021021021021021001`2111210210210210210210210210210`Md00000000000000000000`0000000`000000000``Mn0000000000000N`11111111111111111111001111111110`Nf````0`0NjNlNnNh4321043210`432104321043210443210432104321024321004321043210O`5432154325432154321543215432121154154321543215432154321543215432154321321321154321554321543215432154321543215432154321454321ObOd1010`Oj`0```0`0``On1OlOf23102310231023100`23100310310310102310`1231023102310`310310`231023102310123102310231023102310231023102`1`102``310``2310231023102310231023102310232310AA`AAbAAd210220222110AAj332103````AAlAAnABb221021021021010210111210122102102102101210210210221021021021021021021010221112210210210210210210210210``ABdAAf101010101011000010111101011010101010101101010101010101111111101010101010101010101``AC`AAh10101010110101010110110101101010101010111101010101010101010111110101010101010100101011","f":"```````````````{eg{}{{b{c}}}{}}00{df}{ce{}{}}00{{}c{}}00{h{{h{c}}}{}}00{{{h{j}}}{{h{jc}}}{}}00`{{{l{c}}}e{}{}}00{{{h{n}}}n}{{{h{d}}}d}{{{h{A`}}}A`}{{h{h{jc}}}Ab{}}00{{hAd}Ab}00`999```{{}d}{dAf}{dAh}{Aj{{h{c}}}{}}00{Aj{{h{jc}}}{}}00{AjAb}00{{{h{n}}{h{n}}}Al}{{{h{d}}{h{d}}}Al}`{{{h{n}}{h{jAn}}}B`}{{{h{d}}{h{jAn}}}B`}{{{h{A`}}{h{jAn}}}B`}{cc{}}00000{ce{}{}}00````{{}Aj}00{{}c{}}00000{{{l{c}}}e{}{}}00111111{{}c{}}00`{{{h{A`}}}{{Bd{Bb}}}}`1{{{h{A`}}}Bf}{{{h{A`}}}{{Bd{Bf}}}}1{{{h{A`}}}Bh}{nBf}{{{h{A`}}}Bj}`{hc{}}00{{}{{Bl{c}}}{}}00{c{{Bl{e}}}{}{}}00{{}{{Bl{c}}}{}}00{{}{{Bl{c{Bn{c}}}}}{}}00{hC`}00{ce{}{}}00{{}c{}}00{{}c{}}00{{{Bd{Bf}}Bj}A`}```````{eg{}{{b{c}}}{}}00{ce{}{}}00444{h{{h{c}}}{}}00{{{h{j}}}{{h{jc}}}{}}00{{{Cd{}{{Cb{c}}}}Cf{f{c}}}cCh}{{{l{c}}}e{}{}}00{{{h{{Cj{c}}}}}Ab{}}{{{h{Cf}}}Cf}{{{h{{Cl{c}}}}}{{Cl{c}}}Ch}{{h{h{jc}}}Ab{}}0{{hAd}Ab}0{{{h{Cf}}{h{Cf}}}Cn}:::{{}{{Cj{c}}}{}}{Aj{{h{c}}}{}}00{Aj{{h{jc}}}{}}00{AjAb}00{{{h{Cf}}{h{Cf}}}Al}{{{h{{Cl{c}}}}{h{{Cl{c}}}}}AlD`}{{{h{{Cj{c}}}}{h{jAn}}}B`Db}{{{h{Cf}}{h{jAn}}}B`}{{{h{{Cl{c}}}}{h{jAn}}}B`Db}{cc{}}00000{ce{}{}}00{{{h{{Cj{c}}}}}Cf{}}{{{h{Cf}}{h{jc}}}AbDd}{{}Aj}00{{}c{}}00000{{{l{c}}}e{}{}}00111111{{}c{}}00{CfAl}{{{h{c}}}{{Cd{}{{Cb{c}}}}}Ch}{{}{{Cj{c}}}{}}3{{{h{Cf}}{h{Cf}}}{{f{Cn}}}}{{{h{{Cj{c}}}}c}Ab{}}{{{h{{Cj{c}}}}}{{h{{Df{{Cl{c}}}}}}}{}}{hc{}}0{{}{{Bl{c}}}{}}00{c{{Bl{e}}}{}{}}00{{}{{Bl{c}}}{}}00{{}{{Bl{c{Bn{c}}}}}{}}00{hC`}00{ce{}{}}00{{}c{}}00{{}Cf}{{}c{}}00{Cf{{Cj{c}}}{}}{Dh}{Djf}{{}Al}`{eg{}{{b{c}}}{}}{ce{}{}}8{h{{h{c}}}{}}{{{h{j}}}{{h{jc}}}{}}{{{l{c}}}e{}{}}{{{h{Dl}}}Dl}{{h{h{jc}}}Ab{}}{{hAd}Ab}{Dl{{Dn{Bb}}}}7{Aj{{h{c}}}{}}{Aj{{h{jc}}}{}}{AjAb}{{{h{Dl}}{h{Dl}}}Al}{{{h{Dl}}{h{jAn}}}B`}{cc{}}0{ce{}{}}{{}Aj}{{}c{}}0=00{{}c{}}{{{h{c}}}Al{}}{cDl{{Eb{E`}}}}{hc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{Bn{c}}}}}{}}{hC`}{ce{}{}}{{}c{}}{{}c{}}````````````{eg{}{{b{c}}}{}}0{EdEf}{ce{}{}}0441{h{{h{c}}}{}}0{{{h{j}}}{{h{jc}}}{}}0{{{l{c}}}e{}{}}0{{{h{Eh}}}Eh}{{h{h{jc}}}Ab{}}{{hAd}Ab}66{{{h{j{En{}{{Ej{c}}{El{e}}}}}}{h{je}}BfBf}Ab{}{}}{{{h{{En{}{{Ej{c}}{El{e}}}}}}}c{}{}}{{{h{j{En{}{{Ej{c}}{El{e}}}}}}gBfBf}e{}{}{F`Ch}}{Aj{{h{c}}}{}}0{Aj{{h{jc}}}{}}0{AjAb}0{{{h{Eh}}{h{Eh}}}Al}{{{h{{En{}{{Ej{c}}{El{e}}}}}}}Ed{}{}}{{{h{Eh}}{h{jAn}}}B`}0{{{h{Ed}}{h{jAn}}}B`}{cc{}}000{ce{}{}}0{{}Aj}0{{}c{}}000{{{l{c}}}e{}{}}01111{{}c{}}0{{{h{j{En{}{{Ej{c}}{El{e}}}}}}{Fd{{Fb{Ad}}}}}Ab{}{}}{{dc}{{`{{Fj{}{{Ff{{Bl{{En{}{{Ej{e}}{El{g}}}}Fh}}}}}}}}}{F`Ch}{}{}}{{{h{j{En{}{{Ej{c}}{El{e}}}}}}{h{jc}}{h{je}}{h{A`}}E`{h{{Fb{g}}}}}{{Bl{AbEh}}}{}{}{{Fn{Fl}}}}{{{h{j{En{}{{Ej{c}}{El{e}}}}}}{h{jc}}{h{A`}}E`{h{{Fb{g}}}}}{{G`{Ad}}}{}{}{{Fn{Fl}}}}{hc{}}{hGb}{hEf}{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{Bn{c}}}}}{}}0{hC`}0{ce{}{}}0{{}c{}}0{{}c{}}0{{dc{f{{h{Fl}}}}}{{`{{Fj{}{{Ff{{Bl{{En{}{{Ej{e}}{El{g}}}}Fh}}}}}}}}}{F`Ch}{}{}}{{{h{{Fb{c}}}}{h{{Fb{c}}}}eg}{{G`{Gd}}}{}{{Gf{{h{c}}}{{Ff{{G`{Gd}}}}}}}{{Gf{{h{c}}{h{c}}}{{Ff{{G`{Gd}}}}}}}}{{{G`{Gd}}Gd}{{G`{Gd}}}}{{{h{{Fb{c}}}}{h{{Fb{c}}}}eg}{{G`{Gd}}}{}{{Gf{{h{c}}}{{Ff{{G`{Gd}}}}}}}{{Gf{{h{c}}{h{c}}}{{Ff{Al}}}}}}`````````{eg{}{{b{c}}}{}}0{ce{}{}}077{h{{h{c}}}{}}0{{{h{j}}}{{h{jc}}}{}}0{{{l{c}}}e{}{}}0{{{h{Fh}}}Fh}{{{h{Gh}}}Gh}{{h{h{jc}}}Ab{}}0{{hAd}Ab}077{Aj{{h{c}}}{}}0{Aj{{h{jc}}}{}}0{AjAb}0{{{h{Fh}}{h{Fh}}}Al}{{{h{Gh}}{h{Gh}}}Al}{{{h{Fh}}{h{jAn}}}B`}0{{{h{Gh}}{h{jAn}}}B`}{cc{}}000{ce{}{}}0{{}Aj}0{{}c{}}000??0000{{}c{}}0{hc{}}0{hGb}{hEf}{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{Bn{c}}}}}{}}0{hC`}0{ce{}{}}0{{}c{}}0{{}c{}}0{Gjh}{GjGh}{GlEf}``````````````````{eg{}{{b{c}}}{}}0000{ce{}{}}000066666{h{{h{c}}}{}}0000{{{h{j}}}{{h{jc}}}{}}0000{{{l{c}}}e{}{}}0000{{{h{{Gn{c}}}}}AbH`}{{{h{Hb}}}Hb}{{{h{Hd}}}Hd}{{{h{{Hf{c}}}}}{{Hf{c}}}Ch}{{{h{{Hh{c}}}}}{{Hh{c}}}Ch}{{h{h{jc}}}Ab{}}000{{hAd}Ab}000{{Hhc}Hh{{Eb{E`}}}}{HdE`}{Hhf}====={HdEf}{{}{{Gn{c}}}H`}{{}Hd}{Aj{{h{c}}}{}}0000{Aj{{h{jc}}}{}}0000{{{h{{Gn{c}}}}{h{c}}Bde}{}H`{{Hl{{h{j{Hj{c}}}}}}}}{{{h{j{H`{}{{Hn{c}}{I`{e}}}}}}c}AbCd{{Ib{}{{Hn{c}}}}}}{{{h{Hd}}c}Ab{{If{IdE`}}}}{AjAb}0000{{{h{Hb}}{h{Hb}}}Al}{{{h{{Hf{c}}}}{h{{Hf{c}}}}}AlD`}{{{h{{Hh{c}}}}{h{{Hh{c}}}}}AlD`}`{{HfIh}Hf}{HfIh}{{{h{{Gn{c}}}}{h{jAn}}}B`H`}{{{h{Hb}}{h{jAn}}}B`}{{{h{Hd}}{h{jAn}}}B`}{{{h{{Hf{c}}}}{h{jAn}}}{{Bl{AbIj}}}Db}{{{h{{Hh{c}}}}{h{jAn}}}{{Bl{AbIj}}}Db}{HdAf}`{cc{}}{IlHb}1{E`Hb}2{{{h{Fl}}}Hd}{EfHd}4{{{h{In}}}Hf}{{{h{J`}}}Hh}666666{ce{}{}}0000`{Hf}{Hh}{HdJb}{{}Aj}0000{{}c{}}000000000{{{l{c}}}e{}{}}00001111111111{{}c{}}0000{HdJd}{{}{{Gn{c}}}H`}{cHf{{Eb{In}}}}{cHh{{Eb{J`}}}}{{{h{{H`{}{{Hn{c}}{I`{e}}}}}}Bd}eCd{{Ib{}{{Hn{c}}}}}}55{{Hfc}Hf{{Eb{Bb}}}}{{Hhc}Hh{{Eb{Bb}}}}{HfBb}{HhBb}`{HdJf}{{Hfc}Hf{{Eb{Jh}}}}{{Hhc}Hh{{Eb{Jh}}}}{HfJh}{HhJh}{HdJj}{HdAh}{{HfAl}Hf}{HfAl}`{hc{}}000{{}{{Bl{c}}}{}}0000{c{{Bl{e}}}{}{}}0000{{}{{Bl{c}}}{}}0000{{}{{Bl{c{Bn{c}}}}}{}}0000{hC`}0000{ce{}{}}0000{{}c{}}0000{HdJl}{{}c{}}0000{Cf{{Gn{c}}}H`}`````{eg{}{{b{c}}}{}}0{ce{}{}}055{h{{h{c}}}{}}0{{{h{j}}}{{h{jc}}}{}}0{{{l{c}}}e{}{}}0{{{h{Jn}}}Jn}{{{h{K`}}}K`}{{h{h{jc}}}Ab{}}0{{hAd}Ab}077{{}Jn}{Aj{{h{c}}}{}}0{Aj{{h{jc}}}{}}0{AjAb}0{{{h{K`}}{h{K`}}}Al}{{{h{Jn}}{h{jAn}}}B`}{{{h{K`}}{h{jAn}}}B`}{E`Jn}{KbJn}{IlJn}{cc{}}000{ce{}{}}0{{}Aj}0{{}c{}}000{{{l{c}}}e{}{}}01111{{}c{}}00{JnK`}{JnHb}{hc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{Bn{c}}}}}{}}0{hC`}0{ce{}{}}0{{}c{}}0{{}c{}}0```{eg{}{{b{c}}}{}}{ce{}{}}3{h{{h{c}}}{}}{{{h{j}}}{{h{jc}}}{}}{{{l{c}}}e{}{}}{{{h{{Ib{}{{Hn{c}}}}}}}Jf{}}{{{h{{Hj{c}}}}}JfH`}5{Aj{{h{c}}}{}}{Aj{{h{jc}}}{}}{{{h{j{Ib{}{{Hn{c}}}}}}Gd}{{Ib{}{{Hn{c}}}}}{}}{{{h{j{Ib{}{{Hn{c}}}}}}Gde}Ab{}{{Eb{Hf}}}}{{{h{j{Hj{c}}}}Gde}AbH`{{Eb{Hf}}}}{{{h{j{Ib{}{{Hn{c}}}}}}Gde}Ab{}{{Eb{Hh}}}}{{{h{j{Hj{c}}}}Gde}AbH`{{Eb{Hh}}}}{AjAb}{{{h{j{Ib{}{{Hn{c}}}}}}{h{Id}}e}Ab{}{{Eb{Jn}}}}{{{h{j{Hj{c}}}}{h{Id}}e}AbH`{{Eb{Jn}}}}{{{h{j{Ib{}{{Hn{c}}}}}}JfBde}Ab{}{{Eb{Jn}}}}{{{h{j{Hj{c}}}}JfBde}AbH`{{Eb{Jn}}}}{{{h{j{Ib{}{{Hn{c}}}}}}e}Ab{}{{Eb{Hd}}}}{{{h{j{Hj{c}}}}e}AbH`{{Eb{Hd}}}}{cc{}}0{ce{}{}}{{{h{{Ib{}{{Hn{c}}}}}}}Bb{}}{{{h{{Hj{c}}}}}BbH`}{{}Aj}{{}c{}}0{{{l{c}}}e{}{}}11{{{Ib{}{{Hn{c}}}}}c{}}{{{Hj{c}}}{}H`}{{}c{}}{{{h{c}}Bd}{{Hj{c}}}H`}{{{h{j{Ib{}{{Hn{c}}}}}}{Ib{}{{Hn{c}}}}}Ab{}}{{{h{j{Ib{}{{Hn{c}}}}}}}Ab{}}{{{h{j{Hj{c}}}}}AbH`}10{{{h{j{Ib{}{{Hn{c}}}}}}e}Ab{}{{Eb{Jh}}}}{{{h{j{Hj{c}}}}e}AbH`{{Eb{Jh}}}}{{{h{j{Ib{}{{Hn{c}}}}}}e}Ab{}{{Eb{Bb}}}}{{{h{j{Hj{c}}}}e}AbH`{{Eb{Bb}}}}{{{h{j{Ib{}{{Hn{c}}}}}}e}Ab{}{{Eb{Kd}}}}{{{h{j{Hj{c}}}}e}AbH`{{Eb{Kd}}}}{{{h{{Ib{}{{Hn{c}}}}}}}Bd{}}{{{h{{Hj{c}}}}}BdH`}{{{h{j{Ib{}{{Hn{c}}}}}}{h{Id}}e}Ab{}{{Eb{Kf}}}}{{{h{j{Hj{c}}}}{h{Id}}e}AbH`{{Eb{Kf}}}}{{{h{j{Ib{}{{Hn{c}}}}}}JfBde}Ab{}{{Eb{Kf}}}}{{{h{j{Hj{c}}}}JfBde}AbH`{{Eb{Kf}}}}{{{h{j{Ib{}{{Hn{c}}}}}}Kd}Ab{}}{{{h{j{Hj{c}}}}Kd}AbH`}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{Bn{c}}}}}{}}{hC`}{ce{}{}}{{}c{}}{{}c{}}{{{h{{Ib{}{{Hn{c}}}}}}}Bb{}}{{{h{{Hj{c}}}}}BbH`}{{{h{j{Hj{c}}}}Gdg}eH`{}{{Hl{{h{j{Hj{c}}}}}{{Ff{e}}}}}}{{{h{j{Hj{c}}}}g}eH`{}{{Hl{{h{j{Hj{c}}}}}{{Ff{e}}}}}}```{eg{}{{b{c}}}{}}0`{{{h{jKh}}Kj}Ab}{{{h{jKh}}JfJfBb}Ab}{ce{}{}}099{{{h{jKh}}JfJfJf}Ab}{h{{h{c}}}{}}0{{{h{j}}}{{h{jc}}}{}}0{KhId}{{{l{c}}}e{}{}}0{{{h{jKh}}JfBb}Ab}{{JfBb}Id}{{{h{Id}}}Id}{{h{h{jc}}}Ab{}}{{hAd}Ab}{{{h{jKh}}}Ab};;{{}Kh}{Aj{{h{c}}}{}}0{Aj{{h{jc}}}{}}0{AjAb}0{{{h{jKh}}Kl}Ab}{{{h{Id}}{h{jAn}}}B`}{cc{}}000{ce{}{}}0{{}Aj}0{{}c{}}000{{{l{c}}}e{}{}}01111{{}c{}}0{{JfJf}Id}{{{h{jKh}}Jf}Ab}`0={cId{{Hl{{h{jKh}}}}}}3{{{h{jKh}}JfJf}Ab}{{{h{Id}}}{{h{Kn}}}}{{{h{jKh}}JfBd}Ab}{{JfBd}Id}{{{h{jKh}}JfBdL`}Ab}{{JfBdL`}Id}{hc{}}{{{h{Id}}{h{Lb}}}Id}{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{Bn{c}}}}}{}}0{hC`}0{ce{}{}}0{{}c{}}0{{}c{}}0``{eg{}{{b{c}}}{}}0{ce{}{}}033{h{{h{c}}}{}}0{{{h{j}}}{{h{jc}}}{}}0{{{l{c}}}e{}{}}0{KjJf}{KlJf}{{{h{Kj}}}Kj}{{{h{Kl}}}Kl}{{h{h{jc}}}Ab{}}0{{hAd}Ab}099{Aj{{h{c}}}{}}0{Aj{{h{jc}}}{}}0{AjAb}0{KjJh}{KlJh}{{{h{Kj}}{h{jAn}}}B`}{{{h{Kl}}{h{jAn}}}B`}{cc{}}0{KjKl}11{ce{}{}}0{{}Aj}0{{}c{}}000{{{l{c}}}e{}{}}01111{{}c{}}0{KlKd}{KjBb};<;{hc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{Bn{c}}}}}{}}0{hC`}0{ce{}{}}0{{}c{}}0{{}c{}}0```````````{eg{}{{b{c}}}{}}000{ce{}{}}0003333{h{{h{c}}}{}}000{{{h{j}}}{{h{jc}}}{}}000{{{l{c}}}e{}{}}000{{{h{Kf}}}Kf}{{{h{Ld}}}Ld}{{{h{Lf}}}Lf}{{{h{Lh}}}Lh}{{h{h{jc}}}Ab{}}000{{hAd}Ab}0009999{{}Kf}{{}Ld}{{}Lf}{{}Lh}{Aj{{h{c}}}{}}000{Aj{{h{jc}}}{}}000{AjAb}000{{{h{Kf}}{h{jAn}}}B`}{{{h{Ld}}{h{jAn}}}B`}{{{h{Lf}}{h{jAn}}}B`}{{{h{Lh}}{h{jAn}}}B`}{cc{}}0000000{ce{}{}}000{{}Aj}000{{}c{}}0000000{{{l{c}}}e{}{}}00011111111{{}c{}}000{KfLd}{KfLh}{KfLf}3333{LhAj}{Lhh}{KfHb}{hc{}}000{{}{{Bl{c}}}{}}000{c{{Bl{e}}}{}{}}000{{}{{Bl{c}}}{}}000{{}{{Bl{c{Bn{c}}}}}{}}000{hC`}000{ce{}{}}000{{}c{}}000{{}c{}}000{KfBb}{{KfE`}Kf}{{KfLd}Kf}{{KfLf}Kf}{{KfBb}Kf}````{eg{}{{b{c}}}{}}00{{KbBbE`}Kb}{{Kbc}Kb{{Ln{}{{Lj{Ll}}}}}}{ce{}{}}00:::{h{{h{c}}}{}}00{{{h{j}}}{{h{jc}}}{}}00{{{l{c}}}e{}{}}00{{{h{Il}}}Il}{{{h{Kb}}}Kb}{{{h{M`}}}M`}{{h{h{jc}}}Ab{}}00{{hAd}Ab}00888{Aj{{h{c}}}{}}00{Aj{{h{jc}}}{}}00{AjAb}00{KbJf}{{{h{Il}}{h{Il}}}Al}{{{h{Kb}}{h{Kb}}}Al}{{{h{M`}}{h{M`}}}Al}{{{h{Il}}{h{jAn}}}B`}{{{h{Kb}}{h{jAn}}}B`}{{{h{M`}}{h{jAn}}}B`}{cc{}}{KbIl}11111{ce{}{}}00{{}Aj}00{{}c{}}00000{{{l{c}}}e{}{}}00111111{{}c{}}00{{{h{c}}}Al{}}{{JfJf}Kb}{{{h{Mb}}Gd}M`}{{{h{Il}}}M`}{{{h{Kb}}}M`}{KbJf}{KbDn}{hc{}}00{{}{{Bl{c}}}{}}00{c{{Bl{e}}}{}{}}00{{}{{Bl{c}}}{}}00{{}{{Bl{c{Bn{c}}}}}{}}00{hC`}00{ce{}{}}00{{}c{}}00{{}c{}}00```{eg{}{{b{c}}}{}}{ce{}{}}3{h{{h{c}}}{}}{{{h{j}}}{{h{jc}}}{}}{{{h{Md}}}Gd}{{{l{c}}}e{}{}}{{{h{Md}}}Md}{{h{h{jc}}}Ab{}}{{hAd}Ab}7{Aj{{h{c}}}{}}{Aj{{h{jc}}}{}}{AjAb}{{{h{Md}}{h{Md}}}Al}{{{h{Md}}{h{jAn}}}B`}{cc{}}0{ce{}{}}`{{}Aj}{{}c{}}0<00{{}c{}}{{{h{In}}}{{Ml{{Mj{{Mf{Ad}}Mh}}}}}}{hc{}}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{Bn{c}}}}}{}}{hC`}{ce{}{}}{{}c{}}{{}c{}}``{eg{}{{b{c}}}{}}{ce{}{}}3{{{h{{Mn{c}}}}}{{h{{Fb{c}}}}}N`}{h{{h{c}}}{}}{{{h{j}}}{{h{jc}}}{}}{{{l{c}}}e{}{}}{{{h{j{Mn{c}}}}}AbN`}5{{{h{j{Mn{c}}}}}{{Nb{{h{jc}}Bh}}}N`}{{}{{Mn{c}}}N`}{Aj{{h{c}}}{}}{Aj{{h{jc}}}{}}{AjAb}{{{h{jN`}}}Ab}6{{{h{{Mn{c}}}}{h{jAn}}}B`{DbN`}}{cc{}}0{ce{}{}}{{}Aj}{{}c{}}0<00{{}c{}}{{{h{{Mn{c}}}}}{{`{{Nd{}{{Lj{{h{c}}}}}}}}}N`}{{{h{j{Mn{c}}}}}{{`{{Nd{}{{Lj{{h{jc}}}}}}}}}N`}<2>>{{{h{j{Mn{c}}}}Gd}AbN`}{{{h{j{Mn{c}}}}Bh}AbN`}:{{{h{jN`}}Gd}Ab}{{{h{{Mn{c}}}}}BhN`}{{}{{Bl{c}}}{}}{c{{Bl{e}}}{}{}}{{}{{Bl{c}}}{}}{{}{{Bl{c{Bn{c}}}}}{}}{hC`}{ce{}{}}{{}c{}}{{}c{}}{GdN`}````````{eg{}{{b{c}}}{}}0000{ce{}{}}000044444{{{h{{Fb{Nf}}}}}Nh}{h{{h{c}}}{}}0000{{{h{j}}}{{h{jc}}}{}}0000{{{l{c}}}e{}{}}0000{{{h{Nf}}}Gd}{{{h{Nf}}}Nf}{{{h{{Nj{c}}}}}{{Nj{c}}}Ch}{{{h{Nl}}}Nl}{{{h{Nn}}}Nn}{{{h{Nh}}}Nh}{{h{h{jc}}}Ab{}}0000{{hAd}Ab}0000{NlDl}====={{}Nh}{Aj{{h{c}}}{}}0000{Aj{{h{jc}}}{}}0000{{{h{jO`}}Nf}Ab}{AjAb}0000{{{h{Nf}}{h{Nf}}}Al}{{{h{{Nj{c}}}}{h{{Nj{c}}}}}AlD`}{{{h{Nl}}{h{Nl}}}Al}{{{h{Nn}}{h{Nn}}}Al}{{{h{Nf}}{h{jAn}}}B`}{{{h{{Nj{c}}}}{h{jAn}}}B`Db}{{{h{Nl}}{h{jAn}}}B`}{{{h{Nn}}{h{jAn}}}B`}{{{h{Nh}}{h{jAn}}}B`}{cc{}}000000000{ce{}{}}0000{NnM`}{NhAj}0{{{h{Nf}}}{{h{{Fb{Bf}}}}}}{NjG`}2{{}Aj}0000{{}c{}}000000000{{{l{c}}}e{}{}}00001111111111{{}c{}}0000{{{h{c}}}Al{}}01{NlDn}{NnDn}99{hc{}}0000{{{h{Nf}}}Bh}{{}{{Bl{c}}}{}}0000{c{{Bl{e}}}{}{}}0000{{}{{Bl{c}}}{}}0000{{}{{Bl{c{Bn{c}}}}}{}}0000{hC`}0000{ce{}{}}0000{{}c{}}0000{NjG`}{{}c{}}0000{ObNj}{OdNj}{ObGd}{OdGd}{ObBh}{OdBh}````{{}h}```````{eg{}{{b{c}}}{}}000{ce{}{}}000;;;;{h{{h{c}}}{}}000{{{h{j}}}{{h{jc}}}{}}000{OfOh}`{{{l{c}}}e{}{}}000{OfGd}{{{h{Oj}}}Oj}{{{h{Ol}}}Ol}{{{h{Of}}}Of}{{h{h{jc}}}Ab{}}00{{hAd}Ab}00{{{h{Ol}}{h{Ol}}}Cn}{OfE`}<<<<`{{}Ol}{Aj{{h{c}}}{}}000{Aj{{h{jc}}}{}}000{AjAb}000`{{{h{Oj}}{h{Oj}}}Al}{{{h{Ol}}{h{Ol}}}Al}{{{h{Of}}{h{Of}}}Al}{{{h{Oj}}{h{jAn}}}B`}{{{h{Ol}}{h{jAn}}}B`}{{{h{Of}}{h{jAn}}}B`}{{}{{h{{A@`{On}}}}}}{cc{}}0000000{ce{}{}}000{{{h{Ol}}{h{jc}}}AbDd}{{}Aj}000{{}c{}}0000000{{{l{c}}}e{}{}}00011111111{{}c{}}000{{{h{jOn}}{Fd{{Fb{Ad}}}}}Ab}{{{h{A@b}}}Bd}2`{{{h{Ol}}{h{Ol}}}{{f{Cn}}}}{OfJf}{{{h{jOn}}}{{h{jA@d}}}}{AfA@f}{E`A@h}{hc{}}00{JjA@j}{A@lA@n}{{}{{Bl{c}}}{}}000{c{{Bl{e}}}{}{}}000{{}{{Bl{c}}}{}}000{{}{{Bl{c{Bn{c}}}}}{}}000{hC`}000{ce{}{}}000{{}c{}}000{{{h{On}}}Ol}{{{h{Oj}}}{{f{Gd}}}}{{}c{}}000{AA`Gd}{AAbGd}{AAdGd}2{AAbE`}{AAdE`}{AA`E`}{AA`Ef}{AAdAAf}{AA`Af}{AA`Jb}{AA`Ah}{AAbAAh}{AAbJf}{AAdJf}{AAjOf}{AA`Jj}5{AAbBh}{AAdBh}{AAjBh}{AA`Jl}````{eg{}{{b{c}}}{}}00{{{h{jAAl}}{h{jA@d}}AAn}{{Nb{AB`{h{jABb}}}}}}{ce{}{}}00{{}c{}}00{h{{h{c}}}{}}00{{{h{j}}}{{h{jc}}}{}}00{AAnBd}{ABbA@b}{{{l{c}}}e{}{}}00{{{h{AAn}}}AAn}{{h{h{jc}}}Ab{}}{{hAd}Ab}999{AAnh}{{}AAl}{Aj{{h{c}}}{}}00{Aj{{h{jc}}}{}}00{AjAb}00{{{h{AAl}}{h{jAn}}}B`}{{{h{AAn}}{h{jAn}}}B`}{{{h{ABb}}{h{jAn}}}B`}{AAnAf}{cc{}}00000{ce{}{}}00{{{h{AAl}}{h{AB`}}}{{f{{h{ABb}}}}}}{{}Aj}00{{}c{}}00000{{{l{c}}}e{}{}}00111111{{}c{}}00{AAnBb}{ABbBd}{{}AAl}3{AAnJj}3{hc{}}{{{h{jAAl}}}Ab}{{}{{Bl{c}}}{}}00{c{{Bl{e}}}{}{}}00{{}{{Bl{c}}}{}}00{{}{{Bl{c{Bn{c}}}}}{}}00{hC`}00{ce{}{}}00{{}c{}}00{{}c{}}00``{eg{}{{b{c}}}{}}0{ce{}{}}033{h{{h{c}}}{}}0{{{h{j}}}{{h{jc}}}{}}0{{{h{ABd}}}Bd}{AAfBd}{{{h{ABd}}}{{h{A@b}}}}{{{l{c}}}e{}{}}0{{{h{AAf}}}AAf}{{h{h{jc}}}Ab{}}{{hAd}Ab}99{{{h{ABd}}}ABf}{{{h{ABd}}}{{Nb{AjAj}}}}{{}ABd}{Aj{{h{c}}}{}}0{Aj{{h{jc}}}{}}0{{{h{ABd}}}AAf}{AjAb}0{{{h{ABd}}{h{ABd}}}Al}{{{h{AAf}}{h{AAf}}}Al}{{{h{ABd}}{h{jAn}}}B`}{{{h{AAf}}{h{jAn}}}B`}{cc{}}000{ce{}{}}0{{{h{jABd}}c{h{je}}g}Ab{}ABh{{Gf{h}{{Ff{{ABj{c}}}}}}}}{{}Aj}0{{}c{}}000{{{l{c}}}e{}{}}01111{{}c{}}0{{{h{ABd}}}Al}{{{h{ABd}}Aj}{{f{ABl}}}}{{{h{ABd}}}Aj}{{{h{ABd}}}Bd}{{}ABd}5{{{h{jABd}}ABn}Ab}{{{h{ABd}}}{{f{Ef}}}}{hc{}}{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{Bn{c}}}}}{}}0{hC`}0{ce{}{}}0{{}c{}}0{{{h{jABd}}BdAfAhJdA@l{h{jc}}}AbABh}{{{h{AAf}}}{{f{ABd}}}}{{}c{}}0{{{h{Fl}}}ABd}``{eg{}{{b{c}}}{}}0{ce{}{}}066{h{{h{c}}}{}}0{{{h{j}}}{{h{jc}}}{}}0{{{h{AC`}}}{{h{A@b}}}}{{{l{c}}}e{}{}}0{{{h{AC`}}}AC`}{{{h{AAh}}}AAh}{{h{h{jc}}}Ab{}}0{{hAd}Ab}0{{{h{AC`}}{ACb{Ab}}}ACd}99{{}AC`}{Aj{{h{c}}}{}}0{Aj{{h{jc}}}{}}0{{{h{AC`}}}AAh}{AjAb}0{{{h{AC`}}{h{AC`}}}Al}{{{h{AAh}}{h{AAh}}}Al}{{{h{AC`}}{h{jAn}}}B`}{{{h{AAh}}{h{jAn}}}B`}{cc{}}000{ce{}{}}0{{{h{AC`}}AjAj}{{f{Jf}}}}{{{h{AC`}}Jf}{{f{Aj}}}}{{{h{AC`}}Jf}{{f{ACf}}}}{{{h{AC`}}}Jb}{AAhJb}{{}Aj}0{{}c{}}000{{{l{c}}}e{}{}}01111{{}c{}}0{{{h{AC`}}}Bd}{AAhBd}{{}AC`}3{{{h{jAC`}}Bd}Ab}{{{h{AC`}}Aj}{{G`{Gd}}}}{hc{}}0{{}{{Bl{c}}}{}}0{c{{Bl{e}}}{}{}}0{{}{{Bl{c}}}{}}0{{}{{Bl{c{Bn{c}}}}}{}}0{hC`}0{ce{}{}}0{{}c{}}0{{{h{AAh}}}{{f{AC`}}}}{{{h{AC`}}}Jl}{AAhJl}{{}c{}}0{{{ACb{{h{{Fb{{ACh{c}}}}}}}}}AC`{}}{{{ACb{{h{Fl}}}}}AC`}","D":"CHf","p":[[10,"TransformMatrix",2067],[5,"Settings",0,2068],[6,"Option",2069,null,1],[1,"reference",null,null,1],[0,"mut"],[5,"BakedParameters",2070],[6,"Antialiasing",0,2071],[5,"Viewport",0,2072],[1,"unit"],[1,"u8"],[5,"Font",2073],[5,"Pixels",2074],[1,"usize"],[1,"bool"],[5,"Formatter",2075],[8,"Result",2075],[1,"f32"],[5,"Size",2076],[1,"u32"],[5,"Transformation",2077],[1,"f64"],[6,"Result",2078,null,1],[5,"OutOfBounds",2079],[5,"TypeId",2080],[17,"Cache"],[10,"Cached",142],[5,"Group",142],[10,"Clone",2081],[5,"Cache",142],[6,"State",142],[6,"Ordering",2082],[10,"PartialEq",2082],[10,"Debug",2075],[10,"Hasher",2083],[5,"RefCell",2084],[15,"Filled",261],[15,"Empty",261],[5,"Packed",263],[1,"array"],[5,"Color",2085],[10,"Into",2086,null,1],[5,"Information",302],[5,"String",2087],[6,"SurfaceError",302],[17,"Renderer"],[17,"Surface"],[10,"Compositor",302],[10,"Window",302],[1,"slice"],[6,"Cow",2088],[17,"Output"],[6,"Error",394],[10,"Future",2089,null,1],[1,"str"],[10,"AsRef",2086],[5,"Vec",2090],[5,"SmolStr",2091],[5,"Rectangle",2092],[10,"Fn",2093],[6,"Reason",394],[15,"GraphicsAdapterNotFound",474],[15,"DidNotMatch",476],[5,"Cache",477,2094],[10,"Renderer",477],[6,"Style",477,2095],[5,"Text",477,2096],[5,"Image",477,2097],[5,"Svg",477,2098],[5,"Frame",787],[10,"FnOnce",2093],[17,"Geometry"],[17,"Frame"],[10,"Backend",787],[5,"Path",859],[10,"FnMut",2093],[6,"FilterMethod",2097],[5,"Error",2075],[6,"Gradient",1187],[6,"Handle",2097],[5,"Handle",2098],[6,"Horizontal",2099],[6,"LineHeight",2100],[5,"Point",2101],[5,"Radians",2102],[6,"Shaping",2100],[6,"Vertical",2099],[5,"Fill",708],[6,"Rule",708],[5,"Linear",1187],[5,"Vector",2103],[5,"Stroke",1025],[5,"Builder",859,2104],[5,"Arc",947],[5,"Elliptical",947],[5,"Path",2105],[5,"Radius",2106],[8,"Transform",2107],[6,"LineCap",1025],[6,"LineJoin",1025],[5,"LineDash",1025],[17,"Item"],[5,"ColorStop",2108],[10,"IntoIterator",2109],[5,"Packed",1187],[6,"Gradient",2108],[6,"Image",1304],[5,"Rgba",2110],[5,"Bytes",2111],[5,"ImageBuffer",2112],[8,"ImageResult",2113],[5,"Stack",1344],[10,"Layer",1344],[1,"tuple",null,null,1],[10,"Iterator",2114],[6,"Mesh",1393],[5,"AttributeCount",1393],[5,"Indexed",1393],[5,"SolidVertex2D",1393],[5,"GradientVertex2D",1393],[10,"Renderer",1393],[15,"Solid",1590],[15,"Gradient",1590],[5,"Raw",1596],[5,"Weak",2115],[6,"Text",1596],[5,"Version",1596],[5,"FontSystem",1596],[5,"RwLock",2116],[5,"Buffer",2117],[5,"FontSystem",2118],[5,"Attrs",2119],[5,"Color",2119],[6,"Shaping",2120],[6,"Wrapping",2100],[6,"Wrap",2121],[15,"Cached",1761],[15,"Paragraph",1761],[15,"Editor",1761],[5,"Weak",1892],[5,"Weak",1977],[15,"Raw",1761],[5,"Cache",1783],[5,"Key",1783],[8,"KeyHash",1783],[5,"Entry",1783],[5,"Editor",1892],[6,"Cursor",2122],[10,"Highlighter",2123],[5,"Format",2123],[5,"Line",2122],[6,"Action",2122],[5,"Paragraph",1977],[5,"Text",2100],[6,"Difference",2100],[6,"Hit",2100],[5,"Span",2100],[10,"Default",302]],"r":[[0,2071],[1,142],[2,302],[3,394],[4,1187],[5,1304],[6,1344],[7,2071],[8,2071],[9,2071],[10,2071],[11,1393],[12,2068],[13,1596],[14,2072],[15,2071],[16,2068],[17,2072],[18,2068],[19,2071],[20,2068],[21,2072],[22,2071],[23,2068],[24,2072],[25,2071],[26,2068],[27,2072],[28,2071],[29,2068],[30,2072],[32,2071],[33,2068],[34,2072],[35,2071],[36,2068],[37,2072],[38,2071],[39,2068],[40,2072],[41,2071],[42,2068],[43,2072],[45,2071],[46,2068],[47,2072],[51,2068],[52,2068],[53,2068],[54,2071],[55,2068],[56,2072],[57,2071],[58,2068],[59,2072],[60,2071],[61,2068],[62,2072],[63,2071],[64,2068],[66,2071],[67,2068],[68,2072],[69,2071],[70,2068],[71,2072],[72,2071],[73,2068],[74,2072],[75,2071],[76,2068],[77,2072],[82,2071],[83,2068],[84,2072],[85,2071],[86,2068],[87,2072],[88,2071],[89,2068],[90,2072],[91,2071],[92,2068],[93,2072],[94,2071],[95,2068],[96,2072],[97,2071],[98,2068],[99,2072],[100,2071],[101,2068],[102,2072],[104,2072],[106,2068],[107,2072],[108,2072],[109,2072],[110,2072],[111,2071],[112,2072],[114,2071],[115,2068],[116,2072],[117,2071],[118,2068],[119,2072],[120,2071],[121,2068],[122,2072],[123,2071],[124,2068],[125,2072],[126,2071],[127,2068],[128,2072],[129,2071],[130,2068],[131,2072],[132,2071],[133,2068],[134,2072],[135,2071],[136,2068],[137,2072],[138,2071],[139,2068],[140,2072],[141,2072],[477,2094],[478,708],[479,787],[482,1187],[483,2095],[484,2097],[485,1025],[486,1025],[487,1025],[488,859],[490,2095],[491,1025],[492,2095],[493,2098],[494,2096],[495,2094],[496,2095],[497,2096],[498,2097],[499,2098],[500,2094],[501,2095],[502,2096],[503,2097],[504,2098],[505,2094],[506,2095],[507,2096],[508,2097],[509,2098],[510,2094],[511,2095],[512,2096],[513,2097],[514,2098],[515,2094],[516,2095],[517,2096],[518,2097],[519,2098],[520,2094],[521,2095],[522,2096],[523,2097],[524,2098],[525,2094],[526,2095],[527,2096],[528,2097],[529,2098],[530,2095],[531,2096],[532,2097],[533,2098],[534,2095],[535,2096],[536,2097],[537,2098],[538,2098],[539,2096],[540,2098],[541,2094],[542,2095],[543,2096],[544,2097],[545,2098],[546,2096],[547,2094],[548,2096],[549,2094],[550,2095],[551,2096],[552,2097],[553,2098],[554,2094],[555,2095],[556,2096],[557,2097],[558,2098],[559,2094],[561,2096],[562,2094],[563,2095],[564,2096],[565,2097],[566,2098],[567,2095],[568,2097],[569,2098],[571,2097],[572,2097],[573,2094],[574,2095],[575,2096],[576,2097],[577,2098],[578,2096],[580,2094],[581,2095],[582,2095],[583,2095],[584,2096],[585,2096],[586,2096],[587,2097],[588,2097],[589,2098],[590,2098],[591,2094],[592,2095],[593,2096],[594,2097],[595,2098],[596,2094],[597,2095],[598,2096],[599,2097],[600,2098],[601,0],[602,2097],[603,2098],[604,2096],[605,2094],[606,2095],[607,2096],[608,2097],[609,2098],[610,2094],[611,2095],[612,2096],[613,2097],[614,2098],[615,2094],[616,2095],[617,2096],[618,2097],[619,2098],[620,2094],[621,2095],[622,2096],[623,2097],[624,2098],[625,2094],[626,2095],[627,2096],[628,2097],[629,2098],[630,2094],[631,2095],[632,2096],[633,2097],[634,2098],[635,2094],[636,2095],[637,2096],[638,2097],[639,2098],[640,2096],[641,2094],[642,2097],[643,2098],[645,2094],[646,2096],[647,2097],[648,2098],[649,2097],[650,2098],[652,2096],[653,2097],[654,2098],[655,2097],[656,2098],[657,2096],[658,2096],[659,2097],[660,2097],[662,2095],[663,2096],[664,2097],[665,2098],[666,2094],[667,2095],[668,2096],[669,2097],[670,2098],[671,2094],[672,2095],[673,2096],[674,2097],[675,2098],[676,2094],[677,2095],[678,2096],[679,2097],[680,2098],[681,2094],[682,2095],[683,2096],[684,2097],[685,2098],[686,2094],[687,2095],[688,2096],[689,2097],[690,2098],[691,2094],[692,2095],[693,2096],[694,2097],[695,2098],[696,2094],[697,2095],[698,2096],[699,2097],[700,2098],[701,2096],[702,2094],[703,2095],[704,2096],[705,2097],[706,2098],[707,2094],[712,2095],[859,947],[860,2104],[862,2104],[865,2104],[866,2104],[867,2104],[869,2104],[871,2104],[872,2104],[874,2104],[876,2104],[877,2104],[879,2104],[884,2104],[885,2104],[887,2104],[888,2104],[890,2104],[892,2104],[894,2104],[896,2104],[898,2104],[900,2104],[902,2104],[904,2104],[906,2104],[908,2104],[910,2104],[912,2104],[914,2104],[917,2104],[919,2104],[920,2104],[922,2104],[923,2104],[925,2104],[927,2104],[931,2104],[933,2104],[935,2104],[937,2104],[939,2104],[941,2104],[943,2104],[945,2104],[1035,2095],[1596,1783],[1598,1892],[1602,1977]],"b":[[344,"impl-Debug-for-SurfaceError"],[345,"impl-Display-for-SurfaceError"],[431,"impl-Debug-for-Error"],[432,"impl-Display-for-Error"],[581,"impl-From%3CGradient%3E-for-Style"],[583,"impl-From%3CColor%3E-for-Style"],[585,"impl-From%3C%26str%3E-for-Text"],[586,"impl-From%3CString%3E-for-Text"],[743,"impl-From%3CColor%3E-for-Fill"],[744,"impl-From%3CLinear%3E-for-Fill"],[745,"impl-From%3CGradient%3E-for-Fill"]],"c":"OjAAAAAAAAA=","e":"OzAAAAEAAFAGvgACAAUADAAAAA4AAAAQAAIAFAALACEACwAuAAIAMgAAADQAAAA3AAoAQwACAEkABgBTAAIAWQAOAGsAAABzABoAlgAOAKYAAgCqABgAxgAFAM0AAwDUAA4A5gABAOoAFgACAQIACgEIABQBBQAbAQIAHwEFACYBCAA7AQEAPgEDAEMBCgBRAQYAWQECAF4BBQBmAQkAdAESAJQBHgC1AQUAvQEdAN8BAQDjAQAA5gEDAOwBAADwAR0ADwILAB4CBAAkAgsAMwIHAD4CBABGAgAASAIAAEoCAQBNAgEAUAIKAF4CBABoAhgAhgIBAJcCJgC/AgQAxQIAAMcCAADJAiEA7QIFAPUCCgACAxEAFgMHAB8DBAAlAwAAJwMBACoDAAAsAwAALwMCADMDAAA1AwQAOwMAAD0DAQBAAwAAQgMAAEQDAABGAwAASAMAAEoDAABMAwAATgMAAFADCABcAwAAXwMBAGQDAwBpAwMAbgMBAHIDAgB2AwgAgAMAAIMDBQCLAwkAlwMAAJsDAACiAwAApAMPALYDCwDEAw0A1AMBANgDBgDhAwkA8AMRAAwEPABNBAsAXQQTAHQEAwB7BCMAqAQCAK0EIwDSBAUA2QQAANwECADoBA8A/gQaABwFBAAiBQkALQUDADIFBAA4BQgAQwUCAEcFAgBLBQAATQUDAFMFAABVBQIAWQUEAGEFAABpBQcAegUOAIoFDgCaBQ4AqgUPALsFDQDOBQkA3gUEAOgFGwAIBgQADgYiADIGBAA9BgAAPwYAAEMGAABJBhMAXwYDAGQGCQBvBhEAggYFAI0GDACeBhMAtAYAALYGAAC7BgIAwAYbAN4GAwDjBgEA5gYBAOoGAADuBgMA9AYCAPwGAgAABwsADgcIABgHDAApBwUAMAcCADYHDgBIBwAASwcAAE0HFwBnBwoAdAcNAIMHBQCLBwYAlAcNAKMHEgC3BwIAvAcJAMcHDwDYBwUA4AcHAOkHAQDtBwoA+gcSAA4IAAAQCAMA","P":[[15,"T,M,D"],[18,""],[19,"C,T"],[22,"C"],[25,"T"],[32,"WpParam,T"],[35,""],[38,"T"],[41,""],[45,"C,T"],[51,""],[54,"T"],[60,""],[69,"T"],[75,"U,T"],[82,""],[85,"U"],[91,"WpParam,T"],[94,"U"],[100,"T"],[104,""],[106,"T"],[107,""],[114,"T"],[117,"C"],[120,"U,T"],[123,"U"],[129,""],[132,"C,U"],[135,"C"],[138,"V"],[141,""],[149,"T,M,D"],[152,"C,T"],[155,"C"],[158,"T"],[164,"Cached::Cache"],[165,"WpParam,T"],[168,"T"],[169,""],[170,"T"],[173,""],[176,"C,T"],[179,"T"],[186,""],[190,"T"],[192,""],[193,"T"],[200,"U,T"],[203,"T"],[204,"__H"],[205,""],[208,"U"],[214,"WpParam,T"],[217,"U"],[223,"T"],[226,""],[227,"Cached::Cache"],[228,"T"],[230,""],[231,"T"],[235,"C"],[238,"U,T"],[241,"U"],[247,""],[250,"C,U"],[253,"C"],[256,""],[257,"V"],[260,"T"],[261,""],[265,"T,M,D"],[266,"C,T"],[267,"C"],[268,"T"],[270,"WpParam,T"],[271,""],[272,"T"],[273,""],[275,"C,T"],[276,"T"],[278,""],[281,"T"],[283,"U,T"],[284,""],[285,"U"],[287,"WpParam,T"],[288,"U"],[290,"T"],[292,""],[293,"T"],[294,"C"],[295,"U,T"],[296,"U"],[298,""],[299,"C,U"],[300,"C"],[301,"V"],[314,"T,M,D"],[316,""],[317,"C,T"],[319,"C"],[321,""],[322,"T"],[326,"WpParam,T"],[328,""],[329,"T"],[330,""],[331,"C,T"],[333,"Compositor::Renderer,Compositor::Surface"],[335,"Compositor::Renderer,Compositor::Surface,W"],[336,"T"],[340,""],[343,"Compositor::Renderer,Compositor::Surface"],[344,""],[347,"T"],[351,"U,T"],[353,""],[355,"U"],[359,"WpParam,T"],[361,"U"],[365,"T"],[367,"Compositor::Renderer,Compositor::Surface"],[368,"W,Compositor::Renderer,Compositor::Surface"],[369,"Compositor::Renderer,Compositor::Surface,T"],[371,"T"],[372,""],[374,"C"],[376,"U,T"],[378,"U"],[382,""],[384,"C,U"],[386,"C"],[388,"V"],[390,"W,Compositor::Renderer,Compositor::Surface"],[391,"T,,"],[392,""],[393,"T,,"],[403,"T,M,D"],[405,"C,T"],[407,"C"],[409,"T"],[413,"WpParam,T"],[415,""],[417,"T"],[419,""],[421,"C,T"],[423,"T"],[427,""],[434,"T"],[438,"U,T"],[440,""],[442,"U"],[446,"WpParam,T"],[448,"U"],[452,"T"],[456,""],[458,"C"],[460,"U,T"],[462,"U"],[466,""],[468,"C,U"],[470,"C"],[472,"V"],[474,""],[495,"T,M,D"],[500,"C,T"],[505,"C"],[510,"T"],[520,"WpParam,T"],[525,"Renderer"],[526,""],[528,"H"],[530,"T"],[534,""],[538,""],[539,""],[541,"C,T"],[546,""],[547,"Renderer"],[548,""],[549,"T"],[559,"Renderer,"],[560,"Renderer::Geometry,Renderer::Frame"],[561,""],[562,""],[568,"H"],[571,""],[573,"Renderer"],[574,""],[576,"H"],[578,""],[580,"T"],[581,""],[582,"T"],[583,""],[584,"T"],[585,""],[587,"T"],[588,""],[590,"T"],[596,"U,T"],[602,""],[610,"U"],[620,"WpParam,T"],[625,"U"],[635,"T"],[640,""],[641,"Renderer"],[642,""],[644,"Renderer::Geometry,Renderer::Frame"],[645,"T"],[647,""],[649,""],[653,""],[655,""],[662,"T"],[666,"C"],[671,"U,T"],[676,"U"],[686,""],[691,"C,U"],[696,"C"],[701,""],[702,"V"],[707,"Renderer"],[713,"T,M,D"],[715,"C,T"],[717,"C"],[719,"T"],[723,"WpParam,T"],[725,""],[727,"T"],[729,""],[731,"C,T"],[733,""],[734,"T"],[738,""],[746,"T"],[750,"U,T"],[752,""],[754,"U"],[758,"WpParam,T"],[760,"U"],[764,"T"],[767,""],[769,"T"],[771,"C"],[773,"U,T"],[775,"U"],[779,""],[781,"C,U"],[783,"C"],[785,"V"],[790,"T,M,D"],[791,"C,T"],[792,"C"],[793,"T"],[795,"WpParam,T"],[796,"Backend::Geometry"],[797,"Renderer"],[798,"C,T"],[799,"T"],[801,"Backend::Geometry"],[802,"Backend::Geometry,"],[803,"Renderer,"],[804,"Backend::Geometry,"],[805,"Renderer,"],[806,""],[807,"Backend::Geometry,"],[808,"Renderer,"],[809,"Backend::Geometry,"],[810,"Renderer,"],[811,"Backend::Geometry,"],[812,"Renderer,"],[813,"T"],[815,"U,T"],[816,"Backend::Geometry"],[817,"Renderer"],[818,""],[819,"U"],[821,"WpParam,T"],[822,"U"],[824,"Backend::Geometry"],[825,"Renderer"],[826,"T"],[827,"Renderer"],[828,"Backend::Geometry"],[830,"Renderer"],[831,"Backend::Geometry"],[832,"Renderer"],[833,"Backend::Geometry,"],[834,"Renderer,"],[835,"Backend::Geometry,"],[836,"Renderer,"],[837,"Backend::Geometry,"],[838,"Renderer,"],[839,"Backend::Geometry"],[840,"Renderer"],[841,"Backend::Geometry,"],[842,"Renderer,"],[843,"Backend::Geometry,"],[844,"Renderer,"],[845,"Backend::Geometry"],[846,"Renderer"],[847,"C"],[848,"U,T"],[849,"U"],[851,""],[852,"C,U"],[853,"C"],[854,"V"],[855,"Backend::Geometry"],[856,"Renderer"],[857,"Renderer,R,"],[862,"T,M,D"],[865,""],[867,"C,T"],[869,"C"],[871,""],[872,"T"],[876,""],[877,"WpParam,T"],[879,""],[882,"T"],[883,""],[885,"C,T"],[887,""],[888,"T"],[892,""],[896,"T"],[900,"U,T"],[902,""],[904,"U"],[908,"WpParam,T"],[910,"U"],[914,"T"],[916,""],[921,""],[922,"T"],[923,""],[929,"T"],[930,""],[931,"C"],[933,"U,T"],[935,"U"],[939,""],[941,"C,U"],[943,"C"],[945,"V"],[949,"T,M,D"],[951,"C,T"],[953,"C"],[955,"T"],[959,"WpParam,T"],[961,""],[965,"T"],[967,""],[969,"C,T"],[971,"T"],[975,""],[981,"T"],[983,""],[984,"T"],[986,"U,T"],[988,""],[990,"U"],[994,"WpParam,T"],[996,"U"],[1000,"T"],[1002,""],[1007,"T"],[1009,"C"],[1011,"U,T"],[1013,"U"],[1017,""],[1019,"C,U"],[1021,"C"],[1023,"V"],[1036,"T,M,D"],[1040,"C,T"],[1044,"C"],[1048,"T"],[1056,"WpParam,T"],[1060,""],[1064,"T"],[1068,""],[1072,"C,T"],[1076,""],[1080,"T"],[1088,""],[1096,"T"],[1104,"U,T"],[1108,""],[1112,"U"],[1120,"WpParam,T"],[1124,"U"],[1132,"T"],[1136,""],[1139,"T"],[1143,""],[1146,"T"],[1150,"C"],[1154,"U,T"],[1158,"U"],[1166,""],[1170,"C,U"],[1174,"C"],[1178,"V"],[1182,""],[1191,"T,M,D"],[1194,""],[1195,""],[1196,"C,T"],[1199,"C"],[1202,"T"],[1208,"WpParam,T"],[1211,""],[1214,"T"],[1217,""],[1220,"C,T"],[1223,"T"],[1229,""],[1239,"T"],[1240,""],[1241,"T"],[1246,"U,T"],[1249,""],[1252,"U"],[1258,"WpParam,T"],[1261,"U"],[1267,"T"],[1271,""],[1277,"T"],[1280,"C"],[1283,"U,T"],[1286,"U"],[1292,""],[1295,"C,U"],[1298,"C"],[1301,"V"],[1307,"T,M,D"],[1308,"C,T"],[1309,"C"],[1310,"T"],[1312,""],[1313,"WpParam,T"],[1314,""],[1315,"T"],[1316,""],[1317,"C,T"],[1318,"T"],[1320,""],[1323,"T"],[1325,"U,T"],[1327,""],[1328,"U"],[1330,"WpParam,T"],[1331,"U"],[1333,"T"],[1334,""],[1335,"T"],[1336,"C"],[1337,"U,T"],[1338,"U"],[1340,""],[1341,"C,U"],[1342,"C"],[1343,"V"],[1346,"T,M,D"],[1347,"C,T"],[1348,"C"],[1349,"T"],[1352,"WpParam,T"],[1353,"T"],[1354,"C,T"],[1355,"T"],[1359,""],[1361,"T"],[1365,"U,T"],[1366,""],[1367,"U"],[1369,"WpParam,T"],[1370,"U"],[1372,"T"],[1381,""],[1383,"T"],[1384,"C"],[1385,"U,T"],[1386,"U"],[1388,""],[1389,"C,U"],[1390,"C"],[1391,"V"],[1392,""],[1401,"T,M,D"],[1406,"C,T"],[1411,"C"],[1416,""],[1417,"T"],[1427,"WpParam,T"],[1432,""],[1434,"T"],[1435,""],[1438,"T"],[1443,""],[1449,"C,T"],[1454,""],[1455,"T"],[1465,""],[1472,"T"],[1473,""],[1476,"T"],[1477,""],[1480,"T"],[1490,"U,T"],[1495,""],[1506,"U"],[1516,"WpParam,T"],[1521,"U"],[1531,"T"],[1539,""],[1543,"T"],[1548,""],[1549,"C"],[1554,"U,T"],[1559,"U"],[1569,""],[1574,"C,U"],[1579,"C"],[1584,""],[1585,"V"],[1590,""],[1608,"T,M,D"],[1612,"C,T"],[1616,"C"],[1620,"T"],[1628,""],[1630,"WpParam,T"],[1634,""],[1638,"T"],[1641,""],[1646,"C,T"],[1651,""],[1652,"T"],[1660,""],[1672,"T"],[1680,"U,T"],[1684,"__H"],[1685,""],[1689,"U"],[1697,"WpParam,T"],[1701,"U"],[1709,"T"],[1713,""],[1715,"T"],[1717,""],[1722,"T"],[1725,""],[1727,"C"],[1731,"U,T"],[1735,"U"],[1743,""],[1747,"C,U"],[1751,"C"],[1755,""],[1757,"V"],[1761,""],[1787,"T,M,D"],[1790,""],[1791,"C,T"],[1794,"C"],[1797,"T"],[1803,""],[1805,"WpParam,T"],[1808,""],[1809,"T"],[1810,""],[1811,"C,T"],[1814,""],[1816,"T"],[1822,""],[1829,"T"],[1835,"U,T"],[1838,""],[1842,"U"],[1848,"WpParam,T"],[1851,"U"],[1857,"T"],[1860,""],[1863,"T"],[1864,""],[1866,"T"],[1867,""],[1868,"C"],[1871,"U,T"],[1874,"U"],[1880,""],[1883,"C,U"],[1886,"C"],[1889,"V"],[1894,"T,M,D"],[1896,"C,T"],[1898,"C"],[1900,"T"],[1904,""],[1907,"WpParam,T"],[1909,""],[1910,"T"],[1911,""],[1912,"C,T"],[1914,""],[1917,"T"],[1921,""],[1928,"T"],[1932,"U,T"],[1934,"Editor::Font,H,"],[1935,""],[1937,"U"],[1941,"WpParam,T"],[1943,"U"],[1947,"T"],[1949,""],[1954,"T"],[1955,""],[1957,"T"],[1958,"C"],[1960,"U,T"],[1962,"U"],[1966,""],[1968,"C,U"],[1970,"C"],[1972,""],[1973,""],[1974,"V"],[1976,""],[1979,"T,M,D"],[1981,"C,T"],[1983,"C"],[1985,"T"],[1989,""],[1990,"WpParam,T"],[1992,""],[1994,"T"],[1996,""],[1999,"C,T"],[2001,""],[2002,"T"],[2006,""],[2013,"T"],[2017,"U,T"],[2019,""],[2026,"U"],[2030,"WpParam,T"],[2032,"U"],[2036,"T"],[2038,""],[2041,"T"],[2042,""],[2044,"T"],[2046,"C"],[2048,"U,T"],[2050,"U"],[2054,""],[2056,"C,U"],[2058,"C"],[2060,""],[2063,"V"],[2065,"Link"],[2066,""]]}],["iced_highlighter",{"t":"TPPPFFPFPFGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN","n":["ALL","Base16Eighties","Base16Mocha","Base16Ocean","Highlight","Highlighter","InspiredGitHub","Settings","SolarizedDark","Stream","Theme","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","borrow","","","","","borrow_mut","","","","","cam16_into_unclamped","","","","","change_line","clone","","clone_into","","clone_to_uninit","","color","commit","components_from","","","","","current_line","eq","","equivalent","","","fmt","","","","","","font","from","","","","","from_angle","","","","","from_stimulus","","","","","highlight_line","","into","","","","","into_angle","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_stimulus","","","","","is_dark","new","","reset","theme","to_format","to_owned","","to_smolstr","to_string","token","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","update","vzip","","","",""],"q":[[0,"iced_highlighter"],[167,"palette::chromatic_adaptation"],[168,"palette::cam16::parameters"],[169,"iced_core::color"],[170,"core::option"],[171,"core::fmt"],[172,"iced_core::font"],[173,"core::ops::range"],[174,"core::iter::traits::iterator"],[175,"iced_core::text::highlighter"],[176,"smol_str"],[177,"alloc::string"],[178,"core::result"],[179,"palette::convert::try_from_into_color"],[180,"core::any"]],"i":"Ab000``0`0``jAlA`Af43210432104321043210432104314141402321043144443210440321043210432104323210432104321043210432104321044322101444132104321043210432104321043210432104332104","f":"```````````{eg{}{{b{c}}}{}}0000{ce{}{}}0000{{}c{}}0000{d{{d{c}}}{}}0000{{{d{f}}}{{d{fc}}}{}}0000{{{h{c}}}e{}{}}0000{{{d{fj}}l}n}{{{d{A`}}}A`}{{{d{Ab}}}Ab}{{d{d{fc}}}n{}}0{{dAd}n}0{{{d{Af}}}{{Aj{Ah}}}}{{{d{fAl}}}n};;;;;{{{d{j}}}l}{{{d{A`}}{d{A`}}}An}{{{d{Ab}}{d{Ab}}}An}{{d{d{c}}}An{}}00{{{d{j}}{d{fB`}}}Bb}{{{d{Al}}{d{fB`}}}Bb}{{{d{A`}}{d{fB`}}}Bb}{{{d{Af}}{d{fB`}}}Bb}{{{d{Ab}}{d{fB`}}}Bb}0{{{d{Af}}}{{Aj{Bd}}}}{cc{}}000000000{ce{}{}}0000{{{d{fj}}{d{Bf}}}c{}}{{{d{fAl}}{d{Bf}}}{{`{{Bn{}{{Bh{{Bl{{Bj{l}}Af}}}}}}}}}}{{}c{}}000000000{{{h{c}}}e{}{}}00001111111111{{}c{}}0000{AbAn}{{{d{c}}}j{}}{{{d{A`}}}Al}{{{d{fAl}}}n}{A`Ab}{{{d{Af}}}{{C`{Bd}}}}{dc{}}0{dCb}{dCd}{A`Cd}{{}{{Cf{c}}}{}}0000{c{{Cf{e}}}{}{}}0000{{}{{Cf{c}}}{}}0000{{}{{Cf{c{Ch{c}}}}}{}}0000{dCj}0000{ce{}{}}0000{{}c{}}0000{{{d{fj}}{d{c}}}n{}}{{}c{}}0000","D":"Cf","p":[[10,"TransformMatrix",167],[1,"reference",null,null,1],[0,"mut"],[5,"BakedParameters",168],[5,"Highlighter",0],[1,"usize"],[1,"unit"],[5,"Settings",0],[6,"Theme",0],[1,"u8"],[5,"Highlight",0],[5,"Color",169],[6,"Option",170,null,1],[5,"Stream",0],[1,"bool"],[5,"Formatter",171],[8,"Result",171],[5,"Font",172],[1,"str"],[17,"Item"],[5,"Range",173],[1,"tuple",null,null,1],[10,"Iterator",174],[5,"Format",175],[5,"SmolStr",176],[5,"String",177],[6,"Result",178,null,1],[5,"OutOfBounds",179],[5,"TypeId",180]],"r":[],"b":[[65,"impl-Display-for-Theme"],[66,"impl-Debug-for-Theme"]],"c":"OjAAAAAAAAA=","e":"OzAAAAEAAIwACgACAAIABwAAAAkAAAAMACQAMwAQAEoACgBbABgAdQAAAHoAAwB/ACgA","P":[[11,"T,M,D"],[16,"C,T"],[21,"C"],[26,"T"],[36,"WpParam,T"],[41,""],[44,"T"],[46,""],[50,"C,T"],[55,""],[58,"K"],[61,""],[68,"T"],[78,"U,T"],[83,"Highlighter::Iterator"],[84,""],[85,"U"],[95,"WpParam,T"],[100,"U"],[110,"T"],[115,""],[116,"Highlighter::Settings"],[117,""],[121,"T"],[123,""],[126,"C"],[131,"U,T"],[136,"U"],[146,""],[151,"C,U"],[156,"C"],[161,"Highlighter::Settings"],[162,"V"]]}],["iced_renderer",{"t":"IPPIPPECCEEGPPPGPPPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNPPFFFRRGPFGFGPPFKPPPPFGFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNCNNNNONNNNNNNNNNNNOCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCOONONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOONNNNNMNNNNNNNONNOONCNONNNNNNOONONNOONONOCNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNONNNNNNNPFPPGPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNKFRMMMMMMMMMMMMMMMMMMMMGFPFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNOONNNNNNNNNNNNNNNNNNNNFFFNNCNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNONNNNNNNNNNNNNNNNNNNFFNNNNNNNNOONNNNNNNNOONNNNNNNNNNNNNNNOOOOONNNNNNNNNNFIFKIPPPPIFFPFPPPPPPFPGFGTTTIFFFFPPPGGPPSPPPFFFFFIFFKKPPPPPFPPGPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNMNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCONNNNNNNCNNNNNNNNNNNNNNNNNMNNNNNNNNNCCNNNOOCMNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOFKFFKRKFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNOOMNNNNNNNNNNNNNNNNNNMNNNNNNNNNNMMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMMNNNNNNMNNNNNNNNNMNNNNNNNMMNNNNNNMNMNMNMNMNMNMNNNNNNNNNNNNNNMNMNMNMNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNFFFFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFFFIFTTTTTTFFFTTTTIFITTKRIKIFTTTIIFITNONNNNNNNNNNNNNNMNNNNNNNNONNNMNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOCNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNMNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNOOOONNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNOOOOOOONONNNNNNNNNNNNNHONNCNNNOOOMNNNNNNNNNNNNNNHNNNNNNNNMNNNNNNNNNMNNNNNNNNNNNNONNNNOONMNNNNNNNNOOOONNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCMHONNNNNNNNNNNONNNNNNNNNOOONNNNOONNNNNNNNNOOONNNNNFFFFNNNNNNNNONNNNNONONNNNNNNNNNNNNONOOOOOONNNNNNNNNOOFFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFFNNNNNNNNNOONNNNNONNNNNNNNNNNNNNNONNNNNNNNNFFFFFFFFFFFFFFFFFFFFFKFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNCCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOHHHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNCNNNNNNNNNNNNNNNNNMNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOONNNNNNNNNNNNNNNNNOOOOOOOOOOOOOOOOOOOOOONNNNNNNNNNNNNOONNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNONNNNNNNNNNNNHHNNNNNNNNNNNONOMHNNNNONNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNOHHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNOONNNNNNNNNOOOOOOOOONNNNNNNNNNNOOOOOOOOONNNNNNNNNOOOOONNNNNNNNNNNNNNNNNNNNNNKMNMHHIIIIIIIIIIIIIIIIIIIIOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOKKKKKMMMMMFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNRKKMMMMNNMMMMMMMMMNNHHHHHHFFFKFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNIIIIIIIIIOOOOOOOOOOHOHHOOOOOOOIFFFFFFFFFFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFFFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNKKKRKMMMMMMMMMMMMMMMMMMMMMMMMMMPPPGFGPPPPPFGOOOOOOO","n":["Compositor","Primary","","Renderer","Secondary","","core","fallback","geometry","graphics","wgpu","Compositor","Primary","","","Renderer","Secondary","","","Surface","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clear","components_from","","","configure_surface","create_renderer","create_surface","default_font","default_size","deref","","","deref_mut","","","downcast","","","draw_geometry","draw_image","draw_mesh","draw_primitive","draw_svg","drop","","","end_layer","end_transformation","fetch_information","fill_editor","fill_paragraph","fill_quad","fill_text","fmt","","","from","","","from_angle","","","from_stimulus","","","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","load_font","measure_image","measure_svg","new","new_frame","present","screenshot","","start_layer","start_transformation","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","with_backend","Bevel","Butt","Cache","Fill","Frame","","Geometry","Gradient","","Image","LineCap","LineDash","LineJoin","Linear","Miter","Path","Renderer","Round","","Solid","Square","Stroke","Style","Svg","Text","adapt_into_using","","","","","","","","","","","","","arrays_from","","","","","","","","","","","","","arrays_into","","","","","","","","","","","","","as_any","","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","","borrow","","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","","cam16_into_unclamped","","","","","","","","","","","","","center","circle","clear","clone","","","","","","","","","","","clone_into","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","color","","","components_from","","","","","","","","","","","","","content","default","","","","","","","deref","","","","","","","","","","","","","deref_mut","","","","","","","","","","","","","downcast","","","","","","","","","","","","","draw","draw_geometry","draw_image","draw_svg","draw_with","drop","","","","","","","","","","","","","eq","","","","fill","","fill_rectangle","fill_text","filter_method","","fmt","","","","","","","","","","","","font","frame","from","","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","","","","from_stimulus","","","","","","","","","","","","","gradient","handle","","height","horizontal_alignment","init","","","","","","","","","","","","","into","","","","","","","","","","","","","into_angle","","","","","","","","","","","","","into_any","","","","","","","","","","","","","into_any_arc","","","","","","","","","","","","into_any_rc","","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","","into_color","","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","","into_geometry","into_stimulus","","","","","","","","","","","","","line","line_cap","line_dash","line_height","line_join","new","","","","","new_frame","null_value","","","","","","","offset","opacity","","","","pack","path","pop_transform","position","push_transform","raw","rectangle","rotate","rotation","","","","rounded_rectangle","rule","scale","scale_nonuniform","segments","shaping","size","","snap","","stroke","","stroke_rectangle","style","","to_owned","","","","","","","","","","","transform","translate","try_components_into","","","","","","","","","","","","","try_from","","","","","","","","","","","","","try_into","","","","","","","","","","","","","try_into_color","","","","","","","","","","","","","type_id","","","","","","","","","","","","","uints_from","","","","","","","","","","","","","uints_into","","","","","","","","","","","","","upcast","","","","","","","","","","","","","vertical_alignment","vzip","","","","","","","","","","","","","width","","with_clip","with_color","with_group","with_line_cap","with_line_join","with_save","with_width","EvenOdd","Fill","Gradient","NonZero","Rule","Solid","Style","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","deref","deref_mut","downcast","drop","eq","equivalent","","","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","rule","style","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Backend","Frame","Geometry","center","draft","draw_image","draw_svg","fill","fill_rectangle","fill_text","height","into_geometry","paste","pop_transform","push_transform","rotate","scale","scale_nonuniform","size","stroke","stroke_rectangle","translate","width","Gradient","Linear","","Packed","adapt_into_using","","add_stop","add_stops","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","deref","","deref_mut","","downcast","","drop","","end","eq","","fmt","","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","is_valid_bit_pattern","new","pack","","start","stops","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","Arc","Builder","Path","adapt_into_using","","arc","","arc_to","arrays_from","","arrays_into","","as_any","","as_any_mut","","bezier_curve_to","borrow","","borrow_mut","","build","cam16_into_unclamped","","center","circle","clone","clone_into","clone_to_uninit","close","components_from","","default","deref","","deref_mut","","downcast","","drop","","ellipse","end_angle","fmt","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","line_to","move_to","new","null_value","quadratic_curve_to","radius","rectangle","rounded_rectangle","start_angle","to_owned","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","Arc","Elliptical","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","center","","clone","clone_into","clone_to_uninit","components_from","deref","deref_mut","downcast","drop","end_angle","","fmt","from","","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","radii","radius","rotation","start_angle","","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","ArcFlags","AttributeIndex","AttributeSlice","AttributeStore","Attributes","Begin","","","Bevel","Builder","BuilderImpl","BuilderWithAttributes","Butt","ControlPointId","Cubic","","","End","","","EndpointId","EvenOdd","Event","EventId","FillRule","INVALID","","","IdEvent","IdIter","IdPolygon","Iter","IterWithAttributes","Line","","","LineCap","LineJoin","Miter","MiterClip","NO_ATTRIBUTES","Negative","","NonZero","Path","PathBuffer","PathBufferSlice","PathCommands","PathCommandsSlice","PathEvent","PathSlice","Polygon","Position","PositionStore","Positive","","Quadratic","","","Reversed","Round","","Side","Square","Winding","adapt_into_using","","","","","","","","","","","","","","","","","","","","","","","","","arrays_from","","","","","","","","","","","","","","","","","","","","","","","","","arrays_into","","","","","","","","","","","","","","","","","","","","","","","","","as_any","","","","","","","","","","","","","","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","","","","","","","","","","","","","","as_slice","","","attributes","","begin","","","borrow","","","","","","","","","","","","","","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","","","","","","","","","","","","","","build","","","builder","","","","builder_with_attributes","cam16_into_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","clear","clone","","","","","","","","","","","","","","","","","","","","","","","clone_into","","","","","","","","","","","","","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","","","","","","","","","","","","","closed","","commands","components_from","","","","","","","","","","","","","","","","","","","","","","","","","cubic_bezier_to","","","default","","","","deref","","","","","","","","","","","","","","","","","","","","","","","","","deref_mut","","","","","","","","","","","","","","","","","","","","","","","","","downcast","","","","","","","","","","","","","","","","","","","","","","","","","drop","","","","","","","","","","","","","","","","","","","","","","","","","end","","","eq","","","","","","","","","","equivalent","","","","","","","","","","","","","","","event","","","","events","extend_from_paths","","first_endpoint","","fmt","","","","","","","","","","","","","","","","","for_each_flattened","from","","","","","","","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","","","","","","","","","","","","","","","","from_iter","","from_stimulus","","","","","","","","","","","","","","","","","","","","","","","","","from_usize","","get","","","","","","get_control_point","","","","get_endpoint","","","","hash","","","","","id_iter","","","index","","","","","indices","","init","","","","","","","","","","","","","","","","","","","","","","","","","into","","","","","","","","","","","","","","","","","","","","","","","","","into_angle","","","","","","","","","","","","","","","","","","","","","","","","","into_any","","","","","","","","","","","","","","","","","","","","","","","","","into_any_arc","","","","","","","","","","","","","","","","","","","","","","","into_any_rc","","","","","","","","","","","","","","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","into_color","","","","","","","","","","","","","","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","into_iter","","","","","","","","into_path","into_stimulus","","","","","","","","","","","","","","","","","","","","","","","","","is_edge","is_empty","","","is_in","is_negative","is_out","is_positive","iter","","","","","","","","iter_with_attributes","","iterator","large_arc","last_endpoint","","len","","line_to","","","math","new","","","","","next","","","","next_event_id_in_path","","next_event_id_in_sub_path","","null_value","","","","num_attributes","","","","","","","offset","","opposite","path","path_buffer","path_events","path_slice","points","","","polygon","position","quadratic_bezier_to","","","reserve","","","","reversed","","svg_builder","sweep","to","to_f32","to_owned","","","","","","","","","","","","","","","","","","","","","","","to_usize","","","traits","transformed","","try_components_into","","","","","","","","","","","","","","","","","","","","","","","","","try_from","","","","","","","","","","","","","","","","","","","","","","","","","try_into","","","","","","","","","","","","","","","","","","","","","","","","","try_into_color","","","","","","","","","","","","","","","","","","","","","","","","","type_id","","","","","","","","","","","","","","","","","","","","","","","","","uints_from","","","","","","","","","","","","","","","","","","","","","","","","","uints_into","","","","","","","","","","","","","","","","","","","","","","","","","upcast","","","","","","","","","","","","","","","","","","","","","","","","","vzip","","","","","","","","","","","","","","","","","","","","","","","","","with_attributes","with_capacity","","with_points","with_svg","at","close","ctrl","ctrl1","ctrl2","first","from","","","last","to","","","at","close","ctrl","ctrl1","ctrl2","first","from","","","last","to","","","at","close","ctrl","ctrl1","ctrl2","first","from","","","last","to","","","BorderRadii","Build","Flattened","NoAttributes","PathBuilder","PathType","SvgPathBuilder","Transformed","WithSvg","adapt_into_using","","","","","add_circle","","","add_ellipse","","","add_line_segment","","","add_point","","","add_polygon","","","","","add_rectangle","","","add_rounded_rectangle","","","arc","arc_to","","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","begin","","","","","borrow","","","","","borrow_mut","","","","","bottom_left","bottom_right","build","","","","","","","","cam16_into_unclamped","","","","","clone","","clone_into","","clone_to_uninit","","close","","","","","","components_from","","","","","cubic_bezier_to","","","","","","","","current_position","default","","deref","","","","","deref_mut","","","","","downcast","","","","","drop","","","","","end","","","","","eq","","event","","extend_from_paths","flattened","","","","fmt","","","from","","","","","from_angle","","","","","from_stimulus","","","","","hash","horizontal_line_to","","init","","","","","inner","inner_mut","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","","","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_inner","into_stimulus","","","","","line_to","","","","","","","","move_to","","","new","","","","","null_value","","num_attributes","","","","partial_cmp","path_event","","","quadratic_bezier_to","","","","","","","","relative_arc_to","","relative_cubic_bezier_to","","relative_horizontal_line_to","","relative_line_to","","relative_move_to","","relative_quadratic_bezier_to","","relative_vertical_line_to","","reserve","","","","","","","","","","set_tolerance","set_transform","","smooth_cubic_bezier_to","","smooth_quadratic_bezier_to","","smooth_relative_cubic_bezier_to","","smooth_relative_quadratic_bezier_to","","to_owned","","to_smolstr","to_string","top_left","top_right","transformed","","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","vertical_line_to","","vzip","","","","","with_capacity","with_svg","","","wrap","CommandsPathSlice","Events","Iter","PathCommands","PathCommandsBuilder","PathCommandsSlice","PointEvents","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","begin","borrow","","","","","borrow_mut","","","","","build","cam16_into_unclamped","","","","","clone","","","","","clone_into","","","","","clone_to_uninit","","","","","components_from","","","","","cubic_bezier_to","default","deref","","","","","deref_mut","","","","","downcast","","","","","drop","","","","","end","events","fmt","","from","","","","","from_angle","","","","","from_stimulus","","","","","get_control_point","get_endpoint","index","","init","","","","","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_iter","","","into_stimulus","","","","","iter","line_to","new","next","","","null_value","points","quadratic_bezier_to","to_owned","","","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","vzip","","","","","with_capacity","Angle","Arc","ArcFlags","Box2D","CubicBezierSegment","DIV_EPSILON","EIGHT","EPSILON","FIVE","FOUR","HALF","Line","LineEquation","LineSegment","MAX","MIN","NINE","ONE","Point","QuadraticBezierSegment","Rotation","SEVEN","SIX","Scalar","","Scale","Segment","Size","SvgArc","TEN","THREE","TWO","Transform","Translation","Triangle","Vector","ZERO","a","","ab","ac","adapt_into_using","","","","","","","","","add","","add_assign","after_split","","","","","","","","","angle","angle_to","approx_epsilon","approx_eq_eps","approximate_length","","","","","","","arc","arrays_from","","","","","","","","","arrays_into","","","","","","","","","as_any","","","","","","","","","as_any_mut","","","","","","","","","b","","ba","baseline","","bc","before_split","","","","","","","","","borrow","","","","","","","","","borrow_mut","","","","","","","","","bounding_box","","","","","bounding_range_x","","","","bounding_range_y","","","","bounding_triangle","c","","ca","cam16_into_unclamped","","","","","","","","","cast","","","cb","center","circle","clipped","clipped_x","clipped_y","clone","","","","","","","","","clone_into","","","","","","","","","clone_to_uninit","","","","","","","","","closest_point","","components_from","","","","","","","","","contains_point","contains_segment","ctrl","ctrl1","ctrl2","cubic_bezier","cubic_intersections","cubic_intersections_t","default","degrees","deref","","","","","","","","","deref_mut","","","","","","","","","derivative","","","","","","","distance_to_point","","","","div","","div_assign","downcast","","","","","","","","","drag","","drag_with_weight","drop","","","","","","","","","dx","","","","","","dy","","","","","","end_angle","epsilon_for","eq","","","","","","","","equation","equivalent","","","","","","fast_bounding_box","","","fast_bounding_range_x","","","fast_bounding_range_y","","","fat_line","","flags","flattened","","","flattened_t","flattening_step","flip","","","","","","","","","fmt","","","","","","","","","for_each_cubic_bezier","","for_each_flattened","","","","for_each_flattened_with_t","","","","","","","","","for_each_inflection_t","for_each_local_x_extremum_t","","for_each_local_y_extremum_t","","for_each_monotonic","","for_each_monotonic_range","","for_each_quadratic_bezier","","","for_each_quadratic_bezier_with_t","","","for_each_x_monotonic","","for_each_x_monotonic_range","","for_each_y_monotonic","","for_each_y_monotonic_range","","frac_pi_2","frac_pi_3","frac_pi_4","from","","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","from_stimulus","","","","","","","","","from_svg_arc","get","get_angle","hash","height","horizontal_line_intersection","horizontal_line_intersection_t","init","","","","","","","","","intersection","","intersection_t","intersects","","intersects_box","intersects_line","intersects_line_segment","into","","","","","","","","","into_angle","","","","","","","","","into_any","","","","","","","","","into_any_arc","","","","","","","","","into_any_rc","","","","","","","","","into_cam16_unclamped","","","","","","","","","into_color","","","","","","","","","into_color_unclamped","","","","","","","","","into_stimulus","","","","","","","","","invert","is_a_point","is_finite","is_horizontal","is_linear","","is_monotonic","","is_quadratic","is_straight_line","is_vertical","is_x_monotonic","","is_y_monotonic","","large_arc","length","","lerp","line_intersection","line_intersection_t","line_intersections","","line_intersections_t","","line_segment_intersections","","line_segment_intersections_t","","local_x_extremum_t","local_y_extremum_t","m11","m12","m21","m22","m31","m32","max","mid_point","min","mul","mul_assign","neg","new","normal","null_value","num_quadratics","offset","overlaps_line","overlaps_segment","parallel_line","partial_cmp","pi","point","","positive","project_point","quadratic_bezier","quadratic_intersections","quadratic_intersections_t","radians","","radii","","sample","","","","","","","","","sample_tangent","set_length","signed","signed_distance_to_point","","sin_cos","size","solve_t_for_x","","solve_t_for_y","","solve_x_for_y","","solve_y_for_x","","split","","","","","","","","","split_at_x","split_range","","","","","","","","","square_distance_to_point","","","square_length","start_angle","sub","sub_assign","sum","","sweep","sweep_angle","tangent","to","","","","","","","","","","","","","to_arc","to_cubic","to_degrees","to_f32","","","","","to_f64","","","","","to_line","to_owned","","","","","","","","","to_quadratic","to_quadratic_error","to_svg_arc","to_vector","traits","transform","transformed","","","translate","try_cast","try_components_into","","","","","","","","","try_from","","","","","","","","","try_into","","","","","","","","","try_into_color","","","","","","","","","two_pi","type_id","","","","","","","","","uints_from","","","","","","","","","uints_into","","","","","","","","","upcast","","","","","","","","","utils","value","vector","","vertical_line_intersection","vertical_line_intersection_t","vzip","","","","","","","","","width","x","","","","","","","","","","","","x_maximum_t","","x_minimum_t","","x_rotation","","y","","","","","","","","","","","","y_maximum_t","","y_minimum_t","","zero","Arc","ArcFlags","Flattened","SvgArc","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","center","components_from","deref","deref_mut","downcast","drop","flags","from","","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_iter","into_stimulus","large_arc","next","radii","","start_angle","sweep","sweep_angle","to","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","x_rotation","","ArrayString","ArrayVec","CapacityError","Drain","IntoIter","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","as_mut","as_mut_ptr","","as_mut_slice","","as_mut_str","as_ptr","","as_ref","","","as_slice","","as_str","borrow","","","","","","","borrow_mut","","","","","","","cam16_into_unclamped","","","","","capacity","","clear","","clone","","","","clone_from","","clone_into","","","","clone_to_uninit","","","","cmp","","","compare","","","components_from","","","","","default","","deref","","","","","","","deref_mut","","","","","","","downcast","","","","","drain","drop","","","","","","","","element","encode_hex","encode_hex_upper","eq","","","","","equivalent","","","","","","","","","extend","flush","fmt","","","","","","from","","","","","","","from_angle","","","","","from_byte_string","from_iter","from_stimulus","","","","","from_str","ge","","","gt","","","hash","","init","","","","","insert","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","","","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_inner","into_inner_unchecked","into_iter","","","","","into_stimulus","","","","","is_empty","","is_full","","le","","","len","","lt","","","multiunzip","","","","","","","","","","","","","","","","","","","","","","","","","","new","","","new_const","","next","","next_back","","null_value","","partial_cmp","","","","pop","","pop_at","push","","push_str","push_unchecked","remaining_capacity","","remove","","retain","set_len","","simplify","size_hint","","swap_pop","swap_remove","take","to_owned","","","","to_smolstr","","to_string","","truncate","","try_components_into","","","","","try_extend_from_slice","try_from","","","","","","","","try_insert","try_into","","","","","try_into_color","","","","","try_push","","try_push_str","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","vzip","","","","","write","write_as_big_endian","","","","","","","","","","","","","","","","","","","","","","","","write_as_little_endian","","","","","","","","","","","","","","","","","","","","","","","","write_char","write_f32","write_f64","write_i128","write_i16","write_i32","write_i64","write_i8","write_str","write_u128","write_u16","write_u32","write_u64","write_u8","zero_filled","CubicBezierSegment","Flattened","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","components_from","ctrl1","ctrl2","deref","deref_mut","downcast","drop","from","","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_iter","into_stimulus","next","size_hint","to","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Angle","BoolVector2D","BoolVector3D","Box2D","Box3D","HomogeneousVector","Length","Point2D","Point3D","Rect","RigidTransform3D","Rotation2D","Rotation3D","Scale","SideOffsets2D","Size2D","Size3D","Transform2D","Transform3D","Translation2D","Translation3D","Trig","UnknownUnit","Vector2D","Vector3D","abs","","","","adapt_into_using","","","","","","","","","","","","","","","","","","","","","","","add","","","","","","","","","","","","","","","","","","add_assign","","","","","","","","","","","","add_size","","all","","and","","angle","angle_from_x_axis","angle_to","","any","","approx_epsilon","","","","","","","","","approx_eq","","approx_eq_eps","","","","","","","","","","","approxeq","approxord","area","","","around_axis","around_x","around_y","around_z","arrays_from","","","","","","","","","","","","","","","","","","","","","","","arrays_into","","","","","","","","","","","","","","","","","","","","","","","as_any","","","","","","","","","","","","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","","","","","","","","","","","","borrow","","","","","","","","","","","","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","","","","","","","","","","","","bottom","box3d","bvec2","bvec3","cam16_into_unclamped","","","","","","","","","","","","","","","","","","","","","","","cast","","","","","","","","","","","","","","","cast_unit","","","","","","","","","","","","","ceil","","","","","","","","","","","","center","","","clamp","","","","","","","clamp_length","","clone","","","","","","","","","","","","","","","","","","","","","","","clone_into","","","","","","","","","","","","","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","","","","","","","","","","","","","cmp","","","compare","","","component_div","","component_mul","","components_from","","","","","","","","","","","","","","","","","","","","","","","contains","","","","","contains_box","","contains_inclusive","","contains_rect","cos","cross","","decompose_reversed","default","","","","","","","","","","","","","","","","","","degrees_to_radians","depth","","deref","","","","","","","","","","","","","","","","","","","","","","","deref_mut","","","","","","","","","","","","","","","","","","","","","","","determinant","","distance_to","","div","","","","","","","","","","","","","","","","","","","","","","","div_assign","","","","","","","","","","","","","","","","","","","","","div_euclid","","dot","","downcast","","","","","","","","","","","","","","","","","","","","","","","drop","","","","","","","","","","","","","","","","","","","","","","","eq","","","","","","","","","","","","","","","","","","","","","","","equal","","","","equivalent","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","euler","extend","","fast_atan2","floor","","","","","","","","","","","","fmt","","","","","","","","","","","","","","","","","","","","","","","from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","","","","","","","","","","","","","","from_angle_and_length","from_array","","from_arrays","","from_length_all_same","from_lengths","","","","","","","from_origin_and_size","","from_points","","","from_rotation","from_scale","from_size","","","from_stimulus","","","","","","","","","","","","","","","","","","","","","","","from_translation","from_untyped","","","","","","","","","","","","","","","","from_vectors_inner","from_vectors_outer","get","","get_angle","greater_than","","","","hash","","","","","","","","","","","","","","","","","","","","","","","height","","","","","horizontal","i","identity","","","","","","","","inflate","","","init","","","","","","","","","","","","","","","","","","","","","","","inner_box","inner_rect","intersection","","","intersection_unchecked","","intersects","","","into","","","","","","","","","","","","","","","","","","","","","","","into_angle","","","","","","","","","","","","","","","","","","","","","","","into_any","","","","","","","","","","","","","","","","","","","","","","","into_any_arc","","","","","","","","","","","","","","","","","","","","","","","into_any_rc","","","","","","","","","","","","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","","","","","","","","","","","","into_color","","","","","","","","","","","","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","","","","","","","","","","","","into_stimulus","","","","","","","","","","","","","","","","","","","","","","","inverse","","","","","","","","is_2d","is_backface_visible","is_empty","","","","","is_finite","","","","","","","","","is_identity","","","is_invertible","","is_negative","","is_normalized","is_positive","","is_zero","j","k","left","length","","lerp","","","","","","","","","","","lower_than","","","","m11","","m12","","m13","m14","m21","","m22","","m23","m24","m31","","m32","","m33","m34","m41","m42","m43","m44","map","","","","max","","","","","","","","","","","max_x","max_y","min","","","","","","","","","","","min_x","min_y","mul","","","","","","","","","","","","","","","","","","","","","","","mul_assign","","","","","","","","","","","","","","","","","","","","","mul_s","neg","","","","","","","","new","","","","","","","","","","","","","","","","","","","new_2d","new_all_same","new_from_reversed","none","","norm","normalize","","","not","","not_equal","","","","null_value","","","","","","","","","","","","","","","","","num","one","","","or","","origin","","","ortho","outer_box","outer_rect","outer_transformed_box","outer_transformed_box2d","outer_transformed_box3d","outer_transformed_rect","","partial_cmp","","","perspective","point2","point3","position","pre_rotate","","pre_scale","","pre_translate","","project_onto_vector","","project_to_2d","quaternion","r","radians","","radians_to_degrees","rect","reflect","","rem_euclid","","right","robust_normalize","","rotation","","","round","","","","","","","","","","","","","","","round_in","","","round_out","","","saturating_add","saturating_sub","scale","","","","","select_point","","select_size","","select_vector","","set_size","sin","size","","","size2","size3","skew","slerp","splat","","","","","","","","square_length","","square_norm","sub","","","","","","","","","","","","","","","sub_assign","","","","","","","","","","","","sum","","","","","","","","","","tan","then","","","","","then_rotate","","then_scale","","then_translate","","to_2d","","","to_3d","","","","to_array","","","","","","","","","","to_array_4d","","to_array_transposed","","to_arrays","","to_arrays_transposed","to_box2d","to_f32","","","","","","","","","","","to_f64","","","","","","","","","","","to_i32","","","","","","","","","","","to_i64","","","","","","","","","","","to_non_empty","","","to_owned","","","","","","","","","","","","","","","","","","","","","","","to_point","","to_point2d","to_point3d","to_rect","to_size","to_transform","","","","","","","to_tuple","","","","","","","","to_tuple_4d","","to_u32","","","","","","","","","","","to_u64","","to_untyped","","","","","","","","","","","","","","","","to_usize","","","","","","","","","","","to_vector","","","","","","top","transform_box","transform_box2d","","transform_box3d","","transform_point","","","","","","","","transform_point2d","","","transform_point2d_homogeneous","transform_point3d","","","","transform_point3d_homogeneous","transform_rect","","","transform_size","","","transform_vector","","","","","","","transform_vector2d","","transform_vector3d","","translate","","","translation","","","try_cast","","","","","","","","","","","","","","","try_components_into","","","","","","","","","","","","","","","","","","","","","","","try_from","","","","","","","","","","","","","","","","","","","","","","","try_into","","","","","","","","","","","","","","","","","","","","","","","try_into_color","","","","","","","","","","","","","","","","","","","","","","","try_normalize","","type_id","","","","","","","","","","","","","","","","","","","","","","","uints_from","","","","","","","","","","","","","","","","","","","","","","","uints_into","","","","","","","","","","","","","","","","","","","","","","","union","","","unit_quaternion","upcast","","","","","","","","","","","","","","","","","","","","","","","vec2","vec3","vector_part","vertical","volume","","vzip","","","","","","","","","","","","","","","","","","","","","","","w","width","","","","","with_destination","","with_length","with_max_length","","with_min_length","","with_source","","x","","","","","","","","","x_range","","","xy","","","xy_area","xz","","","xz_area","y","","","","","","","","","y_range","","","yx","","yz","","","yz_area","z","","","","","z_range","zero","","","","","","","","","","","","","","","","","zip","","","","ApproxEq","approx_epsilon","approx_eq","approx_eq_eps","max","min","Box2D","Box3D","HomogeneousVector","Length","Point2D","Point3D","Rect","RigidTransform3D","Rotation2D","Rotation3D","Scale","SideOffsets2D","Size2D","Size3D","Transform2D","Transform3D","Translation2D","Translation3D","Vector2D","Vector3D","angle","bottom","depth","height","","i","j","k","left","m11","","m12","","m13","m14","m21","","m22","","m23","m24","m31","","m32","","m33","m34","m41","m42","m43","m44","max","","min","","origin","r","right","rotation","size","top","translation","w","width","","x","","","","","","","y","","","","","","","z","","","","Ceil","Floor","One","Round","Zero","ceil","floor","one","round","zero","Flattened","FlattenedT","FlatteningParameters","QuadraticBezierSegment","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","components_from","","","ctrl","deref","","","deref_mut","","","downcast","","","drop","","","from","","","","from_angle","","","from_stimulus","","","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_iter","","into_stimulus","","","new","next","","size_hint","","to","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","Scalar","Segment","Transformation","after_split","approximate_length","before_split","derivative","dx","dy","flip","for_each_flattened_with_t","from","sample","split","split_range","to","transform_point","transform_vector","x","y","cubic_polynomial_roots","directed_angle","directed_angle2","min_max","normalized_tangent","tangent","Flattened","FromPolyline","NoAttributes","PathIterator","Transformed","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","as_any","","","","as_any_mut","","","","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","closed","components_from","","","","deref","","","","deref_mut","","","","downcast","","","","drop","","","","flattened","","from","","","","from_angle","","","","from_stimulus","","","","init","","","","into","","","","into_angle","","","","into_any","","","","into_any_arc","","","","into_any_rc","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_iter","","","","into_stimulus","","","","new","","","next","","","","open","size_hint","transformed","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","upcast","","","","vzip","","","","with_attributes","Angle","Box2D","Point","Rotation","Scale","Size","Transform","Translation","Vector","angle","height","m11","m12","m21","m22","m31","m32","max","min","point","radians","size","vector","width","x","","","y","","","Builder","BuilderImpl","BuilderWithAttributes","IdIter","Iter","IterWithAttributes","Path","PathSlice","Reversed","Builder","BuilderWithAttributes","Iter","PathBuffer","PathBufferSlice","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","begin","","","","borrow","","","borrow_mut","","","build","","","","cam16_into_unclamped","","","clone","clone_into","clone_to_uninit","components_from","","","cubic_bezier_to","","","","deref","","","deref_mut","","","downcast","","","drop","","","end","","","","from","","","from_angle","","","from_stimulus","","","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_iter","into_stimulus","","","line_to","","","","new","next","next_back","num_attributes","","quadratic_bezier_to","","","","reserve","","","","size_hint","to_owned","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","with_attributes","IdPolygon","IdPolygonIter","PathEvents","Polygon","PolygonIdIter","PolygonIter","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","as_any","","","","as_any_mut","","","","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","clone","","","","clone_into","","","","clone_to_uninit","","","","closed","","components_from","","","","deref","","","","deref_mut","","","","downcast","","","","drop","","","","from","","","","from_angle","","","","from_stimulus","","","","init","","","","into","","","","into_angle","","","","into_any","","","","into_any_arc","","","","into_any_rc","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_iter","","","","into_stimulus","","","","new","next","","","","par_bridge","points","","to_owned","","","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","upcast","","","","vzip","","","","Build","PathBuilder","PathIterator","PathType","SvgPathBuilder","arc_to","begin","build","close","cubic_bezier_to","","end","horizontal_line_to","line_to","","move_to","num_attributes","quadratic_bezier_to","","relative_arc_to","relative_cubic_bezier_to","relative_horizontal_line_to","relative_line_to","relative_move_to","relative_quadratic_bezier_to","relative_vertical_line_to","smooth_cubic_bezier_to","smooth_quadratic_bezier_to","smooth_relative_cubic_bezier_to","smooth_relative_quadratic_bezier_to","vertical_line_to","Bevel","Butt","Gradient","LineCap","LineDash","LineJoin","Miter","Round","","Solid","Square","Stroke","Style","line_cap","line_dash","line_join","offset","segments","style","width"],"q":[[0,"iced_renderer"],[11,"iced_renderer::fallback"],[157,"iced_renderer::geometry"],[801,"iced_renderer::geometry::fill"],[803,"iced_renderer::geometry"],[804,"iced_renderer::geometry::fill"],[806,"iced_renderer::geometry"],[807,"iced_renderer::geometry::fill"],[842,"iced_renderer::geometry"],[844,"iced_renderer::geometry::fill"],[854,"iced_renderer::geometry::frame"],[877,"iced_renderer::geometry::gradient"],[879,"iced_renderer::geometry"],[880,"iced_renderer::geometry::gradient"],[972,"iced_renderer::geometry::path"],[1070,"iced_renderer::geometry::path::arc"],[1080,"iced_renderer::geometry::path"],[1081,"iced_renderer::geometry::path::arc"],[1090,"iced_renderer::geometry::path"],[1091,"iced_renderer::geometry::path::arc"],[1108,"iced_renderer::geometry::path"],[1109,"iced_renderer::geometry::path::arc"],[1110,"iced_renderer::geometry::path"],[1111,"iced_renderer::geometry::path::arc"],[1122,"iced_renderer::geometry::path::lyon_path"],[2367,"iced_renderer::geometry::path::lyon_path::Event"],[2406,"iced_renderer::geometry::path::lyon_path::builder"],[2763,"iced_renderer::geometry::path::lyon_path::commands"],[2987,"iced_renderer::geometry::path::lyon_path::geom"],[3532,"iced_renderer::geometry::path::lyon_path"],[3533,"iced_renderer::geometry::path::lyon_path::geom"],[3633,"iced_renderer::geometry::path::lyon_path"],[3634,"iced_renderer::geometry::path::lyon_path::geom"],[3807,"iced_renderer::geometry::path::lyon_path::geom::arc"],[3819,"iced_renderer::geometry::path::lyon_path::geom"],[3820,"iced_renderer::geometry::path::lyon_path::geom::arc"],[3825,"iced_renderer::geometry::path::lyon_path::geom"],[3826,"iced_renderer::geometry::path::lyon_path::geom::arc"],[3827,"iced_renderer::geometry::path::lyon_path::geom"],[3828,"iced_renderer::geometry::path::lyon_path::geom::arc"],[3841,"iced_renderer::geometry::path::lyon_path"],[3842,"iced_renderer::geometry::path::lyon_path::geom::arc"],[3843,"iced_renderer::geometry::path::lyon_path::geom"],[3846,"iced_renderer::geometry::path::lyon_path"],[3847,"iced_renderer::geometry::path::lyon_path::geom"],[3849,"iced_renderer::geometry::path::lyon_path::geom::arc"],[3858,"iced_renderer::geometry::path::lyon_path::geom"],[3860,"iced_renderer::geometry::path::lyon_path::geom::arrayvec"],[4293,"iced_renderer::geometry::path::lyon_path::geom::cubic_bezier"],[4304,"iced_renderer::geometry::path::lyon_path::geom"],[4306,"iced_renderer::geometry::path::lyon_path::geom::cubic_bezier"],[4311,"iced_renderer::geometry::path::lyon_path::geom"],[4312,"iced_renderer::geometry::path::lyon_path::geom::cubic_bezier"],[4327,"iced_renderer::geometry::path::lyon_path::geom"],[4328,"iced_renderer::geometry::path::lyon_path::geom::cubic_bezier"],[4337,"iced_renderer::geometry::path::lyon_path::geom::euclid"],[5771,"iced_renderer::geometry::path::lyon_path::geom"],[5772,"iced_renderer::geometry::path::lyon_path::geom::euclid"],[6411,"iced_renderer::geometry::path::lyon_path::geom::euclid::approxeq"],[6415,"iced_renderer::geometry::path::lyon_path::geom::euclid::approxord"],[6417,"iced_renderer::geometry::path::lyon_path::geom::euclid::default"],[6440,"iced_renderer::geometry::path::lyon_path::geom"],[6441,"iced_renderer::geometry::path::lyon_path::geom::euclid::default"],[6468,"iced_renderer::geometry::path::lyon_path::geom"],[6469,"iced_renderer::geometry::path::lyon_path::geom::euclid::default"],[6470,"iced_renderer::geometry::path::lyon_path::geom"],[6471,"iced_renderer::geometry::path::lyon_path::geom::euclid::default"],[6480,"iced_renderer::geometry::path::lyon_path::geom"],[6481,"iced_renderer::geometry::path::lyon_path::geom::euclid::default"],[6482,"iced_renderer::geometry::path::lyon_path::geom"],[6483,"iced_renderer::geometry::path::lyon_path::geom::euclid::default"],[6484,"iced_renderer::geometry::path::lyon_path::geom"],[6485,"iced_renderer::geometry::path::lyon_path::geom::euclid::default"],[6489,"iced_renderer::geometry::path::lyon_path::geom"],[6490,"iced_renderer::geometry::path::lyon_path::geom::euclid::default"],[6491,"iced_renderer::geometry::path::lyon_path::geom"],[6492,"iced_renderer::geometry::path::lyon_path::geom::euclid::default"],[6500,"iced_renderer::geometry::path::lyon_path::geom::euclid::num"],[6510,"iced_renderer::geometry::path::lyon_path::geom::quadratic_bezier"],[6541,"iced_renderer::geometry::path::lyon_path::geom"],[6542,"iced_renderer::geometry::path::lyon_path::geom::quadratic_bezier"],[6557,"iced_renderer::geometry::path::lyon_path::geom"],[6558,"iced_renderer::geometry::path::lyon_path::geom::quadratic_bezier"],[6601,"iced_renderer::geometry::path::lyon_path::geom"],[6602,"iced_renderer::geometry::path::lyon_path::geom::quadratic_bezier"],[6629,"iced_renderer::geometry::path::lyon_path::geom"],[6630,"iced_renderer::geometry::path::lyon_path::geom::traits"],[6632,"iced_renderer::geometry::path::lyon_path::geom"],[6645,"iced_renderer::geometry::path::lyon_path::geom::traits"],[6647,"iced_renderer::geometry::path::lyon_path::geom"],[6649,"iced_renderer::geometry::path::lyon_path::geom::utils"],[6655,"iced_renderer::geometry::path::lyon_path::iterator"],[6819,"iced_renderer::geometry::path::lyon_path::math"],[6849,"iced_renderer::geometry::path::lyon_path::path"],[6858,"iced_renderer::geometry::path::lyon_path::path_buffer"],[7008,"iced_renderer::geometry::path::lyon_path::polygon"],[7058,"iced_renderer::geometry::path::lyon_path"],[7060,"iced_renderer::geometry::path::lyon_path::polygon"],[7142,"iced_renderer::geometry::path::lyon_path"],[7144,"iced_renderer::geometry::path::lyon_path::polygon"],[7184,"iced_renderer::geometry::path::lyon_path::traits"],[7187,"iced_renderer::geometry::path::lyon_path::builder"],[7188,"iced_renderer::geometry::path::lyon_path::traits"],[7189,"iced_renderer::geometry::path::lyon_path::builder"],[7215,"iced_renderer::geometry"],[7218,"iced_renderer::geometry::stroke"],[7221,"iced_renderer::geometry"],[7226,"iced_renderer::geometry::stroke"],[7228,"iced_renderer::geometry"],[7235,"palette::chromatic_adaptation"],[7236,"core::any"],[7237,"palette::cam16::parameters"],[7238,"iced_core::renderer"],[7239,"iced_graphics::compositor"],[7240,"core::clone"],[7241,"iced_core::text"],[7242,"iced_core::pixels"],[7243,"iced_graphics::geometry"],[7244,"iced_core::image"],[7245,"iced_core::rectangle"],[7246,"iced_graphics::mesh"],[7247,"iced_wgpu::primitive"],[7248,"iced_core::svg"],[7249,"iced_core::point"],[7250,"iced_core::color"],[7251,"iced_core::background"],[7252,"core::convert"],[7253,"alloc::string"],[7254,"core::fmt"],[7255,"alloc::boxed"],[7256,"alloc::sync"],[7257,"alloc::rc"],[7258,"alloc::borrow"],[7259,"iced_core::size"],[7260,"iced_core::font"],[7261,"iced_wgpu"],[7262,"iced_tiny_skia"],[7263,"iced_graphics::viewport"],[7264,"core::result"],[7265,"alloc::vec"],[7266,"iced_core::transformation"],[7267,"palette::convert::try_from_into_color"],[7268,"core::option"],[7269,"iced_graphics::settings"],[7270,"iced_graphics::error"],[7271,"iced_graphics::geometry::frame"],[7272,"iced_graphics::geometry::path"],[7273,"iced_graphics::geometry::cache"],[7274,"iced_graphics::gradient"],[7275,"iced_graphics::geometry::fill"],[7276,"iced_graphics::geometry::stroke"],[7277,"iced_graphics::geometry::style"],[7278,"iced_graphics::geometry::text"],[7279,"core::ops::function"],[7280,"iced_graphics::cache"],[7281,"core::cmp"],[7282,"iced_core::alignment"],[7283,"iced_graphics::geometry::path::builder"],[7284,"lyon_path::path"],[7285,"iced_core::angle"],[7286,"iced_core::border"],[7287,"iced_core::vector"],[7288,"euclid"],[7289,"euclid::transform2d"],[7290,"iced_core::gradient"],[7291,"core::iter::traits::collect"],[7292,"iced_graphics::geometry::path::arc"],[7293,"lyon_path::commands"],[7294,"lyon_path::path_buffer"],[7295,"lyon_path"],[7296,"euclid::point"],[7297,"lyon_path::builder"],[7298,"lyon_geom::arc"],[7299,"lyon_path::events"],[7300,"lyon_path::polygon"],[7301,"core::hash"],[7302,"core::ops::range"],[7303,"lyon_path::iterator"],[7304,"lyon_geom::traits"],[7305,"euclid::vector"],[7306,"euclid::angle"],[7307,"lyon_geom::line"],[7308,"euclid::box2d"],[7309,"core::default"],[7310,"smol_str"],[7311,"lyon_geom::scalar"],[7312,"lyon_geom::triangle"],[7313,"core::marker"],[7314,"core::ops::arith"],[7315,"lyon_geom::segment"],[7316,"lyon_geom::cubic_bezier"],[7317,"lyon_geom::quadratic_bezier"],[7318,"lyon_geom"],[7319,"num_traits::identities"],[7320,"num_traits::float"],[7321,"euclid::approxeq"],[7322,"num_traits::cast"],[7323,"arrayvec::arrayvec"],[7324,"euclid::trig"],[7325,"euclid::default"],[7326,"num_traits::real"],[7327,"euclid::size"],[7328,"core::iter::traits::iterator"],[7329,"arrayvec::array_string"],[7330,"std::path"],[7331,"arrayvec::errors"],[7332,"std::io::error"],[7333,"core::str::error"],[7334,"endi::endian"],[7335,"num_traits::sign"],[7336,"euclid::length"],[7337,"euclid::scale"],[7338,"euclid::side_offsets"],[7339,"euclid::translation"],[7340,"euclid::rotation"],[7341,"euclid::transform3d"],[7342,"euclid::rect"],[7343,"euclid::box3d"],[7344,"euclid::rigid"],[7345,"euclid::num"],[7346,"euclid::homogen"],[7347,"num_traits::ops::euclid"],[7348,"num_traits::ops::saturating"],[7349,"lyon_path::math"],[7350,"rayon::iter::par_bridge"],[7351,"iced_graphics"],[7352,"euclid::approxord"],[7353,"lyon_geom::utils"]],"i":"`BEdBEf`10``````lAbEd`210`21021021021021021021021022101112221021021022222210221222221021021021021021021021021021021021021021012222121222102102102102102102102102101IdIb```Bh0`Ih````Hl4``3413````HfHj2HnHhI`89If7IjBjCj879654<=3:210879654<=3:210879654<=3:210879654<=3:210879654<=3:210879654<=3:210879654<=3:2108579654<=3:2109654<=3:2109654<=3:210020879654<=3:2102764<=32879654<=3:210879654<=3:210879654<=3:2107;882879654<=3:2109:10`8881179654<=3:2102`8799666654<=3:::2221100879654<=3:210879654<=3:210`1082879654<=3:210879654<=3:210879654<=3:210879654<=3:21089654<=3:210879654<=3:210879654<=3:210879654<=3:210879654<=3:2108879654<=3:2105442487510;764<=32310109`82855810105688328211`88649654<=3:21058879654<=3:210879654<=3:210879654<=3:210879654<=3:210879654<=3:210879654<=3:210879654<=3:210879654<=3:2102879654<=3:210848474484Lb`;0`;`0000000000000000000000000000000000770000000000``Jd00000000000000000000``;`K`Kj11101010101010101010101010101010110101010101010101010101010101001`11110101010101010101010```KhMl`11101010101101011001000110110101010100101010101010101010101010101111101100101010101010101010``Mn0000000100000000010000000000000000010100000000000`````BEhBEjOjA@h```A@f`432432`A@l```AA`NjAAb`````876``55`A@jA@n5``````````10:98`67`6`ABjOhAAjN`Nb=KlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbN`Kl=0NdNlO`0ABjOhAAj7NbOj8765OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbNlO`0`N`Kl?0ABjOhAAj4NbOj5Nd98OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAb;OhN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbOhN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbOhN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAb98`ABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbNlO`0OhKl3?ABj2AAjN`NbOj5Nd98OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbNlO`0OhOj;:987654000777666555444N`Nb?>154KlNd532410A@`NfNhA@fA@hA@jA@lA@nAA`NjAAbOnABjOhAAjN`Nb0Oj0KlNd0NlO`Ol;A@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbKlAAl21>021>Oj987632?3322?NfNhABjOh8N`Nb698NlO`OlOnA@`:9A@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`A@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjN`KlNd0OlOnA@`66OhAAj7NbOj87NlO`876NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAb>Nd<;5656N`NbKl3?>=<03`Oh14NfNhNlO`0`AAj6214ABjOlOnA@`<;<;9:68AAh5;>766AA`NjA@j``A@bN`71A@d`AAn>==>==NfKlNd1OhOj917Nb143NlO`OlOnA@`:Nh?=A@fA@hA@jA@lA@nAA`NjAAb210`?KlABjOhAAjN`NbOj6NdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbABjOhAAjN`NbOjKlNdNlO`OlOnA@`NfNhA@bA@dA@fA@hA@jA@lA@nAA`NjAAbKlNl=Oj1ACnAD`ADbADd02ADf21302143211302130214321130213021`````AEl```AEfAEhACjAEdOdADh0100100100100AE`0211211240465432654326543265432165226543265432337665442265432323232011442654321065442243265432654326543265432165223211211423326543265432654322046543222654326543265432654326543265432654326543226543210654422044654323216523112106544220404040404040411006544226540404040432333311426543265432654326543265432654326543265432046543221122```````ACfObAAdABhAFd43210432104321043210343210432103432104321043210432104321033432104321043210432103443432104321043210444443210432104321043210434321043210432104321021043210433210323432104321043210432104321043210432104321043210432103`````AFh00000```0000```00`AGd````111````1AFfAFj00AGfAHlAGhADnAHn6AGj6ADl000966443311AGl111:775542`765439281765439281765439281765439281988528:77554422765439281765439281754287528752829887654392817218774447654392817654392817654392814276543928184255`5511765439281765439281:7554224392111765439281525765439281:55422:554227;76549281399911175275275252675222:77554422765439281767652:7765542257575525276576552525252111:77776555444392228165427654392817654392817171AJ`5587654:3925455945987654:39287654:39287654:39287654:39287654:39287654:39287654:39287654:39287654:392:32:636367:6363Oh643667474747444AJd00000AJf80555==59=88=55`75=`9955;:>;;998866;857=5`98988=8=>;;9988668>;;9988668768;55552;=>;;998866:986:6598765987658;:987=6<599;8`<98685;:987=6<5;:987=6<5;:987=6<5;:987=6<55;:987=6<5;:987=6<5;:987=6<5;:987=6<5`?`788;:987=6<53>;;998866AKjAKlAKn<9<9>=AGd??==<<::321=:=:9````AIh0000000AGf11111AHl2022222222222229210191022222222210`````AI`ALbALjAL`ALf432104321043210432104414314141143144321104432110432104141431041431043104104104321041443211044321104321044433221004444110444111000444311004432110432101443210141141141432104432104321043210432104321043210432104321044444324321041414114141133333333333332222222222222410413232414110414411441414410324444310101041432104443211104432104321041143210432104321043210432104444444444444444444444444444444444444444444444444144444441444441``AIj00000000AGh01111101111111111111110111111111`````````````````````````AKbANjADjANlAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOd?>AOfAOh?>LjB@`AOjAOlLh??>>==87AKb0ANj087ADj0ANl0ANnNn0AO`0>65=<43109898AOn554:93210B@b65=<=<4321065==<<``AEbB@d:22221B@fB@n8762B@h65AObAOd?>AOfAOh?>LjB@`AOjAOlLh=;:ANnNnAO`?=<54321AOd<;AOfAOh<;LjB@`AOjAOlLh?>8ANnNnAO`B@dB@hAOnB@bAOb?AKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhANn=10=17676AEbB@fB@n3NnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@d=<21210AIb:9B@h`43ANnNnAO`5AObAOdAKbANjAOfAOhADjANlLjB@`Lh?B@f8AEb1B@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLh43NnAO`AEb0B@f0ANn004433B@d0AOd0AKb0ANj0??>>66554887733221100??>>87?>65B@n5984B@hAOnB@bAOb765AOfAOhADjANlLjB@`AOjAOlLhAEbB@f?ANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLh:965AEb00B@f00B@n00ANn00Nn00AO`00B@d00B@h00AOn00B@b00AOb00AOd00AKb00ANj00AOf00AOh00ADj00ANl00Lj00B@`00AOj00AOl00Lh00=Nn7AIb11AO`0==<<9988AEbB@fB@nANn64B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEb0B@f0B@n0000ANnNn00AO`00B@d0B@h00AOnB@bAObAOdAKb000ANj000AOf0AOh0ADj0000ANl000Lj0B@`0AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLh64343;NnAO`=<;87AEbB@f10B@dB@h932132B@nANn7632AOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhB@hAEbB@fNnAO`B@d5AOnB@bAKbANjAOfAOhADjANlLjB@`AOd0ANnAOb<:965AEbB@fB@n4NnAO`B@dB@hAOnB@b9;AKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@d==98798B@nANnNnAO`;9876:AKbANj76ADjANlLjB@`AOjAOlLhAEbB@d1B@f12020120?>=<1B@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLh?>=<874333AEbB@fB@d=<21NnAO`2?>;:AOb>=:954B@bAKbANjAOd330ADjANl;:ANn98:654215421LjB@`10001010001010000000;:432;:<97643>=<<2;:<97643>=<<>>==22;;::<<95577664433>>==2;;::<<557766443302;:57643>=B@n3<;=B@hAOn<8:9AOfAOh98655:3AOjAOl??;:10>=;:AEbB@f;NnAO`B@dAObAOdAKbANj<;ADjANlLjB@`Lh`843?>;:91=921121ANn912``<323232542B@b0AOnADlAIb`98NnAO`>;:98B@hAEbB@f4433B@dAKb0ANj0ADj0ANl0654654>>654LjB@`AOjAOl1010:>:98``2B@b>=87AOfAOh87872ANnNn00AO`00AObAOd?>65=<433220?>65=<44??>>==<=>=>=>=5?=60ADj?76AKbANj<;2ANlLjB@`;210100B@dAEbB@f?>276AOfAOh:732NnAO`6;:32<954106;:32<954106;:32<954654B@nANn328B@hAOnB@bAObAOdAKbANj<;ADjANlLjB@`AOjAOlLh65??AEb7>=54=<0?61320B@hAOnB@bAKbANj:9ADjANlLjB@`?:<;954>=32<;54>=AOd?AOb?0?9900AOf0449AOh44:2044210210;;22155:4:4AEb?>65=0?ANnNnAO`B@d7>=65<;:94B@fB@n5432B@hAOnB@b<=AKbANj==ANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLh65AEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@nANnNnAO`B@dB@hAOnB@bAObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLhAEbB@fB@dB@b32B@nANnNnAO`5B@hAOn6AObAOdAKbANjAOfAOhADjANlLjB@`AOjAOlLh``B@b=87::9:9873NnAO`>=<;874320;730;73510>=<;874321<0;7350=;7343ANn22113AOdAKb0ANj0ADj0ANl07610`AHh00``````````````````````BAjBAlBAnAJ`1BB`003BBbBBd10001010001010000000AJfBBf10BBh58BBj190BBl89AKlBBnAKnBC`4BCbBCd54326104260`````B@jBAdB@lBAfBA`````BCfAIlAIn210210210210210210210210AGj321321321321321032132132132132132132132132132132121321321210321321321321321321321321321AGd``0000000000000ACl011```````````AChBClBCnBCh3210321032103210321032103210032103210321032103210BCj043214321432143214321432143214321432143214321432143214321321432113004321432143214321432143214321432143214`````````BD`BDbBDd00000BDf0`BDh``3BDjBDlBDn210``````````````OfBE`ABn2102102102102211210210221121000021022112102102102102211210210210210210210210210210210210210021022111002122112211002102102102102102102102102102``````ACbAC`ACdABd3210321032103210321032103210321032103210A@bA@d5432543254325432543254325432543254325432543254325432543254325432543254325432254322105432543254325432543254325432543254325432```AEl`AE`ADh210101011001111111111111IdIbIh```21201``I`00If011","f":"````````````````````{eg{}{{b{c}}}{}}00{ce{}{}}00{{}c{}}00{d{{d{f}}}}00{{{d{h}}}{{d{hf}}}}00{d{{d{c}}}{}}00{{{d{h}}}{{d{hc}}}{}}00{{{j{c}}}e{}{}}00{{{d{h{l{ce}}}}}nA`A`}777{{{d{h{Ab{ce}}}}{d{hg}}AdAd}nAfAf{}}{{{d{{Ab{ce}}}}}gAfAf{}}{{{d{h{Ab{ce}}}}gAdAd}iAfAf{AhAj}{}}{{{d{{l{ce}}}}}gAl{{Al{}{{An{}}{B`{}}{Bb{}}}}}{}}{{{d{{l{ce}}}}}BdAl{{Al{}{{An{}}{B`{}}{Bb{}}}}}}{Bf{{d{c}}}{}}00{Bf{{d{hc}}}{}}00:::{{{d{h{l{ce}}}}g}nBhBh{}}{{{d{h{l{ce}}}}BjBl}nBn{{Bn{}{{C`{}}}}}}{{{d{h{l{ce}}}}Cb}nCdCd}{{{d{h{l{ce}}}}Blg}nCfA`Ch}{{{d{h{l{ce}}}}CjBl}nClCl}{Bfn}00=={{{d{{Ab{ce}}}}}CnAfAf}{{{d{h{l{ce}}}}{d{g}}D`DbBl}nAl{{Al{}{{An{}}{B`{}}{Bb{}}}}}{}}{{{d{h{l{ce}}}}{d{g}}D`DbBl}nAl{{Al{}{{An{}}{B`{}}{Bb{}}}}}{}}{{{d{h{l{ce}}}}Ddg}nA`A`{{Dh{Df}}}}{{{d{h{l{ce}}}}{Dl{Djg}}D`DbBl}nAl{{Al{}{{An{}}{B`{}}{Bb{}}}}}{}}{{{d{{l{ce}}}}{d{hDn}}}E`EbEb}{{{d{{Ab{ce}}}}{d{hDn}}}E`{AfEb}{AfEb}}{{{d{{Ed{ce}}}}{d{hDn}}}E`EbEb}{cc{}}00000{ce{}{}}00{{}Bf}00{{}c{}}00000{{{Ef{c}}}{{Ef{f}}}{}}00{{{Eh{c}}}{{Eh{f}}}{}}00{{{Ej{c}}}{{Ej{f}}}{}}00{{{j{c}}}e{}{}}00444444{{}c{}}00{{{d{h{Ab{ce}}}}{F`{{En{El}}}}}nAfAf}{{{d{{l{ce}}}}{d{g}}}{{Fb{Ad}}}Bn{{Bn{}{{C`{}}}}}{}}{{{d{{l{ce}}}}{d{Fd}}}{{Fb{Ad}}}ClCl}{{FfBd}{{l{FhFj}}}}{{{d{{l{ce}}}}Fb}gBhBh{}}{{{d{h{Ab{ce}}}}{d{hg}}{d{hi}}{d{Fl}}Db{d{{En{k}}}}}{{G`{nFn}}}AfAf{}{}{{Gd{Gb}}}}{{{d{h{l{FhFj}}}}{Fb{Ad}}GfDb}{{Gh{El}}}}{{{d{h{Ab{ce}}}}{d{hg}}{d{Fl}}Db{d{{En{i}}}}}{{Gh{El}}}AfAf{}{{Gd{Gb}}}}{{{d{h{l{ce}}}}Bl}nA`A`}{{{d{h{l{ce}}}}Gj}nA`A`}{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{Gl{c}}}}}{}}00{dGn}00{ce{}{}}00{{}c{}}00{d{{H`{{d{c}}}}}{}}00{{}c{}}00{{Hbc{H`{{d{Gb}}}}}{{G`{{Ab{eg}}Hd}}}{AhAj}AfAf}`````````````````````````{eg{}{{b{c}}}{}}000000000000{ce{}{}}0000000000005555555555555{d{{d{f}}}}000000000000{{{d{h}}}{{d{hf}}}}000000000000{d{{d{c}}}{}}000000000000{{{d{h}}}{{d{hc}}}{}}000000000000{{{j{c}}}e{}{}}000000000000{{{d{{Hf{c}}}}}D`Bh}{{D`Gf}Hh}{{{d{{Hj{c}}}}}nBh}{{{d{Hl}}}Hl}{{{d{Hn}}}Hn}{{{d{Hh}}}Hh}{{{d{I`}}}I`}{{{d{Ib}}}Ib}{{{d{Id}}}Id}{{{d{If}}}If}{{{d{Ih}}}Ih}{{{d{Ij}}}Ij}{{{d{{Bj{c}}}}}{{Bj{c}}}Aj}{{{d{{Cj{c}}}}}{{Cj{c}}}Aj}{{d{d{hc}}}n{}}0000000000{{dEl}n}0000000000{{Cjc}Cj{{Dh{Db}}}}{IjDb}{CjH`}{ce{}{}}000000000000{IjDj}{{}{{Hj{c}}}Bh}{{}Hn}{{}I`}{{}Ib}{{}Id}{{}If}{{}Ij}{Bf{{d{c}}}{}}000000000000{Bf{{d{hc}}}{}}000000000000{d{{d{c}}}{}}000000000000{{{d{{Hj{c}}}}{d{c}}Fbe}{}Bh{{Il{{d{h{Hf{c}}}}}}}}{{{d{h{Bh{}{{In{c}}{J`{e}}}}}}c}nJb{{Jd{}{{In{c}}}}}}{{{d{h{Hf{c}}}}Ble}nBh{{Dh{Bj}}}}{{{d{h{Hf{c}}}}Ble}nBh{{Dh{Cj}}}}{{{d{Ij}}c}n{{Jf{HhDb}}}}{Bfn}000000000000{{{d{Hl}}{d{Hl}}}Jh}{{{d{Ih}}{d{Ih}}}Jh}{{{d{{Bj{c}}}}{d{{Bj{c}}}}}JhJj}{{{d{{Cj{c}}}}{d{{Cj{c}}}}}JhJj}`{{{d{h{Hf{c}}}}{d{Hh}}e}nBh{{Dh{Hn}}}}{{{d{h{Hf{c}}}}D`Fbe}nBh{{Dh{Hn}}}}{{{d{h{Hf{c}}}}e}nBh{{Dh{Ij}}}}{{BjJl}Bj}{BjJl}{{{d{{Hj{c}}}}{d{hDn}}}{{G`{nJn}}}Bh}{{{d{Hl}}{d{hDn}}}{{G`{nJn}}}}{{{d{Hn}}{d{hDn}}}{{G`{nJn}}}}{{{d{Hh}}{d{hDn}}}{{G`{nJn}}}}{{{d{I`}}{d{hDn}}}{{G`{nJn}}}}{{{d{Ib}}{d{hDn}}}{{G`{nJn}}}}{{{d{Id}}{d{hDn}}}{{G`{nJn}}}}{{{d{If}}{d{hDn}}}{{G`{nJn}}}}{{{d{Ih}}{d{hDn}}}{{G`{nJn}}}}{{{d{Ij}}{d{hDn}}}{{G`{nJn}}}}{{{d{{Bj{c}}}}{d{hDn}}}{{G`{nJn}}}Eb}{{{d{{Cj{c}}}}{d{hDn}}}{{G`{nJn}}}Eb}{IjFf}`{cc{}}0{K`Hl}11{DbHn}{HlHn}{K`Hn}44444{DbIh}5{HlIh}{{{d{Gb}}}Ij}7{DjIj}8{{{d{Kb}}}Bj}9{{{d{Fd}}}Cj}:::::::::::::{ce{}{}}000000000000`{Bj}{Cj}{{{d{{Hf{c}}}}}GfBh}{IjKd}{{}Bf}000000000000{{}c{}}0000000000000000000000000{{{Ef{c}}}{{Ef{f}}}{}}000000000000{{{Eh{c}}}{{Eh{f}}}{}}00000000000{{{Ej{c}}}{{Ej{f}}}{}}000000000000{{{j{c}}}e{}{}}00000000000044444444444444444444444444{{{Hf{c}}}{}Bh}{{}c{}}000000000000{{D`D`}Hh}{I`Ib}{I`If}{IjKf}{I`Id}{{{d{c}}Fb}{{Hf{c}}}Bh}{{}{{Hj{c}}}Bh}{cHh{{Il{{d{hKh}}}}}}{cBj{{Dh{Kb}}}}{cCj{{Dh{Fd}}}}{{{d{{Bh{}{{In{c}}{J`{e}}}}}}Fb}eJb{{Jd{}{{In{c}}}}}};;;;;;;{IfBf}{{Bjc}Bj{{Dh{Gf}}}}{{Cjc}Cj{{Dh{Gf}}}}{BjGf}{CjGf}{{{d{Hl}}}Kj}`{{{d{h{Hf{c}}}}}nBh}{IjD`}1{{{d{Hh}}}{{d{Kl}}}}{{D`Fb}Hh}{{{d{h{Hf{c}}}}e}nBh{{Dh{Kn}}}}{{Bjc}Bj{{Dh{Kn}}}}{{Cjc}Cj{{Dh{Kn}}}}{BjKn}{CjKn}{{D`FbL`}Hh}{HnLb}{{{d{h{Hf{c}}}}e}nBh{{Dh{Gf}}}}{{{d{h{Hf{c}}}}e}nBh{{Dh{Ld}}}}{Ifd}{IjLf}{{{d{{Hf{c}}}}}FbBh}{IjBd}{{BjJh}Bj}{BjJh}`{{{d{h{Hf{c}}}}{d{Hh}}e}nBh{{Dh{I`}}}}{{{d{h{Hf{c}}}}D`Fbe}nBh{{Dh{I`}}}}{HnIh}{I`Ih}{dc{}}0000000000{{{d{Hh}}{d{{Lj{GfLhLh}}}}}Hh}{{{d{h{Hf{c}}}}Ld}nBh}{{}{{G`{c}}}{}}000000000000{c{{G`{e}}}{}{}}000000000000{{}{{G`{c}}}{}}000000000000{{}{{G`{c{Gl{c}}}}}{}}000000000000{dGn}000000000000{ce{}{}}000000000000{{}c{}}000000000000{d{{H`{{d{c}}}}}{}}000000000000{IjLl}{{}c{}}000000000000{{{d{{Hf{c}}}}}GfBh}{I`Gf}{{{d{h{Hf{c}}}}Blg}eBh{}{{Il{{d{h{Hf{c}}}}}{{Ln{e}}}}}}{{I`Db}I`}{M`{{Hj{c}}}Bh}{{I`Ib}I`}{{I`Id}I`}{{{d{h{Hf{c}}}}g}eBh{}{{Il{{d{h{Hf{c}}}}}{{Ln{e}}}}}}{{I`Gf}I`}```````{eg{}{{b{c}}}{}}{ce{}{}}>{d{{d{f}}}}{{{d{h}}}{{d{hf}}}}{d{{d{c}}}{}}{{{d{h}}}{{d{hc}}}{}}{{{j{c}}}e{}{}}{{{d{Lb}}}Lb}{{d{d{hc}}}n{}}{{dEl}n}8{Bf{{d{c}}}{}}{Bf{{d{hc}}}{}}7{Bfn}{{{d{Lb}}{d{Lb}}}Jh}{{d{d{c}}}Jh{}}00{{{d{Lb}}{d{hDn}}}{{G`{nJn}}}}{cc{}}0{ce{}{}}{{}Bf}{{}c{}}0{{{Ef{c}}}{{Ef{f}}}{}}{{{Eh{c}}}{{Eh{f}}}{}}{{{Ej{c}}}{{Ej{f}}}{}}{{{j{c}}}e{}{}}44{{}c{}}{HnLb}{HnIh}{dc{}}{{}{{G`{c}}}{}}{c{{G`{e}}}{}{}}{{}{{G`{c}}}{}}{{}{{G`{c{Gl{c}}}}}{}}{dGn}{ce{}{}}{{}c{}}{d{{H`{{d{c}}}}}{}}{{}c{}}```{{{d{{Jd{}{{In{c}}}}}}}D`{}}{{{d{h{Jd{}{{In{c}}}}}}Bl}{{Jd{}{{In{c}}}}}{}}{{{d{h{Jd{}{{In{c}}}}}}Ble}n{}{{Dh{Bj}}}}{{{d{h{Jd{}{{In{c}}}}}}Ble}n{}{{Dh{Cj}}}}{{{d{h{Jd{}{{In{c}}}}}}{d{Hh}}e}n{}{{Dh{Hn}}}}{{{d{h{Jd{}{{In{c}}}}}}D`Fbe}n{}{{Dh{Hn}}}}{{{d{h{Jd{}{{In{c}}}}}}e}n{}{{Dh{Ij}}}}{{{d{{Jd{}{{In{c}}}}}}}Gf{}}{{{Jd{}{{In{c}}}}}c{}}{{{d{h{Jd{}{{In{c}}}}}}{Jd{}{{In{c}}}}}n{}}{{{d{h{Jd{}{{In{c}}}}}}}n{}}0{{{d{h{Jd{}{{In{c}}}}}}e}n{}{{Dh{Kn}}}}{{{d{h{Jd{}{{In{c}}}}}}e}n{}{{Dh{Gf}}}}{{{d{h{Jd{}{{In{c}}}}}}e}n{}{{Dh{Ld}}}}{{{d{{Jd{}{{In{c}}}}}}}Fb{}}{{{d{h{Jd{}{{In{c}}}}}}{d{Hh}}e}n{}{{Dh{I`}}}}{{{d{h{Jd{}{{In{c}}}}}}D`Fbe}n{}{{Dh{I`}}}}{{{d{h{Jd{}{{In{c}}}}}}Ld}n{}}:````{eg{}{{b{c}}}{}}0{{K`GfDb}K`}{{K`c}K`{{Mf{}{{Mb{Md}}}}}}{ce{}{}}0{{}c{}}0{d{{d{f}}}}0{{{d{h}}}{{d{hf}}}}0{d{{d{c}}}{}}0{{{d{h}}}{{d{hc}}}{}}0{{{j{c}}}e{}{}}0{{{d{K`}}}K`}{{{d{Kj}}}Kj}{{d{d{hc}}}n{}}0{{dEl}n}0::{Bf{{d{c}}}{}}0{Bf{{d{hc}}}{}}088{Bfn}0{K`D`}{{{d{K`}}{d{K`}}}Jh}{{{d{Kj}}{d{Kj}}}Jh}{{{d{K`}}{d{hDn}}}{{G`{nJn}}}}{{{d{Kj}}{d{hDn}}}{{G`{nJn}}}}{cc{}}000{ce{}{}}0{{}Bf}0{{}c{}}000{{{Ef{c}}}{{Ef{f}}}{}}0{{{Eh{c}}}{{Eh{f}}}{}}0{{{Ej{c}}}{{Ej{f}}}{}}0{{{j{c}}}e{}{}}04444{{}c{}}0{{{d{c}}}Jh{}}{{D`D`}K`}{{{d{Mh}}Bl}Kj}{{{d{K`}}}Kj}{K`D`}{K`Mj}{dc{}}0{{}{{G`{c}}}{}}0{c{{G`{e}}}{}{}}0{{}{{G`{c}}}{}}0{{}{{G`{c{Gl{c}}}}}{}}0{dGn}0{ce{}{}}0{{}c{}}0{d{{H`{{d{c}}}}}{}}0{{}c{}}0```{eg{}{{b{c}}}{}}0`{{{d{hKh}}Ml}n}{{{d{hKh}}D`D`Gf}n}{ce{}{}}066{d{{d{f}}}}0{{{d{h}}}{{d{hf}}}}0{{{d{hKh}}D`D`D`}n}{d{{d{c}}}{}}0{{{d{h}}}{{d{hc}}}{}}0{KhHh}{{{j{c}}}e{}{}}0{MlD`}{{{d{hKh}}D`Gf}n}{{{d{Ml}}}Ml}{{d{d{hc}}}n{}}{{dEl}n}{{{d{hKh}}}n}=={{}Kh}{Bf{{d{c}}}{}}0{Bf{{d{hc}}}{}}0<<{Bfn}0{{{d{hKh}}Mn}n}{MlKn}{{{d{Ml}}{d{hDn}}}{{G`{nJn}}}}{cc{}}000{ce{}{}}0{{}Bf}0{{}c{}}000{{{Ef{c}}}{{Ef{f}}}{}}0{{{Eh{c}}}{{Eh{f}}}{}}0{{{Ej{c}}}{{Ej{f}}}{}}0{{{j{c}}}e{}{}}04444{{}c{}}0{{{d{hKh}}D`}n}0{{}Kh}2{{{d{hKh}}D`D`}n}{MlGf}{{{d{hKh}}D`Fb}n}{{{d{hKh}}D`FbL`}n}{MlKn}{dc{}}{{}{{G`{c}}}{}}0{c{{G`{e}}}{}{}}0{{}{{G`{c}}}{}}0{{}{{G`{c{Gl{c}}}}}{}}0{dGn}0{ce{}{}}0{{}c{}}0{d{{H`{{d{c}}}}}{}}0{{}c{}}0``{eg{}{{b{c}}}{}}{ce{}{}}4{d{{d{f}}}}{{{d{h}}}{{d{hf}}}}{d{{d{c}}}{}}{{{d{h}}}{{d{hc}}}{}}{{{j{c}}}e{}{}}{MlD`}{MnD`}{{{d{Mn}}}Mn}{{d{d{hc}}}n{}}{{dEl}n}:{Bf{{d{c}}}{}}{Bf{{d{hc}}}{}}9{Bfn}{MlKn}{MnKn}{{{d{Mn}}{d{hDn}}}{{G`{nJn}}}}{cc{}}{MlMn}1{ce{}{}}{{}Bf}{{}c{}}0{{{Ef{c}}}{{Ef{f}}}{}}{{{Eh{c}}}{{Eh{f}}}{}}{{{Ej{c}}}{{Ej{f}}}{}}{{{j{c}}}e{}{}}44{{}c{}}{MnLd}{MlGf}=>={dc{}}{{}{{G`{c}}}{}}{c{{G`{e}}}{}{}}{{}{{G`{c}}}{}}{{}{{G`{c{Gl{c}}}}}{}}{dGn}{ce{}{}}{{}c{}}{d{{H`{{d{c}}}}}{}}{{}c{}}````````````````````````````````````````{{}d}````````````````````````{eg{}{{b{c}}}{}}000000000000000000000000{ce{}{}}0000000000000000000000005555555555555555555555555{d{{d{f}}}}000000000000000000000000{{{d{h}}}{{d{hf}}}}000000000000000000000000{{{d{N`}}}Nb}{{{d{Kl}}}Nd}{{{d{Nf}}}Nh}{{{d{Kl}}Nj}{{d{{En{Gf}}}}}}{{{d{Nd}}Nj}{{d{{En{Gf}}}}}}{{{d{hNl}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}{{{d{hO`}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}0{d{{d{c}}}{}}000000000000000000000000{{{d{h}}}{{d{hc}}}{}}000000000000000000000000{NlKl}{O`Kl}0`{{}Ob}{{}{{Od{Nl}}}}{{{d{hNf}}}Of}{BfO`}{{{j{c}}}e{}{}}000000000000000000000000{{{d{hNf}}}n}{{{d{Oh}}}Oh}{{{d{N`}}}N`}{{{d{Nb}}}Nb}{{{d{{Oj{ce}}}}}{{Oj{ce}}}AjAj}{{{d{Kl}}}Kl}{{{d{Nd}}}Nd}{{{d{Nl}}}Nl}{{{d{O`}}}O`}{{{d{Ol}}}Ol}{{{d{On}}}On}{{{d{A@`}}}A@`}{{{d{Nf}}}Nf}{{{d{Nh}}}Nh}{{{d{{A@b{c}}}}}{{A@b{c}}}Aj}{{{d{A@d}}}A@d}{{{d{A@f}}}A@f}{{{d{A@h}}}A@h}{{{d{A@j}}}A@j}{{{d{A@l}}}A@l}{{{d{A@n}}}A@n}{{{d{AA`}}}AA`}{{{d{Nj}}}Nj}{{{d{AAb}}}AAb}{{d{d{hc}}}n{}}0000000000000000000000{{dEl}n}0000000000000000000000{A@bJh}{A@dJh}`{ce{}{}}000000000000000000000000{{{d{hNl}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}{{{d{hO`}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}0{{}Oh}{{}Kl}{{}Nl}{{}Nf}{Bf{{d{c}}}{}}000000000000000000000000{Bf{{d{hc}}}{}}000000000000000000000000{d{{d{c}}}{}}000000000000000000000000{Bfn}000000000000000000000000{{{d{hNl}}Jh}n}{{{d{hO`}}Jh}n}0{{{d{Oh}}{d{Oh}}}Jh}{{{d{{Oj{ce}}}}{d{{Oj{ce}}}}}JhJjJj}{{{d{A@f}}{d{A@f}}}Jh}{{{d{A@h}}{d{A@h}}}Jh}{{{d{A@j}}{d{A@j}}}Jh}{{{d{A@l}}{d{A@l}}}Jh}{{{d{A@n}}{d{A@n}}}Jh}{{{d{AA`}}{d{AA`}}}Jh}{{{d{Nj}}{d{Nj}}}Jh}{{{d{AAb}}{d{AAb}}}Jh}{{d{d{c}}}Jh{}}00000000000000{{{d{N`}}AAb}{{Oj{NjAA`}}}}{{{d{Nb}}AAb}{{Oj{NjAA`}}}}{{{d{{A@b{c}}}}AAb}{{Oj{{d{c}}n}}}{}}{{{d{A@d}}AAb}{{Oj{NjAA`}}}}{{{d{N`}}{d{{En{c}}}}{d{{En{e}}}}}{{AAd{ce}}}{}{}}{{{d{hNl}}{d{{En{Nd}}}}}n}{{{d{hO`}}{d{{En{Nd}}}}}n}{{{d{Kl}}}{{H`{{AAf{{Nn{GfLh}}{d{{En{Gf}}}}}}}}}}{{{d{Nd}}}{{H`{{AAf{{Nn{GfLh}}{d{{En{Gf}}}}}}}}}}{{{d{Oh}}{d{hDn}}}{{G`{nJn}}}}{{{d{N`}}{d{hDn}}}{{G`{nJn}}}}{{{d{Nb}}{d{hDn}}}{{G`{nJn}}}}{{{d{{Oj{ce}}}}{d{hDn}}}{{G`{nJn}}}EbEb}{{{d{Kl}}{d{hDn}}}{{G`{nJn}}}}{{{d{Nd}}{d{hDn}}}{{G`{nJn}}}}{{{d{A@`}}{d{hDn}}}{{G`{nJn}}}}{{{d{Nf}}{d{hDn}}}{{G`{nJn}}}}{{{d{Nh}}{d{hDn}}}{{G`{nJn}}}}{{{d{A@f}}{d{hDn}}}{{G`{nJn}}}}{{{d{A@h}}{d{hDn}}}{{G`{nJn}}}}{{{d{A@j}}{d{hDn}}}{{G`{nJn}}}}{{{d{A@l}}{d{hDn}}}{{G`{nJn}}}}{{{d{A@n}}{d{hDn}}}{{G`{nJn}}}}{{{d{AA`}}{d{hDn}}}{{G`{nJn}}}}{{{d{Nj}}{d{hDn}}}{{G`{nJn}}}}{{{d{AAb}}{d{hDn}}}{{G`{nJn}}}}{{OnGf{d{hc}}}n{{Jf{{d{{Oj{{AAf{{Nn{GfLh}}{d{{En{Gf}}}}}}{Nn{GfLh}}}}}}}}}}{cc{}}0000{{{d{N`}}}Nb}1{{{d{{Oj{ce}}}}}cAj{}}2{{{d{Kl}}}Nd}3333333333333333333333333333333333333333333{cKl{{Mf{}{{Mb{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}}}}}}{cNf{{Mf{}{{Mb{Nd}}}}}}{ce{}{}}000000000000000000000000{BfAA`}{BfNj}{{{d{AAh}}Nj}{{d{{En{Gf}}}}}}{{{d{AAj}}Nj}{{d{{En{Gf}}}}}}{{{d{Kl}}Nj}{{d{{En{Gf}}}}}}{{{d{Nd}}Nj}{{d{{En{Gf}}}}}}{{{d{Nf}}Bf}Nd}{{{d{Nh}}Bf}Nd}{{{d{AAl}}AA`}{{Nn{GfLh}}}}{{{d{Kl}}AA`}{{Nn{GfLh}}}}{{{d{Nd}}AA`}{{Nn{GfLh}}}}{{{d{{A@b{c}}}}AA`}{{Nn{GfLh}}}AAn}{{{d{AAl}}Nj}{{Nn{GfLh}}}}{{{d{Kl}}Nj}{{Nn{GfLh}}}}{{{d{Nd}}Nj}{{Nn{GfLh}}}}{{{d{{A@b{c}}}}Nj}{{Nn{GfLh}}}AAn}{{{d{{Oj{ce}}}}{d{hg}}}nAB`AB`ABb}{{{d{A@n}}{d{hc}}}nABb}{{{d{AA`}}{d{hc}}}nABb}{{{d{Nj}}{d{hc}}}nABb}{{{d{AAb}}{d{hc}}}nABb}{{{d{Kl}}}A@`}{{{d{Nd}}}A@`}{{{d{{A@b{c}}}}}ABd{}}{{{d{Kl}}AA`}{{d{{Nn{GfLh}}}}}}{{{d{Kl}}Nj}{{d{{Nn{GfLh}}}}}}{{{d{Nd}}AA`}{{d{{Nn{GfLh}}}}}}{{{d{Nd}}Nj}{{d{{Nn{GfLh}}}}}}{{{d{{A@b{c}}}}Nj}{{d{c}}}{}}{{{d{Nf}}}{{ABf{Bf}}}}{{{d{Nh}}}{{ABf{Bf}}}}{{}Bf}000000000000000000000000{{}c{}}0000000000000000000000000000000000000000000000000{{{Ef{c}}}{{Ef{f}}}{}}000000000000000000000000{{{Eh{c}}}{{Eh{f}}}{}}0000000000000000000000{{{Ej{c}}}{{Ej{f}}}{}}000000000000000000000000{{{j{c}}}e{}{}}00000000000000000000000044444444444444444444444444444444444444444444444444{{}c{}}{{{d{N`}}}ABh}{{{d{Kl}}}Ol}{{{d{Nd}}}Ol}{NdOl}444{ABjKl}{{}c{}}000000000000000000000000{{{d{{Oj{ce}}}}}Jh{}{}}{{{d{Nd}}}Jh}{{{d{Nf}}}Jh}{{{d{Nh}}}Jh}{{{d{A@l}}ABl}Jh}{A@jJh}10;{{{d{Nb}}}ABh};:{{{d{Nf}}}ABn}{{{d{Nh}}}ABn}{{{d{{A@b{c}}}}}{{AC`{c}}}{}}{{{d{A@d}}}ACb}{{{d{Kl}}}On}{{{d{Nd}}}On}`{OhJh}{{{d{Kl}}}{{H`{{AAf{{Nn{GfLh}}{d{{En{Gf}}}}}}}}}}{{{d{Nd}}}{{H`{{AAf{{Nn{GfLh}}{d{{En{Gf}}}}}}}}}}{{{d{Nf}}}Bf}{{{d{Nh}}}Bf}{{{d{hNl}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}{{{d{hO`}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}0`{{{d{{En{Gf}}}}Bf}AAj}{{}Kl}{{}Nl}{BfO`}{{}Nf}{{{d{hABj}}}H`}{{{d{hOl}}}{{H`{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}}}}{{{d{hOn}}}H`}{{{d{hA@`}}}{{H`{{Oj{NjAA`}}}}}}{{{d{N`}}AAb}{{H`{AAb}}}}{{{d{Nb}}AAb}{{H`{AAb}}}}{{{d{N`}}AAb}AAb}{{{d{Nb}}AAb}AAb}{{}c{}}000{{{d{AAh}}}Bf}{{{d{AAj}}}Bf}{{{d{Kl}}}Bf}{{{d{Nd}}}Bf}{{{d{Nl}}}Bf}{{{d{O`}}}Bf}0{AA`Bf}{NjBf}{A@jA@j}``{{{d{{A@b{c}}}}}{{ACd{c}}}AAn}{{{d{N`}}{d{{En{c}}}}{d{{En{e}}}}}{{ACf{ce}}}{}{}}{OnOl}{A@bd}{A@dd}`{{{d{AAn}}}{{Nn{GfLh}}}}{{{d{hNl}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}{{{d{hO`}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}0{{{d{hNl}}BfBf}n}{{{d{hO`}}BfBf}n}0{{{d{hNf}}BfBfBf}n}{{{d{Kl}}}{{ACh{ABj}}}}{{{d{Nd}}}{{ACh{ABj}}}}{{}{{ACj{Nl}}}}{OhJh}{{{d{{Oj{ce}}}}}cAj{}}{A@jGf}{dc{}}0000000000000000000000{AA`Bf}{NjBf}{AAbBf}`{{{d{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}}{d{c}}}{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}{{ACl{Gf}}}}{{Kl{d{c}}}Kl{{ACl{Gf}}}}{{}{{G`{c}}}{}}000000000000000000000000{c{{G`{e}}}{}{}}000000000000000000000000{{}{{G`{c}}}{}}000000000000000000000000{{}{{G`{c{Gl{c}}}}}{}}000000000000000000000000{dGn}000000000000000000000000{ce{}{}}000000000000000000000000{{}c{}}000000000000000000000000{d{{H`{{d{c}}}}}{}}000000000000000000000000{{}c{}}000000000000000000000000{BfKl}{{BfBf}Nl}{{BfBfBf}Nf}{{{d{{Oj{ce}}}}}{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}AAnAAn}{Nl{{ACj{Nl}}}}{ACn}{AD`Jh}{ADb}{ADd}0{AD`}{ADf}321032{ACnNj}5{ADbAA`}{ADdAA`}0{AD`Nj}{ADfNj}{ADbNj}{ADdNj}3210{ACnNn}<{ADbNn}{ADdNn}0{AD`Nn}{ADfNn}321032`````````{eg{}{{b{c}}}{}}0000{{{d{hADh}}{Nn{GfLh}}GfA@n{d{{En{Gf}}}}}n}0{{{d{h{Od{c}}}}{Nn{GfLh}}GfA@n}nADh}{{{d{hADh}}{Nn{GfLh}}{ADj{GfLh}}{ADl{Gf}}A@n{d{{En{Gf}}}}}n}0{{{d{h{Od{c}}}}{Nn{GfLh}}{ADj{GfLh}}{ADl{Gf}}A@n}nADh}{{{d{hADh}}{d{{ADn{Gf}}}}{d{{En{Gf}}}}}{{AAf{NjNj}}}}0{{{d{h{Od{c}}}}{d{{ADn{Gf}}}}}{{AAf{NjNj}}}ADh}{{{d{hADh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}0{{{d{h{Od{c}}}}{Nn{GfLh}}}NjADh}{{{d{hADh}}{A@b{{Nn{GfLh}}}}{d{{En{Gf}}}}}n}0{{{d{hAE`}}{A@b{{Nn{GfLh}}}}}n}0{{{d{h{Od{c}}}}{A@b{{Nn{GfLh}}}}}nADh}{{{d{hADh}}{d{{AEb{GfLh}}}}A@n{d{{En{Gf}}}}}n}0{{{d{h{Od{c}}}}{d{{AEb{GfLh}}}}A@n}nADh}{{{d{hADh}}{d{{AEb{GfLh}}}}{d{AEd}}A@n{d{{En{Gf}}}}}n}0{{{d{h{Od{c}}}}{d{{AEb{GfLh}}}}{d{AEd}}A@n}nADh}{{{d{h{ACj{c}}}}{Nn{GfLh}}{ADj{GfLh}}{ADl{Gf}}{ADl{Gf}}}nADh}{{{d{hAE`}}{ADj{GfLh}}{ADl{Gf}}Oh{Nn{GfLh}}}n}{{{d{h{ACj{c}}}}{ADj{GfLh}}{ADl{Gf}}Oh{Nn{GfLh}}}nADh}{ce{}{}}0000{{}c{}}0000{d{{d{f}}}}0000{{{d{h}}}{{d{hf}}}}0000?{{{d{h{AEf{c}}}}{Nn{GfLh}}{d{{En{Gf}}}}}NjADh}{{{d{h{AEh{ce}}}}{Nn{GfLh}}{d{{En{Gf}}}}}NjADh{{ACl{Gf}}}}{{{d{h{Od{c}}}}{Nn{GfLh}}}NjADh}{{{d{h{Od{c}}}}{Nn{GfLh}}{d{{En{Gf}}}}}NjADh}{d{{d{c}}}{}}0000{{{d{h}}}{{d{hc}}}{}}0000{AEdGf}0{{{AEl{}{{AEj{c}}}}}c{}}{{{AEf{c}}}{}{AElADh}}{{{AEf{c}}}{}AEl}{{{AEh{ce}}}{}AEl{}}{{{ACj{c}}}{}{ADhAEl}}{{{ACj{c}}}{}{AElADh}}{{{Od{c}}}{}{ADhAEl}}{{{Od{e}}}c{}{{AEl{}{{AEj{c}}}}ADh}}{{{j{c}}}e{}{}}0000{{{d{AEd}}}AEd}{{{d{{Od{c}}}}}{{Od{c}}}{AjADh}}{{d{d{hc}}}n{}}0{{dEl}n}0{{{d{hAE`}}}n}{{{d{hADh}}}n}0{{{d{h{ACj{c}}}}}nADh}0{{{d{h{Od{c}}}}}nADh}{ce{}{}}0000{{{d{hADh}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}{{{d{hAE`}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}}n}{{{d{h{AEf{c}}}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}NjADh}{{{d{h{AEh{ce}}}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}NjADh{{ACl{Gf}}}}{{{d{h{ACj{c}}}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}}nADh}{{{d{h{ACj{c}}}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}}NjADh}{{{d{h{Od{c}}}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}NjADh}{{{d{h{Od{c}}}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}}NjADh}{{{d{{ACj{c}}}}}{{Nn{GfLh}}}ADh}{{}AEd}{{}{{Od{c}}}{ADhAEn}}{Bf{{d{c}}}{}}0000{Bf{{d{hc}}}{}}0000{d{{d{c}}}{}}0000{Bfn}0000{{{d{hADh}}Jh}n}{{{d{h{AEf{c}}}}Jh}nADh}{{{d{h{AEh{ce}}}}Jh}nADh{{ACl{Gf}}}}{{{d{h{Od{c}}}}Jh}nADh}0{{{d{AEd}}{d{AEd}}}Jh}{{{d{{Od{c}}}}{d{{Od{c}}}}}Jh{JjADh}}{{{d{hADh}}{Oj{{AAf{{Nn{GfLh}}{d{{En{Gf}}}}}}{Nn{GfLh}}}}}n}0{{{d{h{Od{Nl}}}}{d{{En{Nd}}}}}n}{{ADhGf}{{AEf{ADh}}}}0{{{ACj{c}}Gf}{{ACj{{AEf{c}}}}}ADh}{{{Od{c}}Gf}{{Od{{AEf{c}}}}}ADh}{{{d{AEd}}{d{hDn}}}{{G`{nJn}}}}0{{{d{{Od{c}}}}{d{hDn}}}{{G`{nJn}}}{EbADh}}{cc{}}000000000{ce{}{}}0000{{{d{{Od{c}}}}{d{he}}}n{AB`ADh}ABb}{{{d{hAE`}}Gf}n}{{{d{h{ACj{c}}}}Gf}nADh}{{}Bf}0000{{{d{{Od{c}}}}}{{d{c}}}ADh}{{{d{h{Od{c}}}}}{{d{hc}}}ADh}{{}c{}}000000000{{{Ef{c}}}{{Ef{f}}}{}}0000{{{Eh{c}}}{{Eh{f}}}{}}0000{{{Ej{c}}}{{Ej{f}}}{}}0000{{{j{c}}}e{}{}}00004444444444{{{Od{c}}}cADh}{{}c{}}0000{{{d{hADh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}{{{d{hAE`}}{Nn{GfLh}}}n}{{{d{h{AEf{c}}}}{Nn{GfLh}}{d{{En{Gf}}}}}NjADh}{{{d{h{AEh{ce}}}}{Nn{GfLh}}{d{{En{Gf}}}}}NjADh{{ACl{Gf}}}}{{{d{h{ACj{c}}}}{Nn{GfLh}}}nADh}{{{d{h{ACj{c}}}}{Nn{GfLh}}}NjADh}{{{d{h{Od{c}}}}{Nn{GfLh}}}NjADh}{{{d{h{Od{c}}}}{Nn{GfLh}}{d{{En{Gf}}}}}NjADh}623{{cGf}{{AEf{c}}}ADh}{{ce}{{AEh{ce}}}{}{}}{c{{ACj{c}}}ADh}{GfAEd}{{}{{Od{c}}}{AEnADh}}=={{{d{ADh}}}Bf}{{{d{{AEf{c}}}}}BfADh}{{{d{{AEh{ce}}}}}BfADh{{ACl{Gf}}}}{{{d{{Od{c}}}}}BfADh}{{{d{AEd}}{d{AEd}}}{{H`{AF`}}}}{{{d{hADh}}{Oj{{Nn{GfLh}}{Nn{GfLh}}}}{d{{En{Gf}}}}}n}0{{{d{h{Od{c}}}}{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}nADh}{{{d{hADh}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}{{{d{hAE`}}{Nn{GfLh}}{Nn{GfLh}}}n}{{{d{h{AEf{c}}}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}NjADh}{{{d{h{AEh{ce}}}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}NjADh{{ACl{Gf}}}}{{{d{h{ACj{c}}}}{Nn{GfLh}}{Nn{GfLh}}}NjADh}{{{d{h{ACj{c}}}}{Nn{GfLh}}{Nn{GfLh}}}nADh}{{{d{h{Od{c}}}}{Nn{GfLh}}{Nn{GfLh}}}NjADh}{{{d{h{Od{c}}}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}NjADh}{{{d{hAE`}}{ADj{GfLh}}{ADl{Gf}}Oh{ADj{GfLh}}}n}{{{d{h{ACj{c}}}}{ADj{GfLh}}{ADl{Gf}}Oh{ADj{GfLh}}}nADh}{{{d{hAE`}}{ADj{GfLh}}{ADj{GfLh}}{ADj{GfLh}}}n}{{{d{h{ACj{c}}}}{ADj{GfLh}}{ADj{GfLh}}{ADj{GfLh}}}nADh}{{{d{hAE`}}Gf}n}{{{d{h{ACj{c}}}}Gf}nADh}{{{d{hAE`}}{ADj{GfLh}}}n}{{{d{h{ACj{c}}}}{ADj{GfLh}}}nADh}10{{{d{hAE`}}{ADj{GfLh}}{ADj{GfLh}}}n}{{{d{h{ACj{c}}}}{ADj{GfLh}}{ADj{GfLh}}}nADh}54{{{d{hADh}}BfBf}n}0{{{d{hAE`}}BfBf}n}0{{{d{h{AEf{c}}}}BfBf}nADh}{{{d{h{AEh{ce}}}}BfBf}nADh{{ACl{Gf}}}}{{{d{h{ACj{c}}}}BfBf}nADh}0{{{d{h{Od{c}}}}BfBf}nADh}0{{{d{h{AEf{c}}}}Gf}nADh}{{{d{h{AEh{ce}}}}e}n{}{}}{{{d{h{ACj{{AEh{ce}}}}}}e}nADh{{ACl{Gf}}}}{{{d{hAE`}}{Nn{GfLh}}{Nn{GfLh}}}n}{{{d{h{ACj{c}}}}{Nn{GfLh}}{Nn{GfLh}}}nADh}{{{d{hAE`}}{Nn{GfLh}}}n}{{{d{h{ACj{c}}}}{Nn{GfLh}}}nADh}>={{{d{hAE`}}{ADj{GfLh}}}n}{{{d{h{ACj{c}}}}{ADj{GfLh}}}nADh}{dc{}}0{dAFb}{dDj}{AEdGf}0{{ADhc}{{AEh{ADhc}}}{{ACl{Gf}}}}0{{{ACj{c}}e}{{ACj{{AEh{ce}}}}}ADh{{ACl{Gf}}}}{{{Od{c}}e}{{Od{{AEh{ce}}}}}ADh{{ACl{Gf}}}}{{}{{G`{c}}}{}}0000{c{{G`{e}}}{}{}}0000{{}{{G`{c}}}{}}0000{{}{{G`{c{Gl{c}}}}}{}}0000{dGn}0000{ce{}{}}0000{{}c{}}0000{d{{H`{{d{c}}}}}{}}0000{{{d{hAE`}}Gf}n}{{{d{h{ACj{c}}}}Gf}nADh}{{}c{}}0000{{BfBf}{{Od{c}}}{AEnADh}}{ADh{{ACj{ADh}}}}0{{{Od{c}}}{{ACj{c}}}ADh}{c{{Od{c}}}ADh}```````{eg{}{{b{c}}}{}}0000{ce{}{}}0000:::::{d{{d{f}}}}0000{{{d{h}}}{{d{hf}}}}0000{{{d{hOb}}Nj}AAb}{d{{d{c}}}{}}0000{{{d{h}}}{{d{hc}}}{}}0000{ObN`}{{{j{c}}}e{}{}}0000{{{d{{ACf{ce}}}}}{{ACf{ce}}}AjAj}{{{d{Ob}}}Ob}{{{d{{AAd{ce}}}}}{{AAd{ce}}}AjAj}{{{d{ABh}}}ABh}{{{d{{AFd{ce}}}}}{{AFd{ce}}}AjAj}{{d{d{hc}}}n{}}0000{{dEl}n}0000>>>>>{{{d{hOb}}AA`AA`Nj}AAb}{{}Ob}{Bf{{d{c}}}{}}0000{Bf{{d{hc}}}{}}0000>>>>>{Bfn}0000{{{d{hOb}}Jh}{{H`{AAb}}}}{{{d{{ACf{ce}}}}}{{AAd{ce}}}{}{}}{{{d{{ACf{ce}}}}{d{hDn}}}{{G`{nJn}}}EbEb}{{{d{Ob}}{d{hDn}}}{{G`{nJn}}}}{cc{}}000000000{ce{}{}}0000{{{d{{ACf{ce}}}}AA`}{{Nn{GfLh}}}AAnAAn}{{{d{{ACf{ce}}}}Nj}{{Nn{GfLh}}}AAnAAn}{{{d{{ACf{ce}}}}AA`}{{d{e}}}{}{}}{{{d{{ACf{ce}}}}Nj}{{d{c}}}{}{}}{{}Bf}0000{{}c{}}000000000{{{Ef{c}}}{{Ef{f}}}{}}0000{{{Eh{c}}}{{Eh{f}}}{}}0{{{Ej{c}}}{{Ej{f}}}{}}0000{{{j{c}}}e{}{}}00004444444444{{}c{}}00{{}c{}}0000{{{d{{ACf{ce}}}}}ABh{}{}}{{{d{hOb}}Nj}AAb}{{}Ob}{{{d{h{AAd{ce}}}}}{{H`{{Oj{{d{c}}{d{e}}}}}}}{}{}}{{{d{hABh}}}{{H`{{Oj{NjAA`}}}}}}{{{d{h{AFd{ce}}}}}{{H`{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}}}AAnAAn}6{{{AAd{ce}}}{{AFd{ce}}}AAnAAn}{{{d{hOb}}AA`Nj}AAb}{dc{}}0000{{}{{G`{c}}}{}}0000{c{{G`{e}}}{}{}}0000{{}{{G`{c}}}{}}0000{{}{{G`{c{Gl{c}}}}}{}}0000{dGn}0000{ce{}{}}0000{{}c{}}0000{d{{H`{{d{c}}}}}{}}0000{{}c{}}0000{BfOb}`````````````````````````````````````{{{d{{AFf{c}}}}}cAFh}{AFjNn}{{{d{{AFj{c}}}}}{{ADn{c}}}AFh}0{eg{}{{b{c}}}{}}00000000{{{ADl{c}}{d{{ADl{c}}}}}{{ADl{c}}}{AFl{AFn{}{{Ln{}}}}}}{{{ADl{c}}{ADl{c}}}{{ADl{c}}}{{AFn{}{{Ln{}}}}}}{{{d{h{ADl{c}}}}{ADl{c}}}nAG`}{{{d{{AGd{}{{AGb{c}}}}}}c}{{AGd{}{{AGb{c}}}}}AFh}{{{d{{AGf{c}}}}c}{{AGf{c}}}AFh}0{{{d{{AGh{c}}}}c}{{AGh{c}}}AFh}0{{{d{{ADn{c}}}}c}{{ADn{c}}}AFh}0{{{d{{AGj{c}}}}c}{{AGj{c}}}AFh}0{AGl}{{{d{{ADl{c}}}}{ADl{c}}}{{ADl{c}}}{{AGn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}AHdAHfAFl}}{{}cAHh}{{{d{{ADl{c}}}}{d{{ADl{c}}}}{d{c}}}JhAHh}{{{d{{AGd{}{{AGb{c}}}}}}c}cAFh}{{{d{{AGf{c}}}}c}cAFh}0{{{d{{AGh{c}}}}c}cAFh}0{{{d{{ADn{c}}}}c}cAFh}{{{d{{AGj{c}}}}c}cAFh}`{ce{}{}}00000000{{}c{}}00000000{d{{d{f}}}}00000000{{{d{h}}}{{d{hf}}}}00000000{{{d{{AFf{c}}}}}cAFh}{AFjNn}{{{d{{AFj{c}}}}}{{ADn{c}}}AFh}{{{d{{AGh{c}}}}}{{ADn{c}}}AFh}{{{d{{AGj{c}}}}}{{ADn{c}}}AFh}2{{{d{{AGd{}{{AGb{c}}}}}}c}{{AGd{}{{AGb{c}}}}}AFh}{{{d{{AGf{c}}}}c}{{AGf{c}}}AFh}0{{{d{{AGh{c}}}}c}{{AGh{c}}}AFh}0{{{d{{ADn{c}}}}c}{{ADn{c}}}AFh}0{{{d{{AGj{c}}}}c}{{AGj{c}}}AFh}0{d{{d{c}}}{}}00000000{{{d{h}}}{{d{hc}}}{}}00000000{{{d{{AGf{c}}}}}{{AEb{cLh}}}AFh}{{{d{{AGh{c}}}}}{{AEb{cLh}}}AFh}{{{d{{ADn{c}}}}}{{AEb{cLh}}}AFh}{{{d{{AGj{c}}}}}{{AEb{cLh}}}AFh}{{{d{{AFj{c}}}}}{{AEb{cLh}}}AFh}{{{d{{AGf{c}}}}}{{AAf{cc}}}AFh}{{{d{{AGh{c}}}}}{{AAf{cc}}}AFh}{{{d{{AGj{c}}}}}{{AAf{cc}}}AFh}{{{d{{AFj{c}}}}}{{AAf{cc}}}AFh}3210{{{d{{AGj{c}}}}}{{AFj{c}}}AFh}{{{d{{AFf{c}}}}}cAFh}{AFjNn}{{{d{{AFj{c}}}}}{{ADn{c}}}AFh}{{{j{c}}}e{}{}}00000000{{{AGf{c}}}{{AGf{e}}}AFhAHj}{{{AGj{c}}}{{AGj{e}}}AFhAHj}{{{d{{ADl{c}}}}}{{ADl{e}}}{AHjAFl}AHj}4{AGfNn}{{{Nn{cLh}}c}{{AGf{c}}}AFh}{{{d{{ADn{c}}}}{d{{AEb{cLh}}}}}{{H`{{ADn{c}}}}}AFh}{{{d{{ADn{c}}}}{ABf{c}}}{{H`{{ADn{c}}}}}AFh}0{{{d{{AGf{c}}}}}{{AGf{c}}}Aj}{{{d{{AHl{c}}}}}{{AHl{c}}}Aj}{{{d{{AGh{c}}}}}{{AGh{c}}}Aj}{{{d{{ADn{c}}}}}{{ADn{c}}}Aj}{{{d{{AHn{c}}}}}{{AHn{c}}}Aj}{{{d{{AFf{c}}}}}{{AFf{c}}}Aj}{{{d{{AGj{c}}}}}{{AGj{c}}}Aj}{{{d{{AFj{c}}}}}{{AFj{c}}}Aj}{{{d{{ADl{c}}}}}{{ADl{c}}}Aj}{{d{d{hc}}}n{}}00000000{{dEl}n}00000000{{{d{{ADn{c}}}}{Nn{cLh}}}{{Nn{cLh}}}AFh}{{{d{{AGj{c}}}}{Nn{cLh}}}cAFh}{ce{}{}}00000000{{{d{{AFj{c}}}}{Nn{cLh}}}JhAFh}{{{d{{ADn{c}}}}{d{{ADn{c}}}}}JhAFh}{AGjNn}{AGhNn}0`{{{d{{AGh{c}}}}{d{{AGh{c}}}}}{{AI`{{Nn{cLh}}}}}AFh}{{{d{{AGh{c}}}}{d{{AGh{c}}}}}{{AI`{{AAf{cc}}}}}AFh}{{}{{ADl{c}}}AEn}{c{{ADl{c}}}AIb}{Bf{{d{c}}}{}}00000000{Bf{{d{hc}}}{}}00000000{{{d{{AGd{}{{AGb{c}}}}}}c}{{ADj{cLh}}}AFh}{{{d{{AGf{c}}}}c}{{ADj{cLh}}}AFh}{{{d{{AGh{c}}}}c}{{ADj{cLh}}}AFh}0{{{d{{ADn{c}}}}c}{{ADj{cLh}}}AFh}{{{d{{AGj{c}}}}c}{{ADj{cLh}}}AFh}0{{{d{{ADn{c}}}}{Nn{cLh}}}cAFh}{{{d{{AHn{c}}}}{d{{Nn{cLh}}}}}cAFh}{{{d{{AFf{c}}}}{d{{Nn{cLh}}}}}cAFh}{{{d{{AGj{c}}}}{Nn{cLh}}}cAFh}{{{ADl{c}}c}{{ADl{c}}}{{AId{}{{Ln{}}}}}}{{{ADl{c}}{ADl{c}}}c{{AId{}{{Ln{}}}}}}{{{d{h{ADl{c}}}}c}nAIf}{d{{d{c}}}{}}00000000{{{d{{AGh{c}}}}c{Nn{cLh}}}{{AGh{c}}}AFh}{{{d{{AGj{c}}}}c{Nn{cLh}}}{{AGj{c}}}AFh}{{{d{{AGh{c}}}}c{Nn{cLh}}c}{{AGh{c}}}AFh}{Bfn}00000000{{{d{{AGd{}{{AGb{c}}}}}}c}cAFh}{{{d{{AGh{c}}}}c}cAFh}0{{{d{{ADn{c}}}}c}cAFh}{{{d{{AGj{c}}}}c}cAFh}0322100{{{d{{AGf{c}}}}}{{ADl{c}}}AFh}{AFhAFh}{{{d{{AGf{c}}}}{d{{AGf{c}}}}}JhJj}{{{d{{AHl{c}}}}{d{{AHl{c}}}}}JhJj}{{{d{{AGh{c}}}}{d{{AGh{c}}}}}JhJj}{{{d{{ADn{c}}}}{d{{ADn{c}}}}}JhJj}{{{d{{AFf{c}}}}{d{{AFf{c}}}}}JhJj}{{{d{{AGj{c}}}}{d{{AGj{c}}}}}JhJj}{{{d{{AFj{c}}}}{d{{AFj{c}}}}}JhJj}{{{d{{ADl{c}}}}{d{{ADl{c}}}}}JhJj}{{{d{{AHn{c}}}}}{{AFf{c}}}AFh}{{d{d{c}}}Jh{}}00000{{{d{{AGf{c}}}}}{{AEb{cLh}}}AFh}{{{d{{AGh{c}}}}}{{AEb{cLh}}}AFh}{{{d{{AGj{c}}}}}{{AEb{cLh}}}AFh}{{{d{{AGf{c}}}}}{{AAf{cc}}}AFh}{{{d{{AGh{c}}}}}{{AAf{cc}}}AFh}{{{d{{AGj{c}}}}}{{AAf{cc}}}AFh}210{{{d{{AGh{c}}}}}{{AAf{{AFf{c}}{AFf{c}}}}}AFh}{{{d{{AGj{c}}}}}{{AAf{{AFf{c}}{AFf{c}}}}}AFh}{AHlOh}{{{d{{AGf{c}}}}c}{{AIh{c}}}AFh}{{{d{{AGh{c}}}}c}{{AIj{c}}}AFh}{{{d{{AGj{c}}}}c}{{AIl{c}}}AFh}{{{d{{AGj{c}}}}c}{{AIn{c}}}AFh}{{{d{{AGj{c}}}}c}cAFh}{{{d{{AGd{}{{AGb{c}}}}}}}{{AGd{}{{AGb{c}}}}}AFh}{{{d{{AGf{c}}}}}{{AGf{c}}}AFh}0{{{d{{AGh{c}}}}}{{AGh{c}}}AFh}0{{{d{{ADn{c}}}}}{{ADn{c}}}AFh}0{{{d{{AGj{c}}}}}{{AGj{c}}}AFh}0{{{d{{AGf{c}}}}{d{hDn}}}{{G`{nJn}}}Eb}{{{d{{AHl{c}}}}{d{hDn}}}{{G`{nJn}}}Eb}{{{d{{AGh{c}}}}{d{hDn}}}{{G`{nJn}}}Eb}{{{d{{ADn{c}}}}{d{hDn}}}{{G`{nJn}}}Eb}{{{d{{AHn{c}}}}{d{hDn}}}{{G`{nJn}}}Eb}{{{d{{AFf{c}}}}{d{hDn}}}{{G`{nJn}}}Eb}{{{d{{AGj{c}}}}{d{hDn}}}{{G`{nJn}}}Eb}{{{d{{AFj{c}}}}{d{hDn}}}{{G`{nJn}}}Eb}{{{d{{ADl{c}}}}{d{hDn}}}{{G`{nJn}}}Eb}{{{d{{AGf{c}}}}{d{he}}}nAFh{{Jf{{d{{AGh{c}}}}}}}}{{{d{{AHl{c}}}}{d{he}}}nAFh{{Jf{{d{{AGh{c}}}}}}}}{{{d{{AGf{c}}}}c{d{he}}}nAFh{{Jf{{d{{ADn{c}}}}}}}}{{{d{{AHl{c}}}}c{d{he}}}nAFh{{Jf{{d{{ADn{c}}}}}}}}{{{d{{AGh{c}}}}c{d{he}}}nAFh{{Jf{{d{{ADn{c}}}}}}}}{{{d{{AGj{c}}}}c{d{he}}}nAFh{{Jf{{d{{ADn{c}}}}}}}}{{{d{{AGd{}{{AGb{c}}}}}}c{d{hJf}}}nAFh}{{{d{{AGf{c}}}}{d{hJf}}}nAFh}{{{d{{AGf{c}}}}c{d{he}}}nAFh{{Jf{{d{{ADn{c}}}}{ABf{c}}}}}}{{{d{{AHl{c}}}}c{d{he}}}nAFh{{Jf{{d{{ADn{c}}}}{ABf{c}}}}}}{{{d{{AGh{c}}}}c{d{he}}}nAFh{{Jf{{d{{ADn{c}}}}{ABf{c}}}}}}{{{d{{AGh{c}}}}{d{hJf}}}nAFh}{{{d{{ADn{c}}}}{d{hJf}}}nAFh}{{{d{{AGj{c}}}}c{d{he}}}nAFh{{Jf{{d{{ADn{c}}}}{ABf{c}}}}}}{{{d{{AGj{c}}}}{d{hJf}}}nAFh}{{{d{{AGh{c}}}}{d{he}}}nAFh{{Jf{c}}}}{{{d{{AGf{c}}}}{d{he}}}nAFh{{Jf{c}}}}101{{{d{{AGh{c}}}}{d{he}}}nAFh{{Jf{{d{{AGh{c}}}}}}}}{{{d{{AGj{c}}}}{d{he}}}nAFh{{Jf{{d{{AGj{c}}}}}}}}{{{d{{AGh{c}}}}{d{he}}}nAFh{{Jf{{ABf{c}}}}}}{{{d{{AGj{c}}}}{d{he}}}nAFh{{Jf{{ABf{c}}}}}}{{{d{{AGf{c}}}}{d{he}}}nAFh{{Jf{{d{{AGj{c}}}}}}}}{{{d{{AHl{c}}}}{d{he}}}nAFh{{Jf{{d{{AGj{c}}}}}}}}{{{d{{AGh{c}}}}c{d{he}}}nAFh{{Jf{{d{{AGj{c}}}}}}}}{{{d{{AGf{c}}}}{d{he}}}nAFh{{Jf{{d{{AGj{c}}}}{ABf{c}}}}}}{{{d{{AHl{c}}}}{d{he}}}nAFh{{Jf{{d{{AGj{c}}}}{ABf{c}}}}}}{{{d{{AGh{c}}}}c{d{he}}}nAFh{{Jf{{d{{AGj{c}}}}{ABf{c}}}}}}98769876{{}{{ADl{c}}}{AHf{AFn{}{{Ln{}}}}}}00{{{d{{AGd{}{{AGb{c}}}}}}}{{Nn{cLh}}}AFh}{cc{}}{{{d{{AGf{c}}}}}{{Nn{cLh}}}AFh}0{{{AHl{c}}}{{AGf{c}}}AFh}2{{{d{{AGh{c}}}}}{{Nn{cLh}}}AFh}30{{{d{{ADn{c}}}}}{{Nn{cLh}}}AFh}0444{{{d{{AGj{c}}}}}{{Nn{cLh}}}AFh}5055{AHlNn}{AGhNn}{ADnNn}{AGjNn}999999999{ce{}{}}00000000{{{d{{AHl{c}}}}}{{AGf{c}}}AFh}{{{ADl{c}}}c{}}{{{d{{AGf{c}}}}c}{{ADl{c}}}AFh}{{{d{{ADl{c}}}}{d{he}}}nAB`ABb}{AJ`}{{{d{{ADn{c}}}}c}{{H`{{Nn{cLh}}}}}AFh}{{{d{{ADn{c}}}}c}{{H`{c}}}AFh}{{}Bf}00000000{{{d{{ADn{c}}}}{d{{ADn{c}}}}}{{H`{{Nn{cLh}}}}}AFh}{{{d{{AHn{c}}}}{d{{AHn{c}}}}}{{H`{{Nn{cLh}}}}}AFh}{{{d{{ADn{c}}}}{d{{ADn{c}}}}}{{H`{{AAf{cc}}}}}AFh}{{{d{{ADn{c}}}}{d{{ADn{c}}}}}JhAFh}{{{d{{AFj{c}}}}{d{{AFj{c}}}}}JhAFh}{{{d{{AHn{c}}}}{d{{AEb{cLh}}}}}JhAFh}{{{d{{ADn{c}}}}{d{{AHn{c}}}}}JhAFh}{{{d{{AFj{c}}}}{d{{ADn{c}}}}}JhAFh}{{}c{}}00000000000000000{{{Ef{c}}}{{Ef{f}}}{}}00000000{{{Eh{c}}}{{Eh{f}}}{}}00000000{{{Ej{c}}}{{Ej{f}}}{}}00000000{{{j{c}}}e{}{}}00000000444444444444444444{{}c{}}00000000{{{d{{AFf{c}}}}}{{AFf{c}}}AFh}{{{d{{AGj{c}}}}c}JhAFh}{{{ADl{c}}}JhAJb}{{{d{{AFf{c}}}}}JhAFh}{{{d{{AGh{c}}}}c}JhAFh}3{{{d{{AGh{c}}}}}JhAFh}{{{d{{AGj{c}}}}}JhAFh}2{{{d{{AHl{c}}}}}JhAFh}42121{OhJh}{{{d{{ADn{c}}}}}cAFh}{{{d{{AGj{c}}}}}cAFh}{{{d{{ADl{c}}}}{ADl{c}}c}{{ADl{c}}}{{AGn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}AHdAHfAFl}}{{{d{{ADn{c}}}}{d{{AHn{c}}}}}{{H`{{Nn{cLh}}}}}AFh}{{{d{{ADn{c}}}}{d{{AHn{c}}}}}{{H`{c}}}AFh}{{{d{{AGh{c}}}}{d{{AHn{c}}}}}{{AI`{{Nn{cLh}}}}}AFh}{{{d{{AGj{c}}}}{d{{AHn{c}}}}}{{AI`{{Nn{cLh}}}}}AFh}{{{d{{AGh{c}}}}{d{{AHn{c}}}}}{{AI`{c}}}AFh}{{{d{{AGj{c}}}}{d{{AHn{c}}}}}{{AI`{c}}}AFh}{{{d{{AGh{c}}}}{d{{ADn{c}}}}}{{AI`{{Nn{cLh}}}}}AFh}{{{d{{AGj{c}}}}{d{{ADn{c}}}}}{{AI`{{Nn{cLh}}}}}AFh}{{{d{{AGh{c}}}}{d{{ADn{c}}}}}{{AI`{{AAf{cc}}}}}AFh}{{{d{{AGj{c}}}}{d{{ADn{c}}}}}{{AI`{{AAf{cc}}}}}AFh}{{{d{{AGj{c}}}}}{{H`{c}}}AFh}0{AJd}00000{AJfNn}{{{d{h{ADn{c}}}}}{{Nn{cLh}}}AFh}1{{{ADl{c}}c}{{ADl{c}}}{{AHb{}{{Ln{}}}}}}{{{d{h{ADl{c}}}}c}nAJh}{{{ADl{c}}}{{ADl{c}}}{{AJj{}{{Ln{}}}}}}{{ccc}{{AFf{c}}}AFh}{{{d{{AFf{c}}}}}{{ADj{cLh}}}AFh}{{}c{}}{{{d{{AGh{c}}}}c}AdAFh}{{{d{{AFf{c}}}}c}{{AFf{c}}}AFh}{{{d{{ADn{c}}}}{d{{AHn{c}}}}}JhAFh}{{{d{{ADn{c}}}}{d{{ADn{c}}}}}JhAFh}{{{d{{AFf{c}}}}{d{{Nn{cLh}}}}}{{AFf{c}}}AFh}{{{d{{ADl{c}}}}{d{{ADl{c}}}}}{{H`{AF`}}}AJl}{{}{{ADl{c}}}{AHf{AFn{}{{Ln{}}}}}}{{cc}{{Nn{cLh}}}{}}{AHnNn}{{{d{{ADl{c}}}}}{{ADl{c}}}{{AH`{}{{Ln{}}}}{AGn{}{{Ln{}}}}{AFn{}{{Ln{}}}}AJnAHfAJlAFl}}{{{d{{AFf{c}}}}{d{{Nn{cLh}}}}}{{Nn{cLh}}}AFh}`{{{d{{AGh{c}}}}{d{{AGj{c}}}}}{{AI`{{Nn{cLh}}}}}AFh}{{{d{{AGh{c}}}}{d{{AGj{c}}}}}{{AI`{{AAf{cc}}}}}AFh}{c{{ADl{c}}}{}}{ADl}{AGfADj}{AHlADj}{{{d{{AGd{}{{AGb{c}}}}}}c}{{Nn{cLh}}}AFh}{{{d{{AGf{c}}}}c}{{Nn{cLh}}}AFh}0{{{d{{AGh{c}}}}c}{{Nn{cLh}}}AFh}0{{{d{{ADn{c}}}}c}{{Nn{cLh}}}AFh}0{{{d{{AGj{c}}}}c}{{Nn{cLh}}}AFh}0{{{d{{AGf{c}}}}c}{{ADj{cLh}}}AFh}{{{d{h{ADn{c}}}}c}nAFh}>{{{d{{AHn{c}}}}{d{{Nn{cLh}}}}}cAFh}{{{d{{AFf{c}}}}{d{{Nn{cLh}}}}}cAFh}{{{ADl{c}}}{{AAf{cc}}}AK`}{{cc}{{AKb{cLh}}}{}}{{{d{{AGh{c}}}}c}{{AI`{c}}}AFh}{{{d{{ADn{c}}}}c}cAFh}100{{{d{{AFf{c}}}}c}{{H`{c}}}AFh}10{{{d{{AGd{}{{AGb{c}}}}}}c}{{AAf{{AGd{}{{AGb{c}}}}{AGd{}{{AGb{c}}}}}}}AFh}{{{d{{AGf{c}}}}c}{{AAf{{AGf{c}}{AGf{c}}}}}AFh}0{{{d{{AGh{c}}}}c}{{AAf{{AGh{c}}{AGh{c}}}}}AFh}0{{{d{{ADn{c}}}}c}{{AAf{{ADn{c}}{ADn{c}}}}}AFh}0{{{d{{AGj{c}}}}c}{{AAf{{AGj{c}}{AGj{c}}}}}AFh}01{{{d{{AGd{}{{AGb{c}}}}}}{ABf{c}}}{{AGd{}{{AGb{c}}}}}AFh}{{{d{{AGf{c}}}}{ABf{c}}}{{AGf{c}}}AFh}0{{{d{{AGh{c}}}}{ABf{c}}}{{AGh{c}}}AFh}0{{{d{{ADn{c}}}}{ABf{c}}}{{ADn{c}}}AFh}0{{{d{{AGj{c}}}}{ABf{c}}}{{AGj{c}}}AFh}0{{{d{{ADn{c}}}}{Nn{cLh}}}cAFh}{{{d{{AHn{c}}}}{Nn{cLh}}}cAFh}{{{d{{AGj{c}}}}{Nn{cLh}}}cAFh}{{{d{{ADn{c}}}}}cAFh}{AGfADl}{{{ADl{c}}{ADl{c}}}{}{{AH`{}{{Ln{}}}}}}{{{d{h{ADl{c}}}}{ADl{c}}}nAKd}{e{{ADl{c}}}{AFnAJn}{{AKf{}{{Mb{{ADl{c}}}}}}}}{e{{ADl{c}}}{AFnAFlAJn}{{AKf{}{{Mb{{d{{ADl{c}}}}}}}}}}{OhJh}5{{{d{{AFf{c}}}}}{{ADj{cLh}}}AFh}{{{d{{AGd{}{{AGb{c}}}}}}}{{Nn{cLh}}}AFh}{{{d{{AGf{c}}}}}{{Nn{cLh}}}AFh}0{{{d{{AGh{c}}}}}{{Nn{cLh}}}AFh}0{{{d{{ADn{c}}}}}{{Nn{cLh}}}AFh}0{{{d{{AGj{c}}}}}{{Nn{cLh}}}AFh}0{AHlNn}{AGhNn}{ADnNn}{AGjNn}{{{d{{AHl{c}}}}}{{AGf{c}}}AFh}{{{d{{AGj{c}}}}}{{AGh{c}}}AFh}{{{ADl{c}}}cAIb}{{{d{{AGh{c}}}}}{{AGh{Gf}}}AFh}{{{d{{ADn{c}}}}}{{ADn{Gf}}}AFh}{{{d{{AHn{c}}}}}{{AHn{Gf}}}AFh}{{{d{{AGj{c}}}}}{{AGj{Gf}}}AFh}{{{d{{ADl{c}}}}}{{ADl{Gf}}}{AHjAFl}}{{{d{{AGh{c}}}}}{{AGh{AKh}}}AFh}{{{d{{ADn{c}}}}}{{ADn{AKh}}}AFh}{{{d{{AHn{c}}}}}{{AHn{AKh}}}AFh}{{{d{{AGj{c}}}}}{{AGj{AKh}}}AFh}{{{d{{ADl{c}}}}}{{ADl{AKh}}}{AHjAFl}}{{{d{{ADn{c}}}}}{{AHn{c}}}AFh}{dc{}}00000000{{{d{{AGh{c}}}}}{{AGj{c}}}AFh}{{{d{{AGh{c}}}}}cAFh}{{{d{{AGf{c}}}}}{{AHl{c}}}AFh}{{{d{{ADn{c}}}}}{{ADj{cLh}}}AFh}`{{{d{{AFj{c}}}}{d{e}}}{{AFj{c}}}AFh{{ACl{c}}}}{{{d{{AGh{c}}}}{d{e}}}{{AGh{c}}}AFh{{ACl{c}}}}{{{d{{ADn{c}}}}{d{e}}}{{ADn{c}}}AFh{{ACl{c}}}}{{{d{{AGj{c}}}}{d{e}}}{{AGj{c}}}AFh{{ACl{c}}}}{{{d{h{ADn{c}}}}{ADj{cLh}}}{{ADn{c}}}AFh}{{{d{{ADl{c}}}}}{{H`{{ADl{e}}}}}{AHjAFl}AHj}{{}{{G`{c}}}{}}00000000{c{{G`{e}}}{}{}}00000000{{}{{G`{c}}}{}}00000000{{}{{G`{c{Gl{c}}}}}{}}00000000{{}{{ADl{c}}}{AHf{AFn{}{{Ln{}}}}}}{dGn}00000000{ce{}{}}00000000{{}c{}}00000000{d{{H`{{d{c}}}}}{}}00000000`{GfAFh}{{cc}{{ADj{cLh}}}{}}{AHnADj}{{{d{{ADn{c}}}}c}{{H`{{Nn{cLh}}}}}AFh}{{{d{{ADn{c}}}}c}{{H`{c}}}AFh}{{}c{}}00000000{AJ`}{{{d{{AGd{}{{AGb{c}}}}}}c}cAFh}{{{d{{AGf{c}}}}c}cAFh}0{{{d{{AGh{c}}}}c}cAFh}0{{{d{{ADn{c}}}}c}cAFh}0{{{d{{AGj{c}}}}c}cAFh}0{AKj}{AKl}{AKn}{{{d{{AGh{c}}}}}cAFh}{{{d{{AGj{c}}}}}cAFh}10{AGfADl}{AHlADl};::9988776543232{{}{{ADl{c}}}AJn}````{eg{}{{b{c}}}{}}{ce{}{}}{{}c{}}{d{{d{f}}}}{{{d{h}}}{{d{hf}}}}{d{{d{c}}}{}}{{{d{h}}}{{d{hc}}}{}}{{{j{c}}}e{}{}}{AGfNn}7{Bf{{d{c}}}{}}{Bf{{d{hc}}}{}}5{Bfn}{AHlOh}{cc{}}{AHlNn}1{ce{}{}}{{}Bf}{{}c{}}0{{{Ef{c}}}{{Ef{f}}}{}}{{{Eh{c}}}{{Eh{f}}}{}}{{{Ej{c}}}{{Ej{f}}}{}}=33{{}c{}}{{}c{}}{OhJh}{{{d{h{AIh{c}}}}}{{H`{{Nn{cLh}}}}}AFh}{AGfADj}{AHlADj}{AGfADl}40={{}{{G`{c}}}{}}{c{{G`{e}}}{}{}}{{}{{G`{c}}}{}}{{}{{G`{c{Gl{c}}}}}{}}{dGn}{ce{}{}}{{}c{}}{d{{H`{{d{c}}}}}{}}{{}c{}}9{AHlADl}`````{eg{}{{b{c}}}{}}0000{ce{}{}}000055555{d{{d{f}}}}0000{{{d{h}}}{{d{hf}}}}0000{{{d{h{AI`{c}}}}}{{d{h{En{c}}}}}{}}{{{d{h{AI`{c}}}}}{}{}}{{{d{hAL`}}}El}2{{{d{h{ALb{c}}}}}{{d{h{En{c}}}}}{}}{{{d{hAL`}}}{{d{hGb}}}}{{{d{{AI`{c}}}}}{}{}}{{{d{AL`}}}El}{{{d{{AI`{c}}}}}{{d{{En{c}}}}}{}}{{{d{AL`}}}{{d{Gb}}}}{{{d{AL`}}}{{d{ALd}}}}2{{{d{{ALb{c}}}}}{{d{{En{c}}}}}{}}23{d{{d{c}}}{}}00030{{{d{h}}}{{d{hc}}}{}}<00080{{{j{c}}}e{}{}}0000{{{d{{AI`{c}}}}}Bf{}}{{{d{AL`}}}Bf}{{{d{h{AI`{c}}}}}n{}}{{{d{hAL`}}}n}{{{d{{AI`{c}}}}}{{AI`{c}}}Aj}{{{d{{ALb{c}}}}}{{ALb{c}}}Aj}{{{d{AL`}}}AL`}{{{d{{ALf{c}}}}}{{ALf{c}}}Aj}{{{d{h{AI`{c}}}}{d{{AI`{c}}}}}nAj}{{{d{hAL`}}{d{AL`}}}n}{{d{d{hc}}}n{}}000{{dEl}n}000{{{d{{AI`{c}}}}{d{{AI`{c}}}}}AF`ALh}{{{d{AL`}}{d{AL`}}}AF`}{{{d{{ALf{c}}}}{d{{ALf{c}}}}}AF`ALh}{{d{d{c}}}AF`{}}00{ce{}{}}0000{{}{{AI`{c}}}{}}{{}AL`}{Bf{{d{c}}}{}}{{{d{{AI`{c}}}}}d{}}11{{{d{AL`}}}{{d{Gb}}}}22{Bf{{d{hc}}}{}}{{{d{h{AI`{c}}}}}{{d{h}}}{}}11{{{d{hAL`}}}{{d{hGb}}}}22{d{{d{c}}}{}}0000{{{d{h{AI`{c}}}}e}{{ALj{c}}}{}{{ALl{Bf}}}}{{{d{h{AI`{c}}}}}n{}}{Bfn}0{{{d{h{ALb{c}}}}}n{}}1{{{d{h{ALj{c}}}}}n{}}22{{{ALf{c}}}c{}}{dc{{AM`{ALn}}}}0{{{d{{AI`{c}}}}{d{{AI`{c}}}}}JhJj}{{{d{{AI`{c}}}}{d{{En{c}}}}}JhJj}{{{d{AL`}}{d{Gb}}}Jh}{{{d{AL`}}{d{AL`}}}Jh}{{{d{{ALf{c}}}}{d{{ALf{c}}}}}JhJj}{{d{d{c}}}Jh{}}00000000{{{d{h{AI`{c}}}}e}n{}{{Mf{}{{Mb{c}}}}}}{{{d{h{AI`{El}}}}}{{G`{nAMb}}}}{{{d{{AI`{c}}}}{d{hDn}}}{{G`{nJn}}}Eb}{{{d{{ALb{c}}}}{d{hDn}}}{{G`{nJn}}}Eb}{{{d{AL`}}{d{hDn}}}{{G`{nJn}}}}0{{{d{{ALf{c}}}}{d{hDn}}}{{G`{nJn}}}{}}0{cc{}}{{{Mj{c}}}{{AI`{c}}}{}}11{{{d{Gb}}}{{G`{AL`{ALf{{d{Gb}}}}}}}}2222222{{{d{{Mj{El}}}}}{{G`{AL`AMd}}}}{e{{AI`{c}}}{}{{Mf{}{{Mb{c}}}}}}{ce{}{}}0000{{{d{Gb}}}{{G`{AL`}}}}{{{d{{AI`{c}}}}{d{{AI`{c}}}}}JhAJl}{{{d{AL`}}{d{AL`}}}Jh}{{{d{AL`}}{d{Gb}}}Jh}210{{{d{{AI`{c}}}}{d{he}}}nAB`ABb}{{{d{AL`}}{d{hc}}}nABb}{{}Bf}0000{{{d{h{AI`{c}}}}Bfc}n{}}{{}c{}}000000000{{{Ef{c}}}{{Ef{f}}}{}}0000{{{Eh{c}}}{{Eh{f}}}{}}0000{{{Ej{c}}}{{Ej{f}}}{}}0000{{{j{c}}}e{}{}}00004444444444{{{AI`{c}}}{{G`{{Mj{c}}{AI`{c}}}}}{}}{{{AI`{c}}}{{Mj{c}}}{}}{{{d{{AI`{c}}}}}{}{}}{{{AI`{c}}}{{ALb{c}}}{}}{{{d{h{AI`{c}}}}}{}{}}{{}c{}}0{{}c{}}0000{{{d{{AI`{c}}}}}Jh{}}{{{d{AL`}}}Jh}10{{{d{{AI`{c}}}}{d{{AI`{c}}}}}JhAJl}{{{d{AL`}}{d{AL`}}}Jh}{{{d{AL`}}{d{Gb}}}Jh}{{{d{{AI`{c}}}}}Bf{}}{{{d{AL`}}}Bf}432{{}{{AAf{ce}}}{}{}}{{}{{AAf{cegikmoAaAcAeAg}}}{}{}{}{}{}{}{}{}{}{}{}}{{}{{AAf{cegi}}}{}{}{}{}}{{}{{AAf{ceg}}}{}{}{}}{{}{{AAf{cegik}}}{}{}{}{}{}}{{}{{AAf{cegikmoAaAcAeAgAi}}}{}{}{}{}{}{}{}{}{}{}{}{}}{{}{{AAf{cegikmoAaAcAe}}}{}{}{}{}{}{}{}{}{}{}}{{}{{AAf{cegikm}}}{}{}{}{}{}{}}{{}n}{{}{{AAf{c}}}{}}{{}{{AAf{cegikmoAaAc}}}{}{}{}{}{}{}{}{}{}}{{}{{AAf{cegikmo}}}{}{}{}{}{}{}{}}{{}{{AAf{cegikmoAa}}}{}{}{}{}{}{}{}{}}153084:726<;9{{}{{AI`{c}}}{}}{{}AL`}{c{{ALf{c}}}{}}21{{{d{h{ALb{c}}}}}H`{}}{{{d{h{ALj{c}}}}}H`{}}10{{}c{}}0{{{d{{AI`{c}}}}{d{{AI`{c}}}}}{{H`{AF`}}}AJl}{{{d{AL`}}{d{AL`}}}{{H`{AF`}}}}{{{d{AL`}}{d{Gb}}}{{H`{AF`}}}}{{{d{{ALf{c}}}}{d{{ALf{c}}}}}{{H`{AF`}}}AJl}{{{d{h{AI`{c}}}}}{{H`{c}}}{}}{{{d{hAL`}}}{{H`{ALn}}}}{{{d{h{AI`{c}}}}Bf}{{H`{c}}}{}}{{{d{h{AI`{c}}}}c}n{}}{{{d{hAL`}}ALn}n}{{{d{hAL`}}{d{Gb}}}n}2{{{d{{AI`{c}}}}}Bf{}}{{{d{AL`}}}Bf}{{{d{h{AI`{c}}}}Bf}c{}}{{{d{hAL`}}Bf}ALn}{{{d{h{AI`{c}}}}e}n{}{{Jf{{d{hc}}}{{Ln{Jh}}}}}}{{{d{h{AI`{c}}}}Bf}n{}}{{{d{hAL`}}Bf}n}{{{ALf{c}}}ALf{}}{{{d{{ALb{c}}}}}{{AAf{Bf{H`{Bf}}}}}{}}{{{d{{ALj{c}}}}}{{AAf{Bf{H`{Bf}}}}}{}}=7{{{d{h{AI`{c}}}}}{{AI`{c}}}{}}{dc{}}000{dAFb}0{dDj}087{{}{{G`{c}}}{}}0000{{{d{h{AI`{c}}}}{d{{En{c}}}}}{{G`{nALf}}}AFl}{c{{G`{e}}}{}{}}{{{d{{En{c}}}}}{{G`{{AI`{c}}}}}Aj}11{{{d{Gb}}}{{G`{AL`}}}}2{AMf{{G`{AL`}}}}3{{{d{h{AI`{c}}}}Bfc}{{G`{n{ALf{c}}}}}{}}{{}{{G`{c}}}{}}0000{{}{{G`{c{Gl{c}}}}}{}}0000{{{d{h{AI`{c}}}}c}{{G`{n{ALf{c}}}}}{}}{{{d{hAL`}}ALn}{{G`{n{ALf{ALn}}}}}}{{{d{hAL`}}{d{Gb}}}{{G`{n{ALf{{d{Gb}}}}}}}}{dGn}0000{ce{}{}}0000{{}c{}}0000{d{{H`{{d{c}}}}}{}}0000{{}c{}}0000{{{d{h{AI`{El}}}}{d{{En{El}}}}}{{G`{BfAMb}}}}{{{d{h}}{d{AMh}}}{{G`{nAMb}}}}{{{d{h}}{d{El}}}{{G`{nAMb}}}}{{{d{h}}{d{{En{ABl}}}}}{{G`{nAMb}}}}{{{d{h}}{d{{En{Gf}}}}}{{G`{nAMb}}}}{{{d{h}}{d{{En{El}}}}}{{G`{nAMb}}}}{{{d{h}}{d{{En{AMj}}}}}{{G`{nAMb}}}}{{{d{h}}{d{{En{AMl}}}}}{{G`{nAMb}}}}{{{d{h}}{d{AKh}}}{{G`{nAMb}}}}{{{d{h}}{d{Gf}}}{{G`{nAMb}}}}{{{d{h}}{d{{En{AMn}}}}}{{G`{nAMb}}}}{{{d{h}}{d{AMn}}}{{G`{nAMb}}}}{{{d{h}}{d{AMj}}}{{G`{nAMb}}}}{{{d{h}}{d{{En{AN`}}}}}{{G`{nAMb}}}}{{{d{h}}{d{{En{ANb}}}}}{{G`{nAMb}}}}{{{d{h}}{d{{En{AKh}}}}}{{G`{nAMb}}}}{{{d{h}}{d{{En{ANd}}}}}{{G`{nAMb}}}}{{{d{h}}{d{ANd}}}{{G`{nAMb}}}}{{{d{h}}{d{ABl}}}{{G`{nAMb}}}}{{{d{h}}{d{{En{AMh}}}}}{{G`{nAMb}}}}{{{d{h}}{d{ANb}}}{{G`{nAMb}}}}{{{d{h}}{d{AN`}}}{{G`{nAMb}}}}{{{d{h}}{d{Ad}}}{{G`{nAMb}}}}{{{d{h}}{d{AMl}}}{{G`{nAMb}}}}{{{d{h}}{d{{En{Ad}}}}}{{G`{nAMb}}}}7=>8{{{d{h}}{d{{En{Gf}}}}}{{G`{nAMb}}}}{{{d{h}}{d{El}}}{{G`{nAMb}}}}{{{d{h}}{d{{En{ABl}}}}}{{G`{nAMb}}}}8=>3<{{{d{h}}{d{{En{AMl}}}}}{{G`{nAMb}}}}567{{{d{h}}{d{{En{El}}}}}{{G`{nAMb}}}}9{{{d{h}}{d{AMh}}}{{G`{nAMb}}}}<{{{d{h}}{d{AMj}}}{{G`{nAMb}}}}{{{d{h}}{d{AKh}}}{{G`{nAMb}}}}{{{d{h}}{d{Gf}}}{{G`{nAMb}}}}{{{d{h}}{d{{En{AMj}}}}}{{G`{nAMb}}}}{{{d{hAL`}}ALn}{{G`{nJn}}}}{{{d{h}}ANfGf}{{G`{nAMb}}}}{{{d{h}}ANfAKh}{{G`{nAMb}}}}{{{d{h}}ANfAMn}{{G`{nAMb}}}}{{{d{h}}ANfABl}{{G`{nAMb}}}}{{{d{h}}ANfANd}{{G`{nAMb}}}}{{{d{h}}ANfAMj}{{G`{nAMb}}}}{{{d{h}}ANfAMh}{{G`{nAMb}}}}{{{d{hAL`}}{d{Gb}}}{{G`{nJn}}}}{{{d{h}}ANfANb}{{G`{nAMb}}}}{{{d{h}}ANfAMl}{{G`{nAMb}}}}{{{d{h}}ANfAd}{{G`{nAMb}}}}{{{d{h}}ANfAN`}{{G`{nAMb}}}}{{{d{h}}ANfEl}{{G`{nAMb}}}}{{}AL`}``{eg{}{{b{c}}}{}}{ce{}{}}{{}c{}}{d{{d{f}}}}{{{d{h}}}{{d{hf}}}}{d{{d{c}}}{}}{{{d{h}}}{{d{hc}}}{}}{{{j{c}}}e{}{}}6{AGhNn}0{Bf{{d{c}}}{}}{Bf{{d{hc}}}{}}5{Bfn}{cc{}}40{ce{}{}}{{}Bf}{{}c{}}0{{{Ef{c}}}{{Ef{f}}}{}}{{{Eh{c}}}{{Eh{f}}}{}}{{{Ej{c}}}{{Ej{f}}}{}};33{{}c{}}{{}c{}}{{{d{h{AIj{c}}}}}{{H`{{Nn{cLh}}}}}AFh}{{{d{{AIj{c}}}}}{{AAf{Bf{H`{Bf}}}}}AFh}>{{}{{G`{c}}}{}}{c{{G`{e}}}{}{}}{{}{{G`{c}}}{}}{{}{{G`{c{Gl{c}}}}}{}}{dGn}{ce{}{}}{{}c{}}{d{{H`{{d{c}}}}}{}}{{}c{}}`````````````````````````{{{AKb{ce}}}{{AKb{ce}}}ANh{}}{{{ANj{ce}}}{{ANj{ce}}}ANh{}}{{{ADj{ce}}}{{ADj{ce}}}ANh{}}{{{ANl{ce}}}{{ANl{ce}}}ANh{}}{eg{}{{b{c}}}{}}0000000000000000000000{{{ANn{ce}}{ANn{ce}}}{}AFn{}}{{{ANn{ce}}{d{{ANn{ce}}}}}{}{AFnAFl}{}}{{{Nn{ce}}{ADj{ce}}}{}AFn{}}{{{Nn{ce}}{AKb{ce}}}{}AFn{}}{{{AO`{ce}}{ANj{ce}}}{}AFn{}}{{{AO`{ce}}{ANl{ce}}}{}AFn{}}{{{AOb{ceg}}{AOb{ceg}}}{}AFn{}{}}{{{AOd{ce}}{AOd{ce}}}{{AOd{ce}}}{{AFn{}{{Ln{}}}}}{}}{{{AKb{ce}}{d{{AKb{ce}}}}}{{AKb{ce}}}{AFl{AFn{}{{Ln{}}}}}{}}{{{AKb{ce}}{AKb{ce}}}{}AFn{}}{{{ANj{ce}}{d{{ANj{ce}}}}}{{ANj{ce}}}{AFl{AFn{}{{Ln{}}}}}{}}{{{ANj{ce}}{ANj{ce}}}{}AFn{}}{{{AOf{ceg}}{AOf{cgi}}}{}AFn{}{}{}}{{{AOh{ceg}}{AOh{cgi}}}{}AFn{}{}{}}{{{ADj{ce}}{d{{ADj{ce}}}}}{}{AFnAFl}{}}{{{ADj{ce}}{ADj{ce}}}{}AFn{}}{{{ANl{ce}}{d{{ANl{ce}}}}}{}{AFnAFl}{}}{{{ANl{ce}}{ANl{ce}}}{}AFn{}}{{{d{h{ANn{ce}}}}{ANn{ce}}}nAG`{}}{{{d{h{Nn{ce}}}}{AKb{ce}}}nAG`{}}{{{d{h{Nn{ce}}}}{ADj{ce}}}n{AFl{AFn{}{{Ln{}}}}}{}}{{{d{h{AO`{ce}}}}{ANj{ce}}}nAG`{}}{{{d{h{AO`{ce}}}}{ANl{ce}}}n{AFl{AFn{}{{Ln{}}}}}{}}{{{d{h{AOd{ce}}}}{AOd{ce}}}nAG`{}}{{{d{h{AKb{ce}}}}{AKb{ce}}}nAG`{}}{{{d{h{ANj{ce}}}}{ANj{ce}}}nAG`{}}{{{d{h{AOf{ceg}}}}{AOf{cgg}}}nAG`{}{}}{{{d{h{AOh{ceg}}}}{AOh{cgg}}}nAG`{}{}}{{{d{h{ADj{ce}}}}{ADj{ce}}}n{AFl{AFn{}{{Ln{}}}}}{}}{{{d{h{ANl{ce}}}}{ANl{ce}}}n{AFl{AFn{}{{Ln{}}}}}{}}{{{Nn{ce}}{d{{AKb{ce}}}}}{{Nn{ce}}}{AFl{AFn{}{{Ln{}}}}}{}}{{{AO`{ce}}{ANj{ce}}}{{AO`{ce}}}{AFl{AFn{}{{Ln{}}}}}{}}{AOjJh}{AOlJh}{{AOjAOj}AOj}{{AOlAOl}AOl}{AOn}{{{ADj{ce}}}{{ADl{c}}}{AIbAFl}{}}{{{ADj{ce}}{ADj{ce}}}{{ADl{c}}}{{AH`{}{{Ln{}}}}AIbAFl{AHb{}{{Ln{}}}}{AFn{}{{Ln{}}}}}{}}{{{ANl{ce}}{ANl{ce}}}{{ADl{c}}}{AIbAK`}{}}76{{}cAHh}{{}{{Nn{ce}}}{}{}}{{}{{AO`{ce}}}{}{}}{{}c{}}0{{}{{ADj{ce}}}{}{}}{{}{{ANl{ce}}}{}{}}55{{{d{{Lj{ceg}}}}{d{{Lj{ceg}}}}}JhAHh{}{}}{{{d{{B@`{ceg}}}}{d{{B@`{ceg}}}}}JhAHh{}{}}{{{d{{ANn{ce}}}}{d{{ANn{ce}}}}{d{c}}}JhAHh{}}{{{d{{Nn{ce}}}}{d{{Nn{ce}}}}{d{{Nn{ce}}}}}JhAHh{}}{{{d{{AO`{ce}}}}{d{{AO`{ce}}}}{d{{AO`{ce}}}}}JhAHh{}}{{{d{{AOn{ceg}}}}{d{{AOn{ceg}}}}{d{c}}}Jh{AFl{AJj{}{{Ln{}}}}AHh}{}{}}{{{d{{B@b{ceg}}}}{d{{B@b{ceg}}}}{d{c}}}Jh{AFl{AJj{}{{Ln{}}}}AHh}{}{}}{{{d{{ADj{ce}}}}{d{{ADj{ce}}}}{d{{ADj{ce}}}}}JhAHh{}}{{{d{{ANl{ce}}}}{d{{ANl{ce}}}}{d{{ANl{ce}}}}}JhAHh{}}{{{d{{Lj{ceg}}}}{d{{Lj{ceg}}}}{d{c}}}JhAHh{}{}}0{{{d{{B@`{ceg}}}}{d{{B@`{ceg}}}}{d{c}}}JhAHh{}{}}0``{{{d{{AEb{ce}}}}}c{AFl{AHb{}{{Ln{}}}}{AH`{}{{Ln{}}}}}{}}{{{d{{B@d{ce}}}}}c{AFl{AHb{}{{Ln{}}}}}{}}{{{AKb{ce}}}{}{AHbAFl}{}}{{{ANl{ce}}{ADl{c}}}{{B@b{ceg}}}AK`{}{}}{{{ADl{c}}}{{B@b{ceg}}}AK`{}{}}00{ce{}{}}0000000000000000000000{{}c{}}0000000000000000000000{d{{d{f}}}}0000000000000000000000{{{d{h}}}{{d{hf}}}}0000000000000000000000{d{{d{c}}}{}}0000000000000000000000{{{d{h}}}{{d{hc}}}{}}0000000000000000000000{AOd}{{cccccc}{{B@f{ce}}}AFl{}}{{JhJh}AOj}{{JhJhJh}AOl}{{{j{c}}}e{}{}}0000000000000000000000{{{d{{AEb{ce}}}}}{{AEb{ge}}}{AHjAFl}{}AHj}{{{d{{B@f{ce}}}}}{{B@f{ge}}}{AHjAFl}{}AHj}{{{ANn{ce}}}{{ANn{ge}}}{AHjAj}{}AHj}{{{Nn{ce}}}{{Nn{ge}}}{AHjAFl}{}AHj}{{{AO`{ce}}}{{AO`{ge}}}{AHjAFl}{}AHj}{{{d{{B@d{ce}}}}}{{B@d{ge}}}{AHjAFl}{}AHj}{{{AOb{ceg}}}{{AOb{ieg}}}AHj{}{}AHj}{{{AKb{ce}}}{{AKb{ge}}}{AHjAFl}{}AHj}{{{ANj{ce}}}{{ANj{ge}}}{AHjAFl}{}AHj}{{{AOf{ceg}}}{{AOf{ieg}}}{AHjAFl}{}{}AHj}{{{AOh{ceg}}}{{AOh{ieg}}}{AHjAFl}{}{}AHj}{{{ADj{ce}}}{{ADj{ge}}}{AHjAFl}{}AHj}{{{ANl{ce}}}{{ANl{ge}}}{AHjAFl}{}AHj}{{{d{{Lj{ceg}}}}}{{Lj{ieg}}}{AHjAFl}{}{}AHj}{{{d{{B@`{ceg}}}}}{{B@`{ieg}}}{AHjAFl}{}{}AHj}{{{d{{AEb{ce}}}}}{{AEb{cg}}}AFl{}{}}{{{d{{B@f{ce}}}}}{{B@f{cg}}}AFl{}{}}{{{ANn{ce}}}{{ANn{cg}}}Aj{}{}}{{{Nn{ce}}}{{Nn{cg}}}AFl{}{}}{{{AO`{ce}}}{{AO`{cg}}}AFl{}{}}{{{d{{B@d{ce}}}}}{{B@d{cg}}}AFl{}{}}{{{d{{B@h{ceg}}}}}{{B@h{cik}}}AFl{}{}{}{}}{{{d{{AOn{ceg}}}}}{{AOn{cik}}}AFl{}{}{}{}}{{{d{{B@b{ceg}}}}}{{B@b{cik}}}AFl{}{}{}{}}{{{AKb{ce}}}{{AKb{cg}}}AFl{}{}}{{{ANj{ce}}}{{ANj{cg}}}AFl{}{}}{{{ADj{ce}}}{{ADj{cg}}}AFl{}{}}{{{ANl{ce}}}{{ANl{cg}}}AFl{}{}}{{{Nn{ce}}}{{Nn{ce}}}{B@jAFl}{}}{{{Nn{ce}}}{{Nn{ce}}}B@j{}}{{{AO`{ce}}}{{AO`{ce}}}B@j{}}{{{AO`{ce}}}{{AO`{ce}}}{B@jAFl}{}}{{{AKb{ce}}}{{AKb{ce}}}{B@jAFl}{}}{{{AKb{ce}}}{{AKb{ce}}}B@j{}}{{{ANj{ce}}}{{ANj{ce}}}{B@jAFl}{}}{{{ANj{ce}}}{{ANj{ce}}}B@j{}}{{{ADj{ce}}}{{ADj{ce}}}B@j{}}{{{ADj{ce}}}{{ADj{ce}}}{B@jAFl}{}}{{{ANl{ce}}}{{ANl{ce}}}B@j{}}{{{ANl{ce}}}{{ANl{ce}}}{B@jAFl}{}}{{{d{{AEb{ce}}}}}{{Nn{ce}}}{AFlB@l{AFn{}{{Ln{}}}}{AId{}{{Ln{}}}}}{}}{{{d{{B@f{ce}}}}}{{AO`{ce}}}{AFlB@l{AFn{}{{Ln{}}}}{AId{}{{Ln{}}}}}{}}{{{d{{B@d{ce}}}}}{{Nn{ce}}}{AFlB@l{AFn{}{{Ln{}}}}{AId{}{{Ln{}}}}}{}}{{{Nn{ce}}{Nn{ce}}{Nn{ce}}}{{Nn{ce}}}{AFlAJl}{}}{{{AO`{ce}}{AO`{ce}}{AO`{ce}}}{{AO`{ce}}}{AFlAJl}{}}{{{AOb{ceg}}{AOb{ceg}}{AOb{ceg}}}{{AOb{ceg}}}{AFlAJl}{}{}}{{{AKb{ce}}{AKb{ce}}{AKb{ce}}}{{AKb{ce}}}{AFlAJl}{}}{{{ANj{ce}}{ANj{ce}}{ANj{ce}}}{{ANj{ce}}}{AFlAJl}{}}{{{ADj{ce}}{ADj{ce}}{ADj{ce}}}{{ADj{ce}}}{AFlAJl}{}}{{{ANl{ce}}{ANl{ce}}{ANl{ce}}}{{ANl{ce}}}{AFlAJl}{}}{{{ADj{ce}}cc}{{ADj{ce}}}AK`{}}{{{ANl{ce}}cc}{{ANl{ce}}}AK`{}}{{{d{{AEb{ce}}}}}{{AEb{ce}}}Aj{}}{{{d{{B@f{ce}}}}}{{B@f{ce}}}Aj{}}{{{d{{B@n{ce}}}}}{{B@n{ce}}}Aj{}}{{{d{{ANn{ce}}}}}{{ANn{ce}}}Aj{}}{{{d{{Nn{ce}}}}}{{Nn{ce}}}Aj{}}{{{d{{AO`{ce}}}}}{{AO`{ce}}}Aj{}}{{{d{{B@d{ce}}}}}{{B@d{ce}}}Aj{}}{{{d{{B@h{ceg}}}}}{{B@h{ceg}}}Aj{}{}}{{{d{{AOn{ceg}}}}}{{AOn{ceg}}}Aj{}{}}{{{d{{B@b{ceg}}}}}{{B@b{ceg}}}Aj{}{}}{{{d{{AOb{ceg}}}}}{{AOb{ceg}}}Aj{}{}}{{{d{{AOd{ce}}}}}{{AOd{ce}}}Aj{}}{{{d{{AKb{ce}}}}}{{AKb{ce}}}Aj{}}{{{d{{ANj{ce}}}}}{{ANj{ce}}}Aj{}}{{{d{{AOf{ceg}}}}}{{AOf{ceg}}}Aj{}{}}{{{d{{AOh{ceg}}}}}{{AOh{ceg}}}Aj{}{}}{{{d{{ADj{ce}}}}}{{ADj{ce}}}Aj{}}{{{d{{ANl{ce}}}}}{{ANl{ce}}}Aj{}}{{{d{{Lj{ceg}}}}}{{Lj{ceg}}}Aj{}{}}{{{d{{B@`{ceg}}}}}{{B@`{ceg}}}Aj{}{}}{{{d{AOj}}}AOj}{{{d{AOl}}}AOl}{{{d{Lh}}}Lh}{{d{d{hc}}}n{}}0000000000000000000000{{dEl}n}0000000000000000000000{{{d{{ANn{ce}}}}{d{{ANn{ce}}}}}AF`ALh{}}{{{d{{AOb{ceg}}}}{d{{AOb{ceg}}}}}AF`ALh{}{}}{{{d{Lh}}{d{Lh}}}AF`}{{d{d{c}}}AF`{}}00{{{ADj{ce}}{ADj{ce}}}{{ADj{ce}}}{{AId{}{{Ln{}}}}}{}}{{{ANl{ce}}{ANl{ce}}}{{ANl{ce}}}{{AId{}{{Ln{}}}}AFl}{}}{{{ADj{ce}}{ADj{ce}}}{{ADj{ce}}}{{AHb{}{{Ln{}}}}}{}}{{{ANl{ce}}{ANl{ce}}}{{ANl{ce}}}{{AHb{}{{Ln{}}}}AFl}{}}{ce{}{}}0000000000000000000000{{{d{{AEb{ce}}}}{Nn{ce}}}JhAJl{}}{{{d{{B@f{ce}}}}{AO`{ce}}}JhAJl{}}{{{d{{B@d{ce}}}}{Nn{ce}}}Jh{AFlAJl{AFn{}{{Ln{}}}}}{}}{{{AKb{ce}}{AKb{ce}}}JhAJl{}}{{{ANj{ce}}{ANj{ce}}}JhAJl{}}{{{d{{AEb{ce}}}}{d{{AEb{ce}}}}}JhAJl{}}{{{d{{B@f{ce}}}}{d{{B@f{ce}}}}}JhAJl{}}65{{{d{{B@d{ce}}}}{d{{B@d{ce}}}}}Jh{AFlBA`AJl{AFn{}{{Ln{}}}}}{}}{AIbAIb}{{{ADj{ce}}{ADj{ce}}}c{{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}}{{{ANl{ce}}{ANl{ce}}}{{ANl{ce}}}{{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}AFl}{}}{{{d{{B@h{ceg}}}}}{{AAf{{ANl{ce}}{B@b{ceg}}}}}{AK`AHh}{}{}}`{{}{{AEb{ce}}}AEn{}}{{}{{B@f{ce}}}AEn{}}{{}{{ANn{ce}}}AEn{}}{{}{{Nn{ce}}}AEn{}}{{}{{AO`{ce}}}AEn{}}{{}{{B@d{ce}}}AEn{}}{{}{{AOb{ceg}}}AEn{}{}}{{}{{AOd{ce}}}AEn{}}{{}{{AKb{ce}}}AEn{}}{{}{{ANj{ce}}}AEn{}}{{}{{AOf{ceg}}}BA`{}{}}{{}{{AOh{ceg}}}BA`{}{}}{{}{{ADj{ce}}}AEn{}}{{}{{ANl{ce}}}AEn{}}{{}{{Lj{ceg}}}{BA`B@l}{}{}}{{}{{B@`{ceg}}}{BA`B@l}{}{}}{{}Lh}{AIbAIb}{{{d{{B@f{ce}}}}}c{AFl{AH`{}{{Ln{}}}}}{}}{ANj}{Bf{{d{c}}}{}}0000000000000000000000{Bf{{d{hc}}}{}}0000000000000000000000{{{d{{Lj{ceg}}}}}c{AFl{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AId{}{{Ln{}}}}JjBA`B@l}{}{}}{{{d{{B@`{ceg}}}}}c{{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AId{}{{Ln{}}}}AFl{AJj{}{{Ln{}}}}{AFn{}{{Ln{}}}}AJlB@lBA`}{}{}}{{{Nn{ce}}{Nn{ce}}}c{{AK`{}{{Ln{}}}}AH`}{}}{{{AO`{ce}}{AO`{ce}}}c{{AK`{}{{Ln{}}}}AH`}{}}{{{AEb{ce}}{AOb{cge}}}{}{AFlAId}{}{}}{{{AEb{ce}}c}{}{AFlAId}{}}{{{B@f{ce}}{AOb{cge}}}{}{AFlAId}{}{}}{{{B@f{ce}}c}{}{AFlAId}{}}{{{ANn{ce}}{AOb{cge}}}{}AId{}{}}{{{ANn{ce}}c}{}AId{}}{{{ANn{ce}}{ANn{cg}}}{}AId{}{}}{{{Nn{ce}}{AOb{cge}}}{}{AFlAId}{}{}}{{{Nn{ce}}c}{}{AFlAId}{}}{{{AO`{ce}}{AOb{cge}}}{}{AFlAId}{}{}}{{{AO`{ce}}c}{}{AFlAId}{}}{{{B@d{ce}}{AOb{cge}}}{}{AFlAId}{}{}}{{{B@d{ce}}c}{}{AFlAId}{}}{{{AOd{ce}}c}{}{AFlAId}{}}{{{AOd{ce}}{AOb{cge}}}{}{AFlAId}{}{}}{{{AKb{ce}}{AOb{cge}}}{}{AFlAId}{}{}}{{{AKb{ce}}c}{}{AFlAId}{}}{{{ANj{ce}}c}{}{AFlAId}{}}{{{ANj{ce}}{AOb{cge}}}{}{AFlAId}{}{}}{{{ADj{ce}}{AOb{cge}}}{}{AFlAId}{}{}}{{{ADj{ce}}c}{}{AFlAId}{}}{{{ANl{ce}}c}{}{AFlAId}{}}{{{ANl{ce}}{AOb{cge}}}{}{AFlAId}{}{}}{{{d{h{AEb{ce}}}}c}n{AFlAIf}{}}{{{d{h{AEb{ce}}}}{AOb{cee}}}n{AFlAIf}{}}{{{d{h{B@f{ce}}}}{AOb{cee}}}n{AFlAIf}{}}{{{d{h{B@f{ce}}}}c}n{AFlAIf}{}}{{{d{h{ANn{ce}}}}c}n{AFl{AId{}{{Ln{}}}}}{}}{{{d{h{Nn{ce}}}}c}n{AFl{AId{}{{Ln{}}}}}{}}{{{d{h{Nn{ce}}}}{AOb{cee}}}n{AFlAIf}{}}{{{d{h{AO`{ce}}}}{AOb{cee}}}n{AFlAIf}{}}{{{d{h{AO`{ce}}}}c}n{AFlAIf}{}}{{{d{h{B@d{ce}}}}{AOb{cee}}}n{AFlAIf}{}}{{{d{h{B@d{ce}}}}c}n{AFlAIf}{}}{{{d{h{AOd{ce}}}}c}n{AFlAIf}{}}{{{d{h{AOd{ce}}}}{AOb{cee}}}n{AFlAIf}{}}{{{d{h{AKb{ce}}}}c}n{AFlAIf}{}}{{{d{h{AKb{ce}}}}{AOb{cee}}}n{AFlAIf}{}}{{{d{h{ANj{ce}}}}{AOb{cee}}}n{AFlAIf}{}}{{{d{h{ANj{ce}}}}c}n{AFlAIf}{}}{{{d{h{ADj{ce}}}}{AOb{cee}}}n{AFlAIf}{}}{{{d{h{ADj{ce}}}}c}n{AFl{AId{}{{Ln{}}}}}{}}{{{d{h{ANl{ce}}}}{AOb{cee}}}n{AFlAIf}{}}{{{d{h{ANl{ce}}}}c}n{AFl{AId{}{{Ln{}}}}}{}}{{{d{{Nn{ce}}}}{d{{AKb{ce}}}}}{{Nn{ce}}}BAb{}}{{{d{{AO`{ce}}}}{d{{ANj{ce}}}}}{{AO`{ce}}}BAb{}}{{{ADj{ce}}{ADj{ce}}}c{{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}}{{{ANl{ce}}{ANl{ce}}}c{{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}}{d{{d{c}}}{}}0000000000000000000000{Bfn}0000000000000000000000{{{d{{AEb{ce}}}}{d{{AEb{ce}}}}}JhJj{}}{{{d{{B@f{ce}}}}{d{{B@f{ce}}}}}JhJj{}}{{{d{{B@n{ce}}}}{d{{B@n{ce}}}}}JhJj{}}{{{d{{ANn{ce}}}}{d{{ANn{ce}}}}}JhJj{}}{{{d{{Nn{ce}}}}{d{{Nn{ce}}}}}JhJj{}}{{{d{{AO`{ce}}}}{d{{AO`{ce}}}}}JhJj{}}{{{d{{B@d{ce}}}}{d{{B@d{ce}}}}}JhJj{}}{{{d{{B@h{ceg}}}}{d{{B@h{ceg}}}}}JhJj{}{}}{{{d{{AOn{ceg}}}}{d{{AOn{ceg}}}}}JhJj{}{}}{{{d{{B@b{ceg}}}}{d{{B@b{ceg}}}}}JhJj{}{}}{{{d{{AOb{ceg}}}}{d{{AOb{ceg}}}}}JhJj{}{}}{{{d{{AOd{ce}}}}{d{{AOd{ce}}}}}JhJj{}}{{{d{{AKb{ce}}}}{d{{AKb{ce}}}}}JhJj{}}{{{d{{ANj{ce}}}}{d{{ANj{ce}}}}}JhJj{}}{{{d{{AOf{ceg}}}}{d{{AOf{ceg}}}}}JhJj{}{}}{{{d{{AOh{ceg}}}}{d{{AOh{ceg}}}}}JhJj{}{}}{{{d{{ADj{ce}}}}{d{{ADj{ce}}}}}JhJj{}}{{{d{{ANl{ce}}}}{d{{ANl{ce}}}}}JhJj{}}{{{d{{Lj{ceg}}}}{d{{Lj{ceg}}}}}JhJj{}{}}{{{d{{B@`{ceg}}}}{d{{B@`{ceg}}}}}JhJj{}{}}{{{d{AOj}}{d{AOj}}}Jh}{{{d{AOl}}{d{AOl}}}Jh}{{{d{Lh}}{d{Lh}}}Jh}{{{AKb{ce}}{AKb{ce}}}AOjJj{}}{{{ANj{ce}}{ANj{ce}}}AOlJj{}}{{{ADj{ce}}{ADj{ce}}}AOjJj{}}{{{ANl{ce}}{ANl{ce}}}AOlJj{}}{{d{d{c}}}Jh{}}00000000000000000000000000000000000000000000000000000000000000000000{{{ADl{c}}{ADl{c}}{ADl{c}}}{{B@b{ceg}}}AK`{}{}}{{{Nn{ce}}c}{{AO`{ce}}}AFl{}}{{{ADj{ce}}c}{{ANl{ce}}}AFl{}}{{AIbAIb}AIb}{{{Nn{ce}}}{{Nn{ce}}}{BAdAFl}{}}{{{Nn{ce}}}{{Nn{ce}}}BAd{}}{{{AO`{ce}}}{{AO`{ce}}}{BAdAFl}{}}{{{AO`{ce}}}{{AO`{ce}}}BAd{}}{{{AKb{ce}}}{{AKb{ce}}}{BAdAFl}{}}{{{AKb{ce}}}{{AKb{ce}}}BAd{}}{{{ANj{ce}}}{{ANj{ce}}}{BAdAFl}{}}{{{ANj{ce}}}{{ANj{ce}}}BAd{}}{{{ADj{ce}}}{{ADj{ce}}}BAd{}}{{{ADj{ce}}}{{ADj{ce}}}{BAdAFl}{}}{{{ANl{ce}}}{{ANl{ce}}}BAd{}}{{{ANl{ce}}}{{ANl{ce}}}{BAdAFl}{}}{{{d{{AEb{ce}}}}{d{hDn}}}{{G`{nJn}}}Eb{}}{{{d{{B@f{ce}}}}{d{hDn}}}{{G`{nJn}}}Eb{}}{{{d{{B@n{ce}}}}{d{hDn}}}{{G`{nJn}}}Eb{}}{{{d{{ANn{ce}}}}{d{hDn}}}{{G`{nJn}}}Eb{}}{{{d{{Nn{ce}}}}{d{hDn}}}{{G`{nJn}}}Eb{}}{{{d{{AO`{ce}}}}{d{hDn}}}{{G`{nJn}}}Eb{}}{{{d{{B@d{ce}}}}{d{hDn}}}{{G`{nJn}}}Eb{}}{{{d{{B@h{ceg}}}}{d{hDn}}}{{G`{nJn}}}Eb{}{}}{{{d{{AOn{ceg}}}}{d{hDn}}}{{G`{nJn}}}Eb{}{}}{{{d{{B@b{ceg}}}}{d{hDn}}}{{G`{nJn}}}Eb{}{}}{{{d{{AOb{ceg}}}}{d{hDn}}}{{G`{nJn}}}Eb{}{}}{{{d{{AOd{ce}}}}{d{hDn}}}{{G`{nJn}}}Eb{}}{{{d{{AKb{ce}}}}{d{hDn}}}{{G`{nJn}}}Eb{}}{{{d{{ANj{ce}}}}{d{hDn}}}{{G`{nJn}}}Eb{}}{{{d{{AOf{ceg}}}}{d{hDn}}}{{G`{nJn}}}Eb{}{}}{{{d{{AOh{ceg}}}}{d{hDn}}}{{G`{nJn}}}Eb{}{}}{{{d{{ADj{ce}}}}{d{hDn}}}{{G`{nJn}}}Eb{}}{{{d{{ANl{ce}}}}{d{hDn}}}{{G`{nJn}}}Eb{}}{{{d{{Lj{ceg}}}}{d{hDn}}}{{G`{nJn}}}{AFlEbJjB@lBA`}{}{}}{{{d{{B@`{ceg}}}}{d{hDn}}}{{G`{nJn}}}{AFlEbJjB@lBA`}{}{}}{{{d{AOj}}{d{hDn}}}{{G`{nJn}}}}{{{d{AOl}}{d{hDn}}}{{G`{nJn}}}}{{{d{Lh}}{d{hDn}}}{{G`{nJn}}}}{cc{}}{{{AKb{ce}}}{{AEb{ce}}}{AFlBA`AJl}{}}{{{ANj{ce}}}{{B@f{ce}}}{AFlBA`AJl}{}}2{{{AO`{ce}}}{{B@n{ce}}}B@l{}}{{{ADj{ce}}}{{B@n{ce}}}BA`{}}4{{{Nn{ce}}}{{B@n{ce}}}{BA`B@l}{}}{{{ANl{ce}}}{{B@n{ce}}}BA`{}}6{{{AAf{cc}}}{{Nn{ce}}}{}{}}{{{Mj{c}}}{{Nn{ce}}}{}{}}8{{{AAf{ccc}}}{{AO`{ce}}}{}{}}{{{Mj{c}}}{{AO`{ce}}}{}{}}::{{{AKb{ce}}}{{B@d{ce}}}BA`{}};{{{B@b{ceg}}}{{B@h{ceg}}}{}{}{}}{{{ANl{ce}}}{{B@h{cge}}}{}{}{}}===={{{Mj{c}}}{{AKb{ce}}}{}{}}{{{AAf{cc}}}{{AKb{ce}}}{}{}}{{{ADj{ce}}}{{AKb{ce}}}{}{}}{cc{}}{{{AAf{ccc}}}{{ANj{ce}}}{}{}}{{{Mj{c}}}{{ANj{ce}}}{}{}}{{{ANl{ce}}}{{ANj{ce}}}{}{}}33{{{ADj{ce}}}{{AOf{ceg}}}{}{}{}}{{{ANl{ce}}}{{AOh{ceg}}}{}{}{}}5{{{AKb{ce}}}{{ADj{ce}}}{}{}}{{{Mj{c}}}{{ADj{ce}}}{}{}}7{{{AOf{ceg}}}{{ADj{ce}}}{}{}{}}{{{AAf{cc}}}{{ADj{ce}}}{}{}}9{{{Mj{c}}}{{ANl{ce}}}{}{}}{{{AOh{ceg}}}{{ANl{ce}}}{}{}{}}{{{AAf{ccc}}}{{ANl{ce}}}{}{}}<{{{AOf{ceg}}}{{Lj{ceg}}}{BA`B@l}{}{}}={{{AOh{ceg}}}{{B@`{ceg}}}{BA`B@l}{}{}}>>>>>>>>>>>>>>>>>>>>>>>>>>{{{ADl{c}}c}{{ADj{ce}}}{AIb{AHb{}{{Ln{}}}}AFl}{}}{{{Mj{c}}}{{Lj{ceg}}}AFl{}{}}{{{Mj{c}}}{{B@`{ceg}}}AFl{}{}}{{{Mj{{Mj{c}}}}}{{Lj{ceg}}}AFl{}{}}{{{Mj{{Mj{c}}}}}{{B@`{ceg}}}AFl{}{}}{{{ANn{ce}}}{{AOd{ce}}}AFl{}}{{{ANn{ce}}{ANn{ce}}}{{Nn{ce}}}{}{}}{{{ANn{ce}}{ANn{ce}}{ANn{ce}}}{{AO`{ce}}}{}{}}{{{ANn{ce}}{ANn{ce}}{ANn{ce}}{ANn{ce}}}{{AOd{ce}}}{}{}}{{{ANn{ce}}{ANn{ce}}}{{AKb{ce}}}{}{}}{{{ANn{ce}}{ANn{ce}}{ANn{ce}}}{{ANj{ce}}}{}{}}{{{ANn{ce}}{ANn{ce}}}{{ADj{ce}}}{}{}}{{{ANn{ce}}{ANn{ce}}{ANn{ce}}}{{ANl{ce}}}{}{}}{{{Nn{ce}}{AKb{ce}}}{{AEb{ce}}}{AFl{AFn{}{{Ln{}}}}}{}}{{{AO`{ce}}{ANj{ce}}}{{B@f{ce}}}{AFl{AFn{}{{Ln{}}}}}{}}{c{{AEb{eg}}}Mf{AFlBA`AJl}{}}{c{{B@f{eg}}}Mf{AFlBA`AJl}{}}{c{{B@d{eg}}}Mf{AFlBA`AJl{AH`{}{{Ln{}}}}}{}}{{{B@b{ceg}}}{{B@h{ceg}}}{}{}{}}{{{AOb{ceg}}}{{B@`{ceg}}}{{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AId{}{{Ln{}}}}AFl{AJj{}{{Ln{}}}}{AFn{}{{Ln{}}}}AJlB@lBA`}{}{}}{{{AKb{ce}}}{{AEb{ce}}}BA`{}}{{{ANj{ce}}}{{B@f{ce}}}BA`{}}{{{AKb{ce}}}{{B@d{ce}}}BA`{}}{ce{}{}}0000000000000000000000{{{ANl{ce}}}{{B@h{cge}}}{}{}{}}{{{d{{AEb{cLh}}}}}{{AEb{ce}}}AFl{}}{{{d{{B@f{cLh}}}}}{{B@f{ce}}}AFl{}}{{{Nn{cLh}}}{{Nn{ce}}}{}{}}{{{AO`{cLh}}}{{AO`{ce}}}{}{}}{{{d{{B@d{cLh}}}}}{{B@d{ce}}}AFl{}}{{{d{{B@h{cLhLh}}}}}{{B@h{ceg}}}{AK`AHh}{}{}}{{{d{{AOn{cLhLh}}}}}{{AOn{ceg}}}AFl{}{}}{{{d{{B@b{cLhLh}}}}}{{B@b{ceg}}}AFl{}{}}{{{AKb{cLh}}}{{AKb{ce}}}{}{}}{{{ANj{cLh}}}{{ANj{ce}}}{}{}}{{{d{{AOf{cLhLh}}}}}{{AOf{ceg}}}AFl{}{}}{{{d{{AOh{cLhLh}}}}}{{AOh{ceg}}}AFl{}{}}{{{ADj{cLh}}}{{ADj{ce}}}{}{}}{{{ANl{cLh}}}{{ANl{ce}}}{}{}}{{{d{{Lj{cLhLh}}}}}{{Lj{ceg}}}AFl{}{}}{{{d{{B@`{cLhLh}}}}}{{B@`{ceg}}}AFl{}{}}{{{ADj{ce}}{ADj{ce}}}{{AOd{ce}}}{{AJj{}{{Ln{}}}}}{}}0{{{ANn{ce}}}cAj{}}{{{AOb{ceg}}}c{}{}{}}{{{d{{AOn{ceg}}}}}{{ADl{c}}}AFl{}{}}{{{AKb{ce}}{AKb{ce}}}AOjAJl{}}{{{ANj{ce}}{ANj{ce}}}AOlAJl{}}{{{ADj{ce}}{ADj{ce}}}AOjAJl{}}{{{ANl{ce}}{ANl{ce}}}AOlAJl{}}{{{d{{AEb{ce}}}}{d{hg}}}nAB`{}ABb}{{{d{{B@f{ce}}}}{d{hg}}}nAB`{}ABb}{{{d{{B@n{ce}}}}{d{hg}}}nAB`{}ABb}{{{d{{ANn{ce}}}}{d{hg}}}nAB`{}ABb}{{{d{{Nn{ce}}}}{d{hg}}}nAB`{}ABb}{{{d{{AO`{ce}}}}{d{hg}}}nAB`{}ABb}{{{d{{B@d{ce}}}}{d{hg}}}nAB`{}ABb}{{{d{{B@h{ceg}}}}{d{hi}}}nAB`{}{}ABb}{{{d{{AOn{ceg}}}}{d{hi}}}nAB`{}{}ABb}{{{d{{B@b{ceg}}}}{d{hi}}}nAB`{}{}ABb}{{{d{{AOb{ceg}}}}{d{hi}}}nAB`{}{}ABb}{{{d{{AOd{ce}}}}{d{hg}}}nAB`{}ABb}{{{d{{AKb{ce}}}}{d{hg}}}nAB`{}ABb}{{{d{{ANj{ce}}}}{d{hg}}}nAB`{}ABb}{{{d{{AOf{ceg}}}}{d{hi}}}nAB`{}{}ABb}{{{d{{AOh{ceg}}}}{d{hi}}}nAB`{}{}ABb}{{{d{{ADj{ce}}}}{d{hg}}}nAB`{}ABb}{{{d{{ANl{ce}}}}{d{hg}}}nAB`{}ABb}{{{d{{Lj{ceg}}}}{d{hi}}}nAB`{}{}ABb}{{{d{{B@`{ceg}}}}{d{hi}}}nAB`{}{}ABb}{{{d{AOj}}{d{hc}}}nABb}{{{d{AOl}}{d{hc}}}nABb}{{{d{Lh}}{d{hc}}}nABb}{{{d{{AEb{ce}}}}}c{AFl{AH`{}{{Ln{}}}}}{}}{{{d{{B@f{ce}}}}}c{AFl{AH`{}{{Ln{}}}}}{}}{{{d{{B@d{ce}}}}}c{AFl{AFn{}{{Ln{}}}}}{}}{AKb}{ANj}{{{d{{AOd{ce}}}}}c{AFl{AFn{}{{Ln{}}}}}{}}{B@b}{{}{{B@h{ceg}}}{}{}{}}{{}{{AOn{ceg}}}AJn{}{}}{{}{{B@b{ceg}}}{AJnAHd}{}{}}{{}{{AOb{ceg}}}B@l{}{}}{{}{{AOf{ceg}}}BA`{}{}}{{}{{AOh{ceg}}}BA`{}{}}{{}{{Lj{ceg}}}{BA`B@l}{}{}}{{}{{B@`{ceg}}}{BA`B@l}{}{}}{{{d{{AEb{ce}}}}cc}{{AEb{ce}}}{AFl{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}}{}}{{{d{{B@f{ce}}}}ccc}{{B@f{ce}}}{AFl{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}}{}}{{{d{{B@d{ce}}}}cc}{{B@d{ce}}}{AFl{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}}{}}{{}Bf}0000000000000000000000{{{d{{AEb{ce}}}}{AOd{ce}}}{{AEb{ce}}}{AFl{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}}{}}{{{d{{B@d{ce}}}}{AOd{ce}}}{{B@d{ce}}}{AFlBA`AJl{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}}{}}{{{d{{AEb{ce}}}}{d{{AEb{ce}}}}}{{H`{{AEb{ce}}}}}{AFlAJl}{}}{{{d{{B@f{ce}}}}{d{{B@f{ce}}}}}{{H`{{B@f{ce}}}}}{AFlAJl}{}}{{{d{{B@d{ce}}}}{d{{B@d{ce}}}}}{{H`{{B@d{ce}}}}}{AFlAJl{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}}{}}{{{d{{AEb{ce}}}}{d{{AEb{ce}}}}}{{AEb{ce}}}{AFlAJl}{}}{{{d{{B@f{ce}}}}{d{{B@f{ce}}}}}{{B@f{ce}}}{AFlAJl}{}}{{{d{{AEb{ce}}}}{d{{AEb{ce}}}}}JhAJl{}}{{{d{{B@f{ce}}}}{d{{B@f{ce}}}}}JhAJl{}}{{{d{{B@d{ce}}}}{d{{B@d{ce}}}}}Jh{AFlAJl{AFn{}{{Ln{}}}}}{}}{{}c{}}000000000000000000000000000000000000000000000{{{Ef{c}}}{{Ef{f}}}{}}0000000000000000000000{{{Eh{c}}}{{Eh{f}}}{}}0000000000000000000000{{{Ej{c}}}{{Ej{f}}}{}}0000000000000000000000{{{j{c}}}e{}{}}00000000000000000000004444444444444444444444444444444444444444444444{{}c{}}0000000000000000000000{{{d{{B@h{ceg}}}}}{{B@h{cge}}}{AK`AHh}{}{}}{{{d{{AOn{ceg}}}}}{{AOn{cge}}}AK`{}{}}{{{d{{B@b{ceg}}}}}{{B@b{cge}}}AK`{}{}}{{{AOb{ceg}}}{{AOb{ge}}}{B@lAId}{}{}}{{{d{{AOf{ceg}}}}}{{AOf{ge}}}{AJjAFl}{}{}}{{{d{{AOh{ceg}}}}}{{AOh{ge}}}{AJjAFl}{}{}}{{{d{{Lj{ceg}}}}}{{H`{{Lj{cge}}}}}{AFl{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AId{}{{Ln{}}}}JjBA`B@l}{}{}}{{{d{{B@`{ceg}}}}}{{H`{{B@`{cge}}}}}{{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AId{}{{Ln{}}}}AFl{AJj{}{{Ln{}}}}{AFn{}{{Ln{}}}}AJlB@lBA`}{}{}}{{{d{{B@`{ceg}}}}}Jh{BA`B@lJj}{}{}}{{{d{{B@`{ceg}}}}}Jh{{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AId{}{{Ln{}}}}AFl{AJj{}{{Ln{}}}}{AFn{}{{Ln{}}}}AJlB@lBA`}{}{}}{{{d{{AEb{ce}}}}}JhAJl{}}{{{d{{B@f{ce}}}}}JhAJl{}}{{{d{{B@d{ce}}}}}Jh{AFlBA`AJl}{}}{{{AKb{ce}}}Jh{BA`AJl}{}}{{{ANj{ce}}}Jh{BA`AJl}{}}{{{AEb{ce}}}JhAJb{}}{{{B@f{ce}}}JhAJb{}}{{{Nn{ce}}}JhAJb{}}{{{AO`{ce}}}JhAJb{}}{{{B@d{ce}}}JhAJb{}}{{{AKb{ce}}}JhAJb{}}{{{ANj{ce}}}JhAJb{}}{{{ADj{ce}}}JhAJb{}}{{{ANl{ce}}}JhAJb{}}{{{AOb{ceg}}}Jh{JjB@l}{}{}}{{{d{{AOf{ceg}}}}}Jh{BA`Jj}{}{}}{{{d{{AOh{ceg}}}}}Jh{BA`Jj}{}{}}{{{d{{Lj{ceg}}}}}Jh{AFl{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AId{}{{Ln{}}}}JjBA`B@l}{}{}}{{{d{{B@`{ceg}}}}}Jh{{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AId{}{{Ln{}}}}AFl{AJj{}{{Ln{}}}}{AFn{}{{Ln{}}}}AJlB@lBA`}{}{}}{{{d{{AEb{ce}}}}}JhAJl{}}{{{d{{B@f{ce}}}}}JhAJl{}}{{{d{{B@b{ceg}}}}}Jh{AHhAK`}{}{}}{{{AKb{ce}}}JhANh{}}{{{ANj{ce}}}JhANh{}}{{{d{{AOd{ce}}}}}Jh{BA`Jj}{}}{B@b}0{AOd}{{{ADj{ce}}}cAK`{}}{{{ANl{ce}}}cAK`{}}{{{d{{AEb{ce}}}}{AEb{ce}}c}{{AEb{ce}}}{B@l{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}AFl}{}}{{{d{{B@f{ce}}}}{B@f{ce}}c}{{B@f{ce}}}{B@l{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}AFl}{}}{{{ANn{ce}}{ANn{ce}}c}{{ANn{ce}}}{B@l{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AFn{}{{Ln{}}}}Aj}{}}{{{Nn{ce}}{Nn{ce}}c}{{Nn{ce}}}{B@l{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AFn{}{{Ln{}}}}AFl}{}}{{{AO`{ce}}{AO`{ce}}c}{{AO`{ce}}}{B@l{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AFn{}{{Ln{}}}}AFl}{}}{{{d{{B@d{ce}}}}{B@d{ce}}c}{{B@d{ce}}}{B@l{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}AFl}{}}{{{d{{B@b{ceg}}}}{d{{B@b{ceg}}}}c}{{B@b{ceg}}}AK`{}{}}{{{AKb{ce}}{AKb{ce}}c}{{AKb{ce}}}{B@l{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AFn{}{{Ln{}}}}AFl}{}}{{{ANj{ce}}{ANj{ce}}c}{{ANj{ce}}}{B@l{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AFn{}{{Ln{}}}}AFl}{}}{{{ADj{ce}}{ADj{ce}}c}{{ADj{ce}}}{B@l{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}AFl}{}}{{{ANl{ce}}{ANl{ce}}c}{{ANl{ce}}}{B@l{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}AFl}{}}{{{AKb{ce}}{AKb{ce}}}AOjAJl{}}{{{ANj{ce}}{ANj{ce}}}AOlAJl{}}{{{ADj{ce}}{ADj{ce}}}AOjAJl{}}{{{ANl{ce}}{ANl{ce}}}AOlAJl{}}{Lj}{B@`}10001010001010000000{{{Nn{ce}}i}{{Nn{ge}}}{}{}{}{{Jf{c}{{Ln{g}}}}}}{{{AO`{ce}}i}{{AO`{ge}}}{}{}{}{{Jf{c}{{Ln{g}}}}}}{{{ADj{ce}}i}{{ADj{ge}}}{}{}{}{{Jf{c}{{Ln{g}}}}}}{{{ANl{ce}}i}{{ANl{ge}}}{}{}{}{{Jf{c}{{Ln{g}}}}}}{{{ANn{ce}}{ANn{ce}}}{{ANn{ce}}}AJl{}}{{{Nn{ce}}{Nn{ce}}}{{Nn{ce}}}AJl{}}{{{AO`{ce}}{AO`{ce}}}{{AO`{ce}}}AJl{}}{{{d{{B@d{ce}}}}}{{Nn{ce}}}{AFl{AFn{}{{Ln{}}}}}{}}{{{AOb{ceg}}{AOb{ceg}}}{{AOb{ceg}}}AJl{}{}}{{{AKb{ce}}{AKb{ce}}}{{AKb{ce}}}AJl{}}{{{ANj{ce}}{ANj{ce}}}{{ANj{ce}}}AJl{}}{{{ADj{ce}}{ADj{ce}}}{{ADj{ce}}}AJl{}}{{{ANl{ce}}{ANl{ce}}}{{ANl{ce}}}AJl{}}{AEbNn}{B@fAO`}{{{d{{B@d{ce}}}}}c{AFl{AFn{}{{Ln{}}}}}{}}0;:98765432100{{{AEb{ce}}c}{}{AFlAHb}{}}{{{AEb{ce}}{AOb{ceg}}}{}{AFlAHb}{}{}}{{{B@f{ce}}{AOb{ceg}}}{}{AFlAHb}{}{}}{{{B@f{ce}}c}{}{AFlAHb}{}}{{{ANn{ce}}c}{}AHb{}}{{{ANn{ce}}{AOb{ceg}}}{}AHb{}{}}{{{Nn{ce}}c}{}{AFlAHb}{}}{{{Nn{ce}}{AOb{ceg}}}{}{AFlAHb}{}{}}{{{AO`{ce}}{AOb{ceg}}}{}{AFlAHb}{}{}}{{{AO`{ce}}c}{}{AFlAHb}{}}{{{B@d{ce}}{AOb{ceg}}}{}{AFlAHb}{}{}}{{{B@d{ce}}c}{}{AFlAHb}{}}{{{AOb{ceg}}{AOb{cgi}}}{}AHb{}{}{}}{{{AOd{ce}}{AOb{ceg}}}{}{AFlAHb}{}{}}{{{AOd{ce}}c}{}{AFlAHb}{}}{{{AKb{ce}}{AOb{ceg}}}{}{AFlAHb}{}{}}{{{AKb{ce}}c}{}{AFlAHb}{}}{{{ANj{ce}}c}{}{AFlAHb}{}}{{{ANj{ce}}{AOb{ceg}}}{}{AFlAHb}{}{}}{{{ADj{ce}}c}{}{AFlAHb}{}}{{{ADj{ce}}{AOb{ceg}}}{}{AFlAHb}{}{}}{{{ANl{ce}}{AOb{ceg}}}{}{AFlAHb}{}{}}{{{ANl{ce}}c}{}{AFlAHb}{}}{{{d{h{AEb{ce}}}}c}n{AFlAJh}{}}{{{d{h{AEb{ce}}}}{AOb{cee}}}n{AFlAJh}{}}{{{d{h{B@f{ce}}}}c}n{AFlAJh}{}}{{{d{h{B@f{ce}}}}{AOb{cee}}}n{AFlAJh}{}}{{{d{h{ANn{ce}}}}c}n{AFl{AHb{}{{Ln{}}}}}{}}{{{d{h{Nn{ce}}}}{AOb{cee}}}n{AFlAJh}{}}{{{d{h{Nn{ce}}}}c}n{AFl{AHb{}{{Ln{}}}}}{}}{{{d{h{AO`{ce}}}}{AOb{cee}}}n{AFlAJh}{}}{{{d{h{AO`{ce}}}}c}n{AFlAJh}{}}{{{d{h{B@d{ce}}}}c}n{AFlAJh}{}}{{{d{h{B@d{ce}}}}{AOb{cee}}}n{AFlAJh}{}}{{{d{h{AOd{ce}}}}{AOb{cee}}}n{AFlAJh}{}}{{{d{h{AOd{ce}}}}c}n{AFlAJh}{}}{{{d{h{AKb{ce}}}}{AOb{cee}}}n{AFlAJh}{}}{{{d{h{AKb{ce}}}}c}n{AFlAJh}{}}{{{d{h{ANj{ce}}}}c}n{AFlAJh}{}}{{{d{h{ANj{ce}}}}{AOb{cee}}}n{AFlAJh}{}}{{{d{h{ADj{ce}}}}c}n{AFl{AHb{}{{Ln{}}}}}{}}{{{d{h{ADj{ce}}}}{AOb{cee}}}n{AFlAJh}{}}{{{d{h{ANl{ce}}}}{AOb{cee}}}n{AFlAJh}{}}{{{d{h{ANl{ce}}}}c}n{AFl{AHb{}{{Ln{}}}}}{}}{{{d{{B@`{ceg}}}}c}{{B@`{ceg}}}{{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AId{}{{Ln{}}}}AFl{AJj{}{{Ln{}}}}{AFn{}{{Ln{}}}}AJlB@lBA`}{}{}}{{{ANn{ce}}}{}AJj{}}{{{Nn{ce}}}{}AJj{}}{{{AO`{ce}}}{}AJj{}}{{{AOd{ce}}}{{AOd{ce}}}{{AJj{}{{Ln{}}}}}{}}{{{AKb{ce}}}{}AJj{}}{{{ANj{ce}}}{}AJj{}}{{{ADj{ce}}}{}AJj{}}{{{ANl{ce}}}{}AJj{}}{{{Nn{ce}}{Nn{ce}}}{{AEb{ce}}}{}{}}{{{AO`{ce}}{AO`{ce}}}{{B@f{ce}}}{}{}}{{cccc}{{B@n{ce}}}{}{}}{c{{ANn{ce}}}{}{}}{{cc}{{Nn{ce}}}{}{}}{{ccc}{{AO`{ce}}}{}{}}{{{Nn{ce}}{AKb{ce}}}{{B@d{ce}}}{}{}}{{{B@b{ceg}}{ANl{cg}}}{{B@h{ceg}}}{}{}{}}{{{ADl{c}}}{{AOn{ceg}}}{}{}{}}{c{{AOb{ceg}}}{}{}{}}{{cccc}{{AOd{ce}}}{}{}}{{cc}{{AKb{ce}}}{}{}}{{ccc}{{ANj{ce}}}{}{}}{{cc}{{AOf{ceg}}}{}{}{}}{{ccc}{{AOh{ceg}}}{}{}{}}{{cc}{{ADj{ce}}}{}{}}{{ccc}{{ANl{ce}}}{}{}}{{cccccc}{{Lj{ceg}}}{}{}{}}{{cccccccccccccccc}{{B@`{ceg}}}{}{}{}}{{cccccc}{{B@`{ceg}}}{BA`B@l}{}{}}{c{{AOd{ce}}}AFl{}}{{{ANl{ce}}{B@b{ceg}}}{{B@h{ceg}}}{}{}{}}{AOjJh}{AOlJh}{{{d{{B@b{ceg}}}}}cAK`{}{}}{{{d{{B@b{ceg}}}}}{{B@b{ceg}}}AK`{}{}}{{{ADj{ce}}}{{ADj{ce}}}AK`{}}{{{ANl{ce}}}{{ANl{ce}}}AK`{}}{AOjAOj}{AOlAOl}{{{AKb{ce}}{AKb{ce}}}AOjJj{}}{{{ANj{ce}}{ANj{ce}}}AOlJj{}}{{{ADj{ce}}{ADj{ce}}}AOjJj{}}{{{ANl{ce}}{ANl{ce}}}AOlJj{}}{{}c{}}0000000000000000`{{}{{AOb{ceg}}}B@l{}{}}{{}{{ADj{ce}}}B@l{}}{{}{{ANl{ce}}}B@l{}}{{AOjAOj}AOj}{{AOlAOl}AOl}{{}{{Nn{ce}}}BA`{}}{{}{{AO`{ce}}}BA`{}}{B@dNn}{{cccccc}{{B@`{ceg}}}{}{}{}}{{{d{{AEb{ce}}}}{AOd{ce}}}{{AEb{ce}}}{AFl{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}}{}}{{{d{{B@d{ce}}}}{AOd{ce}}}{{B@d{ce}}}{AFl{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}}{}}{{{d{{Lj{ceg}}}}{d{{AEb{ce}}}}}{{AEb{cg}}}{{AH`{}{{Ln{}}}}BA`AJlAFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}}{{{d{{B@`{ceg}}}}{d{{AEb{ce}}}}}{{H`{{AEb{cg}}}}}{{AH`{}{{Ln{}}}}{AId{}{{Ln{}}}}BA`AJlAFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}}{{{d{{B@`{ceg}}}}{d{{B@f{ce}}}}}{{H`{{B@f{cg}}}}}{{AH`{}{{Ln{}}}}{AId{}{{Ln{}}}}BA`AJlAFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}}{{{d{{Lj{ceg}}}}{d{{B@d{ce}}}}}{{B@d{cg}}}{{AH`{}{{Ln{}}}}BA`AJlAFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}}{{{d{{B@`{ceg}}}}{d{{B@d{ce}}}}}{{H`{{B@d{cg}}}}}{{AH`{}{{Ln{}}}}{AId{}{{Ln{}}}}BA`AJlAFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}}{{{d{{ANn{ce}}}}{d{{ANn{ce}}}}}{{H`{AF`}}}AJl{}}{{{d{{AOb{ceg}}}}{d{{AOb{ceg}}}}}{{H`{AF`}}}AJl{}{}}{{{d{Lh}}{d{Lh}}}{{H`{AF`}}}}{c{{B@`{ceg}}}{}{}{}}{{cc}{{Nn{ce}}}{}{}}{{ccc}{{AO`{ce}}}{}{}}{{{d{{Nn{Gfc}}}}}{{Nn{GfLh}}}{}}{{{d{{Lj{ceg}}}}{ADl{c}}}{{Lj{ceg}}}{AFl{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}BA`AIb}{}{}}{{{d{{B@`{ceg}}}}ccc{ADl{c}}}{{B@`{ceg}}}{{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AId{}{{Ln{}}}}AFlBA`B@lAIb}{}{}}{{{d{{Lj{ceg}}}}cc}{{Lj{ceg}}}{AFl{AHb{}{{Ln{}}}}}{}{}}{{{d{{B@`{ceg}}}}ccc}{{B@`{ceg}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}BA`B@l}{}{}}{{{d{{Lj{ceg}}}}{ADj{ce}}}{{Lj{ceg}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}BA`B@l}{}{}}{{{d{{B@`{ceg}}}}{ANl{ce}}}{{B@`{ceg}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}BA`B@l}{}{}}{{{ADj{ce}}{ADj{ce}}}{{ADj{ce}}}{{AH`{}{{Ln{}}}}{AId{}{{Ln{}}}}AFl{AHb{}{{Ln{}}}}{AFn{}{{Ln{}}}}}{}}{{{ANl{ce}}{ANl{ce}}}{{ANl{ce}}}{{AH`{}{{Ln{}}}}{AId{}{{Ln{}}}}AFl{AHb{}{{Ln{}}}}{AFn{}{{Ln{}}}}}{}}{{{d{{B@`{ceg}}}}}{{B@`{ceg}}}{AFl{AHb{}{{Ln{}}}}{AId{}{{Ln{}}}}BA`B@lJj}{}{}}{{cccc}{{B@b{ceg}}}{}{}{}}{B@b}{c{{AOn{ceg}}}{}{}{}}{ADl}{AIbAIb}{{cccc}{{B@d{ce}}}{}{}}{{{ADj{ce}}{ADj{ce}}}{{ADj{ce}}}{B@l{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}AFl}{}}{{{ANl{ce}}{ANl{ce}}}{{ANl{ce}}}{B@l{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}AFl}{}}{{{d{{Nn{ce}}}}{d{{AKb{ce}}}}}{{Nn{ce}}}BAb{}}{{{d{{AO`{ce}}}}{d{{ANj{ce}}}}}{{AO`{ce}}}BAb{}}{AOd}{{{ADj{ce}}}{{ADj{ce}}}AJb{}}{{{ANl{ce}}}{{ANl{ce}}}AJb{}}{{{ADl{c}}}{{Lj{ceg}}}{AFl{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}BA`AIb}{}{}}{{ccc{ADl{c}}}{{B@`{ceg}}}{}{}{}}{B@hB@b}{{{d{{AEb{ce}}}}}{{AEb{ce}}}BAf{}}{{{d{{B@f{ce}}}}}{{B@f{ce}}}BAf{}}{{{Nn{ce}}}{{Nn{ce}}}BAf{}}{{{Nn{ce}}}{{Nn{ce}}}{BAfAFl}{}}{{{AO`{ce}}}{{AO`{ce}}}BAf{}}{{{AO`{ce}}}{{AO`{ce}}}{BAfAFl}{}}{{{d{{B@d{ce}}}}}{{B@d{ce}}}{BAdB@jBAf{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}}{}}{{{AKb{ce}}}{{AKb{ce}}}BAf{}}{{{AKb{ce}}}{{AKb{ce}}}{BAfAFl}{}}{{{ANj{ce}}}{{ANj{ce}}}BAf{}}{{{ANj{ce}}}{{ANj{ce}}}{BAfAFl}{}}{{{ADj{ce}}}{{ADj{ce}}}BAf{}}{{{ADj{ce}}}{{ADj{ce}}}{BAfAFl}{}}{{{ANl{ce}}}{{ANl{ce}}}BAf{}}{{{ANl{ce}}}{{ANl{ce}}}{BAfAFl}{}}{{{d{{AEb{ce}}}}}{{AEb{ce}}}{BAdB@j}{}}{{{d{{B@f{ce}}}}}{{B@f{ce}}}{BAdB@j}{}}:10:{{{ANn{ce}}{ANn{ce}}}{{ANn{ce}}}BAh{}}0{{{d{{AEb{eg}}}}cc}{{AEb{eg}}}AFl{{AHb{}{{Ln{}}}}AFl}{}}{{{d{{B@f{eg}}}}ccc}{{B@f{eg}}}AFl{{AHb{}{{Ln{}}}}AFl}{}}{{{d{{B@d{eg}}}}cc}{{B@d{eg}}}AFl{AFl{AHb{}{{Ln{}}}}}{}}{{cc}{{Lj{ceg}}}BA`{}{}}{{ccc}{{B@`{ceg}}}{BA`B@l}{}{}}{{AOj{Nn{ce}}{Nn{ce}}}{{Nn{ce}}}{}{}}{{AOl{AO`{ce}}{AO`{ce}}}{{AO`{ce}}}{}{}}{{AOj{AKb{ce}}{AKb{ce}}}{{AKb{ce}}}{}{}}{{AOl{ANj{ce}}{ANj{ce}}}{{ANj{ce}}}{}{}}{{AOj{ADj{ce}}{ADj{ce}}}{{ADj{ce}}}{}{}}{{AOl{ANl{ce}}{ANl{ce}}}{{ANl{ce}}}{}{}}{{{d{h{AEb{ce}}}}{AKb{ce}}}n{AFl{AH`{}{{Ln{}}}}}{}}{AIbAIb}{{{d{{AEb{ce}}}}}{{AKb{ce}}}{AFl{AH`{}{{Ln{}}}}}{}}{{{d{{B@f{ce}}}}}{{ANj{ce}}}{AFl{AH`{}{{Ln{}}}}}{}}{B@dAKb}{{cc}{{AKb{ce}}}{}{}}{{ccc}{{ANj{ce}}}{}{}}{{{ADl{c}}{ADl{c}}}{{B@`{ceg}}}{AIbBA`B@l}{}{}}{{{d{{B@b{ceg}}}}{d{{B@b{ceg}}}}c}{{B@b{ceg}}}{AHhAK`}{}{}}{c{{Nn{ce}}}Aj{}}{c{{AO`{ce}}}Aj{}}{c{{AKb{ce}}}Aj{}}{c{{ANj{ce}}}Aj{}}{c{{AOf{ceg}}}Aj{}{}}{c{{AOh{ceg}}}Aj{}{}}{c{{ADj{ce}}}Aj{}}{c{{ANl{ce}}}Aj{}}{{{ADj{ce}}}c{AFl{AHb{}{{Ln{}}}}{AFn{}{{Ln{}}}}}{}}{{{ANl{ce}}}c{AFl{AHb{}{{Ln{}}}}{AFn{}{{Ln{}}}}}{}}{{{d{{B@b{ceg}}}}}cAK`{}{}}{{{ANn{ce}}{ANn{ce}}}{}AH`{}}{{{Nn{ce}}{Nn{ce}}}{}AH`{}}{{{Nn{ce}}{AKb{ce}}}{}AH`{}}{{{Nn{ce}}{ADj{ce}}}{}AH`{}}{{{AO`{ce}}{ANl{ce}}}{}AH`{}}{{{AO`{ce}}{ANj{ce}}}{}AH`{}}{{{AO`{ce}}{AO`{ce}}}{}AH`{}}{{{AOb{ceg}}{AOb{ceg}}}{}AH`{}{}}{{{AOd{ce}}{AOd{ce}}}{{AOd{ce}}}{{AH`{}{{Ln{}}}}}{}}{{{AKb{ce}}{AKb{ce}}}{}AH`{}}{{{ANj{ce}}{ANj{ce}}}{}AH`{}}{{{AOf{ceg}}{AOf{cig}}}{}AH`{}{}{}}{{{AOh{ceg}}{AOh{cig}}}{}AH`{}{}{}}{{{ADj{ce}}{ADj{ce}}}{}AH`{}}{{{ANl{ce}}{ANl{ce}}}{}AH`{}}{{{d{h{ANn{ce}}}}{ANn{ce}}}nAKd{}}{{{d{h{Nn{ce}}}}{ADj{ce}}}n{AFl{AH`{}{{Ln{}}}}}{}}{{{d{h{Nn{ce}}}}{AKb{ce}}}nAKd{}}{{{d{h{AO`{ce}}}}{ANl{ce}}}n{AFl{AH`{}{{Ln{}}}}}{}}{{{d{h{AO`{ce}}}}{ANj{ce}}}nAKd{}}{{{d{h{AOd{ce}}}}{AOd{ce}}}nAKd{}}{{{d{h{AKb{ce}}}}{AKb{ce}}}nAKd{}}{{{d{h{ANj{ce}}}}{ANj{ce}}}nAKd{}}{{{d{h{AOf{ceg}}}}{AOf{cgg}}}nAKd{}{}}{{{d{h{AOh{ceg}}}}{AOh{cgg}}}nAKd{}{}}{{{d{h{ADj{ce}}}}{ADj{ce}}}n{AFl{AH`{}{{Ln{}}}}}{}}{{{d{h{ANl{ce}}}}{ANl{ce}}}n{AFl{AH`{}{{Ln{}}}}}{}}{g{{ANn{ce}}}{{AFn{}{{Ln{}}}}AFlBA`}{}{{AKf{}{{Mb{{d{{ANn{ce}}}}}}}}}}{g{{ANn{ce}}}{{AFn{}{{Ln{}}}}BA`}{}{{AKf{}{{Mb{{ANn{ce}}}}}}}}{g{{AKb{ce}}}{{AFn{}{{Ln{}}}}AFlBA`}{}{{AKf{}{{Mb{{d{{AKb{ce}}}}}}}}}}{g{{AKb{ce}}}{{AFn{}{{Ln{}}}}BA`}{}{{AKf{}{{Mb{{AKb{ce}}}}}}}}{g{{ANj{ce}}}{{AFn{}{{Ln{}}}}AFlBA`}{}{{AKf{}{{Mb{{d{{ANj{ce}}}}}}}}}}{g{{ANj{ce}}}{{AFn{}{{Ln{}}}}BA`}{}{{AKf{}{{Mb{{ANj{ce}}}}}}}}{g{{ADj{ce}}}{{AFn{}{{Ln{}}}}BA`}{}{{AKf{}{{Mb{{ADj{ce}}}}}}}}{g{{ADj{ce}}}{{AFn{}{{Ln{}}}}AFlBA`}{}{{AKf{}{{Mb{{d{{ADj{ce}}}}}}}}}}{g{{ANl{ce}}}{{AFn{}{{Ln{}}}}AFlBA`}{}{{AKf{}{{Mb{{d{{ANl{ce}}}}}}}}}}{g{{ANl{ce}}}{{AFn{}{{Ln{}}}}BA`}{}{{AKf{}{{Mb{{ANl{ce}}}}}}}}{AIbAIb}{{{d{{B@h{ceg}}}}{d{{B@h{cgi}}}}}{{B@h{cei}}}{AK`AHh}{}{}{}}{{{d{{AOn{ceg}}}}{d{{AOn{cie}}}}}{{AOn{cig}}}AK`{}{}{}}{{{d{{B@b{ceg}}}}{d{{B@b{cgi}}}}}{{B@b{cei}}}{AHhAK`}{}{}{}}{{{d{{Lj{ceg}}}}{d{{Lj{cgi}}}}}{{Lj{cei}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}{}}{{{d{{B@`{ceg}}}}{d{{B@`{cgi}}}}}{{B@`{cei}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}{}}{{{d{{Lj{ceg}}}}{ADl{c}}}{{Lj{ceg}}}{AFl{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}BA`AIb}{}{}}{{{d{{B@`{ceg}}}}ccc{ADl{c}}}{{B@`{ceg}}}{{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}{AId{}{{Ln{}}}}AFlBA`B@lAIb}{}{}}{{{d{{Lj{ceg}}}}cc}{{Lj{ceg}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}BA`}{}{}}{{{d{{B@`{ceg}}}}ccc}{{B@`{ceg}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}BA`B@l}{}{}}{{{d{{Lj{ceg}}}}{ADj{cg}}}{{Lj{ceg}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}BA`B@l}{}{}}{{{d{{B@`{ceg}}}}{ANl{cg}}}{{B@`{ceg}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}BA`B@l}{}{}}{{{AO`{ce}}}{{Nn{ce}}}AFl{}}{{{ANl{ce}}}{{ADj{ce}}}AFl{}}{{{d{{B@`{ceg}}}}}{{Lj{ceg}}}AFl{}{}}{{{Nn{ce}}}{{AO`{ce}}}{BA`AFl}{}}{{{d{{AOn{ceg}}}}}{{B@b{ceg}}}AK`{}{}}{{{ADj{ce}}}{{ANl{ce}}}{BA`AFl}{}}{{{d{{Lj{ceg}}}}}{{B@`{ceg}}}{BA`B@lAFl}{}{}}{{{Nn{ce}}}{{Mj{c}}}AFl{}}{{{AO`{ce}}}{{Mj{c}}}AFl{}}{{{AKb{ce}}}{{Mj{c}}}AFl{}}{{{ANj{ce}}}{{Mj{c}}}AFl{}}{{{d{{AOf{ceg}}}}}{{Mj{c}}}AFl{}{}}{{{d{{AOh{ceg}}}}}{{Mj{c}}}AFl{}{}}{{{ADj{ce}}}{{Mj{c}}}AFl{}}{{{ANl{ce}}}{{Mj{c}}}AFl{}}{{{d{{Lj{ceg}}}}}{{Mj{c}}}AFl{}{}}{{{d{{B@`{ceg}}}}}{{Mj{c}}}AFl{}{}}{{{AO`{ce}}}{{Mj{c}}}{B@lAFl}{}}{{{ANl{ce}}}{{Mj{c}}}{BA`AFl}{}}32{{{d{{Lj{ceg}}}}}{{Mj{{Mj{c}}}}}AFl{}{}}{{{d{{B@`{ceg}}}}}{{Mj{{Mj{c}}}}}AFl{}{}}0{{{d{{B@d{ce}}}}}{{AEb{ce}}}{AFl{AFn{}{{Ln{}}}}}{}}{{{d{{AEb{ce}}}}}{{AEb{Gfe}}}{AHjAFl}{}}{{{d{{B@f{ce}}}}}{{B@f{Gfe}}}{AHjAFl}{}}{{{Nn{ce}}}{{Nn{Gfe}}}{AHjAFl}{}}{{{AO`{ce}}}{{AO`{Gfe}}}{AHjAFl}{}}{{{d{{B@d{ce}}}}}{{B@d{Gfe}}}{AHjAFl}{}}{{{AKb{ce}}}{{AKb{Gfe}}}{AHjAFl}{}}{{{ANj{ce}}}{{ANj{Gfe}}}{AHjAFl}{}}{{{AOf{ceg}}}{{AOf{Gfeg}}}{AHjAFl}{}{}}{{{AOh{ceg}}}{{AOh{Gfeg}}}{AHjAFl}{}{}}{{{ADj{ce}}}{{ADj{Gfe}}}{AHjAFl}{}}{{{ANl{ce}}}{{ANl{Gfe}}}{AHjAFl}{}}{{{d{{AEb{ce}}}}}{{AEb{AKhe}}}{AHjAFl}{}}{{{d{{B@f{ce}}}}}{{B@f{AKhe}}}{AHjAFl}{}}{{{Nn{ce}}}{{Nn{AKhe}}}{AHjAFl}{}}{{{AO`{ce}}}{{AO`{AKhe}}}{AHjAFl}{}}{{{d{{B@d{ce}}}}}{{B@d{AKhe}}}{AHjAFl}{}}{{{AKb{ce}}}{{AKb{AKhe}}}{AHjAFl}{}}{{{ANj{ce}}}{{ANj{AKhe}}}{AHjAFl}{}}{{{AOf{ceg}}}{{AOf{AKheg}}}{AHjAFl}{}{}}{{{AOh{ceg}}}{{AOh{AKheg}}}{AHjAFl}{}{}}{{{ADj{ce}}}{{ADj{AKhe}}}{AHjAFl}{}}{{{ANl{ce}}}{{ANl{AKhe}}}{AHjAFl}{}}{{{d{{AEb{ce}}}}}{{AEb{ANde}}}{AHjAFl}{}}{{{d{{B@f{ce}}}}}{{B@f{ANde}}}{AHjAFl}{}}{{{Nn{ce}}}{{Nn{ANde}}}{AHjAFl}{}}{{{AO`{ce}}}{{AO`{ANde}}}{AHjAFl}{}}{{{d{{B@d{ce}}}}}{{B@d{ANde}}}{AHjAFl}{}}{{{AKb{ce}}}{{AKb{ANde}}}{AHjAFl}{}}{{{ANj{ce}}}{{ANj{ANde}}}{AHjAFl}{}}{{{AOf{ceg}}}{{AOf{ANdeg}}}{AHjAFl}{}{}}{{{AOh{ceg}}}{{AOh{ANdeg}}}{AHjAFl}{}{}}{{{ADj{ce}}}{{ADj{ANde}}}{AHjAFl}{}}{{{ANl{ce}}}{{ANl{ANde}}}{AHjAFl}{}}{{{d{{AEb{ce}}}}}{{AEb{AMje}}}{AHjAFl}{}}{{{d{{B@f{ce}}}}}{{B@f{AMje}}}{AHjAFl}{}}{{{Nn{ce}}}{{Nn{AMje}}}{AHjAFl}{}}{{{AO`{ce}}}{{AO`{AMje}}}{AHjAFl}{}}{{{d{{B@d{ce}}}}}{{B@d{AMje}}}{AHjAFl}{}}{{{AKb{ce}}}{{AKb{AMje}}}{AHjAFl}{}}{{{ANj{ce}}}{{ANj{AMje}}}{AHjAFl}{}}{{{AOf{ceg}}}{{AOf{AMjeg}}}{AHjAFl}{}{}}{{{AOh{ceg}}}{{AOh{AMjeg}}}{AHjAFl}{}{}}{{{ADj{ce}}}{{ADj{AMje}}}{AHjAFl}{}}{{{ANl{ce}}}{{ANl{AMje}}}{AHjAFl}{}}{{{d{{AEb{ce}}}}}{{H`{{AEb{ce}}}}}{AFlAJl}{}}{{{d{{B@f{ce}}}}}{{H`{{B@f{ce}}}}}{AFlAJl}{}}{{{d{{B@d{ce}}}}}{{H`{{B@d{ce}}}}}{AFlBA`AJl}{}}{dc{}}0000000000000000000000{{{ADj{ce}}}{{Nn{ce}}}AFl{}}{{{ANl{ce}}}{{AO`{ce}}}AFl{}}{{{B@n{ce}}}{{H`{{Nn{ce}}}}}{AFl{AId{}{{Ln{}}}}BA`AJl}{}}{{{B@n{ce}}}{{H`{{AO`{ce}}}}}{AFl{AId{}{{Ln{}}}}BA`AJl}{}}{{{d{{AEb{ce}}}}}{{B@d{ce}}}{AFl{AH`{}{{Ln{}}}}}{}}{{{ADj{ce}}}{{AKb{ce}}}AFl{}}{{{d{{B@h{ceg}}}}}{{B@`{ceg}}}{AIbAK`AHh}{}{}}{{{d{{AOn{ceg}}}}}{{Lj{ceg}}}{AFl{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}{AHb{}{{Ln{}}}}AJnAIb}{}{}}{{{d{{B@b{ceg}}}}}{{B@`{ceg}}}{AHhAK`}{}{}}{{{d{{AOf{ceg}}}}}{{Lj{ceg}}}{BA`B@lAFl}{}{}}{{{d{{AOh{ceg}}}}}{{B@`{ceg}}}{BA`B@lAFl}{}{}}{{{ADj{ce}}}{{Lj{cee}}}{BA`B@lAFl}{}}{{{ANl{ce}}}{{B@`{cee}}}{BA`B@lAFl}{}}{{{Nn{ce}}}{{AAf{cc}}}AFl{}}{{{AO`{ce}}}{{AAf{ccc}}}AFl{}}{{{AKb{ce}}}{{AAf{cc}}}AFl{}}{{{ANj{ce}}}{{AAf{ccc}}}AFl{}}{{{d{{AOf{ceg}}}}}{{AAf{cc}}}AFl{}{}}{{{d{{AOh{ceg}}}}}{{AAf{ccc}}}AFl{}{}}{{{ADj{ce}}}{{AAf{cc}}}AFl{}}{{{ANl{ce}}}{{AAf{ccc}}}AFl{}}{{{AO`{ce}}}{{AAf{cccc}}}{B@lAFl}{}}{{{ANl{ce}}}{{AAf{cccc}}}{BA`AFl}{}}{{{d{{AEb{ce}}}}}{{AEb{Ade}}}{AHjAFl}{}}{{{d{{B@f{ce}}}}}{{B@f{Ade}}}{AHjAFl}{}}{{{Nn{ce}}}{{Nn{Ade}}}{AHjAFl}{}}{{{AO`{ce}}}{{AO`{Ade}}}{AHjAFl}{}}{{{d{{B@d{ce}}}}}{{B@d{Ade}}}{AHjAFl}{}}{{{AKb{ce}}}{{AKb{Ade}}}{AHjAFl}{}}{{{ANj{ce}}}{{ANj{Ade}}}{AHjAFl}{}}{{{AOf{ceg}}}{{AOf{Adeg}}}{AHjAFl}{}{}}{{{AOh{ceg}}}{{AOh{Adeg}}}{AHjAFl}{}{}}{{{ADj{ce}}}{{ADj{Ade}}}{AHjAFl}{}}{{{ANl{ce}}}{{ANl{Ade}}}{AHjAFl}{}}{{{d{{B@d{ce}}}}}{{B@d{AN`e}}}{AHjAFl}{}}{{{AKb{ce}}}{{AKb{AN`e}}}{AHjAFl}{}}{{{d{{AEb{ce}}}}}{{AEb{cLh}}}AFl{}}{{{d{{B@f{ce}}}}}{{B@f{cLh}}}AFl{}}{{{Nn{ce}}}{{Nn{cLh}}}AFl{}}{{{AO`{ce}}}{{AO`{cLh}}}AFl{}}{{{d{{B@d{ce}}}}}{{B@d{cLh}}}AFl{}}{{{d{{B@h{ceg}}}}}{{B@h{cLhLh}}}{AK`AHh}{}{}}{{{d{{AOn{ceg}}}}}{{AOn{cLhLh}}}AFl{}{}}{{{d{{B@b{ceg}}}}}{{B@b{cLhLh}}}AFl{}{}}{{{AKb{ce}}}{{AKb{cLh}}}AFl{}}{{{ANj{ce}}}{{ANj{cLh}}}AFl{}}{{{d{{AOf{ceg}}}}}{{AOf{cLhLh}}}AFl{}{}}{{{d{{AOh{ceg}}}}}{{AOh{cLhLh}}}AFl{}{}}{{{ADj{ce}}}{{ADj{cLh}}}AFl{}}{{{ANl{ce}}}{{ANl{cLh}}}AFl{}}{{{d{{Lj{ceg}}}}}{{Lj{cLhLh}}}AFl{}{}}{{{d{{B@`{ceg}}}}}{{B@`{cLhLh}}}AFl{}{}}{{{d{{AEb{ce}}}}}{{AEb{Bfe}}}{AHjAFl}{}}{{{d{{B@f{ce}}}}}{{B@f{Bfe}}}{AHjAFl}{}}{{{Nn{ce}}}{{Nn{Bfe}}}{AHjAFl}{}}{{{AO`{ce}}}{{AO`{Bfe}}}{AHjAFl}{}}{{{d{{B@d{ce}}}}}{{B@d{Bfe}}}{AHjAFl}{}}{{{AKb{ce}}}{{AKb{Bfe}}}{AHjAFl}{}}{{{ANj{ce}}}{{ANj{Bfe}}}{AHjAFl}{}}{{{AOf{ceg}}}{{AOf{Bfeg}}}{AHjAFl}{}{}}{{{AOh{ceg}}}{{AOh{Bfeg}}}{AHjAFl}{}{}}{{{ADj{ce}}}{{ADj{Bfe}}}{AHjAFl}{}}{{{ANl{ce}}}{{ANl{Bfe}}}{AHjAFl}{}}{{{Nn{ce}}}{{ADj{ce}}}AFl{}}{{{AO`{ce}}}{{ANl{ce}}}AFl{}}{{{AKb{ce}}}{{ADj{ce}}}AFl{}}{{{ANj{ce}}}{{ANl{ce}}}AFl{}}{{{d{{AOf{ceg}}}}}{{ADj{ce}}}AFl{}{}}{{{d{{AOh{ceg}}}}}{{ANl{ce}}}AFl{}{}}{AOd}{{{d{{AOf{ceg}}}}{d{{AEb{ce}}}}}{{AEb{g}}}{AFnAFl}{}{}}{{{AOb{ceg}}{d{{AEb{ce}}}}}{{AEb{g}}}{AFlAHb}{}{}}{{{d{{AOh{ceg}}}}{d{{AEb{ce}}}}}{{AEb{g}}}{AFnAFl}{}{}}{{{AOb{ceg}}{d{{B@f{ce}}}}}{{B@f{g}}}{AFlAHb}{}{}}{{{d{{AOh{ceg}}}}{d{{B@f{ce}}}}}{{B@f{g}}}{AFnAFl}{}{}}{{{d{{AOn{ceg}}}}{Nn{ce}}}{{Nn{cg}}}AK`{}{}}{{{d{{AOn{cLhLh}}}}{Nn{cLh}}}{{Nn{cLh}}}AFh}{{{AOb{ceg}}{Nn{ce}}}{{Nn{g}}}{AFlAHb}{}{}}{{{d{{AOb{cLhLh}}}}{Nn{cLh}}}{{Nn{cLh}}}AFh}{{{d{{AOf{ceg}}}}{Nn{ce}}}{{Nn{g}}}{AFnAFl}{}{}}{{{d{{AOf{cLhLh}}}}{Nn{cLh}}}{{Nn{cLh}}}AFh}{{{d{{Lj{cLhLh}}}}{Nn{cLh}}}{{Nn{cLh}}}AFh}{{{d{{Lj{ceg}}}}{Nn{ce}}}{{Nn{cg}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}}{{{d{{B@b{ceg}}}}{Nn{ce}}}{{Nn{cg}}}{AHhAK`}{}{}}{{{d{{AOh{ceg}}}}{d{{Nn{ce}}}}}{{Nn{g}}}{AFnAFl}{}{}}{{{d{{B@`{ceg}}}}{Nn{ce}}}{{H`{{Nn{cg}}}}}{{AId{}{{Ln{}}}}BA`AJlAFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}}{{{d{{B@`{ceg}}}}{Nn{ce}}}{{B@n{cg}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}}{{{d{{B@b{ceg}}}}{AO`{ce}}}{{AO`{cg}}}{AHhAK`}{}{}}{{{AOb{ceg}}{AO`{ce}}}{{AO`{g}}}{AFlAHb}{}{}}{{{d{{AOh{ceg}}}}{d{{AO`{ce}}}}}{{AO`{g}}}{AFnAFl}{}{}}{{{d{{B@`{ceg}}}}{AO`{ce}}}{{H`{{AO`{cg}}}}}{{AId{}{{Ln{}}}}BA`AJlAFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}}{{{d{{B@`{ceg}}}}{AO`{ce}}}{{B@n{cg}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}}{{{AOb{ceg}}{d{{B@d{ce}}}}}{{B@d{g}}}{AFlAHb}{}{}}{{{d{{AOf{ceg}}}}{d{{B@d{ce}}}}}{{B@d{g}}}{{AFn{}{{Ln{}}}}AFl}{}{}}{{{d{{AOh{ceg}}}}{d{{B@d{ce}}}}}{{B@d{cg}}}{{AFn{}{{Ln{}}}}AFl}{}{}}{{{AOb{ceg}}{AKb{ce}}}{{AKb{g}}}{AFlAHb}{}{}}{{{d{{AOf{ceg}}}}{AKb{ce}}}{{AKb{cg}}}{}{}{}}{{{AOh{ceg}}{AKb{ce}}}{{AKb{cg}}}{}{}{}}{{{d{{AOn{cLhLh}}}}{ADj{cLh}}}{{ADj{cLh}}}AFh}{{{d{{AOn{ceg}}}}{ADj{ce}}}{{ADj{cg}}}AK`{}{}}{{{AOb{ceg}}{ADj{ce}}}{{ADj{g}}}{AFlAHb}{}{}}{{{d{{AOb{cLhLh}}}}{ADj{cLh}}}{{ADj{cLh}}}AFh}{{{d{{AOf{cLhLh}}}}{ADj{cLh}}}{{ADj{cLh}}}AFh}{{{d{{Lj{cLhLh}}}}{ADj{cLh}}}{{ADj{cLh}}}AFh}{{{d{{Lj{ceg}}}}{ADj{ce}}}{{ADj{cg}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}}{{{d{{B@b{ceg}}}}{ADj{ce}}}{{ADj{cg}}}{AHhAK`}{}{}}{{{d{{B@`{ceg}}}}{ADj{ce}}}{{ADj{cg}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}}{{{d{{B@b{ceg}}}}{ANl{ce}}}{{ANl{cg}}}{AHhAK`}{}{}}{{{d{{B@`{ceg}}}}{ANl{ce}}}{{ANl{cg}}}{AFl{AFn{}{{Ln{}}}}{AHb{}{{Ln{}}}}}{}{}}{{{d{{AEb{ce}}}}{ADj{ce}}}{{AEb{ce}}}{AFl{AFn{}{{Ln{}}}}}{}}{{{d{{B@f{ce}}}}{ANl{ce}}}{{B@f{ce}}}{AFl{AFn{}{{Ln{}}}}}{}}{{{d{{B@d{ce}}}}{ADj{ce}}}{{B@d{ce}}}{AFl{AFn{}{{Ln{}}}}}{}}{{cc}{{Lj{ceg}}}{BA`B@l}{}{}}{{ccc}{{B@`{ceg}}}{BA`B@l}{}{}}{B@hANl}{{{d{{AEb{ce}}}}}{{H`{{AEb{ge}}}}}{AHjAFl}{}AHj}{{{d{{B@f{ce}}}}}{{H`{{B@f{ge}}}}}{AHjAFl}{}AHj}{{{ANn{ce}}}{{H`{{ANn{ge}}}}}{AHjAj}{}AHj}{{{Nn{ce}}}{{H`{{Nn{ge}}}}}{AHjAFl}{}AHj}{{{AO`{ce}}}{{H`{{AO`{ge}}}}}{AHjAFl}{}AHj}{{{d{{B@d{ce}}}}}{{H`{{B@d{ge}}}}}{AHjAFl}{}AHj}{{{AOb{ceg}}}{{H`{{AOb{ieg}}}}}AHj{}{}AHj}{{{AKb{ce}}}{{H`{{AKb{ge}}}}}{AHjAFl}{}AHj}{{{ANj{ce}}}{{H`{{ANj{ge}}}}}{AHjAFl}{}AHj}{{{AOf{ceg}}}{{H`{{AOf{ieg}}}}}{AHjAFl}{}{}AHj}{{{AOh{ceg}}}{{H`{{AOh{ieg}}}}}{AHjAFl}{}{}AHj}{{{ADj{ce}}}{{H`{{ADj{ge}}}}}{AHjAFl}{}AHj}{{{ANl{ce}}}{{H`{{ANl{ge}}}}}{AHjAFl}{}AHj}{{{d{{Lj{ceg}}}}}{{H`{{Lj{ieg}}}}}{AHjAFl}{}{}AHj}{{{d{{B@`{ceg}}}}}{{H`{{B@`{ieg}}}}}{AHjAFl}{}{}AHj}{{}{{G`{c}}}{}}0000000000000000000000{c{{G`{e}}}{}{}}0000000000000000000000{{}{{G`{c}}}{}}0000000000000000000000{{}{{G`{c{Gl{c}}}}}{}}0000000000000000000000{{{ADj{ce}}}{{H`{{ADj{ce}}}}}AK`{}}{{{ANl{ce}}}{{H`{{ANl{ce}}}}}AK`{}}{dGn}0000000000000000000000{ce{}{}}0000000000000000000000{{}c{}}0000000000000000000000{{{d{{AEb{ce}}}}{d{{AEb{ce}}}}}{{AEb{ce}}}{AFlAJl}{}}{{{d{{B@f{ce}}}}{d{{B@f{ce}}}}}{{B@f{ce}}}{AFlAJl}{}}{{{d{{B@d{ce}}}}{d{{B@d{ce}}}}}{{B@d{ce}}}{AFlAJl{AFn{}{{Ln{}}}}{AH`{}{{Ln{}}}}BA`}{}}{{cccc}{{B@b{ceg}}}AK`{}{}}{d{{H`{{d{c}}}}}{}}0000000000000000000000{{cc}{{ADj{ce}}}{}{}}{{ccc}{{ANl{ce}}}{}{}}{{{d{{B@b{ceg}}}}}{{ANl{cLh}}}AFl{}{}}{{{d{{AOd{ce}}}}}c{AFl{AFn{}{{Ln{}}}}}{}}{{{d{{B@f{ce}}}}}c{AFl{AHb{}{{Ln{}}}}{AH`{}{{Ln{}}}}}{}}{{{ANj{ce}}}c{{AHb{}{{Ln{}}}}AFl}{}}{{}c{}}0000000000000000000000{B@n}{{{d{{AEb{ce}}}}}c{AFl{AH`{}{{Ln{}}}}}{}}{{{d{{B@f{ce}}}}}c{AFl{AH`{}{{Ln{}}}}}{}}{{{d{{B@d{ce}}}}}c{AFl{AFn{}{{Ln{}}}}}{}}{AKb}{ANj}{{{d{{Lj{ceg}}}}}{{Lj{cei}}}AFl{}{}{}}{{{d{{B@`{ceg}}}}}{{B@`{cei}}}AFl{}{}{}}{{{ADj{ce}}c}{{ADj{ce}}}AK`{}}0{{{ANl{ce}}c}{{ANl{ce}}}AK`{}}10{{{d{{Lj{ceg}}}}}{{Lj{cig}}}AFl{}{}{}}{{{d{{B@`{ceg}}}}}{{B@`{cig}}}AFl{}{}{}};{Nn}{AO`}{AOf}{AOh}{ADj}{ANl}{AOjJh}{AOlJh}{{{d{{AEb{ce}}}}}{{ABf{c}}}AFl{}}{{{d{{B@f{ce}}}}}{{ABf{c}}}AFl{}}{{{d{{B@d{ce}}}}}{{ABf{c}}}{AFl{AFn{}{{Ln{}}}}}{}}{{{AO`{ce}}}{{Nn{ce}}}AFl{}}{{{ANl{ce}}}{{ADj{ce}}}AFl{}}{AOlAOj}{{{d{{B@f{ce}}}}}c{AFl{AHb{}{{Ln{}}}}{AH`{}{{Ln{}}}}}{}}3210{B@n}?>=<;:98765{{{Nn{ce}}}{{Nn{ce}}}AFl{}}{{{ADj{ce}}}{{ADj{ce}}}AFl{}}65432{AO`}?=;9{{}{{AEb{ce}}}BA`{}}{{}{{B@f{ce}}}BA`{}}{{}{{ANn{ce}}}BA`{}}{{}{{Nn{ce}}}BA`{}}0{{}{{AO`{ce}}}BA`{}}0{{}{{B@d{ce}}}BA`{}}{{}{{AOd{ce}}}BA`{}}{{}{{AKb{ce}}}BA`{}}0{{}{{ANj{ce}}}BA`{}}0{{}{{ADj{ce}}}BA`{}}0{{}{{ANl{ce}}}BA`{}}0{{{Nn{ce}}{Nn{ce}}i}{{ADj{ge}}}{}{}{}{{Jf{cc}{{Ln{g}}}}}}{{{AO`{ce}}{AO`{ce}}i}{{ANl{ge}}}{}{}{}{{Jf{cc}{{Ln{g}}}}}}{{{ADj{ce}}{ADj{ce}}i}{{ADj{ge}}}{}{}{}{{Jf{cc}{{Ln{g}}}}}}{{{ANl{ce}}{ANl{ce}}i}{{ANl{ge}}}{}{}{}{{Jf{cc}{{Ln{g}}}}}}`{{}c{}}{{{d{AHh}}{d{AHh}}}Jh}{{{d{AHh}}{d{AHh}}{d{c}}}Jh{}}{{cc}cAJl}0````````````````````{BAj}{BAl}{BAn}{AJ`}1{BB`}003{BBb}{BBd}10001010001010000000{AJfNn}{BBfAO`}10{BBhNn}58{BBjB@b}{BBhAKb}:{BBjANl}{BBl}:;{AKl}{BBn}{AKn}{BC`}4{BCb}{BCd}54326104260`````{B@jB@j}{BAdBAd}{{}B@l}{BAfBAf}{{}BA`}````{eg{}{{b{c}}}{}}00{ce{}{}}00{{}c{}}00{d{{d{f}}}}00{{{d{h}}}{{d{hf}}}}00{d{{d{c}}}{}}00{{{d{h}}}{{d{hc}}}{}}00{{{j{c}}}e{}{}}00666{AGjNn}{Bf{{d{c}}}{}}00{Bf{{d{hc}}}{}}00555{Bfn}00{cc{}}004000{ce{}{}}00{{}Bf}00{{}c{}}00000{{{Ef{c}}}{{Ef{f}}}{}}00{{{Eh{c}}}{{Eh{f}}}{}}00{{{Ej{c}}}{{Ej{f}}}{}}00;;;333333{{}c{}}0{{}c{}}00{{{d{{AGj{c}}}}c}{{BCf{c}}}AFh}{{{d{h{AIl{c}}}}}{{H`{{Nn{cLh}}}}}AFh}{{{d{h{AIn{c}}}}}{{H`{c}}}AFh}{{{d{{AIl{c}}}}}{{AAf{Bf{H`{Bf}}}}}AFh}{{{d{{AIn{c}}}}}{{AAf{Bf{H`{Bf}}}}}AFh}{AGjNn}{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{Gl{c}}}}}{}}00{dGn}00{ce{}{}}00{{}c{}}00{d{{H`{{d{c}}}}}{}}00{{}c{}}00```{{{d{{AGd{}{{AGb{c}}}}}}c}{{AGd{}{{AGb{c}}}}}AFh}{{{d{{AGd{}{{AGb{c}}}}}}c}cAFh}1{{{d{{AGd{}{{AGb{c}}}}}}c}{{ADj{cLh}}}AFh}11{{{d{{AGd{}{{AGb{c}}}}}}}{{AGd{}{{AGb{c}}}}}AFh}{{{d{{AGd{}{{AGb{c}}}}}}c{d{hJf}}}nAFh}{{{d{{AGd{}{{AGb{c}}}}}}}{{Nn{cLh}}}AFh}{{{d{{AGd{}{{AGb{c}}}}}}c}{{Nn{cLh}}}AFh}{{{d{{AGd{}{{AGb{c}}}}}}c}{{AAf{{AGd{}{{AGb{c}}}}{AGd{}{{AGb{c}}}}}}}AFh}{{{d{{AGd{}{{AGb{c}}}}}}{ABf{c}}}{{AGd{}{{AGb{c}}}}}AFh}3{{{d{ACl}}{Nn{cLh}}}{{Nn{cLh}}}{}}{{{d{ACl}}{ADj{cLh}}}{{ADj{cLh}}}{}}99{{cccc}{{AI`{c}}}AFh}{{{ADj{cLh}}{ADj{cLh}}}cAFh}{{{Nn{cLh}}{Nn{cLh}}{Nn{cLh}}}cAFh}{{cc}{{AAf{cc}}}AJb}{{{ADj{cLh}}}{{ADj{cLh}}}AFh}{{{ADj{cLh}}}{{ADj{cLh}}}AJb}`````{eg{}{{b{c}}}{}}000{ce{}{}}000{{}c{}}000{d{{d{f}}}}000{{{d{h}}}{{d{hf}}}}000{d{{d{c}}}{}}000{{{d{h}}}{{d{hc}}}{}}000{{{j{c}}}e{}{}}000{c{{BCh{c}}}{{AKf{}{{Mb{{Nn{GfLh}}}}}}}}7777{Bf{{d{c}}}{}}000{Bf{{d{hc}}}{}}0005555{Bfn}000{{BCjGf}{{BCl{BCj}}}}0{cc{}}0000000{ce{}{}}000{{}Bf}000{{}c{}}0000000{{{Ef{c}}}{{Ef{f}}}{}}000{{{Eh{c}}}{{Eh{f}}}{}}000{{{Ej{c}}}{{Ej{f}}}{}}000<<<<33333333{{}c{}}000{{}c{}}000{{Gfc}{{BCl{c}}}{{AKf{}{{Mb{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}}}}}}{{{d{c}}e}{{BCn{ec}}}{{ACl{Gf}}}{{AKf{}{{Mb{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}}}}}}{{Jhc}{{BCh{c}}}{{AKf{}{{Mb{{Nn{GfLh}}}}}}}}{{{d{h{ACh{c}}}}}{{H`{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}}}{{AKf{}{{Mb{{Oj{{AAf{{Nn{GfLh}}{d{{En{Gf}}}}}}{Nn{GfLh}}}}}}}}}}{{{d{h{BCl{c}}}}}{{H`{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}}}{{AKf{}{{Mb{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}}}}}}{{{d{h{BCn{ce}}}}}{{H`{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}}}{{AKf{}{{Mb{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}}}}}{{ACl{Gf}}}}{{{d{h{BCh{c}}}}}{{H`{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}}}{{AKf{}{{Mb{{Nn{GfLh}}}}}}}}{c{{BCh{c}}}{{AKf{}{{Mb{{Nn{GfLh}}}}}}}}{{{d{{BCl{c}}}}}{{AAf{Bf{H`{Bf}}}}}{{AKf{}{{Mb{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}}}}}}{{BCj{d{c}}}{{BCn{BCjc}}}{{ACl{Gf}}}}0{{}{{G`{c}}}{}}000{c{{G`{e}}}{}{}}000{{}{{G`{c}}}{}}000{{}{{G`{c{Gl{c}}}}}{}}000{dGn}000{ce{}{}}000{{}c{}}000{d{{H`{{d{c}}}}}{}}000{{}c{}}000{{{ACh{c}}}c{{AKf{}{{Mb{{Oj{{AAf{{Nn{GfLh}}{d{{En{Gf}}}}}}{Nn{GfLh}}}}}}}}}}`````````{BD`Gf}{BDbGf}{BDdGf}00000{BDfNn}0{{GfGf}{{Nn{GfLh}}}}{BDhGf}{{GfGf}{{AKb{GfLh}}}}{{GfGf}{{ADj{GfLh}}}}6{BDjGf}{BDlGf}{BDnGf}210``````````````{eg{}{{b{c}}}{}}00{ce{}{}}00{{}c{}}00{d{{d{f}}}}00{{{d{h}}}{{d{hf}}}}00{{{d{hOf}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}{{{d{hOf}}{Nn{GfLh}}}Nj}{{{d{hBE`}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}0{d{{d{c}}}{}}00{{{d{h}}}{{d{hc}}}{}}00{OfBf}0{BE`Bf}0{{{j{c}}}e{}{}}00{{{d{ABn}}}ABn}{{d{d{hc}}}n{}}{{dEl}n}>>>{{{d{hOf}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}{{{d{hOf}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}}Nj}{{{d{hBE`}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}0{Bf{{d{c}}}{}}00{Bf{{d{hc}}}{}}00<<<{Bfn}00{{{d{hOf}}Jh}n}0{{{d{hBE`}}Jh}n}0{cc{}}00000{ce{}{}}00{{}Bf}00{{}c{}}00000{{{Ef{c}}}{{Ef{f}}}{}}00{{{Eh{c}}}{{Eh{f}}}{}}00{{{Ej{c}}}{{Ej{f}}}{}}00{{{j{c}}}e{}{}}00444444{{}c{}}{{}c{}}00{{{d{hOf}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}{{{d{hOf}}{Nn{GfLh}}}Nj}{{{d{hBE`}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}0{{{d{hNf}}Bf}BE`}{{{d{hABn}}}{{H`{Nd}}}}0{{{d{Of}}}Bf}{{{d{BE`}}}Bf}{{{d{hOf}}{Nn{GfLh}}{Nn{GfLh}}}Nj}{{{d{hOf}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}{{{d{hBE`}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}0{{{d{hOf}}BfBf}n}0{{{d{hBE`}}BfBf}n}0{{{d{ABn}}}{{AAf{Bf{H`{Bf}}}}}}{dc{}}{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{Gl{c}}}}}{}}00{dGn}00{ce{}{}}00{{}c{}}00{d{{H`{{d{c}}}}}{}}00{{}c{}}00{{OfBf}BE`}``````{eg{}{{b{c}}}{}}000{ce{}{}}0005555{d{{d{f}}}}000{{{d{h}}}{{d{hf}}}}000{d{{d{c}}}{}}000{{{d{h}}}{{d{hc}}}{}}000{{{j{c}}}e{}{}}000{{{d{ACb}}}ACb}{{{d{{AC`{c}}}}}{{AC`{c}}}Aj}{{{d{{ACd{c}}}}}{{ACd{c}}}Aj}{{{d{ABd}}}ABd}{{d{d{hc}}}n{}}000{{dEl}n}000{A@bJh}{A@dJh}===={Bf{{d{c}}}{}}000{Bf{{d{hc}}}{}}000<<<<{Bfn}000{cc{}}0000000{ce{}{}}000{{}Bf}000{{}c{}}0000000{{{Ef{c}}}{{Ef{f}}}{}}000{{{Eh{c}}}{{Eh{f}}}{}}000{{{Ej{c}}}{{Ej{f}}}{}}000{{{j{c}}}e{}{}}00044444444{{}c{}}000{{}c{}}000{{{ABf{Ad}}Jh}ABd}{{{d{hACb}}}{{H`{{Oj{NjAA`}}}}}}{{{d{h{AC`{c}}}}}{{H`{{Oj{{d{c}}n}}}}}{}}{{{d{h{ACd{c}}}}}{{H`{{Oj{{Nn{GfLh}}{Nn{GfLh}}}}}}}AAn}{{{d{hABd}}}{{H`{{Oj{NjAA`}}}}}}{{}{{BEb{c}}}{}}{A@bd}{A@dd}{dc{}}000{{}{{G`{c}}}{}}000{c{{G`{e}}}{}{}}000{{}{{G`{c}}}{}}000{{}{{G`{c{Gl{c}}}}}{}}000{dGn}000{ce{}{}}000{{}c{}}000{d{{H`{{d{c}}}}}{}}000{{}c{}}000`````{{{d{hAE`}}{ADj{GfLh}}{ADl{Gf}}Oh{Nn{GfLh}}}n}{{{d{hADh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}{{{AEl{}{{AEj{c}}}}}c{}}{{{d{hAE`}}}n}{{{d{hADh}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}{{{d{hAE`}}{Nn{GfLh}}{Nn{GfLh}}{Nn{GfLh}}}n}{{{d{hADh}}Jh}n}{{{d{hAE`}}Gf}n}6{{{d{hAE`}}{Nn{GfLh}}}n}0{{{d{ADh}}}Bf}{{{d{hADh}}{Nn{GfLh}}{Nn{GfLh}}{d{{En{Gf}}}}}Nj}{{{d{hAE`}}{Nn{GfLh}}{Nn{GfLh}}}n}{{{d{hAE`}}{ADj{GfLh}}{ADl{Gf}}Oh{ADj{GfLh}}}n}{{{d{hAE`}}{ADj{GfLh}}{ADj{GfLh}}{ADj{GfLh}}}n}6{{{d{hAE`}}{ADj{GfLh}}}n}0{{{d{hAE`}}{ADj{GfLh}}{ADj{GfLh}}}n}847018`````````````{I`Ib}{I`If}{I`Id}{IfBf}{Ifd}{I`Ih}{I`Gf}","D":"LNf","p":[[10,"TransformMatrix",7235],[1,"reference",null,null,1],[10,"Any",7236],[0,"mut"],[5,"BakedParameters",7237],[6,"Renderer",11],[1,"unit"],[10,"Renderer",7238],[6,"Compositor",11],[1,"u32"],[10,"Compositor",7239],[10,"Window",7239],[10,"Clone",7240],[10,"Renderer",7241],[17,"Font"],[17,"Paragraph"],[17,"Editor"],[5,"Pixels",7242],[1,"usize"],[10,"Renderer",7228,7243],[5,"Image",7228,7244],[5,"Rectangle",7245],[10,"Renderer",7244],[17,"Handle"],[6,"Mesh",7246],[10,"Renderer",7246],[10,"Renderer",7247],[10,"Primitive",7247],[5,"Svg",7228,7248],[10,"Renderer",7248],[5,"Information",7239],[5,"Point",7249],[5,"Color",7250],[5,"Quad",7238],[6,"Background",7251],[10,"Into",7252,null,1],[5,"String",7253],[5,"Text",7241],[5,"Formatter",7254],[8,"Result",7254],[10,"Debug",7254],[6,"Surface",11],[5,"Box",7255,null,1],[5,"Arc",7256,null,1],[5,"Rc",7257,null,1],[1,"u8"],[1,"slice"],[6,"Cow",7258],[5,"Size",7259],[5,"Handle",7248],[5,"Font",7260],[5,"Renderer",7261],[5,"Renderer",7262],[5,"Viewport",7263],[6,"SurfaceError",7239],[6,"Result",7264,null,1],[1,"str"],[10,"AsRef",7252],[1,"f32"],[5,"Vec",7265],[5,"Transformation",7266],[5,"OutOfBounds",7267],[5,"TypeId",7236],[6,"Option",7268,null,1],[5,"Settings",7269],[6,"Error",7270],[5,"Frame",7228,7271],[5,"Path",7228,7272],[5,"Cache",7228,7273],[6,"Gradient",7228,7274],[5,"Fill",7228,7275],[5,"Stroke",7228,7276],[6,"LineCap",7228,7276],[6,"LineJoin",7228,7276],[5,"LineDash",7228,7276],[6,"Style",7228,7277],[5,"Text",7228,7278],[10,"FnOnce",7279],[17,"Geometry"],[17,"Frame"],[10,"Cached",7280],[10,"Backend",854,7271],[10,"FnMut",7279],[1,"bool"],[10,"PartialEq",7281],[6,"FilterMethod",7244],[5,"Error",7254],[5,"Linear",880,7274],[6,"Handle",7244],[6,"Horizontal",7282],[6,"LineHeight",7241],[5,"Builder",1110,7283],[5,"Packed",880,7274],[5,"Path",7142,7284],[5,"Radians",7285],[5,"Radius",7286],[6,"Rule",844,7275],[5,"Vector",7287],[6,"Shaping",7241],[5,"UnknownUnit",5772,7288],[5,"Transform2D",5772,7289],[6,"Vertical",7282],[17,"Output"],[5,"Group",7280],[17,"Item"],[5,"ColorStop",7290],[10,"IntoIterator",7291],[6,"Gradient",7290],[1,"array"],[5,"Arc",1110,7292],[5,"Elliptical",1111,7292],[5,"PathCommands",7142,7293],[5,"PathCommandsSlice",7142,7293],[5,"PathSlice",7142,7284],[5,"PathBuffer",7142,7294],[5,"PathBufferSlice",7142,7294],[5,"EndpointId",7142,7295],[5,"BuilderImpl",7142,7284],[5,"Point2D",5772,7296],[5,"BuilderWithAttributes",7142,7284],[5,"PathCommandsBuilder",2763,7293],[5,"NoAttributes",7189,7297],[5,"Builder",6858,7294],[5,"ArcFlags",7142,7298],[6,"Event",7142,7299],[5,"Iter",7142,7284],[5,"IterWithAttributes",7142,7284],[5,"IdIter",7142,7284],[5,"Polygon",7142,7300],[5,"IdPolygon",7142,7300],[6,"LineCap",7142,7295],[6,"LineJoin",7142,7295],[6,"Side",7142,7295],[6,"FillRule",7142,7295],[6,"Winding",7142,7295],[5,"ControlPointId",7142,7295],[5,"EventId",7142,7295],[5,"Events",2763,7293],[1,"tuple",null,null,1],[10,"AttributeStore",7142,7295],[5,"AttributeSlice",7142,7295],[10,"PositionStore",7142,7295],[10,"Position",7142,7295],[10,"Hash",7301],[10,"Hasher",7301],[5,"PolygonIdIter",7144,7300],[5,"Range",7302],[5,"Iter",2763,7293],[5,"Reversed",7142,7284],[1,"i16"],[5,"Iter",6858,7294],[5,"PolygonIter",7144,7300],[5,"IdPolygonIter",7144,7300],[5,"PathEvents",7144,7300],[5,"CommandsPathSlice",2763,7293],[5,"NoAttributes",6655,7303],[5,"WithSvg",7189,7297],[10,"Transformation",6645,7304],[15,"Begin",2367],[15,"End",2367],[15,"Quadratic",2367],[15,"Cubic",2367],[15,"Line",2367],[10,"PathBuilder",7189,7297],[5,"Vector2D",5772,7305],[5,"Angle",6647,7306],[5,"LineSegment",6647,7307],[10,"SvgPathBuilder",7189,7297],[5,"Box2D",5772,7308],[5,"BorderRadii",7189,7297],[5,"Flattened",7189,7297],[5,"Transformed",7189,7297],[17,"PathType"],[10,"Build",7189,7297],[10,"Default",7309],[6,"Ordering",7281],[5,"SmolStr",7310],[5,"PointEvents",2763,7293],[5,"LineEquation",6647,7307],[10,"Scalar",6647,7311],[5,"Triangle",6647,7312],[10,"Copy",7313],[10,"Add",7314],[10,"AddAssign",7314],[17,"Scalar"],[10,"Segment",6647,7315],[5,"Arc",6647,7298],[5,"CubicBezierSegment",6647,7316],[5,"QuadraticBezierSegment",6647,7317],[8,"Rotation",6647,7318],[10,"Rem",7314],[10,"Sub",7314],[10,"Mul",7314],[10,"One",7319],[10,"FloatConst",7320],[10,"ApproxEq",6411,7321],[10,"NumCast",7322],[5,"SvgArc",6647,7298],[5,"Line",6647,7307],[5,"ArrayVec",3860,7323],[10,"Trig",5772,7324],[10,"Div",7314],[10,"DivAssign",7314],[5,"Flattened",3849,7298],[5,"Flattened",4328,7316],[5,"Flattened",6602,7317],[5,"FlattenedT",6602,7317],[8,"Size",6647],[10,"Float",7320],[8,"Transform",6647,7318],[8,"Box2D",6647,7325],[10,"MulAssign",7314],[10,"Neg",7314],[10,"PartialOrd",7281],[10,"Zero",7319],[10,"Real",7326],[5,"Size2D",5772,7327],[10,"SubAssign",7314],[10,"Iterator",7328],[1,"f64"],[8,"Translation",6647,7318],[8,"Point",6647],[8,"Vector",6647],[5,"ArrayString",3860,7329],[5,"IntoIter",3860,7323],[5,"Path",7330],[5,"CapacityError",3860,7331],[10,"Ord",7281],[5,"Drain",3860,7323],[10,"RangeBounds",7302],[1,"char"],[10,"FromIterator",7291],[5,"Error",7332],[5,"Utf8Error",7333],[5,"Arguments",7254],[1,"i8"],[1,"i64"],[1,"u16"],[1,"i128"],[1,"u64"],[1,"u128"],[1,"i32"],[6,"Endian",7334],[10,"Signed",7335],[5,"Size3D",5772,7327],[5,"Vector3D",5772,7305],[5,"Length",5772,7336],[5,"Point3D",5772,7296],[5,"Scale",5772,7337],[5,"SideOffsets2D",5772,7338],[5,"Translation2D",5772,7339],[5,"Translation3D",5772,7339],[5,"BoolVector2D",5772,7305],[5,"BoolVector3D",5772,7305],[5,"Rotation2D",5772,7340],[5,"Transform3D",5772,7341],[5,"Rotation3D",5772,7340],[5,"Rect",5772,7342],[5,"Box3D",5772,7343],[5,"RigidTransform3D",5772,7344],[10,"Ceil",6500,7345],[10,"One",6500,7345],[5,"HomogeneousVector",5772,7346],[10,"Zero",6500,7345],[10,"Euclid",7347],[10,"Floor",6500,7345],[10,"Round",6500,7345],[10,"Saturating",7348],[8,"Rotation2D",6492,7325],[8,"SideOffsets2D",6492,7325],[8,"Size3D",6492,7325],[8,"Rotation3D",6492,7325],[8,"Transform2D",6492,7325],[8,"Transform3D",6492,7325],[8,"Box3D",6492,7325],[8,"Rect",6492,7325],[8,"RigidTransform3D",6492,7325],[8,"HomogeneousVector",6492,7325],[8,"Point3D",6492,7325],[8,"Vector3D",6492,7325],[8,"Translation2D",6492,7325],[8,"Translation3D",6492,7325],[5,"FlatteningParameters",6602,7317],[5,"FromPolyline",6655,7303],[10,"PathIterator",6655,7303],[5,"Flattened",6655,7303],[5,"Transformed",6655,7303],[8,"Rotation",6819,7349],[8,"Size",6819,7349],[8,"Transform",6819,7349],[8,"Box2D",6819,7349],[8,"Angle",6819,7349],[8,"Point",6819,7349],[8,"Vector",6819,7349],[8,"Translation",6819,7349],[5,"BuilderWithAttributes",6858,7294],[5,"IterBridge",7350],[8,"Renderer",0],[8,"Compositor",0],[8,"PathEvent",7142],[8,"IdEvent",7142]],"r":[[8,7351],[157,7276],[158,7276],[159,7273],[160,7275],[161,7271],[162,7243],[163,7243],[164,7274],[165,7277],[166,7244],[167,7276],[168,7276],[169,7276],[170,7274],[171,7276],[172,7272],[173,7243],[174,7276],[175,7276],[176,7277],[177,7276],[178,7276],[179,7277],[180,7248],[181,7278],[182,7271],[183,7273],[184,7274],[185,7275],[186,7272],[187,7276],[188,7276],[189,7276],[190,7276],[191,7277],[192,7278],[193,7244],[194,7248],[195,7271],[196,7273],[197,7274],[198,7275],[199,7272],[200,7276],[201,7276],[202,7276],[203,7276],[204,7277],[205,7278],[206,7244],[207,7248],[208,7271],[209,7273],[210,7274],[211,7275],[212,7272],[213,7276],[214,7276],[215,7276],[216,7276],[217,7277],[218,7278],[219,7244],[220,7248],[221,7271],[222,7273],[223,7274],[224,7275],[225,7272],[226,7276],[227,7276],[228,7276],[229,7276],[230,7277],[231,7278],[232,7244],[233,7248],[234,7271],[235,7273],[236,7274],[237,7275],[238,7272],[239,7276],[240,7276],[241,7276],[242,7276],[243,7277],[244,7278],[245,7244],[246,7248],[247,7271],[248,7273],[249,7274],[250,7275],[251,7272],[252,7276],[253,7276],[254,7276],[255,7276],[256,7277],[257,7278],[258,7244],[259,7248],[260,7271],[261,7273],[262,7274],[263,7275],[264,7272],[265,7276],[266,7276],[267,7276],[268,7276],[269,7277],[270,7278],[271,7244],[272,7248],[273,7271],[274,7273],[275,7274],[276,7275],[277,7272],[278,7276],[279,7276],[280,7276],[281,7276],[282,7277],[283,7278],[284,7244],[285,7248],[286,7271],[287,7272],[288,7273],[289,7274],[290,7275],[291,7272],[292,7276],[293,7276],[294,7276],[295,7276],[296,7277],[297,7278],[298,7244],[299,7248],[300,7274],[301,7275],[302,7272],[303,7276],[304,7276],[305,7276],[306,7276],[307,7277],[308,7278],[309,7244],[310,7248],[311,7274],[312,7275],[313,7272],[314,7276],[315,7276],[316,7276],[317,7276],[318,7277],[319,7278],[320,7244],[321,7248],[322,7248],[323,7278],[324,7248],[325,7271],[326,7273],[327,7274],[328,7275],[329,7272],[330,7276],[331,7276],[332,7276],[333,7276],[334,7277],[335,7278],[336,7244],[337,7248],[338,7278],[339,7273],[340,7275],[341,7276],[342,7276],[343,7276],[344,7276],[345,7278],[346,7271],[347,7273],[348,7274],[349,7275],[350,7272],[351,7276],[352,7276],[353,7276],[354,7276],[355,7277],[356,7278],[357,7244],[358,7248],[359,7271],[360,7273],[361,7274],[362,7275],[363,7272],[364,7276],[365,7276],[366,7276],[367,7276],[368,7277],[369,7278],[370,7244],[371,7248],[372,7271],[373,7273],[374,7274],[375,7275],[376,7272],[377,7276],[378,7276],[379,7276],[380,7276],[381,7277],[382,7278],[383,7244],[384,7248],[385,7273],[386,7243],[387,7271],[388,7271],[389,7278],[390,7271],[391,7273],[392,7274],[393,7275],[394,7272],[395,7276],[396,7276],[397,7276],[398,7276],[399,7277],[400,7278],[401,7244],[402,7248],[403,7274],[404,7277],[405,7244],[406,7248],[407,7243],[408,7271],[409,7271],[410,7271],[411,7244],[412,7244],[413,7273],[414,7274],[415,7275],[416,7272],[417,7276],[418,7276],[419,7276],[420,7276],[421,7277],[422,7278],[423,7244],[424,7248],[425,7278],[426,7243],[427,7271],[428,7273],[429,7274],[430,7274],[431,7275],[432,7275],[433,7275],[434,7275],[435,7272],[436,7276],[437,7276],[438,7276],[439,7276],[440,7277],[441,7277],[442,7277],[443,7278],[444,7278],[445,7278],[446,7244],[447,7244],[448,7248],[449,7248],[450,7271],[451,7273],[452,7274],[453,7275],[454,7272],[455,7276],[456,7276],[457,7276],[458,7276],[459,7277],[460,7278],[461,7244],[462,7248],[463,7271],[464,7273],[465,7274],[466,7275],[467,7272],[468,7276],[469,7276],[470,7276],[471,7276],[472,7277],[473,7278],[474,7244],[475,7248],[476,7351],[477,7244],[478,7248],[479,7271],[480,7278],[481,7271],[482,7273],[483,7274],[484,7275],[485,7272],[486,7276],[487,7276],[488,7276],[489,7276],[490,7277],[491,7278],[492,7244],[493,7248],[494,7271],[495,7273],[496,7274],[497,7275],[498,7272],[499,7276],[500,7276],[501,7276],[502,7276],[503,7277],[504,7278],[505,7244],[506,7248],[507,7271],[508,7273],[509,7274],[510,7275],[511,7272],[512,7276],[513,7276],[514,7276],[515,7276],[516,7277],[517,7278],[518,7244],[519,7248],[520,7271],[521,7273],[522,7274],[523,7275],[524,7272],[525,7276],[526,7276],[527,7276],[528,7276],[529,7277],[530,7278],[531,7244],[532,7248],[533,7271],[534,7274],[535,7275],[536,7272],[537,7276],[538,7276],[539,7276],[540,7276],[541,7277],[542,7278],[543,7244],[544,7248],[545,7271],[546,7273],[547,7274],[548,7275],[549,7272],[550,7276],[551,7276],[552,7276],[553,7276],[554,7277],[555,7278],[556,7244],[557,7248],[558,7271],[559,7273],[560,7274],[561,7275],[562,7272],[563,7276],[564,7276],[565,7276],[566,7276],[567,7277],[568,7278],[569,7244],[570,7248],[571,7271],[572,7273],[573,7274],[574,7275],[575,7272],[576,7276],[577,7276],[578,7276],[579,7276],[580,7277],[581,7278],[582,7244],[583,7248],[584,7271],[585,7273],[586,7274],[587,7275],[588,7272],[589,7276],[590,7276],[591,7276],[592,7276],[593,7277],[594,7278],[595,7244],[596,7248],[597,7271],[598,7271],[599,7273],[600,7274],[601,7275],[602,7272],[603,7276],[604,7276],[605,7276],[606,7276],[607,7277],[608,7278],[609,7244],[610,7248],[611,7272],[612,7276],[613,7276],[614,7278],[615,7276],[616,7271],[617,7273],[618,7272],[619,7244],[620,7248],[621,7243],[622,7273],[623,7275],[624,7276],[625,7276],[626,7276],[627,7276],[628,7278],[629,7276],[630,7244],[631,7248],[632,7244],[633,7248],[634,7274],[635,7243],[636,7271],[637,7278],[638,7271],[639,7272],[640,7272],[641,7271],[642,7244],[643,7248],[644,7244],[645,7248],[646,7272],[647,7275],[648,7271],[649,7271],[650,7276],[651,7278],[652,7271],[653,7278],[654,7244],[655,7244],[656,7243],[657,7271],[658,7271],[659,7275],[660,7276],[661,7274],[662,7275],[663,7272],[664,7276],[665,7276],[666,7276],[667,7276],[668,7277],[669,7278],[670,7244],[671,7248],[672,7272],[673,7271],[674,7271],[675,7273],[676,7274],[677,7275],[678,7272],[679,7276],[680,7276],[681,7276],[682,7276],[683,7277],[684,7278],[685,7244],[686,7248],[687,7271],[688,7273],[689,7274],[690,7275],[691,7272],[692,7276],[693,7276],[694,7276],[695,7276],[696,7277],[697,7278],[698,7244],[699,7248],[700,7271],[701,7273],[702,7274],[703,7275],[704,7272],[705,7276],[706,7276],[707,7276],[708,7276],[709,7277],[710,7278],[711,7244],[712,7248],[713,7271],[714,7273],[715,7274],[716,7275],[717,7272],[718,7276],[719,7276],[720,7276],[721,7276],[722,7277],[723,7278],[724,7244],[725,7248],[726,7271],[727,7273],[728,7274],[729,7275],[730,7272],[731,7276],[732,7276],[733,7276],[734,7276],[735,7277],[736,7278],[737,7244],[738,7248],[739,7271],[740,7273],[741,7274],[742,7275],[743,7272],[744,7276],[745,7276],[746,7276],[747,7276],[748,7277],[749,7278],[750,7244],[751,7248],[752,7271],[753,7273],[754,7274],[755,7275],[756,7272],[757,7276],[758,7276],[759,7276],[760,7276],[761,7277],[762,7278],[763,7244],[764,7248],[765,7271],[766,7273],[767,7274],[768,7275],[769,7272],[770,7276],[771,7276],[772,7276],[773,7276],[774,7277],[775,7278],[776,7244],[777,7248],[778,7278],[779,7271],[780,7273],[781,7274],[782,7275],[783,7272],[784,7276],[785,7276],[786,7276],[787,7276],[788,7277],[789,7278],[790,7244],[791,7248],[792,7271],[793,7276],[794,7271],[795,7276],[796,7273],[797,7276],[798,7276],[799,7271],[800,7276],[801,7275],[802,7275],[803,7277],[804,7275],[805,7275],[806,7277],[807,7277],[808,7275],[809,7275],[810,7275],[811,7275],[812,7275],[813,7275],[814,7275],[815,7275],[816,7275],[817,7275],[818,7275],[819,7275],[820,7275],[821,7275],[822,7275],[823,7275],[824,7275],[825,7275],[826,7275],[827,7275],[828,7275],[829,7275],[830,7275],[831,7275],[832,7275],[833,7275],[834,7275],[835,7275],[836,7275],[837,7275],[838,7275],[839,7275],[840,7275],[841,7275],[842,7275],[843,7275],[844,7275],[845,7275],[846,7275],[847,7275],[848,7275],[849,7275],[850,7275],[851,7275],[852,7275],[853,7275],[854,7271],[855,7271],[856,7271],[857,7271],[858,7271],[859,7271],[860,7271],[861,7271],[862,7271],[863,7271],[864,7271],[865,7271],[866,7271],[867,7271],[868,7271],[869,7271],[870,7271],[871,7271],[872,7271],[873,7271],[874,7271],[875,7271],[876,7271],[877,7274],[878,7274],[879,7274],[880,7274],[881,7274],[882,7274],[883,7274],[884,7274],[885,7274],[886,7274],[887,7274],[888,7274],[889,7274],[890,7274],[891,7274],[892,7274],[893,7274],[894,7274],[895,7274],[896,7274],[897,7274],[898,7274],[899,7274],[900,7274],[901,7274],[902,7274],[903,7274],[904,7274],[905,7274],[906,7274],[907,7274],[908,7274],[909,7274],[910,7274],[911,7274],[912,7274],[913,7274],[914,7274],[915,7274],[916,7274],[917,7274],[918,7274],[919,7274],[920,7274],[921,7274],[922,7274],[923,7274],[924,7274],[925,7274],[926,7274],[927,7274],[928,7274],[929,7274],[930,7274],[931,7274],[932,7274],[933,7274],[934,7274],[935,7274],[936,7274],[937,7274],[938,7274],[939,7274],[940,7274],[941,7274],[942,7274],[943,7274],[944,7274],[945,7274],[946,7274],[947,7274],[948,7274],[949,7274],[950,7274],[951,7274],[952,7274],[953,7274],[954,7274],[955,7274],[956,7274],[957,7274],[958,7274],[959,7274],[960,7274],[961,7274],[962,7274],[963,7274],[964,7274],[965,7274],[966,7274],[967,7274],[968,7274],[969,7274],[970,7274],[971,7274],[972,7292],[973,7283],[974,7272],[975,7283],[976,7292],[977,7272],[978,7283],[979,7283],[980,7283],[981,7292],[982,7283],[983,7292],[984,7283],[985,7292],[986,7283],[987,7292],[988,7283],[989,7283],[990,7292],[991,7283],[992,7292],[993,7283],[994,7283],[995,7292],[996,7292],[997,7283],[998,7292],[999,7292],[1000,7292],[1001,7283],[1002,7283],[1003,7292],[1004,7283],[1005,7283],[1006,7292],[1007,7283],[1008,7292],[1009,7283],[1010,7292],[1011,7283],[1012,7292],[1013,7283],[1014,7292],[1015,7292],[1016,7283],[1017,7292],[1018,7283],[1019,7292],[1020,7283],[1021,7292],[1022,7283],[1023,7292],[1024,7283],[1025,7292],[1026,7283],[1027,7292],[1028,7283],[1029,7292],[1030,7283],[1031,7292],[1032,7283],[1033,7292],[1034,7283],[1035,7292],[1036,7283],[1037,7292],[1038,7283],[1039,7292],[1040,7283],[1041,7292],[1042,7283],[1043,7283],[1044,7283],[1045,7283],[1046,7283],[1047,7292],[1048,7283],[1049,7283],[1050,7292],[1051,7292],[1052,7283],[1053,7292],[1054,7283],[1055,7292],[1056,7283],[1057,7292],[1058,7283],[1059,7292],[1060,7283],[1061,7292],[1062,7283],[1063,7292],[1064,7283],[1065,7292],[1066,7283],[1067,7292],[1068,7283],[1069,7292],[1070,7292],[1071,7292],[1072,7292],[1073,7292],[1074,7292],[1075,7292],[1076,7292],[1077,7292],[1078,7292],[1079,7292],[1080,7292],[1081,7292],[1082,7292],[1083,7292],[1084,7292],[1085,7292],[1086,7292],[1087,7292],[1088,7292],[1089,7292],[1090,7292],[1091,7292],[1092,7292],[1093,7292],[1094,7292],[1095,7292],[1096,7292],[1097,7292],[1098,7292],[1099,7292],[1100,7292],[1101,7292],[1102,7292],[1103,7292],[1104,7292],[1105,7292],[1106,7292],[1107,7292],[1108,7292],[1109,7292],[1110,7292],[1111,7292],[1112,7292],[1113,7292],[1114,7292],[1115,7292],[1116,7292],[1117,7292],[1118,7292],[1119,7292],[1120,7292],[1121,7292],[1122,7298],[1123,7295],[1124,7295],[1125,7295],[1126,7295],[1129,7299],[1130,7295],[1131,7284],[1132,7284],[1133,7284],[1134,7295],[1135,7295],[1138,7299],[1141,7299],[1142,7295],[1143,7295],[1144,7299],[1145,7295],[1146,7295],[1147,7295],[1148,7295],[1149,7295],[1150,7299],[1151,7284],[1152,7300],[1153,7284],[1154,7284],[1157,7299],[1158,7295],[1159,7295],[1160,7295],[1161,7295],[1162,7295],[1163,7295],[1164,7295],[1165,7295],[1166,7284],[1167,7294],[1168,7294],[1169,7293],[1170,7293],[1171,7299],[1172,7284],[1173,7300],[1174,7295],[1175,7295],[1176,7295],[1177,7295],[1180,7299],[1181,7284],[1182,7295],[1183,7295],[1184,7295],[1185,7295],[1186,7295],[1187,7284],[1188,7298],[1189,7295],[1190,7293],[1191,7293],[1192,7299],[1193,7284],[1194,7284],[1195,7284],[1196,7284],[1197,7284],[1198,7284],[1199,7284],[1200,7294],[1201,7294],[1202,7300],[1203,7300],[1204,7295],[1205,7295],[1206,7295],[1207,7295],[1208,7295],[1209,7295],[1210,7295],[1211,7295],[1212,7284],[1213,7298],[1214,7295],[1215,7293],[1216,7293],[1217,7299],[1218,7284],[1219,7284],[1220,7284],[1221,7284],[1222,7284],[1223,7284],[1224,7284],[1225,7294],[1226,7294],[1227,7300],[1228,7300],[1229,7295],[1230,7295],[1231,7295],[1232,7295],[1233,7295],[1234,7295],[1235,7295],[1236,7295],[1237,7284],[1238,7298],[1239,7295],[1240,7293],[1241,7293],[1242,7299],[1243,7284],[1244,7284],[1245,7284],[1246,7284],[1247,7284],[1248,7284],[1249,7284],[1250,7294],[1251,7294],[1252,7300],[1253,7300],[1254,7295],[1255,7295],[1256,7295],[1257,7295],[1258,7295],[1259,7295],[1260,7295],[1261,7295],[1262,7284],[1263,7298],[1264,7295],[1265,7293],[1266,7293],[1267,7299],[1268,7284],[1269,7284],[1270,7284],[1271,7284],[1272,7284],[1273,7284],[1274,7284],[1275,7294],[1276,7294],[1277,7300],[1278,7300],[1279,7295],[1280,7295],[1281,7295],[1282,7295],[1283,7295],[1284,7295],[1285,7295],[1286,7295],[1287,7284],[1288,7298],[1289,7295],[1290,7293],[1291,7293],[1292,7299],[1293,7284],[1294,7284],[1295,7284],[1296,7284],[1297,7284],[1298,7284],[1299,7284],[1300,7294],[1301,7294],[1302,7300],[1303,7300],[1304,7295],[1305,7295],[1306,7295],[1307,7295],[1308,7295],[1309,7295],[1310,7295],[1311,7295],[1312,7293],[1313,7284],[1314,7294],[1315,7284],[1316,7284],[1317,7284],[1318,7284],[1319,7284],[1320,7284],[1321,7298],[1322,7295],[1323,7293],[1324,7293],[1325,7299],[1326,7284],[1327,7284],[1328,7284],[1329,7284],[1330,7284],[1331,7284],[1332,7284],[1333,7294],[1334,7294],[1335,7300],[1336,7300],[1337,7295],[1338,7295],[1339,7295],[1340,7295],[1341,7295],[1342,7295],[1343,7295],[1344,7295],[1345,7284],[1346,7298],[1347,7295],[1348,7293],[1349,7293],[1350,7299],[1351,7284],[1352,7284],[1353,7284],[1354,7284],[1355,7284],[1356,7284],[1357,7284],[1358,7294],[1359,7294],[1360,7300],[1361,7300],[1362,7295],[1363,7295],[1364,7295],[1365,7295],[1366,7295],[1367,7295],[1368,7295],[1369,7295],[1370,7284],[1371,7284],[1372,7284],[1373,7295],[1374,7293],[1375,7284],[1376,7294],[1377,7284],[1378,7284],[1379,7298],[1380,7295],[1381,7293],[1382,7293],[1383,7299],[1384,7284],[1385,7284],[1386,7284],[1387,7284],[1388,7284],[1389,7284],[1390,7284],[1391,7294],[1392,7294],[1393,7300],[1394,7300],[1395,7295],[1396,7295],[1397,7295],[1398,7295],[1399,7295],[1400,7295],[1401,7295],[1402,7295],[1403,7294],[1404,7298],[1405,7293],[1406,7293],[1407,7299],[1408,7284],[1409,7284],[1410,7284],[1411,7284],[1412,7284],[1413,7284],[1414,7284],[1415,7294],[1416,7294],[1417,7300],[1418,7300],[1419,7295],[1420,7295],[1421,7295],[1422,7295],[1423,7295],[1424,7295],[1425,7295],[1426,7295],[1427,7298],[1428,7293],[1429,7293],[1430,7299],[1431,7284],[1432,7284],[1433,7284],[1434,7284],[1435,7284],[1436,7284],[1437,7284],[1438,7294],[1439,7294],[1440,7300],[1441,7300],[1442,7295],[1443,7295],[1444,7295],[1445,7295],[1446,7295],[1447,7295],[1448,7295],[1449,7295],[1450,7298],[1451,7293],[1452,7293],[1453,7299],[1454,7284],[1455,7284],[1456,7284],[1457,7284],[1458,7284],[1459,7284],[1460,7284],[1461,7294],[1462,7294],[1463,7300],[1464,7300],[1465,7295],[1466,7295],[1467,7295],[1468,7295],[1469,7295],[1470,7295],[1471,7295],[1472,7295],[1473,7300],[1474,7300],[1475,7295],[1476,7284],[1477,7298],[1478,7295],[1479,7293],[1480,7293],[1481,7299],[1482,7284],[1483,7284],[1484,7284],[1485,7284],[1486,7284],[1487,7284],[1488,7284],[1489,7294],[1490,7294],[1491,7300],[1492,7300],[1493,7295],[1494,7295],[1495,7295],[1496,7295],[1497,7295],[1498,7295],[1499,7295],[1500,7295],[1501,7284],[1502,7284],[1503,7284],[1504,7298],[1505,7284],[1506,7284],[1507,7294],[1508,7284],[1509,7298],[1510,7295],[1511,7293],[1512,7293],[1513,7299],[1514,7284],[1515,7284],[1516,7284],[1517,7284],[1518,7284],[1519,7284],[1520,7284],[1521,7294],[1522,7294],[1523,7300],[1524,7300],[1525,7295],[1526,7295],[1527,7295],[1528,7295],[1529,7295],[1530,7295],[1531,7295],[1532,7295],[1533,7284],[1534,7298],[1535,7295],[1536,7293],[1537,7293],[1538,7299],[1539,7284],[1540,7284],[1541,7284],[1542,7284],[1543,7284],[1544,7284],[1545,7284],[1546,7294],[1547,7294],[1548,7300],[1549,7300],[1550,7295],[1551,7295],[1552,7295],[1553,7295],[1554,7295],[1555,7295],[1556,7295],[1557,7295],[1558,7284],[1559,7298],[1560,7295],[1561,7293],[1562,7293],[1563,7299],[1564,7284],[1565,7284],[1566,7284],[1567,7284],[1568,7284],[1569,7284],[1570,7284],[1571,7294],[1572,7294],[1573,7300],[1574,7300],[1575,7295],[1576,7295],[1577,7295],[1578,7295],[1579,7295],[1580,7295],[1581,7295],[1582,7295],[1583,7284],[1584,7298],[1585,7295],[1586,7293],[1587,7293],[1588,7299],[1589,7284],[1590,7284],[1591,7284],[1592,7284],[1593,7284],[1594,7284],[1595,7284],[1596,7294],[1597,7294],[1598,7300],[1599,7300],[1600,7295],[1601,7295],[1602,7295],[1603,7295],[1604,7295],[1605,7295],[1606,7295],[1607,7295],[1608,7284],[1609,7284],[1610,7284],[1611,7298],[1612,7299],[1613,7295],[1614,7295],[1615,7295],[1616,7295],[1617,7295],[1618,7295],[1619,7295],[1620,7295],[1621,7299],[1622,7299],[1623,7299],[1624,7295],[1625,7295],[1626,7295],[1627,7295],[1628,7295],[1629,7295],[1630,7295],[1631,7295],[1632,7295],[1633,7295],[1634,7295],[1635,7295],[1636,7293],[1637,7293],[1638,7300],[1639,7300],[1640,7293],[1641,7284],[1642,7284],[1643,7284],[1644,7284],[1645,7298],[1646,7293],[1647,7293],[1648,7299],[1649,7284],[1650,7284],[1651,7284],[1652,7294],[1653,7294],[1654,7295],[1655,7295],[1656,7295],[1657,7295],[1658,7295],[1659,7295],[1660,7295],[1661,7295],[1662,7284],[1663,7284],[1664,7298],[1665,7295],[1666,7293],[1667,7293],[1668,7293],[1669,7299],[1670,7299],[1671,7284],[1672,7284],[1673,7284],[1674,7284],[1675,7284],[1676,7284],[1677,7284],[1678,7284],[1679,7294],[1680,7294],[1681,7300],[1682,7300],[1683,7295],[1684,7295],[1685,7295],[1686,7295],[1687,7295],[1688,7295],[1689,7295],[1690,7295],[1691,7284],[1692,7298],[1693,7295],[1694,7293],[1695,7293],[1696,7299],[1697,7284],[1698,7284],[1699,7284],[1700,7284],[1701,7284],[1702,7284],[1703,7284],[1704,7294],[1705,7294],[1706,7300],[1707,7300],[1708,7295],[1709,7295],[1710,7295],[1711,7295],[1712,7295],[1713,7295],[1714,7295],[1715,7295],[1716,7284],[1717,7294],[1718,7284],[1719,7298],[1720,7295],[1721,7293],[1722,7293],[1723,7299],[1724,7284],[1725,7284],[1726,7284],[1727,7284],[1728,7284],[1729,7284],[1730,7284],[1731,7294],[1732,7294],[1733,7300],[1734,7300],[1735,7295],[1736,7295],[1737,7295],[1738,7295],[1739,7295],[1740,7295],[1741,7295],[1742,7295],[1743,7295],[1744,7295],[1745,7295],[1746,7295],[1747,7284],[1748,7284],[1749,7294],[1750,7294],[1751,7295],[1752,7284],[1753,7284],[1754,7300],[1755,7295],[1756,7284],[1757,7284],[1758,7300],[1759,7299],[1760,7295],[1761,7295],[1762,7295],[1763,7295],[1764,7284],[1765,7284],[1766,7300],[1767,7284],[1768,7284],[1769,7284],[1770,7284],[1771,7300],[1772,7294],[1773,7294],[1774,7284],[1775,7298],[1776,7295],[1777,7293],[1778,7293],[1779,7299],[1780,7284],[1781,7284],[1782,7284],[1783,7284],[1784,7284],[1785,7284],[1786,7284],[1787,7294],[1788,7294],[1789,7300],[1790,7300],[1791,7295],[1792,7295],[1793,7295],[1794,7295],[1795,7295],[1796,7295],[1797,7295],[1798,7295],[1799,7284],[1800,7298],[1801,7295],[1802,7293],[1803,7293],[1804,7299],[1805,7284],[1806,7284],[1807,7284],[1808,7284],[1809,7284],[1810,7284],[1811,7284],[1812,7294],[1813,7294],[1814,7300],[1815,7300],[1816,7295],[1817,7295],[1818,7295],[1819,7295],[1820,7295],[1821,7295],[1822,7295],[1823,7295],[1824,7284],[1825,7298],[1826,7295],[1827,7293],[1828,7293],[1829,7299],[1830,7284],[1831,7284],[1832,7284],[1833,7284],[1834,7284],[1835,7284],[1836,7284],[1837,7294],[1838,7294],[1839,7300],[1840,7300],[1841,7295],[1842,7295],[1843,7295],[1844,7295],[1845,7295],[1846,7295],[1847,7295],[1848,7295],[1849,7284],[1850,7298],[1851,7295],[1852,7293],[1853,7293],[1854,7299],[1855,7284],[1856,7284],[1857,7284],[1858,7284],[1859,7284],[1860,7284],[1861,7284],[1862,7294],[1863,7294],[1864,7300],[1865,7300],[1866,7295],[1867,7295],[1868,7295],[1869,7295],[1870,7295],[1871,7295],[1872,7295],[1873,7295],[1874,7284],[1875,7298],[1876,7295],[1877,7293],[1878,7293],[1879,7299],[1880,7284],[1881,7284],[1882,7284],[1883,7284],[1884,7284],[1885,7294],[1886,7294],[1887,7300],[1888,7300],[1889,7295],[1890,7295],[1891,7295],[1892,7295],[1893,7295],[1894,7295],[1895,7295],[1896,7295],[1897,7284],[1898,7298],[1899,7295],[1900,7293],[1901,7293],[1902,7299],[1903,7284],[1904,7284],[1905,7284],[1906,7284],[1907,7284],[1908,7284],[1909,7284],[1910,7294],[1911,7294],[1912,7300],[1913,7300],[1914,7295],[1915,7295],[1916,7295],[1917,7295],[1918,7295],[1919,7295],[1920,7295],[1921,7295],[1922,7284],[1923,7298],[1924,7295],[1925,7293],[1926,7293],[1927,7299],[1928,7284],[1929,7284],[1930,7284],[1931,7284],[1932,7284],[1933,7284],[1934,7284],[1935,7294],[1936,7294],[1937,7300],[1938,7300],[1939,7295],[1940,7295],[1941,7295],[1942,7295],[1943,7295],[1944,7295],[1945,7295],[1946,7295],[1947,7284],[1948,7298],[1949,7295],[1950,7293],[1951,7293],[1952,7299],[1953,7284],[1954,7284],[1955,7284],[1956,7284],[1957,7284],[1958,7284],[1959,7284],[1960,7294],[1961,7294],[1962,7300],[1963,7300],[1964,7295],[1965,7295],[1966,7295],[1967,7295],[1968,7295],[1969,7295],[1970,7295],[1971,7295],[1972,7284],[1973,7298],[1974,7295],[1975,7293],[1976,7293],[1977,7299],[1978,7284],[1979,7284],[1980,7284],[1981,7284],[1982,7284],[1983,7284],[1984,7284],[1985,7294],[1986,7294],[1987,7300],[1988,7300],[1989,7295],[1990,7295],[1991,7295],[1992,7295],[1993,7295],[1994,7295],[1995,7295],[1996,7295],[1997,7284],[1998,7293],[1999,7284],[2000,7284],[2001,7284],[2002,7284],[2003,7284],[2004,7284],[2005,7284],[2006,7284],[2007,7298],[2008,7295],[2009,7293],[2010,7293],[2011,7299],[2012,7284],[2013,7284],[2014,7284],[2015,7284],[2016,7284],[2017,7284],[2018,7284],[2019,7294],[2020,7294],[2021,7300],[2022,7300],[2023,7295],[2024,7295],[2025,7295],[2026,7295],[2027,7295],[2028,7295],[2029,7295],[2030,7295],[2031,7299],[2032,7284],[2033,7294],[2034,7294],[2035,7295],[2036,7295],[2037,7295],[2038,7295],[2039,7293],[2040,7293],[2041,7284],[2042,7284],[2043,7294],[2044,7294],[2045,7300],[2046,7300],[2047,7284],[2048,7284],[2049,7295],[2050,7298],[2051,7284],[2052,7284],[2053,7294],[2054,7294],[2055,7284],[2056,7284],[2057,7284],[2058,7295],[2059,7295],[2060,7284],[2061,7284],[2062,7284],[2063,7294],[2064,7284],[2065,7284],[2066,7284],[2067,7284],[2068,7293],[2069,7293],[2070,7293],[2071,7293],[2072,7298],[2073,7284],[2074,7284],[2075,7294],[2076,7295],[2077,7295],[2078,7284],[2079,7284],[2080,7284],[2081,7284],[2082,7284],[2083,7295],[2084,7295],[2085,7295],[2086,7295],[2087,7295],[2088,7300],[2089,7293],[2090,7284],[2091,7300],[2092,7300],[2093,7295],[2094,7295],[2095,7284],[2096,7284],[2097,7284],[2098,7284],[2099,7284],[2100,7284],[2101,7294],[2102,7284],[2103,7284],[2104,7284],[2105,7298],[2106,7299],[2107,7295],[2108,7298],[2109,7293],[2110,7293],[2111,7299],[2112,7284],[2113,7284],[2114,7284],[2115,7284],[2116,7284],[2117,7284],[2118,7284],[2119,7294],[2120,7294],[2121,7300],[2122,7300],[2123,7295],[2124,7295],[2125,7295],[2126,7295],[2127,7295],[2128,7295],[2129,7295],[2130,7295],[2131,7295],[2132,7295],[2133,7295],[2134,7295],[2135,7299],[2136,7284],[2137,7284],[2138,7298],[2139,7295],[2140,7293],[2141,7293],[2142,7299],[2143,7284],[2144,7284],[2145,7284],[2146,7284],[2147,7284],[2148,7284],[2149,7284],[2150,7294],[2151,7294],[2152,7300],[2153,7300],[2154,7295],[2155,7295],[2156,7295],[2157,7295],[2158,7295],[2159,7295],[2160,7295],[2161,7295],[2162,7284],[2163,7298],[2164,7295],[2165,7293],[2166,7293],[2167,7299],[2168,7284],[2169,7284],[2170,7284],[2171,7284],[2172,7284],[2173,7284],[2174,7284],[2175,7294],[2176,7294],[2177,7300],[2178,7300],[2179,7295],[2180,7295],[2181,7295],[2182,7295],[2183,7295],[2184,7295],[2185,7295],[2186,7295],[2187,7284],[2188,7298],[2189,7295],[2190,7293],[2191,7293],[2192,7299],[2193,7284],[2194,7284],[2195,7284],[2196,7284],[2197,7284],[2198,7284],[2199,7284],[2200,7294],[2201,7294],[2202,7300],[2203,7300],[2204,7295],[2205,7295],[2206,7295],[2207,7295],[2208,7295],[2209,7295],[2210,7295],[2211,7295],[2212,7284],[2213,7298],[2214,7295],[2215,7293],[2216,7293],[2217,7299],[2218,7284],[2219,7284],[2220,7284],[2221,7284],[2222,7284],[2223,7284],[2224,7284],[2225,7294],[2226,7294],[2227,7300],[2228,7300],[2229,7295],[2230,7295],[2231,7295],[2232,7295],[2233,7295],[2234,7295],[2235,7295],[2236,7295],[2237,7284],[2238,7298],[2239,7295],[2240,7293],[2241,7293],[2242,7299],[2243,7284],[2244,7284],[2245,7284],[2246,7284],[2247,7284],[2248,7284],[2249,7284],[2250,7294],[2251,7294],[2252,7300],[2253,7300],[2254,7295],[2255,7295],[2256,7295],[2257,7295],[2258,7295],[2259,7295],[2260,7295],[2261,7295],[2262,7284],[2263,7298],[2264,7295],[2265,7293],[2266,7293],[2267,7299],[2268,7284],[2269,7284],[2270,7284],[2271,7284],[2272,7284],[2273,7284],[2274,7284],[2275,7294],[2276,7294],[2277,7300],[2278,7300],[2279,7295],[2280,7295],[2281,7295],[2282,7295],[2283,7295],[2284,7295],[2285,7295],[2286,7295],[2287,7284],[2288,7298],[2289,7295],[2290,7293],[2291,7293],[2292,7299],[2293,7284],[2294,7284],[2295,7284],[2296,7284],[2297,7284],[2298,7284],[2299,7284],[2300,7294],[2301,7294],[2302,7300],[2303,7300],[2304,7295],[2305,7295],[2306,7295],[2307,7295],[2308,7295],[2309,7295],[2310,7295],[2311,7295],[2312,7284],[2313,7298],[2314,7295],[2315,7293],[2316,7293],[2317,7299],[2318,7284],[2319,7284],[2320,7284],[2321,7284],[2322,7284],[2323,7284],[2324,7284],[2325,7294],[2326,7294],[2327,7300],[2328,7300],[2329,7295],[2330,7295],[2331,7295],[2332,7295],[2333,7295],[2334,7295],[2335,7295],[2336,7295],[2337,7284],[2338,7298],[2339,7295],[2340,7293],[2341,7293],[2342,7299],[2343,7284],[2344,7284],[2345,7284],[2346,7284],[2347,7284],[2348,7284],[2349,7284],[2350,7294],[2351,7294],[2352,7300],[2353,7300],[2354,7295],[2355,7295],[2356,7295],[2357,7295],[2358,7295],[2359,7295],[2360,7295],[2361,7295],[2362,7284],[2363,7284],[2364,7294],[2365,7299],[2366,7284],[2406,7297],[2407,7297],[2408,7297],[2409,7297],[2410,7297],[2411,7297],[2412,7297],[2413,7297],[2414,7297],[2415,7297],[2416,7297],[2417,7297],[2418,7297],[2419,7297],[2420,7297],[2421,7297],[2422,7297],[2423,7297],[2424,7297],[2425,7297],[2426,7297],[2427,7297],[2428,7297],[2429,7297],[2430,7297],[2431,7297],[2432,7297],[2433,7297],[2434,7297],[2435,7297],[2436,7297],[2437,7297],[2438,7297],[2439,7297],[2440,7297],[2441,7297],[2442,7297],[2443,7297],[2444,7297],[2445,7297],[2446,7297],[2447,7297],[2448,7297],[2449,7297],[2450,7297],[2451,7297],[2452,7297],[2453,7297],[2454,7297],[2455,7297],[2456,7297],[2457,7297],[2458,7297],[2459,7297],[2460,7297],[2461,7297],[2462,7297],[2463,7297],[2464,7297],[2465,7297],[2466,7297],[2467,7297],[2468,7297],[2469,7297],[2470,7297],[2471,7297],[2472,7297],[2473,7297],[2474,7297],[2475,7297],[2476,7297],[2477,7297],[2478,7297],[2479,7297],[2480,7297],[2481,7297],[2482,7297],[2483,7297],[2484,7297],[2485,7297],[2486,7297],[2487,7297],[2488,7297],[2489,7297],[2490,7297],[2491,7297],[2492,7297],[2493,7297],[2494,7297],[2495,7297],[2496,7297],[2497,7297],[2498,7297],[2499,7297],[2500,7297],[2501,7297],[2502,7297],[2503,7297],[2504,7297],[2505,7297],[2506,7297],[2507,7297],[2508,7297],[2509,7297],[2510,7297],[2511,7297],[2512,7297],[2513,7297],[2514,7297],[2515,7297],[2516,7297],[2517,7297],[2518,7297],[2519,7297],[2520,7297],[2521,7297],[2522,7297],[2523,7297],[2524,7297],[2525,7297],[2526,7297],[2527,7297],[2528,7297],[2529,7297],[2530,7297],[2531,7297],[2532,7297],[2533,7297],[2534,7297],[2535,7297],[2536,7297],[2537,7297],[2538,7297],[2539,7297],[2540,7297],[2541,7297],[2542,7297],[2543,7297],[2544,7297],[2545,7297],[2546,7297],[2547,7297],[2548,7297],[2549,7297],[2550,7297],[2551,7297],[2552,7297],[2553,7297],[2554,7297],[2555,7297],[2556,7297],[2557,7297],[2558,7297],[2559,7297],[2560,7297],[2561,7297],[2562,7297],[2563,7297],[2564,7297],[2565,7297],[2566,7297],[2567,7297],[2568,7297],[2569,7297],[2570,7297],[2571,7297],[2572,7297],[2573,7297],[2574,7297],[2575,7297],[2576,7297],[2577,7297],[2578,7297],[2579,7297],[2580,7297],[2581,7297],[2582,7297],[2583,7297],[2584,7297],[2585,7297],[2586,7297],[2587,7297],[2588,7297],[2589,7297],[2590,7297],[2591,7297],[2592,7297],[2593,7297],[2594,7297],[2595,7297],[2596,7297],[2597,7297],[2598,7297],[2599,7297],[2600,7297],[2601,7297],[2602,7297],[2603,7297],[2604,7297],[2605,7297],[2606,7297],[2607,7297],[2608,7297],[2609,7297],[2610,7297],[2611,7297],[2612,7297],[2613,7297],[2614,7297],[2615,7297],[2616,7297],[2617,7297],[2618,7297],[2619,7297],[2620,7297],[2621,7297],[2622,7297],[2623,7297],[2624,7297],[2625,7297],[2626,7297],[2627,7297],[2628,7297],[2629,7297],[2630,7297],[2631,7297],[2632,7297],[2633,7297],[2634,7297],[2635,7297],[2636,7297],[2637,7297],[2638,7297],[2639,7297],[2640,7297],[2641,7297],[2642,7297],[2643,7297],[2644,7297],[2645,7297],[2646,7297],[2647,7297],[2648,7297],[2649,7297],[2650,7297],[2651,7297],[2652,7297],[2653,7297],[2654,7297],[2655,7297],[2656,7297],[2657,7297],[2658,7297],[2659,7297],[2660,7297],[2661,7297],[2662,7297],[2663,7297],[2664,7297],[2665,7297],[2666,7297],[2667,7297],[2668,7297],[2669,7297],[2670,7297],[2671,7297],[2672,7297],[2673,7297],[2674,7297],[2675,7297],[2676,7297],[2677,7297],[2678,7297],[2679,7297],[2680,7297],[2681,7297],[2682,7297],[2683,7297],[2684,7297],[2685,7297],[2686,7297],[2687,7297],[2688,7297],[2689,7297],[2690,7297],[2691,7297],[2692,7297],[2693,7297],[2694,7297],[2695,7297],[2696,7297],[2697,7297],[2698,7297],[2699,7297],[2700,7297],[2701,7297],[2702,7297],[2703,7297],[2704,7297],[2705,7297],[2706,7297],[2707,7297],[2708,7297],[2709,7297],[2710,7297],[2711,7297],[2712,7297],[2713,7297],[2714,7297],[2715,7297],[2716,7297],[2717,7297],[2718,7297],[2719,7297],[2720,7297],[2721,7297],[2722,7297],[2723,7297],[2724,7297],[2725,7297],[2726,7297],[2727,7297],[2728,7297],[2729,7297],[2730,7297],[2731,7297],[2732,7297],[2733,7297],[2734,7297],[2735,7297],[2736,7297],[2737,7297],[2738,7297],[2739,7297],[2740,7297],[2741,7297],[2742,7297],[2743,7297],[2744,7297],[2745,7297],[2746,7297],[2747,7297],[2748,7297],[2749,7297],[2750,7297],[2751,7297],[2752,7297],[2753,7297],[2754,7297],[2755,7297],[2756,7297],[2757,7297],[2758,7297],[2759,7297],[2760,7297],[2761,7297],[2762,7297],[2763,7293],[2764,7293],[2765,7293],[2766,7293],[2767,7293],[2768,7293],[2769,7293],[2770,7293],[2771,7293],[2772,7293],[2773,7293],[2774,7293],[2775,7293],[2776,7293],[2777,7293],[2778,7293],[2779,7293],[2780,7293],[2781,7293],[2782,7293],[2783,7293],[2784,7293],[2785,7293],[2786,7293],[2787,7293],[2788,7293],[2789,7293],[2790,7293],[2791,7293],[2792,7293],[2793,7293],[2794,7293],[2795,7293],[2796,7293],[2797,7293],[2798,7293],[2799,7293],[2800,7293],[2801,7293],[2802,7293],[2803,7293],[2804,7293],[2805,7293],[2806,7293],[2807,7293],[2808,7293],[2809,7293],[2810,7293],[2811,7293],[2812,7293],[2813,7293],[2814,7293],[2815,7293],[2816,7293],[2817,7293],[2818,7293],[2819,7293],[2820,7293],[2821,7293],[2822,7293],[2823,7293],[2824,7293],[2825,7293],[2826,7293],[2827,7293],[2828,7293],[2829,7293],[2830,7293],[2831,7293],[2832,7293],[2833,7293],[2834,7293],[2835,7293],[2836,7293],[2837,7293],[2838,7293],[2839,7293],[2840,7293],[2841,7293],[2842,7293],[2843,7293],[2844,7293],[2845,7293],[2846,7293],[2847,7293],[2848,7293],[2849,7293],[2850,7293],[2851,7293],[2852,7293],[2853,7293],[2854,7293],[2855,7293],[2856,7293],[2857,7293],[2858,7293],[2859,7293],[2860,7293],[2861,7293],[2862,7293],[2863,7293],[2864,7293],[2865,7293],[2866,7293],[2867,7293],[2868,7293],[2869,7293],[2870,7293],[2871,7293],[2872,7293],[2873,7293],[2874,7293],[2875,7293],[2876,7293],[2877,7293],[2878,7293],[2879,7293],[2880,7293],[2881,7293],[2882,7293],[2883,7293],[2884,7293],[2885,7293],[2886,7293],[2887,7293],[2888,7293],[2889,7293],[2890,7293],[2891,7293],[2892,7293],[2893,7293],[2894,7293],[2895,7293],[2896,7293],[2897,7293],[2898,7293],[2899,7293],[2900,7293],[2901,7293],[2902,7293],[2903,7293],[2904,7293],[2905,7293],[2906,7293],[2907,7293],[2908,7293],[2909,7293],[2910,7293],[2911,7293],[2912,7293],[2913,7293],[2914,7293],[2915,7293],[2916,7293],[2917,7293],[2918,7293],[2919,7293],[2920,7293],[2921,7293],[2922,7293],[2923,7293],[2924,7293],[2925,7293],[2926,7293],[2927,7293],[2928,7293],[2929,7293],[2930,7293],[2931,7293],[2932,7293],[2933,7293],[2934,7293],[2935,7293],[2936,7293],[2937,7293],[2938,7293],[2939,7293],[2940,7293],[2941,7293],[2942,7293],[2943,7293],[2944,7293],[2945,7293],[2946,7293],[2947,7293],[2948,7293],[2949,7293],[2950,7293],[2951,7293],[2952,7293],[2953,7293],[2954,7293],[2955,7293],[2956,7293],[2957,7293],[2958,7293],[2959,7293],[2960,7293],[2961,7293],[2962,7293],[2963,7293],[2964,7293],[2965,7293],[2966,7293],[2967,7293],[2968,7293],[2969,7293],[2970,7293],[2971,7293],[2972,7293],[2973,7293],[2974,7293],[2975,7293],[2976,7293],[2977,7293],[2978,7293],[2979,7293],[2980,7293],[2981,7293],[2982,7293],[2983,7293],[2984,7293],[2985,7293],[2986,7293],[2987,7306],[2988,7298],[2989,7298],[2990,7325],[2991,7316],[2992,7311],[2993,7311],[2994,7311],[2995,7311],[2996,7311],[2997,7311],[2998,7307],[2999,7307],[3000,7307],[3001,7311],[3002,7311],[3003,7311],[3004,7311],[3006,7317],[3007,7318],[3008,7311],[3009,7311],[3010,7311],[3011,7315],[3012,7325],[3013,7315],[3015,7298],[3016,7311],[3017,7311],[3018,7311],[3019,7318],[3020,7318],[3021,7312],[3023,7311],[3024,7307],[3025,7312],[3026,7312],[3027,7312],[3028,7298],[3029,7298],[3030,7316],[3031,7307],[3032,7307],[3033,7307],[3034,7317],[3035,7312],[3036,7306],[3037,7306],[3038,7306],[3039,7306],[3040,7315],[3041,7298],[3042,7298],[3043,7316],[3044,7316],[3045,7307],[3046,7307],[3047,7317],[3048,7317],[3049,7318],[3050,7306],[3051,7306],[3052,7306],[3053,7315],[3054,7298],[3055,7298],[3056,7316],[3057,7316],[3058,7307],[3059,7317],[3060,7318],[3061,7298],[3062,7298],[3063,7316],[3064,7307],[3065,7307],[3066,7307],[3067,7317],[3068,7312],[3069,7306],[3070,7298],[3071,7298],[3072,7316],[3073,7307],[3074,7307],[3075,7307],[3076,7317],[3077,7312],[3078,7306],[3079,7298],[3080,7298],[3081,7316],[3082,7307],[3083,7307],[3084,7307],[3085,7317],[3086,7312],[3087,7306],[3088,7298],[3089,7298],[3090,7316],[3091,7307],[3092,7307],[3093,7307],[3094,7317],[3095,7312],[3096,7306],[3097,7307],[3098,7312],[3099,7312],[3100,7316],[3101,7317],[3102,7312],[3103,7315],[3104,7298],[3105,7298],[3106,7316],[3107,7316],[3108,7307],[3109,7307],[3110,7317],[3111,7317],[3112,7298],[3113,7298],[3114,7316],[3115,7307],[3116,7307],[3117,7307],[3118,7317],[3119,7312],[3120,7306],[3121,7298],[3122,7298],[3123,7316],[3124,7307],[3125,7307],[3126,7307],[3127,7317],[3128,7312],[3129,7306],[3130,7298],[3131,7316],[3132,7307],[3133,7317],[3134,7312],[3135,7298],[3136,7316],[3137,7317],[3138,7312],[3139,7298],[3140,7316],[3141,7317],[3142,7312],[3143,7317],[3144,7307],[3145,7312],[3146,7312],[3147,7298],[3148,7298],[3149,7316],[3150,7307],[3151,7307],[3152,7307],[3153,7317],[3154,7312],[3155,7306],[3156,7298],[3157,7317],[3158,7306],[3159,7312],[3160,7298],[3161,7298],[3162,7307],[3163,7307],[3164,7307],[3165,7298],[3166,7298],[3167,7316],[3168,7307],[3169,7307],[3170,7307],[3171,7317],[3172,7312],[3173,7306],[3174,7298],[3175,7298],[3176,7316],[3177,7307],[3178,7307],[3179,7307],[3180,7317],[3181,7312],[3182,7306],[3183,7298],[3184,7298],[3185,7316],[3186,7307],[3187,7307],[3188,7307],[3189,7317],[3190,7312],[3191,7306],[3192,7307],[3193,7317],[3194,7298],[3195,7298],[3196,7316],[3197,7307],[3198,7307],[3199,7307],[3200,7317],[3201,7312],[3202,7306],[3203,7312],[3204,7307],[3205,7317],[3206,7316],[3207,7316],[3208,7318],[3209,7316],[3210,7316],[3211,7306],[3212,7306],[3213,7298],[3214,7298],[3215,7316],[3216,7307],[3217,7307],[3218,7307],[3219,7317],[3220,7312],[3221,7306],[3222,7298],[3223,7298],[3224,7316],[3225,7307],[3226,7307],[3227,7307],[3228,7317],[3229,7312],[3230,7306],[3231,7315],[3232,7298],[3233,7316],[3234,7316],[3235,7307],[3236,7317],[3237,7317],[3238,7307],[3239,7307],[3240,7307],[3241,7317],[3242,7306],[3243,7306],[3244,7306],[3245,7298],[3246,7298],[3247,7316],[3248,7307],[3249,7307],[3250,7307],[3251,7317],[3252,7312],[3253,7306],[3254,7316],[3255,7317],[3256,7316],[3257,7298],[3258,7298],[3259,7316],[3260,7307],[3261,7307],[3262,7307],[3263,7317],[3264,7312],[3265,7306],[3266,7315],[3267,7316],[3268,7316],[3269,7307],[3270,7317],[3271,7317],[3272,7315],[3273,7316],[3274,7316],[3275,7307],[3276,7317],[3277,7317],[3278,7298],[3279,7311],[3280,7298],[3281,7298],[3282,7316],[3283,7307],[3284,7307],[3285,7317],[3286,7312],[3287,7306],[3288,7307],[3289,7307],[3290,7307],[3291,7307],[3292,7306],[3293,7306],[3294,7306],[3295,7298],[3296,7316],[3297,7317],[3298,7298],[3299,7316],[3300,7317],[3301,7298],[3302,7316],[3303,7317],[3304,7316],[3305,7317],[3306,7298],[3307,7298],[3308,7316],[3309,7317],[3310,7317],[3311,7317],[3312,7315],[3313,7298],[3314,7298],[3315,7316],[3316,7316],[3317,7307],[3318,7307],[3319,7317],[3320,7317],[3321,7298],[3322,7298],[3323,7316],[3324,7307],[3325,7307],[3326,7307],[3327,7317],[3328,7312],[3329,7306],[3330,7298],[3331,7298],[3332,7298],[3333,7298],[3334,7316],[3335,7317],[3336,7315],[3337,7298],[3338,7298],[3339,7298],[3340,7316],[3341,7316],[3342,7307],[3343,7317],[3344,7317],[3345,7316],[3346,7298],[3347,7316],[3348,7298],[3349,7316],[3350,7316],[3351,7317],[3352,7316],[3353,7317],[3354,7298],[3355,7298],[3356,7316],[3357,7298],[3358,7298],[3359,7316],[3360,7316],[3361,7317],[3362,7316],[3363,7317],[3364,7316],[3365,7317],[3366,7316],[3367,7317],[3368,7306],[3369,7306],[3370,7306],[3371,7315],[3372,7298],[3373,7298],[3374,7298],[3375,7298],[3376,7298],[3377,7316],[3378,7316],[3379,7316],[3380,7307],[3381,7307],[3382,7307],[3383,7307],[3384,7307],[3385,7317],[3386,7317],[3387,7317],[3388,7312],[3389,7306],[3390,7298],[3391,7316],[3392,7307],[3393,7317],[3394,7298],[3395,7298],[3396,7316],[3397,7307],[3398,7307],[3399,7307],[3400,7317],[3401,7312],[3402,7306],[3403,7298],[3404,7298],[3405,7316],[3406,7307],[3407,7307],[3408,7307],[3409,7317],[3410,7312],[3411,7306],[3412,7298],[3413,7306],[3414,7298],[3415,7306],[3417,7307],[3418,7307],[3419,7298],[3420,7298],[3421,7316],[3422,7307],[3423,7307],[3424,7307],[3425,7317],[3426,7312],[3427,7306],[3428,7307],[3429,7307],[3430,7307],[3431,7307],[3432,7312],[3433,7307],[3434,7307],[3435,7312],[3436,7298],[3437,7298],[3438,7316],[3439,7307],[3440,7307],[3441,7307],[3442,7317],[3443,7312],[3444,7306],[3445,7298],[3446,7298],[3447,7316],[3448,7307],[3449,7307],[3450,7307],[3451,7317],[3452,7312],[3453,7306],[3454,7298],[3455,7298],[3456,7316],[3457,7307],[3458,7307],[3459,7307],[3460,7317],[3461,7312],[3462,7306],[3463,7298],[3464,7298],[3465,7316],[3466,7307],[3467,7307],[3468,7307],[3469,7317],[3470,7312],[3471,7306],[3472,7298],[3473,7298],[3474,7316],[3475,7307],[3476,7307],[3477,7307],[3478,7317],[3479,7312],[3480,7306],[3481,7298],[3482,7298],[3483,7316],[3484,7307],[3485,7307],[3486,7307],[3487,7317],[3488,7312],[3489,7306],[3490,7298],[3491,7298],[3492,7316],[3493,7307],[3494,7307],[3495,7307],[3496,7317],[3497,7312],[3498,7306],[3499,7298],[3500,7298],[3501,7316],[3502,7307],[3503,7307],[3504,7307],[3505,7317],[3506,7312],[3507,7306],[3508,7298],[3509,7298],[3510,7316],[3511,7307],[3512,7307],[3513,7307],[3514,7317],[3515,7312],[3516,7306],[3517,7307],[3518,7317],[3519,7306],[3520,7307],[3521,7316],[3522,7317],[3523,7316],[3524,7317],[3525,7316],[3526,7298],[3527,7307],[3528,7316],[3529,7317],[3530,7316],[3531,7317],[3532,7298],[3533,7307],[3534,7317],[3535,7306],[3536,7307],[3537,7307],[3538,7316],[3539,7317],[3540,7316],[3541,7317],[3542,7316],[3543,7317],[3544,7316],[3545,7317],[3546,7317],[3547,7317],[3548,7318],[3549,7318],[3550,7318],[3551,7318],[3552,7318],[3553,7318],[3554,7325],[3555,7307],[3556,7325],[3557,7306],[3558,7306],[3559,7306],[3560,7307],[3561,7307],[3562,7306],[3563,7316],[3564,7307],[3565,7307],[3566,7307],[3567,7307],[3568,7306],[3569,7306],[3570,7318],[3571,7307],[3572,7306],[3573,7307],[3574,7318],[3575,7316],[3576,7316],[3577,7306],[3578,7306],[3579,7298],[3580,7298],[3581,7315],[3582,7298],[3583,7298],[3584,7316],[3585,7316],[3586,7307],[3587,7307],[3588,7317],[3589,7317],[3590,7298],[3591,7307],[3592,7306],[3593,7307],[3594,7307],[3595,7306],[3596,7318],[3597,7316],[3598,7307],[3599,7316],[3600,7307],[3601,7307],[3602,7307],[3603,7307],[3604,7307],[3605,7315],[3606,7298],[3607,7298],[3608,7316],[3609,7316],[3610,7307],[3611,7307],[3612,7317],[3613,7317],[3614,7307],[3615,7315],[3616,7298],[3617,7298],[3618,7316],[3619,7316],[3620,7307],[3621,7307],[3622,7317],[3623,7317],[3624,7307],[3625,7307],[3626,7317],[3627,7307],[3628,7298],[3629,7306],[3630,7306],[3631,7306],[3632,7306],[3633,7298],[3634,7298],[3635,7307],[3636,7315],[3637,7298],[3638,7298],[3639,7316],[3640,7316],[3641,7307],[3642,7307],[3643,7317],[3644,7317],[3645,7298],[3646,7316],[3647,7307],[3648,7317],[3649,7298],[3650,7317],[3651,7306],[3652,7316],[3653,7307],[3654,7307],[3655,7317],[3656,7306],[3657,7316],[3658,7307],[3659,7307],[3660,7317],[3661,7306],[3662,7307],[3663,7298],[3664,7298],[3665,7316],[3666,7307],[3667,7307],[3668,7307],[3669,7317],[3670,7312],[3671,7306],[3672,7316],[3673,7316],[3674,7298],[3675,7307],[3676,7318],[3677,7312],[3678,7316],[3679,7307],[3680,7317],[3681,7307],[3682,7306],[3683,7298],[3684,7298],[3685,7316],[3686,7307],[3687,7307],[3688,7307],[3689,7317],[3690,7312],[3691,7306],[3692,7298],[3693,7298],[3694,7316],[3695,7307],[3696,7307],[3697,7307],[3698,7317],[3699,7312],[3700,7306],[3701,7298],[3702,7298],[3703,7316],[3704,7307],[3705,7307],[3706,7307],[3707,7317],[3708,7312],[3709,7306],[3710,7298],[3711,7298],[3712,7316],[3713,7307],[3714,7307],[3715,7307],[3716,7317],[3717,7312],[3718,7306],[3719,7306],[3720,7298],[3721,7298],[3722,7316],[3723,7307],[3724,7307],[3725,7307],[3726,7317],[3727,7312],[3728,7306],[3729,7298],[3730,7298],[3731,7316],[3732,7307],[3733,7307],[3734,7307],[3735,7317],[3736,7312],[3737,7306],[3738,7298],[3739,7298],[3740,7316],[3741,7307],[3742,7307],[3743,7307],[3744,7317],[3745,7312],[3746,7306],[3747,7298],[3748,7298],[3749,7316],[3750,7307],[3751,7307],[3752,7307],[3753,7317],[3754,7312],[3755,7306],[3756,7318],[3757,7311],[3758,7318],[3759,7307],[3760,7307],[3761,7307],[3762,7298],[3763,7298],[3764,7316],[3765,7307],[3766,7307],[3767,7307],[3768,7317],[3769,7312],[3770,7306],[3772,7315],[3773,7298],[3774,7298],[3775,7316],[3776,7316],[3777,7307],[3778,7307],[3779,7317],[3780,7317],[3781,7318],[3784,7316],[3785,7317],[3786,7316],[3787,7317],[3788,7298],[3789,7298],[3790,7315],[3791,7298],[3792,7298],[3793,7316],[3794,7316],[3795,7307],[3796,7307],[3797,7317],[3798,7317],[3799,7318],[3802,7316],[3803,7317],[3804,7316],[3805,7317],[3806,7306],[3807,7298],[3808,7298],[3809,7298],[3810,7298],[3811,7298],[3812,7298],[3813,7298],[3814,7298],[3815,7298],[3816,7298],[3817,7298],[3818,7298],[3819,7298],[3820,7298],[3821,7298],[3822,7298],[3823,7298],[3824,7298],[3825,7298],[3826,7298],[3827,7298],[3828,7298],[3829,7298],[3830,7298],[3831,7298],[3832,7298],[3833,7298],[3834,7298],[3835,7298],[3836,7298],[3837,7298],[3838,7298],[3839,7298],[3840,7298],[3841,7298],[3842,7298],[3843,7298],[3844,7298],[3845,7298],[3846,7298],[3847,7298],[3848,7298],[3849,7298],[3850,7298],[3851,7298],[3852,7298],[3853,7298],[3854,7298],[3855,7298],[3856,7298],[3857,7298],[3858,7298],[3859,7298],[3860,7329],[3861,7323],[3862,7331],[3863,7323],[3864,7323],[3865,7323],[3866,7323],[3867,7323],[3868,7329],[3869,7331],[3870,7323],[3871,7323],[3872,7323],[3873,7329],[3874,7331],[3875,7323],[3876,7323],[3877,7323],[3878,7329],[3879,7331],[3880,7323],[3881,7323],[3882,7323],[3883,7329],[3884,7331],[3885,7323],[3886,7323],[3887,7323],[3888,7329],[3889,7331],[3890,7323],[3891,7323],[3892,7329],[3893,7323],[3894,7323],[3895,7329],[3896,7323],[3897,7329],[3898,7323],[3899,7329],[3900,7329],[3901,7323],[3902,7323],[3903,7329],[3904,7323],[3905,7323],[3906,7323],[3907,7323],[3908,7329],[3909,7329],[3910,7331],[3911,7323],[3912,7323],[3913,7323],[3914,7323],[3915,7329],[3916,7329],[3917,7331],[3918,7323],[3919,7323],[3920,7323],[3921,7329],[3922,7331],[3923,7323],[3924,7329],[3925,7323],[3926,7329],[3927,7323],[3928,7323],[3929,7329],[3930,7331],[3931,7323],[3932,7329],[3933,7323],[3934,7323],[3935,7329],[3936,7331],[3937,7323],[3938,7323],[3939,7329],[3940,7331],[3941,7323],[3942,7329],[3943,7331],[3944,7323],[3945,7329],[3946,7331],[3947,7323],[3948,7323],[3949,7323],[3950,7329],[3951,7331],[3952,7323],[3953,7329],[3954,7323],[3955,7323],[3956,7323],[3957,7323],[3958,7329],[3959,7329],[3960,7331],[3961,7323],[3962,7323],[3963,7323],[3964,7323],[3965,7329],[3966,7329],[3967,7331],[3968,7323],[3969,7323],[3970,7323],[3971,7329],[3972,7331],[3973,7323],[3974,7323],[3975,7323],[3976,7323],[3977,7323],[3978,7323],[3979,7323],[3980,7329],[3981,7331],[3982,7331],[3983,7323],[3984,7323],[3985,7323],[3986,7323],[3987,7329],[3988,7329],[3989,7331],[3990,7323],[3991,7323],[3992,7323],[3993,7329],[3994,7329],[3995,7329],[3996,7331],[3997,7331],[3998,7331],[3999,7323],[4000,7323],[4001,7323],[4002,7323],[4003,7329],[4004,7329],[4005,7331],[4006,7331],[4007,7323],[4008,7323],[4009,7323],[4010,7323],[4011,7329],[4012,7329],[4013,7331],[4014,7323],[4015,7323],[4016,7323],[4017,7329],[4018,7331],[4019,7329],[4020,7323],[4021,7323],[4022,7323],[4023,7323],[4024,7329],[4025,7331],[4026,7329],[4027,7323],[4028,7329],[4029,7329],[4030,7323],[4031,7329],[4032,7329],[4033,7323],[4034,7329],[4035,7323],[4036,7323],[4037,7323],[4038,7329],[4039,7331],[4040,7323],[4041,7323],[4042,7323],[4043,7323],[4044,7329],[4045,7331],[4046,7323],[4047,7323],[4048,7323],[4049,7329],[4050,7331],[4051,7323],[4052,7323],[4053,7323],[4054,7329],[4055,7331],[4056,7323],[4057,7323],[4058,7323],[4059,7329],[4060,7331],[4061,7323],[4062,7323],[4063,7323],[4064,7329],[4065,7331],[4066,7323],[4067,7323],[4068,7323],[4069,7329],[4070,7331],[4071,7323],[4072,7323],[4073,7323],[4074,7329],[4075,7331],[4076,7323],[4077,7323],[4078,7323],[4079,7329],[4080,7331],[4081,7323],[4082,7323],[4083,7323],[4084,7323],[4085,7323],[4086,7323],[4087,7323],[4088,7323],[4089,7323],[4090,7323],[4091,7329],[4092,7331],[4093,7323],[4094,7329],[4095,7323],[4096,7329],[4097,7323],[4098,7329],[4099,7329],[4100,7323],[4101,7329],[4102,7323],[4103,7329],[4104,7329],[4105,7323],[4106,7323],[4107,7323],[4108,7323],[4109,7323],[4110,7323],[4111,7323],[4112,7323],[4113,7323],[4114,7323],[4115,7323],[4116,7323],[4117,7323],[4118,7323],[4119,7323],[4120,7323],[4121,7323],[4122,7323],[4123,7323],[4124,7323],[4125,7323],[4126,7323],[4127,7323],[4128,7323],[4129,7323],[4130,7323],[4131,7323],[4132,7329],[4133,7331],[4134,7323],[4135,7329],[4136,7323],[4137,7323],[4138,7323],[4139,7323],[4140,7323],[4141,7329],[4142,7323],[4143,7329],[4144,7329],[4145,7331],[4146,7323],[4147,7329],[4148,7323],[4149,7323],[4150,7329],[4151,7329],[4152,7323],[4153,7323],[4154,7329],[4155,7323],[4156,7329],[4157,7323],[4158,7323],[4159,7329],[4160,7331],[4161,7323],[4162,7323],[4163,7323],[4164,7323],[4165,7323],[4166,7323],[4167,7323],[4168,7329],[4169,7331],[4170,7329],[4171,7331],[4172,7329],[4173,7331],[4174,7323],[4175,7329],[4176,7323],[4177,7323],[4178,7323],[4179,7329],[4180,7331],[4181,7323],[4182,7323],[4183,7323],[4184,7323],[4185,7323],[4186,7329],[4187,7329],[4188,7329],[4189,7331],[4190,7323],[4191,7323],[4192,7323],[4193,7323],[4194,7329],[4195,7331],[4196,7323],[4197,7323],[4198,7323],[4199,7329],[4200,7331],[4201,7323],[4202,7329],[4203,7329],[4204,7323],[4205,7323],[4206,7323],[4207,7329],[4208,7331],[4209,7323],[4210,7323],[4211,7323],[4212,7329],[4213,7331],[4214,7323],[4215,7323],[4216,7323],[4217,7329],[4218,7331],[4219,7323],[4220,7323],[4221,7323],[4222,7329],[4223,7331],[4224,7323],[4225,7323],[4226,7323],[4227,7329],[4228,7331],[4229,7323],[4230,7323],[4231,7323],[4232,7323],[4233,7323],[4234,7323],[4235,7323],[4236,7323],[4237,7323],[4238,7323],[4239,7323],[4240,7323],[4241,7323],[4242,7323],[4243,7323],[4244,7323],[4245,7323],[4246,7323],[4247,7323],[4248,7323],[4249,7323],[4250,7323],[4251,7323],[4252,7323],[4253,7323],[4254,7323],[4255,7323],[4256,7323],[4257,7323],[4258,7323],[4259,7323],[4260,7323],[4261,7323],[4262,7323],[4263,7323],[4264,7323],[4265,7323],[4266,7323],[4267,7323],[4268,7323],[4269,7323],[4270,7323],[4271,7323],[4272,7323],[4273,7323],[4274,7323],[4275,7323],[4276,7323],[4277,7323],[4278,7329],[4279,7323],[4280,7323],[4281,7323],[4282,7323],[4283,7323],[4284,7323],[4285,7323],[4286,7329],[4287,7323],[4288,7323],[4289,7323],[4290,7323],[4291,7323],[4292,7329],[4293,7316],[4294,7316],[4295,7316],[4296,7316],[4297,7316],[4298,7316],[4299,7316],[4300,7316],[4301,7316],[4302,7316],[4303,7316],[4304,7316],[4305,7316],[4306,7316],[4307,7316],[4308,7316],[4309,7316],[4310,7316],[4311,7316],[4312,7316],[4313,7316],[4314,7316],[4315,7316],[4316,7316],[4317,7316],[4318,7316],[4319,7316],[4320,7316],[4321,7316],[4322,7316],[4323,7316],[4324,7316],[4325,7316],[4326,7316],[4327,7316],[4328,7316],[4329,7316],[4330,7316],[4331,7316],[4332,7316],[4333,7316],[4334,7316],[4335,7316],[4336,7316],[4337,7306],[4338,7305],[4339,7305],[4340,7308],[4341,7343],[4342,7346],[4343,7336],[4344,7296],[4345,7296],[4346,7342],[4347,7344],[4348,7340],[4349,7340],[4350,7337],[4351,7338],[4352,7327],[4353,7327],[4354,7289],[4355,7341],[4356,7339],[4357,7339],[4358,7324],[4359,7288],[4360,7305],[4361,7305],[4362,7327],[4363,7327],[4364,7305],[4365,7305],[4366,7308],[4367,7343],[4368,7346],[4369,7336],[4370,7296],[4371,7296],[4372,7342],[4373,7344],[4374,7340],[4375,7340],[4376,7337],[4377,7338],[4378,7327],[4379,7327],[4380,7339],[4381,7339],[4382,7305],[4383,7305],[4384,7289],[4385,7341],[4386,7305],[4387,7305],[4388,7288],[4389,7336],[4390,7336],[4391,7296],[4392,7296],[4393,7296],[4394,7296],[4395,7337],[4396,7338],[4397,7327],[4398,7327],[4399,7327],[4400,7327],[4401,7339],[4402,7339],[4403,7305],[4404,7305],[4405,7305],[4406,7305],[4407,7336],[4408,7296],[4409,7296],[4410,7296],[4411,7296],[4412,7338],[4413,7327],[4414,7327],[4415,7339],[4416,7339],[4417,7305],[4418,7305],[4419,7296],[4420,7296],[4421,7305],[4422,7305],[4423,7305],[4424,7305],[4425,7340],[4426,7305],[4427,7305],[4428,7305],[4429,7305],[4430,7305],[4431,7336],[4432,7296],[4433,7296],[4434,7340],[4435,7340],[4436,7305],[4437,7305],[4438,7289],[4439,7341],[4440,7289],[4441,7341],[4442,7336],[4443,7296],[4444,7296],[4445,7340],[4446,7340],[4447,7305],[4448,7305],[4449,7289],[4450,7289],[4451,7341],[4452,7341],[4453,7288],[4454,7288],[4455,7308],[4456,7342],[4457,7327],[4458,7340],[4459,7340],[4460,7340],[4461,7340],[4462,7308],[4463,7343],[4464,7346],[4465,7336],[4466,7296],[4467,7296],[4468,7342],[4469,7344],[4470,7340],[4471,7340],[4472,7337],[4473,7338],[4474,7327],[4475,7327],[4476,7339],[4477,7339],[4478,7305],[4479,7305],[4480,7289],[4481,7341],[4482,7305],[4483,7305],[4484,7288],[4485,7308],[4486,7343],[4487,7346],[4488,7336],[4489,7296],[4490,7296],[4491,7342],[4492,7344],[4493,7340],[4494,7340],[4495,7337],[4496,7338],[4497,7327],[4498,7327],[4499,7339],[4500,7339],[4501,7305],[4502,7305],[4503,7289],[4504,7341],[4505,7305],[4506,7305],[4507,7288],[4508,7308],[4509,7343],[4510,7346],[4511,7336],[4512,7296],[4513,7296],[4514,7342],[4515,7344],[4516,7340],[4517,7340],[4518,7337],[4519,7338],[4520,7327],[4521,7327],[4522,7339],[4523,7339],[4524,7305],[4525,7305],[4526,7289],[4527,7341],[4528,7305],[4529,7305],[4530,7288],[4531,7308],[4532,7343],[4533,7346],[4534,7336],[4535,7296],[4536,7296],[4537,7342],[4538,7344],[4539,7340],[4540,7340],[4541,7337],[4542,7338],[4543,7327],[4544,7327],[4545,7339],[4546,7339],[4547,7305],[4548,7305],[4549,7289],[4550,7341],[4551,7305],[4552,7305],[4553,7288],[4554,7308],[4555,7343],[4556,7346],[4557,7336],[4558,7296],[4559,7296],[4560,7342],[4561,7344],[4562,7340],[4563,7340],[4564,7337],[4565,7338],[4566,7327],[4567,7327],[4568,7339],[4569,7339],[4570,7305],[4571,7305],[4572,7289],[4573,7341],[4574,7305],[4575,7305],[4576,7288],[4577,7308],[4578,7343],[4579,7346],[4580,7336],[4581,7296],[4582,7296],[4583,7342],[4584,7344],[4585,7340],[4586,7340],[4587,7337],[4588,7338],[4589,7327],[4590,7327],[4591,7339],[4592,7339],[4593,7305],[4594,7305],[4595,7289],[4596,7341],[4597,7305],[4598,7305],[4599,7288],[4600,7338],[4601,7343],[4602,7305],[4603,7305],[4604,7308],[4605,7343],[4606,7346],[4607,7336],[4608,7296],[4609,7296],[4610,7342],[4611,7344],[4612,7340],[4613,7340],[4614,7337],[4615,7338],[4616,7327],[4617,7327],[4618,7339],[4619,7339],[4620,7305],[4621,7305],[4622,7289],[4623,7341],[4624,7305],[4625,7305],[4626,7288],[4627,7308],[4628,7343],[4629,7336],[4630,7296],[4631,7296],[4632,7342],[4633,7337],[4634,7327],[4635,7327],[4636,7339],[4637,7339],[4638,7305],[4639,7305],[4640,7289],[4641,7341],[4642,7308],[4643,7343],[4644,7336],[4645,7296],[4646,7296],[4647,7342],[4648,7344],[4649,7340],[4650,7340],[4651,7327],[4652,7327],[4653,7305],[4654,7305],[4655,7296],[4656,7296],[4657,7296],[4658,7296],[4659,7327],[4660,7327],[4661,7327],[4662,7327],[4663,7305],[4664,7305],[4665,7305],[4666,7305],[4667,7308],[4668,7343],[4669,7342],[4670,7296],[4671,7296],[4672,7337],[4673,7327],[4674,7327],[4675,7305],[4676,7305],[4677,7305],[4678,7305],[4679,7308],[4680,7343],[4681,7346],[4682,7336],[4683,7296],[4684,7296],[4685,7342],[4686,7344],[4687,7340],[4688,7340],[4689,7337],[4690,7338],[4691,7327],[4692,7327],[4693,7339],[4694,7339],[4695,7305],[4696,7305],[4697,7289],[4698,7341],[4699,7305],[4700,7305],[4701,7288],[4702,7308],[4703,7343],[4704,7346],[4705,7336],[4706,7296],[4707,7296],[4708,7342],[4709,7344],[4710,7340],[4711,7340],[4712,7337],[4713,7338],[4714,7327],[4715,7327],[4716,7339],[4717,7339],[4718,7305],[4719,7305],[4720,7289],[4721,7341],[4722,7305],[4723,7305],[4724,7288],[4725,7308],[4726,7343],[4727,7346],[4728,7336],[4729,7296],[4730,7296],[4731,7342],[4732,7344],[4733,7340],[4734,7340],[4735,7337],[4736,7338],[4737,7327],[4738,7327],[4739,7339],[4740,7339],[4741,7305],[4742,7305],[4743,7289],[4744,7341],[4745,7305],[4746,7305],[4747,7288],[4748,7336],[4749,7337],[4750,7288],[4751,7336],[4752,7337],[4753,7288],[4754,7305],[4755,7305],[4756,7305],[4757,7305],[4758,7308],[4759,7343],[4760,7346],[4761,7336],[4762,7296],[4763,7296],[4764,7342],[4765,7344],[4766,7340],[4767,7340],[4768,7337],[4769,7338],[4770,7327],[4771,7327],[4772,7339],[4773,7339],[4774,7305],[4775,7305],[4776,7289],[4777,7341],[4778,7305],[4779,7305],[4780,7288],[4781,7308],[4782,7343],[4783,7342],[4784,7327],[4785,7327],[4786,7308],[4787,7343],[4788,7308],[4789,7343],[4790,7342],[4791,7324],[4792,7305],[4793,7305],[4794,7344],[4795,7288],[4796,7308],[4797,7343],[4798,7336],[4799,7296],[4800,7296],[4801,7342],[4802,7337],[4803,7338],[4804,7327],[4805,7327],[4806,7339],[4807,7339],[4808,7305],[4809,7305],[4810,7289],[4811,7341],[4812,7288],[4813,7324],[4814,7343],[4815,7327],[4816,7308],[4817,7343],[4818,7346],[4819,7336],[4820,7296],[4821,7296],[4822,7342],[4823,7344],[4824,7340],[4825,7340],[4826,7337],[4827,7338],[4828,7327],[4829,7327],[4830,7339],[4831,7339],[4832,7305],[4833,7305],[4834,7289],[4835,7341],[4836,7305],[4837,7305],[4838,7288],[4839,7308],[4840,7343],[4841,7346],[4842,7336],[4843,7296],[4844,7296],[4845,7342],[4846,7344],[4847,7340],[4848,7340],[4849,7337],[4850,7338],[4851,7327],[4852,7327],[4853,7339],[4854,7339],[4855,7305],[4856,7305],[4857,7289],[4858,7341],[4859,7305],[4860,7305],[4861,7288],[4862,7289],[4863,7341],[4864,7296],[4865,7296],[4866,7308],[4867,7308],[4868,7343],[4869,7343],[4870,7336],[4871,7336],[4872,7336],[4873,7296],[4874,7296],[4875,7296],[4876,7296],[4877,7342],[4878,7342],[4879,7338],[4880,7338],[4881,7327],[4882,7327],[4883,7327],[4884,7327],[4885,7305],[4886,7305],[4887,7305],[4888,7305],[4889,7308],[4890,7308],[4891,7343],[4892,7343],[4893,7336],[4894,7296],[4895,7296],[4896,7296],[4897,7296],[4898,7342],[4899,7342],[4900,7338],[4901,7338],[4902,7327],[4903,7327],[4904,7327],[4905,7327],[4906,7305],[4907,7305],[4908,7305],[4909,7305],[4910,7296],[4911,7296],[4912,7305],[4913,7305],[4914,7308],[4915,7343],[4916,7346],[4917,7336],[4918,7296],[4919,7296],[4920,7342],[4921,7344],[4922,7340],[4923,7340],[4924,7337],[4925,7338],[4926,7327],[4927,7327],[4928,7339],[4929,7339],[4930,7305],[4931,7305],[4932,7289],[4933,7341],[4934,7305],[4935,7305],[4936,7288],[4937,7308],[4938,7343],[4939,7346],[4940,7336],[4941,7296],[4942,7296],[4943,7342],[4944,7344],[4945,7340],[4946,7340],[4947,7337],[4948,7338],[4949,7327],[4950,7327],[4951,7339],[4952,7339],[4953,7305],[4954,7305],[4955,7289],[4956,7341],[4957,7305],[4958,7305],[4959,7288],[4960,7308],[4961,7343],[4962,7346],[4963,7336],[4964,7296],[4965,7296],[4966,7342],[4967,7344],[4968,7340],[4969,7340],[4970,7337],[4971,7338],[4972,7327],[4973,7327],[4974,7339],[4975,7339],[4976,7305],[4977,7305],[4978,7289],[4979,7341],[4980,7305],[4981,7305],[4982,7288],[4983,7327],[4984,7327],[4985,7305],[4986,7305],[4987,7308],[4988,7308],[4989,7308],[4990,7343],[4991,7343],[4992,7343],[4993,7346],[4994,7346],[4995,7346],[4996,7336],[4997,7336],[4998,7336],[4999,7296],[5000,7296],[5001,7296],[5002,7296],[5003,7296],[5004,7296],[5005,7342],[5006,7342],[5007,7342],[5008,7344],[5009,7344],[5010,7344],[5011,7340],[5012,7340],[5013,7340],[5014,7340],[5015,7340],[5016,7340],[5017,7337],[5018,7337],[5019,7337],[5020,7338],[5021,7338],[5022,7338],[5023,7327],[5024,7327],[5025,7327],[5026,7327],[5027,7327],[5028,7327],[5029,7339],[5030,7339],[5031,7339],[5032,7339],[5033,7339],[5034,7339],[5035,7305],[5036,7305],[5037,7305],[5038,7305],[5039,7305],[5040,7305],[5041,7289],[5042,7289],[5043,7289],[5044,7341],[5045,7341],[5046,7341],[5047,7305],[5048,7305],[5049,7305],[5050,7305],[5051,7305],[5052,7305],[5053,7288],[5054,7288],[5055,7288],[5056,7340],[5057,7296],[5058,7305],[5059,7324],[5060,7296],[5061,7296],[5062,7296],[5063,7296],[5064,7327],[5065,7327],[5066,7327],[5067,7327],[5068,7305],[5069,7305],[5070,7305],[5071,7305],[5072,7308],[5073,7343],[5074,7346],[5075,7336],[5076,7296],[5077,7296],[5078,7342],[5079,7344],[5080,7340],[5081,7340],[5082,7337],[5083,7338],[5084,7327],[5085,7327],[5086,7339],[5087,7339],[5088,7305],[5089,7305],[5090,7289],[5091,7341],[5092,7305],[5093,7305],[5094,7288],[5095,7308],[5096,7308],[5097,7343],[5098,7343],[5099,7346],[5100,7346],[5101,7346],[5102,7346],[5103,7346],[5104,7336],[5105,7296],[5106,7296],[5107,7296],[5108,7296],[5109,7296],[5110,7296],[5111,7342],[5112,7342],[5113,7344],[5114,7344],[5115,7344],[5116,7340],[5117,7340],[5118,7337],[5119,7338],[5120,7327],[5121,7327],[5122,7327],[5123,7327],[5124,7327],[5125,7327],[5126,7327],[5127,7327],[5128,7339],[5129,7339],[5130,7339],[5131,7339],[5132,7305],[5133,7305],[5134,7305],[5135,7305],[5136,7305],[5137,7305],[5138,7305],[5139,7305],[5140,7305],[5141,7289],[5142,7289],[5143,7341],[5144,7341],[5145,7305],[5146,7305],[5147,7288],[5148,7308],[5149,7343],[5150,7346],[5151,7336],[5152,7296],[5153,7296],[5154,7342],[5155,7344],[5156,7340],[5157,7340],[5158,7337],[5159,7338],[5160,7327],[5161,7327],[5162,7339],[5163,7339],[5164,7305],[5165,7305],[5166,7289],[5167,7341],[5168,7305],[5169,7305],[5170,7288],[5171,7305],[5172,7289],[5173,7341],[5174,7289],[5175,7341],[5176,7338],[5177,7296],[5178,7296],[5179,7338],[5180,7327],[5181,7327],[5182,7305],[5183,7305],[5184,7308],[5185,7343],[5186,7308],[5187,7343],[5188,7342],[5189,7344],[5190,7341],[5191,7308],[5192,7343],[5193,7342],[5194,7308],[5195,7343],[5196,7346],[5197,7336],[5198,7296],[5199,7296],[5200,7342],[5201,7344],[5202,7340],[5203,7340],[5204,7337],[5205,7338],[5206,7327],[5207,7327],[5208,7339],[5209,7339],[5210,7305],[5211,7305],[5212,7289],[5213,7341],[5214,7305],[5215,7305],[5216,7288],[5217,7344],[5218,7308],[5219,7343],[5220,7296],[5221,7296],[5222,7342],[5223,7344],[5224,7340],[5225,7340],[5226,7327],[5227,7327],[5228,7339],[5229,7339],[5230,7305],[5231,7305],[5232,7289],[5233,7341],[5234,7338],[5235,7338],[5236,7336],[5237,7337],[5238,7340],[5239,7327],[5240,7327],[5241,7305],[5242,7305],[5243,7308],[5244,7343],[5245,7346],[5246,7336],[5247,7296],[5248,7296],[5249,7342],[5250,7344],[5251,7340],[5252,7340],[5253,7337],[5254,7338],[5255,7327],[5256,7327],[5257,7339],[5258,7339],[5259,7305],[5260,7305],[5261,7289],[5262,7341],[5263,7305],[5264,7305],[5265,7288],[5266,7308],[5267,7343],[5268,7342],[5269,7327],[5270,7327],[5271,7338],[5272,7340],[5273,7344],[5274,7340],[5275,7340],[5276,7337],[5277,7339],[5278,7339],[5279,7289],[5280,7341],[5281,7308],[5282,7343],[5283,7342],[5284,7308],[5285,7343],[5286,7346],[5287,7336],[5288,7296],[5289,7296],[5290,7342],[5291,7344],[5292,7340],[5293,7340],[5294,7337],[5295,7338],[5296,7327],[5297,7327],[5298,7339],[5299,7339],[5300,7305],[5301,7305],[5302,7289],[5303,7341],[5304,7305],[5305,7305],[5306,7288],[5307,7308],[5308,7342],[5309,7308],[5310,7343],[5311,7342],[5312,7308],[5313,7343],[5314,7308],[5315,7343],[5316,7342],[5317,7308],[5318,7343],[5319,7346],[5320,7336],[5321,7296],[5322,7296],[5323,7342],[5324,7344],[5325,7340],[5326,7340],[5327,7337],[5328,7338],[5329,7327],[5330,7327],[5331,7339],[5332,7339],[5333,7305],[5334,7305],[5335,7289],[5336,7341],[5337,7305],[5338,7305],[5339,7288],[5340,7308],[5341,7343],[5342,7346],[5343,7336],[5344,7296],[5345,7296],[5346,7342],[5347,7344],[5348,7340],[5349,7340],[5350,7337],[5351,7338],[5352,7327],[5353,7327],[5354,7339],[5355,7339],[5356,7305],[5357,7305],[5358,7289],[5359,7341],[5360,7305],[5361,7305],[5362,7288],[5363,7308],[5364,7343],[5365,7346],[5366,7336],[5367,7296],[5368,7296],[5369,7342],[5370,7344],[5371,7340],[5372,7340],[5373,7337],[5374,7338],[5375,7327],[5376,7327],[5377,7339],[5378,7339],[5379,7305],[5380,7305],[5381,7289],[5382,7341],[5383,7305],[5384,7305],[5385,7288],[5386,7308],[5387,7343],[5388,7346],[5389,7336],[5390,7296],[5391,7296],[5392,7342],[5393,7344],[5394,7340],[5395,7340],[5396,7337],[5397,7338],[5398,7327],[5399,7327],[5400,7339],[5401,7339],[5402,7305],[5403,7305],[5404,7289],[5405,7341],[5406,7305],[5407,7305],[5408,7288],[5409,7308],[5410,7343],[5411,7346],[5412,7336],[5413,7296],[5414,7296],[5415,7342],[5416,7344],[5417,7340],[5418,7340],[5419,7337],[5420,7338],[5421,7327],[5422,7327],[5423,7339],[5424,7339],[5425,7305],[5426,7305],[5427,7289],[5428,7341],[5429,7305],[5430,7305],[5431,7288],[5432,7308],[5433,7343],[5434,7346],[5435,7336],[5436,7296],[5437,7296],[5438,7342],[5439,7344],[5440,7340],[5441,7340],[5442,7337],[5443,7338],[5444,7327],[5445,7327],[5446,7339],[5447,7339],[5448,7305],[5449,7305],[5450,7289],[5451,7341],[5452,7305],[5453,7305],[5454,7288],[5455,7308],[5456,7343],[5457,7346],[5458,7336],[5459,7296],[5460,7296],[5461,7342],[5462,7344],[5463,7340],[5464,7340],[5465,7337],[5466,7338],[5467,7327],[5468,7327],[5469,7339],[5470,7339],[5471,7305],[5472,7305],[5473,7289],[5474,7341],[5475,7305],[5476,7305],[5477,7288],[5478,7308],[5479,7343],[5480,7346],[5481,7336],[5482,7296],[5483,7296],[5484,7342],[5485,7344],[5486,7340],[5487,7340],[5488,7337],[5489,7338],[5490,7327],[5491,7327],[5492,7339],[5493,7339],[5494,7305],[5495,7305],[5496,7289],[5497,7341],[5498,7305],[5499,7305],[5500,7288],[5501,7308],[5502,7343],[5503,7346],[5504,7336],[5505,7296],[5506,7296],[5507,7342],[5508,7344],[5509,7340],[5510,7340],[5511,7337],[5512,7338],[5513,7327],[5514,7327],[5515,7339],[5516,7339],[5517,7305],[5518,7305],[5519,7289],[5520,7341],[5521,7305],[5522,7305],[5523,7288],[5524,7344],[5525,7340],[5526,7340],[5527,7337],[5528,7339],[5529,7339],[5530,7289],[5531,7341],[5532,7341],[5533,7341],[5534,7308],[5535,7343],[5536,7342],[5537,7327],[5538,7327],[5539,7308],[5540,7343],[5541,7296],[5542,7296],[5543,7342],[5544,7327],[5545,7327],[5546,7305],[5547,7305],[5548,7337],[5549,7339],[5550,7339],[5551,7289],[5552,7341],[5553,7308],[5554,7343],[5555,7340],[5556,7327],[5557,7327],[5558,7338],[5559,7340],[5560,7340],[5561,7338],[5562,7305],[5563,7305],[5564,7308],[5565,7343],[5566,7336],[5567,7296],[5568,7296],[5569,7342],[5570,7340],[5571,7327],[5572,7327],[5573,7305],[5574,7305],[5575,7327],[5576,7327],[5577,7305],[5578,7305],[5579,7289],[5580,7341],[5581,7289],[5582,7341],[5583,7341],[5584,7341],[5585,7289],[5586,7341],[5587,7289],[5588,7341],[5589,7341],[5590,7341],[5591,7289],[5592,7341],[5593,7289],[5594,7341],[5595,7341],[5596,7341],[5597,7341],[5598,7341],[5599,7341],[5600,7341],[5601,7296],[5602,7296],[5603,7305],[5604,7305],[5605,7336],[5606,7296],[5607,7296],[5608,7342],[5609,7337],[5610,7327],[5611,7327],[5612,7305],[5613,7305],[5614,7308],[5615,7343],[5616,7342],[5617,7342],[5618,7336],[5619,7296],[5620,7296],[5621,7342],[5622,7337],[5623,7327],[5624,7327],[5625,7305],[5626,7305],[5627,7308],[5628,7343],[5629,7342],[5630,7342],[5631,7308],[5632,7308],[5633,7343],[5634,7343],[5635,7336],[5636,7336],[5637,7296],[5638,7296],[5639,7296],[5640,7296],[5641,7342],[5642,7342],[5643,7337],[5644,7338],[5645,7338],[5646,7327],[5647,7327],[5648,7327],[5649,7327],[5650,7305],[5651,7305],[5652,7305],[5653,7305],[5654,7308],[5655,7308],[5656,7343],[5657,7343],[5658,7336],[5659,7296],[5660,7296],[5661,7296],[5662,7296],[5663,7342],[5664,7342],[5665,7338],[5666,7338],[5667,7327],[5668,7327],[5669,7327],[5670,7327],[5671,7305],[5672,7305],[5673,7305],[5674,7305],[5675,7341],[5676,7336],[5677,7296],[5678,7296],[5679,7338],[5680,7327],[5681,7327],[5682,7305],[5683,7305],[5684,7308],[5685,7343],[5686,7346],[5687,7336],[5688,7296],[5689,7296],[5690,7342],[5691,7344],[5692,7340],[5693,7337],[5694,7338],[5695,7327],[5696,7327],[5697,7339],[5698,7339],[5699,7305],[5700,7305],[5701,7289],[5702,7341],[5703,7341],[5704,7338],[5705,7344],[5706,7305],[5707,7305],[5708,7340],[5709,7340],[5710,7305],[5711,7305],[5712,7305],[5713,7305],[5714,7327],[5715,7327],[5716,7305],[5717,7305],[5718,7308],[5719,7343],[5720,7336],[5721,7296],[5722,7296],[5723,7342],[5724,7337],[5725,7338],[5726,7327],[5727,7327],[5728,7339],[5729,7339],[5730,7305],[5731,7305],[5732,7289],[5733,7341],[5734,7288],[5735,7288],[5736,7337],[5737,7305],[5738,7305],[5739,7305],[5740,7305],[5741,7296],[5742,7296],[5743,7342],[5744,7341],[5745,7308],[5746,7342],[5747,7289],[5748,7341],[5749,7341],[5750,7289],[5751,7341],[5752,7336],[5753,7337],[5754,7288],[5755,7341],[5756,7296],[5757,7296],[5758,7296],[5759,7289],[5760,7341],[5761,7289],[5762,7341],[5763,7289],[5764,7341],[5765,7305],[5766,7305],[5767,7341],[5768,7340],[5769,7340],[5770,7340],[5771,7306],[5772,7324],[5773,7342],[5774,7305],[5775,7305],[5776,7296],[5777,7296],[5778,7338],[5779,7305],[5780,7305],[5781,7289],[5782,7341],[5783,7344],[5784,7308],[5785,7343],[5786,7296],[5787,7296],[5788,7296],[5789,7296],[5790,7342],[5791,7327],[5792,7327],[5793,7327],[5794,7327],[5795,7305],[5796,7305],[5797,7305],[5798,7305],[5799,7308],[5800,7343],[5801,7342],[5802,7308],[5803,7343],[5804,7342],[5805,7336],[5806,7336],[5807,7308],[5808,7343],[5809,7342],[5810,7289],[5811,7341],[5812,7305],[5813,7305],[5814,7305],[5815,7305],[5816,7305],[5817,7305],[5818,7308],[5819,7324],[5820,7308],[5821,7343],[5822,7342],[5823,7327],[5824,7327],[5825,7341],[5826,7340],[5827,7296],[5828,7296],[5829,7327],[5830,7327],[5831,7339],[5832,7339],[5833,7305],[5834,7305],[5835,7305],[5836,7305],[5837,7340],[5838,7336],[5839,7296],[5840,7296],[5841,7296],[5842,7296],[5843,7296],[5844,7296],[5845,7337],[5846,7338],[5847,7327],[5848,7327],[5849,7339],[5850,7339],[5851,7305],[5852,7305],[5853,7336],[5854,7296],[5855,7296],[5856,7296],[5857,7296],[5858,7338],[5859,7327],[5860,7327],[5861,7339],[5862,7339],[5863,7305],[5864,7305],[5865,7336],[5866,7336],[5867,7327],[5868,7327],[5869,7327],[5870,7327],[5871,7305],[5872,7305],[5873,7305],[5874,7305],[5875,7324],[5876,7344],[5877,7340],[5878,7340],[5879,7289],[5880,7341],[5881,7289],[5882,7341],[5883,7289],[5884,7341],[5885,7289],[5886,7341],[5887,7296],[5888,7305],[5889,7341],[5890,7296],[5891,7340],[5892,7305],[5893,7289],[5894,7296],[5895,7296],[5896,7327],[5897,7327],[5898,7339],[5899,7339],[5900,7305],[5901,7305],[5902,7289],[5903,7341],[5904,7296],[5905,7305],[5906,7289],[5907,7341],[5908,7289],[5909,7341],[5910,7341],[5911,7342],[5912,7308],[5913,7343],[5914,7296],[5915,7296],[5916,7342],[5917,7327],[5918,7327],[5919,7339],[5920,7339],[5921,7305],[5922,7305],[5923,7308],[5924,7343],[5925,7296],[5926,7296],[5927,7342],[5928,7327],[5929,7327],[5930,7339],[5931,7339],[5932,7305],[5933,7305],[5934,7308],[5935,7343],[5936,7296],[5937,7296],[5938,7342],[5939,7327],[5940,7327],[5941,7339],[5942,7339],[5943,7305],[5944,7305],[5945,7308],[5946,7343],[5947,7296],[5948,7296],[5949,7342],[5950,7327],[5951,7327],[5952,7339],[5953,7339],[5954,7305],[5955,7305],[5956,7308],[5957,7343],[5958,7342],[5959,7308],[5960,7343],[5961,7346],[5962,7336],[5963,7296],[5964,7296],[5965,7342],[5966,7344],[5967,7340],[5968,7340],[5969,7337],[5970,7338],[5971,7327],[5972,7327],[5973,7339],[5974,7339],[5975,7305],[5976,7305],[5977,7289],[5978,7341],[5979,7305],[5980,7305],[5981,7288],[5982,7305],[5983,7305],[5984,7346],[5985,7346],[5986,7308],[5987,7305],[5988,7344],[5989,7340],[5990,7340],[5991,7339],[5992,7339],[5993,7305],[5994,7305],[5995,7296],[5996,7296],[5997,7327],[5998,7327],[5999,7339],[6000,7339],[6001,7305],[6002,7305],[6003,7296],[6004,7305],[6005,7308],[6006,7343],[6007,7296],[6008,7296],[6009,7342],[6010,7327],[6011,7327],[6012,7339],[6013,7339],[6014,7305],[6015,7305],[6016,7342],[6017,7327],[6018,7308],[6019,7343],[6020,7296],[6021,7296],[6022,7342],[6023,7344],[6024,7340],[6025,7340],[6026,7327],[6027,7327],[6028,7339],[6029,7339],[6030,7305],[6031,7305],[6032,7289],[6033,7341],[6034,7308],[6035,7343],[6036,7296],[6037,7296],[6038,7342],[6039,7327],[6040,7327],[6041,7339],[6042,7339],[6043,7305],[6044,7305],[6045,7296],[6046,7296],[6047,7327],[6048,7327],[6049,7339],[6050,7339],[6051,7338],[6052,7339],[6053,7337],[6054,7339],[6055,7337],[6056,7339],[6057,7340],[6058,7340],[6059,7337],[6060,7337],[6061,7339],[6062,7339],[6063,7289],[6064,7289],[6065,7340],[6066,7339],[6067,7341],[6068,7341],[6069,7340],[6070,7337],[6071,7339],[6072,7341],[6073,7341],[6074,7337],[6075,7339],[6076,7339],[6077,7337],[6078,7339],[6079,7339],[6080,7340],[6081,7340],[6082,7337],[6083,7337],[6084,7339],[6085,7289],[6086,7289],[6087,7340],[6088,7341],[6089,7340],[6090,7341],[6091,7308],[6092,7343],[6093,7342],[6094,7289],[6095,7341],[6096,7344],[6097,7308],[6098,7343],[6099,7336],[6100,7296],[6101,7296],[6102,7342],[6103,7337],[6104,7327],[6105,7327],[6106,7339],[6107,7339],[6108,7305],[6109,7305],[6110,7289],[6111,7341],[6112,7308],[6113,7343],[6114,7346],[6115,7336],[6116,7296],[6117,7296],[6118,7342],[6119,7344],[6120,7340],[6121,7340],[6122,7337],[6123,7338],[6124,7327],[6125,7327],[6126,7339],[6127,7339],[6128,7305],[6129,7305],[6130,7289],[6131,7341],[6132,7305],[6133,7305],[6134,7288],[6135,7308],[6136,7343],[6137,7346],[6138,7336],[6139,7296],[6140,7296],[6141,7342],[6142,7344],[6143,7340],[6144,7340],[6145,7337],[6146,7338],[6147,7327],[6148,7327],[6149,7339],[6150,7339],[6151,7305],[6152,7305],[6153,7289],[6154,7341],[6155,7305],[6156,7305],[6157,7288],[6158,7308],[6159,7343],[6160,7346],[6161,7336],[6162,7296],[6163,7296],[6164,7342],[6165,7344],[6166,7340],[6167,7340],[6168,7337],[6169,7338],[6170,7327],[6171,7327],[6172,7339],[6173,7339],[6174,7305],[6175,7305],[6176,7289],[6177,7341],[6178,7305],[6179,7305],[6180,7288],[6181,7308],[6182,7343],[6183,7346],[6184,7336],[6185,7296],[6186,7296],[6187,7342],[6188,7344],[6189,7340],[6190,7340],[6191,7337],[6192,7338],[6193,7327],[6194,7327],[6195,7339],[6196,7339],[6197,7305],[6198,7305],[6199,7289],[6200,7341],[6201,7305],[6202,7305],[6203,7288],[6204,7305],[6205,7305],[6206,7308],[6207,7343],[6208,7346],[6209,7336],[6210,7296],[6211,7296],[6212,7342],[6213,7344],[6214,7340],[6215,7340],[6216,7337],[6217,7338],[6218,7327],[6219,7327],[6220,7339],[6221,7339],[6222,7305],[6223,7305],[6224,7289],[6225,7341],[6226,7305],[6227,7305],[6228,7288],[6229,7308],[6230,7343],[6231,7346],[6232,7336],[6233,7296],[6234,7296],[6235,7342],[6236,7344],[6237,7340],[6238,7340],[6239,7337],[6240,7338],[6241,7327],[6242,7327],[6243,7339],[6244,7339],[6245,7305],[6246,7305],[6247,7289],[6248,7341],[6249,7305],[6250,7305],[6251,7288],[6252,7308],[6253,7343],[6254,7346],[6255,7336],[6256,7296],[6257,7296],[6258,7342],[6259,7344],[6260,7340],[6261,7340],[6262,7337],[6263,7338],[6264,7327],[6265,7327],[6266,7339],[6267,7339],[6268,7305],[6269,7305],[6270,7289],[6271,7341],[6272,7305],[6273,7305],[6274,7288],[6275,7308],[6276,7343],[6277,7342],[6278,7340],[6279,7308],[6280,7343],[6281,7346],[6282,7336],[6283,7296],[6284,7296],[6285,7342],[6286,7344],[6287,7340],[6288,7340],[6289,7337],[6290,7338],[6291,7327],[6292,7327],[6293,7339],[6294,7339],[6295,7305],[6296,7305],[6297,7289],[6298,7341],[6299,7305],[6300,7305],[6301,7288],[6302,7305],[6303,7305],[6304,7340],[6305,7338],[6306,7343],[6307,7327],[6308,7308],[6309,7343],[6310,7346],[6311,7336],[6312,7296],[6313,7296],[6314,7342],[6315,7344],[6316,7340],[6317,7340],[6318,7337],[6319,7338],[6320,7327],[6321,7327],[6322,7339],[6323,7339],[6324,7305],[6325,7305],[6326,7289],[6327,7341],[6328,7305],[6329,7305],[6330,7288],[6331,7346],[6332,7308],[6333,7343],[6334,7342],[6335,7327],[6336,7327],[6337,7289],[6338,7341],[6339,7305],[6340,7305],[6341,7305],[6342,7305],[6343,7305],[6344,7289],[6345,7341],[6346,7346],[6347,7296],[6348,7296],[6349,7339],[6350,7339],[6351,7305],[6352,7305],[6353,7305],[6354,7305],[6355,7308],[6356,7343],[6357,7342],[6358,7296],[6359,7305],[6360,7305],[6361,7343],[6362,7296],[6363,7305],[6364,7305],[6365,7343],[6366,7346],[6367,7296],[6368,7296],[6369,7339],[6370,7339],[6371,7305],[6372,7305],[6373,7305],[6374,7305],[6375,7308],[6376,7343],[6377,7342],[6378,7296],[6379,7305],[6380,7296],[6381,7305],[6382,7305],[6383,7343],[6384,7346],[6385,7296],[6386,7339],[6387,7305],[6388,7305],[6389,7343],[6390,7308],[6391,7343],[6392,7336],[6393,7296],[6394,7296],[6395,7296],[6396,7296],[6397,7342],[6398,7338],[6399,7327],[6400,7327],[6401,7327],[6402,7327],[6403,7305],[6404,7305],[6405,7305],[6406,7305],[6407,7296],[6408,7296],[6409,7305],[6410,7305],[6411,7321],[6412,7321],[6413,7321],[6414,7321],[6415,7352],[6416,7352],[6417,7325],[6418,7325],[6419,7325],[6420,7325],[6421,7325],[6422,7325],[6423,7325],[6424,7325],[6425,7325],[6426,7325],[6427,7325],[6428,7325],[6429,7325],[6430,7325],[6431,7325],[6432,7325],[6433,7325],[6434,7325],[6435,7325],[6436,7325],[6437,7325],[6438,7325],[6439,7325],[6441,7325],[6442,7325],[6443,7325],[6444,7325],[6445,7325],[6446,7325],[6447,7325],[6448,7325],[6449,7325],[6450,7325],[6451,7325],[6452,7325],[6453,7325],[6454,7325],[6455,7325],[6456,7325],[6457,7325],[6458,7325],[6459,7325],[6460,7325],[6461,7325],[6462,7325],[6463,7325],[6464,7325],[6465,7325],[6466,7325],[6467,7325],[6468,7325],[6469,7325],[6470,7325],[6471,7325],[6472,7325],[6473,7325],[6474,7325],[6475,7325],[6476,7325],[6477,7325],[6478,7325],[6479,7325],[6481,7325],[6483,7325],[6485,7325],[6486,7325],[6487,7325],[6488,7325],[6490,7325],[6492,7325],[6493,7325],[6494,7325],[6495,7325],[6496,7325],[6497,7325],[6498,7325],[6499,7325],[6500,7345],[6501,7345],[6502,7345],[6503,7345],[6504,7345],[6505,7345],[6506,7345],[6507,7345],[6508,7345],[6509,7345],[6510,7317],[6511,7317],[6512,7317],[6513,7317],[6514,7317],[6515,7317],[6516,7317],[6517,7317],[6518,7317],[6519,7317],[6520,7317],[6521,7317],[6522,7317],[6523,7317],[6524,7317],[6525,7317],[6526,7317],[6527,7317],[6528,7317],[6529,7317],[6530,7317],[6531,7317],[6532,7317],[6533,7317],[6534,7317],[6535,7317],[6536,7317],[6537,7317],[6538,7317],[6539,7317],[6540,7317],[6541,7317],[6542,7317],[6543,7317],[6544,7317],[6545,7317],[6546,7317],[6547,7317],[6548,7317],[6549,7317],[6550,7317],[6551,7317],[6552,7317],[6553,7317],[6554,7317],[6555,7317],[6556,7317],[6557,7317],[6558,7317],[6559,7317],[6560,7317],[6561,7317],[6562,7317],[6563,7317],[6564,7317],[6565,7317],[6566,7317],[6567,7317],[6568,7317],[6569,7317],[6570,7317],[6571,7317],[6572,7317],[6573,7317],[6574,7317],[6575,7317],[6576,7317],[6577,7317],[6578,7317],[6579,7317],[6580,7317],[6581,7317],[6582,7317],[6583,7317],[6584,7317],[6585,7317],[6586,7317],[6587,7317],[6588,7317],[6589,7317],[6590,7317],[6591,7317],[6592,7317],[6593,7317],[6594,7317],[6595,7317],[6596,7317],[6597,7317],[6598,7317],[6599,7317],[6600,7317],[6601,7317],[6602,7317],[6603,7317],[6604,7317],[6605,7317],[6606,7317],[6607,7317],[6608,7317],[6609,7317],[6610,7317],[6611,7317],[6612,7317],[6613,7317],[6614,7317],[6615,7317],[6616,7317],[6617,7317],[6618,7317],[6619,7317],[6620,7317],[6621,7317],[6622,7317],[6623,7317],[6624,7317],[6625,7317],[6626,7317],[6627,7317],[6628,7317],[6629,7315],[6630,7315],[6631,7304],[6632,7315],[6633,7315],[6634,7315],[6635,7315],[6636,7315],[6637,7315],[6638,7315],[6639,7315],[6640,7315],[6641,7315],[6642,7315],[6643,7315],[6644,7315],[6645,7304],[6646,7304],[6647,7315],[6648,7315],[6649,7353],[6650,7353],[6651,7353],[6652,7353],[6653,7353],[6654,7353],[6655,7303],[6656,7303],[6657,7303],[6658,7303],[6659,7303],[6660,7303],[6661,7303],[6662,7303],[6663,7303],[6664,7303],[6665,7303],[6666,7303],[6667,7303],[6668,7303],[6669,7303],[6670,7303],[6671,7303],[6672,7303],[6673,7303],[6674,7303],[6675,7303],[6676,7303],[6677,7303],[6678,7303],[6679,7303],[6680,7303],[6681,7303],[6682,7303],[6683,7303],[6684,7303],[6685,7303],[6686,7303],[6687,7303],[6688,7303],[6689,7303],[6690,7303],[6691,7303],[6692,7303],[6693,7303],[6694,7303],[6695,7303],[6696,7303],[6697,7303],[6698,7303],[6699,7303],[6700,7303],[6701,7303],[6702,7303],[6703,7303],[6704,7303],[6705,7303],[6706,7303],[6707,7303],[6708,7303],[6709,7303],[6710,7303],[6711,7303],[6712,7303],[6713,7303],[6714,7303],[6715,7303],[6716,7303],[6717,7303],[6718,7303],[6719,7303],[6720,7303],[6721,7303],[6722,7303],[6723,7303],[6724,7303],[6725,7303],[6726,7303],[6727,7303],[6728,7303],[6729,7303],[6730,7303],[6731,7303],[6732,7303],[6733,7303],[6734,7303],[6735,7303],[6736,7303],[6737,7303],[6738,7303],[6739,7303],[6740,7303],[6741,7303],[6742,7303],[6743,7303],[6744,7303],[6745,7303],[6746,7303],[6747,7303],[6748,7303],[6749,7303],[6750,7303],[6751,7303],[6752,7303],[6753,7303],[6754,7303],[6755,7303],[6756,7303],[6757,7303],[6758,7303],[6759,7303],[6760,7303],[6761,7303],[6762,7303],[6763,7303],[6764,7303],[6765,7303],[6766,7303],[6767,7303],[6768,7303],[6769,7303],[6770,7303],[6771,7303],[6772,7303],[6773,7303],[6774,7303],[6775,7303],[6776,7303],[6777,7303],[6778,7303],[6779,7303],[6780,7303],[6781,7303],[6782,7303],[6783,7303],[6784,7303],[6785,7303],[6786,7303],[6787,7303],[6788,7303],[6789,7303],[6790,7303],[6791,7303],[6792,7303],[6793,7303],[6794,7303],[6795,7303],[6796,7303],[6797,7303],[6798,7303],[6799,7303],[6800,7303],[6801,7303],[6802,7303],[6803,7303],[6804,7303],[6805,7303],[6806,7303],[6807,7303],[6808,7303],[6809,7303],[6810,7303],[6811,7303],[6812,7303],[6813,7303],[6814,7303],[6815,7303],[6816,7303],[6817,7303],[6818,7303],[6819,7349],[6820,7349],[6821,7349],[6822,7349],[6823,7349],[6824,7349],[6825,7349],[6826,7349],[6827,7349],[6828,7349],[6829,7349],[6830,7349],[6831,7349],[6832,7349],[6833,7349],[6834,7349],[6835,7349],[6836,7349],[6837,7349],[6838,7349],[6839,7349],[6840,7349],[6841,7349],[6842,7349],[6843,7349],[6844,7349],[6845,7349],[6846,7349],[6847,7349],[6848,7349],[6849,7284],[6850,7284],[6851,7284],[6852,7284],[6853,7284],[6854,7284],[6855,7284],[6856,7284],[6857,7284],[6858,7294],[6859,7294],[6860,7294],[6861,7294],[6862,7294],[6863,7294],[6864,7294],[6865,7294],[6866,7294],[6867,7294],[6868,7294],[6869,7294],[6870,7294],[6871,7294],[6872,7294],[6873,7294],[6874,7294],[6875,7294],[6876,7294],[6877,7294],[6878,7294],[6879,7294],[6880,7294],[6881,7294],[6882,7294],[6883,7294],[6884,7294],[6885,7294],[6886,7294],[6887,7294],[6888,7294],[6889,7294],[6890,7294],[6891,7294],[6892,7294],[6893,7294],[6894,7294],[6895,7294],[6896,7294],[6897,7294],[6898,7294],[6899,7294],[6900,7294],[6901,7294],[6902,7294],[6903,7294],[6904,7294],[6905,7294],[6906,7294],[6907,7294],[6908,7294],[6909,7294],[6910,7294],[6911,7294],[6912,7294],[6913,7294],[6914,7294],[6915,7294],[6916,7294],[6917,7294],[6918,7294],[6919,7294],[6920,7294],[6921,7294],[6922,7294],[6923,7294],[6924,7294],[6925,7294],[6926,7294],[6927,7294],[6928,7294],[6929,7294],[6930,7294],[6931,7294],[6932,7294],[6933,7294],[6934,7294],[6935,7294],[6936,7294],[6937,7294],[6938,7294],[6939,7294],[6940,7294],[6941,7294],[6942,7294],[6943,7294],[6944,7294],[6945,7294],[6946,7294],[6947,7294],[6948,7294],[6949,7294],[6950,7294],[6951,7294],[6952,7294],[6953,7294],[6954,7294],[6955,7294],[6956,7294],[6957,7294],[6958,7294],[6959,7294],[6960,7294],[6961,7294],[6962,7294],[6963,7294],[6964,7294],[6965,7294],[6966,7294],[6967,7294],[6968,7294],[6969,7294],[6970,7294],[6971,7294],[6972,7294],[6973,7294],[6974,7294],[6975,7294],[6976,7294],[6977,7294],[6978,7294],[6979,7294],[6980,7294],[6981,7294],[6982,7294],[6983,7294],[6984,7294],[6985,7294],[6986,7294],[6987,7294],[6988,7294],[6989,7294],[6990,7294],[6991,7294],[6992,7294],[6993,7294],[6994,7294],[6995,7294],[6996,7294],[6997,7294],[6998,7294],[6999,7294],[7000,7294],[7001,7294],[7002,7294],[7003,7294],[7004,7294],[7005,7294],[7006,7294],[7007,7294],[7008,7300],[7009,7300],[7010,7300],[7011,7300],[7012,7300],[7013,7300],[7014,7300],[7015,7300],[7016,7300],[7017,7300],[7018,7300],[7019,7300],[7020,7300],[7021,7300],[7022,7300],[7023,7300],[7024,7300],[7025,7300],[7026,7300],[7027,7300],[7028,7300],[7029,7300],[7030,7300],[7031,7300],[7032,7300],[7033,7300],[7034,7300],[7035,7300],[7036,7300],[7037,7300],[7038,7300],[7039,7300],[7040,7300],[7041,7300],[7042,7300],[7043,7300],[7044,7300],[7045,7300],[7046,7300],[7047,7300],[7048,7300],[7049,7300],[7050,7300],[7051,7300],[7052,7300],[7053,7300],[7054,7300],[7055,7300],[7056,7300],[7057,7300],[7058,7300],[7059,7300],[7060,7300],[7061,7300],[7062,7300],[7063,7300],[7064,7300],[7065,7300],[7066,7300],[7067,7300],[7068,7300],[7069,7300],[7070,7300],[7071,7300],[7072,7300],[7073,7300],[7074,7300],[7075,7300],[7076,7300],[7077,7300],[7078,7300],[7079,7300],[7080,7300],[7081,7300],[7082,7300],[7083,7300],[7084,7300],[7085,7300],[7086,7300],[7087,7300],[7088,7300],[7089,7300],[7090,7300],[7091,7300],[7092,7300],[7093,7300],[7094,7300],[7095,7300],[7096,7300],[7097,7300],[7098,7300],[7099,7300],[7100,7300],[7101,7300],[7102,7300],[7103,7300],[7104,7300],[7105,7300],[7106,7300],[7107,7300],[7108,7300],[7109,7300],[7110,7300],[7111,7300],[7112,7300],[7113,7300],[7114,7300],[7115,7300],[7116,7300],[7117,7300],[7118,7300],[7119,7300],[7120,7300],[7121,7300],[7122,7300],[7123,7300],[7124,7300],[7125,7300],[7126,7300],[7127,7300],[7128,7300],[7129,7300],[7130,7300],[7131,7300],[7132,7300],[7133,7300],[7134,7300],[7135,7300],[7136,7300],[7137,7300],[7138,7300],[7139,7300],[7140,7300],[7141,7300],[7142,7300],[7143,7300],[7144,7300],[7145,7300],[7146,7300],[7147,7300],[7148,7300],[7149,7300],[7150,7300],[7151,7300],[7152,7300],[7153,7300],[7154,7300],[7155,7300],[7156,7300],[7157,7300],[7158,7300],[7159,7300],[7160,7300],[7161,7300],[7162,7300],[7163,7300],[7164,7300],[7165,7300],[7166,7300],[7167,7300],[7168,7300],[7169,7300],[7170,7300],[7171,7300],[7172,7300],[7173,7300],[7174,7300],[7175,7300],[7176,7300],[7177,7300],[7178,7300],[7179,7300],[7180,7300],[7181,7300],[7182,7300],[7183,7300],[7184,7297],[7185,7297],[7186,7303],[7187,7297],[7188,7297],[7189,7297],[7190,7297],[7191,7297],[7192,7297],[7193,7297],[7194,7297],[7195,7297],[7196,7297],[7197,7297],[7198,7297],[7199,7297],[7200,7297],[7201,7297],[7202,7297],[7203,7297],[7204,7297],[7205,7297],[7206,7297],[7207,7297],[7208,7297],[7209,7297],[7210,7297],[7211,7297],[7212,7297],[7213,7297],[7214,7297],[7215,7276],[7216,7276],[7217,7277],[7218,7276],[7219,7276],[7220,7276],[7221,7276],[7222,7276],[7223,7276],[7224,7277],[7225,7276],[7226,7276],[7227,7277],[7228,7276],[7229,7276],[7230,7276],[7231,7276],[7232,7276],[7233,7276],[7234,7276]],"b":[[432,"impl-From%3CColor%3E-for-Fill"],[433,"impl-From%3CGradient%3E-for-Fill"],[434,"impl-From%3CLinear%3E-for-Fill"],[440,"impl-From%3CColor%3E-for-Style"],[442,"impl-From%3CGradient%3E-for-Style"],[443,"impl-From%3C%26str%3E-for-Text"],[445,"impl-From%3CString%3E-for-Text"],[1318,"impl-BuilderWithAttributes"],[1319,"impl-PathBuilder-for-BuilderWithAttributes"],[1371,"impl-Build-for-BuilderWithAttributes"],[1372,"impl-BuilderWithAttributes"],[1502,"impl-BuilderWithAttributes"],[1503,"impl-PathBuilder-for-BuilderWithAttributes"],[1609,"impl-BuilderWithAttributes"],[1610,"impl-PathBuilder-for-BuilderWithAttributes"],[1767,"impl-Index%3CControlPointId%3E-for-Path"],[1768,"impl-Index%3CEndpointId%3E-for-Path"],[1769,"impl-Index%3CControlPointId%3E-for-PathSlice%3C\'l%3E"],[1770,"impl-Index%3CEndpointId%3E-for-PathSlice%3C\'l%3E"],[2000,"impl-IntoIterator-for-%26PathSlice%3C\'l%3E"],[2001,"impl-IntoIterator-for-PathSlice%3C\'l%3E"],[2056,"impl-PathBuilder-for-BuilderWithAttributes"],[2057,"impl-BuilderWithAttributes"],[2081,"impl-BuilderWithAttributes"],[2082,"impl-PathBuilder-for-BuilderWithAttributes"],[2096,"impl-BuilderWithAttributes"],[2097,"impl-PathBuilder-for-BuilderWithAttributes"],[2099,"impl-BuilderWithAttributes"],[2100,"impl-PathBuilder-for-BuilderWithAttributes"],[2469,"impl-NoAttributes%3CB%3E"],[2470,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[2484,"impl-Flattened%3CBuilder%3E"],[2485,"impl-Build-for-Flattened%3CBuilder%3E"],[2487,"impl-Build-for-WithSvg%3CBuilder%3E"],[2488,"impl-WithSvg%3CBuilder%3E"],[2489,"impl-Build-for-NoAttributes%3CB%3E"],[2490,"impl-NoAttributes%3CB%3E"],[2505,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[2506,"impl-WithSvg%3CBuilder%3E"],[2517,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[2518,"impl-WithSvg%3CBuilder%3E"],[2519,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[2520,"impl-NoAttributes%3CB%3E"],[2547,"impl-NoAttributes%3CB%3E"],[2548,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[2558,"impl-Debug-for-BorderRadii"],[2559,"impl-Display-for-BorderRadii"],[2636,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[2637,"impl-WithSvg%3CBuilder%3E"],[2638,"impl-NoAttributes%3CB%3E"],[2639,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[2641,"impl-WithSvg%3CBuilder%3E"],[2642,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[2662,"impl-WithSvg%3CBuilder%3E"],[2663,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[2664,"impl-NoAttributes%3CB%3E"],[2665,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[2686,"impl-WithSvg%3CBuilder%3E"],[2687,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[2688,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[2689,"impl-NoAttributes%3CB%3E"],[2875,"impl-Index%3CControlPointId%3E-for-CommandsPathSlice%3C\'l,+Endpoint,+ControlPoint%3E"],[2876,"impl-Index%3CEndpointId%3E-for-CommandsPathSlice%3C\'l,+Endpoint,+ControlPoint%3E"],[3037,"impl-Add%3C%26Angle%3CT%3E%3E-for-Angle%3CT%3E"],[3038,"impl-Add-for-Angle%3CT%3E"],[3041,"impl-Arc%3CS%3E"],[3042,"impl-Segment-for-Arc%3CS%3E"],[3043,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3044,"impl-CubicBezierSegment%3CS%3E"],[3045,"impl-Segment-for-LineSegment%3CS%3E"],[3046,"impl-LineSegment%3CS%3E"],[3047,"impl-QuadraticBezierSegment%3CS%3E"],[3048,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3054,"impl-Arc%3CS%3E"],[3055,"impl-Segment-for-Arc%3CS%3E"],[3056,"impl-CubicBezierSegment%3CS%3E"],[3057,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3104,"impl-Segment-for-Arc%3CS%3E"],[3105,"impl-Arc%3CS%3E"],[3106,"impl-CubicBezierSegment%3CS%3E"],[3107,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3108,"impl-Segment-for-LineSegment%3CS%3E"],[3109,"impl-LineSegment%3CS%3E"],[3110,"impl-QuadraticBezierSegment%3CS%3E"],[3111,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3233,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3234,"impl-CubicBezierSegment%3CS%3E"],[3236,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3237,"impl-QuadraticBezierSegment%3CS%3E"],[3242,"impl-Div%3CT%3E-for-Angle%3CT%3E"],[3243,"impl-Div-for-Angle%3CT%3E"],[3267,"impl-CubicBezierSegment%3CS%3E"],[3268,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3270,"impl-QuadraticBezierSegment%3CS%3E"],[3271,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3273,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3274,"impl-CubicBezierSegment%3CS%3E"],[3276,"impl-QuadraticBezierSegment%3CS%3E"],[3277,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3313,"impl-Arc%3CS%3E"],[3314,"impl-Segment-for-Arc%3CS%3E"],[3315,"impl-CubicBezierSegment%3CS%3E"],[3316,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3317,"impl-LineSegment%3CS%3E"],[3318,"impl-Segment-for-LineSegment%3CS%3E"],[3319,"impl-QuadraticBezierSegment%3CS%3E"],[3320,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3337,"impl-Segment-for-Arc%3CS%3E"],[3338,"impl-Arc%3CS%3E"],[3340,"impl-CubicBezierSegment%3CS%3E"],[3341,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3343,"impl-QuadraticBezierSegment%3CS%3E"],[3344,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3373,"impl-Arc%3CS%3E"],[3374,"impl-Segment-for-Arc%3CS%3E"],[3375,"impl-From%3CSvgArc%3CS%3E%3E-for-Arc%3CS%3E"],[3377,"impl-CubicBezierSegment%3CS%3E"],[3379,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3380,"impl-Segment-for-LineSegment%3CS%3E"],[3381,"impl-LineSegment%3CS%3E"],[3385,"impl-QuadraticBezierSegment%3CS%3E"],[3387,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3582,"impl-Arc%3CS%3E"],[3583,"impl-Segment-for-Arc%3CS%3E"],[3584,"impl-CubicBezierSegment%3CS%3E"],[3585,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3586,"impl-LineSegment%3CS%3E"],[3587,"impl-Segment-for-LineSegment%3CS%3E"],[3588,"impl-QuadraticBezierSegment%3CS%3E"],[3589,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3606,"impl-Arc%3CS%3E"],[3607,"impl-Segment-for-Arc%3CS%3E"],[3608,"impl-CubicBezierSegment%3CS%3E"],[3609,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3610,"impl-LineSegment%3CS%3E"],[3611,"impl-Segment-for-LineSegment%3CS%3E"],[3612,"impl-QuadraticBezierSegment%3CS%3E"],[3613,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3616,"impl-Segment-for-Arc%3CS%3E"],[3617,"impl-Arc%3CS%3E"],[3618,"impl-CubicBezierSegment%3CS%3E"],[3619,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3620,"impl-Segment-for-LineSegment%3CS%3E"],[3621,"impl-LineSegment%3CS%3E"],[3622,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3623,"impl-QuadraticBezierSegment%3CS%3E"],[3631,"impl-Sum-for-Angle%3CT%3E"],[3632,"impl-Sum%3C%26Angle%3CT%3E%3E-for-Angle%3CT%3E"],[3637,"impl-Arc%3CS%3E"],[3638,"impl-Segment-for-Arc%3CS%3E"],[3639,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3640,"impl-CubicBezierSegment%3CS%3E"],[3641,"impl-LineSegment%3CS%3E"],[3642,"impl-Segment-for-LineSegment%3CS%3E"],[3643,"impl-QuadraticBezierSegment%3CS%3E"],[3644,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3773,"impl-Arc%3CS%3E"],[3774,"impl-Segment-for-Arc%3CS%3E"],[3775,"impl-CubicBezierSegment%3CS%3E"],[3776,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3777,"impl-Segment-for-LineSegment%3CS%3E"],[3778,"impl-LineSegment%3CS%3E"],[3779,"impl-QuadraticBezierSegment%3CS%3E"],[3780,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3791,"impl-Arc%3CS%3E"],[3792,"impl-Segment-for-Arc%3CS%3E"],[3793,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3794,"impl-CubicBezierSegment%3CS%3E"],[3795,"impl-LineSegment%3CS%3E"],[3796,"impl-Segment-for-LineSegment%3CS%3E"],[3797,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3798,"impl-QuadraticBezierSegment%3CS%3E"],[3899,"impl-AsRef%3Cstr%3E-for-ArrayString%3CCAP%3E"],[3900,"impl-AsRef%3CPath%3E-for-ArrayString%3CCAP%3E"],[3985,"impl-PartialEq-for-ArrayVec%3CT,+CAP%3E"],[3986,"impl-PartialEq%3C%5BT%5D%3E-for-ArrayVec%3CT,+CAP%3E"],[3987,"impl-PartialEq%3Cstr%3E-for-ArrayString%3CCAP%3E"],[3988,"impl-PartialEq-for-ArrayString%3CCAP%3E"],[4003,"impl-Debug-for-ArrayString%3CCAP%3E"],[4004,"impl-Display-for-ArrayString%3CCAP%3E"],[4005,"impl-Display-for-CapacityError%3CT%3E"],[4006,"impl-Debug-for-CapacityError%3CT%3E"],[4028,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[4029,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[4031,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[4032,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[4083,"impl-IntoIterator-for-%26ArrayVec%3CT,+CAP%3E"],[4084,"impl-IntoIterator-for-ArrayVec%3CT,+CAP%3E"],[4085,"impl-IntoIterator-for-%26mut+ArrayVec%3CT,+CAP%3E"],[4098,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[4099,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[4103,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[4104,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[4143,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[4144,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[4186,"impl-TryFrom%3C%26str%3E-for-ArrayString%3CCAP%3E"],[4188,"impl-TryFrom%3CArguments%3C\'a%3E%3E-for-ArrayString%3CCAP%3E"],[4389,"impl-Add-for-Length%3CT,+U%3E"],[4390,"impl-Add%3C%26Length%3CT,+U%3E%3E-for-Length%3CT,+U%3E"],[4391,"impl-Add%3CVector2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[4392,"impl-Add%3CSize2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[4393,"impl-Add%3CSize3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[4394,"impl-Add%3CVector3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[4397,"impl-Add%3C%26Size2D%3CT,+U%3E%3E-for-Size2D%3CT,+U%3E"],[4398,"impl-Add-for-Size2D%3CT,+U%3E"],[4399,"impl-Add%3C%26Size3D%3CT,+U%3E%3E-for-Size3D%3CT,+U%3E"],[4400,"impl-Add-for-Size3D%3CT,+U%3E"],[4403,"impl-Add%3C%26Vector2D%3CT,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[4404,"impl-Add-for-Vector2D%3CT,+U%3E"],[4405,"impl-Add%3C%26Vector3D%3CT,+U%3E%3E-for-Vector3D%3CT,+U%3E"],[4406,"impl-Add-for-Vector3D%3CT,+U%3E"],[4408,"impl-AddAssign%3CSize2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[4409,"impl-AddAssign%3CVector2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[4410,"impl-AddAssign%3CSize3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[4411,"impl-AddAssign%3CVector3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[4449,"impl-ApproxEq%3CT%3E-for-Transform2D%3CT,+Src,+Dst%3E"],[4450,"impl-Transform2D%3CT,+Src,+Dst%3E"],[4451,"impl-ApproxEq%3CT%3E-for-Transform3D%3CT,+Src,+Dst%3E"],[4452,"impl-Transform3D%3CT,+Src,+Dst%3E"],[4655,"impl-Point2D%3CT,+U%3E"],[4656,"impl-Ceil-for-Point2D%3CT,+U%3E"],[4657,"impl-Ceil-for-Point3D%3CT,+U%3E"],[4658,"impl-Point3D%3CT,+U%3E"],[4659,"impl-Size2D%3CT,+U%3E"],[4660,"impl-Ceil-for-Size2D%3CT,+U%3E"],[4661,"impl-Size3D%3CT,+U%3E"],[4662,"impl-Ceil-for-Size3D%3CT,+U%3E"],[4663,"impl-Ceil-for-Vector2D%3CT,+U%3E"],[4664,"impl-Vector2D%3CT,+U%3E"],[4665,"impl-Ceil-for-Vector3D%3CT,+U%3E"],[4666,"impl-Vector3D%3CT,+U%3E"],[4866,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Box2D%3CT,+U2%3E"],[4867,"impl-Div%3CT%3E-for-Box2D%3CT,+U%3E"],[4868,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Box3D%3CT,+U2%3E"],[4869,"impl-Div%3CT%3E-for-Box3D%3CT,+U%3E"],[4870,"impl-Div%3CScale%3CT,+Src,+Dst%3E%3E-for-Length%3CT,+Dst%3E"],[4871,"impl-Div%3CT%3E-for-Length%3CT,+U%3E"],[4872,"impl-Div%3CLength%3CT,+Src%3E%3E-for-Length%3CT,+Dst%3E"],[4873,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Point2D%3CT,+U2%3E"],[4874,"impl-Div%3CT%3E-for-Point2D%3CT,+U%3E"],[4875,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Point3D%3CT,+U2%3E"],[4876,"impl-Div%3CT%3E-for-Point3D%3CT,+U%3E"],[4877,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Rect%3CT,+U2%3E"],[4878,"impl-Div%3CT%3E-for-Rect%3CT,+U%3E"],[4879,"impl-Div%3CT%3E-for-SideOffsets2D%3CT,+U%3E"],[4880,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-SideOffsets2D%3CT,+U2%3E"],[4881,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Size2D%3CT,+U2%3E"],[4882,"impl-Div%3CT%3E-for-Size2D%3CT,+U%3E"],[4883,"impl-Div%3CT%3E-for-Size3D%3CT,+U%3E"],[4884,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Size3D%3CT,+U2%3E"],[4885,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Vector2D%3CT,+U2%3E"],[4886,"impl-Div%3CT%3E-for-Vector2D%3CT,+U%3E"],[4887,"impl-Div%3CT%3E-for-Vector3D%3CT,+U%3E"],[4888,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Vector3D%3CT,+U2%3E"],[4889,"impl-DivAssign%3CT%3E-for-Box2D%3CT,+U%3E"],[4890,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Box2D%3CT,+U%3E"],[4891,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Box3D%3CT,+U%3E"],[4892,"impl-DivAssign%3CT%3E-for-Box3D%3CT,+U%3E"],[4894,"impl-DivAssign%3CT%3E-for-Point2D%3CT,+U%3E"],[4895,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Point2D%3CT,+U%3E"],[4896,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Point3D%3CT,+U%3E"],[4897,"impl-DivAssign%3CT%3E-for-Point3D%3CT,+U%3E"],[4898,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Rect%3CT,+U%3E"],[4899,"impl-DivAssign%3CT%3E-for-Rect%3CT,+U%3E"],[4900,"impl-DivAssign%3CT%3E-for-SideOffsets2D%3CT,+U%3E"],[4901,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-SideOffsets2D%3CT,+U%3E"],[4902,"impl-DivAssign%3CT%3E-for-Size2D%3CT,+U%3E"],[4903,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Size2D%3CT,+U%3E"],[4904,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Size3D%3CT,+U%3E"],[4905,"impl-DivAssign%3CT%3E-for-Size3D%3CT,+U%3E"],[4906,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[4907,"impl-DivAssign%3CT%3E-for-Vector2D%3CT,+U%3E"],[4908,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Vector3D%3CT,+U%3E"],[4909,"impl-DivAssign%3CT%3E-for-Vector3D%3CT,+U%3E"],[5060,"impl-Point2D%3CT,+U%3E"],[5061,"impl-Floor-for-Point2D%3CT,+U%3E"],[5062,"impl-Point3D%3CT,+U%3E"],[5063,"impl-Floor-for-Point3D%3CT,+U%3E"],[5064,"impl-Size2D%3CT,+U%3E"],[5065,"impl-Floor-for-Size2D%3CT,+U%3E"],[5066,"impl-Size3D%3CT,+U%3E"],[5067,"impl-Floor-for-Size3D%3CT,+U%3E"],[5068,"impl-Floor-for-Vector2D%3CT,+U%3E"],[5069,"impl-Vector2D%3CT,+U%3E"],[5070,"impl-Floor-for-Vector3D%3CT,+U%3E"],[5071,"impl-Vector3D%3CT,+U%3E"],[5099,"impl-From%3CPoint3D%3CT,+U%3E%3E-for-HomogeneousVector%3CT,+U%3E"],[5100,"impl-From%3CVector2D%3CT,+U%3E%3E-for-HomogeneousVector%3CT,+U%3E"],[5102,"impl-From%3CPoint2D%3CT,+U%3E%3E-for-HomogeneousVector%3CT,+U%3E"],[5103,"impl-From%3CVector3D%3CT,+U%3E%3E-for-HomogeneousVector%3CT,+U%3E"],[5105,"impl-From%3C(T,+T)%3E-for-Point2D%3CT,+U%3E"],[5106,"impl-From%3C%5BT;+2%5D%3E-for-Point2D%3CT,+U%3E"],[5108,"impl-From%3C(T,+T,+T)%3E-for-Point3D%3CT,+U%3E"],[5109,"impl-From%3C%5BT;+3%5D%3E-for-Point3D%3CT,+U%3E"],[5114,"impl-From%3CRotation3D%3CT,+Src,+Dst%3E%3E-for-RigidTransform3D%3CT,+Src,+Dst%3E"],[5115,"impl-From%3CVector3D%3CT,+Dst%3E%3E-for-RigidTransform3D%3CT,+Src,+Dst%3E"],[5120,"impl-From%3C%5BT;+2%5D%3E-for-Size2D%3CT,+U%3E"],[5121,"impl-From%3C(T,+T)%3E-for-Size2D%3CT,+U%3E"],[5122,"impl-From%3CVector2D%3CT,+U%3E%3E-for-Size2D%3CT,+U%3E"],[5124,"impl-From%3C(T,+T,+T)%3E-for-Size3D%3CT,+U%3E"],[5125,"impl-From%3C%5BT;+3%5D%3E-for-Size3D%3CT,+U%3E"],[5126,"impl-From%3CVector3D%3CT,+U%3E%3E-for-Size3D%3CT,+U%3E"],[5132,"impl-From%3CSize2D%3CT,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[5133,"impl-From%3C%5BT;+2%5D%3E-for-Vector2D%3CT,+U%3E"],[5135,"impl-From%3CTranslation2D%3CT,+Src,+Dst%3E%3E-for-Vector2D%3CT,+Src%3E"],[5136,"impl-From%3C(T,+T)%3E-for-Vector2D%3CT,+U%3E"],[5138,"impl-From%3C%5BT;+3%5D%3E-for-Vector3D%3CT,+U%3E"],[5139,"impl-From%3CTranslation3D%3CT,+Src,+Dst%3E%3E-for-Vector3D%3CT,+Src%3E"],[5140,"impl-From%3C(T,+T,+T)%3E-for-Vector3D%3CT,+U%3E"],[5631,"impl-Mul%3CT%3E-for-Box2D%3CT,+U%3E"],[5632,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Box2D%3CT,+U1%3E"],[5633,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Box3D%3CT,+U1%3E"],[5634,"impl-Mul%3CT%3E-for-Box3D%3CT,+U%3E"],[5635,"impl-Mul%3CT%3E-for-Length%3CT,+U%3E"],[5636,"impl-Mul%3CScale%3CT,+Src,+Dst%3E%3E-for-Length%3CT,+Src%3E"],[5637,"impl-Mul%3CT%3E-for-Point2D%3CT,+U%3E"],[5638,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Point2D%3CT,+U1%3E"],[5639,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Point3D%3CT,+U1%3E"],[5640,"impl-Mul%3CT%3E-for-Point3D%3CT,+U%3E"],[5641,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Rect%3CT,+U1%3E"],[5642,"impl-Mul%3CT%3E-for-Rect%3CT,+U%3E"],[5644,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-SideOffsets2D%3CT,+U1%3E"],[5645,"impl-Mul%3CT%3E-for-SideOffsets2D%3CT,+U%3E"],[5646,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Size2D%3CT,+U1%3E"],[5647,"impl-Mul%3CT%3E-for-Size2D%3CT,+U%3E"],[5648,"impl-Mul%3CT%3E-for-Size3D%3CT,+U%3E"],[5649,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Size3D%3CT,+U1%3E"],[5650,"impl-Mul%3CT%3E-for-Vector2D%3CT,+U%3E"],[5651,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Vector2D%3CT,+U1%3E"],[5652,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Vector3D%3CT,+U1%3E"],[5653,"impl-Mul%3CT%3E-for-Vector3D%3CT,+U%3E"],[5654,"impl-MulAssign%3CT%3E-for-Box2D%3CT,+U%3E"],[5655,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Box2D%3CT,+U%3E"],[5656,"impl-MulAssign%3CT%3E-for-Box3D%3CT,+U%3E"],[5657,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Box3D%3CT,+U%3E"],[5659,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Point2D%3CT,+U%3E"],[5660,"impl-MulAssign%3CT%3E-for-Point2D%3CT,+U%3E"],[5661,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Point3D%3CT,+U%3E"],[5662,"impl-MulAssign%3CT%3E-for-Point3D%3CT,+U%3E"],[5663,"impl-MulAssign%3CT%3E-for-Rect%3CT,+U%3E"],[5664,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Rect%3CT,+U%3E"],[5665,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-SideOffsets2D%3CT,+U%3E"],[5666,"impl-MulAssign%3CT%3E-for-SideOffsets2D%3CT,+U%3E"],[5667,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Size2D%3CT,+U%3E"],[5668,"impl-MulAssign%3CT%3E-for-Size2D%3CT,+U%3E"],[5669,"impl-MulAssign%3CT%3E-for-Size3D%3CT,+U%3E"],[5670,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Size3D%3CT,+U%3E"],[5671,"impl-MulAssign%3CT%3E-for-Vector2D%3CT,+U%3E"],[5672,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[5673,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Vector3D%3CT,+U%3E"],[5674,"impl-MulAssign%3CT%3E-for-Vector3D%3CT,+U%3E"],[5786,"impl-Round-for-Point2D%3CT,+U%3E"],[5787,"impl-Point2D%3CT,+U%3E"],[5788,"impl-Round-for-Point3D%3CT,+U%3E"],[5789,"impl-Point3D%3CT,+U%3E"],[5791,"impl-Round-for-Size2D%3CT,+U%3E"],[5792,"impl-Size2D%3CT,+U%3E"],[5793,"impl-Round-for-Size3D%3CT,+U%3E"],[5794,"impl-Size3D%3CT,+U%3E"],[5795,"impl-Round-for-Vector2D%3CT,+U%3E"],[5796,"impl-Vector2D%3CT,+U%3E"],[5797,"impl-Round-for-Vector3D%3CT,+U%3E"],[5798,"impl-Vector3D%3CT,+U%3E"],[5839,"impl-Sub-for-Point2D%3CT,+U%3E"],[5840,"impl-Sub%3CSize2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[5841,"impl-Sub%3CVector2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[5842,"impl-Sub%3CVector3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[5843,"impl-Sub%3CSize3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[5844,"impl-Sub-for-Point3D%3CT,+U%3E"],[5854,"impl-SubAssign%3CVector2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[5855,"impl-SubAssign%3CSize2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[5856,"impl-SubAssign%3CVector3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[5857,"impl-SubAssign%3CSize3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[5865,"impl-Sum%3C%26Length%3CT,+U%3E%3E-for-Length%3CT,+U%3E"],[5866,"impl-Sum-for-Length%3CT,+U%3E"],[5867,"impl-Sum%3C%26Size2D%3CT,+U%3E%3E-for-Size2D%3CT,+U%3E"],[5868,"impl-Sum-for-Size2D%3CT,+U%3E"],[5869,"impl-Sum%3C%26Size3D%3CT,+U%3E%3E-for-Size3D%3CT,+U%3E"],[5870,"impl-Sum-for-Size3D%3CT,+U%3E"],[5871,"impl-Sum-for-Vector2D%3CT,+U%3E"],[5872,"impl-Sum%3C%26Vector2D%3CT,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[5873,"impl-Sum%3C%26Vector3D%3CT,+U%3E%3E-for-Vector3D%3CT,+U%3E"],[5874,"impl-Sum-for-Vector3D%3CT,+U%3E"],[6057,"impl-Rotation2D%3CT,+Src,+Dst%3E"],[6058,"impl-Transformation%3CS%3E-for-Rotation2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[6059,"impl-Scale%3CT,+Src,+Dst%3E"],[6060,"impl-Transformation%3CS%3E-for-Scale%3CS,+UnknownUnit,+UnknownUnit%3E"],[6061,"impl-Translation2D%3CT,+Src,+Dst%3E"],[6062,"impl-Transformation%3CS%3E-for-Translation2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[6063,"impl-Transformation%3CS%3E-for-Transform2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[6064,"impl-Transform2D%3CT,+Src,+Dst%3E"],[6080,"impl-Transformation%3CS%3E-for-Rotation2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[6081,"impl-Rotation2D%3CT,+Src,+Dst%3E"],[6082,"impl-Scale%3CT,+Src,+Dst%3E"],[6083,"impl-Transformation%3CS%3E-for-Scale%3CS,+UnknownUnit,+UnknownUnit%3E"],[6085,"impl-Transformation%3CS%3E-for-Transform2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[6086,"impl-Transform2D%3CT,+Src,+Dst%3E"],[6393,"impl-Zero-for-Point2D%3CT,+U%3E"],[6394,"impl-Point2D%3CT,+U%3E"],[6395,"impl-Zero-for-Point3D%3CT,+U%3E"],[6396,"impl-Point3D%3CT,+U%3E"],[6399,"impl-Size2D%3CT,+U%3E"],[6400,"impl-Zero-for-Size2D%3CT,+U%3E"],[6401,"impl-Size3D%3CT,+U%3E"],[6402,"impl-Zero-for-Size3D%3CT,+U%3E"],[6403,"impl-Zero-for-Vector2D%3CT,+U%3E"],[6404,"impl-Vector2D%3CT,+U%3E"],[6405,"impl-Vector3D%3CT,+U%3E"],[6406,"impl-Zero-for-Vector3D%3CT,+U%3E"],[6878,"impl-PathBuilder-for-Builder%3C\'l%3E"],[6879,"impl-Builder%3C\'l%3E"],[6880,"impl-BuilderWithAttributes%3C\'l%3E"],[6881,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[6888,"impl-Builder%3C\'l%3E"],[6889,"impl-Build-for-Builder%3C\'l%3E"],[6890,"impl-BuilderWithAttributes%3C\'l%3E"],[6891,"impl-Build-for-BuilderWithAttributes%3C\'l%3E"],[6901,"impl-PathBuilder-for-Builder%3C\'l%3E"],[6902,"impl-Builder%3C\'l%3E"],[6903,"impl-BuilderWithAttributes%3C\'l%3E"],[6904,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[6917,"impl-Builder%3C\'l%3E"],[6918,"impl-PathBuilder-for-Builder%3C\'l%3E"],[6919,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[6920,"impl-BuilderWithAttributes%3C\'l%3E"],[6961,"impl-PathBuilder-for-Builder%3C\'l%3E"],[6962,"impl-Builder%3C\'l%3E"],[6963,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[6964,"impl-BuilderWithAttributes%3C\'l%3E"],[6970,"impl-Builder%3C\'l%3E"],[6971,"impl-PathBuilder-for-Builder%3C\'l%3E"],[6972,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[6973,"impl-BuilderWithAttributes%3C\'l%3E"],[6974,"impl-PathBuilder-for-Builder%3C\'l%3E"],[6975,"impl-Builder%3C\'l%3E"],[6976,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[6977,"impl-BuilderWithAttributes%3C\'l%3E"]],"c":"OjAAAAAAAAA=","e":"OzAAAAEAANAVmAEHAAAACgABABUAOwBUAAgAYAA9ALcAZwAiASAARgEMAFQBLQCHARAAngELAK4BAACxAQIAuQEAALsBAQC+AQAAwAEAAMIBGgDiAQwA/AFZAFcCDABvAgYAlgIKAKMCZwAMAwwAIgMAACUDAAApAxQAPwMCAEMDBwBNAwkAWQMUAHIDAQB2Ax0AlQMDAJsDBQCjAxAAuQMTANADAQDVAwcA3gMDAOMDAQDnAwIA6wMKAPgDAAD7AwUAAwQPABYEAAAcBBIAMQQHADsEBwBFBAAARwQDAEwEBwBZBAkAaAQCAGwEAABxBAUAeAQAAHwEAgCEBAIAjAQCAJkEBACkBHwAIwUAACYFNwBhBQAAYwVgAMUFnwBqBgEAbQYRAIUGAACHBgAAiQYAAJwGNQDTBhEA6AYfACEHtADXBxoA9AcDAPwHAQD/BwAABQgAAAgIAgAMCAAADggGABkIAwAeCAgAKwgCAC8IBwA7CBsAWAgAAFoIDAFwCQQAjAkAAI4JFACkCQEApwkMALUJBQC8CQoAygkBAM0JBADUCQQA2gkWAPIJAQD1CQUA/QkAAP8JAgAHCgoAEwoHACAKKABLCgMAUAoAAFIKDQBlCgMAagoAAGwKAABuCgAAcAoAAHIKAAB0CgAAdgoAAHgKAAB9CgQAgwoCAIcKAACJCgAAiwoAAI0KBgCWCgAAmAonAMEKBgDLCgAA0wojAPgKLwApCwEAMAsSAEgLJwBxCwAAcws3AK8LAACxCwUAugsEAMELBADHCwAAyQsCAM8LEQDjCwEA5gsAAOkLAADsCwEA7wsBAPILAgD2CykAIQwAACQMAQAoDBIAQAwAAEQMAABJDA0AWAwBAF4MGgB7DA4AjAwTAKEMAQCkDAEAqAwBAKsMFwDFDAEAyAwAAMoMAADMDAAAzgwBANEMDgDjDAAA5gwAAOsMAADzDAAA9QwAAPcMAAD5DAkACg0AAA4NAQARDQAAEw0AABUNAAApDQIALg0CADINAAA0DQIAOg0AADwNAAA/DRUAVg0AAFgNAABaDQwAaA0AAGoNAQB2DUgAwQ0AAMgNAADRDQEA1w0AAN0NBgDlDQYA7Q0FAPQNAAD2DQEA+g0DAAAOAAACDgAABA4AAAYOAAAKDgEADw4AABEOBAAYDgAAGg4AABwOAAAeDgEAIQ4AACQOAQAnDgAALQ4EADMOAQA2DgsARA4EAEoOAwBQDggAXQ4AAGIOAABkDkoAsA4LAL4OAQDBDgEAxQ4CAM0OAQDQDgIA1Q4BANgOAQDfDgAA5A4OAPQOAwD5DggAAw8DAAgPDAAaDxkAOw8CAEEPEgBYDxgAcw8SAIcPBwCQDw8AoQ8GAKkPAACvDwQAtg8SAM8PIgD0DwkAAhACAAcQHAApEAkAQhABAEcQBwBREAQAVxAHAGAQCQBtEFcAxxAPANgQAwDdEBQADxE2AFARCABbEQYAZBEAAGYRAABoEQEAbxGKAP0RFgApEgAAPBICAEgSSgCXEhYAsRIBALgSAAC9Eg0AzRICANESLQABEy0AMxNEAHwTRADEEwAA0RMWAOkTAQDsEwEA7xMBAPITAQD1EwEA+RMAAPsTAQABFAIABRQCAAoUAQANFAEAEBQBABMUAgAXFAAAGRQAAB0UFgBGFAAASxQXAHwUGQCYFAAApBQXAL8UAQDCFAAAxBQBAN0UtwChFQAAuhUAAMwVFQDnFQMA7xUDAPQVAwD8FS8ALRYHAD4WAABCFgEAVxYQAGkWAABwFgAAeRYCAH8WAACMFgEAkxYAAJgWAACuFgQAvBYDAMgWAQDPFiUAERcAABgXAABFFxkAYxcAAGUXAAB0FwAApBcAAKsXAACtFwAArxcBAMEXAADEFwIA0RcAAOEXWwA/GEQAhhgAAIgYFgCiGAEApRgaAMsYBADSGAQA2hgAAN4YBQDmGAQA8BgDAPUYAQD5GAEA/BgAAAEZAAADGQAAEBkVACcZAAAuGRsASxkFAFMZAQBXGQQAXhkDAGMZAQBnGQAAaRkAAGwZAABuGQAAcRkAAHMZJwCeGQkAqxk7AOgZAAD2GQEA+hkAAPwZAwACGgAABRo0AEAaCwBQGiMAdhoGAH8aJACvGgcAuBoAALwaAAC+GgEAwRoBANAaOQANGwgAGRtHAGcbQQCtGwsAvRtTACEcAAA=","P":[[20,"T,M,D"],[23,"C,T"],[26,"C"],[29,""],[35,"T"],[41,"WpParam,T"],[44,"A,B"],[45,"C,T"],[48,"A,B,Compositor::Surface"],[49,"A,B,Compositor::Renderer"],[50,"A,B,W,Compositor::Surface"],[51,"A,B,Renderer::Font"],[52,"A,B"],[53,"T"],[62,"A,B,Renderer::Geometry"],[63,"A,B"],[65,"A,B,"],[66,"A,B"],[67,""],[70,"A,B"],[73,"A,B,Renderer::Editor"],[74,"A,B,Renderer::Paragraph"],[75,"A,B,"],[76,"A,B,Renderer::Font"],[77,"A,B"],[80,"T"],[86,"U,T"],[89,""],[92,"U"],[98,"T"],[107,"WpParam,T"],[110,"U"],[116,"T"],[119,"A,B"],[120,"A,B,Renderer::Handle"],[121,"A,B"],[122,""],[123,"A,B,Renderer::Frame"],[124,"A,B,Compositor::Renderer,Compositor::Surface,T"],[125,""],[126,"A,B,Compositor::Renderer,T"],[127,"A,B"],[129,"C"],[132,"U,T"],[135,"U"],[141,""],[144,"C,U"],[147,"C"],[150,"T"],[153,"V"],[156,"W,A,B"],[182,"T,M,D"],[195,"C,T"],[208,"C"],[221,""],[247,"T"],[273,"WpParam,T"],[286,"Renderer"],[287,""],[288,"Renderer"],[289,""],[298,"H"],[300,"T"],[311,""],[322,""],[323,""],[325,"C,T"],[338,""],[339,"Renderer"],[340,""],[346,"T"],[385,"Renderer,"],[386,"Renderer::Geometry,Renderer::Frame"],[387,"Renderer,"],[389,""],[390,""],[405,"H"],[408,"Renderer,"],[411,""],[413,"Renderer"],[414,""],[423,"H"],[425,""],[427,"T"],[429,""],[430,"T"],[432,""],[435,"T"],[440,""],[441,"T"],[442,""],[444,"T"],[445,""],[446,"T"],[447,""],[448,"T"],[449,""],[450,"T"],[463,"U,T"],[477,""],[479,"Renderer"],[480,""],[494,"U"],[520,"T"],[558,"WpParam,T"],[571,"U"],[597,"Renderer"],[598,"T"],[611,""],[616,"Renderer"],[618,""],[621,"Renderer::Geometry,Renderer::Frame"],[622,"T"],[629,""],[630,""],[632,""],[636,"Renderer"],[637,""],[638,"Renderer"],[639,""],[641,"Renderer,"],[642,""],[644,""],[648,"Renderer,"],[650,""],[652,"Renderer"],[653,""],[657,"Renderer,"],[659,""],[661,"T"],[672,""],[673,"Renderer"],[674,"C"],[687,"U,T"],[700,"U"],[726,""],[739,"C,U"],[752,"C"],[765,"T"],[778,""],[779,"V"],[792,"Renderer"],[793,""],[794,"Renderer,R,"],[795,""],[796,"Renderer"],[797,""],[799,"Renderer,R,"],[800,""],[808,"T,M,D"],[809,"C,T"],[810,"C"],[811,""],[813,"T"],[815,"WpParam,T"],[816,""],[817,"T"],[818,""],[819,"C,T"],[820,"T"],[823,""],[825,"K"],[828,""],[829,"T"],[831,"U,T"],[832,""],[833,"U"],[835,"T"],[838,"WpParam,T"],[839,"U"],[841,"T"],[842,""],[844,"T"],[845,"C"],[846,"U,T"],[847,"U"],[849,""],[850,"C,U"],[851,"C"],[852,"T"],[853,"V"],[857,"Backend::Geometry"],[859,"Backend::Geometry,"],[864,"Backend::Geometry"],[869,"Backend::Geometry,"],[872,"Backend::Geometry"],[873,"Backend::Geometry,"],[875,"Backend::Geometry"],[881,"T,M,D"],[883,""],[884,""],[885,"C,T"],[887,"C"],[889,""],[893,"T"],[897,"WpParam,T"],[899,""],[901,"T"],[903,""],[905,"C,T"],[907,"T"],[913,""],[920,"T"],[924,"U,T"],[926,""],[928,"U"],[932,"T"],[938,"WpParam,T"],[940,"U"],[944,"T"],[947,""],[952,"T"],[954,"C"],[956,"U,T"],[958,"U"],[962,""],[964,"C,U"],[966,"C"],[968,"T"],[970,"V"],[975,"T,M,D"],[978,""],[980,"C,T"],[982,"C"],[984,""],[989,"T"],[993,""],[994,"WpParam,T"],[996,""],[999,"T"],[1000,""],[1002,"C,T"],[1004,""],[1005,"T"],[1011,""],[1016,"T"],[1020,"U,T"],[1022,""],[1024,"U"],[1028,"T"],[1034,"WpParam,T"],[1036,"U"],[1040,"T"],[1042,""],[1045,"T"],[1046,""],[1051,"T"],[1052,"C"],[1054,"U,T"],[1056,"U"],[1060,""],[1062,"C,U"],[1064,"C"],[1066,"T"],[1068,"V"],[1072,"T,M,D"],[1073,"C,T"],[1074,"C"],[1075,""],[1077,"T"],[1079,"WpParam,T"],[1080,""],[1083,"T"],[1084,""],[1085,"C,T"],[1086,"T"],[1089,""],[1093,"T"],[1094,""],[1095,"T"],[1096,"U,T"],[1097,""],[1098,"U"],[1100,"T"],[1103,"WpParam,T"],[1104,"U"],[1106,"T"],[1107,""],[1112,"T"],[1113,"C"],[1114,"U,T"],[1115,"U"],[1117,""],[1118,"C,U"],[1119,"C"],[1120,"T"],[1121,"V"],[1162,""],[1187,"T,M,D"],[1212,"C,T"],[1237,"C"],[1262,""],[1320,"T"],[1370,""],[1378,"WpParam,T"],[1403,""],[1407,"Endpoint,ControlPoint"],[1408,""],[1417,"T"],[1418,""],[1427,"T"],[1450,""],[1476,"C,T"],[1501,""],[1508,"T"],[1583,""],[1612,"Endpoint,ControlPoint"],[1613,""],[1621,"K"],[1636,""],[1638,"T"],[1639,""],[1640,"Endpoint,ControlPoint"],[1641,""],[1648,"Endpoint,ControlPoint"],[1649,""],[1662,"F"],[1663,"T"],[1668,""],[1669,"T"],[1670,"Ep,Cp"],[1671,"T"],[1672,""],[1673,"T"],[1718,"U,T"],[1743,""],[1754,"Endpoint"],[1755,""],[1758,"Endpoint"],[1759,"Endpoint,ControlPoint,__H"],[1760,"__H"],[1764,""],[1766,"T"],[1767,""],[1771,"T"],[1772,""],[1799,"U"],[1849,"T"],[1922,"WpParam,T"],[1947,"U"],[1997,"I"],[1998,""],[2002,"I"],[2005,""],[2006,"T"],[2031,"Ep,Cp"],[2032,""],[2045,"T"],[2046,""],[2072,"T"],[2076,""],[2088,"T"],[2089,"Endpoint,ControlPoint"],[2090,""],[2106,"Ep,Cp"],[2107,""],[2108,"T"],[2131,""],[2135,"T"],[2137,"C"],[2162,"U,T"],[2187,"U"],[2237,""],[2262,"C,U"],[2287,"C"],[2312,"T"],[2337,"V"],[2362,""],[2365,"Ep,Cp"],[2366,""],[2415,"T,M,D"],[2420,""],[2422,"B"],[2423,""],[2425,"B"],[2426,""],[2428,"B"],[2429,""],[2431,"B"],[2432,""],[2436,"B"],[2437,""],[2439,"B"],[2440,""],[2442,"B"],[2443,"Builder"],[2444,""],[2445,"Builder"],[2446,"C,T"],[2451,"C"],[2456,""],[2467,"Builder"],[2468,"Builder,Transform"],[2469,"B"],[2471,"T"],[2481,""],[2483,"Build::PathType"],[2484,"Builder"],[2486,"Builder,Transform"],[2487,"Builder"],[2489,"B"],[2490,"P,B"],[2491,"WpParam,T"],[2496,""],[2497,"B"],[2498,"T"],[2500,""],[2505,"Builder"],[2507,"B"],[2508,"C,T"],[2513,""],[2515,"Builder"],[2516,"Builder,Transform"],[2517,"Builder"],[2519,"B"],[2521,"Builder"],[2522,""],[2523,"B"],[2524,"T"],[2539,""],[2545,"Builder"],[2546,"Builder,Transform"],[2547,"B"],[2549,""],[2550,"B"],[2551,""],[2556,"Builder"],[2557,"B"],[2558,""],[2560,"B"],[2561,"T"],[2571,"U,T"],[2576,"B,__H"],[2577,""],[2578,"Builder"],[2579,""],[2584,"B"],[2586,"U"],[2596,"T"],[2611,"WpParam,T"],[2616,"U"],[2626,"B"],[2627,"T"],[2632,""],[2634,"Builder"],[2635,"Builder,Transform"],[2636,"Builder"],[2638,"B"],[2640,""],[2641,"Builder"],[2644,"Builder,Transform"],[2645,"Builder"],[2646,""],[2647,"B"],[2648,"T"],[2650,""],[2651,"Builder"],[2652,"Builder,Transform"],[2653,"B"],[2654,""],[2657,"B"],[2658,""],[2660,"Builder"],[2661,"Builder,Transform"],[2662,"Builder"],[2664,"B"],[2666,""],[2667,"Builder"],[2668,""],[2669,"Builder"],[2670,""],[2671,"Builder"],[2672,""],[2673,"Builder"],[2674,""],[2675,"Builder"],[2676,""],[2677,"Builder"],[2678,""],[2679,"Builder"],[2680,""],[2684,"Builder"],[2685,"Builder,Transform"],[2686,"Builder"],[2688,"B"],[2690,"Builder"],[2691,"Builder,Transform"],[2693,""],[2694,"Builder"],[2695,""],[2696,"Builder"],[2697,""],[2698,"Builder"],[2699,""],[2700,"Builder"],[2701,"T"],[2703,""],[2707,"Transform"],[2709,"Builder,Transform"],[2710,"B,Transform"],[2711,"C"],[2716,"U,T"],[2721,"U"],[2731,""],[2736,"C,U"],[2741,"C"],[2746,"T"],[2751,""],[2752,"Builder"],[2753,"V"],[2758,"B"],[2759,""],[2761,"B"],[2770,"T,M,D"],[2775,"C,T"],[2780,"C"],[2785,""],[2796,"T"],[2806,""],[2807,"WpParam,T"],[2812,"Endpoint,ControlPoint"],[2813,""],[2814,"Endpoint,ControlPoint"],[2815,""],[2816,"Endpoint,ControlPoint"],[2817,"T"],[2822,""],[2827,"C,T"],[2832,""],[2834,"T"],[2849,""],[2855,"Endpoint,ControlPoint"],[2857,""],[2858,"T"],[2868,"U,T"],[2873,"Endpoint,ControlPoint"],[2877,""],[2882,"U"],[2892,"T"],[2904,"WpParam,T"],[2909,"U"],[2919,"I"],[2922,"T"],[2927,"Endpoint,ControlPoint"],[2928,""],[2930,"Endpoint,ControlPoint"],[2931,""],[2932,"Endpoint,ControlPoint"],[2933,"T"],[2934,"Ep,Cp"],[2935,""],[2936,"T"],[2941,"C"],[2946,"U,T"],[2951,"U"],[2961,""],[2966,"C,U"],[2971,"C"],[2976,"T"],[2981,"V"],[2986,""],[3024,"S"],[3025,""],[3026,"S"],[3028,"T,M,D"],[3037,"T"],[3040,"Segment::Scalar"],[3041,"S"],[3049,""],[3050,"T"],[3053,"Segment::Scalar"],[3054,"S"],[3061,"C,T"],[3070,"C"],[3079,""],[3097,"S"],[3098,""],[3099,"S"],[3103,"Segment::Scalar"],[3104,"S"],[3112,"T"],[3130,"S"],[3145,""],[3146,"S"],[3147,"WpParam,T"],[3156,"S,NewS"],[3158,"T,NewT"],[3159,"S"],[3160,""],[3161,"S"],[3173,"T"],[3183,""],[3192,"S"],[3194,"C,T"],[3203,"S"],[3205,""],[3209,"S"],[3211,"T"],[3231,"Segment::Scalar"],[3232,"S"],[3242,"T"],[3254,"S"],[3257,""],[3266,"Segment::Scalar"],[3267,"S"],[3272,"Segment::Scalar"],[3273,"S"],[3279,""],[3280,"S"],[3287,"T"],[3288,"S"],[3289,"K"],[3295,"S"],[3306,""],[3307,"S"],[3312,"Segment::Scalar"],[3313,"S"],[3329,"T"],[3330,"S,F"],[3336,"Segment::Scalar"],[3337,"S"],[3338,"S,F"],[3341,"S"],[3343,"S,F"],[3344,"S"],[3345,"S,F"],[3368,"T"],[3371,"Segment::Scalar"],[3372,"T"],[3373,"S"],[3376,"T"],[3377,"S"],[3378,"T"],[3379,"S"],[3382,"T"],[3385,"S"],[3386,"T"],[3387,"S"],[3388,"T"],[3390,""],[3394,"T"],[3403,"U,T"],[3412,"S"],[3413,"T"],[3414,"S"],[3415,"T,__H"],[3416,""],[3417,"S"],[3419,""],[3428,"S"],[3436,"U"],[3454,"T"],[3481,"WpParam,T"],[3490,"U"],[3508,"T"],[3517,"S"],[3519,"T"],[3520,"S"],[3532,""],[3533,"S"],[3535,"T"],[3536,"S"],[3548,""],[3555,"S"],[3556,""],[3557,"T"],[3560,"S"],[3562,"T"],[3563,"S"],[3568,"T"],[3570,"S"],[3571,""],[3572,"T"],[3573,"S"],[3577,"T"],[3578,""],[3581,"Segment::Scalar"],[3582,"S"],[3592,"T"],[3593,"S"],[3595,"T"],[3596,"S"],[3605,"Segment::Scalar"],[3606,"S"],[3615,"Segment::Scalar"],[3616,"S"],[3628,""],[3629,"T"],[3631,"T,I"],[3633,""],[3635,"S"],[3636,"Segment::Scalar"],[3637,"S"],[3645,""],[3649,"S"],[3651,"T"],[3652,"S"],[3656,"T"],[3657,"S"],[3661,"T"],[3662,"S"],[3663,"T"],[3672,"S"],[3677,"S,T"],[3681,"S"],[3682,"T,NewT"],[3683,"C"],[3692,"U,T"],[3701,"U"],[3719,"T"],[3720,""],[3729,"C,U"],[3738,"C"],[3747,"T"],[3757,""],[3758,"S"],[3759,""],[3760,"S"],[3762,"V"],[3771,""],[3772,"Segment::Scalar"],[3773,"S"],[3781,""],[3784,"S"],[3788,""],[3790,"Segment::Scalar"],[3791,"S"],[3799,""],[3802,"S"],[3806,"T"],[3811,"T,M,D"],[3812,"C,T"],[3813,"C"],[3814,""],[3816,"T"],[3818,"WpParam,T"],[3819,""],[3820,"C,T"],[3821,"T"],[3824,""],[3826,"T"],[3827,""],[3828,"T"],[3829,"U,T"],[3830,""],[3831,"U"],[3833,"T"],[3836,"WpParam,T"],[3837,"U"],[3839,"I"],[3840,"T"],[3841,""],[3842,"S"],[3843,""],[3849,"C"],[3850,"U,T"],[3851,"U"],[3853,""],[3854,"C,U"],[3855,"C"],[3856,"T"],[3857,"V"],[3858,""],[3865,"T,M,D"],[3870,"C,T"],[3875,"C"],[3880,""],[3890,"T"],[3892,""],[3893,"T"],[3895,""],[3896,"T"],[3897,""],[3898,"T"],[3899,""],[3901,"T"],[3903,""],[3904,"T"],[3909,""],[3910,"T"],[3916,""],[3917,"T"],[3918,"WpParam,T"],[3923,"T"],[3924,""],[3925,"T"],[3926,""],[3927,"T"],[3929,""],[3930,"T"],[3932,""],[3933,"T"],[3937,""],[3941,"T"],[3942,""],[3943,"T"],[3944,"K"],[3947,"C,T"],[3952,"T"],[3953,""],[3954,"T"],[3958,""],[3959,"T"],[3965,""],[3966,"T"],[3973,"T,R"],[3974,"T"],[3975,""],[3977,"T"],[3978,""],[3979,"T"],[3980,""],[3982,"T"],[3983,"U"],[3985,"T"],[3987,""],[3989,"T"],[3990,"K"],[3999,"T,I"],[4000,""],[4001,"T"],[4003,""],[4005,"T"],[4011,""],[4012,"T"],[4019,""],[4020,"T,I"],[4021,"U,T"],[4026,""],[4027,"T"],[4028,""],[4030,"T"],[4031,""],[4033,"T,H"],[4034,"H"],[4035,""],[4040,"T"],[4041,"U"],[4051,"T"],[4066,"WpParam,T"],[4071,"U"],[4081,"T"],[4086,"I"],[4088,"T"],[4094,""],[4095,"T"],[4096,""],[4097,"T"],[4098,""],[4100,"T"],[4101,""],[4102,"T"],[4103,""],[4105,"FromA,FromB"],[4106,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ,FromK"],[4107,"FromA,FromB,FromC,FromD"],[4108,"FromA,FromB,FromC"],[4109,"FromA,FromB,FromC,FromD,FromE"],[4110,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ,FromK,FromL"],[4111,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ"],[4112,"FromA,FromB,FromC,FromD,FromE,FromF"],[4113,""],[4114,"FromA"],[4115,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI"],[4116,"FromA,FromB,FromC,FromD,FromE,FromF,FromG"],[4117,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH"],[4118,"FromA,FromB,FromC,FromD,FromE,FromF,FromG"],[4119,"FromA,FromB,FromC,FromD,FromE,FromF"],[4120,"FromA"],[4121,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH"],[4122,"FromA,FromB,FromC,FromD,FromE"],[4123,""],[4124,"FromA,FromB,FromC,FromD"],[4125,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ,FromK,FromL"],[4126,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI"],[4127,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ"],[4128,"FromA,FromB"],[4129,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ,FromK"],[4130,"FromA,FromB,FromC"],[4131,"T"],[4132,""],[4133,"T"],[4135,""],[4136,"T"],[4143,""],[4145,"T"],[4147,""],[4148,"T"],[4150,""],[4152,"T"],[4154,""],[4155,"T"],[4156,""],[4157,"T,F"],[4158,"T"],[4159,""],[4160,"T"],[4170,""],[4174,"T"],[4175,""],[4176,"C"],[4181,"T"],[4182,"U,T"],[4183,"T"],[4184,"U,T"],[4186,""],[4187,"U,T"],[4188,""],[4189,"U,T"],[4190,"T"],[4191,"U"],[4201,"T"],[4202,""],[4209,"C,U"],[4214,"C"],[4219,"T"],[4224,"V"],[4229,""],[4295,"T,M,D"],[4296,"C,T"],[4297,"C"],[4298,""],[4300,"T"],[4302,"WpParam,T"],[4303,"C,T"],[4304,""],[4306,"T"],[4309,""],[4310,"T"],[4311,""],[4312,"T"],[4313,"U,T"],[4314,""],[4315,"U"],[4317,"T"],[4320,"WpParam,T"],[4321,"U"],[4323,"I"],[4324,"T"],[4325,"S"],[4327,""],[4328,"C"],[4329,"U,T"],[4330,"U"],[4332,""],[4333,"C,U"],[4334,"C"],[4335,"T"],[4336,"V"],[4362,"T,U"],[4366,"T,M,D"],[4389,"T,U"],[4395,"T,Src,Dst"],[4396,"T,U"],[4401,"T,Src,Dst1,Dst2"],[4403,"T,U"],[4415,"T,Src,Dst"],[4417,"T,U"],[4421,""],[4426,"T,U"],[4429,""],[4431,"T"],[4432,"T,U"],[4434,"T"],[4436,"T,U"],[4438,"T"],[4440,"T,Src,Dst"],[4442,"T,U"],[4445,"T,Src,Dst"],[4447,"T,U"],[4449,"T,Src,Dst"],[4455,"T,U"],[4458,"T,Src,Dst"],[4462,"C,T"],[4485,"C"],[4508,""],[4554,"T"],[4600,""],[4601,"T,U"],[4602,""],[4604,"WpParam,T"],[4627,"T,U,NewT"],[4633,"T,Src,Dst,NewT"],[4634,"T,U,NewT"],[4636,"T,Src,Dst,NewT"],[4638,"T,U,NewT"],[4640,"T,Src,Dst,NewT"],[4642,"T,U,V"],[4648,"T,Src,Dst,Src2,Dst2"],[4651,"T,U,V"],[4655,"T,U"],[4672,"T,Src,Dst"],[4673,"T,U"],[4686,"T,Src,Dst"],[4690,"T,U"],[4693,"T,Src,Dst"],[4695,"T,U"],[4697,"T,Src,Dst"],[4699,""],[4702,"T"],[4725,""],[4748,"T,U"],[4749,"T,Src,Dst"],[4750,""],[4751,"K"],[4754,"T,U"],[4758,"C,T"],[4781,"T,U"],[4791,""],[4792,"T,U"],[4794,"T,Src,Dst"],[4796,"T,U"],[4802,"T,Src,Dst"],[4803,"T,U"],[4806,"T,Src,Dst"],[4808,"T,U"],[4810,"T,Src,Dst"],[4812,""],[4814,"T,U"],[4815,""],[4816,"T"],[4862,"T,Src,Dst"],[4864,"T,U"],[4866,"T,U2,U1"],[4867,"T,U"],[4868,"T,U2,U1"],[4869,"T,U"],[4870,"T,Dst,Src"],[4871,"T,U"],[4872,"T,Dst,Src"],[4873,"T,U2,U1"],[4874,"T,U"],[4875,"T,U2,U1"],[4876,"T,U"],[4877,"T,U2,U1"],[4878,"T,U"],[4880,"T,U2,U1"],[4882,"T,U"],[4884,"T,U2,U1"],[4886,"T,U"],[4888,"T,U2,U1"],[4889,"T,U"],[4914,"T"],[4937,""],[4960,"T,U"],[4967,"T,Src,Dst"],[4971,"T,U"],[4974,"T,Src,Dst"],[4976,"T,U"],[4978,"T,Src,Dst"],[4980,""],[4983,"T,U"],[4987,"K"],[5056,"T,Src,Dst"],[5057,"T,U"],[5059,""],[5060,"T,U"],[5079,"T,Src,Dst"],[5083,"T,U"],[5086,"T,Src,Dst"],[5088,"T,U"],[5090,"T,Src,Dst"],[5092,""],[5095,"T"],[5096,"T,U"],[5098,"T"],[5099,"T,U"],[5101,"T"],[5102,"T,U"],[5104,"T"],[5105,"T,U"],[5107,"T"],[5108,"T,U"],[5110,"T"],[5112,"T,U"],[5113,"T"],[5114,"T,Src,Dst"],[5115,"T,Dst,Src"],[5116,"T"],[5120,"T,U"],[5123,"T"],[5124,"T,U"],[5127,"T"],[5129,"T,Src,Dst"],[5131,"T"],[5132,"T,U"],[5134,"T"],[5135,"T,Src,Dst"],[5136,"T,U"],[5137,"T"],[5138,"T,U"],[5139,"T,Src,Dst"],[5140,"T,U"],[5141,"T"],[5142,"T,Src,Dst"],[5143,"T"],[5144,"T,Src,Dst"],[5145,"T"],[5171,"T,U"],[5172,"T,Src,Dst"],[5176,"T,U"],[5186,"I,T,U"],[5189,"T,Src,Dst"],[5191,"T,U"],[5194,"U,T"],[5217,"T,Dst,Src"],[5218,"T,U"],[5223,"T,Src,Dst"],[5226,"T,U"],[5228,"T,Src,Dst"],[5230,"T,U"],[5232,"T,Src,Dst"],[5234,"T,U"],[5237,"T,Src,Dst"],[5239,"T,U"],[5243,"T,U,H"],[5250,"T,Src,Dst,H"],[5254,"T,U,H"],[5257,"T,Src,Dst,H"],[5259,"T,U,H"],[5261,"T,Src,Dst,H"],[5263,"__H"],[5266,"T,U"],[5269,""],[5271,"T,U"],[5272,""],[5273,"T,Src,Dst"],[5281,"T,U"],[5284,""],[5307,"T,U"],[5317,"U"],[5363,"T"],[5432,"WpParam,T"],[5455,"U"],[5501,"T"],[5524,"T,Src,Dst"],[5534,"T,U"],[5548,"T,Src,Dst"],[5553,"T,U"],[5555,"T,Src,Dst"],[5556,"T,U"],[5559,""],[5562,"T,U"],[5570,"T,Src,Dst"],[5571,"T,U"],[5579,""],[5601,"T,U,V,F"],[5605,"T,U"],[5609,"T,Src,Dst"],[5610,"T,U"],[5614,""],[5616,"T,U"],[5622,"T,Src,Dst"],[5623,"T,U"],[5627,""],[5629,"T,U"],[5632,"T,U1,U2"],[5634,"T,U"],[5636,"T,Src,Dst"],[5637,"T,U"],[5638,"T,U1,U2"],[5640,"T,U"],[5641,"T,U1,U2"],[5642,"T,U"],[5643,"T,A,B,C"],[5644,"T,U1,U2"],[5645,"T,U"],[5646,"T,U1,U2"],[5647,"T,U"],[5649,"T,U1,U2"],[5650,"T,U"],[5651,"T,U1,U2"],[5653,"T,U"],[5675,"T,Src,Dst"],[5676,"T,U"],[5691,"T,Src,Dst"],[5694,"T,U"],[5697,"T,Src,Dst"],[5699,"T,U"],[5701,"T,Src,Dst"],[5704,"T,U"],[5705,"T,Src,Dst"],[5706,""],[5708,"T,Src,Dst"],[5710,"T,U"],[5712,""],[5714,"T,U"],[5718,"T"],[5736,"T,Src,Dst"],[5737,"T,U"],[5739,""],[5741,"T,U"],[5743,""],[5744,"T,Src,Dst"],[5745,"T,U"],[5747,"T,Src,Dst"],[5752,"T,U"],[5753,"T,Src,Dst"],[5754,""],[5755,"T,Src,Dst"],[5756,"T,U"],[5758,"U"],[5759,"T,Src,Dst"],[5765,"T,U"],[5767,"T,Src,Dst"],[5769,""],[5770,"T,Src,Dst"],[5771,""],[5773,"T,U"],[5778,""],[5779,"T,U"],[5781,"T,Src,Dst"],[5783,""],[5784,"T,U"],[5807,"S,T,U"],[5810,"T,Src,Dst"],[5812,"T,U"],[5819,""],[5820,"T,U"],[5822,""],[5823,"T,U"],[5825,"T,Src,Dst"],[5827,"T,U"],[5831,"T,Src,Dst"],[5833,"T,U"],[5837,"T,Src,Dst"],[5838,"T,U"],[5845,"T,Src,Dst"],[5846,"T,U"],[5849,"T,Src,Dst2,Dst1"],[5851,"T,U"],[5861,"T,Src,Dst"],[5863,"T,U"],[5865,"T,U,I"],[5875,""],[5876,"T,Src,Dst,Dst2"],[5877,"T,Src,Dst,NewSrc"],[5878,"T,Src,Dst,NewDst"],[5881,"T,Src,Dst"],[5887,"T,U"],[5889,"T,Src,Dst"],[5890,"T,U"],[5891,"T,Src,Dst"],[5892,"T,U"],[5893,"T,Src,Dst"],[5894,"T,U"],[5898,"T,Src,Dst"],[5900,"T,U"],[5902,"T,Src,Dst"],[5904,"T,U"],[5906,"T,Src,Dst"],[5911,"T,U"],[5919,"T,Src,Dst"],[5921,"T,U"],[5930,"T,Src,Dst"],[5932,"T,U"],[5941,"T,Src,Dst"],[5943,"T,U"],[5952,"T,Src,Dst"],[5954,"T,U"],[5959,"T"],[5982,"T,U"],[5988,"T,Src,Dst"],[5993,"T,U"],[5999,"T,Src,Dst"],[6001,"T,U"],[6012,"T,Src,Dst"],[6014,"T,U"],[6023,"T,Src,Dst"],[6026,"T,U"],[6028,"T,Src,Dst"],[6030,"T,U"],[6032,"T,Src,Dst"],[6034,"T,U"],[6041,"T,Src,Dst"],[6043,"T,U"],[6049,"T,Src,Dst"],[6051,""],[6052,"T,Src,Dst"],[6058,"S"],[6059,"T,Src,Dst"],[6060,"S"],[6061,"T,Src,Dst"],[6062,"S"],[6064,"T,Src,Dst"],[6080,"S"],[6081,"T,Src,Dst"],[6083,"S"],[6086,"T,Src,Dst"],[6091,"T,U"],[6094,"T,Src,Dst"],[6096,""],[6097,"T,U,NewT"],[6103,"T,Src,Dst,NewT"],[6104,"T,U,NewT"],[6106,"T,Src,Dst,NewT"],[6108,"T,U,NewT"],[6110,"T,Src,Dst,NewT"],[6112,"C"],[6135,"U,T"],[6158,"U"],[6204,"T,U"],[6206,""],[6229,"C,U"],[6252,"C"],[6275,"T,U"],[6278,"T,Src,Dst"],[6279,"T"],[6302,"T,U"],[6304,"T,Src,Dst"],[6305,"T,U"],[6308,"V"],[6331,""],[6332,"T,U"],[6335,""],[6337,"T,Src,Dst,NewDst"],[6339,"T,U"],[6344,"T,Src,Dst,NewSrc"],[6346,""],[6355,"T,U"],[6360,""],[6361,"T,U"],[6364,""],[6365,"T,U"],[6366,""],[6375,"T,U"],[6382,""],[6383,"T,U"],[6384,""],[6389,"T,U"],[6407,"T,U,V,F"],[6412,"Eps"],[6413,""],[6414,"Eps"],[6415,"T"],[6437,""],[6514,"T,M,D"],[6517,"C,T"],[6520,"C"],[6523,""],[6529,"T"],[6535,"WpParam,T"],[6538,"C,T"],[6541,""],[6542,"T"],[6551,""],[6554,"T"],[6557,""],[6558,"T"],[6561,"U,T"],[6564,""],[6567,"U"],[6573,"T"],[6582,"WpParam,T"],[6585,"U"],[6591,"I"],[6593,"T"],[6596,"S"],[6601,""],[6602,"C"],[6605,"U,T"],[6608,"U"],[6614,""],[6617,"C,U"],[6620,"C"],[6623,"T"],[6626,"V"],[6632,"Segment::Scalar"],[6645,"S"],[6647,"Segment::Scalar"],[6649,"S"],[6660,"T,M,D"],[6664,"C,T"],[6668,"C"],[6672,""],[6680,"T"],[6688,"WpParam,T"],[6692,"Iter"],[6693,"C,T"],[6697,"T"],[6709,""],[6715,"T"],[6723,"U,T"],[6727,""],[6731,"U"],[6739,"T"],[6751,"WpParam,T"],[6755,"U"],[6763,"I"],[6767,"T"],[6771,"Iter"],[6772,"T,I"],[6773,"Iter"],[6776,"I,T"],[6777,"Iter"],[6780,"T"],[6782,"C"],[6786,"U,T"],[6790,"U"],[6798,""],[6802,"C,U"],[6806,"C"],[6810,"T"],[6814,"V"],[6818,"Iter"],[6828,""],[6863,"T,M,D"],[6866,"C,T"],[6869,"C"],[6872,""],[6882,"T"],[6888,""],[6892,"WpParam,T"],[6895,""],[6896,"T"],[6897,""],[6898,"C,T"],[6901,""],[6905,"T"],[6914,""],[6921,"T"],[6927,"U,T"],[6930,""],[6933,"U"],[6939,"T"],[6948,"WpParam,T"],[6951,"U"],[6957,"I"],[6958,"T"],[6961,""],[6979,"T"],[6980,"C"],[6983,"U,T"],[6986,"U"],[6992,""],[6995,"C,U"],[6998,"C"],[7001,"T"],[7004,"V"],[7007,""],[7014,"T,M,D"],[7018,"C,T"],[7022,"C"],[7026,""],[7034,"T"],[7042,"WpParam,T"],[7046,""],[7047,"T"],[7049,""],[7050,"T"],[7054,""],[7060,"C,T"],[7064,"T"],[7076,""],[7080,"T"],[7088,"U,T"],[7092,""],[7096,"U"],[7104,"T"],[7116,"WpParam,T"],[7120,"U"],[7128,"I"],[7132,"T"],[7136,""],[7138,"T"],[7140,""],[7141,"T"],[7142,""],[7144,"T"],[7148,"C"],[7152,"U,T"],[7156,"U"],[7164,""],[7168,"C,U"],[7172,"C"],[7176,"T"],[7180,"V"],[7189,""],[7191,"Build::PathType"],[7192,""]]}],["iced_runtime",{"t":"GPFPPPEPEEPPNNNNNNNNNNNNCNNENNNNNHNNCNNNNNNENNNNNNNNNNNNCNNNCNNCNCNNNNCCNNNNNNNNNNNNNNNNNCNNNNNCOOGPPNNNNNNNNNNNNNNNNNHHNNNNNNNNHHOOOOGNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNTTTPGGPPTPGFPPPPTPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOOOOOPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPGPGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNEECCRKRRMMFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNRKRFRNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNMNGFPNNNNNNNNNNNNNNNNNOONNNNNNNNOONNNNNNNNNNNNOOOOOONNNNNNNNNNNNNNNNNFFNNNNNNNNNNNNNNNNNNNHNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNHNNNHNNNNNNNNNNNNNNNNNNNNNHFPGPFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPNNNNNNHHHNHHHHHHNNNHHHHHHHHHHNNNNNNHHHHHEHHHHHHHHHHHHHHHNNNNNNNN","n":["Action","Clipboard","Debug","Exit","LoadFont","Output","Program","System","Task","UserInterface","Widget","Window","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","clipboard","components_from","","core","default","draw_finished","draw_started","event_processing_finished","event_processing_started","exit","fmt","","font","from","","from_angle","","from_stimulus","","futures","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","keyboard","layout_finished","layout_started","log_message","multi_window","new","null_value","overlay","","program","render_finished","render_started","startup_finished","startup_started","system","task","toggle","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","update_finished","update_started","user_interface","view_finished","view_started","vzip","","widget","window","bytes","channel","Action","Read","Write","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","components_from","fmt","from","from_angle","from_stimulus","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","read","read_primary","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vzip","write","write_primary","channel","contents","target","","Error","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","eq","fmt","from","from_angle","from_stimulus","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","load","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vzip","ALT","COMMAND","CTRL","Character","Event","Key","KeyPressed","KeyReleased","LOGO","Left","Location","Modifiers","ModifiersChanged","Named","Numpad","Right","SHIFT","Standard","Unidentified","adapt_into_using","","","","all","alt","arrays_from","","","","arrays_into","","","","as_ref","bitand","bitand_assign","bitor","bitor_assign","bits","","bitxor","bitxor_assign","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","clone","","","","clone_into","","","","clone_to_uninit","","","","cmp","","command","complement","components_from","","","","contains","control","default","difference","empty","eq","","","","extend","fmt","","","","","","","","from","","","","","from_angle","","","","from_bits","from_bits_retain","","from_bits_truncate","from_iter","from_name","from_stimulus","","","","hash","","insert","intersection","intersects","into","","","","into_angle","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_iter","into_stimulus","","","","is_all","is_empty","iter","iter_names","jump","key","logo","macos_command","not","null_value","partial_cmp","","remove","set","shift","sub","sub_assign","symmetric_difference","to_owned","","","","toggle","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","union","vzip","","","","key","","location","","modified_key","","modifiers","","physical_key","","text","AVRInput","AVRPower","Abort","Accept","Again","","AllCandidates","Alphanumeric","Alt","AltGraph","AltLeft","AltRight","Android","AppSwitch","ArrowDown","","ArrowLeft","","ArrowRight","","ArrowUp","","Attn","AudioBalanceLeft","AudioBalanceRight","AudioBassBoostDown","AudioBassBoostToggle","AudioBassBoostUp","AudioFaderFront","AudioFaderRear","AudioSurroundModeNext","AudioTrebleDown","AudioTrebleUp","AudioVolumeDown","","AudioVolumeMute","","AudioVolumeUp","","Backquote","Backslash","Backspace","","BracketLeft","BracketRight","BrightnessDown","BrightnessUp","BrowserBack","","BrowserFavorites","","BrowserForward","","BrowserHome","","BrowserRefresh","","BrowserSearch","","BrowserStop","","Call","Camera","CameraFocus","Cancel","CapsLock","","ChannelDown","ChannelUp","Character","Clear","Close","ClosedCaptionToggle","Code","","CodeInput","ColorF0Red","ColorF1Green","ColorF2Yellow","ColorF3Blue","ColorF4Grey","ColorF5Brown","Comma","Compose","ContextMenu","","Control","ControlLeft","ControlRight","Convert","","Copy","","CrSel","Cut","","DVR","Delete","","Digit0","Digit1","Digit2","Digit3","Digit4","Digit5","Digit6","Digit7","Digit8","Digit9","Dimmer","DisplaySwap","Eisu","Eject","","End","","EndCall","Enter","","Equal","EraseEof","Escape","","ExSel","Execute","Exit","F1","","F10","","F11","","F12","","F13","","F14","","F15","","F16","","F17","","F18","","F19","","F2","","F20","","F21","","F22","","F23","","F24","","F25","","F26","","F27","","F28","","F29","","F3","","F30","","F31","","F32","","F33","","F34","","F35","","F4","","F5","","F6","","F7","","F8","","F9","","FavoriteClear0","FavoriteClear1","FavoriteClear2","FavoriteClear3","FavoriteRecall0","FavoriteRecall1","FavoriteRecall2","FavoriteRecall3","FavoriteStore0","FavoriteStore1","FavoriteStore2","FavoriteStore3","FinalMode","Find","","Fn","","FnLock","","GoBack","GoHome","GroupFirst","GroupLast","GroupNext","GroupPrevious","Guide","GuideNextDay","GuidePreviousDay","HangulMode","HanjaMode","Hankaku","HeadsetHook","Help","","Hibernate","Hiragana","","HiraganaKatakana","Home","","Hyper","","Info","Insert","","InstantReplay","IntlBackslash","IntlRo","IntlYen","JunjaMode","KanaMode","","KanjiMode","Katakana","","Key","Key11","Key12","KeyA","KeyB","KeyC","KeyD","KeyE","KeyF","KeyG","KeyH","KeyI","KeyJ","KeyK","KeyL","KeyM","KeyN","KeyO","KeyP","KeyQ","KeyR","KeyS","KeyT","KeyU","KeyV","KeyW","KeyX","KeyY","KeyZ","Lang1","Lang2","Lang3","Lang4","Lang5","LastNumberRedial","LaunchApp1","LaunchApp2","LaunchApplication1","LaunchApplication2","LaunchCalendar","LaunchContacts","LaunchMail","","LaunchMediaPlayer","LaunchMusicPlayer","LaunchPhone","LaunchScreenSaver","LaunchSpreadsheet","LaunchWebBrowser","LaunchWebCam","LaunchWordProcessor","Link","ListProgram","LiveContent","Lock","LogOff","MacOS","MailForward","MailReply","MailSend","MannerMode","MediaApps","MediaAudioTrack","MediaClose","MediaFastForward","MediaLast","MediaPause","MediaPlay","MediaPlayPause","","MediaRecord","MediaRewind","MediaSelect","MediaSkipBackward","MediaSkipForward","MediaStepBackward","MediaStepForward","MediaStop","","MediaTopMenu","MediaTrackNext","","MediaTrackPrevious","","Meta","","MicrophoneToggle","MicrophoneVolumeDown","MicrophoneVolumeMute","MicrophoneVolumeUp","Minus","ModeChange","Named","","NativeCode","NavigateIn","NavigateNext","NavigateOut","NavigatePrevious","New","NextCandidate","NextFavoriteChannel","NextUserProfile","NonConvert","","Notification","NumLock","","Numpad0","Numpad1","Numpad2","Numpad3","Numpad4","Numpad5","Numpad6","Numpad7","Numpad8","Numpad9","NumpadAdd","NumpadBackspace","NumpadClear","NumpadClearEntry","NumpadComma","NumpadDecimal","NumpadDivide","NumpadEnter","NumpadEqual","NumpadHash","NumpadMemoryAdd","NumpadMemoryClear","NumpadMemoryRecall","NumpadMemoryStore","NumpadMemorySubtract","NumpadMultiply","NumpadParenLeft","NumpadParenRight","NumpadStar","NumpadSubtract","OnDemand","Open","","PageDown","","PageUp","","Pairing","Paste","","Pause","","Period","Physical","PinPDown","PinPMove","PinPToggle","PinPUp","Play","PlaySpeedDown","PlaySpeedReset","PlaySpeedUp","Power","","PowerOff","PreviousCandidate","Print","PrintScreen","","Process","Props","","Quote","RandomToggle","RcLowBattery","RecordSpeedNext","Redo","Resume","RfBypass","Romaji","STBInput","STBPower","Save","ScanChannelsToggle","ScreenModeNext","ScrollLock","","Select","","Semicolon","Settings","Shift","ShiftLeft","ShiftRight","SingleCandidate","Slash","Sleep","Soft1","Soft2","Soft3","Soft4","Space","","SpeechCorrectionList","SpeechInputToggle","SpellCheck","SplitScreenToggle","Standby","Subtitle","Super","SuperLeft","SuperRight","Suspend","Symbol","SymbolLock","TV","TV3DMode","TVAntennaCable","TVAudioDescription","TVAudioDescriptionMixDown","TVAudioDescriptionMixUp","TVContentsMenu","TVDataService","TVInput","TVInputComponent1","TVInputComponent2","TVInputComposite1","TVInputComposite2","TVInputHDMI1","TVInputHDMI2","TVInputHDMI3","TVInputHDMI4","TVInputVGA1","TVMediaContext","TVNetwork","TVNumberEntry","TVPower","TVRadioService","TVSatellite","TVSatelliteBS","TVSatelliteCS","TVSatelliteToggle","TVTerrestrialAnalog","TVTerrestrialDigital","TVTimer","Tab","","Teletext","Turbo","Undo","","Unidentified","","","VideoModeNext","VoiceDial","WakeUp","","Windows","Wink","Xkb","Zenkaku","ZenkakuHankaku","ZoomIn","ZoomOut","ZoomToggle","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","clone","","","","clone_into","","","","clone_to_uninit","","","","cmp","","","","components_from","","","","eq","","","","","","","","fmt","","","","from","","","","from_angle","","","","from_stimulus","","","","hash","","","","into","","","","into_angle","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_stimulus","","","","partial_cmp","","","","to_owned","","","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","vzip","","","","Program","State","program","state","Message","Program","Renderer","Theme","update","view","State","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","components_from","from","from_angle","from_stimulus","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","is_queue_empty","mouse_interaction","new","operate","program","queue_event","queue_message","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","update","vzip","Nested","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","components_from","draw","from","from_angle","from_stimulus","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","is_over","layout","mouse_interaction","new","operate","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","update","vzip","Message","Program","Renderer","State","Theme","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","components_from","from","from_angle","from_stimulus","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","is_queue_empty","mouse_interaction","new","operate","program","queue_event","queue_message","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","update","","view","vzip","Action","Information","QueryInformation","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","clone_into","clone_to_uninit","components_from","","cpu_brand","cpu_cores","fmt","","from","","from_angle","","from_stimulus","","graphics_adapter","graphics_backend","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","memory_total","memory_used","system_kernel","system_name","system_short_version","system_version","to_owned","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","Handle","Task","abort","abort_on_drop","abortable","adapt_into_using","","and_then","","arrays_from","","arrays_into","","batch","borrow","","borrow_mut","","cam16_into_unclamped","","chain","channel","clone","clone_into","clone_to_uninit","collect","components_from","","discard","done","drop","effect","fmt","from","","","from_angle","","from_stimulus","","future","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","into_stream","is_aborted","map","none","oneshot","perform","run","stream","then","to_owned","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","widget","Cache","Outdated","State","Updated","UserInterface","adapt_into_using","","","arrays_from","","","arrays_into","","","borrow","","","borrow_mut","","","build","cam16_into_unclamped","","","clone","clone_into","clone_to_uninit","components_from","","","default","draw","fmt","","from","","","from_angle","","","from_stimulus","","","into","","","into_angle","","","into_cache","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","new","null_value","operate","relayout","to_owned","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","update","vzip","","","input_method","redraw_request","Action","Close","DisableMousePassthrough","Drag","DragResize","EnableMousePassthrough","GainFocus","GetLatest","GetMaximized","GetMinimized","GetMode","GetOldest","GetPosition","GetRawId","GetScaleFactor","GetSize","Maximize","Minimize","Move","Open","RequestUserAttention","Resize","RunWithHandle","Screenshot","SetIcon","SetLevel","SetMaxSize","SetMinSize","SetMode","SetResizable","SetResizeIncrements","ShowSystemMenu","ToggleDecorations","ToggleMaximize","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","cam16_into_unclamped","close","close_events","close_requests","components_from","disable_mouse_passthrough","drag","drag_resize","enable_mouse_passthrough","events","frames","from","from_angle","from_stimulus","gain_focus","get_latest","get_maximized","get_minimized","get_mode","get_oldest","get_position","get_raw_id","get_scale_factor","get_size","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","maximize","minimize","move_to","open","open_events","raw_window_handle","request_user_attention","resize","resize_events","run_with_handle","screenshot","set_icon","set_level","set_max_size","set_min_size","set_mode","set_resizable","set_resize_increments","show_system_menu","toggle_decorations","toggle_maximize","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vzip"],"q":[[0,"iced_runtime"],[96,"iced_runtime::Action"],[98,"iced_runtime::clipboard"],[130,"iced_runtime::clipboard::Action"],[134,"iced_runtime::font"],[166,"iced_runtime::keyboard"],[363,"iced_runtime::keyboard::Event"],[374,"iced_runtime::keyboard::key"],[443,"iced_runtime::keyboard"],[444,"iced_runtime::keyboard::key"],[718,"iced_runtime::keyboard"],[719,"iced_runtime::keyboard::key"],[874,"iced_runtime::keyboard"],[875,"iced_runtime::keyboard::key"],[1025,"iced_runtime::multi_window"],[1029,"iced_runtime::multi_window::program"],[1035,"iced_runtime::multi_window::state"],[1068,"iced_runtime::overlay"],[1100,"iced_runtime::program"],[1139,"iced_runtime::system"],[1206,"iced_runtime::task"],[1286,"iced_runtime::user_interface"],[1378,"iced_runtime::user_interface::State"],[1380,"iced_runtime::window"],[1478,"palette::chromatic_adaptation"],[1479,"palette::cam16::parameters"],[1480,"iced_runtime::debug"],[1481,"core::fmt"],[1482,"alloc::string"],[1483,"alloc::vec"],[1484,"core::result"],[1485,"palette::convert::try_from_into_color"],[1486,"core::any"],[1487,"iced_core::widget::operation"],[1488,"alloc::borrow"],[1489,"futures_channel::oneshot"],[1490,"core::option"],[1491,"iced_core::clipboard"],[1492,"core::convert"],[1493,"iced_core::keyboard::modifiers"],[1494,"iced_core::keyboard::key"],[1495,"core::clone"],[1496,"iced_core::keyboard::event"],[1497,"iced_core::keyboard::location"],[1498,"core::cmp"],[1499,"core::iter::traits::collect"],[1500,"core::hash"],[1501,"bitflags::iter"],[1502,"iced_core::renderer"],[1503,"iced_core::text"],[1504,"core::marker"],[1505,"iced_core::window::id"],[1506,"iced_core::element"],[1507,"iced_core::mouse::interaction"],[1508,"iced_core::size"],[1509,"alloc::boxed"],[1510,"core::iter::traits::iterator"],[1511,"iced_core::event"],[1512,"iced_core::mouse::cursor"],[1513,"iced_runtime::overlay::nested"],[1514,"iced_core::layout"],[1515,"iced_core::point"],[1516,"iced_core::layout::node"],[1517,"iced_core::rectangle"],[1518,"iced_core::overlay::element"],[1519,"iced_core::shell"],[1520,"iced_runtime::program::state"],[1521,"iced_futures::maybe::platform"],[1522,"core::ops::function"],[1523,"futures_channel::mpsc"],[1524,"futures_util::never"],[1525,"core::future::future"],[1526,"iced_futures::platform"],[1527,"futures_core::stream"],[1528,"iced_core::input_method"],[1529,"iced_core::window::redraw_request"],[1530,"iced_futures::subscription"],[1531,"iced_core::window::direction"],[1532,"iced_core::window::event"],[1533,"std::time"],[1534,"iced_core::window::mode"],[1535,"iced_core::window::settings"],[1536,"iced_core::window::user_attention"],[1537,"raw_window_handle::borrowed"],[1538,"iced_core::window::screenshot"],[1539,"iced_core::window::icon"],[1540,"iced_core::window::level"],[1541,"iced_core::keyboard"]],"i":"`A``000`0``000j1010101010`10`00000`10`101010`101010101010`000`00`0`0000``01010101010101000`00101`Bd0`Bj000000000000000000``00000000``BnC`10`Cd00000000000000000000`000000000Cn00D```Dh02Dj``12003022103332103210323333333321032103210321032103210323332103333332103321033333221032103333333210323333210321032103210321033210333333`33332333333321033210321032103210321032103210332103FdFf101010101Eh0Fj110111100Fl221212121222222222222121211121112221212121212121222221227222`Fh33333332332322323233233222222222223333232332233233332323232323232323232323232323232323232323232323232323232323232323232323333333333333323232333333333333332332332323323222332332`3322222222222222222222222222222223223333323333333333333133333333333323323333323323232333323`8`33333333323322222222222222222222222222222223323232332322`33333333323333233223333233333333232233223223333323333333222333333333333333333333333333333333232328103332131333333210321032103210321032103210321032103210321032211000321032103210321032103210321032103210321032103210321032103210321032103210321032103210````Gd`0000`H`0000000000000000000000000000000`If000000000000000000000000000000Hb`0`0Jd000000000000000000000000000001010``Jh0Jf10101010100001000101010100010101010101000000001010101010101010``Jl0n0100010100101010`111001001`100101010010101010101`100`000010101010101010101``Lf`0`LdLb2102102102102110222210201021021021021021021102102102102001121021021021021021021021102Lj0`Nh00000000000000000000000000000000000000```0``````000``````````000000`````````````````````00000000","f":"````````````{eg{}{{b{c}}}{}}0{ce{}{}}0{{}c{}}0{d{{d{c}}}{}}0{{{d{f}}}{{d{fc}}}{}}0{{{h{c}}}e{}{}}0`44`{{}j}{{{d{fj}}}l}000{{}{{n{c}}}{}}{{{d{{A`{c}}}}{d{fAb}}}AdAf}{{{d{j}}{d{fAb}}}Ad}`{cc{}}000{ce{}{}}0`{{}c{}}000880000{{}c{}}0`77{{{d{fj}}{d{c}}}lAf}`91`{{{d{j}}}{{Aj{Ah}}}}`9999``9{{}{{Al{c}}}{}}0{c{{Al{e}}}{}{}}0{{}{{Al{c}}}{}}0{{}{{Al{c{An{c}}}}}{}}0{dB`}0{ce{}{}}0{{}c{}}0{{{d{fj}}}l}0`00{{}c{}}0{c{{A`{e}}}Bb{}}`{BdBf}{BdBh}```{eg{}{{b{c}}}{}}{ce{}{}}7{d{{d{c}}}{}}{{{d{f}}}{{d{fc}}}{}}{{{h{c}}}e{}{}}3{{{d{Bj}}{d{fAb}}}Ad}{cc{}}0{ce{}{}}{{}c{}}0400{{}c{}}{{}{{n{{Bl{Ah}}}}}}0{{}{{Al{c}}}{}}{c{{Al{e}}}{}{}}{{}{{Al{c}}}{}}{{}{{Al{c{An{c}}}}}{}}{dB`}{ce{}{}}{{}c{}}{{}c{}}{Ah{{n{c}}}{}}{Ah{{n{c}}}{}}{BnBh}{C`Ah}{BnCb}{C`Cb}`{eg{}{{b{c}}}{}}{ce{}{}}9{d{{d{c}}}{}}{{{d{f}}}{{d{fc}}}{}}{{{h{c}}}e{}{}}{{{d{Cd}}}Cd}{{d{d{fc}}}l{}}{{dCf}l}6{{{d{Cd}}{d{Cd}}}Ch}{{{d{Cd}}{d{fAb}}}Ad}{cc{}}0{ce{}{}}{{}c{}}0800{{}c{}}{c{{n{{Al{lCd}}}}}{{Cl{{Bf{{Cj{Cf}}}}}}}}{dc{}}{{}{{Al{c}}}{}}{c{{Al{e}}}{}{}}{{}{{Al{c}}}{}}{{}{{Al{c{An{c}}}}}{}}{dB`}{ce{}{}}{{}c{}}{{}c{}}```````````````````{eg{}{{b{c}}}{}}000{{}Cn}{CnCh}{ce{}{}}0005555{{{d{D`}}}{{D`{{d{Db}}}}}}{{CnCn}Cn}{{{d{fCn}}Cn}l}10{{{d{Cn}}}Dd}021{d{{d{c}}}{}}000{{{d{f}}}{{d{fc}}}{}}000{{{h{c}}}e{}{}}000{{{d{{D`{c}}}}}{{D`{c}}}Df}{{{d{Dh}}}Dh}{{{d{Dj}}}Dj}{{{d{Cn}}}Cn}{{d{d{fc}}}l{}}000{{dCf}l}000{{{d{{D`{c}}}}{d{{D`{c}}}}}DlDn}{{{d{Cn}}{d{Cn}}}Dl}{CnCh}{CnCn}{ce{}{}}000{{{d{Cn}}Cn}Ch}3{{}Cn}{{CnCn}Cn}1{{{d{{D`{c}}}}{d{{D`{c}}}}}ChE`}{{{d{Dh}}{d{Dh}}}Ch}{{{d{Dj}}{d{Dj}}}Ch}{{{d{Cn}}{d{Cn}}}Ch}{{{d{fCn}}c}l{{Ed{}{{Eb{Cn}}}}}}{{{d{{D`{c}}}}{d{fAb}}}{{Al{lEf}}}Af}{{{d{Dh}}{d{fAb}}}{{Al{lEf}}}}{{{d{Dj}}{d{fAb}}}{{Al{lEf}}}}{{{d{Cn}}{d{fAb}}}{{Al{lEf}}}}0000{EhD`}{cc{}}0000000{Dd{{Bl{Cn}}}}{DdCn}00{cCn{{Ed{}{{Eb{Cn}}}}}}{{{d{Db}}}{{Bl{Cn}}}}{ce{}{}}000{{{d{{D`{c}}}}{d{fe}}}lEjEl}{{{d{Cn}}{d{fc}}}lEl}{{{d{fCn}}Cn}l}{{CnCn}Cn}{{{d{Cn}}Cn}Ch}{{}c{}}0000000{{{h{c}}}e{}{}}00011111111{Cn}{{}c{}}000{{{d{Cn}}}Ch}0{{{d{Cn}}}{{En{Cn}}}}{{{d{Cn}}}{{F`{Cn}}}}{CnCh}`00{CnCn}5{{{d{{D`{c}}}}{d{{D`{c}}}}}{{Bl{Dl}}}Fb}{{{d{Cn}}{d{Cn}}}{{Bl{Dl}}}}={{{d{fCn}}CnCh}l}4=>={dc{}}000?{{}{{Al{c}}}{}}000{c{{Al{e}}}{}{}}000{{}{{Al{c}}}{}}000{{}{{Al{c{An{c}}}}}{}}000{dB`}000{ce{}{}}000{{}c{}}000{{CnCn}Cn}{{}c{}}000{FdD`}{FfD`}{FdDj}{FfDj}32{FdCn}{FfCn}{FdFh}{FfFh}{FdBl}```````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````{eg{}{{b{c}}}{}}000{ce{}{}}000===={d{{d{c}}}{}}000{{{d{f}}}{{d{fc}}}{}}000{{{h{c}}}e{}{}}000{{{d{Eh}}}Eh}{{{d{Fj}}}Fj}{{{d{Fl}}}Fl}{{{d{Fh}}}Fh}{{d{d{fc}}}l{}}000{{dCf}l}000{{{d{Eh}}{d{Eh}}}Dl}{{{d{Fj}}{d{Fj}}}Dl}{{{d{Fl}}{d{Fl}}}Dl}{{{d{Fh}}{d{Fh}}}Dl}===={{{d{Eh}}{d{Eh}}}Ch}{{{d{Fj}}{d{Fj}}}Ch}{{{d{Fj}}{d{Fh}}}Ch}{{{d{Fl}}{d{Fl}}}Ch}{{{d{Fl}}{d{Fh}}}Ch}{{{d{Fh}}{d{Fl}}}Ch}{{{d{Fh}}{d{Fj}}}Ch}{{{d{Fh}}{d{Fh}}}Ch}{{{d{Eh}}{d{fAb}}}{{Al{lEf}}}}{{{d{Fj}}{d{fAb}}}{{Al{lEf}}}}{{{d{Fl}}{d{fAb}}}{{Al{lEf}}}}{{{d{Fh}}{d{fAb}}}{{Al{lEf}}}}{cc{}}0000000{ce{}{}}000{{{d{Eh}}{d{fc}}}lEl}{{{d{Fj}}{d{fc}}}lEl}{{{d{Fl}}{d{fc}}}lEl}{{{d{Fh}}{d{fc}}}lEl}{{}c{}}0000000{{{h{c}}}e{}{}}00011111111{{}c{}}000{{{d{Eh}}{d{Eh}}}{{Bl{Dl}}}}{{{d{Fj}}{d{Fj}}}{{Bl{Dl}}}}{{{d{Fl}}{d{Fl}}}{{Bl{Dl}}}}{{{d{Fh}}{d{Fh}}}{{Bl{Dl}}}}{dc{}}000{{}{{Al{c}}}{}}000{c{{Al{e}}}{}{}}000{{}{{Al{c}}}{}}000{{}{{Al{c{An{c}}}}}{}}000{dB`}000{ce{}{}}000{{}c{}}000{{}c{}}000````````{{{d{f{Gd{}{{Fn{c}}{G`{e}}{Gb{g}}}}}}e}{{n{e}}}{GfGh}{AfGj}{}}{{{d{{Gd{}{{Fn{c}}{G`{e}}{Gb{g}}}}}}Gl}{{Gn{egc}}}{GfGh}{AfGj}{}}`{eg{}{{b{c}}}{}}{ce{}{}}5{d{{d{c}}}{}}{{{d{f}}}{{d{fc}}}{}}{{{h{c}}}e{}{}}3{cc{}}0{ce{}{}}{{}c{}}0300{{}c{}}{{{d{{H`{c}}}}}ChHb}{{{d{{H`{c}}}}}HdHb}{{cHf{d{f}}{d{fj}}}{{H`{c}}}Hb}{{{d{f{H`{c}}}}{d{f}}eHf{d{fj}}}lHb{{Hj{}{{Eb{{Hh{Bb}}}}}}}}{{{d{{H`{c}}}}}{{d{c}}}Hb}{{{d{f{H`{c}}}}Hl}lHb}{{{d{f{H`{c}}}}}lHb}{{}{{Al{c}}}{}}{c{{Al{e}}}{}{}}{{}{{Al{c}}}{}}{{}{{Al{c{An{c}}}}}{}}{dB`}{ce{}{}}{{}c{}}{{{d{f{H`{c}}}}HfHn{d{f}}d{d{I`}}{d{fIb}}{d{fj}}}{{Id{{Aj{Hl}}{Bl{n}}}}}Hb}{{}c{}}`{eg{}{{b{c}}}{}}{ce{}{}}4{d{{d{c}}}{}}{{{d{f}}}{{d{fc}}}{}}{{{h{c}}}e{}{}}3{{{d{f{If{ceg}}}}{d{fg}}{d{e}}{d{I`}}IhHn}l{}{}Gf}{cc{}}0{ce{}{}}{{}c{}}0400{{}c{}}{{{d{f{If{ceg}}}}Ih{d{g}}Ij}Ch{}{}Gf}{{{d{f{If{ceg}}}}{d{g}}Hf}Il{}{}Gf}{{{d{f{If{ceg}}}}IhHn{d{In}}{d{g}}}Hd{}{}Gf}{{{J`{ceg}}}{{If{ceg}}}{}{}Gf}{{{d{f{If{ceg}}}}Ih{d{g}}{d{fBb}}}l{}{}Gf}{{}{{Al{c}}}{}}{c{{Al{e}}}{}{}}{{}{{Al{c}}}{}}{{}{{Al{c{An{c}}}}}{}}{dB`}{ce{}{}}{{}c{}}{{{d{f{If{ceg}}}}{d{Hl}}IhHn{d{g}}{d{fIb}}{d{f{Jb{c}}}}}l{}{}Gf}{{}c{}}`````{eg{}{{b{c}}}{}}{ce{}{}}4{d{{d{c}}}{}}{{{d{f}}}{{d{fc}}}{}}{{{h{c}}}e{}{}}3{cc{}}0{ce{}{}}{{}c{}}0300{{}c{}}{{{d{{Jd{c}}}}}ChHb}{{{d{{Jd{c}}}}}HdHb}{{cHf{d{f}}{d{fj}}}{{Jd{c}}}Hb}{{{d{f{Jd{c}}}}{d{f}}eHf{d{fj}}}lHb{{Hj{}{{Eb{{Hh{Bb}}}}}}}}{{{d{{Jd{c}}}}}{{d{c}}}Hb}{{{d{f{Jd{c}}}}Hl}lHb}{{{d{f{Jd{c}}}}}lHb}{{}{{Al{c}}}{}}{c{{Al{e}}}{}{}}{{}{{Al{c}}}{}}{{}{{Al{c{An{c}}}}}{}}{dB`}{ce{}{}}{{}c{}}{{{d{f{Hb{}{{Fn{c}}{Gb{e}}{G`{g}}}}}}g}{{n{g}}}Gh{}{AfGj}}{{{d{f{Jd{c}}}}HfHn{d{f}}d{d{I`}}{d{fIb}}{d{fj}}}{{Id{{Aj{Hl}}{Bl{n}}}}}Hb}{{{d{{Hb{}{{Fn{c}}{Gb{e}}{G`{g}}}}}}}{{Gn{gec}}}Gh{}{AfGj}}{{}c{}}```{eg{}{{b{c}}}{}}0{ce{}{}}066{d{{d{c}}}{}}0{{{d{f}}}{{d{fc}}}{}}0{{{h{c}}}e{}{}}0{{{d{Jf}}}Jf}{{d{d{fc}}}l{}}{{dCf}l}66{JfAh}{JfBl}{{{d{Jh}}{d{fAb}}}Ad}{{{d{Jf}}{d{fAb}}}Ad}{cc{}}000{ce{}{}}055{{}c{}}000::0000{{}c{}}0{JfJj}77777{dc{}}{{}{{Al{c}}}{}}0{c{{Al{e}}}{}{}}0{{}{{Al{c}}}{}}0{{}{{Al{c{An{c}}}}}{}}0{dB`}0{ce{}{}}0{{}c{}}0{{}c{}}0``{{{d{Jl}}}l}{JlJl}{{{n{c}}}{{Id{{n{c}}Jl}}}{}}{eg{}{{b{c}}}{}}0{{{n{{Bl{c}}}}g}{{n{e}}}JnJn{{Kb{c}{{K`{{n{e}}}}}}Jn}}{{{n{{Al{ce}}}}i}{{n{g}}}JnJnJn{{Kb{c}{{K`{{n{g}}}}}}Jn}}{ce{}{}}088{e{{n{c}}}{}{{Ed{}{{Eb{{n{c}}}}}}}}{d{{d{c}}}{}}0{{{d{f}}}{{d{fc}}}{}}0{{{h{c}}}e{}{}}0{{{n{c}}{n{c}}}{{n{c}}}{}}{e{{n{c}}}Jn{{Kf{{Kd{c}}}{{K`{{A`{c}}}}}}}}{{{d{Jl}}}Jl}{{d{d{fc}}}l{}}{{dCf}l}{{{n{c}}}{{n{{Aj{c}}}}}Jn}::{{{n{c}}}{{n{e}}}JnJn}{c{{n{c}}}Jn}{{{d{fJl}}}l}{c{{n{e}}}{{Cl{{A`{Kh}}}}}{}}{{{d{Jl}}{d{fAb}}}Ad}{cc{}}{l{{n{c}}}{}}111{ce{}{}}0{e{{n{c}}}{}{{Kj{}{{K`{c}}}}Jn}}{{}c{}}000{{{h{c}}}e{}{}}01111{{}c{}}0{{{n{c}}}{{Bl{{Kl{{A`{c}}}}}}}{}}{{{d{Jl}}}Ch}{{{n{c}}g}{{n{e}}}JnJn{{Kn{c}{{K`{e}}}}Jn}}{{}{{n{c}}}{}}{e{{n{c}}}Jn{{Kf{{Bh{c}}}{{K`{{A`{c}}}}}}}}{{ei}{{n{g}}}Jn{{Kj{}{{K`{c}}}}Jn}Jn{{Kb{c}{{K`{g}}}}Jn}}{{ei}{{n{g}}}{}{{L`{}{{Eb{c}}}}Jn}{}{{Kb{c}{{K`{g}}}}Jn}}{e{{n{c}}}{}{{L`{}{{Eb{c}}}}Jn}}{{{n{c}}g}{{n{e}}}JnJn{{Kn{c}{{K`{{n{e}}}}}}Jn}}{dc{}}{{}{{Al{c}}}{}}0{c{{Al{e}}}{}{}}0{{}{{Al{c}}}{}}0{{}{{Al{c{An{c}}}}}{}}0{dB`}0{ce{}{}}0{{}c{}}0{{}c{}}0{e{{n{c}}}Gj{{Bb{c}}}}`````{eg{}{{b{c}}}{}}00{ce{}{}}00444{d{{d{c}}}{}}00{{{d{f}}}{{d{fc}}}{}}00{{iHfLb{d{fg}}}{{Ld{ceg}}}{}{}Gf{{Cl{{Gn{ceg}}}}}}{{{h{c}}}e{}{}}00{{{d{Lf}}}Lf}{{d{d{fc}}}l{}}{{dCf}l}777{{}Lb}{{{d{f{Ld{ceg}}}}{d{fg}}{d{e}}{d{I`}}Hn}Hd{}{}Gf}{{{d{Lb}}{d{fAb}}}Ad}{{{d{Lf}}{d{fAb}}}Ad}{cc{}}00000{ce{}{}}00{{}c{}}00000{{{Ld{ceg}}}Lb{}{}Gf};;;111111{{}c{}}0080{{{d{f{Ld{ceg}}}}{d{g}}{d{fBb}}}l{}{}Gf}{{{Ld{ceg}}Hf{d{fg}}}{{Ld{ceg}}}{}{}Gf}{dc{}}{{}{{Al{c}}}{}}00{c{{Al{e}}}{}{}}00{{}{{Al{c}}}{}}00{{}{{Al{c{An{c}}}}}{}}00{dB`}00{ce{}{}}00{{}c{}}00{{{d{f{Ld{ceg}}}}{d{{Cj{Hl}}}}Hn{d{fg}}{d{fIb}}{d{f{Aj{c}}}}}{{Id{Lf{Aj{Lh}}}}}{}{}Gf}{{}c{}}00{LjLl}{LjLn}``````````````````````````````````{eg{}{{b{c}}}{}}{ce{}{}}6{d{{d{c}}}{}}{{{d{f}}}{{d{fc}}}{}}{{{h{c}}}e{}{}}{Gl{{n{c}}}{}}{{}{{M`{Gl}}}}05{Gl{{n{c}}}{}}2{{GlMb}{{n{c}}}{}}1{{}{{M`{{Id{GlMd}}}}}}{{}{{M`{Mf}}}}{cc{}}0{ce{}{}}7{{}{{n{{Bl{Gl}}}}}}{Gl{{n{Ch}}}}{Gl{{n{{Bl{Ch}}}}}}{Gl{{n{Mh}}}}3{Gl{{n{{Bl{Ij}}}}}}{Gl{{n{Jj}}}}{Gl{{n{Mj}}}}{Gl{{n{Hf}}}}{{}c{}}0{{{h{c}}}e{}{}}11{{}c{}}{{GlCh}{{n{c}}}{}}0{{GlIj}{{n{c}}}{}}{Ml{{Id{Gl{n{Gl}}}}}}{{}{{M`{Gl}}}}`{{Gl{Bl{Mn}}}{{n{c}}}{}}{{GlHf}{{n{c}}}{}}{{}{{M`{{Id{GlHf}}}}}}{{Gle}{{n{c}}}Gj{{Kf{N`}{{K`{c}}}}Gj}}{Gl{{n{Nb}}}}{{GlNd}{{n{c}}}{}}{{GlNf}{{n{c}}}{}}{{Gl{Bl{Hf}}}{{n{c}}}{}}0{{GlMh}{{n{c}}}{}}<1{Gl{{n{c}}}{}}00{{}{{Al{c}}}{}}{c{{Al{e}}}{}{}}{{}{{Al{c}}}{}}{{}{{Al{c{An{c}}}}}{}}{dB`}{ce{}{}}{{}c{}}{{}c{}}","D":"FBn","p":[[10,"TransformMatrix",1478],[1,"reference",null,null,1],[0,"mut"],[5,"BakedParameters",1479],[5,"Debug",0,1480],[1,"unit"],[5,"Task",1206],[6,"Action",0],[5,"Formatter",1481],[8,"Result",1481],[10,"Debug",1481],[5,"String",1482],[5,"Vec",1483],[6,"Result",1484,null,1],[5,"OutOfBounds",1485],[5,"TypeId",1486],[10,"Operation",1487],[15,"LoadFont",96],[6,"Cow",1488],[5,"Sender",1489],[6,"Action",98],[6,"Option",1490,null,1],[15,"Read",130],[15,"Write",130],[6,"Kind",1491],[6,"Error",134],[1,"u8"],[1,"bool"],[1,"slice"],[10,"Into",1492,null,1],[5,"Modifiers",874,1493],[6,"Key",874,1494],[1,"str"],[1,"u32"],[10,"Clone",1495],[6,"Event",874,1496],[6,"Location",874,1497],[6,"Ordering",1498],[10,"Ord",1498],[10,"PartialEq",1498],[17,"Item"],[10,"IntoIterator",1499],[5,"Error",1481],[6,"Named",875,1494],[10,"Hash",1500],[10,"Hasher",1500],[5,"Iter",1501],[5,"IterNames",1501],[10,"PartialOrd",1498],[15,"KeyPressed",363],[15,"KeyReleased",363],[6,"Physical",875,1494],[6,"Code",875,1494],[6,"NativeCode",875,1494],[17,"Renderer"],[17,"Message"],[17,"Theme"],[10,"Program",1029],[10,"Renderer",1502],[10,"Renderer",1503],[10,"Send",1504],[5,"Id",1505],[5,"Element",1506],[5,"State",1035],[10,"Program",1100],[6,"Interaction",1507],[5,"Size",1508],[5,"Box",1509,null,1],[10,"Iterator",1510],[6,"Event",1511],[6,"Cursor",1512],[5,"Style",1502],[10,"Clipboard",1491],[1,"tuple",null,null,1],[5,"Nested",1068,1513],[5,"Layout",1514],[5,"Point",1515],[5,"Node",1516],[5,"Rectangle",1517],[5,"Element",1518],[5,"Shell",1519],[5,"State",1100,1520],[5,"Information",1139],[6,"Action",1139],[1,"u64"],[5,"Handle",1206],[10,"MaybeSend",1521],[17,"Output"],[10,"Fn",1522],[5,"Sender",1523],[10,"FnOnce",1522],[8,"Never",1524],[10,"Future",1525,null,1],[8,"BoxStream",1526],[10,"FnMut",1522],[10,"Stream",1527],[5,"Cache",1286],[5,"UserInterface",1286],[6,"State",1286],[6,"Status",1511],[15,"Updated",1378],[6,"InputMethod",1528],[6,"RedrawRequest",1529],[5,"Subscription",1530],[6,"Direction",1531],[6,"Event",1532],[5,"Instant",1533],[6,"Mode",1534],[1,"f32"],[5,"Settings",1535],[6,"UserAttention",1536],[5,"WindowHandle",1537],[5,"Screenshot",1538],[5,"Icon",1539],[6,"Level",1540],[6,"Action",1380]],"r":[[2,1480],[6,1100],[8,1206],[9,1286],[13,1480],[15,1480],[17,1480],[19,1480],[21,1480],[23,1480],[26,1480],[28,1480],[29,1480],[30,1480],[31,1480],[32,1480],[35,1480],[38,1480],[40,1480],[42,1480],[45,1480],[47,1480],[49,1480],[51,1480],[53,1480],[55,1480],[57,1480],[58,1480],[59,1480],[61,1480],[62,1480],[64,1480],[66,1480],[67,1480],[68,1480],[69,1480],[72,1480],[74,1480],[76,1480],[78,1480],[80,1480],[82,1480],[84,1480],[86,1480],[87,1480],[88,1480],[90,1480],[91,1480],[93,1480],[166,1493],[167,1493],[168,1493],[169,1494],[170,1496],[171,1494],[172,1496],[173,1496],[174,1493],[175,1497],[176,1497],[177,1493],[178,1496],[179,1494],[180,1497],[181,1497],[182,1493],[183,1497],[184,1494],[185,1494],[186,1496],[187,1497],[188,1493],[189,1493],[190,1493],[191,1494],[192,1496],[193,1497],[194,1493],[195,1494],[196,1496],[197,1497],[198,1493],[199,1494],[200,1493],[201,1493],[202,1493],[203,1493],[204,1493],[205,1493],[206,1493],[207,1493],[208,1494],[209,1496],[210,1497],[211,1493],[212,1494],[213,1496],[214,1497],[215,1493],[216,1494],[217,1496],[218,1497],[219,1493],[220,1494],[221,1496],[222,1497],[223,1493],[224,1494],[225,1496],[226,1497],[227,1493],[228,1494],[229,1496],[230,1497],[231,1493],[232,1494],[233,1493],[234,1493],[235,1493],[236,1494],[237,1496],[238,1497],[239,1493],[240,1493],[241,1493],[242,1493],[243,1493],[244,1493],[245,1494],[246,1496],[247,1497],[248,1493],[249,1493],[250,1494],[251,1496],[252,1497],[253,1493],[254,1493],[255,1493],[256,1493],[257,1493],[258,1494],[259,1494],[260,1496],[261,1497],[262,1493],[263,1494],[264,1496],[265,1497],[266,1493],[267,1493],[268,1493],[269,1493],[270,1493],[271,1493],[272,1493],[273,1494],[274,1496],[275,1497],[276,1493],[277,1494],[278,1493],[279,1493],[280,1493],[281,1493],[282,1494],[283,1496],[284,1497],[285,1493],[286,1494],[287,1496],[288,1497],[289,1493],[290,1494],[291,1496],[292,1497],[293,1493],[294,1494],[295,1496],[296,1497],[297,1493],[298,1494],[299,1496],[300,1497],[301,1493],[302,1493],[303,1494],[304,1496],[305,1497],[306,1493],[307,1493],[308,1493],[309,1493],[310,1493],[311,1493],[312,1541],[313,1493],[314,1493],[315,1493],[316,1493],[317,1494],[318,1493],[319,1493],[320,1493],[321,1493],[322,1493],[323,1493],[324,1493],[325,1494],[326,1496],[327,1497],[328,1493],[329,1493],[330,1494],[331,1496],[332,1497],[333,1493],[334,1494],[335,1496],[336,1497],[337,1493],[338,1494],[339,1496],[340,1497],[341,1493],[342,1494],[343,1496],[344,1497],[345,1493],[346,1494],[347,1496],[348,1497],[349,1493],[350,1494],[351,1496],[352,1497],[353,1493],[354,1494],[355,1496],[356,1497],[357,1493],[358,1493],[359,1494],[360,1496],[361,1497],[362,1493],[374,1494],[375,1494],[376,1494],[377,1494],[378,1494],[379,1494],[380,1494],[381,1494],[382,1494],[383,1494],[384,1494],[385,1494],[386,1494],[387,1494],[388,1494],[389,1494],[390,1494],[391,1494],[392,1494],[393,1494],[394,1494],[395,1494],[396,1494],[397,1494],[398,1494],[399,1494],[400,1494],[401,1494],[402,1494],[403,1494],[404,1494],[405,1494],[406,1494],[407,1494],[408,1494],[409,1494],[410,1494],[411,1494],[412,1494],[413,1494],[414,1494],[415,1494],[416,1494],[417,1494],[418,1494],[419,1494],[420,1494],[421,1494],[422,1494],[423,1494],[424,1494],[425,1494],[426,1494],[427,1494],[428,1494],[429,1494],[430,1494],[431,1494],[432,1494],[433,1494],[434,1494],[435,1494],[436,1494],[437,1494],[438,1494],[439,1494],[440,1494],[441,1494],[442,1494],[443,1494],[444,1494],[445,1494],[446,1494],[447,1494],[448,1494],[449,1494],[450,1494],[451,1494],[452,1494],[453,1494],[454,1494],[455,1494],[456,1494],[457,1494],[458,1494],[459,1494],[460,1494],[461,1494],[462,1494],[463,1494],[464,1494],[465,1494],[466,1494],[467,1494],[468,1494],[469,1494],[470,1494],[471,1494],[472,1494],[473,1494],[474,1494],[475,1494],[476,1494],[477,1494],[478,1494],[479,1494],[480,1494],[481,1494],[482,1494],[483,1494],[484,1494],[485,1494],[486,1494],[487,1494],[488,1494],[489,1494],[490,1494],[491,1494],[492,1494],[493,1494],[494,1494],[495,1494],[496,1494],[497,1494],[498,1494],[499,1494],[500,1494],[501,1494],[502,1494],[503,1494],[504,1494],[505,1494],[506,1494],[507,1494],[508,1494],[509,1494],[510,1494],[511,1494],[512,1494],[513,1494],[514,1494],[515,1494],[516,1494],[517,1494],[518,1494],[519,1494],[520,1494],[521,1494],[522,1494],[523,1494],[524,1494],[525,1494],[526,1494],[527,1494],[528,1494],[529,1494],[530,1494],[531,1494],[532,1494],[533,1494],[534,1494],[535,1494],[536,1494],[537,1494],[538,1494],[539,1494],[540,1494],[541,1494],[542,1494],[543,1494],[544,1494],[545,1494],[546,1494],[547,1494],[548,1494],[549,1494],[550,1494],[551,1494],[552,1494],[553,1494],[554,1494],[555,1494],[556,1494],[557,1494],[558,1494],[559,1494],[560,1494],[561,1494],[562,1494],[563,1494],[564,1494],[565,1494],[566,1494],[567,1494],[568,1494],[569,1494],[570,1494],[571,1494],[572,1494],[573,1494],[574,1494],[575,1494],[576,1494],[577,1494],[578,1494],[579,1494],[580,1494],[581,1494],[582,1494],[583,1494],[584,1494],[585,1494],[586,1494],[587,1494],[588,1494],[589,1494],[590,1494],[591,1494],[592,1494],[593,1494],[594,1494],[595,1494],[596,1494],[597,1494],[598,1494],[599,1494],[600,1494],[601,1494],[602,1494],[603,1494],[604,1494],[605,1494],[606,1494],[607,1494],[608,1494],[609,1494],[610,1494],[611,1494],[612,1494],[613,1494],[614,1494],[615,1494],[616,1494],[617,1494],[618,1494],[619,1494],[620,1494],[621,1494],[622,1494],[623,1494],[624,1494],[625,1494],[626,1494],[627,1494],[628,1494],[629,1494],[630,1494],[631,1494],[632,1494],[633,1494],[634,1494],[635,1494],[636,1494],[637,1494],[638,1494],[639,1494],[640,1494],[641,1494],[642,1494],[643,1494],[644,1494],[645,1494],[646,1494],[647,1494],[648,1494],[649,1494],[650,1494],[651,1494],[652,1494],[653,1494],[654,1494],[655,1494],[656,1494],[657,1494],[658,1494],[659,1494],[660,1494],[661,1494],[662,1494],[663,1494],[664,1494],[665,1494],[666,1494],[667,1494],[668,1494],[669,1494],[670,1494],[671,1494],[672,1494],[673,1494],[674,1494],[675,1494],[676,1494],[677,1494],[678,1494],[679,1494],[680,1494],[681,1494],[682,1494],[683,1494],[684,1494],[685,1494],[686,1494],[687,1494],[688,1494],[689,1494],[690,1494],[691,1494],[692,1494],[693,1494],[694,1494],[695,1494],[696,1494],[697,1494],[698,1494],[699,1494],[700,1494],[701,1494],[702,1494],[703,1494],[704,1494],[705,1494],[706,1494],[707,1494],[708,1494],[709,1494],[710,1494],[711,1494],[712,1494],[713,1494],[714,1494],[715,1494],[716,1494],[717,1494],[718,1494],[719,1494],[720,1494],[721,1494],[722,1494],[723,1494],[724,1494],[725,1494],[726,1494],[727,1494],[728,1494],[729,1494],[730,1494],[731,1494],[732,1494],[733,1494],[734,1494],[735,1494],[736,1494],[737,1494],[738,1494],[739,1494],[740,1494],[741,1494],[742,1494],[743,1494],[744,1494],[745,1494],[746,1494],[747,1494],[748,1494],[749,1494],[750,1494],[751,1494],[752,1494],[753,1494],[754,1494],[755,1494],[756,1494],[757,1494],[758,1494],[759,1494],[760,1494],[761,1494],[762,1494],[763,1494],[764,1494],[765,1494],[766,1494],[767,1494],[768,1494],[769,1494],[770,1494],[771,1494],[772,1494],[773,1494],[774,1494],[775,1494],[776,1494],[777,1494],[778,1494],[779,1494],[780,1494],[781,1494],[782,1494],[783,1494],[784,1494],[785,1494],[786,1494],[787,1494],[788,1494],[789,1494],[790,1494],[791,1494],[792,1494],[793,1494],[794,1494],[795,1494],[796,1494],[797,1494],[798,1494],[799,1494],[800,1494],[801,1494],[802,1494],[803,1494],[804,1494],[805,1494],[806,1494],[807,1494],[808,1494],[809,1494],[810,1494],[811,1494],[812,1494],[813,1494],[814,1494],[815,1494],[816,1494],[817,1494],[818,1494],[819,1494],[820,1494],[821,1494],[822,1494],[823,1494],[824,1494],[825,1494],[826,1494],[827,1494],[828,1494],[829,1494],[830,1494],[831,1494],[832,1494],[833,1494],[834,1494],[835,1494],[836,1494],[837,1494],[838,1494],[839,1494],[840,1494],[841,1494],[842,1494],[843,1494],[844,1494],[845,1494],[846,1494],[847,1494],[848,1494],[849,1494],[850,1494],[851,1494],[852,1494],[853,1494],[854,1494],[855,1494],[856,1494],[857,1494],[858,1494],[859,1494],[860,1494],[861,1494],[862,1494],[863,1494],[864,1494],[865,1494],[866,1494],[867,1494],[868,1494],[869,1494],[870,1494],[871,1494],[872,1494],[873,1494],[874,1494],[875,1494],[876,1494],[877,1494],[878,1494],[879,1494],[880,1494],[881,1494],[882,1494],[883,1494],[884,1494],[885,1494],[886,1494],[887,1494],[888,1494],[889,1494],[890,1494],[891,1494],[892,1494],[893,1494],[894,1494],[895,1494],[896,1494],[897,1494],[898,1494],[899,1494],[900,1494],[901,1494],[902,1494],[903,1494],[904,1494],[905,1494],[906,1494],[907,1494],[908,1494],[909,1494],[910,1494],[911,1494],[912,1494],[913,1494],[914,1494],[915,1494],[916,1494],[917,1494],[918,1494],[919,1494],[920,1494],[921,1494],[922,1494],[923,1494],[924,1494],[925,1494],[926,1494],[927,1494],[928,1494],[929,1494],[930,1494],[931,1494],[932,1494],[933,1494],[934,1494],[935,1494],[936,1494],[937,1494],[938,1494],[939,1494],[940,1494],[941,1494],[942,1494],[943,1494],[944,1494],[945,1494],[946,1494],[947,1494],[948,1494],[949,1494],[950,1494],[951,1494],[952,1494],[953,1494],[954,1494],[955,1494],[956,1494],[957,1494],[958,1494],[959,1494],[960,1494],[961,1494],[962,1494],[963,1494],[964,1494],[965,1494],[966,1494],[967,1494],[968,1494],[969,1494],[970,1494],[971,1494],[972,1494],[973,1494],[974,1494],[975,1494],[976,1494],[977,1494],[978,1494],[979,1494],[980,1494],[981,1494],[982,1494],[983,1494],[984,1494],[985,1494],[986,1494],[987,1494],[988,1494],[989,1494],[990,1494],[991,1494],[992,1494],[993,1494],[994,1494],[995,1494],[996,1494],[997,1494],[998,1494],[999,1494],[1000,1494],[1001,1494],[1002,1494],[1003,1494],[1004,1494],[1005,1494],[1006,1494],[1007,1494],[1008,1494],[1009,1494],[1010,1494],[1011,1494],[1012,1494],[1013,1494],[1014,1494],[1015,1494],[1016,1494],[1017,1494],[1018,1494],[1019,1494],[1020,1494],[1021,1494],[1022,1494],[1023,1494],[1024,1494],[1025,1029],[1026,1035],[1068,1513],[1069,1513],[1070,1513],[1071,1513],[1072,1513],[1073,1513],[1074,1513],[1075,1513],[1076,1513],[1077,1513],[1078,1513],[1079,1513],[1080,1513],[1081,1513],[1082,1513],[1083,1513],[1084,1513],[1085,1513],[1086,1513],[1087,1513],[1088,1513],[1089,1513],[1090,1513],[1091,1513],[1092,1513],[1093,1513],[1094,1513],[1095,1513],[1096,1513],[1097,1513],[1098,1513],[1099,1513],[1103,1520],[1105,1520],[1106,1520],[1107,1520],[1108,1520],[1109,1520],[1110,1520],[1111,1520],[1112,1520],[1113,1520],[1114,1520],[1115,1520],[1116,1520],[1117,1520],[1118,1520],[1119,1520],[1120,1520],[1121,1520],[1122,1520],[1123,1520],[1124,1520],[1125,1520],[1126,1520],[1127,1520],[1128,1520],[1129,1520],[1130,1520],[1131,1520],[1132,1520],[1133,1520],[1134,1520],[1136,1520],[1138,1520]],"b":[[204,"impl-Flags-for-Modifiers"],[205,"impl-Modifiers"],[253,"impl-LowerHex-for-Modifiers"],[254,"impl-Debug-for-Modifiers"],[255,"impl-Binary-for-Modifiers"],[256,"impl-Octal-for-Modifiers"],[257,"impl-UpperHex-for-Modifiers"],[268,"impl-Modifiers"],[269,"impl-Flags-for-Modifiers"],[934,"impl-PartialEq-for-Code"],[935,"impl-PartialEq%3CPhysical%3E-for-Code"],[936,"impl-PartialEq-for-NativeCode"],[937,"impl-PartialEq%3CPhysical%3E-for-NativeCode"],[938,"impl-PartialEq%3CNativeCode%3E-for-Physical"],[939,"impl-PartialEq%3CCode%3E-for-Physical"],[940,"impl-PartialEq-for-Physical"],[1213,"impl-Task%3COption%3CT%3E%3E"],[1214,"impl-Task%3CResult%3CT,+E%3E%3E"]],"c":"OjAAAAAAAAA=","e":"OzAAAAEAAK8CegAHAAAACQABAA0ACwAaAAcAIwABACgABAAvAAkAOgACAD8AAABBAAAAQwADAEkAEABbAAMAZgAHAG8AAQByAAQAeQAHAIgACwCVAAEAmAAEAJ4ACAC6AAMAwAAHAM0AAADRABkA7QADAPMAAAD2AAMA+wAIAAgBAwAOAQAAEgEFAB8BFAA9AQIARgEDAEsBGwBoAQMAeQEAAH4BAACZAQAAmwEAAJ0BAACpAQAArwEAALEBAACzAQAAtwEAAPMBAABYAgAAYwIBAGwCAACUAgAAnAIAAJ4CBgCpAgAAtwIAALoCAADAAgAAwwIAAMUCAgDWAgAA7wIAABUDAAAZAwAAIQMAACsDAAAyAwAANAMAAEQDAABGAwAAaAMAAG8DAABxAwAAegM3ALYDCwDGAz0ADQQGABUEAQAYBAQAJAQGACwEAAAuBAYANwQBADoEBABEBAYATAQAAFIEBgBaBAEAXQQEAGkEBgBzBAAAdwQQAIoEAQCOBAMAlgQJAKYEEAC8BAEAwAQDAMUEBQDNBAIA0QQBANUEAADXBAAA2QQAANsEAwDiBAkA9QQQAAwFDgAcBQkAJwUBACwFBQA1BQIAOQULAEYFAABJBRUAYAUCAIcFBQCQBQAAmAUBAKUFBACvBQAAvwUHAA==","P":[[12,"T,M,D"],[14,"C,T"],[16,"C"],[18,"T"],[22,"WpParam,T"],[25,"C,T"],[28,""],[33,"T"],[35,""],[37,"T"],[41,"U,T"],[44,"U"],[48,"WpParam,T"],[50,"U"],[54,"T"],[57,""],[59,"Message"],[61,""],[62,"T"],[64,""],[73,"C"],[75,"U,T"],[77,"U"],[81,""],[83,"C,U"],[85,"C"],[87,""],[92,"V"],[94,",T"],[96,""],[101,"T,M,D"],[102,"C,T"],[103,"C"],[104,"T"],[106,"WpParam,T"],[107,"C,T"],[108,""],[109,"T"],[111,"U,T"],[112,"U"],[114,"WpParam,T"],[115,"U"],[117,"T"],[118,""],[120,"C"],[121,"U,T"],[122,"U"],[124,""],[125,"C,U"],[126,"C"],[127,"V"],[128,"T"],[129,"Message"],[130,""],[135,"T,M,D"],[136,"C,T"],[137,"C"],[138,"T"],[140,"WpParam,T"],[141,""],[142,"T"],[143,""],[144,"C,T"],[145,""],[147,"T"],[149,"U,T"],[150,"U"],[152,"WpParam,T"],[153,"U"],[155,"T"],[156,""],[157,"T"],[158,"C"],[159,"U,T"],[160,"U"],[162,""],[163,"C,U"],[164,"C"],[165,"V"],[185,"T,M,D"],[189,""],[191,"C,T"],[195,"C"],[199,""],[208,"T"],[216,"WpParam,T"],[220,"C"],[221,""],[224,"T"],[228,""],[232,"C"],[233,""],[236,"C,T"],[240,""],[245,"C"],[246,""],[249,"T"],[250,"C"],[251,""],[259,"T"],[267,""],[271,"T"],[272,""],[273,"U,T"],[277,"C,__H"],[278,"__H"],[279,""],[282,"U"],[290,"WpParam,T"],[294,"U"],[302,""],[303,"T"],[307,""],[316,"T"],[317,"C"],[318,""],[325,"T"],[329,""],[330,"C"],[334,"U,T"],[338,"U"],[346,""],[350,"C,U"],[354,"C"],[358,""],[359,"V"],[363,""],[889,"T,M,D"],[893,"C,T"],[897,"C"],[901,"T"],[909,"WpParam,T"],[913,""],[917,"T"],[921,""],[929,"C,T"],[933,""],[945,"T"],[953,"U,T"],[957,"__H"],[961,"U"],[969,"WpParam,T"],[973,"U"],[981,"T"],[985,""],[989,"T"],[993,"C"],[997,"U,T"],[1001,"U"],[1009,""],[1013,"C,U"],[1017,"C"],[1021,"V"],[1033,"Program::Renderer,Program::Message,Program::Theme"],[1036,"T,M,D"],[1037,"C,T"],[1038,"C"],[1039,"T"],[1041,"WpParam,T"],[1042,"C,T"],[1043,"T"],[1045,"U,T"],[1046,"U"],[1048,"WpParam,T"],[1049,"U"],[1051,"T"],[1052,"P"],[1055,"P,"],[1056,"P"],[1059,"C"],[1060,"U,T"],[1061,"U"],[1063,""],[1064,"C,U"],[1065,"C"],[1066,"P"],[1067,"V"],[1069,"T,M,D"],[1070,"C,T"],[1071,"C"],[1072,"T"],[1074,"WpParam,T"],[1075,"C,T"],[1076,"Message,Theme,Renderer"],[1077,"T"],[1079,"U,T"],[1080,"U"],[1082,"WpParam,T"],[1083,"U"],[1085,"T"],[1086,"Message,Theme,Renderer"],[1091,"C"],[1092,"U,T"],[1093,"U"],[1095,""],[1096,"C,U"],[1097,"C"],[1098,"Message,Theme,Renderer"],[1099,"V"],[1105,"T,M,D"],[1106,"C,T"],[1107,"C"],[1108,"T"],[1110,"WpParam,T"],[1111,"C,T"],[1112,"T"],[1114,"U,T"],[1115,"U"],[1117,"WpParam,T"],[1118,"U"],[1120,"T"],[1121,"P"],[1124,"P,"],[1125,"P"],[1128,"C"],[1129,"U,T"],[1130,"U"],[1132,""],[1133,"C,U"],[1134,"C"],[1135,"Program::Renderer,Program::Theme,Program::Message"],[1136,"P"],[1137,"Program::Renderer,Program::Theme,Program::Message"],[1138,"V"],[1142,"T,M,D"],[1144,"C,T"],[1146,"C"],[1148,"T"],[1152,"WpParam,T"],[1154,""],[1155,"T"],[1156,""],[1157,"C,T"],[1159,""],[1163,"T"],[1167,"U,T"],[1169,""],[1171,"U"],[1175,"WpParam,T"],[1177,"U"],[1181,"T"],[1183,""],[1189,"T"],[1190,"C"],[1192,"U,T"],[1194,"U"],[1198,""],[1200,"C,U"],[1202,"C"],[1204,"V"],[1208,""],[1210,"T"],[1211,"T,M,D"],[1213,"T,A,"],[1214,"T,E,A,"],[1215,"C,T"],[1217,"C"],[1219,"T,"],[1220,"T"],[1224,"WpParam,T"],[1226,"T"],[1227,"T,"],[1228,""],[1229,"T"],[1230,""],[1231,"T"],[1232,"C,T"],[1234,"T,O"],[1235,"T"],[1236,""],[1237,",T"],[1238,""],[1239,"T"],[1244,"U,T"],[1246,"T,"],[1247,"U"],[1251,"WpParam,T"],[1253,"U"],[1257,"T"],[1260,""],[1261,"T,O,"],[1262,"T"],[1263,"T,"],[1264,"A,,T,"],[1266,"T,"],[1267,"T,O,"],[1268,"T"],[1269,"C"],[1271,"U,T"],[1273,"U"],[1277,""],[1279,"C,U"],[1281,"C"],[1283,"V"],[1285,"T,"],[1291,"T,M,D"],[1294,"C,T"],[1297,"C"],[1300,"T"],[1306,"Message,Theme,Renderer,E"],[1307,"WpParam,T"],[1310,""],[1311,"T"],[1312,""],[1313,"C,T"],[1316,""],[1317,"Message,Theme,Renderer"],[1318,""],[1320,"T"],[1326,"U,T"],[1329,"U"],[1335,"Message,Theme,Renderer"],[1336,"WpParam,T"],[1339,"U"],[1345,"T"],[1348,""],[1349,"T"],[1350,"Message,Theme,Renderer"],[1352,"T"],[1353,"C"],[1356,"U,T"],[1359,"U"],[1365,""],[1368,"C,U"],[1371,"C"],[1374,"Message,Theme,Renderer"],[1375,"V"],[1378,""],[1414,"T,M,D"],[1415,"C,T"],[1416,"C"],[1417,"T"],[1419,"WpParam,T"],[1420,"T"],[1421,""],[1423,"C,T"],[1424,"Message"],[1425,"T"],[1427,"Message"],[1428,""],[1430,"T"],[1432,"U,T"],[1433,"T"],[1434,""],[1443,"U"],[1445,"WpParam,T"],[1446,"U"],[1448,"T"],[1452,""],[1455,"T"],[1457,""],[1458,"T,"],[1459,""],[1460,"T"],[1470,"C"],[1471,"U,T"],[1472,"U"],[1474,""],[1475,"C,U"],[1476,"C"],[1477,"V"]]}],["iced_tiny_skia",{"t":"PEFGFFPNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNENNNNONONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCEONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNOOOOOOFPFGPNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNHNHNNNHNNNNONNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOEECFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHNHNNNNNNNNNNNNNNNNNN","n":["Fill","Geometry","Layer","Primitive","Renderer","Settings","Stroke","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","as_any","","","","as_any_mut","","","","borrow","","","","borrow_mut","","","","bounds","cam16_into_unclamped","","","","clear","clone","","","clone_into","","","clone_to_uninit","","","components_from","","","","core","damage","default","","default_font","","default_size","default_text_size","deref","","","","deref_mut","","","","draw","draw_editor","draw_geometry","draw_image","","draw_mesh","draw_paragraph","draw_primitive_cache","draw_primitive_group","draw_quad","draw_raster","draw_svg","","draw_text","draw_text_cache","draw_text_group","drop","","","","end_layer","end_transformation","eq","","fill_editor","fill_paragraph","fill_quad","fill_text","flush","fmt","","","","from","","","","","from_angle","","","","from_stimulus","","","","geometry","graphics","images","init","","","","into","","","","into_angle","","","","into_any","","","","into_any_arc","","into_any_rc","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_stimulus","","","","layers","measure_image","measure_svg","new","","new_frame","null_value","","primitives","quads","reset","resize","screenshot","start_layer","start_transformation","text","to_owned","","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","visible_bounds","vzip","","","","window","with_bounds","paint","","path","","rule","stroke","Cache","","Frame","Geometry","Live","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","borrow","","","borrow_mut","","","cache","cam16_into_unclamped","","","center","clip_bounds","clone","clone_into","clone_to_uninit","components_from","","","deref","","","deref_mut","","","draft","draw_image","draw_svg","drop","","","fill","fill_rectangle","fill_text","fmt","","","from","","","from_angle","","","from_stimulus","","","height","images","init","","","into","","","into_angle","","","into_any","","","into_any_arc","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_fill_rule","into_geometry","into_paint","into_stimulus","","","into_stroke","load","new","paste","pop_transform","primitives","push_transform","rotate","scale","scale_nonuniform","size","stroke","stroke_rectangle","text","to_owned","translate","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","vzip","","","width","with_clip","clip_bounds","images","primitives","text","Compositor","Surface","compositor","Compositor","Surface","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","components_from","","configure_surface","create_renderer","create_surface","deref","","deref_mut","","drop","","fetch_information","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","new","present","","screenshot","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","with_backend"],"q":[[0,"iced_tiny_skia"],[211,"iced_tiny_skia::Primitive"],[217,"iced_tiny_skia::geometry"],[357,"iced_tiny_skia::geometry::Geometry"],[361,"iced_tiny_skia::window"],[364,"iced_tiny_skia::window::compositor"],[441,"palette::chromatic_adaptation"],[442,"core::any"],[443,"iced_tiny_skia::layer"],[444,"iced_core::rectangle"],[445,"palette::cam16::parameters"],[446,"iced_tiny_skia::primitive"],[447,"iced_tiny_skia::settings"],[448,"alloc::vec"],[449,"iced_core::font"],[450,"iced_core::pixels"],[451,"tiny_skia::pixmap"],[452,"tiny_skia::mask"],[453,"iced_graphics::viewport"],[454,"iced_core::color"],[455,"core::convert"],[456,"iced_graphics::text::editor"],[457,"iced_core::point"],[458,"iced_core::transformation"],[459,"iced_graphics::image"],[460,"iced_core::image"],[461,"iced_graphics::mesh"],[462,"iced_graphics::text::paragraph"],[463,"alloc::rc"],[464,"iced_core::renderer"],[465,"iced_core::background"],[466,"iced_core::svg"],[467,"iced_core::text"],[468,"iced_graphics::text"],[469,"core::fmt"],[470,"iced_graphics::settings"],[471,"alloc::boxed"],[472,"alloc::sync"],[473,"iced_core::size"],[474,"core::result"],[475,"palette::convert::try_from_into_color"],[476,"tiny_skia::painter"],[477,"tiny_skia_path::path"],[478,"tiny_skia_path::stroker"],[479,"iced_graphics::cache"],[480,"core::option"],[481,"iced_graphics::geometry::path"],[482,"iced_graphics::geometry::fill"],[483,"iced_graphics::geometry::text"],[484,"iced_graphics::geometry::style"],[485,"iced_graphics::geometry::stroke"],[486,"iced_core::angle"],[487,"iced_core::vector"],[488,"iced_graphics::compositor"],[489,"core::clone"],[490,"iced_graphics::error"]],"i":"Ad`````0j1AfA`2310231023102310231023102231002312312312310`2210101231023100202002222220222231000310000223102311023102310``2231023102310231031231023102310231023100000002122220002231231023102310231023102310231032310`2FfFj1010`Gb``00GfGj210210210210210210221001111210210210000210000210210210210012102102102100210210210210`0`210`20001000000011021021021021021021021021000Hl000`````HnIf101010101010101011110101011010101010101011010101010``1`110101010101010101","f":"```````{eg{}{{b{c}}}{}}000{ce{}{}}000{{}c{}}000{d{{d{f}}}}000{{{d{h}}}{{d{hf}}}}000{d{{d{c}}}{}}000{{{d{h}}}{{d{hc}}}{}}000{jl}{{{n{c}}}e{}{}}000{{{d{hA`}}}Ab}{{{d{j}}}j}{{{d{Ad}}}Ad}{{{d{Af}}}Af}{{d{d{hc}}}Ab{}}00{{dAh}Ab}00====`{{{d{j}}{d{j}}}{{Aj{l}}}}{{}j}{{}Af}{{{d{A`}}}c{}}{AfAl}{{{d{A`}}}An}{AfAn}{B`{{d{c}}}{}}000{B`{{d{hc}}}{}}000{{{d{hA`}}{d{hBb}}{d{hBd}}{d{Bf}}{d{{Bh{l}}}}Bj{d{{Bh{c}}}}}Ab{{Bn{Bl}}}}{{{d{hj}}{d{C`}}CbBjlCd}Ab}{{{d{hA`}}c}Ab{}}{{{d{hj}}CfCd}Ab}{{{d{hA`}}Chl}Ab}{{{d{hA`}}Cj}Ab}{{{d{hj}}{d{Cl}}CbBjlCd}Ab}{{{d{hj}}{Cn{{Bh{Ad}}}}lCd}Ab}{{{d{hj}}{Aj{Ad}}lCd}Ab}{{{d{hj}}D`DbCd}Ab}{{{d{hj}}ChlCd}Ab}{{{d{hj}}DdlCd}Ab}{{{d{hA`}}Ddl}Ab}{{{d{hj}}DfCbBjlCd}Ab}{{{d{hj}}{Cn{{Bh{Dh}}}}lCd}Ab}{{{d{hj}}{Aj{Dh}}lCd}Ab}{B`Ab}000{{{d{hA`}}}Ab}0{{{d{Ad}}{d{Ad}}}Dj}{{{d{Af}}{d{Af}}}Dj}{{{d{hA`}}{d{c}}CbBjl}Ab{}}{{{d{hA`}}{d{c}}CbBjl}Ab{}}{{{d{hA`}}D`c}Ab{{Dl{Db}}}}{{{d{hA`}}DfCbBjl}Ab}{{{d{hj}}}Ab}{{{d{j}}{d{hDn}}}E`}{{{d{Ad}}{d{hDn}}}E`}{{{d{Af}}{d{hDn}}}E`}{{{d{A`}}{d{hDn}}}E`}{cc{}}00{EbAf}11111{ce{}{}}000``{jAj}{{}B`}000{{}c{}}0000000{{{Ed{c}}}{{Ed{f}}}{}}000{{{Ef{c}}}{{Ef{f}}}{}}0{{{Cn{c}}}{{Cn{f}}}{}}000{{{n{c}}}e{}{}}00044444444{{}c{}}000{{{d{hA`}}}{{d{{Bh{j}}}}}}{{{d{A`}}{d{c}}}{{Ej{Eh}}}{}}{{{d{A`}}{d{El}}}{{Ej{Eh}}}}{{AlAn}A`}0{{{d{A`}}Ej}c{}}55<<{{{d{hj}}}Ab}{{{d{hj}}l}Ab}{{{d{hA`}}{Ej{Eh}}EnBj}{{Aj{Ah}}}}{{{d{hA`}}l}Ab}{{{d{hA`}}Cd}Ab}{jAj}{dc{}}00{{}{{F`{c}}}{}}000{c{{F`{e}}}{}{}}000{{}{{F`{c}}}{}}000{{}{{F`{c{Fb{c}}}}}{}}000{dFd}000{ce{}{}}000{{}c{}}000{{{d{Ad}}}l}{{}c{}}000`{lj}{FfFh}{FjFh}{FfFl}{FjFl}{FfFn}{FjG`}`````{eg{}{{b{c}}}{}}00{ce{}{}}00;;;{d{{d{f}}}}00{{{d{h}}}{{d{hf}}}}00{d{{d{c}}}{}}00{{{d{h}}}{{d{hc}}}{}}00{{GbGd{Gh{Gf}}}Gf}{{{n{c}}}e{}{}}00{{{d{Gj}}}Cb}{Gfl}{{{d{Gf}}}Gf}{{d{d{hc}}}Ab{}}{{dAh}Ab};;;{B`{{d{c}}}{}}00{B`{{d{hc}}}{}}00{{{d{hGj}}l}Gj}{{{d{hGj}}lc}Ab{{Dl{Ch}}}}{{{d{hGj}}lc}Ab{{Dl{Dd}}}}{B`Ab}00{{{d{hGj}}{d{Gl}}c}Ab{{Dl{Gn}}}}{{{d{hGj}}CbEjc}Ab{{Dl{Gn}}}}{{{d{hGj}}c}Ab{{Dl{H`}}}}{{{d{Gb}}{d{hDn}}}E`}{{{d{Gf}}{d{hDn}}}E`}{{{d{Gj}}{d{hDn}}}E`}{cc{}}00000{ce{}{}}00{{{d{Gj}}}En}{GfCn}{{}B`}00{{}c{}}00000{{{Ed{c}}}{{Ed{f}}}{}}00{{{Ef{c}}}{{Ef{f}}}{}}{{{Cn{c}}}{{Cn{f}}}{}}00{{{n{c}}}e{}{}}00444444{HbFn}{GjGb}{HdFh}{{}c{}}00{{{d{Hf}}}G`}{{{d{Gf}}}Gb}{EjGj}{{{d{hGj}}Gj}Ab}{{{d{hGj}}}Ab}?0{{{d{hGj}}c}Ab{{Dl{Hh}}}}{{{d{hGj}}c}Ab{{Dl{En}}}}{{{d{hGj}}c}Ab{{Dl{Hj}}}}{{{d{Gj}}}Ej}{{{d{hGj}}{d{Gl}}c}Ab{{Dl{Hf}}}}{{{d{hGj}}CbEjc}Ab{{Dl{Hf}}}}{GfCn}{dc{}}{{{d{hGj}}Hj}Ab}{{}{{F`{c}}}{}}00{c{{F`{e}}}{}{}}00{{}{{F`{c}}}{}}00{{}{{F`{c{Fb{c}}}}}{}}00{dFd}00{ce{}{}}00{{}c{}}00{{}c{}}00{{{d{Gj}}}En}{lGj}{Hll}{HlAj}00`````{eg{}{{b{c}}}{}}0{ce{}{}}077{d{{d{f}}}}0{{{d{h}}}{{d{hf}}}}0{d{{d{c}}}{}}0{{{d{h}}}{{d{hc}}}{}}0{{{n{c}}}e{}{}}055{{{d{hHn}}{d{hc}}EhEh}Ab{}}{{{d{Hn}}}c{}}{{{d{hHn}}cEhEh}e{I`Ib}{}}{B`{{d{c}}}{}}0{B`{{d{hc}}}{}}0{B`Ab}0{{{d{Hn}}}Id}{cc{}}000{ce{}{}}0{{}B`}0{{}c{}}000{{{Ed{c}}}{{Ed{f}}}{}}0{{{Ef{c}}}{{Ef{f}}}{}}{{{Cn{c}}}{{Cn{f}}}{}}0>>3333{{}c{}}0{{Afc}HnI`}{{{d{hA`}}{d{hIf}}{d{Bf}}Bj{d{{Bh{c}}}}}{{F`{AbIh}}}{{Bn{Bl}}}}{{{d{hHn}}{d{hc}}{d{he}}{d{Bf}}Bj{d{{Bh{g}}}}}{{F`{AbIh}}}{}{}{{Bn{Bl}}}}{{{d{hA`}}{d{Bf}}Bj{d{{Bh{c}}}}}{{Aj{Ah}}}{{Bn{Bl}}}}{{{d{hHn}}{d{hc}}{d{Bf}}Bj{d{{Bh{e}}}}}{{Aj{Ah}}}{}{{Bn{Bl}}}}{{}{{F`{c}}}{}}0{c{{F`{e}}}{}{}}0{{}{{F`{c}}}{}}0{{}{{F`{c{Fb{c}}}}}{}}0{dFd}0{ce{}{}}0{{}c{}}0{{}c{}}0{{Ebc{Gh{{d{Bl}}}}}{{F`{HnIj}}}I`}","D":"Cn","p":[[10,"TransformMatrix",441],[1,"reference",null,null,1],[10,"Any",442],[0,"mut"],[5,"Layer",0,443],[5,"Rectangle",444],[5,"BakedParameters",445],[5,"Renderer",0],[1,"unit"],[6,"Primitive",0,446],[5,"Settings",0,447],[1,"u8"],[5,"Vec",448],[5,"Font",449],[5,"Pixels",450],[1,"usize"],[5,"PixmapMut",451],[5,"Mask",452],[5,"Viewport",453],[1,"slice"],[5,"Color",454],[1,"str"],[10,"AsRef",455],[5,"Editor",456],[5,"Point",457],[5,"Transformation",458],[6,"Image",459],[5,"Image",460],[6,"Mesh",461],[5,"Paragraph",462],[5,"Rc",463,null,1],[5,"Quad",464],[6,"Background",465],[5,"Svg",466],[5,"Text",467],[6,"Text",468],[1,"bool"],[10,"Into",455,null,1],[5,"Formatter",469],[8,"Result",469],[5,"Settings",470],[5,"Box",471,null,1],[5,"Arc",472,null,1],[1,"u32"],[5,"Size",473],[5,"Handle",466],[1,"f32"],[6,"Result",474,null,1],[5,"OutOfBounds",475],[5,"TypeId",442],[15,"Fill",211],[5,"Paint",476],[15,"Stroke",211],[5,"Path",477],[6,"FillRule",476],[5,"Stroke",478],[6,"Geometry",217],[5,"Group",479],[5,"Cache",217],[6,"Option",480,null,1],[5,"Frame",217],[5,"Path",481],[5,"Fill",482],[5,"Text",483],[6,"Rule",482],[6,"Style",484],[5,"Stroke",485],[5,"Radians",486],[5,"Vector",487],[15,"Live",357],[5,"Compositor",364],[10,"Window",488],[10,"Clone",489],[5,"Information",488],[5,"Surface",364],[6,"SurfaceError",488],[6,"Error",490]],"r":[[0,446],[1,217],[2,443],[3,446],[5,447],[6,446],[7,443],[8,446],[9,447],[11,443],[12,446],[13,447],[15,443],[16,446],[17,447],[19,443],[20,446],[21,447],[23,443],[24,446],[25,447],[27,443],[28,446],[29,447],[31,443],[32,446],[33,447],[35,443],[36,443],[37,446],[38,447],[41,443],[42,446],[43,447],[44,443],[45,446],[46,447],[47,443],[48,446],[49,447],[50,443],[51,446],[52,447],[55,443],[56,443],[57,447],[59,447],[61,447],[62,443],[63,446],[64,447],[66,443],[67,446],[68,447],[71,443],[73,443],[76,443],[77,443],[78,443],[79,443],[80,443],[81,443],[83,443],[84,443],[85,443],[86,443],[87,446],[88,447],[92,446],[93,447],[98,443],[99,443],[100,446],[101,447],[103,443],[104,446],[105,447],[106,447],[108,443],[109,446],[110,447],[112,443],[113,446],[114,447],[118,443],[119,443],[120,446],[121,447],[123,443],[124,446],[125,447],[127,443],[128,446],[129,447],[131,443],[132,446],[133,447],[135,446],[136,447],[137,443],[138,446],[139,447],[141,443],[142,446],[143,447],[145,443],[146,446],[147,447],[149,443],[150,446],[151,447],[153,443],[154,446],[155,447],[163,443],[164,447],[165,443],[166,443],[167,443],[168,443],[172,443],[173,443],[174,446],[175,447],[176,443],[177,446],[178,447],[180,443],[181,446],[182,447],[184,443],[185,446],[186,447],[188,443],[189,446],[190,447],[192,443],[193,446],[194,447],[196,443],[197,446],[198,447],[200,443],[201,446],[202,447],[204,446],[205,443],[206,446],[207,447],[210,443],[361,364],[362,364]],"b":[[160,"impl-Renderer"],[161,"impl-Headless-for-Renderer"]],"c":"OjAAAAAAAAA=","e":"OzAAAAEAAJoBDgAAAAAAAgACAAgAMwA9AAAAPwAoAGsAAABtAA4AgABMAM4ABQDaADcAFQEKACMBZwCNAQUAlQEkAA==","P":[[7,"T,M,D"],[11,"C,T"],[15,"C"],[19,""],[27,"T"],[35,""],[36,"WpParam,T"],[40,""],[44,"T"],[47,""],[50,"C,T"],[55,""],[58,"Renderer::Font"],[59,""],[62,"T"],[71,""],[72,"Renderer::Geometry"],[73,""],[94,"Renderer::Editor"],[95,"Renderer::Paragraph"],[96,""],[97,""],[103,"T"],[106,""],[107,"T"],[112,"U,T"],[118,""],[123,"U"],[131,"T"],[141,"WpParam,T"],[145,"U"],[153,"T"],[157,""],[158,"Renderer::Handle"],[159,""],[162,"Renderer::Frame"],[163,"T"],[165,""],[173,"T"],[176,"C"],[180,"U,T"],[184,"U"],[192,""],[196,"C,U"],[200,"C"],[204,""],[205,"V"],[210,""],[222,"T,M,D"],[225,"C,T"],[228,"C"],[231,""],[237,"T"],[243,""],[244,"WpParam,T"],[247,""],[250,"T"],[251,""],[252,"C,T"],[255,"T"],[261,""],[262,""],[264,""],[267,""],[270,""],[273,"T"],[279,"U,T"],[282,""],[287,"U"],[293,"T"],[300,"WpParam,T"],[303,"U"],[309,""],[312,"T"],[315,""],[322,""],[325,""],[326,""],[328,""],[329,"T"],[330,""],[331,"C"],[334,"U,T"],[337,"U"],[343,""],[346,"C,U"],[349,"C"],[352,"V"],[355,""],[366,"T,M,D"],[368,"C,T"],[370,"C"],[372,""],[376,"T"],[380,"WpParam,T"],[382,"C,T"],[384,"Compositor::Surface"],[385,"Compositor::Renderer"],[386,"W,Compositor::Surface"],[387,"T"],[391,""],[394,"T"],[398,"U,T"],[400,""],[402,"U"],[406,"T"],[411,"WpParam,T"],[413,"U"],[417,"T"],[419,"W"],[420,"T"],[421,"Compositor::Renderer,Compositor::Surface,T"],[422,"T"],[423,"Compositor::Renderer,T"],[424,"C"],[426,"U,T"],[428,"U"],[432,""],[434,"C,U"],[436,"C"],[438,"V"],[440,"W"]]}],["iced_wgpu",{"t":"FEEEFENNNNNNNNNNNNNNNENNNNNNNNNNNNNNNNNNNNNNNNNNNNCENNNNNNNNNNNNNNCNNNNNNCCNNNNNNNNNNNNNNNNNNNNNECFPFGPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOFINNNNNONNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNOONNOONNNNNNNNNNIFKKFNNNNNNNNNNONNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMOMNNNNNNNNNNNNNNNNNNNFNONNONNNNNNNNOONNNNNNNNNNNNNNNNNNOHNNNNNNNNNNEFNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFGPPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHNNHNNNNNNNNNNNNNNNNNNNNNNNN","n":["Engine","Geometry","Layer","Primitive","Renderer","Settings","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","clear","components_from","","core","create_image_cache","default_font","default_size","deref","","deref_mut","","downcast","","draw_geometry","draw_image","draw_mesh","draw_primitive","draw_svg","drop","","end_layer","end_transformation","fill_editor","fill_paragraph","fill_quad","fill_text","from","","from_angle","","from_stimulus","","geometry","graphics","init","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","layer","measure_image","measure_svg","new","","new_frame","present","primitive","settings","start_layer","start_transformation","submit","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","wgpu","window","Cache","Cached","Frame","Geometry","Live","adapt_into_using","","","arrays_from","","","arrays_into","","","borrow","","","borrow_mut","","","cache","cam16_into_unclamped","","","center","clone","clone_into","clone_to_uninit","components_from","","","default","deref","","","deref_mut","","","downcast","","","draft","draw_image","draw_svg","drop","","","fill","fill_rectangle","fill_text","fmt","","from","","","from_angle","","","from_stimulus","","","height","images","init","","","into","","","into_angle","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_geometry","into_stimulus","","","load","meshes","new","null_value","paste","pop_transform","push_transform","rotate","scale","scale_nonuniform","size","stroke","stroke_rectangle","text","to_owned","translate","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","width","with_clip","images","meshes","text","Layer","Stack","adapt_into_using","arrays_from","arrays_into","borrow","borrow_mut","bounds","cam16_into_unclamped","components_from","default","deref","deref_mut","downcast","draw_editor","draw_image","draw_mesh","draw_mesh_cache","draw_mesh_group","draw_paragraph","draw_primitive","draw_quad","draw_raster","draw_svg","draw_text","draw_text_cache","draw_text_group","drop","flush","fmt","from","from_angle","from_stimulus","images","init","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","null_value","primitives","quads","reset","resize","text","triangles","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","with_bounds","Batch","Instance","Primitive","Renderer","Storage","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","bounds","cam16_into_unclamped","","components_from","","default","deref","","deref_mut","","downcast","","draw_primitive","drop","","fmt","","from","","from_angle","","from_stimulus","","get","get_mut","has","init","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","new","null_value","prepare","primitive","render","store","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","Settings","adapt_into_using","antialiasing","arrays_from","arrays_into","backends","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","default","default_font","default_text_size","deref","deref_mut","downcast","drop","eq","fmt","from","","from_angle","from_stimulus","init","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","null_value","present_mode","present_mode_from_env","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Compositor","Surface","adapt_into_using","arrays_from","arrays_into","as_hal","borrow","borrow_mut","cam16_into_unclamped","components_from","compositor","configure","deref","deref_mut","downcast","drop","","fmt","from","from_angle","from_stimulus","get_capabilities","get_current_texture","get_default_config","init","into","into_angle","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Compositor","Error","IncompatibleSurface","NoAdapterFound","RequestDeviceFailed","SurfaceCreationFailed","adapt_into_using","","arrays_from","","arrays_into","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","clone_into","clone_to_uninit","components_from","","configure_surface","create_renderer","create_surface","deref","","deref_mut","","downcast","","drop","","fetch_information","fmt","","from","","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","new","present","","request","screenshot","","source","to_owned","to_smolstr","to_string","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","with_backend"],"q":[[0,"iced_wgpu"],[98,"iced_wgpu::geometry"],[228,"iced_wgpu::geometry::Geometry"],[231,"iced_wgpu::layer"],[289,"iced_wgpu::primitive"],[368,"iced_wgpu::settings"],[414,"iced_wgpu::window"],[454,"iced_wgpu::window::compositor"],[541,"palette::chromatic_adaptation"],[542,"palette::cam16::parameters"],[543,"iced_wgpu::engine"],[544,"wgpu::api::device"],[545,"iced_core::pixels"],[546,"iced_core::image"],[547,"iced_core::rectangle"],[548,"iced_graphics::mesh"],[549,"iced_core::svg"],[550,"iced_core::point"],[551,"iced_core::color"],[552,"iced_core::renderer"],[553,"iced_core::background"],[554,"core::convert"],[555,"iced_core::text"],[556,"iced_core::size"],[557,"wgpu::api::adapter"],[558,"wgpu::api::queue"],[559,"wgpu_types"],[560,"iced_graphics::antialiasing"],[561,"core::option"],[562,"iced_core::font"],[563,"wgpu::api::command_encoder"],[564,"wgpu::api::texture_view"],[565,"iced_graphics::viewport"],[566,"iced_core::transformation"],[567,"core::result"],[568,"palette::convert::try_from_into_color"],[569,"core::any"],[570,"iced_graphics::cache"],[571,"iced_graphics::geometry::path"],[572,"iced_graphics::geometry::fill"],[573,"iced_graphics::geometry::text"],[574,"core::fmt"],[575,"iced_core::angle"],[576,"iced_core::vector"],[577,"iced_graphics::geometry::stroke"],[578,"alloc::vec"],[579,"iced_graphics::text::editor"],[580,"iced_graphics::image"],[581,"iced_graphics::text::paragraph"],[582,"alloc::boxed"],[583,"iced_graphics::text"],[584,"core::marker"],[585,"iced_graphics::settings"],[586,"wgpu::api::surface"],[587,"core::ops::function"],[588,"wgpu::api::surface_texture"],[589,"iced_graphics::compositor"],[590,"core::error"],[591,"smol_str"],[592,"alloc::string"],[593,"iced_graphics::error"]],"i":"``````nj1010101010010`1001010100000010000000101010``10101010101010`001000``001101010101010101010```Ed``0Eh1Ej12012012012021201000120012012012011112011120120120120101201201201201201201120201011111111100112012012012012012012012012011G`00``Gd0000000000000000000000000000000000000000000000000000000`````HbHd10101010110100101010Hf21212121211112121212121212121Al302323232323232323232`Hl000000000000000000000000000000000`0000000000``Id0000000`00000000000000000000000000000``Jd000Jf101010101011110100001010101011011010101010101010101``00`011110101010101010101010","f":"``````{eg{}{{b{c}}}{}}0{ce{}{}}0{{}c{}}0{d{{d{c}}}{}}0{{{d{f}}}{{d{fc}}}{}}0{{{h{c}}}e{}{}}0{{{d{fj}}}l}55``{{{d{j}}}c{}}{{{d{j}}}Ab}{Ad{{d{c}}}{}}0{Ad{{d{fc}}}{}}077{{{d{fj}}c}l{}}{{{d{fj}}AfAh}l}{{{d{fj}}Aj}l}{{{d{fj}}Ahc}lAl}{{{d{fj}}AnAh}l}{Adl}0::{{{d{fj}}{d{c}}B`BbAh}l{}}{{{d{fj}}{d{c}}B`BbAh}l{}}{{{d{fj}}Bdc}l{{Bh{Bf}}}}{{{d{fj}}BjB`BbAh}l}{cc{}}000{ce{}{}}0``{{}Ad}0{{}c{}}000{{{h{c}}}e{}{}}01111{{}c{}}0`{{{d{j}}{d{c}}}{{Bn{Bl}}}{}}{{{d{j}}{d{C`}}}{{Bn{Bl}}}}{{{d{Cb}}{d{A`}}{d{Cd}}Cf{Cj{Ch}}}n}{{{d{A`}}{d{n}}ClAb}j}{{{d{j}}Bn}c{}}{{{d{fj}}{d{fn}}{d{A`}}{d{Cd}}{d{fCn}}{Cj{Bb}}Cf{d{D`}}{d{Db}}{d{{Dd{c}}}}}l{{Dh{Df}}}}``{{{d{fj}}Ah}l}{{{d{fj}}Dj}l}{{{d{fn}}{d{Cd}}Cn}Dl}{{}{{Dn{c}}}{}}0{c{{Dn{e}}}{}{}}0{{}{{Dn{c}}}{}}0{{}{{Dn{c{E`{c}}}}}{}}0{dEb}0{ce{}{}}0{{}c{}}0{d{{Cj{{d{c}}}}}{}}0{{}c{}}0```````{eg{}{{b{c}}}{}}00{ce{}{}}00444{d{{d{c}}}{}}00{{{d{f}}}{{d{fc}}}{}}00{{EdEf{Cj{c}}}c{}}{{{h{c}}}e{}{}}00{{{d{Eh}}}B`}{{{d{Ej}}}Ej}{{d{d{fc}}}l{}}{{dEl}l}888{{}Ej}{Ad{{d{c}}}{}}00{Ad{{d{fc}}}{}}00:::{{{d{fEh}}Ah}Eh}{{{d{fEh}}Ahc}l{{Bh{Af}}}}{{{d{fEh}}Ahc}l{{Bh{An}}}}{Adl}00{{{d{fEh}}{d{En}}c}l{{Bh{F`}}}}{{{d{fEh}}B`Bnc}l{{Bh{F`}}}}{{{d{fEh}}c}l{{Bh{Fb}}}}{{{d{Ed}}{d{fFd}}}Ff}{{{d{Ej}}{d{fFd}}}Ff}{cc{}}00000{ce{}{}}00{{{d{Eh}}}Fh}{EjCj}{{}Ad}00{{}c{}}00000{{{h{c}}}e{}{}}00111111{Ehc{}}{{}c{}}00{{{d{c}}}Ed{}}6{BnEh}2{{{d{fEh}}Eh}l}{{{d{fEh}}}l}0{{{d{fEh}}c}l{{Bh{Fj}}}}{{{d{fEh}}c}l{{Bh{Fh}}}}{{{d{fEh}}c}l{{Bh{Fl}}}}{{{d{Eh}}}Bn}{{{d{fEh}}{d{En}}c}l{{Bh{Fn}}}}{{{d{fEh}}B`Bnc}l{{Bh{Fn}}}}?{dc{}}{{{d{fEh}}Fl}l}{{}{{Dn{c}}}{}}00{c{{Dn{e}}}{}{}}00{{}{{Dn{c}}}{}}00{{}{{Dn{c{E`{c}}}}}{}}00{dEb}00{ce{}{}}00{{}c{}}00{d{{Cj{{d{c}}}}}{}}00{{}c{}}00{{{d{Eh}}}Fh}{AhEh}{G`Gb}00``{eg{}{{b{c}}}{}}{ce{}{}}7{d{{d{c}}}{}}{{{d{f}}}{{d{fc}}}{}}{GdAh}{{{h{c}}}e{}{}}4{{}Gd}{Ad{{d{c}}}{}}{Ad{{d{fc}}}{}}6{{{d{fGd}}{d{Gf}}B`BbAhDj}l}{{{d{fGd}}GhDj}l}{{{d{fGd}}AjDj}l}`{{{d{fGd}}{Gb{Aj}}Dj}l}{{{d{fGd}}{d{Gj}}B`BbAhDj}l}{{{d{fGd}}Ah{Gl{Al}}Dj}l}{{{d{fGd}}BdBfDj}l}{{{d{fGd}}AfAhDj}l}{{{d{fGd}}AnAhDj}l}{{{d{fGd}}BjB`BbAhDj}l}`{{{d{fGd}}{Gb{Gn}}Dj}l}{Adl}{{{d{fGd}}}l}{{{d{Gd}}{d{fFd}}}Ff}{cc{}}0{ce{}{}}{GdGb}{{}Ad}{{}c{}}0{{{h{c}}}e{}{}}11{{}c{}}0{GdH`}`9{{{d{fGd}}Ah}l}66{{}{{Dn{c}}}{}}{c{{Dn{e}}}{}{}}{{}{{Dn{c}}}{}}{{}{{Dn{c{E`{c}}}}}{}}{dEb}{ce{}{}}{{}c{}}{d{{Cj{{d{c}}}}}{}}{{}c{}}{AhGd}`````{eg{}{{b{c}}}{}}0{ce{}{}}055{d{{d{c}}}{}}0{{{d{f}}}{{d{fc}}}{}}0{HbAh}{{{h{c}}}e{}{}}044{{}Hd}{Ad{{d{c}}}{}}0{Ad{{d{fc}}}{}}066{{{d{fHf}}Ahc}lAl}{Adl}0{{{d{Hb}}{d{fFd}}}Ff}{{{d{Hd}}{d{fFd}}}Ff}{cc{}}000{ce{}{}}0{{{d{Hd}}}{{Cj{{d{c}}}}}{}}{{{d{fHd}}}{{Cj{{d{fc}}}}}{}}{{{d{Hd}}}Hh}{{}Ad}0{{}c{}}000>>0000{{}c{}}0{{Ahc}HbAl}1{{{d{Al}}{d{A`}}{d{Cd}}Cf{d{fHd}}{d{Ah}}{d{Db}}}l}{HbGl}{{{d{Al}}{d{fCn}}{d{Hd}}{d{D`}}{d{{Ah{Bl}}}}}l}{{{d{fHd}}c}lHj}{{}{{Dn{c}}}{}}0{c{{Dn{e}}}{}{}}0{{}{{Dn{c}}}{}}0{{}{{Dn{c{E`{c}}}}}{}}0{dEb}0{ce{}{}}0{{}c{}}0{d{{Cj{{d{c}}}}}{}}0{{}c{}}0`{eg{}{{b{c}}}{}}{HlCj}{ce{}{}}5{HlHn}{d{{d{c}}}{}}{{{d{f}}}{{d{fc}}}{}}{{{h{c}}}e{}{}}{{{d{Hl}}}Hl}{{d{d{fc}}}l{}}{{dEl}l}7{{}Hl}{HlCl}{HlAb}{Ad{{d{c}}}{}}{Ad{{d{fc}}}{}}:{Adl}{{{d{Hl}}{d{Hl}}}Hh}{{{d{Hl}}{d{fFd}}}Ff}{cc{}}{I`Hl}1{ce{}{}}{{}Ad}{{}c{}}0{{{h{c}}}e{}{}}11{{}c{}}0{HlIb}{{}{{Cj{Ib}}}}{dc{}}{{}{{Dn{c}}}{}}{c{{Dn{e}}}{}{}}{{}{{Dn{c}}}{}}{{}{{Dn{c{E`{c}}}}}{}}{dEb}{ce{}{}}{{}c{}}{d{{Cj{{d{c}}}}}{}}{{}c{}}``{eg{}{{b{c}}}{}}{ce{}{}}4{{{d{fId}}e}{{Cj{c}}}{}{{Ih{{Cj{d}}}{{If{c}}}}}}{d{{d{c}}}{}}{{{d{f}}}{{d{fc}}}{}}{{{h{c}}}e{}{}}4`{{{d{Id}}{d{A`}}{d{{Ij{{Gb{Cf}}}}}}}l}{Ad{{d{c}}}{}}{Ad{{d{fc}}}{}}5{{{d{fId}}}l}{Adl}{{{d{Id}}{d{fFd}}}{{Dn{lIl}}}}{cc{}}0{ce{}{}}{{{d{Id}}{d{Cb}}}In}{{{d{Id}}}{{Dn{J`Jb}}}}{{{d{Id}}{d{Cb}}BlBl}{{Cj{{Ij{{Gb{Cf}}}}}}}}{{}Ad}{{}c{}}0=00{{}c{}}{{}{{Dn{c}}}{}}{c{{Dn{e}}}{}{}}{{}{{Dn{c}}}{}}{{}{{Dn{c{E`{c}}}}}{}}{dEb}{ce{}{}}{{}c{}}{d{{Cj{{d{c}}}}}{}}{{}c{}}``````{eg{}{{b{c}}}{}}0{ce{}{}}044{d{{d{c}}}{}}0{{{d{f}}}{{d{fc}}}{}}0{{{h{c}}}e{}{}}0{{{d{Jd}}}Jd}{{d{d{fc}}}l{}}{{dEl}l}66{{{d{fJf}}{d{fc}}BlBl}l{}}{{{d{Jf}}}c{}}{{{d{fJf}}cBlBl}eJh{}}{Ad{{d{c}}}{}}0{Ad{{d{fc}}}{}}0::{Adl}0{{{d{Jf}}}Jj}{{{d{Jd}}{d{fFd}}}Ff}0{cc{}}0{JlJd}11{ce{}{}}0{{}Ad}0{{}c{}}000{{{h{c}}}e{}{}}01111{{}c{}}0{{Hlc}{{Dn{JfJd}}}Jh}{{{d{fJf}}{d{fj}}{d{fId}}{d{Db}}Bb{d{{Dd{c}}}}}{{Dn{lJn}}}{{Dh{Df}}}}{{{d{fJf}}{d{fc}}{d{fe}}{d{Db}}Bb{d{{Dd{g}}}}}{{Dn{lJn}}}{}{}{{Dh{Df}}}}{{Hl{Cj{c}}}{{Dn{JfJd}}}Jh}{{{d{fJf}}{d{fj}}{d{Db}}Bb{d{{Dd{c}}}}}{{Gb{El}}}{{Dh{Df}}}}{{{d{fJf}}{d{fc}}{d{Db}}Bb{d{{Dd{e}}}}}{{Gb{El}}}{}{{Dh{Df}}}}{{{d{Jd}}}{{Cj{{d{K`}}}}}}{dc{}}{dKb}{dKd}{{}{{Dn{c}}}{}}0{c{{Dn{e}}}{}{}}0{{}{{Dn{c}}}{}}0{{}{{Dn{c{E`{c}}}}}{}}0{dEb}0{ce{}{}}0{{}c{}}0{d{{Cj{{d{c}}}}}{}}0{{}c{}}0{{I`c{Cj{{d{Df}}}}}{{Dn{JfKf}}}Jh}","D":"I`","p":[[10,"TransformMatrix",541],[1,"reference",null,null,1],[0,"mut"],[5,"BakedParameters",542],[5,"Renderer",0],[1,"unit"],[5,"Engine",0,543],[5,"Device",544],[5,"Pixels",545],[1,"usize"],[5,"Image",546],[5,"Rectangle",547],[6,"Mesh",548],[10,"Primitive",289],[5,"Svg",549],[5,"Point",550],[5,"Color",551],[5,"Quad",552],[6,"Background",553],[10,"Into",554,null,1],[5,"Text",555],[1,"u32"],[5,"Size",556],[5,"Handle",549],[5,"Adapter",557],[5,"Queue",558],[6,"TextureFormat",559],[6,"Antialiasing",560],[6,"Option",561,null,1],[5,"Font",562],[5,"CommandEncoder",563],[5,"TextureView",564],[5,"Viewport",565],[1,"slice"],[1,"str"],[10,"AsRef",554],[5,"Transformation",566],[5,"SubmissionIndex",558],[6,"Result",567,null,1],[5,"OutOfBounds",568],[5,"TypeId",569],[6,"Geometry",98],[5,"Group",570],[5,"Frame",98],[5,"Cache",98],[1,"u8"],[5,"Path",571],[5,"Fill",572],[5,"Text",573],[5,"Formatter",574],[8,"Result",574],[1,"f32"],[5,"Radians",575],[5,"Vector",576],[5,"Stroke",577],[15,"Live",228],[5,"Vec",578],[5,"Layer",231],[5,"Editor",579],[6,"Image",580],[5,"Paragraph",581],[5,"Box",582,null,1],[6,"Text",583],[8,"Batch",289],[5,"Instance",289],[5,"Storage",289],[10,"Renderer",289],[1,"bool"],[10,"Send",584],[5,"Settings",368],[5,"Backends",559],[5,"Settings",585],[6,"PresentMode",559],[5,"Surface",414,586],[17,"Output"],[10,"FnOnce",587],[5,"SurfaceConfiguration",559],[5,"Error",574],[5,"SurfaceCapabilities",559],[5,"SurfaceTexture",588],[6,"SurfaceError",588],[6,"Error",454],[5,"Compositor",454],[10,"Window",589],[5,"Information",589],[5,"CreateSurfaceError",586],[6,"SurfaceError",589],[10,"Error",590],[5,"SmolStr",591],[5,"String",592],[6,"Error",593]],"r":[[0,543],[1,98],[2,231],[3,289],[5,368],[6,543],[8,543],[10,543],[12,543],[14,543],[16,543],[19,543],[22,543],[25,543],[27,543],[29,543],[36,543],[44,543],[46,543],[48,543],[52,543],[54,543],[56,543],[58,543],[60,543],[62,543],[64,543],[69,543],[77,543],[78,543],[80,543],[82,543],[84,543],[86,543],[88,543],[90,543],[92,543],[94,543],[414,454],[415,586],[416,586],[417,586],[418,586],[419,586],[420,586],[421,586],[422,586],[423,586],[425,586],[426,586],[427,586],[428,586],[429,586],[430,586],[431,586],[432,586],[433,586],[434,586],[435,586],[436,586],[437,586],[438,586],[439,586],[440,586],[441,586],[442,586],[443,586],[444,586],[445,586],[446,586],[447,586],[448,586],[449,586],[450,586],[451,586],[452,586],[453,586]],"b":[[489,"impl-Display-for-Error"],[490,"impl-Debug-for-Error"]],"c":"OjAAAAAAAAA=","e":"OzAAAAEAANUBKAABAAMABgAmAC8AAwA0AAIAOQAQAEwAFQBjAAEAZgAwAJoACgCoABEAuwAoAOUAIAAHAQMADAEVACcBCQAyAQoAPgEDAEQBAwBLAQEATwEJAFoBAABfAREAcgEAAHQBAQB3AQcAgQEFAIgBAwCNAQUAlQEKAKEBAgClAQMAqwEFALIBAQC3AQAAuQENAM0BHgDuAQYA9wEJAAMCAAAGAhcA","P":[[6,"T,M,D"],[8,"C,T"],[10,"C"],[12,"T"],[16,"WpParam,T"],[18,""],[19,"C,T"],[22,""],[23,"Renderer::Font"],[24,""],[25,"T"],[31,"Renderer::Geometry"],[32,""],[34,""],[35,""],[40,"Renderer::Editor"],[41,"Renderer::Paragraph"],[42,""],[43,""],[44,"T"],[48,"U,T"],[52,""],[54,"U"],[58,"WpParam,T"],[60,"U"],[64,"T"],[67,"Renderer::Handle"],[68,""],[71,"Renderer::Frame"],[72,"T"],[75,""],[78,"C"],[80,"U,T"],[82,"U"],[86,""],[88,"C,U"],[90,"C"],[92,"T"],[94,"V"],[103,"T,M,D"],[106,"C,T"],[109,"C"],[112,"T"],[118,"Cached::Cache"],[119,"WpParam,T"],[122,""],[124,"T"],[125,""],[126,"C,T"],[129,""],[130,"T"],[139,""],[140,""],[142,""],[145,""],[148,""],[150,"T"],[156,"U,T"],[159,""],[164,"U"],[170,"WpParam,T"],[173,"U"],[179,"Backend::Geometry"],[180,"T"],[183,"Cached::Cache"],[184,""],[186,"T"],[187,""],[190,""],[193,""],[194,""],[196,""],[197,"T"],[198,""],[199,"C"],[202,"U,T"],[205,"U"],[211,""],[214,"C,U"],[217,"C"],[220,"T"],[223,"V"],[226,""],[233,"T,M,D"],[234,"C,T"],[235,"C"],[236,"T"],[238,""],[239,"WpParam,T"],[240,"C,T"],[241,""],[242,"T"],[245,""],[261,"T"],[263,"U,T"],[264,""],[266,"U"],[268,"WpParam,T"],[269,"U"],[271,"T"],[273,""],[279,"C"],[280,"U,T"],[281,"U"],[283,""],[284,"C,U"],[285,"C"],[286,"T"],[287,"V"],[288,""],[294,"T,M,D"],[296,"C,T"],[298,"C"],[300,"T"],[304,""],[305,"WpParam,T"],[307,"C,T"],[309,""],[310,"T"],[316,""],[317,""],[321,"T"],[325,"U,T"],[327,"T"],[329,""],[332,"U"],[336,"WpParam,T"],[338,"U"],[342,"T"],[344,""],[345,"T"],[346,""],[349,"T"],[350,"C"],[352,"U,T"],[354,"U"],[358,""],[360,"C,U"],[362,"C"],[364,"T"],[366,"V"],[369,"T,M,D"],[370,""],[371,"C,T"],[372,"C"],[373,""],[374,"T"],[376,"WpParam,T"],[377,""],[378,"T"],[379,""],[380,"C,T"],[381,""],[384,"T"],[387,""],[390,"T"],[391,""],[392,"T"],[393,"U,T"],[394,""],[395,"U"],[397,"WpParam,T"],[398,"U"],[400,"T"],[402,""],[404,"T"],[405,"C"],[406,"U,T"],[407,"U"],[409,""],[410,"C,U"],[411,"C"],[412,"T"],[413,"V"],[416,"T,M,D"],[417,"C,T"],[418,"C"],[419,"R,F"],[420,"T"],[422,"WpParam,T"],[423,"C,T"],[425,""],[426,"T"],[429,""],[432,"T"],[434,"U,T"],[435,""],[439,"U"],[441,"WpParam,T"],[442,"U"],[444,"T"],[445,"C"],[446,"U,T"],[447,"U"],[449,""],[450,"C,U"],[451,"C"],[452,"T"],[453,"V"],[460,"T,M,D"],[462,"C,T"],[464,"C"],[466,"T"],[470,"WpParam,T"],[472,""],[473,"T"],[474,""],[475,"C,T"],[477,"Compositor::Surface"],[478,"Compositor::Renderer"],[479,"W,Compositor::Surface"],[480,"T"],[486,""],[491,"T"],[493,""],[494,"T"],[496,"U,T"],[498,""],[500,"U"],[504,"WpParam,T"],[506,"U"],[510,"T"],[512,"W"],[513,"T"],[514,"Compositor::Renderer,Compositor::Surface,T"],[515,"W"],[516,"T"],[517,"Compositor::Renderer,T"],[518,""],[519,"T"],[520,""],[522,"C"],[524,"U,T"],[526,"U"],[530,""],[532,"C,U"],[534,"C"],[536,"T"],[538,"V"],[540,"W"]]}],["iced_widget",{"t":"TFEEPPPPEEEKEPPPRPPPEPPPFPPEPPPEEEEPEEEIFEEEPEEPPEEREEEEGEEPPPEENNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHHCHNNNNCHNHHHCHNNNNNNNNHQQCHHNNNNCHENNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHNNNNNNNNNNNNEHHHHCHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCHQNNHCHHNNNNNHNNNNCNNNCHCHHCHCHNCHCHENNHHQQHHHQQCECHCHNNNNNCHHHQQNNNNNNNNNNNNNNNNNNNCHNNCHQQCHCHCHNNNNCHCHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNHHCHHMNNNNPFKRPPPGFINNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHONNMNHNHONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNEPPIFGFIIGPFFPPGFGPPPFKPPPPRFGFPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNCNONNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCONNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOONNNNNNNNNNNNONONNCONNNONOOONONONCOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNONNNNPFPPGPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNGFPFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNOONNNNNNNNNNNNNNNNNNNNFFFNNCNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNONNNNNNNNNNNNNNNNNNNFFNNNNNNNNOONNNNNNNNOONNNNNNNNNNNNNNNOOOOONNNNNNNNNNFIFKIPPPPIFFPFPPPPPPFPGFGTTTIFFFFPPPGGPPSPPPFFFFFIFFKKPPPPPFPPGPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNMNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCONNNNNNNCNNNNNNNNNNNNNNNNNMNNNNNNNNNCCNNNOOCMNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOFKFFKRKFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNOOMNNNNNNNNNNNNNNNNNNMNNNNNNNNNNMMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMMNNNNNNMNNNNNNNNNMNNNNNNNMMNNNNNNMNMNMNMNMNMNMNNNNNNNNNNNNNNMNMNMNMNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNFFFFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFFFIFTTTTTTFFFTTTTIFITTKRIKIFTTTIIFITNONNNNNNNNNNNNNNMNNNNNNNNONNNMNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOCNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNMNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNOOOONNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNOOOOOOONONNNNNNNNNNNNNHONNCNNNOOOMNNNNNNNNNNNNNNHNNNNNNNNMNNNNNNNNNMNNNNNNNNNNNNONNNNOONMNNNNNNNNOOOONNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCMHONNNNNNNNNNNONNNNNNNNNOOONNNNOONNNNNNNNNOOONNNNNFFFFNNNNNNNNONNNNNONONNNNNNNNNNNNNONOOOOOONNNNNNNNNOOFFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFFNNNNNNNNNOONNNNNONNNNNNNNNNNNNNNONNNNNNNNNFFFFFFFFFFFFFFFFFFFFFKFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNCCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOHHHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNCNNNNNNNNNNNNNNNNNMNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOONNNNNNNNNNNNNNNNNOOOOOOOOOOOOOOOOOOOOOONNNNNNNNNNNNNOONNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCNNNNNNNONNNNNNNNNNNNHHNNNNNNNNNNNONOMHNNNNONNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNOHHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNOONNNNNNNNNOOOOOOOOONNNNNNNNNNNOOOOOOOOONNNNNNNNNOOOOONNNNNNNNNNNNNNNNNNNNNNKMNMHHIIIIIIIIIIIIIIIIIIIIOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOKKKKKMMMMMFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNRKKMMMMNNMMMMMMMMMNNHHHHHHFFFKFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNIIIIIIIIIOOOOOOOOOOHOHHOOOOOOOIFFFFFFFFFFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNFFFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNKKKRKMMMMMMMMMMMMMMMMMMMMMMMMMMPPPGFGPPPPPFGOOOOOOOPKFRPPFGFINNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNONNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNHHONNONNMNHNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOKFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNKRFFFINNNNNNNNNNNNNNNNNNNNNHNONOHNNNNNNNNNNNNNNNNNNNNNNNNNHHMNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNHHHNONNMNHNONNHNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNPGGFPPPPENNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCHNNNNOOOOFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNECFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNKPFPPPPPPPGFPGPPFFFFKNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHMNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOONNNNHNNNNNNNNNNNNNNNNNOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNONNNMNHNNHNHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNHHNNNNNNNNNNOOOOOOOOCKRFFFINNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOMONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGPPKPRGFFGPGKPGPPFPPPFGFPPPFPGFPPFPPEFIGFPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNONNNCNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOOOOOOOOGPPFPFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOPPKRPGPFPPFPGFINNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNOONONMNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNKRTFFINNNNNNNNNNOOONNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHNMNHNNNNNNNNNNNNNNNNNNNNHKRFPGGPPPPPPPPFPFIPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNPKRTTPFGFINNNNNNNNNNNNNNNOOONNNNNNNNNNNNNNNNNNNHMNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOPKRGPPPFFINNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNHMNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOFPGPKRGPTPPPFFFTFFFPGFIPFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNONHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHONNHNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNOOOOOOOOOOOOOOOOEKRKFRFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNPKPRTPFGPFPFGFINNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONOOOKRFPPGFIFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNPPPPKRIPRKKRGPPPFRGFFFIIPPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNOONNNNNNNNNMHHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNHNNNONONNMNNNNNNNNNNNOHHNNNONNOMNHNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNMNNNNNNNNNNNGPPPGKRPFPPPPPPPPPPPPGPPPPPPPPPFPPPFGGPPPPPPPPPPPPPPPPPPFGFIFPPPPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNONNNNNNNNNNNONONNNOMNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNOOPKRESPPPFFPPGFGFIFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNCNHMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHNNHNNHNNNNNNNNNNNNNNNNONNNNNNHNNOONNOONMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNNOFPPGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOKTTTTPPPPFPTTPPTPTTPPTTTPPPTPTPTTPPTPFTTPPFTTTGPPPNNNNNNNNNNNNNNNOOMNNNNNNNNNNNNNNNNNNNNNOHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCOOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONFFJJJJJJJJJJJJJJJJJJJJJJFFFFFFFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNNNNNNNOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNONNOOOOOOOOOOOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOOOOOOOPKRTPPGFIFNNNNNNNNNNNNNNNOOONNNNNNNNNNNNNNNNNNNHMNNNNNNNNNNNNNNNNNNNNNOOONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNOOPPPGPFPNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNETEEEEEFNNNNNNNNNNENNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN","n":["ALL","Action","Button","Canvas","CatppuccinFrappe","CatppuccinLatte","CatppuccinMacchiato","CatppuccinMocha","Checkbox","Column","ComboBox","Component","Container","Custom","Dark","Dracula","Event","Ferra","GruvboxDark","GruvboxLight","Image","KanagawaDragon","KanagawaLotus","KanagawaWave","Lazy","Light","Moonfly","MouseArea","Nightfly","Nord","Oxocarbon","PaneGrid","PickList","Pin","Pop","Primary","ProgressBar","QRCode","Radio","Renderer","Responsive","Row","Rule","Scrollable","Secondary","Shader","Slider","SolarizedDark","SolarizedLight","Space","Stack","State","Svg","Text","TextEditor","TextInput","Theme","Themer","Toggler","TokyoNight","TokyoNightLight","TokyoNightStorm","Tooltip","VerticalSlider","adapt_into_using","","","","and_capture","arrays_from","","","","arrays_into","","","","as_any","","","","as_any_mut","","","","base","borrow","","","","borrow_mut","","","","bottom","bottom_center","bottom_right","button","","cam16_into_unclamped","","","","canvas","","capture","center","center_x","center_y","checkbox","","children","clone","","clone_into","","clone_to_uninit","","code_block","column","","","combo_box","","component","components_from","","","","container","","core","custom","custom_with_fn","default","","","","","","","","","","","","","","","","","","deref","","","","deref_mut","","","","diff","downcast","","","","draw","","drop","","","","eq","extended_palette","fmt","","","focus_next","focus_previous","from","","","","from_angle","","","","from_stimulus","","","","graphics","horizontal_rule","horizontal_space","hover","iced","image","","init","","","","into","","","","into_angle","","","","into_any","","","","into_any_arc","","into_any_rc","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_inner","into_stimulus","","","","keyed","keyed_column","","layout","","lazy","markdown","","mouse_area","mouse_interaction","","new","","null_value","opaque","operate","","","","overlay","","","palette","pane_grid","","pick_list","","pin","pop","","progress_bar","","publish","qr_code","","radio","","renderer","request_redraw","request_redraw_at","responsive","rich_text","","","right","right_center","row","","","rule","runtime","scrollable","","shader","","size","","size_hint","","","slider","","span","stack","","","state","","style","","","","","","","","","","","","","","","","","svg","","tag","","text","","","","text_editor","","text_input","","theme","themer","to_owned","","to_smolstr","to_string","toggler","","tooltip","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","upcast","","","","update","","","value","vertical_rule","vertical_slider","","vertical_space","view","vzip","","","","Active","Button","Catalog","Class","Disabled","Hovered","Pressed","Status","Style","StyleFn","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","background","border","borrow","","","borrow_mut","","","cam16_into_unclamped","","","children","class","clip","clone","","clone_into","","clone_to_uninit","","components_from","","","danger","default","","deref","","","deref_mut","","","diff","downcast","","","draw","drop","","","eq","","equivalent","","","fmt","","from","","","from_angle","","","from_stimulus","","","height","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","layout","mouse_interaction","new","null_value","on_press","on_press_maybe","on_press_with","operate","overlay","padding","primary","secondary","shadow","size","state","style","","success","tag","text","text_color","to_owned","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","update","vzip","","","warning","width","with_background","Action","Bevel","Butt","Cache","Canvas","Event","Fill","Frame","Geometry","Gradient","","Group","Image","InputMethod","Keyboard","LineCap","LineDash","LineJoin","Linear","Miter","Mouse","Path","Program","Round","","Solid","Square","State","Stroke","Style","Text","Touch","Window","adapt_into_using","","","","","","","","","","","","","arrays_from","","","","","","","","","","","","","arrays_into","","","","","","","","","","","","","as_any","","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","","borrow","","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","","cam16_into_unclamped","","","","","","","","","","","","","circle","clone","","","","","","","","","","","","clone_into","","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","","cmp","color","compare","components_from","","","","","","","","","","","","","content","default","","","","","","deref","","","","","","","","","","","","","deref_mut","","","","","","","","","","","","","downcast","","","","","","","","","","","","","draw","","draw_with","drop","","","","","","","","","","","","","eq","","","","","equivalent","","","fill","filter_method","","fmt","","","","","","","","","","","","","font","from","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","","","","from_stimulus","","","","","","","","","","","","","gradient","handle","hash","height","horizontal_alignment","init","","","","","","","","","","","","","into","","","","","","","","","","","","","into_angle","","","","","","","","","","","","","into_any","","","","","","","","","","","","","into_any_arc","","","","","","","","","","","","","into_any_rc","","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","","into_color","","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","","into_stimulus","","","","","","","","","","","","","is_singleton","layout","line","line_cap","line_dash","line_height","line_join","mouse_interaction","","","new","","","null_value","","","","","","offset","opacity","","pack","partial_cmp","path","position","raw","rectangle","rotation","","rounded_rectangle","rule","segments","shaping","size","","snap","","state","stroke","style","","tag","to_owned","","","","","","","","","","","","transform","try_components_into","","","","","","","","","","","","","try_from","","","","","","","","","","","","","try_into","","","","","","","","","","","","","try_into_color","","","","","","","","","","","","","type_id","","","","","","","","","","","","","uints_from","","","","","","","","","","","","","uints_into","","","","","","","","","","","","","unique","upcast","","","","","","","","","","","","","update","","","vertical_alignment","vzip","","","","","","","","","","","","","width","","with_color","with_line_cap","with_line_join","with_width","EvenOdd","Fill","Gradient","NonZero","Rule","Solid","Style","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","deref","deref_mut","downcast","drop","eq","equivalent","","","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","rule","style","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Gradient","Linear","","Packed","adapt_into_using","","add_stop","add_stops","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","deref","","deref_mut","","downcast","","drop","","end","eq","","fmt","","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","is_valid_bit_pattern","new","pack","","start","stops","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","Arc","Builder","Path","adapt_into_using","","arc","","arc_to","arrays_from","","arrays_into","","as_any","","as_any_mut","","bezier_curve_to","borrow","","borrow_mut","","build","cam16_into_unclamped","","center","circle","clone","clone_into","clone_to_uninit","close","components_from","","default","deref","","deref_mut","","downcast","","drop","","ellipse","end_angle","fmt","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","line_to","move_to","new","null_value","quadratic_curve_to","radius","rectangle","rounded_rectangle","start_angle","to_owned","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","Arc","Elliptical","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","center","","clone","clone_into","clone_to_uninit","components_from","deref","deref_mut","downcast","drop","end_angle","","fmt","from","","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","radii","radius","rotation","start_angle","","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","ArcFlags","AttributeIndex","AttributeSlice","AttributeStore","Attributes","Begin","","","Bevel","Builder","BuilderImpl","BuilderWithAttributes","Butt","ControlPointId","Cubic","","","End","","","EndpointId","EvenOdd","Event","EventId","FillRule","INVALID","","","IdEvent","IdIter","IdPolygon","Iter","IterWithAttributes","Line","","","LineCap","LineJoin","Miter","MiterClip","NO_ATTRIBUTES","Negative","","NonZero","Path","PathBuffer","PathBufferSlice","PathCommands","PathCommandsSlice","PathEvent","PathSlice","Polygon","Position","PositionStore","Positive","","Quadratic","","","Reversed","Round","","Side","Square","Winding","adapt_into_using","","","","","","","","","","","","","","","","","","","","","","","","","arrays_from","","","","","","","","","","","","","","","","","","","","","","","","","arrays_into","","","","","","","","","","","","","","","","","","","","","","","","","as_any","","","","","","","","","","","","","","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","","","","","","","","","","","","","","as_slice","","","attributes","","begin","","","borrow","","","","","","","","","","","","","","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","","","","","","","","","","","","","","build","","","builder","","","","builder_with_attributes","cam16_into_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","clear","clone","","","","","","","","","","","","","","","","","","","","","","","clone_into","","","","","","","","","","","","","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","","","","","","","","","","","","","closed","","commands","components_from","","","","","","","","","","","","","","","","","","","","","","","","","cubic_bezier_to","","","default","","","","deref","","","","","","","","","","","","","","","","","","","","","","","","","deref_mut","","","","","","","","","","","","","","","","","","","","","","","","","downcast","","","","","","","","","","","","","","","","","","","","","","","","","drop","","","","","","","","","","","","","","","","","","","","","","","","","end","","","eq","","","","","","","","","","equivalent","","","","","","","","","","","","","","","event","","","","events","extend_from_paths","","first_endpoint","","fmt","","","","","","","","","","","","","","","","","for_each_flattened","from","","","","","","","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","","","","","","","","","","","","","","","","from_iter","","from_stimulus","","","","","","","","","","","","","","","","","","","","","","","","","from_usize","","get","","","","","","get_control_point","","","","get_endpoint","","","","hash","","","","","id_iter","","","index","","","","","indices","","init","","","","","","","","","","","","","","","","","","","","","","","","","into","","","","","","","","","","","","","","","","","","","","","","","","","into_angle","","","","","","","","","","","","","","","","","","","","","","","","","into_any","","","","","","","","","","","","","","","","","","","","","","","","","into_any_arc","","","","","","","","","","","","","","","","","","","","","","","into_any_rc","","","","","","","","","","","","","","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","into_color","","","","","","","","","","","","","","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","","","","","","","","","","","","","","into_iter","","","","","","","","into_path","into_stimulus","","","","","","","","","","","","","","","","","","","","","","","","","is_edge","is_empty","","","is_in","is_negative","is_out","is_positive","iter","","","","","","","","iter_with_attributes","","iterator","large_arc","last_endpoint","","len","","line_to","","","math","new","","","","","next","","","","next_event_id_in_path","","next_event_id_in_sub_path","","null_value","","","","num_attributes","","","","","","","offset","","opposite","path","path_buffer","path_events","path_slice","points","","","polygon","position","quadratic_bezier_to","","","reserve","","","","reversed","","svg_builder","sweep","to","to_f32","to_owned","","","","","","","","","","","","","","","","","","","","","","","to_usize","","","traits","transformed","","try_components_into","","","","","","","","","","","","","","","","","","","","","","","","","try_from","","","","","","","","","","","","","","","","","","","","","","","","","try_into","","","","","","","","","","","","","","","","","","","","","","","","","try_into_color","","","","","","","","","","","","","","","","","","","","","","","","","type_id","","","","","","","","","","","","","","","","","","","","","","","","","uints_from","","","","","","","","","","","","","","","","","","","","","","","","","uints_into","","","","","","","","","","","","","","","","","","","","","","","","","upcast","","","","","","","","","","","","","","","","","","","","","","","","","vzip","","","","","","","","","","","","","","","","","","","","","","","","","with_attributes","with_capacity","","with_points","with_svg","at","close","ctrl","ctrl1","ctrl2","first","from","","","last","to","","","at","close","ctrl","ctrl1","ctrl2","first","from","","","last","to","","","at","close","ctrl","ctrl1","ctrl2","first","from","","","last","to","","","BorderRadii","Build","Flattened","NoAttributes","PathBuilder","PathType","SvgPathBuilder","Transformed","WithSvg","adapt_into_using","","","","","add_circle","","","add_ellipse","","","add_line_segment","","","add_point","","","add_polygon","","","","","add_rectangle","","","add_rounded_rectangle","","","arc","arc_to","","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","begin","","","","","borrow","","","","","borrow_mut","","","","","bottom_left","bottom_right","build","","","","","","","","cam16_into_unclamped","","","","","clone","","clone_into","","clone_to_uninit","","close","","","","","","components_from","","","","","cubic_bezier_to","","","","","","","","current_position","default","","deref","","","","","deref_mut","","","","","downcast","","","","","drop","","","","","end","","","","","eq","","event","","extend_from_paths","flattened","","","","fmt","","","from","","","","","from_angle","","","","","from_stimulus","","","","","hash","horizontal_line_to","","init","","","","","inner","inner_mut","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","","","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_inner","into_stimulus","","","","","line_to","","","","","","","","move_to","","","new","","","","","null_value","","num_attributes","","","","partial_cmp","path_event","","","quadratic_bezier_to","","","","","","","","relative_arc_to","","relative_cubic_bezier_to","","relative_horizontal_line_to","","relative_line_to","","relative_move_to","","relative_quadratic_bezier_to","","relative_vertical_line_to","","reserve","","","","","","","","","","set_tolerance","set_transform","","smooth_cubic_bezier_to","","smooth_quadratic_bezier_to","","smooth_relative_cubic_bezier_to","","smooth_relative_quadratic_bezier_to","","to_owned","","to_smolstr","to_string","top_left","top_right","transformed","","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","vertical_line_to","","vzip","","","","","with_capacity","with_svg","","","wrap","CommandsPathSlice","Events","Iter","PathCommands","PathCommandsBuilder","PathCommandsSlice","PointEvents","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","begin","borrow","","","","","borrow_mut","","","","","build","cam16_into_unclamped","","","","","clone","","","","","clone_into","","","","","clone_to_uninit","","","","","components_from","","","","","cubic_bezier_to","default","deref","","","","","deref_mut","","","","","downcast","","","","","drop","","","","","end","events","fmt","","from","","","","","from_angle","","","","","from_stimulus","","","","","get_control_point","get_endpoint","index","","init","","","","","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_iter","","","into_stimulus","","","","","iter","line_to","new","next","","","null_value","points","quadratic_bezier_to","to_owned","","","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","vzip","","","","","with_capacity","Angle","Arc","ArcFlags","Box2D","CubicBezierSegment","DIV_EPSILON","EIGHT","EPSILON","FIVE","FOUR","HALF","Line","LineEquation","LineSegment","MAX","MIN","NINE","ONE","Point","QuadraticBezierSegment","Rotation","SEVEN","SIX","Scalar","","Scale","Segment","Size","SvgArc","TEN","THREE","TWO","Transform","Translation","Triangle","Vector","ZERO","a","","ab","ac","adapt_into_using","","","","","","","","","add","","add_assign","after_split","","","","","","","","","angle","angle_to","approx_epsilon","approx_eq_eps","approximate_length","","","","","","","arc","arrays_from","","","","","","","","","arrays_into","","","","","","","","","as_any","","","","","","","","","as_any_mut","","","","","","","","","b","","ba","baseline","","bc","before_split","","","","","","","","","borrow","","","","","","","","","borrow_mut","","","","","","","","","bounding_box","","","","","bounding_range_x","","","","bounding_range_y","","","","bounding_triangle","c","","ca","cam16_into_unclamped","","","","","","","","","cast","","","cb","center","circle","clipped","clipped_x","clipped_y","clone","","","","","","","","","clone_into","","","","","","","","","clone_to_uninit","","","","","","","","","closest_point","","components_from","","","","","","","","","contains_point","contains_segment","ctrl","ctrl1","ctrl2","cubic_bezier","cubic_intersections","cubic_intersections_t","default","degrees","deref","","","","","","","","","deref_mut","","","","","","","","","derivative","","","","","","","distance_to_point","","","","div","","div_assign","downcast","","","","","","","","","drag","","drag_with_weight","drop","","","","","","","","","dx","","","","","","dy","","","","","","end_angle","epsilon_for","eq","","","","","","","","equation","equivalent","","","","","","fast_bounding_box","","","fast_bounding_range_x","","","fast_bounding_range_y","","","fat_line","","flags","flattened","","","flattened_t","flattening_step","flip","","","","","","","","","fmt","","","","","","","","","for_each_cubic_bezier","","for_each_flattened","","","","for_each_flattened_with_t","","","","","","","","","for_each_inflection_t","for_each_local_x_extremum_t","","for_each_local_y_extremum_t","","for_each_monotonic","","for_each_monotonic_range","","for_each_quadratic_bezier","","","for_each_quadratic_bezier_with_t","","","for_each_x_monotonic","","for_each_x_monotonic_range","","for_each_y_monotonic","","for_each_y_monotonic_range","","frac_pi_2","frac_pi_3","frac_pi_4","from","","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","from_stimulus","","","","","","","","","from_svg_arc","get","get_angle","hash","height","horizontal_line_intersection","horizontal_line_intersection_t","init","","","","","","","","","intersection","","intersection_t","intersects","","intersects_box","intersects_line","intersects_line_segment","into","","","","","","","","","into_angle","","","","","","","","","into_any","","","","","","","","","into_any_arc","","","","","","","","","into_any_rc","","","","","","","","","into_cam16_unclamped","","","","","","","","","into_color","","","","","","","","","into_color_unclamped","","","","","","","","","into_stimulus","","","","","","","","","invert","is_a_point","is_finite","is_horizontal","is_linear","","is_monotonic","","is_quadratic","is_straight_line","is_vertical","is_x_monotonic","","is_y_monotonic","","large_arc","length","","lerp","line_intersection","line_intersection_t","line_intersections","","line_intersections_t","","line_segment_intersections","","line_segment_intersections_t","","local_x_extremum_t","local_y_extremum_t","m11","m12","m21","m22","m31","m32","max","mid_point","min","mul","mul_assign","neg","new","normal","null_value","num_quadratics","offset","overlaps_line","overlaps_segment","parallel_line","partial_cmp","pi","point","","positive","project_point","quadratic_bezier","quadratic_intersections","quadratic_intersections_t","radians","","radii","","sample","","","","","","","","","sample_tangent","set_length","signed","signed_distance_to_point","","sin_cos","size","solve_t_for_x","","solve_t_for_y","","solve_x_for_y","","solve_y_for_x","","split","","","","","","","","","split_at_x","split_range","","","","","","","","","square_distance_to_point","","","square_length","start_angle","sub","sub_assign","sum","","sweep","sweep_angle","tangent","to","","","","","","","","","","","","","to_arc","to_cubic","to_degrees","to_f32","","","","","to_f64","","","","","to_line","to_owned","","","","","","","","","to_quadratic","to_quadratic_error","to_svg_arc","to_vector","traits","transform","transformed","","","translate","try_cast","try_components_into","","","","","","","","","try_from","","","","","","","","","try_into","","","","","","","","","try_into_color","","","","","","","","","two_pi","type_id","","","","","","","","","uints_from","","","","","","","","","uints_into","","","","","","","","","upcast","","","","","","","","","utils","value","vector","","vertical_line_intersection","vertical_line_intersection_t","vzip","","","","","","","","","width","x","","","","","","","","","","","","x_maximum_t","","x_minimum_t","","x_rotation","","y","","","","","","","","","","","","y_maximum_t","","y_minimum_t","","zero","Arc","ArcFlags","Flattened","SvgArc","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","center","components_from","deref","deref_mut","downcast","drop","flags","from","","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_iter","into_stimulus","large_arc","next","radii","","start_angle","sweep","sweep_angle","to","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","x_rotation","","ArrayString","ArrayVec","CapacityError","Drain","IntoIter","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","as_mut","as_mut_ptr","","as_mut_slice","","as_mut_str","as_ptr","","as_ref","","","as_slice","","as_str","borrow","","","","","","","borrow_mut","","","","","","","cam16_into_unclamped","","","","","capacity","","clear","","clone","","","","clone_from","","clone_into","","","","clone_to_uninit","","","","cmp","","","compare","","","components_from","","","","","default","","deref","","","","","","","deref_mut","","","","","","","downcast","","","","","drain","drop","","","","","","","","element","encode_hex","encode_hex_upper","eq","","","","","equivalent","","","","","","","","","extend","flush","fmt","","","","","","from","","","","","","","from_angle","","","","","from_byte_string","from_iter","from_stimulus","","","","","from_str","ge","","","gt","","","hash","","init","","","","","insert","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","","","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_inner","into_inner_unchecked","into_iter","","","","","into_stimulus","","","","","is_empty","","is_full","","le","","","len","","","limit_ptr","lt","","","multiunzip","","","","","","","","","","","","","","","","","","","","","","","","","","new","","","new_const","","next","","next_back","","null_value","","partial_cmp","","","","pop","","pop_at","push","","push_str","push_unchecked","remaining_capacity","","remove","","retain","set_len","","simplify","size_hint","","start_ptr","swap_pop","swap_remove","take","to_owned","","","","to_smolstr","","to_string","","truncate","","try_components_into","","","","","try_extend_from_slice","try_from","","","","","","","","try_insert","try_into","","","","","try_into_color","","","","","try_push","","try_push_str","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","vzip","","","","","write","write_as_big_endian","","","","","","","","","","","","","","","","","","","","","","","","write_as_little_endian","","","","","","","","","","","","","","","","","","","","","","","","write_char","write_f32","write_f64","write_i128","write_i16","write_i32","write_i64","write_i8","write_str","write_u128","write_u16","write_u32","write_u64","write_u8","zero_filled","CubicBezierSegment","Flattened","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","components_from","ctrl1","ctrl2","deref","deref_mut","downcast","drop","from","","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_iter","into_stimulus","next","size_hint","to","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","vzip","Angle","BoolVector2D","BoolVector3D","Box2D","Box3D","HomogeneousVector","Length","Point2D","Point3D","Rect","RigidTransform3D","Rotation2D","Rotation3D","Scale","SideOffsets2D","Size2D","Size3D","Transform2D","Transform3D","Translation2D","Translation3D","Trig","UnknownUnit","Vector2D","Vector3D","abs","","","","adapt_into_using","","","","","","","","","","","","","","","","","","","","","","","add","","","","","","","","","","","","","","","","","","add_assign","","","","","","","","","","","","add_size","","all","","and","","angle","angle_from_x_axis","angle_to","","any","","approx_epsilon","","","","","","","","","approx_eq","","approx_eq_eps","","","","","","","","","","","approxeq","approxord","area","","","around_axis","around_x","around_y","around_z","arrays_from","","","","","","","","","","","","","","","","","","","","","","","arrays_into","","","","","","","","","","","","","","","","","","","","","","","as_any","","","","","","","","","","","","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","","","","","","","","","","","","borrow","","","","","","","","","","","","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","","","","","","","","","","","","bottom","box3d","bvec2","bvec3","cam16_into_unclamped","","","","","","","","","","","","","","","","","","","","","","","cast","","","","","","","","","","","","","","","cast_unit","","","","","","","","","","","","","ceil","","","","","","","","","","","","center","","","clamp","","","","","","","clamp_length","","clone","","","","","","","","","","","","","","","","","","","","","","","clone_into","","","","","","","","","","","","","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","","","","","","","","","","","","","cmp","","","compare","","","component_div","","component_mul","","components_from","","","","","","","","","","","","","","","","","","","","","","","contains","","","","","contains_box","","contains_inclusive","","contains_rect","cos","cross","","decompose_reversed","default","","","","","","","","","","","","","","","","","","degrees_to_radians","depth","","deref","","","","","","","","","","","","","","","","","","","","","","","deref_mut","","","","","","","","","","","","","","","","","","","","","","","determinant","","distance_to","","div","","","","","","","","","","","","","","","","","","","","","","","div_assign","","","","","","","","","","","","","","","","","","","","","div_euclid","","dot","","downcast","","","","","","","","","","","","","","","","","","","","","","","drop","","","","","","","","","","","","","","","","","","","","","","","eq","","","","","","","","","","","","","","","","","","","","","","","equal","","","","equivalent","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","euler","extend","","fast_atan2","floor","","","","","","","","","","","","fmt","","","","","","","","","","","","","","","","","","","","","","","from","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","","","","","","","","","","","","","","from_angle_and_length","from_array","","from_arrays","","from_length_all_same","from_lengths","","","","","","","from_origin_and_size","","from_points","","","from_rotation","from_scale","from_size","","","from_stimulus","","","","","","","","","","","","","","","","","","","","","","","from_translation","from_untyped","","","","","","","","","","","","","","","","from_vectors_inner","from_vectors_outer","get","","get_angle","greater_than","","","","hash","","","","","","","","","","","","","","","","","","","","","","","height","","","","","horizontal","i","identity","","","","","","","","inflate","","","init","","","","","","","","","","","","","","","","","","","","","","","inner_box","inner_rect","intersection","","","intersection_unchecked","","intersects","","","into","","","","","","","","","","","","","","","","","","","","","","","into_angle","","","","","","","","","","","","","","","","","","","","","","","into_any","","","","","","","","","","","","","","","","","","","","","","","into_any_arc","","","","","","","","","","","","","","","","","","","","","","","into_any_rc","","","","","","","","","","","","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","","","","","","","","","","","","into_color","","","","","","","","","","","","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","","","","","","","","","","","","into_stimulus","","","","","","","","","","","","","","","","","","","","","","","inverse","","","","","","","","is_2d","is_backface_visible","is_empty","","","","","is_finite","","","","","","","","","is_identity","","","is_invertible","","is_negative","","is_normalized","is_positive","","is_zero","j","k","left","length","","lerp","","","","","","","","","","","lower_than","","","","m11","","m12","","m13","m14","m21","","m22","","m23","m24","m31","","m32","","m33","m34","m41","m42","m43","m44","map","","","","max","","","","","","","","","","","max_x","max_y","min","","","","","","","","","","","min_x","min_y","mul","","","","","","","","","","","","","","","","","","","","","","","mul_assign","","","","","","","","","","","","","","","","","","","","","mul_s","neg","","","","","","","","new","","","","","","","","","","","","","","","","","","","new_2d","new_all_same","new_from_reversed","none","","norm","normalize","","","not","","not_equal","","","","null_value","","","","","","","","","","","","","","","","","num","one","","","or","","origin","","","ortho","outer_box","outer_rect","outer_transformed_box","outer_transformed_box2d","outer_transformed_box3d","outer_transformed_rect","","partial_cmp","","","perspective","point2","point3","position","pre_rotate","","pre_scale","","pre_translate","","project_onto_vector","","project_to_2d","quaternion","r","radians","","radians_to_degrees","rect","reflect","","rem_euclid","","right","robust_normalize","","rotation","","","round","","","","","","","","","","","","","","","round_in","","","round_out","","","saturating_add","saturating_sub","scale","","","","","select_point","","select_size","","select_vector","","set_size","sin","size","","","size2","size3","skew","slerp","splat","","","","","","","","square_length","","square_norm","sub","","","","","","","","","","","","","","","sub_assign","","","","","","","","","","","","sum","","","","","","","","","","tan","then","","","","","then_rotate","","then_scale","","then_translate","","to_2d","","","to_3d","","","","to_array","","","","","","","","","","to_array_4d","","to_array_transposed","","to_arrays","","to_arrays_transposed","to_box2d","to_f32","","","","","","","","","","","to_f64","","","","","","","","","","","to_i32","","","","","","","","","","","to_i64","","","","","","","","","","","to_non_empty","","","to_owned","","","","","","","","","","","","","","","","","","","","","","","to_point","","to_point2d","to_point3d","to_rect","to_size","to_transform","","","","","","","to_tuple","","","","","","","","to_tuple_4d","","to_u32","","","","","","","","","","","to_u64","","to_untyped","","","","","","","","","","","","","","","","to_usize","","","","","","","","","","","to_vector","","","","","","top","transform_box","transform_box2d","","transform_box3d","","transform_point","","","","","","","","transform_point2d","","","transform_point2d_homogeneous","transform_point3d","","","","transform_point3d_homogeneous","transform_rect","","","transform_size","","","transform_vector","","","","","","","transform_vector2d","","transform_vector3d","","translate","","","translation","","","try_cast","","","","","","","","","","","","","","","try_components_into","","","","","","","","","","","","","","","","","","","","","","","try_from","","","","","","","","","","","","","","","","","","","","","","","try_into","","","","","","","","","","","","","","","","","","","","","","","try_into_color","","","","","","","","","","","","","","","","","","","","","","","try_normalize","","type_id","","","","","","","","","","","","","","","","","","","","","","","uints_from","","","","","","","","","","","","","","","","","","","","","","","uints_into","","","","","","","","","","","","","","","","","","","","","","","union","","","unit_quaternion","upcast","","","","","","","","","","","","","","","","","","","","","","","vec2","vec3","vector_part","vertical","volume","","vzip","","","","","","","","","","","","","","","","","","","","","","","w","width","","","","","with_destination","","with_length","with_max_length","","with_min_length","","with_source","","x","","","","","","","","","x_range","","","xy","","","xy_area","xz","","","xz_area","y","","","","","","","","","y_range","","","yx","","yz","","","yz_area","z","","","","","z_range","zero","","","","","","","","","","","","","","","","","zip","","","","ApproxEq","approx_epsilon","approx_eq","approx_eq_eps","max","min","Box2D","Box3D","HomogeneousVector","Length","Point2D","Point3D","Rect","RigidTransform3D","Rotation2D","Rotation3D","Scale","SideOffsets2D","Size2D","Size3D","Transform2D","Transform3D","Translation2D","Translation3D","Vector2D","Vector3D","angle","bottom","depth","height","","i","j","k","left","m11","","m12","","m13","m14","m21","","m22","","m23","m24","m31","","m32","","m33","m34","m41","m42","m43","m44","max","","min","","origin","r","right","rotation","size","top","translation","w","width","","x","","","","","","","y","","","","","","","z","","","","Ceil","Floor","One","Round","Zero","ceil","floor","one","round","zero","Flattened","FlattenedT","FlatteningParameters","QuadraticBezierSegment","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","components_from","","","ctrl","deref","","","deref_mut","","","downcast","","","drop","","","from","","","","from_angle","","","from_stimulus","","","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_iter","","into_stimulus","","","new","next","","size_hint","","to","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","Scalar","Segment","Transformation","after_split","approximate_length","before_split","derivative","dx","dy","flip","for_each_flattened_with_t","from","sample","split","split_range","to","transform_point","transform_vector","x","y","cubic_polynomial_roots","directed_angle","directed_angle2","min_max","normalized_tangent","tangent","Flattened","FromPolyline","NoAttributes","PathIterator","Transformed","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","as_any","","","","as_any_mut","","","","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","closed","components_from","","","","deref","","","","deref_mut","","","","downcast","","","","drop","","","","flattened","","from","","","","from_angle","","","","from_stimulus","","","","init","","","","into","","","","into_angle","","","","into_any","","","","into_any_arc","","","","into_any_rc","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_iter","","","","into_stimulus","","","","new","","","next","","","","open","size_hint","transformed","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","upcast","","","","vzip","","","","with_attributes","Angle","Box2D","Point","Rotation","Scale","Size","Transform","Translation","Vector","angle","height","m11","m12","m21","m22","m31","m32","max","min","point","radians","size","vector","width","x","","","y","","","Builder","BuilderImpl","BuilderWithAttributes","IdIter","Iter","IterWithAttributes","Path","PathSlice","Reversed","Builder","BuilderWithAttributes","Iter","PathBuffer","PathBufferSlice","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","begin","","","","borrow","","","borrow_mut","","","build","","","","cam16_into_unclamped","","","clone","clone_into","clone_to_uninit","components_from","","","cubic_bezier_to","","","","deref","","","deref_mut","","","downcast","","","drop","","","end","","","","from","","","from_angle","","","from_stimulus","","","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_iter","into_stimulus","","","line_to","","","","new","next","next_back","num_attributes","","quadratic_bezier_to","","","","reserve","","","","size_hint","to_owned","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","with_attributes","IdPolygon","IdPolygonIter","PathEvents","Polygon","PolygonIdIter","PolygonIter","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","as_any","","","","as_any_mut","","","","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","clone","","","","clone_into","","","","clone_to_uninit","","","","closed","","components_from","","","","deref","","","","deref_mut","","","","downcast","","","","drop","","","","from","","","","from_angle","","","","from_stimulus","","","","init","","","","into","","","","into_angle","","","","into_any","","","","into_any_arc","","","","into_any_rc","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_iter","","","","into_stimulus","","","","new","next","","","","par_bridge","points","","to_owned","","","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","upcast","","","","vzip","","","","Build","PathBuilder","PathIterator","PathType","SvgPathBuilder","arc_to","begin","build","close","cubic_bezier_to","","end","horizontal_line_to","line_to","","move_to","num_attributes","quadratic_bezier_to","","relative_arc_to","relative_cubic_bezier_to","relative_horizontal_line_to","relative_line_to","relative_move_to","relative_quadratic_bezier_to","relative_vertical_line_to","smooth_cubic_bezier_to","smooth_quadratic_bezier_to","smooth_relative_cubic_bezier_to","smooth_relative_quadratic_bezier_to","vertical_line_to","Bevel","Butt","Gradient","LineCap","LineDash","LineJoin","Miter","Round","","Solid","Square","Stroke","Style","line_cap","line_dash","line_join","offset","segments","style","width","Active","Catalog","Checkbox","Class","Disabled","Hovered","Icon","Status","Style","StyleFn","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","as_any","","","","as_any_mut","","","","background","border","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","class","clone","","","clone_into","","","clone_to_uninit","","","code_point","components_from","","","","danger","default","deref","","","","deref_mut","","","","downcast","","","","draw","drop","","","","eq","","","equivalent","","","fmt","","","font","","from","","","","from_angle","","","","from_stimulus","","","","icon","icon_color","init","","","","into","","","","into_angle","","","","into_any","","","","into_any_arc","","","into_any_rc","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_stimulus","","","","layout","line_height","mouse_interaction","new","on_toggle","on_toggle_maybe","operate","primary","secondary","shaping","size","","","spacing","state","style","","success","tag","text_color","text_line_height","text_shaping","text_size","text_wrapping","to_owned","","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","upcast","","","","update","vzip","","","","width","is_checked","","","Catalog","ComboBox","State","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","children","clone","clone_into","clone_to_uninit","components_from","","default","default_input","default_menu","deref","","deref_mut","","downcast","","draw","drop","","fmt","font","from","","from_angle","","from_stimulus","","icon","init","","input_class","input_style","into","","into_angle","","into_any","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","layout","line_height","menu_class","menu_style","mouse_interaction","new","","null_value","on_close","on_input","on_open","on_option_hovered","options","overlay","padding","size","","state","tag","to_owned","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","update","vzip","","width","with_selection","Catalog","Class","Container","Id","Style","StyleFn","adapt_into_using","","","align_bottom","align_left","align_right","align_top","align_x","align_y","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","background","","","border","","bordered_box","borrow","","","borrow_mut","","","cam16_into_unclamped","","","center","center_x","center_y","children","class","clip","clone","","clone_into","","clone_to_uninit","","color","components_from","","","danger","dark","default","","deref","","","deref_mut","","","diff","downcast","","","draw","draw_background","drop","","","eq","","equivalent","","","fmt","","from","","","","","","","","from_angle","","","from_stimulus","","","hash","height","id","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","layout","","max_height","max_width","mouse_interaction","new","","null_value","operate","overlay","padding","primary","rounded_box","secondary","shadow","","size","state","style","","success","tag","text_color","to_owned","","transparent","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","unique","upcast","","","update","visible_bounds","vzip","","","width","Bytes","FilterMethod","Handle","Image","Linear","Nearest","Path","Rgba","Viewer","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","","clone_into","","clone_to_uninit","","components_from","","","content_fit","default","deref","","","deref_mut","","","downcast","","","draw","","drop","","","eq","","equivalent","","","","","","filter_method","fmt","","","from","","","","","from_angle","","","from_bytes","from_path","from_rgba","from_stimulus","","","hash","height","id","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","layout","","new","null_value","opacity","rotation","scale","size","to_owned","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","viewer","","vzip","","","width","height","id","pixels","width","State","Viewer","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","clone_into","clone_to_uninit","components_from","","content_fit","default","deref","","deref_mut","","downcast","","draw","drop","","filter_method","fmt","from","","from_angle","","from_stimulus","","height","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","is_cursor_grabbed","layout","max_scale","min_scale","mouse_interaction","new","","null_value","padding","scale_step","scaled_image_size","size","state","tag","to_owned","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","update","vzip","","width","Column","column","Column","adapt_into_using","align_items","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","children","components_from","default","deref","deref_mut","diff","downcast","draw","drop","extend","from","from_angle","from_stimulus","from_vecs","height","init","into","into_angle","into_any","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","layout","max_width","mouse_interaction","new","null_value","operate","overlay","padding","push","push_maybe","size","spacing","state","tag","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","update","vzip","width","with_capacity","with_children","Catalog","CodeBlock","Content","H1","H2","H3","H4","H5","H6","Heading","HeadingLevel","Highlight","Image","Item","List","Paragraph","Settings","Style","Text","Url","Viewer","adapt_into_using","","","","","","","","arrays_from","","","","","","","","arrays_into","","","","","","","","as_any","","","","","","","","as_any_mut","","","","","","","","as_ref","as_str","authority","background","border","borrow","","","","","","","","borrow_mut","","","","","","","","cam16_into_unclamped","","","","","","","","cannot_be_a_base","clone","","","","","","","clone_into","","","","","","","clone_to_uninit","","","","","","","cmp","","code_block","","","code_size","compare","","components_from","","","","","","","","default","deref","","","","","","","","deref_mut","","","","","","","","deserialize","deserialize_internal","deserializer_for_signature","domain","downcast","","","","","","","","drop","","","","","","","","eq","","","","equivalent","","","","","","fmt","","","","","","","","","","fragment","from","","","","","","","","","","","","","from_angle","","","","","","","","from_directory_path","from_file_path","from_palette","from_stimulus","","","","","","","","from_str","h1_size","h2_size","h3_size","h4_size","h5_size","h6_size","has_authority","has_host","hash","","heading","","host","host_str","image","images","index","","","","init","","","","","","","","inline_code_color","inline_code_highlight","inline_code_padding","into","","","","","","","","into_angle","","","","","","","","into_any","","","","","","","","into_any_arc","","","","","into_any_rc","","","","","","","","into_cam16_unclamped","","","","","","","","into_color","","","","","","","","into_color_unclamped","","","","","","","","into_stimulus","","","","","","","","into_string","is_special","item","items","join","len","limit_ptr","link_color","make_relative","new","null_value","on_link_click","options","ordered_list","","origin","paragraph","","parse","","","parse_with_params","partial_cmp","","password","path","path_segments","path_segments_mut","port","port_or_known_default","push_str","query","query_pairs","query_pairs_mut","scheme","serialize","serialize_internal","set_fragment","set_host","set_ip_host","set_password","set_path","set_port","set_query","set_scheme","set_username","signature","socket_addrs","spacing","spans","start_ptr","style","text_size","to_file_path","to_owned","","","","","","","to_smolstr","","to_string","","try_components_into","","","","","","","","try_from","","","","","","","","","","try_into","","","","","","","","try_into_color","","","","","","","","type_id","","","","","","","","uints_from","","","","","","","","uints_into","","","","","","","","unordered_list","","upcast","","","","","","","","username","view","view_with","vzip","","","","","","","","with_style","with_text_size","alt","code","items","language","lines","start","title","url","menu","Catalog","Class","Menu","State","Style","StyleFn","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","background","border","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","clone_into","clone_to_uninit","components_from","","","default","","","default_scrollable","deref","","","deref_mut","","","downcast","","","drop","","","eq","fmt","","font","from","","","from_angle","","","from_stimulus","","","init","","","into","","","into_angle","","","into_any","","","into_any_arc","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","new","","null_value","overlay","padding","selected_background","selected_text_color","style","text_color","text_line_height","text_shaping","text_size","to_owned","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","width","Axis","Bottom","Canceled","Catalog","Center","Class","Configuration","Content","Controls","Direction","Down","DragEvent","Draggable","Dropped","Edge","","","Highlight","Horizontal","Left","","Line","Node","Pane","","","","PaneGrid","Picked","Region","ResizeEvent","Right","","Split","","","State","Style","StyleFn","Target","TitleBar","Top","Up","Vertical","adapt_into_using","","","","","","","","","","","","","","","","","","always_show_controls","arrays_from","","","","","","","","","","","","","","","","","","arrays_into","","","","","","","","","","","","","","","","","","as_any","","","","","","","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","","","","","","","background","border","borrow","","","","","","","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","","","","","","","cam16_into_unclamped","","","","","","","","","","","","","","","","","","can_be_dragged_at","","children","class","","","clone","","","","","","","","","","","","","","clone_into","","","","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","","","","cmp","","color","compare","","components_from","","","","","","","","","","","","","","","","","","controls","default","","","deref","","","","","","","","","","","","","","","","","","deref_mut","","","","","","","","","","","","","","","","","","diff","downcast","","","","","","","","","","","","","","","","","","draw","","","drop","","","","","","","","","","","","","","","","","","dynamic","eq","","","","","","","equivalent","","","","","","","","","","","","fmt","","","","","","","","","","","","","","from","","","","","","","","","","","","","","","","","","","","from_angle","","","","","","","","","","","","","","","","","","from_stimulus","","","","","","","","","","","","","","","","","","hash","","","","height","hovered_region","hovered_split","init","","","","","","","","","","","","","","","","","","into","","","","","","","","","","","","","","","","","","into_angle","","","","","","","","","","","","","","","","","","into_any","","","","","","","","","","","","","","","","","","into_any_arc","","","","","","","","","","","","","","into_any_rc","","","","","","","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","","","","","","","into_color","","","","","","","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","","","","","","","into_stimulus","","","","","","","","","","","","","","","","","","is_over_pick_area","layout","mouse_interaction","new","","","","null_value","on_click","on_drag","on_resize","operate","overlay","padding","pane_regions","partial_cmp","","picked_split","ratio","size","spacing","split","","split_line_bounds","split_regions","splits","state","","style","","","","tag","title_bar","to_owned","","","","","","","","","","","","","","try_components_into","","","","","","","","","","","","","","","","","","try_from","","","","","","","","","","","","","","","","","","try_into","","","","","","","","","","","","","","","","","","try_into_color","","","","","","","","","","","","","","","","","","type_id","","","","","","","","","","","","","","","","","","uints_from","","","","","","","","","","","","","","","","","","uints_into","","","","","","","","","","","","","","","","","","upcast","","","","","","","","","","","","","","","","","","update","vzip","","","","","","","","","","","","","","","","","","width","","a","axis","b","ratio","pane","","","target","a","axis","b","id","ratio","Action","Dragging","Idle","Internal","Resizing","State","adapt_into_using","","","adjacent","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","","","clone_into","","","clone_to_uninit","","","close","components_from","","","default","deref","","","deref_mut","","","downcast","","","drop","","","","eq","fmt","","","from","","","from_angle","","","from_configuration","from_stimulus","","","get","get_mut","init","","","internal","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","is_empty","iter","iter_mut","layout","len","maximize","maximized","move_to_edge","new","null_value","panes","picked_pane","picked_split","resize","restore","split","split_with","swap","to_owned","","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","with_configuration","axis","origin","pane","split","Active","Arrow","Catalog","Class","Dynamic","Handle","Hovered","Icon","None","Opened","PickList","Static","Status","Style","StyleFn","adapt_into_using","","","","","arrays_from","","","","","arrays_into","","","","","as_any","","","","","as_any_mut","","","","","background","border","borrow","","","","","borrow_mut","","","","","cam16_into_unclamped","","","","","class","clone","","","","clone_into","","","","clone_to_uninit","","","","code_point","components_from","","","","","default","","","default_menu","deref","","","","","deref_mut","","","","","downcast","","","","","draw","drop","","","","","eq","","","","equivalent","","","fmt","","","","font","","from","","","","","from_angle","","","","","from_stimulus","","","","","handle","handle_color","init","","","","","into","","","","","into_angle","","","","","into_any","","","","","into_any_arc","","","","into_any_rc","","","","","into_cam16_unclamped","","","","","into_color","","","","","into_color_unclamped","","","","","into_stimulus","","","","","layout","line_height","menu_class","menu_style","mouse_interaction","new","null_value","on_close","on_open","overlay","padding","placeholder","placeholder_color","shaping","size","","state","style","","tag","text_color","text_line_height","text_shaping","text_size","to_owned","","","","try_components_into","","","","","try_from","","","","","try_into","","","","","try_into_color","","","","","type_id","","","","","uints_from","","","","","uints_into","","","","","upcast","","","","","update","vzip","","","","","width","closed","open","size","is_hovered","Pop","adapt_into_using","anticipate","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","children","components_from","deref","deref_mut","diff","downcast","draw","drop","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","key","layout","mouse_interaction","new","on_hide","on_resize","on_show","operate","overlay","size","size_hint","state","tag","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","update","vzip","Catalog","Class","DEFAULT_GIRTH","ProgressBar","Style","StyleFn","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","background","bar","border","borrow","","borrow_mut","","cam16_into_unclamped","","class","clone","clone_into","clone_to_uninit","components_from","","danger","default","deref","","deref_mut","","downcast","","draw","drop","","eq","fmt","from","","from_angle","","from_stimulus","","girth","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","layout","length","new","primary","secondary","size","style","","success","to_owned","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vertical","vzip","","warning","Catalog","Class","Data","DataTooLong","Error","ErrorCorrection","High","InvalidCharacter","InvalidEciDesignator","InvalidVersion","Low","Medium","Micro","Normal","QRCode","Quartile","Style","StyleFn","UnsupportedCharacterSet","Version","adapt_into_using","","","","","","arrays_from","","","","","","arrays_into","","","","","","as_any","","","","","","as_any_mut","","","","","","background","borrow","","","","","","borrow_mut","","","","","","cam16_into_unclamped","","","","","","cell","cell_size","class","clone","","","","clone_into","","","","clone_to_uninit","","","","components_from","","","","","","default","","deref","","","","","","deref_mut","","","","","","downcast","","","","","","draw","drop","","","","","","eq","","","","equivalent","","","","","","","","","fmt","","","","","","from","","","","","","","from_angle","","","","","","from_stimulus","","","","","","init","","","","","","into","","","","","","into_angle","","","","","","into_any","","","","","","into_any_arc","","","","into_any_rc","","","","","","into_cam16_unclamped","","","","","","into_color","","","","","","into_color_unclamped","","","","","","into_stimulus","","","","","","layout","new","","size","state","style","","tag","to_owned","","","","to_smolstr","to_string","total_size","try_components_into","","","","","","try_from","","","","","","try_into","","","","","","try_into_color","","","","","","type_id","","","","","","uints_from","","","","","","uints_into","","","","","","upcast","","","","","","vzip","","","","","","with_error_correction","with_version","Active","Catalog","Class","DEFAULT_SIZE","DEFAULT_SPACING","Hovered","Radio","Status","Style","StyleFn","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","background","border_color","border_width","borrow","","","borrow_mut","","","cam16_into_unclamped","","","class","clone","","clone_into","","clone_to_uninit","","components_from","","","default","","deref","","","deref_mut","","","dot_color","downcast","","","draw","drop","","","eq","","equivalent","","","fmt","","font","from","","","from_angle","","","from_stimulus","","","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","layout","mouse_interaction","new","size","","spacing","state","style","","tag","text_color","text_line_height","text_shaping","text_size","text_wrapping","to_owned","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","update","vzip","","","width","is_selected","","AsymmetricPadding","Catalog","Class","FillMode","Full","Padded","Percent","Rule","Style","StyleFn","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","class","clone","","clone_into","","clone_to_uninit","","color","components_from","","","default","","deref","","","deref_mut","","","downcast","","","draw","drop","","","eq","","fill","fill_mode","fmt","","from","","","from_angle","","","from_stimulus","","","horizontal","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","layout","radius","size","style","","to_owned","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vertical","vzip","","","width","AbsoluteOffset","Active","Anchor","Both","Catalog","Class","Direction","Dragged","END","End","Horizontal","Hovered","Id","Rail","RelativeOffset","START","Scrollable","Scrollbar","Scroller","Start","Status","Style","StyleFn","Vertical","Viewport","absolute_offset","absolute_offset_reversed","adapt_into_using","","","","","","","","","","","","anchor","anchor_bottom","anchor_left","anchor_right","anchor_top","anchor_x","anchor_y","arrays_from","","","","","","","","","","","","arrays_into","","","","","","","","","","","","as_any","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","background","border","","borrow","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","bounds","cam16_into_unclamped","","","","","","","","","","","","children","class","clone","","","","","","","","","","","clone_into","","","","","","","","","","","clone_to_uninit","","","","","","","","","","","color","components_from","","","","","","","","","","","","container","content_bounds","default","","","","","","","deref","","","","","","","","","","","","deref_mut","","","","","","","","","","","","diff","direction","downcast","","","","","","","","","","","","draw","drop","","","","","","","","","","","","eq","","","","","","","","","","equivalent","","","","","","","","","fmt","","","","","","","","","","","from","","","","","","","","","","","","","from_angle","","","","","","","","","","","","from_stimulus","","","","","","","","","","","","gap","hash","height","horizontal","","horizontal_rail","id","init","","","","","","","","","","","","into","","","","","","","","","","","","into_angle","","","","","","","","","","","","into_any","","","","","","","","","","","","into_any_arc","","","","","","","","","","","into_any_rc","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","into_color","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","into_stimulus","","","","","","","","","","","","layout","margin","mouse_interaction","new","","","null_value","","","","","on_scroll","operate","overlay","relative_offset","scroll_by","scroll_to","scroller","scroller_width","size","snap_to","spacing","","state","style","","tag","to_owned","","","","","","","","","","","try_components_into","","","","","","","","","","","","try_from","","","","","","","","","","","","try_into","","","","","","","","","","","","try_into_color","","","","","","","","","","","","type_id","","","","","","","","","","","","uints_from","","","","","","","","","","","","uints_into","","","","","","","","","","","","unique","upcast","","","","","","","","","","","","update","vertical","vertical_rail","vzip","","","","","","","","","","","","width","","with_direction","x","","y","","horizontal","vertical","is_horizontal_scrollbar_disabled","","","is_horizontal_scrollbar_dragged","is_horizontal_scrollbar_hovered","is_vertical_scrollbar_disabled","","","is_vertical_scrollbar_dragged","is_vertical_scrollbar_hovered","Action","Primitive","","Program","Shader","State","Storage","Viewport","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","clone_into","clone_to_uninit","components_from","","","default","deref","","","deref_mut","","","downcast","","","draw","","drop","","","fmt","","from","","","from_angle","","","from_stimulus","","","get","get_mut","has","height","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","layout","logical_size","mouse_interaction","","","new","null_value","physical_height","physical_size","physical_width","prepare","projection","render","scale_factor","size","state","store","tag","to_owned","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","update","","","vzip","","","width","with_physical_size","Active","Catalog","Circle","Class","DEFAULT_HEIGHT","Dragged","Handle","HandleShape","Hovered","Rail","Rectangle","Slider","Status","Style","StyleFn","adapt_into_using","","","","","","arrays_from","","","","","","arrays_into","","","","","","as_any","","","","","","as_any_mut","","","","","","background","backgrounds","border","border_color","border_width","borrow","","","","","","borrow_mut","","","","","","cam16_into_unclamped","","","","","","class","clone","","","","","clone_into","","","","","clone_to_uninit","","","","","components_from","","","","","","default","","","deref","","","","","","deref_mut","","","","","","downcast","","","","","","draw","drop","","","","","","eq","","","","","equivalent","","","fmt","","","","","from","","","","","","from_angle","","","","","","from_stimulus","","","","","","handle","height","init","","","","","","into","","","","","","into_angle","","","","","","into_any","","","","","","into_any_arc","","","","","into_any_rc","","","","","","into_cam16_unclamped","","","","","","into_color","","","","","","into_color_unclamped","","","","","","into_stimulus","","","","","","layout","mouse_interaction","new","on_release","rail","shape","shift_step","size","state","step","style","","tag","to_owned","","","","","try_components_into","","","","","","try_from","","","","","","try_into","","","","","","try_into_color","","","","","","type_id","","","","","","uints_from","","","","","","uints_into","","","","","","upcast","","","","","","update","vzip","","","","","","width","","with_circular_handle","border_radius","radius","width","Catalog","Class","Handle","Hovered","Idle","Status","Style","StyleFn","Svg","adapt_into_using","","","","arrays_from","","","","arrays_into","","","","as_any","","","","as_any_mut","","","","borrow","","","","borrow_mut","","","","cam16_into_unclamped","","","","class","clone","","","clone_into","","","clone_to_uninit","","","color","components_from","","","","content_fit","data","default","","deref","","","","deref_mut","","","","downcast","","","","draw","drop","","","","eq","","","equivalent","","","","","","fmt","","","from","","","","","","from_angle","","","","from_memory","from_path","","from_stimulus","","","","hash","height","id","init","","","","into","","","","into_angle","","","","into_any","","","","into_any_arc","","","","into_any_rc","","","","into_cam16_unclamped","","","","into_color","","","","into_color_unclamped","","","","into_stimulus","","","","layout","new","null_value","opacity","rotation","size","style","","to_owned","","","try_components_into","","","","try_from","","","","try_into","","","","try_into_color","","","","type_id","","","","uints_from","","","","uints_into","","","","upcast","","","","vzip","","","","width","Absolute","Advanced","Basic","Borrowed","Catalog","Class","Fragment","Glyph","Highlight","Highlighter","IntoFragment","Iterator","LineHeight","None","Owned","Relative","Rich","Settings","Shaping","Span","State","Style","StyleFn","Text","Word","WordOrGlyph","Wrapping","adapt_into_using","","","","","","","align_x","align_y","arrays_from","","","","","","","arrays_into","","","","","","","as_any","","","","","","","as_any_mut","","","","","","","background","background_maybe","base","border","border_maybe","borrow","","","","","","","borrow_mut","","","","","","","cam16_into_unclamped","","","","","","","center","change_line","class","clone","","","","","clone_into","","","","","clone_to_uninit","","","","","color","","","","color_maybe","","components_from","","","","","","","current_line","danger","default","","","","","","","","","deref","","","","","","","deref_mut","","","","","","","downcast","","","","","","","draw","","drop","","","","","","","eq","","","","","equivalent","","","","","","fmt","","","","","","font","","","font_maybe","from","","","","","","","","","","from_angle","","","","","","","from_iter","from_stimulus","","","","","","","hash","","","height","highlight","highlight_line","init","","","","","","","into","","","","","","","into_angle","","","","","","","into_any","","","","","","","into_any_arc","","","","","","into_any_rc","","","","","","","into_cam16_unclamped","","","","","","","into_color","","","","","","","into_color_unclamped","","","","","","","into_fragment","into_stimulus","","","","","","","layout","","line_height","","","link","","link_maybe","mouse_interaction","new","","","null_value","","","","","","","on_link_click","padding","","primary","secondary","size","","","","state","strikethrough","","style","","success","tag","text","to_absolute","to_owned","","","","","to_static","try_components_into","","","","","","","try_from","","","","","","","try_into","","","","","","","try_into_color","","","","","","","type_id","","","","","","","uints_from","","","","","","","uints_into","","","","","","","underline","","upcast","","","","","","","update","","vzip","","","","","","","width","with_spans","wrapping","Action","Active","Backspace","","Binding","Catalog","Class","Click","Content","Copy","Cr","CrLf","Custom","Cut","Delete","","Disabled","DocumentEnd","DocumentStart","Down","Drag","Edit","","End","Enter","","Focused","Home","Hovered","Insert","","KeyPress","Left","Lf","LfCr","Line","LineEnding","Motion","Move","","None","PageDown","PageUp","Paste","","Right","Scroll","Select","","SelectAll","","SelectLine","","SelectWord","","Sequence","State","Status","Style","StyleFn","TextEditor","Unfocus","Up","WordLeft","WordRight","adapt_into_using","","","","","","","","","","","","arrays_from","","","","","","","","","","","","arrays_into","","","","","","","","","","","","as_any","","","","","","","","","","","","as_any_mut","","","","","","","","","","","","as_str","background","border","borrow","","","","","","","","","","","","borrow_mut","","","","","","","","","","","","cam16_into_unclamped","","","","","","","","","","","","class","clone","","","","","","","","","clone_into","","","","","","","","","clone_to_uninit","","","","","","","","","components_from","","","","","","","","","","","","cursor_position","default","","","","","deref","","","","","","","","","","","","deref_mut","","","","","","","","","","","","direction","downcast","","","","","","","","","","","","draw","drop","","","","","","","","","","","","ending","eq","","","","","","","","","equivalent","","","","","","","","","","","","fmt","","","","","","","","","","","focus","font","from","","","","","","","","","","","","from_angle","","","","","","","","","","","","from_key_press","from_stimulus","","","","","","","","","","","","height","highlight","highlight_with","icon","init","","","","","","","","","","","","into","","","","","","","","","","","","into_angle","","","","","","","","","","","","into_any","","","","","","","","","","","","into_any_arc","","","","","","","","","into_any_rc","","","","","","","","","","","","into_cam16_unclamped","","","","","","","","","","","","into_color","","","","","","","","","","","","into_color_unclamped","","","","","","","","","","","","into_stimulus","","","","","","","","","","","","is_edit","is_focused","","key","key_binding","layout","line","line_count","line_ending","line_height","lines","max_height","min_height","modifiers","mouse_interaction","new","","null_value","","","on_action","operate","padding","perform","placeholder","","selection","","size","","state","status","style","","tag","text","","","to_owned","","","","","","","","","try_components_into","","","","","","","","","","","","try_from","","","","","","","","","","","","try_into","","","","","","","","","","","","try_into_color","","","","","","","","","","","","type_id","","","","","","","","","","","","uints_from","","","","","","","","","","","","uints_into","","","","","","","","","","","","unfocus","upcast","","","","","","","","","","","","update","value","vzip","","","","","","","","","","","","widen","width","with_text","wrapping","lines","is_hovered","Active","Catalog","Class","Cursor","DEFAULT_PADDING","Disabled","Focused","Hovered","Icon","Id","Left","Right","Side","State","Status","Style","StyleFn","TextInput","Value","adapt_into_using","","","","","","","","align_x","arrays_from","","","","","","","","arrays_into","","","","","","","","as_any","","","","","","","","as_any_mut","","","","","","","","background","border","borrow","","","","","","","","borrow_mut","","","","","","","","cam16_into_unclamped","","","","","","","","class","clone","","","","","","","clone_into","","","","","","","clone_to_uninit","","","","","","","code_point","components_from","","","","","","","","cursor","","default","","","deref","","","","","","","","deref_mut","","","","","","","","diff","downcast","","","","","","","","draw","","drop","","","","","","","","eq","","","equivalent","","","","","","fmt","","","","","","","","focus","","","font","","from","","","","","","","","","","from_angle","","","","","","","","from_stimulus","","","","","","","","hash","icon","","id","init","","","","","","","","insert","insert_many","into","","","","","","","","into_angle","","","","","","","","into_any","","","","","","","","into_any_arc","","","","","","","into_any_rc","","","","","","","","into_cam16_unclamped","","","","","","","","into_color","","","","","","","","into_color_unclamped","","","","","","","","into_stimulus","","","","","","","","is_empty","is_focused","","layout","","len","line_height","mouse_interaction","move_cursor_to","","","move_cursor_to_end","","","move_cursor_to_front","","","new","","","","next_end_of_word","null_value","on_input","on_input_maybe","on_paste","on_paste_maybe","on_submit","on_submit_maybe","operate","padding","placeholder","previous_start_of_word","remove","remove_many","secure","","select","select_all","","","selection","side","size","","","spacing","state","style","","tag","to_owned","","","","","","","to_smolstr","to_string","try_components_into","","","","","","","","try_from","","","","","","","","try_into","","","","","","","","try_into_color","","","","","","","","type_id","","","","","","","","uints_from","","","","","","","","uints_into","","","","","","","","unfocus","","unique","until","upcast","","","","","","","","update","value","vzip","","","","","","","","width","is_hovered","Cursor","Index","Selection","State","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","clone","","clone_into","","clone_to_uninit","","components_from","","default","deref","","deref_mut","","downcast","","drop","","eq","","equivalent","","","","","","fmt","","from","","from_angle","","from_stimulus","","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","null_value","selection","state","to_owned","","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","vzip","","end","start","Base","CATPPUCCIN_FRAPPE","CATPPUCCIN_LATTE","CATPPUCCIN_MACCHIATO","CATPPUCCIN_MOCHA","CatppuccinFrappe","CatppuccinLatte","CatppuccinMacchiato","CatppuccinMocha","Custom","","DARK","DRACULA","Dark","Dracula","FERRA","Ferra","GRUVBOX_DARK","GRUVBOX_LIGHT","GruvboxDark","GruvboxLight","KANAGAWA_DRAGON","KANAGAWA_LOTUS","KANAGAWA_WAVE","KanagawaDragon","KanagawaLotus","KanagawaWave","LIGHT","Light","MOONFLY","Moonfly","NIGHTFLY","NORD","Nightfly","Nord","OXOCARBON","Oxocarbon","Palette","SOLARIZED_DARK","SOLARIZED_LIGHT","SolarizedDark","SolarizedLight","Style","TOKYO_NIGHT","TOKYO_NIGHT_LIGHT","TOKYO_NIGHT_STORM","Theme","TokyoNight","TokyoNightLight","TokyoNightStorm","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","background","background_color","base","borrow","","","borrow_mut","","","cam16_into_unclamped","","","clone","","","clone_into","","","clone_to_uninit","","","components_from","","","danger","default","deref","","","deref_mut","","","downcast","","","drop","","","eq","","","fmt","","","","from","","","from_angle","","","from_stimulus","","","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","new","palette","primary","success","text","text_color","to_owned","","","to_smolstr","to_string","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","vzip","","","warning","with_fn","Background","Danger","EXTENDED_CATPPUCCIN_FRAPPE","EXTENDED_CATPPUCCIN_LATTE","EXTENDED_CATPPUCCIN_MACCHIATO","EXTENDED_CATPPUCCIN_MOCHA","EXTENDED_DARK","EXTENDED_DRACULA","EXTENDED_FERRA","EXTENDED_GRUVBOX_DARK","EXTENDED_GRUVBOX_LIGHT","EXTENDED_KANAGAWA_DRAGON","EXTENDED_KANAGAWA_LOTUS","EXTENDED_KANAGAWA_WAVE","EXTENDED_LIGHT","EXTENDED_MOONFLY","EXTENDED_NIGHTFLY","EXTENDED_NORD","EXTENDED_OXOCARBON","EXTENDED_SOLARIZED_DARK","EXTENDED_SOLARIZED_LIGHT","EXTENDED_TOKYO_NIGHT","EXTENDED_TOKYO_NIGHT_LIGHT","EXTENDED_TOKYO_NIGHT_STORM","Extended","Pair","Palette","Primary","Secondary","Success","Warning","adapt_into_using","","","","","","","","arrays_from","","","","","","","","arrays_into","","","","","","","","as_any","","","","","","","","as_any_mut","","","","","","","","background","","base","","","","","","borrow","","","","","","","","borrow_mut","","","","","","","","cam16_into_unclamped","","","","","","","","clone","","","","","","","","clone_into","","","","","","","","clone_to_uninit","","","","","","","","color","components_from","","","","","","","","danger","","deref","","","","","","","","deref_mut","","","","","","","","downcast","","","","","","","","drop","","","","","","","","eq","","","","","","","","fmt","","","","","","","","from","","","","","","","","from_angle","","","","","","","","from_stimulus","","","","","","","","generate","","","","","","init","","","","","","","","into","","","","","","","","into_angle","","","","","","","","into_any","","","","","","","","into_any_arc","","","","","","","","into_any_rc","","","","","","","","into_cam16_unclamped","","","","","","","","into_color","","","","","","","","into_color_unclamped","","","","","","","","into_stimulus","","","","","","","","is_dark","new","","primary","","secondary","strong","","","","","","success","","text","","to_owned","","","","","","","","try_components_into","","","","","","","","try_from","","","","","","","","try_into","","","","","","","","try_into_color","","","","","","","","type_id","","","","","","","","uints_from","","","","","","","","uints_into","","","","","","","","upcast","","","","","","","","vzip","","","","","","","","warning","","weak","","","","","","Active","Catalog","Class","DEFAULT_SIZE","Disabled","Hovered","Status","Style","StyleFn","Toggler","adapt_into_using","","","arrays_from","","","arrays_into","","","as_any","","","as_any_mut","","","background","background_border_color","background_border_width","borrow","","","borrow_mut","","","cam16_into_unclamped","","","class","clone","","clone_into","","clone_to_uninit","","components_from","","","default","","deref","","","deref_mut","","","downcast","","","draw","drop","","","eq","","equivalent","","","fmt","","font","foreground","foreground_border_color","foreground_border_width","from","","","from_angle","","","from_stimulus","","","init","","","into","","","into_angle","","","into_any","","","into_any_arc","","into_any_rc","","","into_cam16_unclamped","","","into_color","","","into_color_unclamped","","","into_stimulus","","","label","layout","mouse_interaction","new","on_toggle","on_toggle_maybe","size","","spacing","state","style","","tag","text_alignment","text_line_height","text_shaping","text_size","text_wrapping","to_owned","","try_components_into","","","try_from","","","try_into","","","try_into_color","","","type_id","","","uints_from","","","uints_into","","","upcast","","","update","vzip","","","width","is_toggled","","Bottom","FollowCursor","Left","Position","Right","Tooltip","Top","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","children","class","clone","clone_into","clone_to_uninit","components_from","","default","deref","","deref_mut","","diff","downcast","","draw","drop","","eq","equivalent","","","fmt","from","","from_angle","","from_stimulus","","gap","init","","into","","into_angle","","into_any","","into_any_arc","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","layout","mouse_interaction","new","null_value","overlay","padding","size","size_hint","snap_within_viewport","state","style","tag","to_owned","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","upcast","","update","vzip","","Catalog","DEFAULT_WIDTH","Handle","HandleShape","Status","Style","StyleFn","VerticalSlider","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","class","components_from","default","","deref","deref_mut","downcast","draw","drop","from","from_angle","from_stimulus","height","init","into","into_angle","into_any","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","layout","mouse_interaction","new","on_release","shift_step","size","state","step","style","tag","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","upcast","update","vzip","width"],"q":[[0,"iced_widget"],[388,"iced_widget::button"],[553,"iced_widget::canvas"],[1197,"iced_widget::canvas::fill"],[1199,"iced_widget::canvas"],[1200,"iced_widget::canvas::fill"],[1202,"iced_widget::canvas"],[1203,"iced_widget::canvas::fill"],[1238,"iced_widget::canvas"],[1240,"iced_widget::canvas::fill"],[1250,"iced_widget::canvas::gradient"],[1252,"iced_widget::canvas"],[1253,"iced_widget::canvas::gradient"],[1345,"iced_widget::canvas::path"],[1443,"iced_widget::canvas::path::arc"],[1453,"iced_widget::canvas::path"],[1454,"iced_widget::canvas::path::arc"],[1463,"iced_widget::canvas::path"],[1464,"iced_widget::canvas::path::arc"],[1481,"iced_widget::canvas::path"],[1482,"iced_widget::canvas::path::arc"],[1483,"iced_widget::canvas::path"],[1484,"iced_widget::canvas::path::arc"],[1495,"iced_widget::canvas::path::lyon_path"],[2740,"iced_widget::canvas::path::lyon_path::Event"],[2779,"iced_widget::canvas::path::lyon_path::builder"],[3136,"iced_widget::canvas::path::lyon_path::commands"],[3360,"iced_widget::canvas::path::lyon_path::geom"],[3905,"iced_widget::canvas::path::lyon_path"],[3906,"iced_widget::canvas::path::lyon_path::geom"],[4006,"iced_widget::canvas::path::lyon_path"],[4007,"iced_widget::canvas::path::lyon_path::geom"],[4180,"iced_widget::canvas::path::lyon_path::geom::arc"],[4192,"iced_widget::canvas::path::lyon_path::geom"],[4193,"iced_widget::canvas::path::lyon_path::geom::arc"],[4198,"iced_widget::canvas::path::lyon_path::geom"],[4199,"iced_widget::canvas::path::lyon_path::geom::arc"],[4200,"iced_widget::canvas::path::lyon_path::geom"],[4201,"iced_widget::canvas::path::lyon_path::geom::arc"],[4214,"iced_widget::canvas::path::lyon_path"],[4215,"iced_widget::canvas::path::lyon_path::geom::arc"],[4216,"iced_widget::canvas::path::lyon_path::geom"],[4219,"iced_widget::canvas::path::lyon_path"],[4220,"iced_widget::canvas::path::lyon_path::geom"],[4222,"iced_widget::canvas::path::lyon_path::geom::arc"],[4231,"iced_widget::canvas::path::lyon_path::geom"],[4233,"iced_widget::canvas::path::lyon_path::geom::arrayvec"],[4669,"iced_widget::canvas::path::lyon_path::geom::cubic_bezier"],[4680,"iced_widget::canvas::path::lyon_path::geom"],[4682,"iced_widget::canvas::path::lyon_path::geom::cubic_bezier"],[4687,"iced_widget::canvas::path::lyon_path::geom"],[4688,"iced_widget::canvas::path::lyon_path::geom::cubic_bezier"],[4703,"iced_widget::canvas::path::lyon_path::geom"],[4704,"iced_widget::canvas::path::lyon_path::geom::cubic_bezier"],[4713,"iced_widget::canvas::path::lyon_path::geom::euclid"],[6147,"iced_widget::canvas::path::lyon_path::geom"],[6148,"iced_widget::canvas::path::lyon_path::geom::euclid"],[6787,"iced_widget::canvas::path::lyon_path::geom::euclid::approxeq"],[6791,"iced_widget::canvas::path::lyon_path::geom::euclid::approxord"],[6793,"iced_widget::canvas::path::lyon_path::geom::euclid::default"],[6816,"iced_widget::canvas::path::lyon_path::geom"],[6817,"iced_widget::canvas::path::lyon_path::geom::euclid::default"],[6844,"iced_widget::canvas::path::lyon_path::geom"],[6845,"iced_widget::canvas::path::lyon_path::geom::euclid::default"],[6846,"iced_widget::canvas::path::lyon_path::geom"],[6847,"iced_widget::canvas::path::lyon_path::geom::euclid::default"],[6856,"iced_widget::canvas::path::lyon_path::geom"],[6857,"iced_widget::canvas::path::lyon_path::geom::euclid::default"],[6858,"iced_widget::canvas::path::lyon_path::geom"],[6859,"iced_widget::canvas::path::lyon_path::geom::euclid::default"],[6860,"iced_widget::canvas::path::lyon_path::geom"],[6861,"iced_widget::canvas::path::lyon_path::geom::euclid::default"],[6865,"iced_widget::canvas::path::lyon_path::geom"],[6866,"iced_widget::canvas::path::lyon_path::geom::euclid::default"],[6867,"iced_widget::canvas::path::lyon_path::geom"],[6868,"iced_widget::canvas::path::lyon_path::geom::euclid::default"],[6876,"iced_widget::canvas::path::lyon_path::geom::euclid::num"],[6886,"iced_widget::canvas::path::lyon_path::geom::quadratic_bezier"],[6917,"iced_widget::canvas::path::lyon_path::geom"],[6918,"iced_widget::canvas::path::lyon_path::geom::quadratic_bezier"],[6933,"iced_widget::canvas::path::lyon_path::geom"],[6934,"iced_widget::canvas::path::lyon_path::geom::quadratic_bezier"],[6977,"iced_widget::canvas::path::lyon_path::geom"],[6978,"iced_widget::canvas::path::lyon_path::geom::quadratic_bezier"],[7005,"iced_widget::canvas::path::lyon_path::geom"],[7006,"iced_widget::canvas::path::lyon_path::geom::traits"],[7008,"iced_widget::canvas::path::lyon_path::geom"],[7021,"iced_widget::canvas::path::lyon_path::geom::traits"],[7023,"iced_widget::canvas::path::lyon_path::geom"],[7025,"iced_widget::canvas::path::lyon_path::geom::utils"],[7031,"iced_widget::canvas::path::lyon_path::iterator"],[7195,"iced_widget::canvas::path::lyon_path::math"],[7225,"iced_widget::canvas::path::lyon_path::path"],[7234,"iced_widget::canvas::path::lyon_path::path_buffer"],[7384,"iced_widget::canvas::path::lyon_path::polygon"],[7434,"iced_widget::canvas::path::lyon_path"],[7436,"iced_widget::canvas::path::lyon_path::polygon"],[7518,"iced_widget::canvas::path::lyon_path"],[7520,"iced_widget::canvas::path::lyon_path::polygon"],[7560,"iced_widget::canvas::path::lyon_path::traits"],[7563,"iced_widget::canvas::path::lyon_path::builder"],[7564,"iced_widget::canvas::path::lyon_path::traits"],[7565,"iced_widget::canvas::path::lyon_path::builder"],[7591,"iced_widget::canvas"],[7594,"iced_widget::canvas::stroke"],[7597,"iced_widget::canvas"],[7602,"iced_widget::canvas::stroke"],[7604,"iced_widget::canvas"],[7611,"iced_widget::checkbox"],[7818,"iced_widget::checkbox::Status"],[7821,"iced_widget::combo_box"],[7928,"iced_widget::container"],[8115,"iced_widget::image"],[8272,"iced_widget::image::Handle"],[8276,"iced_widget::image::viewer"],[8374,"iced_widget::keyed"],[8376,"iced_widget::keyed::column"],[8437,"iced_widget::markdown"],[8902,"iced_widget::markdown::Item"],[8910,"iced_widget::overlay"],[8911,"iced_widget::overlay::menu"],[9047,"iced_widget::pane_grid"],[9875,"iced_widget::pane_grid::Configuration"],[9879,"iced_widget::pane_grid::DragEvent"],[9883,"iced_widget::pane_grid::Node"],[9888,"iced_widget::pane_grid::state"],[10042,"iced_widget::pane_grid::state::Action"],[10046,"iced_widget::pick_list"],[10301,"iced_widget::pick_list::Handle"],[10304,"iced_widget::pick_list::Status"],[10305,"iced_widget::pop"],[10358,"iced_widget::progress_bar"],[10459,"iced_widget::qr_code"],[10743,"iced_widget::radio"],[10899,"iced_widget::radio::Status"],[10901,"iced_widget::rule"],[11043,"iced_widget::scrollable"],[11635,"iced_widget::scrollable::Direction"],[11637,"iced_widget::scrollable::Status"],[11647,"iced_widget::shader"],[11795,"iced_widget::slider"],[12081,"iced_widget::slider::HandleShape"],[12084,"iced_widget::svg"],[12281,"iced_widget::text"],[12678,"iced_widget::text_editor"],[13293,"iced_widget::text_editor::Action"],[13294,"iced_widget::text_editor::Status"],[13295,"iced_widget::text_input"],[13724,"iced_widget::text_input::Status"],[13725,"iced_widget::text_input::cursor"],[13821,"iced_widget::text_input::cursor::State"],[13823,"iced_widget::theme"],[13828,"iced_widget"],[13832,"iced_widget::theme"],[13833,"iced_widget"],[13834,"iced_widget::theme"],[13836,"iced_widget"],[13838,"iced_widget::theme"],[13839,"iced_widget"],[13840,"iced_widget::theme"],[13842,"iced_widget"],[13844,"iced_widget::theme"],[13847,"iced_widget"],[13850,"iced_widget::theme"],[13851,"iced_widget"],[13852,"iced_widget::theme"],[13853,"iced_widget"],[13854,"iced_widget::theme"],[13856,"iced_widget"],[13858,"iced_widget::theme"],[13859,"iced_widget"],[13860,"iced_widget::theme"],[13863,"iced_widget"],[13865,"iced_widget::theme"],[13870,"iced_widget"],[13873,"iced_widget::theme"],[14012,"iced_widget::theme::palette"],[14083,"iced_widget::theme"],[14084,"iced_widget::theme::palette"],[14148,"iced_widget::theme"],[14149,"iced_widget::theme::palette"],[14311,"iced_widget::theme"],[14312,"iced_widget::theme::palette"],[14320,"iced_widget::theme"],[14321,"iced_widget::theme::palette"],[14322,"iced_widget::theme"],[14323,"iced_widget::theme::palette"],[14404,"iced_widget::theme"],[14405,"iced_widget::theme::palette"],[14412,"iced_widget::toggler"],[14572,"iced_widget::toggler::Status"],[14574,"iced_widget::tooltip"],[14678,"iced_widget::vertical_slider"],[14737,"palette::chromatic_adaptation"],[14738,"iced_widget::action"],[14739,"core::any"],[14740,"iced_core::theme"],[14741,"iced_core::renderer"],[14742,"iced_core::element"],[14743,"core::convert"],[14744,"palette::cam16::parameters"],[14745,"iced_graphics::geometry"],[14746,"iced_widget::canvas::program"],[14747,"alloc::string"],[14748,"iced_core::text"],[14749,"iced_widget::lazy"],[14750,"iced_core::widget::tree"],[14751,"alloc::vec"],[14752,"core::hash"],[14753,"core::clone"],[14754,"core::iter::traits::collect"],[14755,"core::option"],[14756,"core::fmt"],[14757,"core::ops::function"],[14758,"iced_widget::lazy::component"],[14759,"iced_core::theme::palette"],[14760,"iced_widget::lazy::responsive"],[14761,"iced_core::layout"],[14762,"iced_core::mouse::cursor"],[14763,"iced_core::rectangle"],[14764,"core::result"],[14765,"iced_runtime::task"],[14766,"iced_core::pixels"],[14767,"iced_core::widget::text"],[14768,"iced_core::font"],[14769,"iced_core::svg"],[14770,"alloc::boxed"],[14771,"alloc::sync"],[14772,"alloc::rc"],[14773,"iced_core::window::redraw_request"],[14774,"iced_core::event"],[14775,"core::marker"],[14776,"core::cmp"],[14777,"iced_core::layout::limits"],[14778,"iced_core::layout::node"],[14779,"url"],[14780,"iced_core::mouse::interaction"],[14781,"iced_core::size"],[14782,"iced_core::widget::operation"],[14783,"core::default"],[14784,"iced_core::vector"],[14785,"iced_core::overlay::element"],[14786,"iced_widget::pane_grid::pane"],[14787,"iced_widget::pane_grid::content"],[14788,"core::borrow"],[14789,"core::ops::range"],[14790,"std::time"],[14791,"iced_widget::text::rich"],[14792,"iced_widget::shader::program"],[14793,"iced_core::length"],[14794,"iced_core::text::highlighter"],[14795,"smol_str"],[14796,"palette::convert::try_from_into_color"],[14797,"iced_core::clipboard"],[14798,"iced_core::shell"],[14799,"iced_core::border"],[14800,"iced_core::padding"],[14801,"iced_core::shadow"],[14802,"iced_core::color"],[14803,"iced_core::background"],[14804,"iced_core::point"],[14805,"iced_graphics::geometry::path"],[14806,"iced_graphics::cache"],[14807,"iced_graphics::gradient"],[14808,"iced_graphics::geometry::fill"],[14809,"iced_graphics::geometry::stroke"],[14810,"iced_graphics::geometry::style"],[14811,"iced_graphics::geometry::text"],[14812,"iced_core::image"],[14813,"iced_core::alignment"],[14814,"iced_graphics::geometry::path::builder"],[14815,"lyon_path::path"],[14816,"iced_core::angle"],[14817,"euclid"],[14818,"euclid::transform2d"],[14819,"iced_core::gradient"],[14820,"iced_graphics::geometry::path::arc"],[14821,"lyon_path::commands"],[14822,"lyon_path::path_buffer"],[14823,"lyon_path"],[14824,"euclid::point"],[14825,"lyon_path::builder"],[14826,"lyon_geom::arc"],[14827,"lyon_path::events"],[14828,"lyon_path::polygon"],[14829,"lyon_path::iterator"],[14830,"lyon_geom::traits"],[14831,"euclid::vector"],[14832,"euclid::angle"],[14833,"lyon_geom::line"],[14834,"euclid::box2d"],[14835,"lyon_geom::scalar"],[14836,"lyon_geom::triangle"],[14837,"core::ops::arith"],[14838,"lyon_geom::segment"],[14839,"lyon_geom::cubic_bezier"],[14840,"lyon_geom::quadratic_bezier"],[14841,"lyon_geom"],[14842,"num_traits::identities"],[14843,"num_traits::float"],[14844,"euclid::approxeq"],[14845,"num_traits::cast"],[14846,"arrayvec::arrayvec"],[14847,"euclid::trig"],[14848,"euclid::default"],[14849,"num_traits::real"],[14850,"euclid::size"],[14851,"core::iter::traits::iterator"],[14852,"arrayvec::array_string"],[14853,"std::path"],[14854,"arrayvec::errors"],[14855,"std::io::error"],[14856,"core::str::error"],[14857,"endi::endian"],[14858,"num_traits::sign"],[14859,"euclid::length"],[14860,"euclid::scale"],[14861,"euclid::side_offsets"],[14862,"euclid::translation"],[14863,"euclid::rotation"],[14864,"euclid::transform3d"],[14865,"euclid::rect"],[14866,"euclid::box3d"],[14867,"euclid::rigid"],[14868,"euclid::num"],[14869,"euclid::homogen"],[14870,"num_traits::ops::euclid"],[14871,"num_traits::ops::saturating"],[14872,"lyon_path::math"],[14873,"rayon::iter::par_bridge"],[14874,"alloc::borrow"],[14875,"iced_core::content_fit"],[14876,"iced_core::rotation"],[14877,"bytes::bytes"],[14878,"pulldown_cmark"],[14879,"serde::de"],[14880,"zvariant_utils::signature"],[14881,"zvariant::error"],[14882,"url::parser"],[14883,"url::host"],[14884,"std::collections::hash::set"],[14885,"url::slicing"],[14886,"url::origin"],[14887,"core::str::iter"],[14888,"url::path_segments"],[14889,"form_urlencoded"],[14890,"serde::ser"],[14891,"core::net::ip_addr"],[14892,"core::net::socket_addr"],[14893,"iced_widget::pane_grid::title_bar"],[14894,"iced_widget::pane_grid::draggable"],[14895,"iced_widget::pane_grid::axis"],[14896,"iced_widget::pane_grid::configuration"],[14897,"iced_widget::pane_grid::direction"],[14898,"iced_widget::pane_grid::node"],[14899,"iced_widget::pane_grid::split"],[14900,"iced_widget::pane_grid::controls"],[14901,"alloc::collections::btree::map"],[14902,"iced_renderer"],[14903,"qrcode::types"],[14904,"iced_core::widget::operation::scrollable"],[14905,"iced_graphics::viewport"],[14906,"iced_wgpu::primitive"],[14907,"wgpu::api::device"],[14908,"wgpu::api::queue"],[14909,"wgpu_types"],[14910,"iced_core::transformation"],[14911,"wgpu::api::command_encoder"],[14912,"wgpu::api::texture_view"],[14913,"iced_core::text::paragraph"],[14914,"iced_core::text::editor"],[14915,"iced_highlighter"],[14916,"iced_core::keyboard::key"],[14917,"iced_core::keyboard::modifiers"],[14918,"iced_widget::text_input::value"],[14919,"std::sync::lazy_lock"],[14920,"iced_widget::column"],[14921,"iced_widget::mouse_area"],[14922,"iced_widget::pin"],[14923,"iced_widget::row"],[14924,"iced_widget::space"],[14925,"iced_widget::stack"],[14926,"iced_widget::themer"],[14927,"iced_widget::helpers"],[14928,"iced_widget::lazy::helpers"],[14929,"iced_core"],[14930,"iced_graphics"],[14931,"euclid::approxord"],[14932,"lyon_geom::utils"]],"i":"l```0000`````000Eb111`111`11`111````CLf````````0``22``1```````222``FbC`4d02150215021502150521502150`````2150``0`````15050505``````2150```55555555555555555555215021501215021215055550``215021502150```````215021502150215050215021502150215002150```21````21215`4421`215`````````0`````00```````````````21441``````2155555555555555555``21``````````5055````21502150215021502150215021502150421`````42150AB```Al111```Aj2ABb13013013013000130130130111303030130`201301301130113030333301301301301130130130130301301301301301301110111111``01121`1`0301301301301301301301301301130`10`AGlAGj```````AH```AEj0```AGd41``3423Bd```22AGb2AGfAG`AGh89AGn8AHb8AHdB`79654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:10579654<=3;2:179654<=3;2:179654<=3;2:172779654<=3;2:10264<=3279654<=3;2:1079654<=3;2:1079654<=3;2:1080279654<=3;2:1079;:1777`1179654<=3;2:102799666654<=3;;;222:11079654<=3;2:1079654<=3;2:10`170279654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:10705442488051064<=3231197`25511563202110`64079654<=3;2:1579654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:1079654<=3;2:10779654<=3;2:10880279654<=3;2:10044444AJb`<0`<`0000000000000000000000000000000000770000000000``:`AHnAIj11101010101010101010101010101010110101010101010101010101010101001`11110101010101010101010```AIhAKb`11101010101101011001000110110101010100101010101010101010101010101111101100101010101010101010``AKd0000000100000000010000000000000000010100000000000`````DFhDFjAM`AMn```AMl`432432`ANb```ANfAL`ANh`````876``55`AN`ANd5``````````10:98`67`6`AOjALnANnAKfAKh=AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAKfAIl=0AKjALbALf0AOjALnANn7AKhAM`8765AMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhALbALf0`AKfAIl?0AOjALnANn4AKhAM`5AKj98AMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANh;ALnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhALnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhALnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANh98`AOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhALbALf0ALnAIl3?AOj2ANnAKfAKhAM`5AKj98AMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhALbALf0ALnAM`;:987654000777666555444AKfAKh?>154AIlAKj532410AMfAKlAKnAMlAMnAN`ANbANdANfAL`ANhAMdAOjALnANnAKfAKh0AM`0AIlAKj0ALbALfAMb;AMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAIlAO`21>021>AM`987632?3322?AKlAKnAOjALn8AKfAKh698ALbALfAMbAMdAMf:9AMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjAKfAIlAKj0AMbAMdAMf66ALnANn7AKhAM`87ALbALf876AKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANh>AKj<;5656AKfAKhAIl3?>=<03`ALn14AKlAKnALbALf0`ANn6214AOjAMbAMdAMf<;<;9:68ANl5;>766ANfAL`AN```AMhAKf71AMj`AOb>==>==AKlAIlAKj1ALnAM`917AKh143ALbALfAMbAMdAMf:AKn?=AMlAMnAN`ANbANdANfAL`ANh210`?AIlAOjALnANnAKfAKhAM`6AKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAOjALnANnAKfAKhAM`AIlAKjALbALfAMbAMdAMfAKlAKnAMhAMjAMlAMnAN`ANbANdANfAL`ANhAIlALb=AM`1B@nBA`BAbBAd02BAf21302143211302130214321130213021`````BBl```BBfBBhB@jBBdALjBAh0100100100100BB`0211211240465432654326543265432165226543265432337665442265432323232011442654321065442243265432654326543265432165223211211423326543265432654322046543222654326543265432654326543265432654326543226543210654422044654323216523112106544220404040404040411006544226540404040432333311426543265432654326543265432654326543265432046543221122```````B@fALhANjAOhBBn43210432104321043210343210432103432104321043210432104321033432104321043210432103443432104321043210444443210432104321043210434321043210432104321021043210433210323432104321043210432104321043210432104321043210432103`````BCb00000```0000```00`BCl````111````1BC`BCd00BCnBEdBD`BAnBEf6BDb6BAl000966443311BDd111:775542`765439281765439281765439281765439281988528:77554422765439281765439281754287528752829887654392817218774447654392817654392817654392814276543928184255`5511765439281765439281:7554224392111765439281525765439281:55422:554227;76549281399911175275275252675222:77554422765439281767652:7765542257575525276576552525252111:77776555444392228165427654392817654392817171BFh5587654:3925455945987654:39287654:39287654:39287654:39287654:39287654:39287654:39287654:39287654:392:32:636367:6363ALn643667474747444BFl00000BFn80555==59=88=55`75=`9955;:>;;998866;857=5`98988=8=>;;9988668>;;9988668768;55552;=>;;998866:986:6598765987658;:987=6<599;8`<98685;:987=6<5;:987=6<5;:987=6<5;:987=6<55;:987=6<5;:987=6<5;:987=6<5;:987=6<5`?`788;:987=6<53>;;998866BHbBHdBHf<9<9>=BCl??==<<::321=:=:9````BF`0000000BCn11111BEd2022222222222229210191022222222210`````BEhBHjBIbBHhBHn432104321043210432104414314141143144321104432110432104141431041431043104104104321041443211044321104321044433221004444110444111000444311004432110432101443210141141141432104432104321043210432104321043210432104321044444324321041414114111411333333333333322222222222224104132324141104144114414144103214444310101041432104443211104432104321041143210432104321043210432104444444444444444444444444444444444444444444444444144444441444441``BFb00000000BD`01111101111111111111110111111111`````````````````````````BGjBKbBAjBKdBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKl?>BKnBL`?>AJhBLhBLbBLdAJf??>>==87BGj0BKb087BAj0BKd0BKfALd0BKh0>65=<43109898BLf554:93210BLj65=<=<4321065==<<``BBbBLl:22221BLnBMf8762BM`65BKjBKl?>BKnBL`?>AJhBLhBLbBLdAJf=;:BKfALdBKh?=<54321BKl<;BKnBL`<;AJhBLhBLbBLdAJf?>8BKfALdBKhBLlBM`BLfBLjBKj?BGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBKf=10=17676BBbBLnBMf3ALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBLl=<21210BEj:9BM``43BKfALdBKh5BKjBKlBGjBKbBKnBL`BAjBKdAJhBLhAJf?BLn8BBb1BMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJf43ALdBKhBBb0BLn0BKf004433BLl0BKl0BGj0BKb0??>>66554887733221100??>>87?>65BMf5984BM`BLfBLjBKj765BKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLn?BKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJf:965BBb00BLn00BMf00BKf00ALd00BKh00BLl00BM`00BLf00BLj00BKj00BKl00BGj00BKb00BKn00BL`00BAj00BKd00AJh00BLh00BLb00BLd00AJf00=ALd7BEj11BKh0==<<9988BBbBLnBMfBKf64BLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBb0BLn0BMf0000BKfALd00BKh00BLl0BM`00BLfBLjBKjBKlBGj000BKb000BKn0BL`0BAj0000BKd000AJh0BLh0BLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJf64343;ALdBKh=<;87BBbBLn10BLlBM`932132BMfBKf7632BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBM`BBbBLnALdBKhBLl5BLfBLjBGjBKbBKnBL`BAjBKdAJhBLhBKl0BKfBKj<:965BBbBLnBMf4ALdBKhBLlBM`BLfBLj9;BGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBLl==98798BMfBKfALdBKh;9876:BGjBKb76BAjBKdAJhBLhBLbBLdAJfBBbBLl1BLn12020120?>=<1BM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJf?>=<874333BBbBLnBLl=<21ALdBKh2?>;:BKj>=:954BLjBGjBKbBKl330BAjBKd;:BKf98:654215421AJhBLh10001010001010000000;:432;:<97643>=<<2;:<97643>=<<>>==22;;::<<95577664433>>==2;;::<<557766443302;:57643>=BMf3<;=BM`BLf<8:9BKnBL`98655:3BLbBLd??;:10>=;:BBbBLn;ALdBKhBLlBKjBKlBGjBKb<;BAjBKdAJhBLhAJf`843?>;:91=921121BKf912``<323232542BLj0BLfBAlBEj`98ALdBKh>;:98BM`BBbBLn4433BLlBGj0BKb0BAj0BKd0654654>>654AJhBLhBLbBLd1010:>:98``2BLj>=87BKnBL`87872BKfALd00BKh00BKjBKl?>65=<433220?>65=<44??>>==<=>=>=>=5?=60BAj?76BGjBKb<;2BKdAJhBLh;210100BLlBBbBLn?>276BKnBL`:732ALdBKh6;:32<954106;:32<954106;:32<954654BMfBKf328BM`BLfBLjBKjBKlBGjBKb<;BAjBKdAJhBLhBLbBLdAJf65??BBb7>=54=<0?61320BM`BLfBLjBGjBKb:9BAjBKdAJhBLh?:<;954>=32<;54>=BKl?BKj?0?9900BKn0449BL`44:2044210210;;22155:4:4BBb?>65=0?BKfALdBKhBLl7>=65<;:94BLnBMf5432BM`BLfBLj<=BGjBKb==BKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJf65BBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBMfBKfALdBKhBLlBM`BLfBLjBKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJfBBbBLnBLlBLj32BMfBKfALdBKh5BM`BLf6BKjBKlBGjBKbBKnBL`BAjBKdAJhBLhBLbBLdAJf``BLj=87::9:9873ALdBKh>=<;874320;730;73510>=<;874321<0;7350=;7343BKf22113BKlBGj0BKb0BAj0BKd07610`BE`00``````````````````````BNbBNdBNfBFh1BNh003BNjBNl10001010001010000000BFnBNn10BO`58BOb190BOd89BHdBOfBHfBOh4BOjBOl54326104260`````BMbBMlBMdBMnBMh````BOnBFdBFf210210210210210210210210BDb321321321321321032132132132132132132132132132132121321321210321321321321321321321321321BCl``0000000000000B@l011```````````B@hC@dC@fC@`3210321032103210321032103210032103210321032103210C@b043214321432143214321432143214321432143214321432143214321321432113004321432143214321432143214321432143214`````````C@hC@jC@l00000C@n0`CA```3CAbCAdCAf210``````````````ALlCAhAOn2102102102102211210210221121000021022112102102102102211210210210210210210210210210210210210021022111002122112211002102102102102102102102102102``````B@bB@`B@dAOd3210321032103210321032103210321032103210AMhAMj5432543254325432543254325432543254325432543254325432543254325432543254325432254322105432543254325432543254325432543254325432```BBl`BB`BAh210101011001111111111111AGlAGjAH````21201``AGh00AGn011ABj``Bl11````BhCAl3ABl214021402140214000214021402140214014014012140`32140214021402214014044414021214021402140202140214021402140140214021402140214021402122222``12212232`20222214021402140214021402140214021402140221402CB`CBbCBd```DhDb101010101010101000100E`02121212211221212122122212121212121212122222211222212222221212121212121212122121`Ab````A`CBhACb222222210210210210`0000`2102102102222221010100210``3021021022102`21010111102CBj22111132132123332132132132121321321321321321`3333321333```113343`3121`32132132132132132132123213`3213AI````AHl011`10Hh21021021021021021021021212121001210210210`021021222111021022210210222210102210210210210210210210210210210`001000021210210210210210210210210``2100CD`000``CCnCDb101010101010100001010101010110101010101101010101010101010100111110011`111010101010101010101101```If00000000000000000000000000000000000000000000000000000000000`Jb`CDh000001``1`11`````J`1CDfCE`4CDjJdCDl5643721056437210564372105643721055544564372105643721056437210556472105647210564721056`JfCDn3787865943257865943278659432777778659432786594327862777888778865943277865943332222786594327727865943273333337778`0770577777865943222278659432786594327865943278632786594327865943278659432786594327865943277`5777275507`07`0`75778777777577777777777777777347337786943278787865943277886594327865943278659432786594327865943278659432`0786594327``7865943233CGjCGlCGn11022``Ll````CHbCH`A@b21021021021000210210210000210`3132102102102100102210210210210210210210021021021021021021122003022202102102102102102102102102102`CIjCId`CIhKl````CHn``3`CIf3`CHj26```CHlCI`3`7``48`10`````842L`CJ`CHdKj6584KnCIb=9<>CIlA@dCHfCIn79876<;>:54CId>CIhCIj6543<;:9?>CHn>983CIf328765>=<;CHjCHl3CI`=<7365;:98L`CJ`CHdKj6584KnCIb=9<;CIlA@dCHfCIn119876<;>:54CId>CIhCIj6543<;:9?>CHn>983CIf328765>=<;CHjCHl3CI`=<7365;:98CHhL`Kj1CHd16584KnCIb=9<;CIlA@dCHfCIn<;>:54CId>CIhCIj6543?>CHn>983CIf328765:95:9=CJ`<=CHjCHl4CI`>=8476<;:9?`Kl8L`5CHdKj6594KnCIb>:==;54210===;;;555444=<;:54CId:CIhCIj6543;;CJ`0;:CHjCHlCHnCI`=<7CIf76<;:9L`6CHdKj7654KnCIb=5<;CIlA@dCHfCIn8>76=<;:54CId:CIhCIj6543CHj>98:66<;:54CId:CIhCIj6543;CJ`;:CHjCHlCHnCI`=<7CIf76<;:94321>=8076<;:9L`6CHdKj7654KnCIb=5<;CIlA@dCHfCIn8>76=<;:54CId:CIhCIj6543;CJ`;:CHjCHlCHnCI`=<7CIf76<;:9L`6CHdKj7654KnCIb=5<;CIlA@dCHfCIn8>76=<;:54CId:CIhCIj6543:99;CJ`;:2:::::;>9867::CHj80??`;Kl>=<<>1CHlCHnCI`>=8CIf87=<;:L`7CHdKj8654KnCIb>5=<;:54CId:CIhCIj6543;CJ`;:CHjCHlCHnCI`=<7CIf76<;:9L`6CHdKj7654KnCIb=5<;CIlA@dCHfCIn8>76=<;:54CId:CIhCIj6543;CJ`;:CHjCHlCHnCI`=<7CIf76<;:9L`6CHdKj7654KnCIb=5<;CIlA@dCHfCIn8>76=<;:54CId:CIhCIj65439;CJ`;:CHjCHlCHnCI`=<7CIf76<;:9?9CJd000CJfCJhCJj1CJl0000`CK`0`0`KhCJn21102102102102102102102102102102110221021021021102210210210201021110211021021021021021021021021021111111112122111111021021021021021021021021021021CKbCKd01ACdCKf`Lj1`2`12`1```Lb2CKh4ACf24150241502415024150002415024150241502415041504150124150`3432415024150241502241504150555415021241502415024150202415024150241502415041502415024150241502415024150212222422222012123220222415024150241502415024150241502415024150241502241502CKj0CKlCKn`Ln000000000000000000000000000000000000000000000000000`MfMd```0ABd10101010000101010100010`210101011000101010110101010101010101010111``121`01010101010101010110``Ml`CLd``CLb11100CL`0`1``2`MjMh234A@j2134502134502134502134500213450213450213450022345034503450213450`6213450213450213450221345034503334445551345502134550213450213450213450213450213450213450345021345021345021345021345021345022122622345055221345021345021345021345021345021345021345021345021345011AAl`NbMn02````02AAn1301301301300001301301301303030130`213013001301130303333011301301301301301301301301301301301301301111111211011113013013013013013013013013011301CLjCLlCLn`Gl`111```GhAAj310310310310310310310310303030103`210310310311030330031031031031103103103103103103103103103103101210310310310310310310310310311030`AAf`CMn`Nn`2CMlCMf34```1```0```3`CM`0NlCMb46CMd4CN`49AAhCMhCMj4666666659;4837<210659;4837<210659;4837<210659;4837<210110659;4837<210659;4837<2107659;4837<2106659;4837<21059;4837<21059;4837<2100659;4837<21027`:59;48659;4837<210659;4837<21066659;4837<2106659;4837<21059;483<210888333<<<59;4837<210659;48337<210659;4837<210659;4837<2102366;26659;4837<210659;4837<210659;4837<210659;4837<21059;4837<210659;4837<210659;4837<210659;4837<210659;4837<210659;4837<21064664359;486667``146`646:6659;4837<210659;4837<210659;4837<210659;4837<210659;4837<210659;4837<210659;4837<210659;4837<2103659;4837<2106;2659;4837<2106465959CNb0CNdCNfCNh0121001``Ob``0``CNjCNlO`210210210210210210210222210121021021030210212102102101110210210210210202102102102102100233001222CO`3031121332132132132132132132132144132113AA``D@fOlOf3``3`2````03AAbD@dD@b5362105362105362105362105011003621053621053621053621056210562105362105`433621053621053621053362105621056666210536210536210536210523362105362105362105362105621053621053621053621053621053621053333203333433621053621053621053621053621053621053621053621053621053362105312D@jD@l1`H``A@f0````ACjACh2A@h2130213021302130213021302130123023023002130124021302130213012130230222333230221DA`41324133232413233241324132413241324132413241324132413241221222523413241324132413241324132413241324132412AIfAJd0DFl`Gn`CAnDAh``0`135`0``````11`Nf526NhDAjAAd33385921038592103859210385921022`2238592103859210385921034385920859208592032203238592104``63859210385921038592103859210`33859210859208885558592103222385999221038592103385921085932438592103859210385921038592108592103859210385921038592103859210On496:321`44333334543496:321433``443343374`43:96:313496:321496:321496:321496:321496:321496:321496:32133496:32154496:321444`A@lDBbDBh``ADfDB``2DAn033435DBd002`205460654`011```241005402242424244`````4000ADdAD`472DBf4DBn8DBj;A@n548;6372:1<0548;6372:1<0548;6372:1<0548;6372:1<0700548;6372:1<0548;6372:1<0548;6372:1<058;637:1<08;637:1<08;637:1<0548;6372:1<04`9437548;6372:1<0548;6372:1<06548;6372:1<05548;6372:1<038;637:1<0333777111<<<48;6372:1<025548;6372:1<0548;6372:1<0:548;6372:1<05550548;6372:1<0548;6372:1<0548;6372:1<0548;6372:1<08;637:1<0548;6372:1<0548;6372:1<0548;6372:1<0548;6372:1<0548;6372:1<0822155444545515544375554504055519554318;637:1<0548;6372:1<0548;6372:1<0548;6372:1<0548;6372:1<0548;6372:1<0548;6372:1<0548;6372:1<02548;6372:1<050548;6372:1<06545DClDCnABf`ADj``111``DDb0```````ADhDD`CBf3DDdDDf7ABh554362180543621805436218054362180005436218054362180543621805436218043621804362180354362180`1`715436218054362180554362180555436218028022288844362180`115354362221805436218054362180250554362180445436218054362180543621804362180543621805436218054362180543621805436218041155455`11`11`11542141555555550444544`1103553357554362180445436218054362180543621805436218054362180543621805436218011245436218050543621805DDj`DDl0`DDh1010101010101010101010100101010101000111010101010101010101010101010100001010101010101010101DDn0`Ed000l000`011001011001110001010110010`1100`111`0001DEbn31031031031030DE`4214214214214214214214`42142142142142142214214214214214214214214214214214214214212`44414212242142142142142142142142142142```````````````````````````````EfDEhDEfDEjDElDEnDF`DFb76543210765432107654321076543210<7543210765432107654321076543210765432107654321076543210676543210<776543210765432107654321076543210765432107654321076543210765432107654321074321076543210765432107654321076543210765432107654321076543210765432107654321076543210765<77543210<7<676543210765432107654321076543210765432107654321076543210765432107654321076543210<7543210ABn`AE`ADn22````02AC`1301301301300001301301301303030130`2130130130113030333301000130130130130130130130301301301301301301111111111211111113013013013013013013013013011301DFdDFfAEb00`0`0AEd101010101010101001110110101001001111110101010010101011010101010100010000000010101010101010101001`AF```````0000000000`0000000000000000000000000000000000000000","f":"````````````````````````````````````````````````````````````````{eg{}{{b{c}}}{}}000{{{d{c}}}{{d{c}}}{}}{ce{}{}}000{{}c{}}000{f{{f{h}}}}000{{{f{j}}}{{f{jh}}}}000{{{f{l}}}n}{f{{f{c}}}{}}000{{{f{j}}}{{f{jc}}}{}}000{i{{A`{ceg}}}{}AbAd{{Ah{{Af{ceg}}}}}}00`{i{{Aj{ceg}}}{}AlAd{{Ah{{Af{ceg}}}}}}{{{An{c}}}e{}{}}000`{i{{B`{iceg}}}{}{}Bb{{Bd{ceg}}}}{{}{{d{c}}}{}}444`{{cBf}{{Bh{egi}}}{{Ah{Bj}}}{}BlBn}{{{f{{C`{cegik}}}}}{{Cd{Cb}}}{}{}AdCf{{Ah{{Af{ceg}}}}}}{{{f{l}}}l}{{{f{{d{c}}}}}{{d{c}}}Ch}{{f{f{jc}}}Cj{}}0{{fCl}Cj}0{{}c{}}{i{{`{ceg}}}{}{}Ad{{D`{}{{Cn{{Af{ceg}}}}}}}}```{{{f{{Db{c}}}}{f{Dd}}{Df{{f{c}}}}g}{{Dh{ceik}}}{DjCh}{}{{Dn{c}{{Dl{e}}}}}E`Bn}{i{{Af{ceg}}}{}{}Ad{{Eb{ceg}}}}{ce{}{}}000`?`{{BjEd}l}{{BjEdc}l{{Eh{Ed}{{Dl{Ef}}}}}}6666666{{}{{Ej{l}}}}{{}{{El{l}}}}{{}{{En{l}}}}9999{{}l}{{}};;{F`{{f{c}}}{}}000{F`{{f{jc}}}{}}000{{{f{{C`{cegik}}}}{f{jCb}}}Cj{}{}AdCf{{Ah{{Af{ceg}}}}}}{f{{f{c}}}{}}000{{{f{{Fb{ceg}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}}Cj{}{}Ad}{{{f{{C`{cegik}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}}Cj{}{}AdCf{{Ah{{Af{ceg}}}}}}{F`Cj}000{{{f{l}}{f{l}}}Bf}{{{f{l}}}{{f{Ef}}}}{{{f{l}}{f{jFl}}}{{G`{CjFn}}}}0{{{f{{d{c}}}}{f{jFl}}}GbGd}{{}{{Gf{c}}}{}}0{cc{}}0000000{ce{}{}}000`{c{{Gh{e}}}{{Ah{Gj}}}Gl}`{{ik}{{Af{ceg}}}{}{}Ad{{Ah{{Af{ceg}}}}}{{Ah{{Af{ceg}}}}}}{c{{Af{egi}}}{{Ah{Gj}}}{}{GnH`}{Ad{Bn{}{{Hb{Hd}}}}Hf}}`{e{{Hh{c}}}{}{{Ah{c}}}}{{}F`}000{{}c{}}0000000{{{Hj{c}}}{{Hj{h}}}{}}000{{{Hl{c}}}{{Hl{h}}}{}}0{{{Hn{c}}}{{Hn{h}}}{}}000{{{An{c}}}e{}{}}00044444444{{{d{c}}}{{Id{{Df{c}}I`Ib}}}{}}{{}c{}}000`{k{{If{cegi}}}{IhIj}{}{}Ad{{D`{}{{Cn{{Id{c{Af{egi}}}}}}}}}}`{{{f{{Fb{ceg}}}}{f{jCb}}{f{g}}{f{Il}}}In{}{}Ad}{{{f{{C`{cegik}}}}{f{jCb}}{f{g}}{f{Il}}}In{}{}AdCf{{Ah{{Af{ceg}}}}}}{{cm}{{C`{egick}}}Cf{}{}{}{{Ah{{Af{egi}}}}}{{Dn{{f{c}}}{{Dl{k}}}}}}`{{ce}{{Af{J`gi}}}{{D`{}{{Cn{{f{Jb}}}}}}}{{Ah{Jd}}}Jf{{Bn{}{{Hb{Hd}}}}}}{i{{`{ceg}}}{}{}Ad{{Ah{{Af{ceg}}}}}}{{{f{{Fb{ceg}}}}{f{Cb}}FfFh{f{Fj}}{f{g}}}Jh{}{}Ad}{{{f{{C`{cegik}}}}{f{Cb}}FfFh{f{Fj}}{f{g}}}Jh{}{}AdCf{{Ah{{Af{ceg}}}}}}{i{{Fb{ceg}}}{}{}Ad{{Dn{Jj}{{Dl{{Af{ceg}}}}}}}}59{i{{Af{ceg}}}{}{}Ad{{Ah{{Af{ceg}}}}}}{{{f{{Eb{}{{Jl{c}}{Jn{e}}}}}}{f{jc}}{f{jK`}}}CjKb{}}0{{{f{{Fb{ceg}}}}{f{jCb}}Ff{f{g}}{f{jK`}}}Cj{}{}Ad}{{{f{{C`{cegik}}}}{f{jCb}}Ff{f{g}}{f{jK`}}}Cj{}{}AdCf{{Ah{{Af{ceg}}}}}}`{{{f{j{Fb{ceg}}}}{f{jCb}}Ff{f{g}}Kd}{{Df{{Kf{ceg}}}}}{}{}Ad}{{{f{j{C`{cegik}}}}{f{jCb}}Ff{f{g}}Kd}{{Df{{Kf{ceg}}}}}{}{}AdCf{{Ah{{Af{ceg}}}}}}{{{f{l}}}Ed}`{{{f{{Kh{c}}}}k}{{Kj{egi}}}{}{}KlAd{{Dn{Kn{f{c}}Bf}{{Dl{{L`{egi}}}}}}}}`{{e{Df{g}}k}{{Lb{cegimo}}}{LdIjCh}{{Lh{{Lf{c}}}}}{{Lh{c}}}Ch{{Dn{c}{{Dl{i}}}}}{LjLl}Bn}<`{i{{Ln{ceg}}}Ch{}Ad{{Ah{{Af{ceg}}}}}}`{{{Mb{M`}}M`}{{Md{c}}}Mf}{c{{d{c}}}{}}`{{{f{Mh}}}{{Mj{c}}}Ml}`{{ce{Df{e}}i}{{Mn{gkm}}}{{Ah{Bj}}}{IhN`}Ch{{Eh{e}{{Dl{g}}}}}NbBn}`{{}{{d{c}}}{}}{Nd{{d{c}}}{}}{i{{Fb{ceg}}}{}{}Ad{{Dn{Jj}{{Dl{{Af{ceg}}}}}}}}{e{{Nf{cgik}}}Ch{{Nj{{Lf{{Nh{c}}}}}}}{}GnBn}``{i{{A`{ceg}}}{}AbAd{{Ah{{Af{ceg}}}}}}0{i{{`{ceg}}}{}{}Ad{{D`{}{{Cn{{Af{ceg}}}}}}}}`````{i{{Nl{ceg}}}{}NnAd{{Ah{{Af{ceg}}}}}}`{e{{O`{ce}}}{}{{Ob{c}}}}{{{f{{Fb{ceg}}}}}{{Jj{Od}}}{}{}Ad}{{{f{{C`{cegik}}}}}{{Jj{Od}}}{}{}AdCf{{Ah{{Af{ceg}}}}}}{{{f{{Eb{}{{Jl{c}}{Jn{e}}}}}}}{{Jj{Od}}}Kb{}}01`{{{Mb{c}}cg}{{Of{cei}}}{Ih{Oh{Cl}}Oj}Ch{{Dn{c}{{Dl{e}}}}}Ol}{c{{Nh{eg}}}On{}{}}7``{{{f{{Fb{ceg}}}}}A@`{}{}Ad}{{{f{{C`{cegik}}}}}A@`{}{}AdCf{{Ah{{Af{ceg}}}}}}{{{f{l}}{f{{Ej{l}}}}}A@b}{{{f{l}}{f{{El{l}}}}}A@d}{{{f{l}}{f{c}}A@f}A@h{}}{{{f{l}}{f{c}}}A@j{}}{{{f{l}}{f{c}}A@l}A@n{}}{{{f{l}}{f{c}}AA`}AAb{}}{{{f{l}}f}AAd}{{{f{l}}{f{c}}AAf}AAh{}}{{{f{l}}{f{c}}}AAj{}}{{{f{l}}{f{c}}AAl}AAn{}}{{{f{l}}{f{c}}AB`}ABb{}}{{{f{l}}{f{c}}}ABd{}}{{{f{l}}{f{c}}ABf}ABh{}}{{{f{l}}{f{c}}ABj}ABl{}}{{{f{l}}{f{c}}ABn}AC`{}}{{{f{l}}{f{c}}}ACb{}}{{{f{l}}{f{{En{l}}}}ACd}ACf}`{c{{ACh{e}}}{{Ah{ACj}}}H`}{{{f{{Fb{ceg}}}}}ACl{}{}Ad}{{{f{{C`{cegik}}}}}ACl{}{}AdCf{{Ah{{Af{ceg}}}}}}`{c{{ACn{eg}}}OnGnBn}```{{{f{{AD`{c}}}}}{{ADd{ADbegc}}}BnChADf}`{{{f{Dd}}{f{Dd}}}{{ADh{ceg}}}ChADjBn}`{{ci}{{`{ekc{`{{Dn{{f{k}}}{{Dl{c}}}}}}g}}}Ch{}Ad{{Ah{{Af{ecg}}}}}{}}{fc{}}0{fADl}{fBj}`{Bf{{ADn{ceg}}}{}AE`Bn}`{{ikAEb}{{AEd{ceg}}}{}AbBn{{Ah{{Af{ceg}}}}}{{Ah{{Af{ceg}}}}}}{{}{{G`{c}}}{}}000{c{{G`{e}}}{}{}}000{{}{{G`{c}}}{}}000{{}{{G`{c{AEf{c}}}}}{}}000{fAEh}000{ce{}{}}000{{}c{}}000{f{{Df{{f{c}}}}}{}}000{{{f{j{Eb{}{{Jl{c}}{Jn{e}}}}}}{f{jc}}e}{{Df{g}}}Kb{}{}}{{{f{j{Fb{ceg}}}}{f{jCb}}{f{AEj}}FfFh{f{g}}{f{jAEl}}{f{j{AEn{c}}}}{f{Fj}}}Cj{}{}Ad}{{{f{j{C`{cegik}}}}{f{jCb}}{f{AEj}}FfFh{f{g}}{f{jAEl}}{f{j{AEn{c}}}}{f{Fj}}}Cj{}{}AdCf{{Ah{{Af{ceg}}}}}}{c{{ACn{eg}}}LdGnBn}{c{{Gh{e}}}{{Ah{Gj}}}Gl}`{{{Mb{c}}cg}{{AF`{cei}}}{Ih{Oh{Cl}}Oj}Ch{{Dn{c}{{Dl{e}}}}}Ol}`{{{f{{Eb{}{{Jl{c}}{Jn{e}}}}}}{f{c}}}{{Af{egi}}}Kb{}{}{}}{{}c{}}000``````````{eg{}{{b{c}}}{}}00{ce{}{}}00;;;{f{{f{h}}}}00{{{f{j}}}{{f{jh}}}}00{ABbDf}{ABbAFb}{f{{f{c}}}{}}00{{{f{j}}}{{f{jc}}}{}}00{{{An{c}}}e{}{}}00{{{f{{Aj{ceg}}}}}{{Cd{Cb}}}ChAlAd}{{{Aj{ceg}}i}{{Aj{ceg}}}{}AlAdAh}{{{Aj{ceg}}Bf}{{Aj{ceg}}}{}AlAd}{{{f{AB`}}}AB`}{{{f{ABb}}}ABb}{{f{f{jc}}}Cj{}}0{{fCl}Cj}0>>>{{{f{l}}AB`}ABb}{{}c{}}{{}ABb}{F`{{f{c}}}{}}00{F`{{f{jc}}}{}}00{{{f{{Aj{ceg}}}}{f{jCb}}}CjChAlAd}???{{{f{{Aj{ceg}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}}CjChAlAd}{F`Cj}00{{{f{AB`}}{f{AB`}}}Bf}{{{f{ABb}}{f{ABb}}}Bf}{{f{f{c}}}Bf{}}00{{{f{AB`}}{f{jFl}}}Gb}{{{f{ABb}}{f{jFl}}}Gb}{cc{}}00000{ce{}{}}00{{{Aj{ceg}}i}{{Aj{ceg}}}{}AlAd{{Ah{Od}}}}{{}F`}00{{}c{}}00000{{{Hj{c}}}{{Hj{h}}}{}}00{{{Hl{c}}}{{Hl{h}}}{}}0{{{Hn{c}}}{{Hn{h}}}{}}00{{{An{c}}}e{}{}}00444444{{}c{}}00{{{f{{Aj{ceg}}}}{f{jCb}}{f{g}}{f{Il}}}InChAlAd}{{{f{{Aj{ceg}}}}{f{Cb}}FfFh{f{Fj}}{f{g}}}JhChAlAd}{i{{Aj{ceg}}}{}AlAd{{Ah{{Af{ceg}}}}}}3{{{Aj{ceg}}c}{{Aj{ceg}}}{}AlAd}{{{Aj{ceg}}{Df{c}}}{{Aj{ceg}}}{}AlAd}{{{Aj{ceg}}i}{{Aj{ceg}}}{}AlAd{{Dn{}{{Dl{c}}}}}}{{{f{{Aj{ceg}}}}{f{jCb}}Ff{f{g}}{f{jK`}}}CjChAlAd}{{{f{j{Aj{ceg}}}}{f{jCb}}Ff{f{g}}Kd}{{Df{{Kf{ceg}}}}}ChAlAd}{{{Aj{ceg}}i}{{Aj{ceg}}}{}AlAd{{Ah{AFd}}}}{{{f{l}}AB`}ABb}0{ABbAFf}{{{f{{Aj{ceg}}}}}{{Jj{Od}}}ChAlAd}{{{f{{Aj{ceg}}}}}A@`ChAlAd}{{{f{{Al{}{{AFh{c}}}}}}{f{c}}AB`}ABb{}}{{{Aj{ceg}}i}{{Aj{ceg}}}{}AlAd{{Dn{{f{e}}AB`}{{Dl{ABb}}}}}}5{{{f{{Aj{ceg}}}}}AClChAlAd}6{ABbAFj}{fc{}}0{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{AEf{c}}}}}{}}00{fAEh}00{ce{}{}}00{{}c{}}00{f{{Df{{f{c}}}}}{}}00{{{f{j{Aj{ceg}}}}{f{jCb}}{f{AEj}}FfFh{f{g}}{f{jAEl}}{f{j{AEn{c}}}}{f{Fj}}}CjChAlAd}{{}c{}}00{{{f{l}}AB`}ABb}{{{Aj{ceg}}i}{{Aj{ceg}}}{}AlAd{{Ah{Od}}}}{{ABbc}ABb{{Ah{AFl}}}}`````````````````````````````````{eg{}{{b{c}}}{}}000000000000{ce{}{}}0000000000008888888888888{f{{f{h}}}}000000000000{{{f{j}}}{{f{jh}}}}000000000000{f{{f{c}}}{}}000000000000{{{f{j}}}{{f{jc}}}{}}000000000000{{{An{c}}}e{}{}}000000000000{{AFnM`}AG`}{{{f{AGb}}}AGb}{{{f{AGd}}}AGd}{{{f{AGf}}}AGf}{{{f{AG`}}}AG`}{{{f{AGh}}}AGh}{{{f{AGj}}}AGj}{{{f{AGl}}}AGl}{{{f{AGn}}}AGn}{{{f{AH`}}}AH`}{{{f{AHb}}}AHb}{{{f{AEj}}}AEj}{{{f{{AHd{c}}}}}{{AHd{c}}}Ch}{{f{f{jc}}}Cj{}}00000000000{{fCl}Cj}00000000000{{{f{AGb}}{f{AGb}}}AHf}{AHbAFj}{{f{f{c}}}AHf{}}{ce{}{}}000000000000{AHbBj}{{}AGf}{{}AGh}{{}AGj}{{}AGl}{{}AGn}{{}AHb}{F`{{f{c}}}{}}000000000000{F`{{f{jc}}}{}}000000000000{f{{f{c}}}{}}000000000000{{{f{{Bd{}{{Jl{c}}}}}}{f{c}}{f{e}}{f{g}}FjFh}{{Cd{{AHh{e}}}}}KbBb{}}{{{f{{B`{iceg}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}}Cj{}{}Bb{{Bd{ceg}}}}{{{f{AHb}}c}Cj{{AHj{AG`AFj}}}}{F`Cj}000000000000{{{f{AGb}}{f{AGb}}}Bf}{{{f{AGd}}{f{AGd}}}Bf}{{{f{AH`}}{f{AH`}}}Bf}{{{f{AEj}}{f{AEj}}}Bf}{{{f{{AHd{c}}}}{f{{AHd{c}}}}}BfIj}{{f{f{c}}}Bf{}}00`{{AHdAHl}AHd}{AHdAHl}{{{f{AGb}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AGd}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AGf}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AG`}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AGh}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AGj}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AGl}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AGn}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AH`}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AHb}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AEj}}{f{jFl}}}{{G`{CjFn}}}}{{{f{{AHd{c}}}}{f{jFl}}}{{G`{CjFn}}}Gd}{{{f{{B`{iceg}}}}{f{jFl}}}GbGdGd{BbGd}{{Bd{ceg}}Gd}}{AHbHd}{cc{}}0{AHnAGd}{AFjAGf}{AHnAGf}{AGdAGf}4444444{AFjAH`}{AGdAH`}{{{f{Dd}}}AHb}7{BjAHb}8{{{f{AI`}}}AHd}999999999999999{ce{}{}}000000000000`{AHd}{{{f{AGb}}{f{jc}}}CjAIb}{{{B`{iceg}}k}{{B`{iceg}}}{}{}Bb{{Bd{ceg}}}{{Ah{Od}}}}{AHbAId}{{}F`}000000000000{{}c{}}0000000000000000000000000{{{Hj{c}}}{{Hj{h}}}{}}000000000000{{{Hl{c}}}{{Hl{h}}}{}}000000000000{{{Hn{c}}}{{Hn{h}}}{}}000000000000{{{An{c}}}e{}{}}00000000000044444444444444444444444444{{}c{}}000000000000{AGbBf}{{{f{{B`{iceg}}}}{f{jCb}}{f{g}}{f{Il}}}In{}{}Bb{{Bd{ceg}}}}{{AFnAFn}AG`}{AGhAGj}{AGhAGn}{AHbAIf}{AGhAGl}{{{f{{Bd{}{{Jl{c}}}}}}{f{c}}FjFh}JhKb}0{{{f{{B`{iceg}}}}{f{Cb}}FfFh{f{Fj}}{f{g}}}Jh{}{}Bb{{Bd{ceg}}}}{cAG`{{Eh{{f{jAIh}}}}}}{cAHd{{Ah{AI`}}}}{i{{B`{iceg}}}{}{}Bb{{Bd{ceg}}}}<<<<<<{AGnF`}{{AHdc}AHd{{Ah{M`}}}}{AHdM`}{{{f{AGd}}}AIj}{{{f{AGb}}{f{AGb}}}{{Df{AHf}}}}`{AHbAFn}{{{f{AG`}}}{{f{AIl}}}}{{AFnJj}AG`}{{AHdc}AHd{{Ah{AIn}}}}{AHdAIn}{{AFnJjAJ`}AG`}{AGfAJb}{AGnf}{AHbAJd}{{{f{{B`{iceg}}}}}{{Jj{Od}}}{}{}Bb{{Bd{ceg}}}}{AHbGj}{{AHdBf}AHd}{AHdBf}{{{f{{B`{iceg}}}}}A@`{}{}Bb{{Bd{ceg}}}}`{AGfAH`}{AGhAH`}{{{f{{B`{iceg}}}}}ACl{}{}Bb{{Bd{ceg}}}}{fc{}}00000000000{{{f{AG`}}{f{{AJh{M`AJfAJf}}}}}AG`}{{}{{G`{c}}}{}}000000000000{c{{G`{e}}}{}{}}000000000000{{}{{G`{c}}}{}}000000000000{{}{{G`{c{AEf{c}}}}}{}}000000000000{fAEh}000000000000{ce{}{}}000000000000{{}c{}}000000000000{{}AGb}{f{{Df{{f{c}}}}}{}}000000000000{{{f{{Bd{}{{Jl{c}}}}}}{f{jc}}{f{AEj}}FjFh}{{Df{{d{e}}}}}Kb{}}0{{{f{j{B`{iceg}}}}{f{jCb}}{f{AEj}}FfFh{f{g}}{f{jAEl}}{f{j{AEn{c}}}}{f{Fj}}}Cj{}{}Bb{{Bd{ceg}}}}{AHbAJj}{{}c{}}000000000000{{{B`{iceg}}k}{{B`{iceg}}}{}{}Bb{{Bd{ceg}}}{{Ah{Od}}}}{AGhM`}{{AGhAFj}AGh}{{AGhAGj}AGh}{{AGhAGl}AGh}{{AGhM`}AGh}```````{eg{}{{b{c}}}{}}{ce{}{}}>{f{{f{h}}}}{{{f{j}}}{{f{jh}}}}{f{{f{c}}}{}}{{{f{j}}}{{f{jc}}}{}}{{{An{c}}}e{}{}}{{{f{AJb}}}AJb}{{f{f{jc}}}Cj{}}{{fCl}Cj}8{F`{{f{c}}}{}}{F`{{f{jc}}}{}}7{F`Cj}{{{f{AJb}}{f{AJb}}}Bf}{{f{f{c}}}Bf{}}00{{{f{AJb}}{f{jFl}}}{{G`{CjFn}}}}{cc{}}0{ce{}{}}{{}F`}{{}c{}}0{{{Hj{c}}}{{Hj{h}}}{}}{{{Hl{c}}}{{Hl{h}}}{}}{{{Hn{c}}}{{Hn{h}}}{}}{{{An{c}}}e{}{}}44{{}c{}}{AGfAJb}{AGfAH`}{fc{}}{{}{{G`{c}}}{}}{c{{G`{e}}}{}{}}{{}{{G`{c}}}{}}{{}{{G`{c{AEf{c}}}}}{}}{fAEh}{ce{}{}}{{}c{}}{f{{Df{{f{c}}}}}{}}{{}c{}}````{eg{}{{b{c}}}{}}0{{AHnM`AFj}AHn}{{AHnc}AHn{{D`{}{{Cn{AJl}}}}}}{ce{}{}}066{f{{f{h}}}}0{{{f{j}}}{{f{jh}}}}0{f{{f{c}}}{}}0{{{f{j}}}{{f{jc}}}{}}0{{{An{c}}}e{}{}}0{{{f{AHn}}}AHn}{{{f{AIj}}}AIj}{{f{f{jc}}}Cj{}}0{{fCl}Cj}099{F`{{f{c}}}{}}0{F`{{f{jc}}}{}}088{F`Cj}0{AHnAFn}{{{f{AHn}}{f{AHn}}}Bf}{{{f{AIj}}{f{AIj}}}Bf}{{{f{AHn}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AIj}}{f{jFl}}}{{G`{CjFn}}}}{cc{}}000{ce{}{}}0{{}F`}0{{}c{}}000{{{Hj{c}}}{{Hj{h}}}{}}0{{{Hl{c}}}{{Hl{h}}}{}}0{{{Hn{c}}}{{Hn{h}}}{}}0{{{An{c}}}e{}{}}04444{{}c{}}0{{{f{c}}}Bf{}}{{AFnAFn}AHn}{{{f{AJn}}Fj}AIj}{{{f{AHn}}}AIj}{AHnAFn}{AHnAK`}{fc{}}0{{}{{G`{c}}}{}}0{c{{G`{e}}}{}{}}0{{}{{G`{c}}}{}}0{{}{{G`{c{AEf{c}}}}}{}}0{fAEh}0{ce{}{}}0{{}c{}}0{f{{Df{{f{c}}}}}{}}0{{}c{}}0```{eg{}{{b{c}}}{}}0`{{{f{jAIh}}AKb}Cj}{{{f{jAIh}}AFnAFnM`}Cj}{ce{}{}}066{f{{f{h}}}}0{{{f{j}}}{{f{jh}}}}0{{{f{jAIh}}AFnAFnAFn}Cj}{f{{f{c}}}{}}0{{{f{j}}}{{f{jc}}}{}}0{AIhAG`}{{{An{c}}}e{}{}}0{AKbAFn}{{{f{jAIh}}AFnM`}Cj}{{{f{AKb}}}AKb}{{f{f{jc}}}Cj{}}{{fCl}Cj}{{{f{jAIh}}}Cj}=={{}AIh}{F`{{f{c}}}{}}0{F`{{f{jc}}}{}}0<<{F`Cj}0{{{f{jAIh}}AKd}Cj}{AKbAIn}{{{f{AKb}}{f{jFl}}}{{G`{CjFn}}}}{cc{}}000{ce{}{}}0{{}F`}0{{}c{}}000{{{Hj{c}}}{{Hj{h}}}{}}0{{{Hl{c}}}{{Hl{h}}}{}}0{{{Hn{c}}}{{Hn{h}}}{}}0{{{An{c}}}e{}{}}04444{{}c{}}0{{{f{jAIh}}AFn}Cj}0{{}AIh}2{{{f{jAIh}}AFnAFn}Cj}{AKbM`}{{{f{jAIh}}AFnJj}Cj}{{{f{jAIh}}AFnJjAJ`}Cj}{AKbAIn}{fc{}}{{}{{G`{c}}}{}}0{c{{G`{e}}}{}{}}0{{}{{G`{c}}}{}}0{{}{{G`{c{AEf{c}}}}}{}}0{fAEh}0{ce{}{}}0{{}c{}}0{f{{Df{{f{c}}}}}{}}0{{}c{}}0``{eg{}{{b{c}}}{}}{ce{}{}}4{f{{f{h}}}}{{{f{j}}}{{f{jh}}}}{f{{f{c}}}{}}{{{f{j}}}{{f{jc}}}{}}{{{An{c}}}e{}{}}{AKbAFn}{AKdAFn}{{{f{AKd}}}AKd}{{f{f{jc}}}Cj{}}{{fCl}Cj}:{F`{{f{c}}}{}}{F`{{f{jc}}}{}}9{F`Cj}{AKbAIn}{AKdAIn}{{{f{AKd}}{f{jFl}}}{{G`{CjFn}}}}{cc{}}{AKbAKd}1{ce{}{}}{{}F`}{{}c{}}0{{{Hj{c}}}{{Hj{h}}}{}}{{{Hl{c}}}{{Hl{h}}}{}}{{{Hn{c}}}{{Hn{h}}}{}}{{{An{c}}}e{}{}}44{{}c{}}{AKdKd}{AKbM`}=>={fc{}}{{}{{G`{c}}}{}}{c{{G`{e}}}{}{}}{{}{{G`{c}}}{}}{{}{{G`{c{AEf{c}}}}}{}}{fAEh}{ce{}{}}{{}c{}}{f{{Df{{f{c}}}}}{}}{{}c{}}````````````````````````````````````````{{}f}````````````````````````{eg{}{{b{c}}}{}}000000000000000000000000{ce{}{}}0000000000000000000000005555555555555555555555555{f{{f{h}}}}000000000000000000000000{{{f{j}}}{{f{jh}}}}000000000000000000000000{{{f{AKf}}}AKh}{{{f{AIl}}}AKj}{{{f{AKl}}}AKn}{{{f{AIl}}AL`}{{f{{Lf{M`}}}}}}{{{f{AKj}}AL`}{{f{{Lf{M`}}}}}}{{{f{jALb}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}{{{f{jALf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}0{f{{f{c}}}{}}000000000000000000000000{{{f{j}}}{{f{jc}}}{}}000000000000000000000000{ALbAIl}{ALfAIl}0`{{}ALh}{{}{{ALj{ALb}}}}{{{f{jAKl}}}ALl}{F`ALf}{{{An{c}}}e{}{}}000000000000000000000000{{{f{jAKl}}}Cj}{{{f{ALn}}}ALn}{{{f{AKf}}}AKf}{{{f{AKh}}}AKh}{{{f{{AM`{ce}}}}}{{AM`{ce}}}ChCh}{{{f{AIl}}}AIl}{{{f{AKj}}}AKj}{{{f{ALb}}}ALb}{{{f{ALf}}}ALf}{{{f{AMb}}}AMb}{{{f{AMd}}}AMd}{{{f{AMf}}}AMf}{{{f{AKl}}}AKl}{{{f{AKn}}}AKn}{{{f{{AMh{c}}}}}{{AMh{c}}}Ch}{{{f{AMj}}}AMj}{{{f{AMl}}}AMl}{{{f{AMn}}}AMn}{{{f{AN`}}}AN`}{{{f{ANb}}}ANb}{{{f{ANd}}}ANd}{{{f{ANf}}}ANf}{{{f{AL`}}}AL`}{{{f{ANh}}}ANh}{{f{f{jc}}}Cj{}}0000000000000000000000{{fCl}Cj}0000000000000000000000{AMhBf}{AMjBf}`{ce{}{}}000000000000000000000000{{{f{jALb}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}{{{f{jALf}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}0{{}ALn}{{}AIl}{{}ALb}{{}AKl}{F`{{f{c}}}{}}000000000000000000000000{F`{{f{jc}}}{}}000000000000000000000000{f{{f{c}}}{}}000000000000000000000000{F`Cj}000000000000000000000000{{{f{jALb}}Bf}Cj}{{{f{jALf}}Bf}Cj}0{{{f{ALn}}{f{ALn}}}Bf}{{{f{{AM`{ce}}}}{f{{AM`{ce}}}}}BfIjIj}{{{f{AMl}}{f{AMl}}}Bf}{{{f{AMn}}{f{AMn}}}Bf}{{{f{AN`}}{f{AN`}}}Bf}{{{f{ANb}}{f{ANb}}}Bf}{{{f{ANd}}{f{ANd}}}Bf}{{{f{ANf}}{f{ANf}}}Bf}{{{f{AL`}}{f{AL`}}}Bf}{{{f{ANh}}{f{ANh}}}Bf}{{f{f{c}}}Bf{}}00000000000000{{{f{AKf}}ANh}{{AM`{AL`ANf}}}}{{{f{AKh}}ANh}{{AM`{AL`ANf}}}}{{{f{{AMh{c}}}}ANh}{{AM`{{f{c}}Cj}}}{}}{{{f{AMj}}ANh}{{AM`{AL`ANf}}}}{{{f{AKf}}{f{{Lf{c}}}}{f{{Lf{e}}}}}{{ANj{ce}}}{}{}}{{{f{jALb}}{f{{Lf{AKj}}}}}Cj}{{{f{jALf}}{f{{Lf{AKj}}}}}Cj}{{{f{AIl}}}{{Df{{Id{{ALd{M`AJf}}{f{{Lf{M`}}}}}}}}}}{{{f{AKj}}}{{Df{{Id{{ALd{M`AJf}}{f{{Lf{M`}}}}}}}}}}{{{f{ALn}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AKf}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AKh}}{f{jFl}}}{{G`{CjFn}}}}{{{f{{AM`{ce}}}}{f{jFl}}}{{G`{CjFn}}}GdGd}{{{f{AIl}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AKj}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AMf}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AKl}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AKn}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AMl}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AMn}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AN`}}{f{jFl}}}{{G`{CjFn}}}}{{{f{ANb}}{f{jFl}}}{{G`{CjFn}}}}{{{f{ANd}}{f{jFl}}}{{G`{CjFn}}}}{{{f{ANf}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AL`}}{f{jFl}}}{{G`{CjFn}}}}{{{f{ANh}}{f{jFl}}}{{G`{CjFn}}}}{{AMdM`{f{jc}}}Cj{{AHj{{f{{AM`{{Id{{ALd{M`AJf}}{f{{Lf{M`}}}}}}{ALd{M`AJf}}}}}}}}}}{cc{}}0000{{{f{AKf}}}AKh}1{{{f{{AM`{ce}}}}}cCh{}}22{{{f{AIl}}}AKj}333333333333333333333333333333333333333333{cAIl{{D`{}{{Cn{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}}}}}}{cAKl{{D`{}{{Cn{AKj}}}}}}{ce{}{}}000000000000000000000000{F`ANf}{F`AL`}{{{f{ANl}}AL`}{{f{{Lf{M`}}}}}}{{{f{ANn}}AL`}{{f{{Lf{M`}}}}}}{{{f{AIl}}AL`}{{f{{Lf{M`}}}}}}{{{f{AKj}}AL`}{{f{{Lf{M`}}}}}}{{{f{AKl}}F`}AKj}{{{f{AKn}}F`}AKj}{{{f{AO`}}ANf}{{ALd{M`AJf}}}}{{{f{AIl}}ANf}{{ALd{M`AJf}}}}{{{f{AKj}}ANf}{{ALd{M`AJf}}}}{{{f{{AMh{c}}}}ANf}{{ALd{M`AJf}}}AOb}{{{f{AO`}}AL`}{{ALd{M`AJf}}}}{{{f{AIl}}AL`}{{ALd{M`AJf}}}}{{{f{AKj}}AL`}{{ALd{M`AJf}}}}{{{f{{AMh{c}}}}AL`}{{ALd{M`AJf}}}AOb}{{{f{{AM`{ce}}}}{f{jg}}}CjCfCfAIb}{{{f{ANd}}{f{jc}}}CjAIb}{{{f{ANf}}{f{jc}}}CjAIb}{{{f{AL`}}{f{jc}}}CjAIb}{{{f{ANh}}{f{jc}}}CjAIb}{{{f{AIl}}}AMf}{{{f{AKj}}}AMf}{{{f{{AMh{c}}}}}AOd{}}{{{f{AIl}}AL`}{{f{{ALd{M`AJf}}}}}}{{{f{AIl}}ANf}{{f{{ALd{M`AJf}}}}}}{{{f{AKj}}ANf}{{f{{ALd{M`AJf}}}}}}{{{f{AKj}}AL`}{{f{{ALd{M`AJf}}}}}}{{{f{{AMh{c}}}}AL`}{{f{c}}}{}}{{{f{AKl}}}{{AOf{F`}}}}{{{f{AKn}}}{{AOf{F`}}}}{{}F`}000000000000000000000000{{}c{}}0000000000000000000000000000000000000000000000000{{{Hj{c}}}{{Hj{h}}}{}}000000000000000000000000{{{Hl{c}}}{{Hl{h}}}{}}0000000000000000000000{{{Hn{c}}}{{Hn{h}}}{}}000000000000000000000000{{{An{c}}}e{}{}}00000000000000000000000044444444444444444444444444444444444444444444444444{{}c{}}{{{f{AKf}}}AOh}{{{f{AIl}}}AMb}{AKjAMb}{{{f{AKj}}}AMb}444{AOjAIl}{{}c{}}000000000000000000000000{{{f{{AM`{ce}}}}}Bf{}{}}{{{f{AKj}}}Bf}{{{f{AKl}}}Bf}{{{f{AKn}}}Bf}{{{f{ANb}}AOl}Bf}{AN`Bf}10;{{{f{AKh}}}AOh};9{{{f{AKl}}}AOn}{{{f{AKn}}}AOn}{{{f{{AMh{c}}}}}{{B@`{c}}}{}}{{{f{AMj}}}B@b}{{{f{AIl}}}AMd}{{{f{AKj}}}AMd}`{ALnBf}{{{f{AIl}}}{{Df{{Id{{ALd{M`AJf}}{f{{Lf{M`}}}}}}}}}}{{{f{AKj}}}{{Df{{Id{{ALd{M`AJf}}{f{{Lf{M`}}}}}}}}}}{{{f{AKl}}}F`}{{{f{AKn}}}F`}{{{f{jALb}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}{{{f{jALf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}0`{{{f{{Lf{M`}}}}F`}ANn}{{}AIl}{{}ALb}{F`ALf}{{}AKl}{{{f{jAOj}}}Df}{{{f{jAMb}}}{{Df{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}}}}{{{f{jAMd}}}Df}{{{f{jAMf}}}{{Df{{AM`{AL`ANf}}}}}}{{{f{AKf}}ANh}{{Df{ANh}}}}{{{f{AKh}}ANh}{{Df{ANh}}}}{{{f{AKf}}ANh}ANh}{{{f{AKh}}ANh}ANh}{{}c{}}000{{{f{ANl}}}F`}{{{f{ANn}}}F`}{{{f{AIl}}}F`}{{{f{AKj}}}F`}{{{f{ALb}}}F`}{{{f{ALf}}}F`}0{ANfF`}{AL`F`}{AN`AN`}``{{{f{{AMh{c}}}}}{{B@d{c}}}AOb}{{{f{AKf}}{f{{Lf{c}}}}{f{{Lf{e}}}}}{{B@f{ce}}}{}{}}{AMdAMb}{AMhf}{AMjf}`{{{f{AOb}}}{{ALd{M`AJf}}}}{{{f{jALb}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}{{{f{jALf}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}0{{{f{jALb}}F`F`}Cj}{{{f{jALf}}F`F`}Cj}0{{{f{jAKl}}F`F`F`}Cj}{{{f{AIl}}}{{B@h{AOj}}}}{{{f{AKj}}}{{B@h{AOj}}}}{{}{{B@j{ALb}}}}{ALnBf}{{{f{{AM`{ce}}}}}cCh{}}{AN`M`}{fc{}}0000000000000000000000{ANfF`}{AL`F`}{ANhF`}`{{{f{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}}{f{c}}}{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}{{B@l{M`}}}}{{AIl{f{c}}}AIl{{B@l{M`}}}}{{}{{G`{c}}}{}}000000000000000000000000{c{{G`{e}}}{}{}}000000000000000000000000{{}{{G`{c}}}{}}000000000000000000000000{{}{{G`{c{AEf{c}}}}}{}}000000000000000000000000{fAEh}000000000000000000000000{ce{}{}}000000000000000000000000{{}c{}}000000000000000000000000{f{{Df{{f{c}}}}}{}}000000000000000000000000{{}c{}}000000000000000000000000{F`AIl}{{F`F`}ALb}{{F`F`F`}AKl}{{{f{{AM`{ce}}}}}{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}AObAOb}{ALb{{B@j{ALb}}}}{B@n}{BA`Bf}{BAb}{BAd}0{BA`}{BAf}321032{B@nAL`}5{BAbANf}{BAdANf}0{BA`AL`}{BAfAL`}{BAbAL`}{BAdAL`}3210{B@nALd}<{BAbALd}{BAdALd}0{BA`ALd}{BAfALd}321032`````````{eg{}{{b{c}}}{}}0000{{{f{jBAh}}{ALd{M`AJf}}M`ANd{f{{Lf{M`}}}}}Cj}0{{{f{j{ALj{c}}}}{ALd{M`AJf}}M`ANd}CjBAh}{{{f{jBAh}}{ALd{M`AJf}}{BAj{M`AJf}}{BAl{M`}}ANd{f{{Lf{M`}}}}}Cj}0{{{f{j{ALj{c}}}}{ALd{M`AJf}}{BAj{M`AJf}}{BAl{M`}}ANd}CjBAh}{{{f{jBAh}}{f{{BAn{M`}}}}{f{{Lf{M`}}}}}{{Id{AL`AL`}}}}0{{{f{j{ALj{c}}}}{f{{BAn{M`}}}}}{{Id{AL`AL`}}}BAh}{{{f{jBAh}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}0{{{f{j{ALj{c}}}}{ALd{M`AJf}}}AL`BAh}{{{f{jBAh}}{AMh{{ALd{M`AJf}}}}{f{{Lf{M`}}}}}Cj}0{{{f{jBB`}}{AMh{{ALd{M`AJf}}}}}Cj}0{{{f{j{ALj{c}}}}{AMh{{ALd{M`AJf}}}}}CjBAh}{{{f{jBAh}}{f{{BBb{M`AJf}}}}ANd{f{{Lf{M`}}}}}Cj}0{{{f{j{ALj{c}}}}{f{{BBb{M`AJf}}}}ANd}CjBAh}{{{f{jBAh}}{f{{BBb{M`AJf}}}}{f{BBd}}ANd{f{{Lf{M`}}}}}Cj}0{{{f{j{ALj{c}}}}{f{{BBb{M`AJf}}}}{f{BBd}}ANd}CjBAh}{{{f{j{B@j{c}}}}{ALd{M`AJf}}{BAj{M`AJf}}{BAl{M`}}{BAl{M`}}}CjBAh}{{{f{jBB`}}{BAj{M`AJf}}{BAl{M`}}ALn{ALd{M`AJf}}}Cj}{{{f{j{B@j{c}}}}{BAj{M`AJf}}{BAl{M`}}ALn{ALd{M`AJf}}}CjBAh}{ce{}{}}0000{{}c{}}0000{f{{f{h}}}}0000{{{f{j}}}{{f{jh}}}}0000?{{{f{j{BBf{c}}}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`BAh}{{{f{j{BBh{ce}}}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`BAh{{B@l{M`}}}}{{{f{j{ALj{c}}}}{ALd{M`AJf}}}AL`BAh}{{{f{j{ALj{c}}}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`BAh}{f{{f{c}}}{}}0000{{{f{j}}}{{f{jc}}}{}}0000{BBdM`}0{{{BBl{}{{BBj{c}}}}}c{}}{{{BBf{c}}}{}BBl}{{{BBf{c}}}{}{BBlBAh}}{{{BBh{ce}}}{}BBl{}}{{{B@j{c}}}{}{BBlBAh}}{{{B@j{c}}}{}{BAhBBl}}{{{ALj{c}}}{}{BAhBBl}}{{{ALj{e}}}c{}{{BBl{}{{BBj{c}}}}BAh}}{{{An{c}}}e{}{}}0000{{{f{BBd}}}BBd}{{{f{{ALj{c}}}}}{{ALj{c}}}{ChBAh}}{{f{f{jc}}}Cj{}}0{{fCl}Cj}0{{{f{jBB`}}}Cj}{{{f{jBAh}}}Cj}0{{{f{j{B@j{c}}}}}CjBAh}0{{{f{j{ALj{c}}}}}CjBAh}{ce{}{}}0000{{{f{jBAh}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}{{{f{jBB`}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}}Cj}{{{f{j{BBf{c}}}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`BAh}{{{f{j{BBh{ce}}}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`BAh{{B@l{M`}}}}{{{f{j{B@j{c}}}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}}CjBAh}{{{f{j{B@j{c}}}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}}AL`BAh}{{{f{j{ALj{c}}}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`BAh}{{{f{j{ALj{c}}}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}}AL`BAh}{{{f{{B@j{c}}}}}{{ALd{M`AJf}}}BAh}{{}BBd}{{}{{ALj{c}}}{BAhKb}}{F`{{f{c}}}{}}0000{F`{{f{jc}}}{}}0000{f{{f{c}}}{}}0000{F`Cj}0000{{{f{jBAh}}Bf}Cj}{{{f{j{BBf{c}}}}Bf}CjBAh}{{{f{j{BBh{ce}}}}Bf}CjBAh{{B@l{M`}}}}{{{f{j{ALj{c}}}}Bf}CjBAh}0{{{f{BBd}}{f{BBd}}}Bf}{{{f{{ALj{c}}}}{f{{ALj{c}}}}}Bf{IjBAh}}{{{f{jBAh}}{AM`{{Id{{ALd{M`AJf}}{f{{Lf{M`}}}}}}{ALd{M`AJf}}}}}Cj}0{{{f{j{ALj{ALb}}}}{f{{Lf{AKj}}}}}Cj}{{BAhM`}{{BBf{BAh}}}}0{{{B@j{c}}M`}{{B@j{{BBf{c}}}}}BAh}{{{ALj{c}}M`}{{ALj{{BBf{c}}}}}BAh}{{{f{BBd}}{f{jFl}}}{{G`{CjFn}}}}0{{{f{{ALj{c}}}}{f{jFl}}}{{G`{CjFn}}}{GdBAh}}{cc{}}000000000{ce{}{}}0000{{{f{{ALj{c}}}}{f{je}}}Cj{CfBAh}AIb}{{{f{jBB`}}M`}Cj}{{{f{j{B@j{c}}}}M`}CjBAh}{{}F`}0000{{{f{{ALj{c}}}}}{{f{c}}}BAh}{{{f{j{ALj{c}}}}}{{f{jc}}}BAh}{{}c{}}000000000{{{Hj{c}}}{{Hj{h}}}{}}0000{{{Hl{c}}}{{Hl{h}}}{}}0000{{{Hn{c}}}{{Hn{h}}}{}}0000{{{An{c}}}e{}{}}00004444444444{{{ALj{c}}}cBAh}{{}c{}}0000{{{f{jBAh}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}{{{f{jBB`}}{ALd{M`AJf}}}Cj}{{{f{j{BBf{c}}}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`BAh}{{{f{j{BBh{ce}}}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`BAh{{B@l{M`}}}}{{{f{j{B@j{c}}}}{ALd{M`AJf}}}CjBAh}{{{f{j{B@j{c}}}}{ALd{M`AJf}}}AL`BAh}{{{f{j{ALj{c}}}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`BAh}{{{f{j{ALj{c}}}}{ALd{M`AJf}}}AL`BAh}632{{cM`}{{BBf{c}}}BAh}{{ce}{{BBh{ce}}}{}{}}{c{{B@j{c}}}BAh}{M`BBd}{{}{{ALj{c}}}{KbBAh}}=={{{f{BAh}}}F`}{{{f{{BBf{c}}}}}F`BAh}{{{f{{BBh{ce}}}}}F`BAh{{B@l{M`}}}}{{{f{{ALj{c}}}}}F`BAh}{{{f{BBd}}{f{BBd}}}{{Df{AHf}}}}{{{f{jBAh}}{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}{f{{Lf{M`}}}}}Cj}0{{{f{j{ALj{c}}}}{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}CjBAh}{{{f{jBAh}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}{{{f{jBB`}}{ALd{M`AJf}}{ALd{M`AJf}}}Cj}{{{f{j{BBf{c}}}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`BAh}{{{f{j{BBh{ce}}}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`BAh{{B@l{M`}}}}{{{f{j{B@j{c}}}}{ALd{M`AJf}}{ALd{M`AJf}}}CjBAh}{{{f{j{B@j{c}}}}{ALd{M`AJf}}{ALd{M`AJf}}}AL`BAh}{{{f{j{ALj{c}}}}{ALd{M`AJf}}{ALd{M`AJf}}}AL`BAh}{{{f{j{ALj{c}}}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`BAh}{{{f{jBB`}}{BAj{M`AJf}}{BAl{M`}}ALn{BAj{M`AJf}}}Cj}{{{f{j{B@j{c}}}}{BAj{M`AJf}}{BAl{M`}}ALn{BAj{M`AJf}}}CjBAh}{{{f{jBB`}}{BAj{M`AJf}}{BAj{M`AJf}}{BAj{M`AJf}}}Cj}{{{f{j{B@j{c}}}}{BAj{M`AJf}}{BAj{M`AJf}}{BAj{M`AJf}}}CjBAh}{{{f{jBB`}}M`}Cj}{{{f{j{B@j{c}}}}M`}CjBAh}{{{f{jBB`}}{BAj{M`AJf}}}Cj}{{{f{j{B@j{c}}}}{BAj{M`AJf}}}CjBAh}10{{{f{jBB`}}{BAj{M`AJf}}{BAj{M`AJf}}}Cj}{{{f{j{B@j{c}}}}{BAj{M`AJf}}{BAj{M`AJf}}}CjBAh}54{{{f{jBAh}}F`F`}Cj}0{{{f{jBB`}}F`F`}Cj}0{{{f{j{BBf{c}}}}F`F`}CjBAh}{{{f{j{BBh{ce}}}}F`F`}CjBAh{{B@l{M`}}}}{{{f{j{B@j{c}}}}F`F`}CjBAh}0{{{f{j{ALj{c}}}}F`F`}CjBAh}0{{{f{j{BBf{c}}}}M`}CjBAh}{{{f{j{BBh{ce}}}}e}Cj{}{}}{{{f{j{B@j{{BBh{ce}}}}}}e}CjBAh{{B@l{M`}}}}{{{f{jBB`}}{ALd{M`AJf}}{ALd{M`AJf}}}Cj}{{{f{j{B@j{c}}}}{ALd{M`AJf}}{ALd{M`AJf}}}CjBAh}{{{f{jBB`}}{ALd{M`AJf}}}Cj}{{{f{j{B@j{c}}}}{ALd{M`AJf}}}CjBAh}>={{{f{jBB`}}{BAj{M`AJf}}}Cj}{{{f{j{B@j{c}}}}{BAj{M`AJf}}}CjBAh}{fc{}}0{fADl}{fBj}{BBdM`}0{{BAhc}{{BBh{BAhc}}}{{B@l{M`}}}}0{{{B@j{c}}e}{{B@j{{BBh{ce}}}}}BAh{{B@l{M`}}}}{{{ALj{c}}e}{{ALj{{BBh{ce}}}}}BAh{{B@l{M`}}}}{{}{{G`{c}}}{}}0000{c{{G`{e}}}{}{}}0000{{}{{G`{c}}}{}}0000{{}{{G`{c{AEf{c}}}}}{}}0000{fAEh}0000{ce{}{}}0000{{}c{}}0000{f{{Df{{f{c}}}}}{}}0000{{{f{jBB`}}M`}Cj}{{{f{j{B@j{c}}}}M`}CjBAh}{{}c{}}0000{{F`F`}{{ALj{c}}}{KbBAh}}{BAh{{B@j{BAh}}}}0{{{ALj{c}}}{{B@j{c}}}BAh}{c{{ALj{c}}}BAh}```````{eg{}{{b{c}}}{}}0000{ce{}{}}0000:::::{f{{f{h}}}}0000{{{f{j}}}{{f{jh}}}}0000{{{f{jALh}}AL`}ANh}{f{{f{c}}}{}}0000{{{f{j}}}{{f{jc}}}{}}0000{ALhAKf}{{{An{c}}}e{}{}}0000{{{f{{B@f{ce}}}}}{{B@f{ce}}}ChCh}{{{f{ALh}}}ALh}{{{f{{ANj{ce}}}}}{{ANj{ce}}}ChCh}{{{f{AOh}}}AOh}{{{f{{BBn{ce}}}}}{{BBn{ce}}}ChCh}{{f{f{jc}}}Cj{}}0000{{fCl}Cj}0000>>>>>{{{f{jALh}}ANfANfAL`}ANh}{{}ALh}{F`{{f{c}}}{}}0000{F`{{f{jc}}}{}}0000>>>>>{F`Cj}0000{{{f{jALh}}Bf}{{Df{ANh}}}}{{{f{{B@f{ce}}}}}{{ANj{ce}}}{}{}}{{{f{{B@f{ce}}}}{f{jFl}}}{{G`{CjFn}}}GdGd}{{{f{ALh}}{f{jFl}}}{{G`{CjFn}}}}{cc{}}000000000{ce{}{}}0000{{{f{{B@f{ce}}}}ANf}{{ALd{M`AJf}}}AObAOb}{{{f{{B@f{ce}}}}AL`}{{ALd{M`AJf}}}AObAOb}{{{f{{B@f{ce}}}}ANf}{{f{e}}}{}{}}{{{f{{B@f{ce}}}}AL`}{{f{c}}}{}{}}{{}F`}0000{{}c{}}000000000{{{Hj{c}}}{{Hj{h}}}{}}0000{{{Hl{c}}}{{Hl{h}}}{}}0{{{Hn{c}}}{{Hn{h}}}{}}0000{{{An{c}}}e{}{}}00004444444444{{}c{}}00{{}c{}}0000{{{f{{B@f{ce}}}}}AOh{}{}}{{{f{jALh}}AL`}ANh}{{}ALh}{{{f{j{ANj{ce}}}}}{{Df{{AM`{{f{c}}{f{e}}}}}}}{}{}}{{{f{jAOh}}}{{Df{{AM`{AL`ANf}}}}}}{{{f{j{BBn{ce}}}}}{{Df{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}}}AObAOb}6{{{ANj{ce}}}{{BBn{ce}}}AObAOb}{{{f{jALh}}ANfAL`}ANh}{fc{}}0000{{}{{G`{c}}}{}}0000{c{{G`{e}}}{}{}}0000{{}{{G`{c}}}{}}0000{{}{{G`{c{AEf{c}}}}}{}}0000{fAEh}0000{ce{}{}}0000{{}c{}}0000{f{{Df{{f{c}}}}}{}}0000{{}c{}}0000{F`ALh}`````````````````````````````````````{{{f{{BC`{c}}}}}cBCb}{BCdALd}{{{f{{BCd{c}}}}}{{BAn{c}}}BCb}0{eg{}{{b{c}}}{}}00000000{{{BAl{c}}{BAl{c}}}{{BAl{c}}}{{BCf{}{{Dl{}}}}}}{{{BAl{c}}{f{{BAl{c}}}}}{{BAl{c}}}{Ih{BCf{}{{Dl{}}}}}}{{{f{j{BAl{c}}}}{BAl{c}}}CjBCh}{{{f{{BCl{}{{BCj{c}}}}}}c}{{BCl{}{{BCj{c}}}}}BCb}{{{f{{BCn{c}}}}c}{{BCn{c}}}BCb}0{{{f{{BD`{c}}}}c}{{BD`{c}}}BCb}0{{{f{{BAn{c}}}}c}{{BAn{c}}}BCb}0{{{f{{BDb{c}}}}c}{{BDb{c}}}BCb}0{BDd}{{{f{{BAl{c}}}}{BAl{c}}}{{BAl{c}}}{{BDf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}BDlBDnIh}}{{}cBE`}{{{f{{BAl{c}}}}{f{{BAl{c}}}}{f{c}}}BfBE`}{{{f{{BCl{}{{BCj{c}}}}}}c}cBCb}{{{f{{BCn{c}}}}c}cBCb}0{{{f{{BD`{c}}}}c}cBCb}0{{{f{{BAn{c}}}}c}cBCb}{{{f{{BDb{c}}}}c}cBCb}`{ce{}{}}00000000{{}c{}}00000000{f{{f{h}}}}00000000{{{f{j}}}{{f{jh}}}}00000000{{{f{{BC`{c}}}}}cBCb}{BCdALd}{{{f{{BCd{c}}}}}{{BAn{c}}}BCb}{{{f{{BD`{c}}}}}{{BAn{c}}}BCb}{{{f{{BDb{c}}}}}{{BAn{c}}}BCb}2{{{f{{BCl{}{{BCj{c}}}}}}c}{{BCl{}{{BCj{c}}}}}BCb}{{{f{{BCn{c}}}}c}{{BCn{c}}}BCb}0{{{f{{BD`{c}}}}c}{{BD`{c}}}BCb}0{{{f{{BAn{c}}}}c}{{BAn{c}}}BCb}0{{{f{{BDb{c}}}}c}{{BDb{c}}}BCb}0{f{{f{c}}}{}}00000000{{{f{j}}}{{f{jc}}}{}}00000000{{{f{{BCn{c}}}}}{{BBb{cAJf}}}BCb}{{{f{{BD`{c}}}}}{{BBb{cAJf}}}BCb}{{{f{{BAn{c}}}}}{{BBb{cAJf}}}BCb}{{{f{{BDb{c}}}}}{{BBb{cAJf}}}BCb}{{{f{{BCd{c}}}}}{{BBb{cAJf}}}BCb}{{{f{{BCn{c}}}}}{{Id{cc}}}BCb}{{{f{{BD`{c}}}}}{{Id{cc}}}BCb}{{{f{{BDb{c}}}}}{{Id{cc}}}BCb}{{{f{{BCd{c}}}}}{{Id{cc}}}BCb}3210{{{f{{BDb{c}}}}}{{BCd{c}}}BCb}{{{f{{BC`{c}}}}}cBCb}{BCdALd}{{{f{{BCd{c}}}}}{{BAn{c}}}BCb}{{{An{c}}}e{}{}}00000000{{{BCn{c}}}{{BCn{e}}}BCbBEb}{{{BDb{c}}}{{BDb{e}}}BCbBEb}{{{f{{BAl{c}}}}}{{BAl{e}}}{BEbIh}BEb}4{BCnALd}{{{ALd{cAJf}}c}{{BCn{c}}}BCb}{{{f{{BAn{c}}}}{f{{BBb{cAJf}}}}}{{Df{{BAn{c}}}}}BCb}{{{f{{BAn{c}}}}{AOf{c}}}{{Df{{BAn{c}}}}}BCb}0{{{f{{BCn{c}}}}}{{BCn{c}}}Ch}{{{f{{BEd{c}}}}}{{BEd{c}}}Ch}{{{f{{BD`{c}}}}}{{BD`{c}}}Ch}{{{f{{BAn{c}}}}}{{BAn{c}}}Ch}{{{f{{BEf{c}}}}}{{BEf{c}}}Ch}{{{f{{BC`{c}}}}}{{BC`{c}}}Ch}{{{f{{BDb{c}}}}}{{BDb{c}}}Ch}{{{f{{BCd{c}}}}}{{BCd{c}}}Ch}{{{f{{BAl{c}}}}}{{BAl{c}}}Ch}{{f{f{jc}}}Cj{}}00000000{{fCl}Cj}00000000{{{f{{BAn{c}}}}{ALd{cAJf}}}{{ALd{cAJf}}}BCb}{{{f{{BDb{c}}}}{ALd{cAJf}}}cBCb}{ce{}{}}00000000{{{f{{BCd{c}}}}{ALd{cAJf}}}BfBCb}{{{f{{BAn{c}}}}{f{{BAn{c}}}}}BfBCb}{BDbALd}{BD`ALd}0`{{{f{{BD`{c}}}}{f{{BD`{c}}}}}{{BEh{{ALd{cAJf}}}}}BCb}{{{f{{BD`{c}}}}{f{{BD`{c}}}}}{{BEh{{Id{cc}}}}}BCb}{{}{{BAl{c}}}Kb}{c{{BAl{c}}}BEj}{F`{{f{c}}}{}}00000000{F`{{f{jc}}}{}}00000000{{{f{{BCl{}{{BCj{c}}}}}}c}{{BAj{cAJf}}}BCb}{{{f{{BCn{c}}}}c}{{BAj{cAJf}}}BCb}{{{f{{BD`{c}}}}c}{{BAj{cAJf}}}BCb}0{{{f{{BAn{c}}}}c}{{BAj{cAJf}}}BCb}{{{f{{BDb{c}}}}c}{{BAj{cAJf}}}BCb}0{{{f{{BAn{c}}}}{ALd{cAJf}}}cBCb}{{{f{{BEf{c}}}}{f{{ALd{cAJf}}}}}cBCb}{{{f{{BC`{c}}}}{f{{ALd{cAJf}}}}}cBCb}{{{f{{BDb{c}}}}{ALd{cAJf}}}cBCb}{{{BAl{c}}c}{{BAl{c}}}{{BEl{}{{Dl{}}}}}}{{{BAl{c}}{BAl{c}}}c{{BEl{}{{Dl{}}}}}}{{{f{j{BAl{c}}}}c}CjBEn}{f{{f{c}}}{}}00000000{{{f{{BD`{c}}}}c{ALd{cAJf}}}{{BD`{c}}}BCb}{{{f{{BDb{c}}}}c{ALd{cAJf}}}{{BDb{c}}}BCb}{{{f{{BD`{c}}}}c{ALd{cAJf}}c}{{BD`{c}}}BCb}{F`Cj}00000000{{{f{{BCl{}{{BCj{c}}}}}}c}cBCb}{{{f{{BD`{c}}}}c}cBCb}0{{{f{{BAn{c}}}}c}cBCb}{{{f{{BDb{c}}}}c}cBCb}0322100{{{f{{BCn{c}}}}}{{BAl{c}}}BCb}{BCbBCb}{{{f{{BCn{c}}}}{f{{BCn{c}}}}}BfIj}{{{f{{BEd{c}}}}{f{{BEd{c}}}}}BfIj}{{{f{{BD`{c}}}}{f{{BD`{c}}}}}BfIj}{{{f{{BAn{c}}}}{f{{BAn{c}}}}}BfIj}{{{f{{BC`{c}}}}{f{{BC`{c}}}}}BfIj}{{{f{{BDb{c}}}}{f{{BDb{c}}}}}BfIj}{{{f{{BCd{c}}}}{f{{BCd{c}}}}}BfIj}{{{f{{BAl{c}}}}{f{{BAl{c}}}}}BfIj}{{{f{{BEf{c}}}}}{{BC`{c}}}BCb}{{f{f{c}}}Bf{}}00000{{{f{{BCn{c}}}}}{{BBb{cAJf}}}BCb}{{{f{{BD`{c}}}}}{{BBb{cAJf}}}BCb}{{{f{{BDb{c}}}}}{{BBb{cAJf}}}BCb}{{{f{{BCn{c}}}}}{{Id{cc}}}BCb}{{{f{{BD`{c}}}}}{{Id{cc}}}BCb}{{{f{{BDb{c}}}}}{{Id{cc}}}BCb}210{{{f{{BD`{c}}}}}{{Id{{BC`{c}}{BC`{c}}}}}BCb}{{{f{{BDb{c}}}}}{{Id{{BC`{c}}{BC`{c}}}}}BCb}{BEdALn}{{{f{{BCn{c}}}}c}{{BF`{c}}}BCb}{{{f{{BD`{c}}}}c}{{BFb{c}}}BCb}{{{f{{BDb{c}}}}c}{{BFd{c}}}BCb}{{{f{{BDb{c}}}}c}{{BFf{c}}}BCb}{{{f{{BDb{c}}}}c}cBCb}{{{f{{BCl{}{{BCj{c}}}}}}}{{BCl{}{{BCj{c}}}}}BCb}{{{f{{BCn{c}}}}}{{BCn{c}}}BCb}0{{{f{{BD`{c}}}}}{{BD`{c}}}BCb}0{{{f{{BAn{c}}}}}{{BAn{c}}}BCb}0{{{f{{BDb{c}}}}}{{BDb{c}}}BCb}0{{{f{{BCn{c}}}}{f{jFl}}}{{G`{CjFn}}}Gd}{{{f{{BEd{c}}}}{f{jFl}}}{{G`{CjFn}}}Gd}{{{f{{BD`{c}}}}{f{jFl}}}{{G`{CjFn}}}Gd}{{{f{{BAn{c}}}}{f{jFl}}}{{G`{CjFn}}}Gd}{{{f{{BEf{c}}}}{f{jFl}}}{{G`{CjFn}}}Gd}{{{f{{BC`{c}}}}{f{jFl}}}{{G`{CjFn}}}Gd}{{{f{{BDb{c}}}}{f{jFl}}}{{G`{CjFn}}}Gd}{{{f{{BCd{c}}}}{f{jFl}}}{{G`{CjFn}}}Gd}{{{f{{BAl{c}}}}{f{jFl}}}{{G`{CjFn}}}Gd}{{{f{{BCn{c}}}}{f{je}}}CjBCb{{AHj{{f{{BD`{c}}}}}}}}{{{f{{BEd{c}}}}{f{je}}}CjBCb{{AHj{{f{{BD`{c}}}}}}}}{{{f{{BCn{c}}}}c{f{je}}}CjBCb{{AHj{{f{{BAn{c}}}}}}}}{{{f{{BEd{c}}}}c{f{je}}}CjBCb{{AHj{{f{{BAn{c}}}}}}}}{{{f{{BD`{c}}}}c{f{je}}}CjBCb{{AHj{{f{{BAn{c}}}}}}}}{{{f{{BDb{c}}}}c{f{je}}}CjBCb{{AHj{{f{{BAn{c}}}}}}}}{{{f{{BCl{}{{BCj{c}}}}}}c{f{jAHj}}}CjBCb}{{{f{{BCn{c}}}}{f{jAHj}}}CjBCb}{{{f{{BCn{c}}}}c{f{je}}}CjBCb{{AHj{{f{{BAn{c}}}}{AOf{c}}}}}}{{{f{{BEd{c}}}}c{f{je}}}CjBCb{{AHj{{f{{BAn{c}}}}{AOf{c}}}}}}{{{f{{BD`{c}}}}c{f{je}}}CjBCb{{AHj{{f{{BAn{c}}}}{AOf{c}}}}}}{{{f{{BD`{c}}}}{f{jAHj}}}CjBCb}{{{f{{BAn{c}}}}{f{jAHj}}}CjBCb}{{{f{{BDb{c}}}}c{f{je}}}CjBCb{{AHj{{f{{BAn{c}}}}{AOf{c}}}}}}{{{f{{BDb{c}}}}{f{jAHj}}}CjBCb}{{{f{{BD`{c}}}}{f{je}}}CjBCb{{AHj{c}}}}{{{f{{BCn{c}}}}{f{je}}}CjBCb{{AHj{c}}}}101{{{f{{BD`{c}}}}{f{je}}}CjBCb{{AHj{{f{{BD`{c}}}}}}}}{{{f{{BDb{c}}}}{f{je}}}CjBCb{{AHj{{f{{BDb{c}}}}}}}}{{{f{{BD`{c}}}}{f{je}}}CjBCb{{AHj{{AOf{c}}}}}}{{{f{{BDb{c}}}}{f{je}}}CjBCb{{AHj{{AOf{c}}}}}}{{{f{{BCn{c}}}}{f{je}}}CjBCb{{AHj{{f{{BDb{c}}}}}}}}{{{f{{BEd{c}}}}{f{je}}}CjBCb{{AHj{{f{{BDb{c}}}}}}}}{{{f{{BD`{c}}}}c{f{je}}}CjBCb{{AHj{{f{{BDb{c}}}}}}}}{{{f{{BCn{c}}}}{f{je}}}CjBCb{{AHj{{f{{BDb{c}}}}{AOf{c}}}}}}{{{f{{BEd{c}}}}{f{je}}}CjBCb{{AHj{{f{{BDb{c}}}}{AOf{c}}}}}}{{{f{{BD`{c}}}}c{f{je}}}CjBCb{{AHj{{f{{BDb{c}}}}{AOf{c}}}}}}98769876{{}{{BAl{c}}}{BDn{BCf{}{{Dl{}}}}}}00{{{f{{BCl{}{{BCj{c}}}}}}}{{ALd{cAJf}}}BCb}{{{BEd{c}}}{{BCn{c}}}BCb}{{{f{{BCn{c}}}}}{{ALd{cAJf}}}BCb}0{cc{}}0{{{f{{BD`{c}}}}}{{ALd{cAJf}}}BCb}01{{{f{{BAn{c}}}}}{{ALd{cAJf}}}BCb}20222{{{f{{BDb{c}}}}}{{ALd{cAJf}}}BCb}033{BEdALd}{BD`ALd}{BAnALd}{BDbALd}777777777{ce{}{}}00000000{{{f{{BEd{c}}}}}{{BCn{c}}}BCb}{{{BAl{c}}}c{}}{{{f{{BCn{c}}}}c}{{BAl{c}}}BCb}{{{f{{BAl{c}}}}{f{je}}}CjCfAIb}{BFh}{{{f{{BAn{c}}}}c}{{Df{{ALd{cAJf}}}}}BCb}{{{f{{BAn{c}}}}c}{{Df{c}}}BCb}{{}F`}00000000{{{f{{BAn{c}}}}{f{{BAn{c}}}}}{{Df{{ALd{cAJf}}}}}BCb}{{{f{{BEf{c}}}}{f{{BEf{c}}}}}{{Df{{ALd{cAJf}}}}}BCb}{{{f{{BAn{c}}}}{f{{BAn{c}}}}}{{Df{{Id{cc}}}}}BCb}{{{f{{BAn{c}}}}{f{{BAn{c}}}}}BfBCb}{{{f{{BCd{c}}}}{f{{BCd{c}}}}}BfBCb}{{{f{{BEf{c}}}}{f{{BBb{cAJf}}}}}BfBCb}{{{f{{BAn{c}}}}{f{{BEf{c}}}}}BfBCb}{{{f{{BCd{c}}}}{f{{BAn{c}}}}}BfBCb}{{}c{}}00000000000000000{{{Hj{c}}}{{Hj{h}}}{}}00000000{{{Hl{c}}}{{Hl{h}}}{}}00000000{{{Hn{c}}}{{Hn{h}}}{}}00000000{{{An{c}}}e{}{}}00000000444444444444444444{{}c{}}00000000{{{f{{BC`{c}}}}}{{BC`{c}}}BCb}{{{f{{BDb{c}}}}c}BfBCb}{{{BAl{c}}}BfBFj}{{{f{{BC`{c}}}}}BfBCb}{{{f{{BD`{c}}}}c}BfBCb}3{{{f{{BD`{c}}}}}BfBCb}{{{f{{BDb{c}}}}}BfBCb}2{{{f{{BEd{c}}}}}BfBCb}42121{ALnBf}{{{f{{BAn{c}}}}}cBCb}{{{f{{BDb{c}}}}}cBCb}{{{f{{BAl{c}}}}{BAl{c}}c}{{BAl{c}}}{{BDf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}BDlBDnIh}}{{{f{{BAn{c}}}}{f{{BEf{c}}}}}{{Df{{ALd{cAJf}}}}}BCb}{{{f{{BAn{c}}}}{f{{BEf{c}}}}}{{Df{c}}}BCb}{{{f{{BD`{c}}}}{f{{BEf{c}}}}}{{BEh{{ALd{cAJf}}}}}BCb}{{{f{{BDb{c}}}}{f{{BEf{c}}}}}{{BEh{{ALd{cAJf}}}}}BCb}{{{f{{BD`{c}}}}{f{{BEf{c}}}}}{{BEh{c}}}BCb}{{{f{{BDb{c}}}}{f{{BEf{c}}}}}{{BEh{c}}}BCb}{{{f{{BD`{c}}}}{f{{BAn{c}}}}}{{BEh{{ALd{cAJf}}}}}BCb}{{{f{{BDb{c}}}}{f{{BAn{c}}}}}{{BEh{{ALd{cAJf}}}}}BCb}{{{f{{BD`{c}}}}{f{{BAn{c}}}}}{{BEh{{Id{cc}}}}}BCb}{{{f{{BDb{c}}}}{f{{BAn{c}}}}}{{BEh{{Id{cc}}}}}BCb}{{{f{{BDb{c}}}}}{{Df{c}}}BCb}0{BFl}00000{BFnALd}{{{f{j{BAn{c}}}}}{{ALd{cAJf}}}BCb}1{{{BAl{c}}c}{{BAl{c}}}{{BDj{}{{Dl{}}}}}}{{{f{j{BAl{c}}}}c}CjBG`}{{{BAl{c}}}{{BAl{c}}}{{BGb{}{{Dl{}}}}}}{{ccc}{{BC`{c}}}BCb}{{{f{{BC`{c}}}}}{{BAj{cAJf}}}BCb}{{}c{}}{{{f{{BD`{c}}}}c}BGdBCb}{{{f{{BC`{c}}}}c}{{BC`{c}}}BCb}{{{f{{BAn{c}}}}{f{{BEf{c}}}}}BfBCb}{{{f{{BAn{c}}}}{f{{BAn{c}}}}}BfBCb}{{{f{{BC`{c}}}}{f{{ALd{cAJf}}}}}{{BC`{c}}}BCb}{{{f{{BAl{c}}}}{f{{BAl{c}}}}}{{Df{AHf}}}Oj}{{}{{BAl{c}}}{BDn{BCf{}{{Dl{}}}}}}{{cc}{{ALd{cAJf}}}{}}{BEfALd}{{{f{{BAl{c}}}}}{{BAl{c}}}{{BDh{}{{Dl{}}}}{BDf{}{{Dl{}}}}{BCf{}{{Dl{}}}}BGfBDnOjIh}}{{{f{{BC`{c}}}}{f{{ALd{cAJf}}}}}{{ALd{cAJf}}}BCb}`{{{f{{BD`{c}}}}{f{{BDb{c}}}}}{{BEh{{ALd{cAJf}}}}}BCb}{{{f{{BD`{c}}}}{f{{BDb{c}}}}}{{BEh{{Id{cc}}}}}BCb}{c{{BAl{c}}}{}}{BAl}{BCnBAj}{BEdBAj}{{{f{{BCl{}{{BCj{c}}}}}}c}{{ALd{cAJf}}}BCb}{{{f{{BCn{c}}}}c}{{ALd{cAJf}}}BCb}0{{{f{{BD`{c}}}}c}{{ALd{cAJf}}}BCb}0{{{f{{BAn{c}}}}c}{{ALd{cAJf}}}BCb}0{{{f{{BDb{c}}}}c}{{ALd{cAJf}}}BCb}0{{{f{{BCn{c}}}}c}{{BAj{cAJf}}}BCb}{{{f{j{BAn{c}}}}c}CjBCb}>{{{f{{BEf{c}}}}{f{{ALd{cAJf}}}}}cBCb}{{{f{{BC`{c}}}}{f{{ALd{cAJf}}}}}cBCb}{{{BAl{c}}}{{Id{cc}}}BGh}{{cc}{{BGj{cAJf}}}{}}{{{f{{BD`{c}}}}c}{{BEh{c}}}BCb}{{{f{{BAn{c}}}}c}cBCb}100{{{f{{BC`{c}}}}c}{{Df{c}}}BCb}10{{{f{{BCl{}{{BCj{c}}}}}}c}{{Id{{BCl{}{{BCj{c}}}}{BCl{}{{BCj{c}}}}}}}BCb}{{{f{{BCn{c}}}}c}{{Id{{BCn{c}}{BCn{c}}}}}BCb}0{{{f{{BD`{c}}}}c}{{Id{{BD`{c}}{BD`{c}}}}}BCb}0{{{f{{BAn{c}}}}c}{{Id{{BAn{c}}{BAn{c}}}}}BCb}0{{{f{{BDb{c}}}}c}{{Id{{BDb{c}}{BDb{c}}}}}BCb}01{{{f{{BCl{}{{BCj{c}}}}}}{AOf{c}}}{{BCl{}{{BCj{c}}}}}BCb}{{{f{{BCn{c}}}}{AOf{c}}}{{BCn{c}}}BCb}0{{{f{{BD`{c}}}}{AOf{c}}}{{BD`{c}}}BCb}0{{{f{{BAn{c}}}}{AOf{c}}}{{BAn{c}}}BCb}0{{{f{{BDb{c}}}}{AOf{c}}}{{BDb{c}}}BCb}0{{{f{{BAn{c}}}}{ALd{cAJf}}}cBCb}{{{f{{BEf{c}}}}{ALd{cAJf}}}cBCb}{{{f{{BDb{c}}}}{ALd{cAJf}}}cBCb}{{{f{{BAn{c}}}}}cBCb}{BCnBAl}{{{BAl{c}}{BAl{c}}}{}{{BDh{}{{Dl{}}}}}}{{{f{j{BAl{c}}}}{BAl{c}}}CjBGl}{e{{BAl{c}}}{BCfIhBGf}{{BGn{}{{Cn{{f{{BAl{c}}}}}}}}}}{e{{BAl{c}}}{BCfBGf}{{BGn{}{{Cn{{BAl{c}}}}}}}}{ALnBf}5{{{f{{BC`{c}}}}}{{BAj{cAJf}}}BCb}{{{f{{BCl{}{{BCj{c}}}}}}}{{ALd{cAJf}}}BCb}{{{f{{BCn{c}}}}}{{ALd{cAJf}}}BCb}0{{{f{{BD`{c}}}}}{{ALd{cAJf}}}BCb}0{{{f{{BAn{c}}}}}{{ALd{cAJf}}}BCb}0{{{f{{BDb{c}}}}}{{ALd{cAJf}}}BCb}0{BEdALd}{BD`ALd}{BAnALd}{BDbALd}{{{f{{BEd{c}}}}}{{BCn{c}}}BCb}{{{f{{BDb{c}}}}}{{BD`{c}}}BCb}{{{BAl{c}}}cBEj}{{{f{{BD`{c}}}}}{{BD`{M`}}}BCb}{{{f{{BAn{c}}}}}{{BAn{M`}}}BCb}{{{f{{BEf{c}}}}}{{BEf{M`}}}BCb}{{{f{{BDb{c}}}}}{{BDb{M`}}}BCb}{{{f{{BAl{c}}}}}{{BAl{M`}}}{BEbIh}}{{{f{{BD`{c}}}}}{{BD`{BH`}}}BCb}{{{f{{BAn{c}}}}}{{BAn{BH`}}}BCb}{{{f{{BEf{c}}}}}{{BEf{BH`}}}BCb}{{{f{{BDb{c}}}}}{{BDb{BH`}}}BCb}{{{f{{BAl{c}}}}}{{BAl{BH`}}}{BEbIh}}{{{f{{BAn{c}}}}}{{BEf{c}}}BCb}{fc{}}00000000{{{f{{BD`{c}}}}}{{BDb{c}}}BCb}{{{f{{BD`{c}}}}}cBCb}{{{f{{BCn{c}}}}}{{BEd{c}}}BCb}{{{f{{BAn{c}}}}}{{BAj{cAJf}}}BCb}`{{{f{{BCd{c}}}}{f{e}}}{{BCd{c}}}BCb{{B@l{c}}}}{{{f{{BD`{c}}}}{f{e}}}{{BD`{c}}}BCb{{B@l{c}}}}{{{f{{BAn{c}}}}{f{e}}}{{BAn{c}}}BCb{{B@l{c}}}}{{{f{{BDb{c}}}}{f{e}}}{{BDb{c}}}BCb{{B@l{c}}}}{{{f{j{BAn{c}}}}{BAj{cAJf}}}{{BAn{c}}}BCb}{{{f{{BAl{c}}}}}{{Df{{BAl{e}}}}}{BEbIh}BEb}{{}{{G`{c}}}{}}00000000{c{{G`{e}}}{}{}}00000000{{}{{G`{c}}}{}}00000000{{}{{G`{c{AEf{c}}}}}{}}00000000{{}{{BAl{c}}}{BDn{BCf{}{{Dl{}}}}}}{fAEh}00000000{ce{}{}}00000000{{}c{}}00000000{f{{Df{{f{c}}}}}{}}00000000`{M`BCb}{{cc}{{BAj{cAJf}}}{}}{BEfBAj}{{{f{{BAn{c}}}}c}{{Df{{ALd{cAJf}}}}}BCb}{{{f{{BAn{c}}}}c}{{Df{c}}}BCb}{{}c{}}00000000{BFh}{{{f{{BCl{}{{BCj{c}}}}}}c}cBCb}{{{f{{BCn{c}}}}c}cBCb}0{{{f{{BD`{c}}}}c}cBCb}0{{{f{{BAn{c}}}}c}cBCb}0{{{f{{BDb{c}}}}c}cBCb}0{BHb}{BHd}{BHf}{{{f{{BD`{c}}}}}cBCb}{{{f{{BDb{c}}}}}cBCb}10{BCnBAl}{BEdBAl};::9988776543232{{}{{BAl{c}}}BGf}````{eg{}{{b{c}}}{}}{ce{}{}}{{}c{}}{f{{f{h}}}}{{{f{j}}}{{f{jh}}}}{f{{f{c}}}{}}{{{f{j}}}{{f{jc}}}{}}{{{An{c}}}e{}{}}{BCnALd}7{F`{{f{c}}}{}}{F`{{f{jc}}}{}}5{F`Cj}{BEdALn}{cc{}}{BEdALd}1{ce{}{}}{{}F`}{{}c{}}0{{{Hj{c}}}{{Hj{h}}}{}}{{{Hl{c}}}{{Hl{h}}}{}}{{{Hn{c}}}{{Hn{h}}}{}}=33{{}c{}}{{}c{}}{ALnBf}{{{f{j{BF`{c}}}}}{{Df{{ALd{cAJf}}}}}BCb}{BCnBAj}{BEdBAj}{BCnBAl}40={{}{{G`{c}}}{}}{c{{G`{e}}}{}{}}{{}{{G`{c}}}{}}{{}{{G`{c{AEf{c}}}}}{}}{fAEh}{ce{}{}}{{}c{}}{f{{Df{{f{c}}}}}{}}{{}c{}}9{BEdBAl}`````{eg{}{{b{c}}}{}}0000{ce{}{}}000055555{f{{f{h}}}}0000{{{f{j}}}{{f{jh}}}}0000{{{f{j{BEh{c}}}}}{{f{j{Lf{c}}}}}{}}{{{f{j{BEh{c}}}}}{}{}}{{{f{jBHh}}}Cl}2{{{f{j{BHj{c}}}}}{{f{j{Lf{c}}}}}{}}{{{f{jBHh}}}{{f{jDd}}}}{{{f{{BEh{c}}}}}{}{}}{{{f{BHh}}}Cl}{{{f{{BEh{c}}}}}{{f{{Lf{c}}}}}{}}{{{f{BHh}}}{{f{BHl}}}}{{{f{BHh}}}{{f{Dd}}}}2{{{f{{BHj{c}}}}}{{f{{Lf{c}}}}}{}}13{f{{f{c}}}{}}00200;{{{f{j}}}{{f{jc}}}{}}00080{{{An{c}}}e{}{}}0000{{{f{{BEh{c}}}}}F`{}}{{{f{BHh}}}F`}{{{f{j{BEh{c}}}}}Cj{}}{{{f{jBHh}}}Cj}{{{f{{BEh{c}}}}}{{BEh{c}}}Ch}{{{f{{BHj{c}}}}}{{BHj{c}}}Ch}{{{f{BHh}}}BHh}{{{f{{BHn{c}}}}}{{BHn{c}}}Ch}{{{f{j{BEh{c}}}}{f{{BEh{c}}}}}CjCh}{{{f{jBHh}}{f{BHh}}}Cj}{{f{f{jc}}}Cj{}}000{{fCl}Cj}000{{{f{{BEh{c}}}}{f{{BEh{c}}}}}AHfBI`}{{{f{BHh}}{f{BHh}}}AHf}{{{f{{BHn{c}}}}{f{{BHn{c}}}}}AHfBI`}{{f{f{c}}}AHf{}}00{ce{}{}}0000{{}{{BEh{c}}}{}}{{}BHh}{F`{{f{c}}}{}}{{{f{{BEh{c}}}}}f{}}111{{{f{BHh}}}{{f{Dd}}}}2{{{f{j{BEh{c}}}}}{{f{j}}}{}}{F`{{f{jc}}}{}}00{{{f{jBHh}}}{{f{jDd}}}}11{f{{f{c}}}{}}0000{{{f{j{BEh{c}}}}e}{{BIb{c}}}{}{{BId{F`}}}}{F`Cj}{{{f{j{BEh{c}}}}}Cj{}}{{{f{j{BHj{c}}}}}Cj{}}2{{{f{j{BIb{c}}}}}Cj{}}333{{{BHn{c}}}c{}}{fc{{BIh{BIf}}}}0{{{f{{BEh{c}}}}{f{{BEh{c}}}}}BfIj}{{{f{{BEh{c}}}}{f{{Lf{c}}}}}BfIj}{{{f{BHh}}{f{BHh}}}Bf}{{{f{BHh}}{f{Dd}}}Bf}{{{f{{BHn{c}}}}{f{{BHn{c}}}}}BfIj}{{f{f{c}}}Bf{}}00000000{{{f{j{BEh{c}}}}e}Cj{}{{D`{}{{Cn{c}}}}}}{{{f{j{BEh{Cl}}}}}{{G`{CjBIj}}}}{{{f{{BEh{c}}}}{f{jFl}}}{{G`{CjFn}}}Gd}{{{f{{BHj{c}}}}{f{jFl}}}{{G`{CjFn}}}Gd}{{{f{BHh}}{f{jFl}}}{{G`{CjFn}}}}0{{{f{{BHn{c}}}}{f{jFl}}}{{G`{CjFn}}}{}}0{cc{}}{{{AK`{c}}}{{BEh{c}}}{}}11{{{f{Dd}}}{{G`{BHh{BHn{{f{Dd}}}}}}}}2222222{{{f{{AK`{Cl}}}}}{{G`{BHhBIl}}}}{e{{BEh{c}}}{}{{D`{}{{Cn{c}}}}}}{ce{}{}}0000{{{f{Dd}}}{{G`{BHh}}}}{{{f{{BEh{c}}}}{f{{BEh{c}}}}}BfOj}{{{f{BHh}}{f{Dd}}}Bf}{{{f{BHh}}{f{BHh}}}Bf}201{{{f{{BEh{c}}}}{f{je}}}CjCfAIb}{{{f{BHh}}{f{jc}}}CjAIb}{{}F`}0000{{{f{j{BEh{c}}}}F`c}Cj{}}{{}c{}}000000000{{{Hj{c}}}{{Hj{h}}}{}}0000{{{Hl{c}}}{{Hl{h}}}{}}0000{{{Hn{c}}}{{Hn{h}}}{}}0000{{{An{c}}}e{}{}}00004444444444{{{BEh{c}}}{{G`{{AK`{c}}{BEh{c}}}}}{}}{{{BEh{c}}}{{AK`{c}}}{}}{{{BEh{c}}}{{BHj{c}}}{}}{{{f{j{BEh{c}}}}}{}{}}{{{f{{BEh{c}}}}}{}{}}{{}c{}}0{{}c{}}0000{{{f{{BEh{c}}}}}Bf{}}{{{f{BHh}}}Bf}10{{{f{{BEh{c}}}}{f{{BEh{c}}}}}BfOj}{{{f{BHh}}{f{BHh}}}Bf}{{{f{BHh}}{f{Dd}}}Bf}{{{f{{BEh{c}}}}}F`{}}{{{f{BHh}}}F`}{fF`}{fCl}645{{}{{Id{cegikmoAaAcAeAg}}}{}{}{}{}{}{}{}{}{}{}{}}{{}{{Id{cegikmoAaAcAeAgAi}}}{}{}{}{}{}{}{}{}{}{}{}{}}{{}{{Id{cegikmoAaAcAe}}}{}{}{}{}{}{}{}{}{}{}}{{}{{Id{cegikmoAaAc}}}{}{}{}{}{}{}{}{}{}}{{}Cj}{{}{{Id{c}}}{}}{{}{{Id{ce}}}{}{}}{{}{{Id{ceg}}}{}{}{}}{{}{{Id{cegikmo}}}{}{}{}{}{}{}{}}{{}{{Id{cegikmoAa}}}{}{}{}{}{}{}{}{}}{{}{{Id{cegi}}}{}{}{}{}}{{}{{Id{cegik}}}{}{}{}{}{}}{{}{{Id{cegikm}}}{}{}{}{}{}{}}0;398:76541<2{{}{{BEh{c}}}{}}{{}BHh}{c{{BHn{c}}}{}}21{{{f{j{BHj{c}}}}}Df{}}{{{f{j{BIb{c}}}}}Df{}}10{{}c{}}0{{{f{{BEh{c}}}}{f{{BEh{c}}}}}{{Df{AHf}}}Oj}{{{f{BHh}}{f{BHh}}}{{Df{AHf}}}}{{{f{BHh}}{f{Dd}}}{{Df{AHf}}}}{{{f{{BHn{c}}}}{f{{BHn{c}}}}}{{Df{AHf}}}Oj}{{{f{j{BEh{c}}}}}{{Df{c}}}{}}{{{f{jBHh}}}{{Df{BIf}}}}{{{f{j{BEh{c}}}}F`}{{Df{c}}}{}}{{{f{j{BEh{c}}}}c}Cj{}}{{{f{jBHh}}BIf}Cj}{{{f{jBHh}}{f{Dd}}}Cj}2{{{f{{BEh{c}}}}}F`{}}{{{f{BHh}}}F`}{{{f{j{BEh{c}}}}F`}c{}}{{{f{jBHh}}F`}BIf}{{{f{j{BEh{c}}}}e}Cj{}{{AHj{{f{jc}}}{{Dl{Bf}}}}}}{{{f{j{BEh{c}}}}F`}Cj{}}{{{f{jBHh}}F`}Cj}{{{BHn{c}}}BHn{}}{{{f{{BHj{c}}}}}{{Id{F`{Df{F`}}}}}{}}{{{f{{BIb{c}}}}}{{Id{F`{Df{F`}}}}}{}}{fCl}>8{{{f{j{BEh{c}}}}}{{BEh{c}}}{}}{fc{}}000{fADl}0{fBj}098{{}{{G`{c}}}{}}0000{{{f{j{BEh{c}}}}{f{{Lf{c}}}}}{{G`{CjBHn}}}Ih}{c{{G`{e}}}{}{}}{{{f{{Lf{c}}}}}{{G`{{BEh{c}}}}}Ch}11{{{f{Dd}}}{{G`{BHh}}}}2{BIn{{G`{BHh}}}}3{{{f{j{BEh{c}}}}F`c}{{G`{Cj{BHn{c}}}}}{}}{{}{{G`{c}}}{}}0000{{}{{G`{c{AEf{c}}}}}{}}0000{{{f{j{BEh{c}}}}c}{{G`{Cj{BHn{c}}}}}{}}{{{f{jBHh}}BIf}{{G`{Cj{BHn{BIf}}}}}}{{{f{jBHh}}{f{Dd}}}{{G`{Cj{BHn{{f{Dd}}}}}}}}{fAEh}0000{ce{}{}}0000{{}c{}}0000{f{{Df{{f{c}}}}}{}}0000{{}c{}}0000{{{f{j{BEh{Cl}}}}{f{{Lf{Cl}}}}}{{G`{F`BIj}}}}{{{f{j}}{f{BJ`}}}{{G`{CjBIj}}}}{{{f{j}}{f{BJb}}}{{G`{CjBIj}}}}{{{f{j}}{f{BJd}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{BJf}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{BJd}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{BJf}}}{{G`{CjBIj}}}}{{{f{j}}{f{M`}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{BJh}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{BJh}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{BJb}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{M`}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{BH`}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{BH`}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{Cl}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{BJj}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{BJj}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{BGd}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{AOl}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{BGd}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{BJ`}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{BJl}}}{{G`{CjBIj}}}}{{{f{j}}{f{AOl}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{BJl}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{Cl}}}{{G`{CjBIj}}}}>{{{f{j}}{f{{Lf{BJf}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{BJd}}}}}{{G`{CjBIj}}}}483{{{f{j}}{f{BJb}}}{{G`{CjBIj}}}}{{{f{j}}{f{BJh}}}{{G`{CjBIj}}}}879{{{f{j}}{f{BJ`}}}{{G`{CjBIj}}}}={{{f{j}}{f{BJf}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{Cl}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{BJj}}}{{G`{CjBIj}}}}{{{f{j}}{f{BH`}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{M`}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{BH`}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{{Lf{BJh}}}}}{{G`{CjBIj}}}}{{{f{j}}{f{BJd}}}{{G`{CjBIj}}}}{{{f{j}}{f{M`}}}{{G`{CjBIj}}}}>{{{f{j}}{f{BGd}}}{{G`{CjBIj}}}}{{{f{jBHh}}BIf}{{G`{CjFn}}}}{{{f{j}}BJnM`}{{G`{CjBIj}}}}{{{f{j}}BJnBH`}{{G`{CjBIj}}}}{{{f{j}}BJnBJf}{{G`{CjBIj}}}}{{{f{j}}BJnAOl}{{G`{CjBIj}}}}{{{f{j}}BJnBJh}{{G`{CjBIj}}}}{{{f{j}}BJnBJd}{{G`{CjBIj}}}}{{{f{j}}BJnBJb}{{G`{CjBIj}}}}{{{f{jBHh}}{f{Dd}}}{{G`{CjFn}}}}{{{f{j}}BJnBJl}{{G`{CjBIj}}}}{{{f{j}}BJnBJj}{{G`{CjBIj}}}}{{{f{j}}BJnBGd}{{G`{CjBIj}}}}{{{f{j}}BJnBJ`}{{G`{CjBIj}}}}{{{f{j}}BJnCl}{{G`{CjBIj}}}}{{}BHh}``{eg{}{{b{c}}}{}}{ce{}{}}{{}c{}}{f{{f{h}}}}{{{f{j}}}{{f{jh}}}}{f{{f{c}}}{}}{{{f{j}}}{{f{jc}}}{}}{{{An{c}}}e{}{}}6{BD`ALd}0{F`{{f{c}}}{}}{F`{{f{jc}}}{}}5{F`Cj}{cc{}}40{ce{}{}}{{}F`}{{}c{}}0{{{Hj{c}}}{{Hj{h}}}{}}{{{Hl{c}}}{{Hl{h}}}{}}{{{Hn{c}}}{{Hn{h}}}{}};33{{}c{}}{{}c{}}{{{f{j{BFb{c}}}}}{{Df{{ALd{cAJf}}}}}BCb}{{{f{{BFb{c}}}}}{{Id{F`{Df{F`}}}}}BCb}>{{}{{G`{c}}}{}}{c{{G`{e}}}{}{}}{{}{{G`{c}}}{}}{{}{{G`{c{AEf{c}}}}}{}}{fAEh}{ce{}{}}{{}c{}}{f{{Df{{f{c}}}}}{}}{{}c{}}`````````````````````````{{{BGj{ce}}}{{BGj{ce}}}BK`{}}{{{BKb{ce}}}{{BKb{ce}}}BK`{}}{{{BAj{ce}}}{{BAj{ce}}}BK`{}}{{{BKd{ce}}}{{BKd{ce}}}BK`{}}{eg{}{{b{c}}}{}}0000000000000000000000{{{BKf{ce}}{BKf{ce}}}{}BCf{}}{{{BKf{ce}}{f{{BKf{ce}}}}}{}{BCfIh}{}}{{{ALd{ce}}{BGj{ce}}}{}BCf{}}{{{ALd{ce}}{BAj{ce}}}{}BCf{}}{{{BKh{ce}}{BKb{ce}}}{}BCf{}}{{{BKh{ce}}{BKd{ce}}}{}BCf{}}{{{BKj{ceg}}{BKj{ceg}}}{}BCf{}{}}{{{BKl{ce}}{BKl{ce}}}{{BKl{ce}}}{{BCf{}{{Dl{}}}}}{}}{{{BGj{ce}}{f{{BGj{ce}}}}}{{BGj{ce}}}{Ih{BCf{}{{Dl{}}}}}{}}{{{BGj{ce}}{BGj{ce}}}{}BCf{}}{{{BKb{ce}}{BKb{ce}}}{}BCf{}}{{{BKb{ce}}{f{{BKb{ce}}}}}{{BKb{ce}}}{Ih{BCf{}{{Dl{}}}}}{}}{{{BKn{ceg}}{BKn{cgi}}}{}BCf{}{}{}}{{{BL`{ceg}}{BL`{cgi}}}{}BCf{}{}{}}{{{BAj{ce}}{f{{BAj{ce}}}}}{}{BCfIh}{}}{{{BAj{ce}}{BAj{ce}}}{}BCf{}}{{{BKd{ce}}{f{{BKd{ce}}}}}{}{BCfIh}{}}{{{BKd{ce}}{BKd{ce}}}{}BCf{}}{{{f{j{BKf{ce}}}}{BKf{ce}}}CjBCh{}}{{{f{j{ALd{ce}}}}{BGj{ce}}}CjBCh{}}{{{f{j{ALd{ce}}}}{BAj{ce}}}Cj{Ih{BCf{}{{Dl{}}}}}{}}{{{f{j{BKh{ce}}}}{BKb{ce}}}CjBCh{}}{{{f{j{BKh{ce}}}}{BKd{ce}}}Cj{Ih{BCf{}{{Dl{}}}}}{}}{{{f{j{BKl{ce}}}}{BKl{ce}}}CjBCh{}}{{{f{j{BGj{ce}}}}{BGj{ce}}}CjBCh{}}{{{f{j{BKb{ce}}}}{BKb{ce}}}CjBCh{}}{{{f{j{BKn{ceg}}}}{BKn{cgg}}}CjBCh{}{}}{{{f{j{BL`{ceg}}}}{BL`{cgg}}}CjBCh{}{}}{{{f{j{BAj{ce}}}}{BAj{ce}}}Cj{Ih{BCf{}{{Dl{}}}}}{}}{{{f{j{BKd{ce}}}}{BKd{ce}}}Cj{Ih{BCf{}{{Dl{}}}}}{}}{{{ALd{ce}}{f{{BGj{ce}}}}}{{ALd{ce}}}{Ih{BCf{}{{Dl{}}}}}{}}{{{BKh{ce}}{BKb{ce}}}{{BKh{ce}}}{Ih{BCf{}{{Dl{}}}}}{}}{BLbBf}{BLdBf}{{BLbBLb}BLb}{{BLdBLd}BLd}{BLf}{{{BAj{ce}}}{{BAl{c}}}{BEjIh}{}}{{{BAj{ce}}{BAj{ce}}}{{BAl{c}}}{{BDh{}{{Dl{}}}}BEjIh{BDj{}{{Dl{}}}}{BCf{}{{Dl{}}}}}{}}{{{BKd{ce}}{BKd{ce}}}{{BAl{c}}}{BEjBGh}{}}76{{}cBE`}{{}{{ALd{ce}}}{}{}}{{}{{BKh{ce}}}{}{}}{{}c{}}0{{}{{BAj{ce}}}{}{}}{{}{{BKd{ce}}}{}{}}55{{{f{{AJh{ceg}}}}{f{{AJh{ceg}}}}}BfBE`{}{}}{{{f{{BLh{ceg}}}}{f{{BLh{ceg}}}}}BfBE`{}{}}{{{f{{BKf{ce}}}}{f{{BKf{ce}}}}{f{c}}}BfBE`{}}{{{f{{ALd{ce}}}}{f{{ALd{ce}}}}{f{{ALd{ce}}}}}BfBE`{}}{{{f{{BKh{ce}}}}{f{{BKh{ce}}}}{f{{BKh{ce}}}}}BfBE`{}}{{{f{{BLf{ceg}}}}{f{{BLf{ceg}}}}{f{c}}}Bf{Ih{BGb{}{{Dl{}}}}BE`}{}{}}{{{f{{BLj{ceg}}}}{f{{BLj{ceg}}}}{f{c}}}Bf{Ih{BGb{}{{Dl{}}}}BE`}{}{}}{{{f{{BAj{ce}}}}{f{{BAj{ce}}}}{f{{BAj{ce}}}}}BfBE`{}}{{{f{{BKd{ce}}}}{f{{BKd{ce}}}}{f{{BKd{ce}}}}}BfBE`{}}{{{f{{AJh{ceg}}}}{f{{AJh{ceg}}}}{f{c}}}BfBE`{}{}}0{{{f{{BLh{ceg}}}}{f{{BLh{ceg}}}}{f{c}}}BfBE`{}{}}0``{{{f{{BBb{ce}}}}}c{Ih{BDj{}{{Dl{}}}}{BDh{}{{Dl{}}}}}{}}{{{f{{BLl{ce}}}}}c{Ih{BDj{}{{Dl{}}}}}{}}{{{BGj{ce}}}{}{BDjIh}{}}{{{BKd{ce}}{BAl{c}}}{{BLj{ceg}}}BGh{}{}}{{{BAl{c}}}{{BLj{ceg}}}BGh{}{}}00{ce{}{}}0000000000000000000000{{}c{}}0000000000000000000000{f{{f{h}}}}0000000000000000000000{{{f{j}}}{{f{jh}}}}0000000000000000000000{f{{f{c}}}{}}0000000000000000000000{{{f{j}}}{{f{jc}}}{}}0000000000000000000000{BKl}{{cccccc}{{BLn{ce}}}Ih{}}{{BfBf}BLb}{{BfBfBf}BLd}{{{An{c}}}e{}{}}0000000000000000000000{{{f{{BBb{ce}}}}}{{BBb{ge}}}{BEbIh}{}BEb}{{{f{{BLn{ce}}}}}{{BLn{ge}}}{BEbIh}{}BEb}{{{BKf{ce}}}{{BKf{ge}}}{BEbCh}{}BEb}{{{ALd{ce}}}{{ALd{ge}}}{BEbIh}{}BEb}{{{BKh{ce}}}{{BKh{ge}}}{BEbIh}{}BEb}{{{f{{BLl{ce}}}}}{{BLl{ge}}}{BEbIh}{}BEb}{{{BKj{ceg}}}{{BKj{ieg}}}BEb{}{}BEb}{{{BGj{ce}}}{{BGj{ge}}}{BEbIh}{}BEb}{{{BKb{ce}}}{{BKb{ge}}}{BEbIh}{}BEb}{{{BKn{ceg}}}{{BKn{ieg}}}{BEbIh}{}{}BEb}{{{BL`{ceg}}}{{BL`{ieg}}}{BEbIh}{}{}BEb}{{{BAj{ce}}}{{BAj{ge}}}{BEbIh}{}BEb}{{{BKd{ce}}}{{BKd{ge}}}{BEbIh}{}BEb}{{{f{{AJh{ceg}}}}}{{AJh{ieg}}}{BEbIh}{}{}BEb}{{{f{{BLh{ceg}}}}}{{BLh{ieg}}}{BEbIh}{}{}BEb}{{{f{{BBb{ce}}}}}{{BBb{cg}}}Ih{}{}}{{{f{{BLn{ce}}}}}{{BLn{cg}}}Ih{}{}}{{{BKf{ce}}}{{BKf{cg}}}Ch{}{}}{{{ALd{ce}}}{{ALd{cg}}}Ih{}{}}{{{BKh{ce}}}{{BKh{cg}}}Ih{}{}}{{{f{{BLl{ce}}}}}{{BLl{cg}}}Ih{}{}}{{{f{{BM`{ceg}}}}}{{BM`{cik}}}Ih{}{}{}{}}{{{f{{BLf{ceg}}}}}{{BLf{cik}}}Ih{}{}{}{}}{{{f{{BLj{ceg}}}}}{{BLj{cik}}}Ih{}{}{}{}}{{{BGj{ce}}}{{BGj{cg}}}Ih{}{}}{{{BKb{ce}}}{{BKb{cg}}}Ih{}{}}{{{BAj{ce}}}{{BAj{cg}}}Ih{}{}}{{{BKd{ce}}}{{BKd{cg}}}Ih{}{}}{{{ALd{ce}}}{{ALd{ce}}}{BMbIh}{}}{{{ALd{ce}}}{{ALd{ce}}}BMb{}}{{{BKh{ce}}}{{BKh{ce}}}BMb{}}{{{BKh{ce}}}{{BKh{ce}}}{BMbIh}{}}{{{BGj{ce}}}{{BGj{ce}}}{BMbIh}{}}{{{BGj{ce}}}{{BGj{ce}}}BMb{}}{{{BKb{ce}}}{{BKb{ce}}}{BMbIh}{}}{{{BKb{ce}}}{{BKb{ce}}}BMb{}}{{{BAj{ce}}}{{BAj{ce}}}{BMbIh}{}}{{{BAj{ce}}}{{BAj{ce}}}BMb{}}{{{BKd{ce}}}{{BKd{ce}}}{BMbIh}{}}{{{BKd{ce}}}{{BKd{ce}}}BMb{}}{{{f{{BBb{ce}}}}}{{ALd{ce}}}{IhBMd{BCf{}{{Dl{}}}}{BEl{}{{Dl{}}}}}{}}{{{f{{BLn{ce}}}}}{{BKh{ce}}}{IhBMd{BCf{}{{Dl{}}}}{BEl{}{{Dl{}}}}}{}}{{{f{{BLl{ce}}}}}{{ALd{ce}}}{IhBMd{BCf{}{{Dl{}}}}{BEl{}{{Dl{}}}}}{}}{{{ALd{ce}}{ALd{ce}}{ALd{ce}}}{{ALd{ce}}}{IhOj}{}}{{{BKh{ce}}{BKh{ce}}{BKh{ce}}}{{BKh{ce}}}{IhOj}{}}{{{BKj{ceg}}{BKj{ceg}}{BKj{ceg}}}{{BKj{ceg}}}{IhOj}{}{}}{{{BGj{ce}}{BGj{ce}}{BGj{ce}}}{{BGj{ce}}}{IhOj}{}}{{{BKb{ce}}{BKb{ce}}{BKb{ce}}}{{BKb{ce}}}{IhOj}{}}{{{BAj{ce}}{BAj{ce}}{BAj{ce}}}{{BAj{ce}}}{IhOj}{}}{{{BKd{ce}}{BKd{ce}}{BKd{ce}}}{{BKd{ce}}}{IhOj}{}}{{{BAj{ce}}cc}{{BAj{ce}}}BGh{}}{{{BKd{ce}}cc}{{BKd{ce}}}BGh{}}{{{f{{BBb{ce}}}}}{{BBb{ce}}}Ch{}}{{{f{{BLn{ce}}}}}{{BLn{ce}}}Ch{}}{{{f{{BMf{ce}}}}}{{BMf{ce}}}Ch{}}{{{f{{BKf{ce}}}}}{{BKf{ce}}}Ch{}}{{{f{{ALd{ce}}}}}{{ALd{ce}}}Ch{}}{{{f{{BKh{ce}}}}}{{BKh{ce}}}Ch{}}{{{f{{BLl{ce}}}}}{{BLl{ce}}}Ch{}}{{{f{{BM`{ceg}}}}}{{BM`{ceg}}}Ch{}{}}{{{f{{BLf{ceg}}}}}{{BLf{ceg}}}Ch{}{}}{{{f{{BLj{ceg}}}}}{{BLj{ceg}}}Ch{}{}}{{{f{{BKj{ceg}}}}}{{BKj{ceg}}}Ch{}{}}{{{f{{BKl{ce}}}}}{{BKl{ce}}}Ch{}}{{{f{{BGj{ce}}}}}{{BGj{ce}}}Ch{}}{{{f{{BKb{ce}}}}}{{BKb{ce}}}Ch{}}{{{f{{BKn{ceg}}}}}{{BKn{ceg}}}Ch{}{}}{{{f{{BL`{ceg}}}}}{{BL`{ceg}}}Ch{}{}}{{{f{{BAj{ce}}}}}{{BAj{ce}}}Ch{}}{{{f{{BKd{ce}}}}}{{BKd{ce}}}Ch{}}{{{f{{AJh{ceg}}}}}{{AJh{ceg}}}Ch{}{}}{{{f{{BLh{ceg}}}}}{{BLh{ceg}}}Ch{}{}}{{{f{BLb}}}BLb}{{{f{BLd}}}BLd}{{{f{AJf}}}AJf}{{f{f{jc}}}Cj{}}0000000000000000000000{{fCl}Cj}0000000000000000000000{{{f{{BKf{ce}}}}{f{{BKf{ce}}}}}AHfBI`{}}{{{f{{BKj{ceg}}}}{f{{BKj{ceg}}}}}AHfBI`{}{}}{{{f{AJf}}{f{AJf}}}AHf}{{f{f{c}}}AHf{}}00{{{BAj{ce}}{BAj{ce}}}{{BAj{ce}}}{{BEl{}{{Dl{}}}}}{}}{{{BKd{ce}}{BKd{ce}}}{{BKd{ce}}}{{BEl{}{{Dl{}}}}Ih}{}}{{{BAj{ce}}{BAj{ce}}}{{BAj{ce}}}{{BDj{}{{Dl{}}}}}{}}{{{BKd{ce}}{BKd{ce}}}{{BKd{ce}}}{{BDj{}{{Dl{}}}}Ih}{}}{ce{}{}}0000000000000000000000{{{f{{BBb{ce}}}}{ALd{ce}}}BfOj{}}{{{f{{BLn{ce}}}}{BKh{ce}}}BfOj{}}{{{f{{BLl{ce}}}}{ALd{ce}}}Bf{IhOj{BCf{}{{Dl{}}}}}{}}{{{BGj{ce}}{BGj{ce}}}BfOj{}}{{{BKb{ce}}{BKb{ce}}}BfOj{}}{{{f{{BBb{ce}}}}{f{{BBb{ce}}}}}BfOj{}}{{{f{{BLn{ce}}}}{f{{BLn{ce}}}}}BfOj{}}65{{{f{{BLl{ce}}}}{f{{BLl{ce}}}}}Bf{IhBMhOj{BCf{}{{Dl{}}}}}{}}{BEjBEj}{{{BAj{ce}}{BAj{ce}}}c{{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}}{{{BKd{ce}}{BKd{ce}}}{{BKd{ce}}}{{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}Ih}{}}{{{f{{BM`{ceg}}}}}{{Id{{BKd{ce}}{BLj{ceg}}}}}{BGhBE`}{}{}}`{{}{{BBb{ce}}}Kb{}}{{}{{BLn{ce}}}Kb{}}{{}{{BKf{ce}}}Kb{}}{{}{{ALd{ce}}}Kb{}}{{}{{BKh{ce}}}Kb{}}{{}{{BLl{ce}}}Kb{}}{{}{{BKj{ceg}}}Kb{}{}}{{}{{BKl{ce}}}Kb{}}{{}{{BGj{ce}}}Kb{}}{{}{{BKb{ce}}}Kb{}}{{}{{BKn{ceg}}}BMh{}{}}{{}{{BL`{ceg}}}BMh{}{}}{{}{{BAj{ce}}}Kb{}}{{}{{BKd{ce}}}Kb{}}{{}{{AJh{ceg}}}{BMhBMd}{}{}}{{}{{BLh{ceg}}}{BMhBMd}{}{}}{{}AJf}{BEjBEj}{{{f{{BLn{ce}}}}}c{Ih{BDh{}{{Dl{}}}}}{}}{BKb}{F`{{f{c}}}{}}0000000000000000000000{F`{{f{jc}}}{}}0000000000000000000000{{{f{{AJh{ceg}}}}}c{Ih{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BEl{}{{Dl{}}}}IjBMhBMd}{}{}}{{{f{{BLh{ceg}}}}}c{{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BEl{}{{Dl{}}}}Ih{BGb{}{{Dl{}}}}{BCf{}{{Dl{}}}}OjBMdBMh}{}{}}{{{ALd{ce}}{ALd{ce}}}c{{BGh{}{{Dl{}}}}BDh}{}}{{{BKh{ce}}{BKh{ce}}}c{{BGh{}{{Dl{}}}}BDh}{}}{{{BBb{ce}}c}{}{IhBEl}{}}{{{BBb{ce}}{BKj{cge}}}{}{IhBEl}{}{}}{{{BLn{ce}}c}{}{IhBEl}{}}{{{BLn{ce}}{BKj{cge}}}{}{IhBEl}{}{}}{{{BKf{ce}}{BKj{cge}}}{}BEl{}{}}{{{BKf{ce}}{BKf{cg}}}{}BEl{}{}}{{{BKf{ce}}c}{}BEl{}}{{{ALd{ce}}{BKj{cge}}}{}{IhBEl}{}{}}{{{ALd{ce}}c}{}{IhBEl}{}}{{{BKh{ce}}{BKj{cge}}}{}{IhBEl}{}{}}{{{BKh{ce}}c}{}{IhBEl}{}}{{{BLl{ce}}{BKj{cge}}}{}{IhBEl}{}{}}{{{BLl{ce}}c}{}{IhBEl}{}}{{{BKl{ce}}{BKj{cge}}}{}{IhBEl}{}{}}{{{BKl{ce}}c}{}{IhBEl}{}}{{{BGj{ce}}{BKj{cge}}}{}{IhBEl}{}{}}{{{BGj{ce}}c}{}{IhBEl}{}}{{{BKb{ce}}c}{}{IhBEl}{}}{{{BKb{ce}}{BKj{cge}}}{}{IhBEl}{}{}}{{{BAj{ce}}c}{}{IhBEl}{}}{{{BAj{ce}}{BKj{cge}}}{}{IhBEl}{}{}}{{{BKd{ce}}{BKj{cge}}}{}{IhBEl}{}{}}{{{BKd{ce}}c}{}{IhBEl}{}}{{{f{j{BBb{ce}}}}{BKj{cee}}}Cj{IhBEn}{}}{{{f{j{BBb{ce}}}}c}Cj{IhBEn}{}}{{{f{j{BLn{ce}}}}{BKj{cee}}}Cj{IhBEn}{}}{{{f{j{BLn{ce}}}}c}Cj{IhBEn}{}}{{{f{j{BKf{ce}}}}c}Cj{Ih{BEl{}{{Dl{}}}}}{}}{{{f{j{ALd{ce}}}}c}Cj{Ih{BEl{}{{Dl{}}}}}{}}{{{f{j{ALd{ce}}}}{BKj{cee}}}Cj{IhBEn}{}}{{{f{j{BKh{ce}}}}{BKj{cee}}}Cj{IhBEn}{}}{{{f{j{BKh{ce}}}}c}Cj{IhBEn}{}}{{{f{j{BLl{ce}}}}c}Cj{IhBEn}{}}{{{f{j{BLl{ce}}}}{BKj{cee}}}Cj{IhBEn}{}}{{{f{j{BKl{ce}}}}c}Cj{IhBEn}{}}{{{f{j{BKl{ce}}}}{BKj{cee}}}Cj{IhBEn}{}}{{{f{j{BGj{ce}}}}c}Cj{IhBEn}{}}{{{f{j{BGj{ce}}}}{BKj{cee}}}Cj{IhBEn}{}}{{{f{j{BKb{ce}}}}{BKj{cee}}}Cj{IhBEn}{}}{{{f{j{BKb{ce}}}}c}Cj{IhBEn}{}}{{{f{j{BAj{ce}}}}c}Cj{Ih{BEl{}{{Dl{}}}}}{}}{{{f{j{BAj{ce}}}}{BKj{cee}}}Cj{IhBEn}{}}{{{f{j{BKd{ce}}}}{BKj{cee}}}Cj{IhBEn}{}}{{{f{j{BKd{ce}}}}c}Cj{Ih{BEl{}{{Dl{}}}}}{}}{{{f{{ALd{ce}}}}{f{{BGj{ce}}}}}{{ALd{ce}}}BMj{}}{{{f{{BKh{ce}}}}{f{{BKb{ce}}}}}{{BKh{ce}}}BMj{}}{{{BAj{ce}}{BAj{ce}}}c{{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}}{{{BKd{ce}}{BKd{ce}}}c{{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}}{f{{f{c}}}{}}0000000000000000000000{F`Cj}0000000000000000000000{{{f{{BBb{ce}}}}{f{{BBb{ce}}}}}BfIj{}}{{{f{{BLn{ce}}}}{f{{BLn{ce}}}}}BfIj{}}{{{f{{BMf{ce}}}}{f{{BMf{ce}}}}}BfIj{}}{{{f{{BKf{ce}}}}{f{{BKf{ce}}}}}BfIj{}}{{{f{{ALd{ce}}}}{f{{ALd{ce}}}}}BfIj{}}{{{f{{BKh{ce}}}}{f{{BKh{ce}}}}}BfIj{}}{{{f{{BLl{ce}}}}{f{{BLl{ce}}}}}BfIj{}}{{{f{{BM`{ceg}}}}{f{{BM`{ceg}}}}}BfIj{}{}}{{{f{{BLf{ceg}}}}{f{{BLf{ceg}}}}}BfIj{}{}}{{{f{{BLj{ceg}}}}{f{{BLj{ceg}}}}}BfIj{}{}}{{{f{{BKj{ceg}}}}{f{{BKj{ceg}}}}}BfIj{}{}}{{{f{{BKl{ce}}}}{f{{BKl{ce}}}}}BfIj{}}{{{f{{BGj{ce}}}}{f{{BGj{ce}}}}}BfIj{}}{{{f{{BKb{ce}}}}{f{{BKb{ce}}}}}BfIj{}}{{{f{{BKn{ceg}}}}{f{{BKn{ceg}}}}}BfIj{}{}}{{{f{{BL`{ceg}}}}{f{{BL`{ceg}}}}}BfIj{}{}}{{{f{{BAj{ce}}}}{f{{BAj{ce}}}}}BfIj{}}{{{f{{BKd{ce}}}}{f{{BKd{ce}}}}}BfIj{}}{{{f{{AJh{ceg}}}}{f{{AJh{ceg}}}}}BfIj{}{}}{{{f{{BLh{ceg}}}}{f{{BLh{ceg}}}}}BfIj{}{}}{{{f{BLb}}{f{BLb}}}Bf}{{{f{BLd}}{f{BLd}}}Bf}{{{f{AJf}}{f{AJf}}}Bf}{{{BGj{ce}}{BGj{ce}}}BLbIj{}}{{{BKb{ce}}{BKb{ce}}}BLdIj{}}{{{BAj{ce}}{BAj{ce}}}BLbIj{}}{{{BKd{ce}}{BKd{ce}}}BLdIj{}}{{f{f{c}}}Bf{}}00000000000000000000000000000000000000000000000000000000000000000000{{{BAl{c}}{BAl{c}}{BAl{c}}}{{BLj{ceg}}}BGh{}{}}{{{ALd{ce}}c}{{BKh{ce}}}Ih{}}{{{BAj{ce}}c}{{BKd{ce}}}Ih{}}{{BEjBEj}BEj}{{{ALd{ce}}}{{ALd{ce}}}BMl{}}{{{ALd{ce}}}{{ALd{ce}}}{BMlIh}{}}{{{BKh{ce}}}{{BKh{ce}}}{BMlIh}{}}{{{BKh{ce}}}{{BKh{ce}}}BMl{}}{{{BGj{ce}}}{{BGj{ce}}}{BMlIh}{}}{{{BGj{ce}}}{{BGj{ce}}}BMl{}}{{{BKb{ce}}}{{BKb{ce}}}BMl{}}{{{BKb{ce}}}{{BKb{ce}}}{BMlIh}{}}{{{BAj{ce}}}{{BAj{ce}}}{BMlIh}{}}{{{BAj{ce}}}{{BAj{ce}}}BMl{}}{{{BKd{ce}}}{{BKd{ce}}}{BMlIh}{}}{{{BKd{ce}}}{{BKd{ce}}}BMl{}}{{{f{{BBb{ce}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}}{{{f{{BLn{ce}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}}{{{f{{BMf{ce}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}}{{{f{{BKf{ce}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}}{{{f{{ALd{ce}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}}{{{f{{BKh{ce}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}}{{{f{{BLl{ce}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}}{{{f{{BM`{ceg}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}{}}{{{f{{BLf{ceg}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}{}}{{{f{{BLj{ceg}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}{}}{{{f{{BKj{ceg}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}{}}{{{f{{BKl{ce}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}}{{{f{{BGj{ce}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}}{{{f{{BKb{ce}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}}{{{f{{BKn{ceg}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}{}}{{{f{{BL`{ceg}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}{}}{{{f{{BAj{ce}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}}{{{f{{BKd{ce}}}}{f{jFl}}}{{G`{CjFn}}}Gd{}}{{{f{{AJh{ceg}}}}{f{jFl}}}{{G`{CjFn}}}{IhGdIjBMdBMh}{}{}}{{{f{{BLh{ceg}}}}{f{jFl}}}{{G`{CjFn}}}{IhGdIjBMdBMh}{}{}}{{{f{BLb}}{f{jFl}}}{{G`{CjFn}}}}{{{f{BLd}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AJf}}{f{jFl}}}{{G`{CjFn}}}}{cc{}}{{{BGj{ce}}}{{BBb{ce}}}{IhBMhOj}{}}{{{BKb{ce}}}{{BLn{ce}}}{IhBMhOj}{}}2{{{BAj{ce}}}{{BMf{ce}}}BMh{}}{{{ALd{ce}}}{{BMf{ce}}}{BMhBMd}{}}4{{{BKd{ce}}}{{BMf{ce}}}BMh{}}{{{BKh{ce}}}{{BMf{ce}}}BMd{}}6{{{AK`{c}}}{{ALd{ce}}}{}{}}7{{{Id{cc}}}{{ALd{ce}}}{}{}}8{{{Id{ccc}}}{{BKh{ce}}}{}{}}{{{AK`{c}}}{{BKh{ce}}}{}{}}:{{{BGj{ce}}}{{BLl{ce}}}BMh{}};{{{BKd{ce}}}{{BM`{cge}}}{}{}{}}{{{BLj{ceg}}}{{BM`{ceg}}}{}{}{}}====={{{BAj{ce}}}{{BGj{ce}}}{}{}}{{{AK`{c}}}{{BGj{ce}}}{}{}}{{{Id{cc}}}{{BGj{ce}}}{}{}}{cc{}}{{{BKd{ce}}}{{BKb{ce}}}{}{}}{{{AK`{c}}}{{BKb{ce}}}{}{}}{{{Id{ccc}}}{{BKb{ce}}}{}{}}3{{{BAj{ce}}}{{BKn{ceg}}}{}{}{}}{{{BKd{ce}}}{{BL`{ceg}}}{}{}{}}5{{{BGj{ce}}}{{BAj{ce}}}{}{}}6{{{Id{cc}}}{{BAj{ce}}}{}{}}{{{AK`{c}}}{{BAj{ce}}}{}{}}{{{BKn{ceg}}}{{BAj{ce}}}{}{}{}}{{{Id{ccc}}}{{BKd{ce}}}{}{}}{{{BL`{ceg}}}{{BKd{ce}}}{}{}{}};{{{AK`{c}}}{{BKd{ce}}}{}{}}<{{{BKn{ceg}}}{{AJh{ceg}}}{BMhBMd}{}{}}={{{BL`{ceg}}}{{BLh{ceg}}}{BMhBMd}{}{}}>>>>>>>>>>>>>>>>>>>>>>>>>>{{{BAl{c}}c}{{BAj{ce}}}{BEj{BDj{}{{Dl{}}}}Ih}{}}{{{AK`{c}}}{{AJh{ceg}}}Ih{}{}}{{{AK`{c}}}{{BLh{ceg}}}Ih{}{}}{{{AK`{{AK`{c}}}}}{{AJh{ceg}}}Ih{}{}}{{{AK`{{AK`{c}}}}}{{BLh{ceg}}}Ih{}{}}{{{BKf{ce}}}{{BKl{ce}}}Ih{}}{{{BKf{ce}}{BKf{ce}}}{{ALd{ce}}}{}{}}{{{BKf{ce}}{BKf{ce}}{BKf{ce}}}{{BKh{ce}}}{}{}}{{{BKf{ce}}{BKf{ce}}{BKf{ce}}{BKf{ce}}}{{BKl{ce}}}{}{}}{{{BKf{ce}}{BKf{ce}}}{{BGj{ce}}}{}{}}{{{BKf{ce}}{BKf{ce}}{BKf{ce}}}{{BKb{ce}}}{}{}}{{{BKf{ce}}{BKf{ce}}}{{BAj{ce}}}{}{}}{{{BKf{ce}}{BKf{ce}}{BKf{ce}}}{{BKd{ce}}}{}{}}{{{ALd{ce}}{BGj{ce}}}{{BBb{ce}}}{Ih{BCf{}{{Dl{}}}}}{}}{{{BKh{ce}}{BKb{ce}}}{{BLn{ce}}}{Ih{BCf{}{{Dl{}}}}}{}}{c{{BBb{eg}}}D`{IhBMhOj}{}}{c{{BLn{eg}}}D`{IhBMhOj}{}}{c{{BLl{eg}}}D`{IhBMhOj{BDh{}{{Dl{}}}}}{}}{{{BLj{ceg}}}{{BM`{ceg}}}{}{}{}}{{{BKj{ceg}}}{{BLh{ceg}}}{{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BEl{}{{Dl{}}}}Ih{BGb{}{{Dl{}}}}{BCf{}{{Dl{}}}}OjBMdBMh}{}{}}{{{BGj{ce}}}{{BBb{ce}}}BMh{}}{{{BKb{ce}}}{{BLn{ce}}}BMh{}}{{{BGj{ce}}}{{BLl{ce}}}BMh{}}{ce{}{}}0000000000000000000000{{{BKd{ce}}}{{BM`{cge}}}{}{}{}}{{{f{{BBb{cAJf}}}}}{{BBb{ce}}}Ih{}}{{{f{{BLn{cAJf}}}}}{{BLn{ce}}}Ih{}}{{{ALd{cAJf}}}{{ALd{ce}}}{}{}}{{{BKh{cAJf}}}{{BKh{ce}}}{}{}}{{{f{{BLl{cAJf}}}}}{{BLl{ce}}}Ih{}}{{{f{{BM`{cAJfAJf}}}}}{{BM`{ceg}}}{BGhBE`}{}{}}{{{f{{BLf{cAJfAJf}}}}}{{BLf{ceg}}}Ih{}{}}{{{f{{BLj{cAJfAJf}}}}}{{BLj{ceg}}}Ih{}{}}{{{BGj{cAJf}}}{{BGj{ce}}}{}{}}{{{BKb{cAJf}}}{{BKb{ce}}}{}{}}{{{f{{BKn{cAJfAJf}}}}}{{BKn{ceg}}}Ih{}{}}{{{f{{BL`{cAJfAJf}}}}}{{BL`{ceg}}}Ih{}{}}{{{BAj{cAJf}}}{{BAj{ce}}}{}{}}{{{BKd{cAJf}}}{{BKd{ce}}}{}{}}{{{f{{AJh{cAJfAJf}}}}}{{AJh{ceg}}}Ih{}{}}{{{f{{BLh{cAJfAJf}}}}}{{BLh{ceg}}}Ih{}{}}{{{BAj{ce}}{BAj{ce}}}{{BKl{ce}}}{{BGb{}{{Dl{}}}}}{}}0{{{BKf{ce}}}cCh{}}{{{BKj{ceg}}}c{}{}{}}{{{f{{BLf{ceg}}}}}{{BAl{c}}}Ih{}{}}{{{BGj{ce}}{BGj{ce}}}BLbOj{}}{{{BKb{ce}}{BKb{ce}}}BLdOj{}}{{{BAj{ce}}{BAj{ce}}}BLbOj{}}{{{BKd{ce}}{BKd{ce}}}BLdOj{}}{{{f{{BBb{ce}}}}{f{jg}}}CjCf{}AIb}{{{f{{BLn{ce}}}}{f{jg}}}CjCf{}AIb}{{{f{{BMf{ce}}}}{f{jg}}}CjCf{}AIb}{{{f{{BKf{ce}}}}{f{jg}}}CjCf{}AIb}{{{f{{ALd{ce}}}}{f{jg}}}CjCf{}AIb}{{{f{{BKh{ce}}}}{f{jg}}}CjCf{}AIb}{{{f{{BLl{ce}}}}{f{jg}}}CjCf{}AIb}{{{f{{BM`{ceg}}}}{f{ji}}}CjCf{}{}AIb}{{{f{{BLf{ceg}}}}{f{ji}}}CjCf{}{}AIb}{{{f{{BLj{ceg}}}}{f{ji}}}CjCf{}{}AIb}{{{f{{BKj{ceg}}}}{f{ji}}}CjCf{}{}AIb}{{{f{{BKl{ce}}}}{f{jg}}}CjCf{}AIb}{{{f{{BGj{ce}}}}{f{jg}}}CjCf{}AIb}{{{f{{BKb{ce}}}}{f{jg}}}CjCf{}AIb}{{{f{{BKn{ceg}}}}{f{ji}}}CjCf{}{}AIb}{{{f{{BL`{ceg}}}}{f{ji}}}CjCf{}{}AIb}{{{f{{BAj{ce}}}}{f{jg}}}CjCf{}AIb}{{{f{{BKd{ce}}}}{f{jg}}}CjCf{}AIb}{{{f{{AJh{ceg}}}}{f{ji}}}CjCf{}{}AIb}{{{f{{BLh{ceg}}}}{f{ji}}}CjCf{}{}AIb}{{{f{BLb}}{f{jc}}}CjAIb}{{{f{BLd}}{f{jc}}}CjAIb}{{{f{AJf}}{f{jc}}}CjAIb}{{{f{{BBb{ce}}}}}c{Ih{BDh{}{{Dl{}}}}}{}}{{{f{{BLn{ce}}}}}c{Ih{BDh{}{{Dl{}}}}}{}}{{{f{{BLl{ce}}}}}c{Ih{BCf{}{{Dl{}}}}}{}}{BGj}{BKb}{{{f{{BKl{ce}}}}}c{Ih{BCf{}{{Dl{}}}}}{}}{BLj}{{}{{BM`{ceg}}}{}{}{}}{{}{{BLf{ceg}}}BGf{}{}}{{}{{BLj{ceg}}}{BGfBDl}{}{}}{{}{{BKj{ceg}}}BMd{}{}}{{}{{BKn{ceg}}}BMh{}{}}{{}{{BL`{ceg}}}BMh{}{}}{{}{{AJh{ceg}}}{BMhBMd}{}{}}{{}{{BLh{ceg}}}{BMhBMd}{}{}}{{{f{{BBb{ce}}}}cc}{{BBb{ce}}}{Ih{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}}{}}{{{f{{BLn{ce}}}}ccc}{{BLn{ce}}}{Ih{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}}{}}{{{f{{BLl{ce}}}}cc}{{BLl{ce}}}{Ih{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}}{}}{{}F`}0000000000000000000000{{{f{{BBb{ce}}}}{BKl{ce}}}{{BBb{ce}}}{Ih{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}}{}}{{{f{{BLl{ce}}}}{BKl{ce}}}{{BLl{ce}}}{IhBMhOj{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}}{}}{{{f{{BBb{ce}}}}{f{{BBb{ce}}}}}{{Df{{BBb{ce}}}}}{IhOj}{}}{{{f{{BLn{ce}}}}{f{{BLn{ce}}}}}{{Df{{BLn{ce}}}}}{IhOj}{}}{{{f{{BLl{ce}}}}{f{{BLl{ce}}}}}{{Df{{BLl{ce}}}}}{IhOj{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}}{}}{{{f{{BBb{ce}}}}{f{{BBb{ce}}}}}{{BBb{ce}}}{IhOj}{}}{{{f{{BLn{ce}}}}{f{{BLn{ce}}}}}{{BLn{ce}}}{IhOj}{}}{{{f{{BBb{ce}}}}{f{{BBb{ce}}}}}BfOj{}}{{{f{{BLn{ce}}}}{f{{BLn{ce}}}}}BfOj{}}{{{f{{BLl{ce}}}}{f{{BLl{ce}}}}}Bf{IhOj{BCf{}{{Dl{}}}}}{}}{{}c{}}000000000000000000000000000000000000000000000{{{Hj{c}}}{{Hj{h}}}{}}0000000000000000000000{{{Hl{c}}}{{Hl{h}}}{}}0000000000000000000000{{{Hn{c}}}{{Hn{h}}}{}}0000000000000000000000{{{An{c}}}e{}{}}00000000000000000000004444444444444444444444444444444444444444444444{{}c{}}0000000000000000000000{{{f{{BM`{ceg}}}}}{{BM`{cge}}}{BGhBE`}{}{}}{{{f{{BLf{ceg}}}}}{{BLf{cge}}}BGh{}{}}{{{f{{BLj{ceg}}}}}{{BLj{cge}}}BGh{}{}}{{{BKj{ceg}}}{{BKj{ge}}}{BMdBEl}{}{}}{{{f{{BKn{ceg}}}}}{{BKn{ge}}}{BGbIh}{}{}}{{{f{{BL`{ceg}}}}}{{BL`{ge}}}{BGbIh}{}{}}{{{f{{AJh{ceg}}}}}{{Df{{AJh{cge}}}}}{Ih{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BEl{}{{Dl{}}}}IjBMhBMd}{}{}}{{{f{{BLh{ceg}}}}}{{Df{{BLh{cge}}}}}{{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BEl{}{{Dl{}}}}Ih{BGb{}{{Dl{}}}}{BCf{}{{Dl{}}}}OjBMdBMh}{}{}}{{{f{{BLh{ceg}}}}}Bf{BMhBMdIj}{}{}}{{{f{{BLh{ceg}}}}}Bf{{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BEl{}{{Dl{}}}}Ih{BGb{}{{Dl{}}}}{BCf{}{{Dl{}}}}OjBMdBMh}{}{}}{{{f{{BBb{ce}}}}}BfOj{}}{{{f{{BLn{ce}}}}}BfOj{}}{{{f{{BLl{ce}}}}}Bf{IhBMhOj}{}}{{{BGj{ce}}}Bf{BMhOj}{}}{{{BKb{ce}}}Bf{BMhOj}{}}{{{BBb{ce}}}BfBFj{}}{{{BLn{ce}}}BfBFj{}}{{{ALd{ce}}}BfBFj{}}{{{BKh{ce}}}BfBFj{}}{{{BLl{ce}}}BfBFj{}}{{{BGj{ce}}}BfBFj{}}{{{BKb{ce}}}BfBFj{}}{{{BAj{ce}}}BfBFj{}}{{{BKd{ce}}}BfBFj{}}{{{BKj{ceg}}}Bf{IjBMd}{}{}}{{{f{{BKn{ceg}}}}}Bf{BMhIj}{}{}}{{{f{{BL`{ceg}}}}}Bf{BMhIj}{}{}}{{{f{{AJh{ceg}}}}}Bf{Ih{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BEl{}{{Dl{}}}}IjBMhBMd}{}{}}{{{f{{BLh{ceg}}}}}Bf{{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BEl{}{{Dl{}}}}Ih{BGb{}{{Dl{}}}}{BCf{}{{Dl{}}}}OjBMdBMh}{}{}}{{{f{{BBb{ce}}}}}BfOj{}}{{{f{{BLn{ce}}}}}BfOj{}}{{{f{{BLj{ceg}}}}}Bf{BE`BGh}{}{}}{{{BGj{ce}}}BfBK`{}}{{{BKb{ce}}}BfBK`{}}{{{f{{BKl{ce}}}}}Bf{BMhIj}{}}{BLj}0{BKl}{{{BAj{ce}}}cBGh{}}{{{BKd{ce}}}cBGh{}}{{{f{{BBb{ce}}}}{BBb{ce}}c}{{BBb{ce}}}{BMd{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}Ih}{}}{{{f{{BLn{ce}}}}{BLn{ce}}c}{{BLn{ce}}}{BMd{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}Ih}{}}{{{BKf{ce}}{BKf{ce}}c}{{BKf{ce}}}{BMd{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BCf{}{{Dl{}}}}Ch}{}}{{{ALd{ce}}{ALd{ce}}c}{{ALd{ce}}}{BMd{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BCf{}{{Dl{}}}}Ih}{}}{{{BKh{ce}}{BKh{ce}}c}{{BKh{ce}}}{BMd{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BCf{}{{Dl{}}}}Ih}{}}{{{f{{BLl{ce}}}}{BLl{ce}}c}{{BLl{ce}}}{BMd{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}Ih}{}}{{{f{{BLj{ceg}}}}{f{{BLj{ceg}}}}c}{{BLj{ceg}}}BGh{}{}}{{{BGj{ce}}{BGj{ce}}c}{{BGj{ce}}}{BMd{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BCf{}{{Dl{}}}}Ih}{}}{{{BKb{ce}}{BKb{ce}}c}{{BKb{ce}}}{BMd{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BCf{}{{Dl{}}}}Ih}{}}{{{BAj{ce}}{BAj{ce}}c}{{BAj{ce}}}{BMd{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}Ih}{}}{{{BKd{ce}}{BKd{ce}}c}{{BKd{ce}}}{BMd{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}Ih}{}}{{{BGj{ce}}{BGj{ce}}}BLbOj{}}{{{BKb{ce}}{BKb{ce}}}BLdOj{}}{{{BAj{ce}}{BAj{ce}}}BLbOj{}}{{{BKd{ce}}{BKd{ce}}}BLdOj{}}{AJh}{BLh}10001010001010000000{{{ALd{ce}}i}{{ALd{ge}}}{}{}{}{{AHj{c}{{Dl{g}}}}}}{{{BKh{ce}}i}{{BKh{ge}}}{}{}{}{{AHj{c}{{Dl{g}}}}}}{{{BAj{ce}}i}{{BAj{ge}}}{}{}{}{{AHj{c}{{Dl{g}}}}}}{{{BKd{ce}}i}{{BKd{ge}}}{}{}{}{{AHj{c}{{Dl{g}}}}}}{{{BKf{ce}}{BKf{ce}}}{{BKf{ce}}}Oj{}}{{{ALd{ce}}{ALd{ce}}}{{ALd{ce}}}Oj{}}{{{BKh{ce}}{BKh{ce}}}{{BKh{ce}}}Oj{}}{{{f{{BLl{ce}}}}}{{ALd{ce}}}{Ih{BCf{}{{Dl{}}}}}{}}{{{BKj{ceg}}{BKj{ceg}}}{{BKj{ceg}}}Oj{}{}}{{{BGj{ce}}{BGj{ce}}}{{BGj{ce}}}Oj{}}{{{BKb{ce}}{BKb{ce}}}{{BKb{ce}}}Oj{}}{{{BAj{ce}}{BAj{ce}}}{{BAj{ce}}}Oj{}}{{{BKd{ce}}{BKd{ce}}}{{BKd{ce}}}Oj{}}{BBbALd}{BLnBKh}{{{f{{BLl{ce}}}}}c{Ih{BCf{}{{Dl{}}}}}{}}0;:98765432100{{{BBb{ce}}c}{}{IhBDj}{}}{{{BBb{ce}}{BKj{ceg}}}{}{IhBDj}{}{}}{{{BLn{ce}}c}{}{IhBDj}{}}{{{BLn{ce}}{BKj{ceg}}}{}{IhBDj}{}{}}{{{BKf{ce}}{BKj{ceg}}}{}BDj{}{}}{{{BKf{ce}}c}{}BDj{}}{{{ALd{ce}}c}{}{IhBDj}{}}{{{ALd{ce}}{BKj{ceg}}}{}{IhBDj}{}{}}{{{BKh{ce}}c}{}{IhBDj}{}}{{{BKh{ce}}{BKj{ceg}}}{}{IhBDj}{}{}}{{{BLl{ce}}c}{}{IhBDj}{}}{{{BLl{ce}}{BKj{ceg}}}{}{IhBDj}{}{}}{{{BKj{ceg}}{BKj{cgi}}}{}BDj{}{}{}}{{{BKl{ce}}{BKj{ceg}}}{}{IhBDj}{}{}}{{{BKl{ce}}c}{}{IhBDj}{}}{{{BGj{ce}}{BKj{ceg}}}{}{IhBDj}{}{}}{{{BGj{ce}}c}{}{IhBDj}{}}{{{BKb{ce}}c}{}{IhBDj}{}}{{{BKb{ce}}{BKj{ceg}}}{}{IhBDj}{}{}}{{{BAj{ce}}c}{}{IhBDj}{}}{{{BAj{ce}}{BKj{ceg}}}{}{IhBDj}{}{}}{{{BKd{ce}}c}{}{IhBDj}{}}{{{BKd{ce}}{BKj{ceg}}}{}{IhBDj}{}{}}{{{f{j{BBb{ce}}}}c}Cj{IhBG`}{}}{{{f{j{BBb{ce}}}}{BKj{cee}}}Cj{IhBG`}{}}{{{f{j{BLn{ce}}}}{BKj{cee}}}Cj{IhBG`}{}}{{{f{j{BLn{ce}}}}c}Cj{IhBG`}{}}{{{f{j{BKf{ce}}}}c}Cj{Ih{BDj{}{{Dl{}}}}}{}}{{{f{j{ALd{ce}}}}{BKj{cee}}}Cj{IhBG`}{}}{{{f{j{ALd{ce}}}}c}Cj{Ih{BDj{}{{Dl{}}}}}{}}{{{f{j{BKh{ce}}}}{BKj{cee}}}Cj{IhBG`}{}}{{{f{j{BKh{ce}}}}c}Cj{IhBG`}{}}{{{f{j{BLl{ce}}}}{BKj{cee}}}Cj{IhBG`}{}}{{{f{j{BLl{ce}}}}c}Cj{IhBG`}{}}{{{f{j{BKl{ce}}}}{BKj{cee}}}Cj{IhBG`}{}}{{{f{j{BKl{ce}}}}c}Cj{IhBG`}{}}{{{f{j{BGj{ce}}}}{BKj{cee}}}Cj{IhBG`}{}}{{{f{j{BGj{ce}}}}c}Cj{IhBG`}{}}{{{f{j{BKb{ce}}}}c}Cj{IhBG`}{}}{{{f{j{BKb{ce}}}}{BKj{cee}}}Cj{IhBG`}{}}{{{f{j{BAj{ce}}}}c}Cj{Ih{BDj{}{{Dl{}}}}}{}}{{{f{j{BAj{ce}}}}{BKj{cee}}}Cj{IhBG`}{}}{{{f{j{BKd{ce}}}}{BKj{cee}}}Cj{IhBG`}{}}{{{f{j{BKd{ce}}}}c}Cj{Ih{BDj{}{{Dl{}}}}}{}}{{{f{{BLh{ceg}}}}c}{{BLh{ceg}}}{{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BEl{}{{Dl{}}}}Ih{BGb{}{{Dl{}}}}{BCf{}{{Dl{}}}}OjBMdBMh}{}{}}{{{BKf{ce}}}{}BGb{}}{{{ALd{ce}}}{}BGb{}}{{{BKh{ce}}}{}BGb{}}{{{BKl{ce}}}{{BKl{ce}}}{{BGb{}{{Dl{}}}}}{}}{{{BGj{ce}}}{}BGb{}}{{{BKb{ce}}}{}BGb{}}{{{BAj{ce}}}{}BGb{}}{{{BKd{ce}}}{}BGb{}}{{{ALd{ce}}{ALd{ce}}}{{BBb{ce}}}{}{}}{{{BKh{ce}}{BKh{ce}}}{{BLn{ce}}}{}{}}{{cccc}{{BMf{ce}}}{}{}}{c{{BKf{ce}}}{}{}}{{cc}{{ALd{ce}}}{}{}}{{ccc}{{BKh{ce}}}{}{}}{{{ALd{ce}}{BGj{ce}}}{{BLl{ce}}}{}{}}{{{BLj{ceg}}{BKd{cg}}}{{BM`{ceg}}}{}{}{}}{{{BAl{c}}}{{BLf{ceg}}}{}{}{}}{c{{BKj{ceg}}}{}{}{}}{{cccc}{{BKl{ce}}}{}{}}{{cc}{{BGj{ce}}}{}{}}{{ccc}{{BKb{ce}}}{}{}}{{cc}{{BKn{ceg}}}{}{}{}}{{ccc}{{BL`{ceg}}}{}{}{}}{{cc}{{BAj{ce}}}{}{}}{{ccc}{{BKd{ce}}}{}{}}{{cccccc}{{AJh{ceg}}}{}{}{}}{{cccccccccccccccc}{{BLh{ceg}}}{}{}{}}{{cccccc}{{BLh{ceg}}}{BMhBMd}{}{}}{c{{BKl{ce}}}Ih{}}{{{BKd{ce}}{BLj{ceg}}}{{BM`{ceg}}}{}{}{}}{BLbBf}{BLdBf}{{{f{{BLj{ceg}}}}}cBGh{}{}}{{{f{{BLj{ceg}}}}}{{BLj{ceg}}}BGh{}{}}{{{BAj{ce}}}{{BAj{ce}}}BGh{}}{{{BKd{ce}}}{{BKd{ce}}}BGh{}}{BLbBLb}{BLdBLd}{{{BGj{ce}}{BGj{ce}}}BLbIj{}}{{{BKb{ce}}{BKb{ce}}}BLdIj{}}{{{BAj{ce}}{BAj{ce}}}BLbIj{}}{{{BKd{ce}}{BKd{ce}}}BLdIj{}}{{}c{}}0000000000000000`{{}{{BKj{ceg}}}BMd{}{}}{{}{{BAj{ce}}}BMd{}}{{}{{BKd{ce}}}BMd{}}{{BLbBLb}BLb}{{BLdBLd}BLd}{{}{{ALd{ce}}}BMh{}}{{}{{BKh{ce}}}BMh{}}{BLlALd}{{cccccc}{{BLh{ceg}}}{}{}{}}{{{f{{BBb{ce}}}}{BKl{ce}}}{{BBb{ce}}}{Ih{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}}{}}{{{f{{BLl{ce}}}}{BKl{ce}}}{{BLl{ce}}}{Ih{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}}{}}{{{f{{AJh{ceg}}}}{f{{BBb{ce}}}}}{{BBb{cg}}}{{BDh{}{{Dl{}}}}BMhOjIh{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}}{{{f{{BLh{ceg}}}}{f{{BBb{ce}}}}}{{Df{{BBb{cg}}}}}{{BDh{}{{Dl{}}}}{BEl{}{{Dl{}}}}BMhOjIh{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}}{{{f{{BLh{ceg}}}}{f{{BLn{ce}}}}}{{Df{{BLn{cg}}}}}{{BDh{}{{Dl{}}}}{BEl{}{{Dl{}}}}BMhOjIh{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}}{{{f{{AJh{ceg}}}}{f{{BLl{ce}}}}}{{BLl{cg}}}{{BDh{}{{Dl{}}}}BMhOjIh{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}}{{{f{{BLh{ceg}}}}{f{{BLl{ce}}}}}{{Df{{BLl{cg}}}}}{{BDh{}{{Dl{}}}}{BEl{}{{Dl{}}}}BMhOjIh{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}}{{{f{{BKf{ce}}}}{f{{BKf{ce}}}}}{{Df{AHf}}}Oj{}}{{{f{{BKj{ceg}}}}{f{{BKj{ceg}}}}}{{Df{AHf}}}Oj{}{}}{{{f{AJf}}{f{AJf}}}{{Df{AHf}}}}{c{{BLh{ceg}}}{}{}{}}{{cc}{{ALd{ce}}}{}{}}{{ccc}{{BKh{ce}}}{}{}}{{{f{{ALd{M`c}}}}}{{ALd{M`AJf}}}{}}{{{f{{AJh{ceg}}}}{BAl{c}}}{{AJh{ceg}}}{Ih{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}BMhBEj}{}{}}{{{f{{BLh{ceg}}}}ccc{BAl{c}}}{{BLh{ceg}}}{{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BEl{}{{Dl{}}}}IhBMhBMdBEj}{}{}}{{{f{{AJh{ceg}}}}cc}{{AJh{ceg}}}{Ih{BDj{}{{Dl{}}}}}{}{}}{{{f{{BLh{ceg}}}}ccc}{{BLh{ceg}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}BMhBMd}{}{}}{{{f{{AJh{ceg}}}}{BAj{ce}}}{{AJh{ceg}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}BMhBMd}{}{}}{{{f{{BLh{ceg}}}}{BKd{ce}}}{{BLh{ceg}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}BMhBMd}{}{}}{{{BAj{ce}}{BAj{ce}}}{{BAj{ce}}}{{BDh{}{{Dl{}}}}{BEl{}{{Dl{}}}}Ih{BDj{}{{Dl{}}}}{BCf{}{{Dl{}}}}}{}}{{{BKd{ce}}{BKd{ce}}}{{BKd{ce}}}{{BDh{}{{Dl{}}}}{BEl{}{{Dl{}}}}Ih{BDj{}{{Dl{}}}}{BCf{}{{Dl{}}}}}{}}{{{f{{BLh{ceg}}}}}{{BLh{ceg}}}{Ih{BDj{}{{Dl{}}}}{BEl{}{{Dl{}}}}BMhBMdIj}{}{}}{{cccc}{{BLj{ceg}}}{}{}{}}{BLj}{c{{BLf{ceg}}}{}{}{}}{BAl}{BEjBEj}{{cccc}{{BLl{ce}}}{}{}}{{{BAj{ce}}{BAj{ce}}}{{BAj{ce}}}{BMd{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}Ih}{}}{{{BKd{ce}}{BKd{ce}}}{{BKd{ce}}}{BMd{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}Ih}{}}{{{f{{ALd{ce}}}}{f{{BGj{ce}}}}}{{ALd{ce}}}BMj{}}{{{f{{BKh{ce}}}}{f{{BKb{ce}}}}}{{BKh{ce}}}BMj{}}{BKl}{{{BAj{ce}}}{{BAj{ce}}}BFj{}}{{{BKd{ce}}}{{BKd{ce}}}BFj{}}{{{BAl{c}}}{{AJh{ceg}}}{Ih{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}BMhBEj}{}{}}{{ccc{BAl{c}}}{{BLh{ceg}}}{}{}{}}{BM`BLj}{{{f{{BBb{ce}}}}}{{BBb{ce}}}BMn{}}{{{f{{BLn{ce}}}}}{{BLn{ce}}}BMn{}}{{{ALd{ce}}}{{ALd{ce}}}{BMnIh}{}}{{{ALd{ce}}}{{ALd{ce}}}BMn{}}{{{BKh{ce}}}{{BKh{ce}}}{BMnIh}{}}{{{BKh{ce}}}{{BKh{ce}}}BMn{}}{{{f{{BLl{ce}}}}}{{BLl{ce}}}{BMlBMbBMn{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}}{}}{{{BGj{ce}}}{{BGj{ce}}}BMn{}}{{{BGj{ce}}}{{BGj{ce}}}{BMnIh}{}}{{{BKb{ce}}}{{BKb{ce}}}BMn{}}{{{BKb{ce}}}{{BKb{ce}}}{BMnIh}{}}{{{BAj{ce}}}{{BAj{ce}}}BMn{}}{{{BAj{ce}}}{{BAj{ce}}}{BMnIh}{}}{{{BKd{ce}}}{{BKd{ce}}}BMn{}}{{{BKd{ce}}}{{BKd{ce}}}{BMnIh}{}}{{{f{{BBb{ce}}}}}{{BBb{ce}}}{BMlBMb}{}}{{{f{{BLn{ce}}}}}{{BLn{ce}}}{BMlBMb}{}}:10:{{{BKf{ce}}{BKf{ce}}}{{BKf{ce}}}BN`{}}0{{{f{{BBb{eg}}}}cc}{{BBb{eg}}}Ih{{BDj{}{{Dl{}}}}Ih}{}}{{{f{{BLn{eg}}}}ccc}{{BLn{eg}}}Ih{{BDj{}{{Dl{}}}}Ih}{}}{{{f{{BLl{eg}}}}cc}{{BLl{eg}}}Ih{Ih{BDj{}{{Dl{}}}}}{}}{{cc}{{AJh{ceg}}}BMh{}{}}{{ccc}{{BLh{ceg}}}{BMhBMd}{}{}}{{BLb{ALd{ce}}{ALd{ce}}}{{ALd{ce}}}{}{}}{{BLd{BKh{ce}}{BKh{ce}}}{{BKh{ce}}}{}{}}{{BLb{BGj{ce}}{BGj{ce}}}{{BGj{ce}}}{}{}}{{BLd{BKb{ce}}{BKb{ce}}}{{BKb{ce}}}{}{}}{{BLb{BAj{ce}}{BAj{ce}}}{{BAj{ce}}}{}{}}{{BLd{BKd{ce}}{BKd{ce}}}{{BKd{ce}}}{}{}}{{{f{j{BBb{ce}}}}{BGj{ce}}}Cj{Ih{BDh{}{{Dl{}}}}}{}}{BEjBEj}{{{f{{BBb{ce}}}}}{{BGj{ce}}}{Ih{BDh{}{{Dl{}}}}}{}}{{{f{{BLn{ce}}}}}{{BKb{ce}}}{Ih{BDh{}{{Dl{}}}}}{}}{BLlBGj}{{cc}{{BGj{ce}}}{}{}}{{ccc}{{BKb{ce}}}{}{}}{{{BAl{c}}{BAl{c}}}{{BLh{ceg}}}{BEjBMhBMd}{}{}}{{{f{{BLj{ceg}}}}{f{{BLj{ceg}}}}c}{{BLj{ceg}}}{BE`BGh}{}{}}{c{{ALd{ce}}}Ch{}}{c{{BKh{ce}}}Ch{}}{c{{BGj{ce}}}Ch{}}{c{{BKb{ce}}}Ch{}}{c{{BKn{ceg}}}Ch{}{}}{c{{BL`{ceg}}}Ch{}{}}{c{{BAj{ce}}}Ch{}}{c{{BKd{ce}}}Ch{}}{{{BAj{ce}}}c{Ih{BDj{}{{Dl{}}}}{BCf{}{{Dl{}}}}}{}}{{{BKd{ce}}}c{Ih{BDj{}{{Dl{}}}}{BCf{}{{Dl{}}}}}{}}{{{f{{BLj{ceg}}}}}cBGh{}{}}{{{BKf{ce}}{BKf{ce}}}{}BDh{}}{{{ALd{ce}}{BAj{ce}}}{}BDh{}}{{{ALd{ce}}{ALd{ce}}}{}BDh{}}{{{ALd{ce}}{BGj{ce}}}{}BDh{}}{{{BKh{ce}}{BKd{ce}}}{}BDh{}}{{{BKh{ce}}{BKb{ce}}}{}BDh{}}{{{BKh{ce}}{BKh{ce}}}{}BDh{}}{{{BKj{ceg}}{BKj{ceg}}}{}BDh{}{}}{{{BKl{ce}}{BKl{ce}}}{{BKl{ce}}}{{BDh{}{{Dl{}}}}}{}}{{{BGj{ce}}{BGj{ce}}}{}BDh{}}{{{BKb{ce}}{BKb{ce}}}{}BDh{}}{{{BKn{ceg}}{BKn{cig}}}{}BDh{}{}{}}{{{BL`{ceg}}{BL`{cig}}}{}BDh{}{}{}}{{{BAj{ce}}{BAj{ce}}}{}BDh{}}{{{BKd{ce}}{BKd{ce}}}{}BDh{}}{{{f{j{BKf{ce}}}}{BKf{ce}}}CjBGl{}}{{{f{j{ALd{ce}}}}{BGj{ce}}}CjBGl{}}{{{f{j{ALd{ce}}}}{BAj{ce}}}Cj{Ih{BDh{}{{Dl{}}}}}{}}{{{f{j{BKh{ce}}}}{BKb{ce}}}CjBGl{}}{{{f{j{BKh{ce}}}}{BKd{ce}}}Cj{Ih{BDh{}{{Dl{}}}}}{}}{{{f{j{BKl{ce}}}}{BKl{ce}}}CjBGl{}}{{{f{j{BGj{ce}}}}{BGj{ce}}}CjBGl{}}{{{f{j{BKb{ce}}}}{BKb{ce}}}CjBGl{}}{{{f{j{BKn{ceg}}}}{BKn{cgg}}}CjBGl{}{}}{{{f{j{BL`{ceg}}}}{BL`{cgg}}}CjBGl{}{}}{{{f{j{BAj{ce}}}}{BAj{ce}}}Cj{Ih{BDh{}{{Dl{}}}}}{}}{{{f{j{BKd{ce}}}}{BKd{ce}}}Cj{Ih{BDh{}{{Dl{}}}}}{}}{g{{BKf{ce}}}{{BCf{}{{Dl{}}}}IhBMh}{}{{BGn{}{{Cn{{f{{BKf{ce}}}}}}}}}}{g{{BKf{ce}}}{{BCf{}{{Dl{}}}}BMh}{}{{BGn{}{{Cn{{BKf{ce}}}}}}}}{g{{BGj{ce}}}{{BCf{}{{Dl{}}}}BMh}{}{{BGn{}{{Cn{{BGj{ce}}}}}}}}{g{{BGj{ce}}}{{BCf{}{{Dl{}}}}IhBMh}{}{{BGn{}{{Cn{{f{{BGj{ce}}}}}}}}}}{g{{BKb{ce}}}{{BCf{}{{Dl{}}}}BMh}{}{{BGn{}{{Cn{{BKb{ce}}}}}}}}{g{{BKb{ce}}}{{BCf{}{{Dl{}}}}IhBMh}{}{{BGn{}{{Cn{{f{{BKb{ce}}}}}}}}}}{g{{BAj{ce}}}{{BCf{}{{Dl{}}}}BMh}{}{{BGn{}{{Cn{{BAj{ce}}}}}}}}{g{{BAj{ce}}}{{BCf{}{{Dl{}}}}IhBMh}{}{{BGn{}{{Cn{{f{{BAj{ce}}}}}}}}}}{g{{BKd{ce}}}{{BCf{}{{Dl{}}}}BMh}{}{{BGn{}{{Cn{{BKd{ce}}}}}}}}{g{{BKd{ce}}}{{BCf{}{{Dl{}}}}IhBMh}{}{{BGn{}{{Cn{{f{{BKd{ce}}}}}}}}}}{BEjBEj}{{{f{{BM`{ceg}}}}{f{{BM`{cgi}}}}}{{BM`{cei}}}{BGhBE`}{}{}{}}{{{f{{BLf{ceg}}}}{f{{BLf{cie}}}}}{{BLf{cig}}}BGh{}{}{}}{{{f{{BLj{ceg}}}}{f{{BLj{cgi}}}}}{{BLj{cei}}}{BE`BGh}{}{}{}}{{{f{{AJh{ceg}}}}{f{{AJh{cgi}}}}}{{AJh{cei}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}{}}{{{f{{BLh{ceg}}}}{f{{BLh{cgi}}}}}{{BLh{cei}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}{}}{{{f{{AJh{ceg}}}}{BAl{c}}}{{AJh{ceg}}}{Ih{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}BMhBEj}{}{}}{{{f{{BLh{ceg}}}}ccc{BAl{c}}}{{BLh{ceg}}}{{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}{BEl{}{{Dl{}}}}IhBMhBMdBEj}{}{}}{{{f{{AJh{ceg}}}}cc}{{AJh{ceg}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}BMh}{}{}}{{{f{{BLh{ceg}}}}ccc}{{BLh{ceg}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}BMhBMd}{}{}}{{{f{{AJh{ceg}}}}{BAj{cg}}}{{AJh{ceg}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}BMhBMd}{}{}}{{{f{{BLh{ceg}}}}{BKd{cg}}}{{BLh{ceg}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}BMhBMd}{}{}}{{{BKh{ce}}}{{ALd{ce}}}Ih{}}{{{BKd{ce}}}{{BAj{ce}}}Ih{}}{{{f{{BLh{ceg}}}}}{{AJh{ceg}}}Ih{}{}}{{{ALd{ce}}}{{BKh{ce}}}{BMhIh}{}}{{{f{{BLf{ceg}}}}}{{BLj{ceg}}}BGh{}{}}{{{BAj{ce}}}{{BKd{ce}}}{BMhIh}{}}{{{f{{AJh{ceg}}}}}{{BLh{ceg}}}{BMhBMdIh}{}{}}{{{ALd{ce}}}{{AK`{c}}}Ih{}}{{{BKh{ce}}}{{AK`{c}}}Ih{}}{{{BGj{ce}}}{{AK`{c}}}Ih{}}{{{BKb{ce}}}{{AK`{c}}}Ih{}}{{{f{{BKn{ceg}}}}}{{AK`{c}}}Ih{}{}}{{{f{{BL`{ceg}}}}}{{AK`{c}}}Ih{}{}}{{{BAj{ce}}}{{AK`{c}}}Ih{}}{{{BKd{ce}}}{{AK`{c}}}Ih{}}{{{f{{AJh{ceg}}}}}{{AK`{c}}}Ih{}{}}{{{f{{BLh{ceg}}}}}{{AK`{c}}}Ih{}{}}{{{BKh{ce}}}{{AK`{c}}}{BMdIh}{}}{{{BKd{ce}}}{{AK`{c}}}{BMhIh}{}}32{{{f{{AJh{ceg}}}}}{{AK`{{AK`{c}}}}}Ih{}{}}{{{f{{BLh{ceg}}}}}{{AK`{{AK`{c}}}}}Ih{}{}}0{{{f{{BLl{ce}}}}}{{BBb{ce}}}{Ih{BCf{}{{Dl{}}}}}{}}{{{f{{BBb{ce}}}}}{{BBb{M`e}}}{BEbIh}{}}{{{f{{BLn{ce}}}}}{{BLn{M`e}}}{BEbIh}{}}{{{ALd{ce}}}{{ALd{M`e}}}{BEbIh}{}}{{{BKh{ce}}}{{BKh{M`e}}}{BEbIh}{}}{{{f{{BLl{ce}}}}}{{BLl{M`e}}}{BEbIh}{}}{{{BGj{ce}}}{{BGj{M`e}}}{BEbIh}{}}{{{BKb{ce}}}{{BKb{M`e}}}{BEbIh}{}}{{{BKn{ceg}}}{{BKn{M`eg}}}{BEbIh}{}{}}{{{BL`{ceg}}}{{BL`{M`eg}}}{BEbIh}{}{}}{{{BAj{ce}}}{{BAj{M`e}}}{BEbIh}{}}{{{BKd{ce}}}{{BKd{M`e}}}{BEbIh}{}}{{{f{{BBb{ce}}}}}{{BBb{BH`e}}}{BEbIh}{}}{{{f{{BLn{ce}}}}}{{BLn{BH`e}}}{BEbIh}{}}{{{ALd{ce}}}{{ALd{BH`e}}}{BEbIh}{}}{{{BKh{ce}}}{{BKh{BH`e}}}{BEbIh}{}}{{{f{{BLl{ce}}}}}{{BLl{BH`e}}}{BEbIh}{}}{{{BGj{ce}}}{{BGj{BH`e}}}{BEbIh}{}}{{{BKb{ce}}}{{BKb{BH`e}}}{BEbIh}{}}{{{BKn{ceg}}}{{BKn{BH`eg}}}{BEbIh}{}{}}{{{BL`{ceg}}}{{BL`{BH`eg}}}{BEbIh}{}{}}{{{BAj{ce}}}{{BAj{BH`e}}}{BEbIh}{}}{{{BKd{ce}}}{{BKd{BH`e}}}{BEbIh}{}}{{{f{{BBb{ce}}}}}{{BBb{BJhe}}}{BEbIh}{}}{{{f{{BLn{ce}}}}}{{BLn{BJhe}}}{BEbIh}{}}{{{ALd{ce}}}{{ALd{BJhe}}}{BEbIh}{}}{{{BKh{ce}}}{{BKh{BJhe}}}{BEbIh}{}}{{{f{{BLl{ce}}}}}{{BLl{BJhe}}}{BEbIh}{}}{{{BGj{ce}}}{{BGj{BJhe}}}{BEbIh}{}}{{{BKb{ce}}}{{BKb{BJhe}}}{BEbIh}{}}{{{BKn{ceg}}}{{BKn{BJheg}}}{BEbIh}{}{}}{{{BL`{ceg}}}{{BL`{BJheg}}}{BEbIh}{}{}}{{{BAj{ce}}}{{BAj{BJhe}}}{BEbIh}{}}{{{BKd{ce}}}{{BKd{BJhe}}}{BEbIh}{}}{{{f{{BBb{ce}}}}}{{BBb{BJde}}}{BEbIh}{}}{{{f{{BLn{ce}}}}}{{BLn{BJde}}}{BEbIh}{}}{{{ALd{ce}}}{{ALd{BJde}}}{BEbIh}{}}{{{BKh{ce}}}{{BKh{BJde}}}{BEbIh}{}}{{{f{{BLl{ce}}}}}{{BLl{BJde}}}{BEbIh}{}}{{{BGj{ce}}}{{BGj{BJde}}}{BEbIh}{}}{{{BKb{ce}}}{{BKb{BJde}}}{BEbIh}{}}{{{BKn{ceg}}}{{BKn{BJdeg}}}{BEbIh}{}{}}{{{BL`{ceg}}}{{BL`{BJdeg}}}{BEbIh}{}{}}{{{BAj{ce}}}{{BAj{BJde}}}{BEbIh}{}}{{{BKd{ce}}}{{BKd{BJde}}}{BEbIh}{}}{{{f{{BBb{ce}}}}}{{Df{{BBb{ce}}}}}{IhOj}{}}{{{f{{BLn{ce}}}}}{{Df{{BLn{ce}}}}}{IhOj}{}}{{{f{{BLl{ce}}}}}{{Df{{BLl{ce}}}}}{IhBMhOj}{}}{fc{}}0000000000000000000000{{{BAj{ce}}}{{ALd{ce}}}Ih{}}{{{BKd{ce}}}{{BKh{ce}}}Ih{}}{{{BMf{ce}}}{{Df{{ALd{ce}}}}}{Ih{BEl{}{{Dl{}}}}BMhOj}{}}{{{BMf{ce}}}{{Df{{BKh{ce}}}}}{Ih{BEl{}{{Dl{}}}}BMhOj}{}}{{{f{{BBb{ce}}}}}{{BLl{ce}}}{Ih{BDh{}{{Dl{}}}}}{}}{{{BAj{ce}}}{{BGj{ce}}}Ih{}}{{{f{{BM`{ceg}}}}}{{BLh{ceg}}}{BEjBGhBE`}{}{}}{{{f{{BLf{ceg}}}}}{{AJh{ceg}}}{Ih{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}{BDj{}{{Dl{}}}}BGfBEj}{}{}}{{{f{{BLj{ceg}}}}}{{BLh{ceg}}}{BE`BGh}{}{}}{{{f{{BKn{ceg}}}}}{{AJh{ceg}}}{BMhBMdIh}{}{}}{{{f{{BL`{ceg}}}}}{{BLh{ceg}}}{BMhBMdIh}{}{}}{{{BAj{ce}}}{{AJh{cee}}}{BMhBMdIh}{}}{{{BKd{ce}}}{{BLh{cee}}}{BMhBMdIh}{}}{{{ALd{ce}}}{{Id{cc}}}Ih{}}{{{BKh{ce}}}{{Id{ccc}}}Ih{}}{{{BGj{ce}}}{{Id{cc}}}Ih{}}{{{BKb{ce}}}{{Id{ccc}}}Ih{}}{{{f{{BKn{ceg}}}}}{{Id{cc}}}Ih{}{}}{{{f{{BL`{ceg}}}}}{{Id{ccc}}}Ih{}{}}{{{BAj{ce}}}{{Id{cc}}}Ih{}}{{{BKd{ce}}}{{Id{ccc}}}Ih{}}{{{BKh{ce}}}{{Id{cccc}}}{BMdIh}{}}{{{BKd{ce}}}{{Id{cccc}}}{BMhIh}{}}{{{f{{BBb{ce}}}}}{{BBb{BGde}}}{BEbIh}{}}{{{f{{BLn{ce}}}}}{{BLn{BGde}}}{BEbIh}{}}{{{ALd{ce}}}{{ALd{BGde}}}{BEbIh}{}}{{{BKh{ce}}}{{BKh{BGde}}}{BEbIh}{}}{{{f{{BLl{ce}}}}}{{BLl{BGde}}}{BEbIh}{}}{{{BGj{ce}}}{{BGj{BGde}}}{BEbIh}{}}{{{BKb{ce}}}{{BKb{BGde}}}{BEbIh}{}}{{{BKn{ceg}}}{{BKn{BGdeg}}}{BEbIh}{}{}}{{{BL`{ceg}}}{{BL`{BGdeg}}}{BEbIh}{}{}}{{{BAj{ce}}}{{BAj{BGde}}}{BEbIh}{}}{{{BKd{ce}}}{{BKd{BGde}}}{BEbIh}{}}{{{f{{BLl{ce}}}}}{{BLl{BJ`e}}}{BEbIh}{}}{{{BGj{ce}}}{{BGj{BJ`e}}}{BEbIh}{}}{{{f{{BBb{ce}}}}}{{BBb{cAJf}}}Ih{}}{{{f{{BLn{ce}}}}}{{BLn{cAJf}}}Ih{}}{{{ALd{ce}}}{{ALd{cAJf}}}Ih{}}{{{BKh{ce}}}{{BKh{cAJf}}}Ih{}}{{{f{{BLl{ce}}}}}{{BLl{cAJf}}}Ih{}}{{{f{{BM`{ceg}}}}}{{BM`{cAJfAJf}}}{BGhBE`}{}{}}{{{f{{BLf{ceg}}}}}{{BLf{cAJfAJf}}}Ih{}{}}{{{f{{BLj{ceg}}}}}{{BLj{cAJfAJf}}}Ih{}{}}{{{BGj{ce}}}{{BGj{cAJf}}}Ih{}}{{{BKb{ce}}}{{BKb{cAJf}}}Ih{}}{{{f{{BKn{ceg}}}}}{{BKn{cAJfAJf}}}Ih{}{}}{{{f{{BL`{ceg}}}}}{{BL`{cAJfAJf}}}Ih{}{}}{{{BAj{ce}}}{{BAj{cAJf}}}Ih{}}{{{BKd{ce}}}{{BKd{cAJf}}}Ih{}}{{{f{{AJh{ceg}}}}}{{AJh{cAJfAJf}}}Ih{}{}}{{{f{{BLh{ceg}}}}}{{BLh{cAJfAJf}}}Ih{}{}}{{{f{{BBb{ce}}}}}{{BBb{F`e}}}{BEbIh}{}}{{{f{{BLn{ce}}}}}{{BLn{F`e}}}{BEbIh}{}}{{{ALd{ce}}}{{ALd{F`e}}}{BEbIh}{}}{{{BKh{ce}}}{{BKh{F`e}}}{BEbIh}{}}{{{f{{BLl{ce}}}}}{{BLl{F`e}}}{BEbIh}{}}{{{BGj{ce}}}{{BGj{F`e}}}{BEbIh}{}}{{{BKb{ce}}}{{BKb{F`e}}}{BEbIh}{}}{{{BKn{ceg}}}{{BKn{F`eg}}}{BEbIh}{}{}}{{{BL`{ceg}}}{{BL`{F`eg}}}{BEbIh}{}{}}{{{BAj{ce}}}{{BAj{F`e}}}{BEbIh}{}}{{{BKd{ce}}}{{BKd{F`e}}}{BEbIh}{}}{{{ALd{ce}}}{{BAj{ce}}}Ih{}}{{{BKh{ce}}}{{BKd{ce}}}Ih{}}{{{BGj{ce}}}{{BAj{ce}}}Ih{}}{{{BKb{ce}}}{{BKd{ce}}}Ih{}}{{{f{{BKn{ceg}}}}}{{BAj{ce}}}Ih{}{}}{{{f{{BL`{ceg}}}}}{{BKd{ce}}}Ih{}{}}{BKl}{{{f{{BKn{ceg}}}}{f{{BBb{ce}}}}}{{BBb{g}}}{BCfIh}{}{}}{{{BKj{ceg}}{f{{BBb{ce}}}}}{{BBb{g}}}{IhBDj}{}{}}{{{f{{BL`{ceg}}}}{f{{BBb{ce}}}}}{{BBb{g}}}{BCfIh}{}{}}{{{BKj{ceg}}{f{{BLn{ce}}}}}{{BLn{g}}}{IhBDj}{}{}}{{{f{{BL`{ceg}}}}{f{{BLn{ce}}}}}{{BLn{g}}}{BCfIh}{}{}}{{{f{{BLf{ceg}}}}{ALd{ce}}}{{ALd{cg}}}BGh{}{}}{{{f{{BLf{cAJfAJf}}}}{ALd{cAJf}}}{{ALd{cAJf}}}BCb}{{{f{{BKj{cAJfAJf}}}}{ALd{cAJf}}}{{ALd{cAJf}}}BCb}{{{BKj{ceg}}{ALd{ce}}}{{ALd{g}}}{IhBDj}{}{}}{{{f{{BKn{ceg}}}}{ALd{ce}}}{{ALd{g}}}{BCfIh}{}{}}{{{f{{BKn{cAJfAJf}}}}{ALd{cAJf}}}{{ALd{cAJf}}}BCb}{{{f{{AJh{ceg}}}}{ALd{ce}}}{{ALd{cg}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}}{{{f{{AJh{cAJfAJf}}}}{ALd{cAJf}}}{{ALd{cAJf}}}BCb}{{{f{{BLj{ceg}}}}{ALd{ce}}}{{ALd{cg}}}{BE`BGh}{}{}}{{{f{{BL`{ceg}}}}{f{{ALd{ce}}}}}{{ALd{g}}}{BCfIh}{}{}}{{{f{{BLh{ceg}}}}{ALd{ce}}}{{Df{{ALd{cg}}}}}{{BEl{}{{Dl{}}}}BMhOjIh{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}}{{{f{{BLh{ceg}}}}{ALd{ce}}}{{BMf{cg}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}}{{{f{{BLj{ceg}}}}{BKh{ce}}}{{BKh{cg}}}{BE`BGh}{}{}}{{{BKj{ceg}}{BKh{ce}}}{{BKh{g}}}{IhBDj}{}{}}{{{f{{BL`{ceg}}}}{f{{BKh{ce}}}}}{{BKh{g}}}{BCfIh}{}{}}{{{f{{BLh{ceg}}}}{BKh{ce}}}{{Df{{BKh{cg}}}}}{{BEl{}{{Dl{}}}}BMhOjIh{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}}{{{f{{BLh{ceg}}}}{BKh{ce}}}{{BMf{cg}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}}{{{BKj{ceg}}{f{{BLl{ce}}}}}{{BLl{g}}}{IhBDj}{}{}}{{{f{{BKn{ceg}}}}{f{{BLl{ce}}}}}{{BLl{g}}}{{BCf{}{{Dl{}}}}Ih}{}{}}{{{f{{BL`{ceg}}}}{f{{BLl{ce}}}}}{{BLl{cg}}}{{BCf{}{{Dl{}}}}Ih}{}{}}{{{BKj{ceg}}{BGj{ce}}}{{BGj{g}}}{IhBDj}{}{}}{{{f{{BKn{ceg}}}}{BGj{ce}}}{{BGj{cg}}}{}{}{}}{{{BL`{ceg}}{BGj{ce}}}{{BGj{cg}}}{}{}{}}{{{f{{BLf{cAJfAJf}}}}{BAj{cAJf}}}{{BAj{cAJf}}}BCb}{{{f{{BLf{ceg}}}}{BAj{ce}}}{{BAj{cg}}}BGh{}{}}{{{BKj{ceg}}{BAj{ce}}}{{BAj{g}}}{IhBDj}{}{}}{{{f{{BKj{cAJfAJf}}}}{BAj{cAJf}}}{{BAj{cAJf}}}BCb}{{{f{{BKn{cAJfAJf}}}}{BAj{cAJf}}}{{BAj{cAJf}}}BCb}{{{f{{AJh{ceg}}}}{BAj{ce}}}{{BAj{cg}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}}{{{f{{AJh{cAJfAJf}}}}{BAj{cAJf}}}{{BAj{cAJf}}}BCb}{{{f{{BLj{ceg}}}}{BAj{ce}}}{{BAj{cg}}}{BE`BGh}{}{}}{{{f{{BLh{ceg}}}}{BAj{ce}}}{{BAj{cg}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}}{{{f{{BLj{ceg}}}}{BKd{ce}}}{{BKd{cg}}}{BE`BGh}{}{}}{{{f{{BLh{ceg}}}}{BKd{ce}}}{{BKd{cg}}}{Ih{BCf{}{{Dl{}}}}{BDj{}{{Dl{}}}}}{}{}}{{{f{{BBb{ce}}}}{BAj{ce}}}{{BBb{ce}}}{Ih{BCf{}{{Dl{}}}}}{}}{{{f{{BLn{ce}}}}{BKd{ce}}}{{BLn{ce}}}{Ih{BCf{}{{Dl{}}}}}{}}{{{f{{BLl{ce}}}}{BAj{ce}}}{{BLl{ce}}}{Ih{BCf{}{{Dl{}}}}}{}}{{cc}{{AJh{ceg}}}{BMhBMd}{}{}}{{ccc}{{BLh{ceg}}}{BMhBMd}{}{}}{BM`BKd}{{{f{{BBb{ce}}}}}{{Df{{BBb{ge}}}}}{BEbIh}{}BEb}{{{f{{BLn{ce}}}}}{{Df{{BLn{ge}}}}}{BEbIh}{}BEb}{{{BKf{ce}}}{{Df{{BKf{ge}}}}}{BEbCh}{}BEb}{{{ALd{ce}}}{{Df{{ALd{ge}}}}}{BEbIh}{}BEb}{{{BKh{ce}}}{{Df{{BKh{ge}}}}}{BEbIh}{}BEb}{{{f{{BLl{ce}}}}}{{Df{{BLl{ge}}}}}{BEbIh}{}BEb}{{{BKj{ceg}}}{{Df{{BKj{ieg}}}}}BEb{}{}BEb}{{{BGj{ce}}}{{Df{{BGj{ge}}}}}{BEbIh}{}BEb}{{{BKb{ce}}}{{Df{{BKb{ge}}}}}{BEbIh}{}BEb}{{{BKn{ceg}}}{{Df{{BKn{ieg}}}}}{BEbIh}{}{}BEb}{{{BL`{ceg}}}{{Df{{BL`{ieg}}}}}{BEbIh}{}{}BEb}{{{BAj{ce}}}{{Df{{BAj{ge}}}}}{BEbIh}{}BEb}{{{BKd{ce}}}{{Df{{BKd{ge}}}}}{BEbIh}{}BEb}{{{f{{AJh{ceg}}}}}{{Df{{AJh{ieg}}}}}{BEbIh}{}{}BEb}{{{f{{BLh{ceg}}}}}{{Df{{BLh{ieg}}}}}{BEbIh}{}{}BEb}{{}{{G`{c}}}{}}0000000000000000000000{c{{G`{e}}}{}{}}0000000000000000000000{{}{{G`{c}}}{}}0000000000000000000000{{}{{G`{c{AEf{c}}}}}{}}0000000000000000000000{{{BAj{ce}}}{{Df{{BAj{ce}}}}}BGh{}}{{{BKd{ce}}}{{Df{{BKd{ce}}}}}BGh{}}{fAEh}0000000000000000000000{ce{}{}}0000000000000000000000{{}c{}}0000000000000000000000{{{f{{BBb{ce}}}}{f{{BBb{ce}}}}}{{BBb{ce}}}{IhOj}{}}{{{f{{BLn{ce}}}}{f{{BLn{ce}}}}}{{BLn{ce}}}{IhOj}{}}{{{f{{BLl{ce}}}}{f{{BLl{ce}}}}}{{BLl{ce}}}{IhOj{BCf{}{{Dl{}}}}{BDh{}{{Dl{}}}}BMh}{}}{{cccc}{{BLj{ceg}}}BGh{}{}}{f{{Df{{f{c}}}}}{}}0000000000000000000000{{cc}{{BAj{ce}}}{}{}}{{ccc}{{BKd{ce}}}{}{}}{{{f{{BLj{ceg}}}}}{{BKd{cAJf}}}Ih{}{}}{{{f{{BKl{ce}}}}}c{Ih{BCf{}{{Dl{}}}}}{}}{{{f{{BLn{ce}}}}}c{Ih{BDj{}{{Dl{}}}}{BDh{}{{Dl{}}}}}{}}{{{BKb{ce}}}c{{BDj{}{{Dl{}}}}Ih}{}}{{}c{}}0000000000000000000000{BMf}{{{f{{BBb{ce}}}}}c{Ih{BDh{}{{Dl{}}}}}{}}{{{f{{BLn{ce}}}}}c{Ih{BDh{}{{Dl{}}}}}{}}{{{f{{BLl{ce}}}}}c{Ih{BCf{}{{Dl{}}}}}{}}{BGj}{BKb}{{{f{{AJh{ceg}}}}}{{AJh{cei}}}Ih{}{}{}}{{{f{{BLh{ceg}}}}}{{BLh{cei}}}Ih{}{}{}}{{{BAj{ce}}c}{{BAj{ce}}}BGh{}}0{{{BKd{ce}}c}{{BKd{ce}}}BGh{}}10{{{f{{AJh{ceg}}}}}{{AJh{cig}}}Ih{}{}{}}{{{f{{BLh{ceg}}}}}{{BLh{cig}}}Ih{}{}{}};{ALd}{BKh}{BKn}{BL`}{BAj}{BKd}{BLbBf}{BLdBf}{{{f{{BBb{ce}}}}}{{AOf{c}}}Ih{}}{{{f{{BLn{ce}}}}}{{AOf{c}}}Ih{}}{{{f{{BLl{ce}}}}}{{AOf{c}}}{Ih{BCf{}{{Dl{}}}}}{}}{{{BKh{ce}}}{{ALd{ce}}}Ih{}}{{{BKd{ce}}}{{BAj{ce}}}Ih{}}{BLdBLb}{{{f{{BLn{ce}}}}}c{Ih{BDj{}{{Dl{}}}}{BDh{}{{Dl{}}}}}{}}3210{BMf}?>=<;:98765{{{ALd{ce}}}{{ALd{ce}}}Ih{}}{{{BAj{ce}}}{{BAj{ce}}}Ih{}}65432{BKh}?=;9{{}{{BBb{ce}}}BMh{}}{{}{{BLn{ce}}}BMh{}}{{}{{BKf{ce}}}BMh{}}{{}{{ALd{ce}}}BMh{}}0{{}{{BKh{ce}}}BMh{}}0{{}{{BLl{ce}}}BMh{}}{{}{{BKl{ce}}}BMh{}}{{}{{BGj{ce}}}BMh{}}0{{}{{BKb{ce}}}BMh{}}0{{}{{BAj{ce}}}BMh{}}0{{}{{BKd{ce}}}BMh{}}0{{{ALd{ce}}{ALd{ce}}i}{{BAj{ge}}}{}{}{}{{AHj{cc}{{Dl{g}}}}}}{{{BKh{ce}}{BKh{ce}}i}{{BKd{ge}}}{}{}{}{{AHj{cc}{{Dl{g}}}}}}{{{BAj{ce}}{BAj{ce}}i}{{BAj{ge}}}{}{}{}{{AHj{cc}{{Dl{g}}}}}}{{{BKd{ce}}{BKd{ce}}i}{{BKd{ge}}}{}{}{}{{AHj{cc}{{Dl{g}}}}}}`{{}c{}}{{{f{BE`}}{f{BE`}}}Bf}{{{f{BE`}}{f{BE`}}{f{c}}}Bf{}}{{cc}cOj}0````````````````````{BNb}{BNd}{BNf}{BFh}1{BNh}003{BNj}{BNl}10001010001010000000{BFnALd}{BNnBKh}10{BO`ALd}58{BObBLj}{BO`BGj}:{BObBKd}{BOd}:;{BHd}{BOf}{BHf}{BOh}4{BOj}{BOl}54326104260`````{BMbBMb}{BMlBMl}{{}BMd}{BMnBMn}{{}BMh}````{eg{}{{b{c}}}{}}00{ce{}{}}00{{}c{}}00{f{{f{h}}}}00{{{f{j}}}{{f{jh}}}}00{f{{f{c}}}{}}00{{{f{j}}}{{f{jc}}}{}}00{{{An{c}}}e{}{}}00666{BDbALd}{F`{{f{c}}}{}}00{F`{{f{jc}}}{}}00555{F`Cj}00{cc{}}004000{ce{}{}}00{{}F`}00{{}c{}}00000{{{Hj{c}}}{{Hj{h}}}{}}00{{{Hl{c}}}{{Hl{h}}}{}}00{{{Hn{c}}}{{Hn{h}}}{}}00;;;333333{{}c{}}0{{}c{}}00{{{f{{BDb{c}}}}c}{{BOn{c}}}BCb}{{{f{j{BFd{c}}}}}{{Df{{ALd{cAJf}}}}}BCb}{{{f{j{BFf{c}}}}}{{Df{c}}}BCb}{{{f{{BFd{c}}}}}{{Id{F`{Df{F`}}}}}BCb}{{{f{{BFf{c}}}}}{{Id{F`{Df{F`}}}}}BCb}{BDbALd}{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{AEf{c}}}}}{}}00{fAEh}00{ce{}{}}00{{}c{}}00{f{{Df{{f{c}}}}}{}}00{{}c{}}00```{{{f{{BCl{}{{BCj{c}}}}}}c}{{BCl{}{{BCj{c}}}}}BCb}{{{f{{BCl{}{{BCj{c}}}}}}c}cBCb}1{{{f{{BCl{}{{BCj{c}}}}}}c}{{BAj{cAJf}}}BCb}11{{{f{{BCl{}{{BCj{c}}}}}}}{{BCl{}{{BCj{c}}}}}BCb}{{{f{{BCl{}{{BCj{c}}}}}}c{f{jAHj}}}CjBCb}{{{f{{BCl{}{{BCj{c}}}}}}}{{ALd{cAJf}}}BCb}{{{f{{BCl{}{{BCj{c}}}}}}c}{{ALd{cAJf}}}BCb}{{{f{{BCl{}{{BCj{c}}}}}}c}{{Id{{BCl{}{{BCj{c}}}}{BCl{}{{BCj{c}}}}}}}BCb}{{{f{{BCl{}{{BCj{c}}}}}}{AOf{c}}}{{BCl{}{{BCj{c}}}}}BCb}3{{{f{B@l}}{ALd{cAJf}}}{{ALd{cAJf}}}{}}{{{f{B@l}}{BAj{cAJf}}}{{BAj{cAJf}}}{}}99{{cccc}{{BEh{c}}}BCb}{{{BAj{cAJf}}{BAj{cAJf}}}cBCb}{{{ALd{cAJf}}{ALd{cAJf}}{ALd{cAJf}}}cBCb}{{cc}{{Id{cc}}}BFj}{{{BAj{cAJf}}}{{BAj{cAJf}}}BCb}{{{BAj{cAJf}}}{{BAj{cAJf}}}BFj}`````{eg{}{{b{c}}}{}}000{ce{}{}}000{{}c{}}000{f{{f{h}}}}000{{{f{j}}}{{f{jh}}}}000{f{{f{c}}}{}}000{{{f{j}}}{{f{jc}}}{}}000{{{An{c}}}e{}{}}000{c{{C@`{c}}}{{BGn{}{{Cn{{ALd{M`AJf}}}}}}}}7777{F`{{f{c}}}{}}000{F`{{f{jc}}}{}}0005555{F`Cj}000{{C@bM`}{{C@d{C@b}}}}0{cc{}}0000000{ce{}{}}000{{}F`}000{{}c{}}0000000{{{Hj{c}}}{{Hj{h}}}{}}000{{{Hl{c}}}{{Hl{h}}}{}}000{{{Hn{c}}}{{Hn{h}}}{}}000<<<<33333333{{}c{}}000{{}c{}}000{{M`c}{{C@d{c}}}{{BGn{}{{Cn{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}}}}}}{{{f{c}}e}{{C@f{ec}}}{{B@l{M`}}}{{BGn{}{{Cn{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}}}}}}{{Bfc}{{C@`{c}}}{{BGn{}{{Cn{{ALd{M`AJf}}}}}}}}{{{f{j{B@h{c}}}}}{{Df{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}}}{{BGn{}{{Cn{{AM`{{Id{{ALd{M`AJf}}{f{{Lf{M`}}}}}}{ALd{M`AJf}}}}}}}}}}{{{f{j{C@d{c}}}}}{{Df{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}}}{{BGn{}{{Cn{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}}}}}}{{{f{j{C@f{ce}}}}}{{Df{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}}}{{BGn{}{{Cn{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}}}}}{{B@l{M`}}}}{{{f{j{C@`{c}}}}}{{Df{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}}}{{BGn{}{{Cn{{ALd{M`AJf}}}}}}}}{c{{C@`{c}}}{{BGn{}{{Cn{{ALd{M`AJf}}}}}}}}{{{f{{C@d{c}}}}}{{Id{F`{Df{F`}}}}}{{BGn{}{{Cn{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}}}}}}{{C@b{f{c}}}{{C@f{C@bc}}}{{B@l{M`}}}}0{{}{{G`{c}}}{}}000{c{{G`{e}}}{}{}}000{{}{{G`{c}}}{}}000{{}{{G`{c{AEf{c}}}}}{}}000{fAEh}000{ce{}{}}000{{}c{}}000{f{{Df{{f{c}}}}}{}}000{{}c{}}000{{{B@h{c}}}c{{BGn{}{{Cn{{AM`{{Id{{ALd{M`AJf}}{f{{Lf{M`}}}}}}{ALd{M`AJf}}}}}}}}}}`````````{C@hM`}{C@jM`}{C@lM`}00000{C@nALd}0{{M`M`}{{ALd{M`AJf}}}}{CA`M`}{{M`M`}{{BGj{M`AJf}}}}{{M`M`}{{BAj{M`AJf}}}}6{CAbM`}{CAdM`}{CAfM`}210``````````````{eg{}{{b{c}}}{}}00{ce{}{}}00{{}c{}}00{f{{f{h}}}}00{{{f{j}}}{{f{jh}}}}00{{{f{jALl}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}{{{f{jALl}}{ALd{M`AJf}}}AL`}{{{f{jCAh}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}0{f{{f{c}}}{}}00{{{f{j}}}{{f{jc}}}{}}00{ALlF`}0{CAhF`}0{{{An{c}}}e{}{}}00{{{f{AOn}}}AOn}{{f{f{jc}}}Cj{}}{{fCl}Cj}>>>{{{f{jALl}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}{{{f{jALl}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}}AL`}{{{f{jCAh}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}0{F`{{f{c}}}{}}00{F`{{f{jc}}}{}}00<<<{F`Cj}00{{{f{jALl}}Bf}Cj}0{{{f{jCAh}}Bf}Cj}0{cc{}}00000{ce{}{}}00{{}F`}00{{}c{}}00000{{{Hj{c}}}{{Hj{h}}}{}}00{{{Hl{c}}}{{Hl{h}}}{}}00{{{Hn{c}}}{{Hn{h}}}{}}00{{{An{c}}}e{}{}}00444444{{}c{}}{{}c{}}00{{{f{jALl}}{ALd{M`AJf}}}AL`}{{{f{jALl}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}{{{f{jCAh}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}0{{{f{jAKl}}F`}CAh}{{{f{jAOn}}}{{Df{AKj}}}}0{{{f{ALl}}}F`}{{{f{CAh}}}F`}{{{f{jALl}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}{{{f{jALl}}{ALd{M`AJf}}{ALd{M`AJf}}}AL`}{{{f{jCAh}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}0{{{f{jALl}}F`F`}Cj}0{{{f{jCAh}}F`F`}Cj}0{{{f{AOn}}}{{Id{F`{Df{F`}}}}}}{fc{}}{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{AEf{c}}}}}{}}00{fAEh}00{ce{}{}}00{{}c{}}00{f{{Df{{f{c}}}}}{}}00{{}c{}}00{{ALlF`}CAh}``````{eg{}{{b{c}}}{}}000{ce{}{}}0005555{f{{f{h}}}}000{{{f{j}}}{{f{jh}}}}000{f{{f{c}}}{}}000{{{f{j}}}{{f{jc}}}{}}000{{{An{c}}}e{}{}}000{{{f{B@b}}}B@b}{{{f{{B@`{c}}}}}{{B@`{c}}}Ch}{{{f{{B@d{c}}}}}{{B@d{c}}}Ch}{{{f{AOd}}}AOd}{{f{f{jc}}}Cj{}}000{{fCl}Cj}000{AMhBf}{AMjBf}===={F`{{f{c}}}{}}000{F`{{f{jc}}}{}}000<<<<{F`Cj}000{cc{}}0000000{ce{}{}}000{{}F`}000{{}c{}}0000000{{{Hj{c}}}{{Hj{h}}}{}}000{{{Hl{c}}}{{Hl{h}}}{}}000{{{Hn{c}}}{{Hn{h}}}{}}000{{{An{c}}}e{}{}}00044444444{{}c{}}000{{}c{}}000{{{AOf{BGd}}Bf}AOd}{{{f{jB@b}}}{{Df{{AM`{AL`ANf}}}}}}{{{f{j{B@`{c}}}}}{{Df{{AM`{{f{c}}Cj}}}}}{}}{{{f{j{B@d{c}}}}}{{Df{{AM`{{ALd{M`AJf}}{ALd{M`AJf}}}}}}}AOb}{{{f{jAOd}}}{{Df{{AM`{AL`ANf}}}}}}{{}{{CAj{c}}}{}}{AMhf}{AMjf}{fc{}}000{{}{{G`{c}}}{}}000{c{{G`{e}}}{}{}}000{{}{{G`{c}}}{}}000{{}{{G`{c{AEf{c}}}}}{}}000{fAEh}000{ce{}{}}000{{}c{}}000{f{{Df{{f{c}}}}}{}}000{{}c{}}000`````{{{f{jBB`}}{BAj{M`AJf}}{BAl{M`}}ALn{ALd{M`AJf}}}Cj}{{{f{jBAh}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}{{{BBl{}{{BBj{c}}}}}c{}}{{{f{jBB`}}}Cj}{{{f{jBAh}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}{{{f{jBB`}}{ALd{M`AJf}}{ALd{M`AJf}}{ALd{M`AJf}}}Cj}{{{f{jBAh}}Bf}Cj}{{{f{jBB`}}M`}Cj}6{{{f{jBB`}}{ALd{M`AJf}}}Cj}0{{{f{BAh}}}F`}{{{f{jBAh}}{ALd{M`AJf}}{ALd{M`AJf}}{f{{Lf{M`}}}}}AL`}{{{f{jBB`}}{ALd{M`AJf}}{ALd{M`AJf}}}Cj}{{{f{jBB`}}{BAj{M`AJf}}{BAl{M`}}ALn{BAj{M`AJf}}}Cj}{{{f{jBB`}}{BAj{M`AJf}}{BAj{M`AJf}}{BAj{M`AJf}}}Cj}6{{{f{jBB`}}{BAj{M`AJf}}}Cj}0{{{f{jBB`}}{BAj{M`AJf}}{BAj{M`AJf}}}Cj}847018`````````````{AGhAGj}{AGhAGn}{AGhAGl}{AGnF`}{AGnf}{AGhAH`}{AGhM`}``````````{eg{}{{b{c}}}{}}000{ce{}{}}000{{}c{}}000{f{{f{h}}}}000{{{f{j}}}{{f{jh}}}}000{ABlAFl}{ABlAFb}{f{{f{c}}}{}}000{{{f{j}}}{{f{jc}}}{}}000{{{An{c}}}e{}{}}000{{{Bh{ceg}}i}{{Bh{ceg}}}{}BlBnAh}{{{f{{CAl{c}}}}}{{CAl{c}}}Ch}{{{f{ABj}}}ABj}{{{f{ABl}}}ABl}{{f{f{jc}}}Cj{}}00{{fCl}Cj}00{CAlBIf}????{{{f{l}}ABj}ABl}{{}c{}}{F`{{f{c}}}{}}000{F`{{f{jc}}}{}}000===={{{f{{Bh{ceg}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}}Cj{}BlBn}{F`Cj}000{{{f{{CAl{c}}}}{f{{CAl{c}}}}}BfIj}{{{f{ABj}}{f{ABj}}}Bf}{{{f{ABl}}{f{ABl}}}Bf}{{f{f{c}}}Bf{}}00{{{f{{CAl{c}}}}{f{jFl}}}GbGd}{{{f{ABj}}{f{jFl}}}Gb}{{{f{ABl}}{f{jFl}}}Gb}{{{Bh{ceg}}i}{{Bh{ceg}}}{}BlBnAh}{CAl}{cc{}}0000000{ce{}{}}000{{{Bh{ceg}}CAl}{{Bh{ceg}}}{}BlBn}{ABlAFj}{{}F`}000{{}c{}}0000000{{{Hj{c}}}{{Hj{h}}}{}}000{{{Hl{c}}}{{Hl{h}}}{}}00{{{Hn{c}}}{{Hn{h}}}{}}000{{{An{c}}}e{}{}}00044444444{{}c{}}000{{{f{{Bh{ceg}}}}{f{jCb}}{f{g}}{f{Il}}}In{}BlBn}{CAlAIf}{{{f{{Bh{ceg}}}}{f{Cb}}FfFh{f{Fj}}{f{g}}}Jh{}BlBn}{{cBf}{{Bh{egi}}}{{Ah{Bj}}}{}BlBn}{{{Bh{ceg}}i}{{Bh{ceg}}}{}BlBn{{Dn{Bf}{{Dl{c}}}}}}{{{Bh{ceg}}{Df{i}}}{{Bh{ceg}}}{}BlBn{{Dn{Bf}{{Dl{c}}}}}}{{{f{{Bh{ceg}}}}{f{jCb}}Ff{f{g}}{f{jK`}}}Cj{}BlBn}{{{f{l}}ABj}ABl}0{CAlAJd}{{{Bh{ceg}}i}{{Bh{ceg}}}{}BlBn{{Ah{Gj}}}}{{{f{{Bh{ceg}}}}}{{Jj{Od}}}{}BlBn}{CAlDf}2{{{f{{Bh{ceg}}}}}A@`{}BlBn}{{{f{{Bl{}{{AFh{c}}}}}}{f{c}}ABj}ABl{}}{{{Bh{ceg}}i}{{Bh{ceg}}}{}BlBn{{Dn{{f{e}}ABj}{{Dl{ABl}}}}}}7{{{f{{Bh{ceg}}}}}ACl{}BlBn}{ABlDf}{{{Bh{ceg}}i}{{Bh{ceg}}}{}BlBn{{Ah{AIf}}}}{{{Bh{ceg}}AJd}{{Bh{ceg}}}{}BlBn}9{{{Bh{ceg}}CAn}{{Bh{ceg}}}{}BlBn}{fc{}}00{{}{{G`{c}}}{}}000{c{{G`{e}}}{}{}}000{{}{{G`{c}}}{}}000{{}{{G`{c{AEf{c}}}}}{}}000{fAEh}000{ce{}{}}000{{}c{}}000{f{{Df{{f{c}}}}}{}}000{{{f{j{Bh{ceg}}}}{f{jCb}}{f{AEj}}FfFh{f{g}}{f{jAEl}}{f{j{AEn{c}}}}{f{Fj}}}Cj{}BlBn}{{}c{}}000{{{Bh{ceg}}i}{{Bh{ceg}}}{}BlBn{{Ah{Od}}}}{CB`Bf}{CBbBf}{CBdBf}```{eg{}{{b{c}}}{}}0{ce{}{}}099{f{{f{h}}}}0{{{f{j}}}{{f{jh}}}}0{f{{f{c}}}{}}0{{{f{j}}}{{f{jc}}}{}}0{{{An{c}}}e{}{}}0{{{f{{Dh{cegi}}}}}{{Cd{Cb}}}{DjCh}ChE`Bn}{{{f{{Db{c}}}}}{{Db{c}}}Ch}{{f{f{jc}}}Cj{}}{{fCl}Cj}99{{}{{Db{c}}}{DjCh}}{{}c{}}0{F`{{f{c}}}{}}0{F`{{f{jc}}}{}}0::{{{f{{Dh{cegi}}}}{f{Cb}}{f{ji}}{f{g}}{f{Fd}}FfFh{f{Fj}}}Cj{DjCh}ChE`Bn}{F`Cj}0{{{f{{Db{c}}}}{f{jFl}}}GbGd}{{{Dh{cegi}}}{{Dh{cegi}}}{DjCh}{}E`Bn}{cc{}}000{ce{}{}}0{{{Dh{cegi}}CBf}{{Dh{cegi}}}{DjCh}{}E`Bn}{{}F`}0{{{Dh{cegi}}k}{{Dh{cegi}}}{DjCh}{}E`BnAh}{{{Dh{cegi}}k}{{Dh{cegi}}}{DjCh}{}E`Bn{{Dn{{f{g}}ABf}{{Dl{ABh}}}}}}{{}c{}}000{{{Hj{c}}}{{Hj{h}}}{}}0{{{Hn{c}}}{{Hn{h}}}{}}0{{{An{c}}}e{}{}}03333{{}c{}}0{{{f{{Dh{cegi}}}}{f{jCb}}{f{i}}{f{Il}}}In{DjCh}ChE`Bn}{{{Dh{cegi}}k}{{Dh{cegi}}}{DjCh}{}E`Bn{{Ah{AIf}}}}8{{{Dh{cegi}}k}{{Dh{cegi}}}{DjCh}{}E`Bn{{Dn{{f{g}}}{{Dl{A@b}}}}}}{{{f{{Dh{cegi}}}}{f{Cb}}FfFh{f{Fj}}{f{i}}}Jh{DjCh}ChE`Bn}{{{f{{Db{c}}}}{f{Dd}}{Df{{f{c}}}}g}{{Dh{ceik}}}{DjCh}{}{{Dn{c}{{Dl{e}}}}}E`Bn}{{{Cd{c}}}{{Db{c}}}{DjCh}}6{{{Dh{cegi}}e}{{Dh{cegi}}}{DjCh}{}E`Bn}{{{Dh{cegi}}k}{{Dh{cegi}}}{DjCh}{}E`Bn{{Dn{Bj}{{Dl{e}}}}}}1{{{Dh{cegi}}k}{{Dh{cegi}}}{DjCh}{}E`Bn{{Dn{c}{{Dl{e}}}}}}{{{f{{Db{c}}}}}{{f{{Lf{c}}}}}{DjCh}}{{{f{j{Dh{cegi}}}}{f{jCb}}Ff{f{i}}Kd}{{Df{{Kf{egi}}}}}{DjCh}ChE`Bn}{{{Dh{cegi}}k}{{Dh{cegi}}}{DjCh}{}E`Bn{{Ah{AFd}}}}{{{f{{Dh{cegi}}}}}{{Jj{Od}}}{DjCh}ChE`Bn}{{{Dh{cegi}}M`}{{Dh{cegi}}}{DjCh}{}E`Bn}{{{f{{Dh{cegi}}}}}A@`{DjCh}ChE`Bn}{{{f{{Dh{cegi}}}}}ACl{DjCh}ChE`Bn}{fc{}}{{}{{G`{c}}}{}}0{c{{G`{e}}}{}{}}0{{}{{G`{c}}}{}}0{{}{{G`{c{AEf{c}}}}}{}}0{fAEh}0{ce{}{}}0{{}c{}}0{f{{Df{{f{c}}}}}{}}0{{{f{j{Dh{cegi}}}}{f{jCb}}{f{AEj}}FfFh{f{i}}{f{jAEl}}{f{j{AEn{e}}}}{f{Fj}}}Cj{DjCh}ChE`Bn}{{}c{}}0{{{Dh{cegi}}k}{{Dh{cegi}}}{DjCh}{}E`Bn{{Ah{Od}}}}{{{Cd{c}}{Df{{f{c}}}}}{{Db{c}}}{DjCh}}``````{eg{}{{b{c}}}{}}00{{{A`{ceg}}i}{{A`{ceg}}}{}AbAd{{Ah{Od}}}}000{{{A`{ceg}}i}{{A`{ceg}}}{}AbAd{{Ah{AId}}}}{{{A`{ceg}}i}{{A`{ceg}}}{}AbAd{{Ah{AJj}}}}{ce{}{}}00:::{f{{f{h}}}}00{{{f{j}}}{{f{jh}}}}00{cACb{{Ah{AFl}}}}{{ACbc}ACb{{Ah{AFl}}}}{ACbDf}{{ACbc}ACb{{Ah{AFb}}}}{ACbAFb}{{{f{l}}}ACb}{f{{f{c}}}{}}00{{{f{j}}}{{f{jc}}}{}}00{{{An{c}}}e{}{}}00>>>{{{f{{A`{ceg}}}}}{{Cd{Cb}}}{}AbAd}{{{A`{ceg}}i}{{A`{ceg}}}{}AbAdAh}{{{A`{ceg}}Bf}{{A`{ceg}}}{}AbAd}{{{f{CBh}}}CBh}{{{f{ACb}}}ACb}{{f{f{jc}}}Cj{}}0{{fCl}Cj}0{{ACbc}ACb{{Ah{AFj}}}}{ce{}{}}00<<{{}c{}}{{}ACb}{F`{{f{c}}}{}}00{F`{{f{jc}}}{}}00{{{f{{A`{ceg}}}}{f{jCb}}}Cj{}AbAd}{f{{f{c}}}{}}00{{{f{{A`{ceg}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}}Cj{}AbAd}{{{f{jc}}{f{ACb}}Fj}CjAd}{F`Cj}00{{{f{CBh}}{f{CBh}}}Bf}{{{f{ACb}}{f{ACb}}}Bf}{{f{f{c}}}Bf{}}00{{{f{CBh}}{f{jFl}}}Gb}{{{f{ACb}}{f{jFl}}}Gb}{cc{}}{ACb{{CBj{c}}}{}}{{{f{Dd}}}CBh}22{CBlACb}{AJnACb}{AFjACb}555{ce{}{}}00{{{f{CBh}}{f{jc}}}CjAIb}{{{A`{ceg}}i}{{A`{ceg}}}{}AbAd{{Ah{Od}}}}{{{A`{ceg}}i}{{A`{ceg}}}{}AbAd{{Ah{CBh}}}}{{}F`}00{{}c{}}00000{{{Hj{c}}}{{Hj{h}}}{}}00{{{Hl{c}}}{{Hl{h}}}{}}0{{{Hn{c}}}{{Hn{h}}}{}}00{{{An{c}}}e{}{}}00444444{{}c{}}00{{{f{Il}}OdOdM`M`AFdAIdAJjc}In{{Eh{{f{Il}}}{{Dl{In}}}}}}{{{f{{A`{ceg}}}}{f{jCb}}{f{g}}{f{Il}}}In{}AbAd}{{{A`{ceg}}i}{{A`{ceg}}}{}AbAd{{Ah{Gj}}}}0{{{f{{A`{ceg}}}}{f{Cb}}FfFh{f{Fj}}{f{g}}}Jh{}AbAd}{i{{A`{ceg}}}{}AbAd{{Ah{{Af{ceg}}}}}}{cCBh{{Ah{{CBn{Dd}}}}}}6{{{f{{A`{ceg}}}}{f{jCb}}Ff{f{g}}{f{jK`}}}Cj{}AbAd}{{{f{j{A`{ceg}}}}{f{jCb}}Ff{f{g}}Kd}{{Df{{Kf{ceg}}}}}{}AbAd}{{{A`{ceg}}i}{{A`{ceg}}}{}AbAd{{Ah{AFd}}}}{{{f{l}}}ACb}00{{ACbc}ACb{{Ah{AFf}}}}{ACbAFf}{{{f{{A`{ceg}}}}}{{Jj{Od}}}{}AbAd}{{{f{{A`{ceg}}}}}A@`{}AbAd}{{{f{{Ab{}{{AFh{c}}}}}}{f{c}}}ACb{}}{{{A`{ceg}}i}{{A`{ceg}}}{}AbAd{{Dn{{f{e}}}{{Dl{ACb}}}}}}6{{{f{{A`{ceg}}}}}ACl{}AbAd}{ACbDf}{fc{}}0{{{f{c}}}ACb{}}{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{AEf{c}}}}}{}}00{fAEh}00{ce{}{}}00{{}c{}}00{{}CBh}{f{{Df{{f{c}}}}}{}}00{{{f{j{A`{ceg}}}}{f{jCb}}{f{AEj}}FfFh{f{g}}{f{jAEl}}{f{j{AEn{c}}}}{f{Fj}}}Cj{}AbAd}{c{{Gf{{Df{Fj}}}}}{{Ah{CBh}}}}{{}c{}}00{{{A`{ceg}}i}{{A`{ceg}}}{}AbAd{{Ah{Od}}}}`````````{eg{}{{b{c}}}{}}00{ce{}{}}00888{f{{f{h}}}}00{{{f{j}}}{{f{jh}}}}00{f{{f{c}}}{}}00{{{f{j}}}{{f{jc}}}{}}00{{{An{c}}}e{}{}}00{{{f{AI`}}}AI`}{{{f{AHl}}}AHl}{{f{f{jc}}}Cj{}}0{{fCl}Cj}0999{{{Hh{c}}CC`}{{Hh{c}}}{}}{{}AHl}{F`{{f{c}}}{}}00{F`{{f{jc}}}{}}00:::{{{f{je}}Ff{f{Fj}}{f{c}}CC`AHlCCbM`M`}CjCh{{CCf{}{{CCd{c}}}}}}{{{f{{Hh{c}}}}{f{Cb}}{f{je}}{f{g}}{f{Fd}}FfFh{f{Fj}}}CjCh{{CCf{}{{CCd{c}}}}}{}}{F`Cj}00{{{f{AI`}}{f{AI`}}}Bf}{{{f{AHl}}{f{AHl}}}Bf}{{f{f{c}}}Bf{}}00000{{{Hh{c}}AHl}{{Hh{c}}}{}}{{{f{AI`}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AHl}}{f{jFl}}}{{G`{CjFn}}}}{{{f{{Hh{c}}}}{f{jFl}}}GbGd}{cc{}}{{{f{AI`}}}AI`}{cAI`{{Ah{CCh}}}}22222{cAI`{{Ah{CCj}}}}1{{BGdBGdc}AI`{{Ah{CCj}}}}{ce{}{}}00{{{f{AHl}}{f{jc}}}CjAIb}{{{Hh{c}}e}{{Hh{c}}}{}{{Ah{Od}}}}{{{f{AI`}}}CCl}{{}F`}00{{}c{}}00000{{{Hj{c}}}{{Hj{h}}}{}}00{{{Hl{c}}}{{Hl{h}}}{}}00{{{Hn{c}}}{{Hn{h}}}{}}00{{{An{c}}}e{}{}}00444444{{}c{}}00{{{f{e}}{f{Il}}{f{c}}OdOdCC`CCb}In{}{{CCf{}{{CCd{c}}}}}}{{{f{{Hh{c}}}}{f{jCb}}{f{e}}{f{Il}}}InCh{{CCf{}{{CCd{c}}}}}}{e{{Hh{c}}}{}{{Ah{c}}}}3{{{Hh{c}}e}{{Hh{c}}}{}{{Ah{M`}}}}{{{Hh{c}}e}{{Hh{c}}}{}{{Ah{CCb}}}}1{{{f{{Hh{c}}}}}{{Jj{Od}}}Ch}{fc{}}0{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{AEf{c}}}}}{}}00{fAEh}00{ce{}{}}00{{}c{}}00{f{{Df{{f{c}}}}}{}}00`{c{{CCn{c}}}{}}{{}c{}}00{{{Hh{c}}e}{{Hh{c}}}{}{{Ah{Od}}}}{CD`BGd}{CD`CCl}{CD`CCj}2``{eg{}{{b{c}}}{}}0{ce{}{}}099{f{{f{h}}}}0{{{f{j}}}{{f{jh}}}}0{f{{f{c}}}{}}0{{{f{j}}}{{f{jc}}}{}}0{{{An{c}}}e{}{}}0{{{f{CDb}}}CDb}{{f{f{jc}}}Cj{}}{{fCl}Cj}88{{{CCn{c}}CC`}{{CCn{c}}}{}}{{}CDb}{F`{{f{c}}}{}}0{F`{{f{jc}}}{}}099{{{f{{CCn{c}}}}{f{Cb}}{f{je}}{f{g}}{f{Fd}}FfFh{f{Fj}}}CjCh{{CCf{}{{CCd{c}}}}}{}}{F`Cj}0{{{CCn{c}}AHl}{{CCn{c}}}{}}{{{f{CDb}}{f{jFl}}}Gb}{cc{}}000{ce{}{}}0{{{CCn{c}}e}{{CCn{c}}}{}{{Ah{Od}}}}{{}F`}0{{}c{}}000{{{Hj{c}}}{{Hj{h}}}{}}0{{{Hl{c}}}{{Hl{h}}}{}}0{{{Hn{c}}}{{Hn{h}}}{}}0{{{An{c}}}e{}{}}04444{{}c{}}0{{{f{CDb}}}Bf}{{{f{{CCn{c}}}}{f{jCb}}{f{e}}{f{Il}}}InCh{{CCf{}{{CCd{c}}}}}}{{{CCn{c}}M`}{{CCn{c}}}{}}0{{{f{{CCn{c}}}}{f{Cb}}FfFh{f{Fj}}{f{e}}}JhCh{{CCf{}{{CCd{c}}}}}}{e{{CCn{c}}}{}{{Ah{c}}}}{{}CDb}6{{{CCn{c}}e}{{CCn{c}}}{}{{Ah{Gj}}}}4{{{f{c}}f{f{CDb}}JjCC`}JjCCf}{{{f{{CCn{c}}}}}{{Jj{Od}}}Ch}{{{f{{CCn{c}}}}}A@`Ch}{{{f{{CCn{c}}}}}AClCh}{fc{}}{{}{{G`{c}}}{}}0{c{{G`{e}}}{}{}}0{{}{{G`{c}}}{}}0{{}{{G`{c{AEf{c}}}}}{}}0{fAEh}0{ce{}{}}0{{}c{}}0{f{{Df{{f{c}}}}}{}}0{{{f{j{CCn{c}}}}{f{jCb}}{f{AEj}}FfFh{f{e}}{f{jAEl}}{f{j{AEn{g}}}}{f{Fj}}}CjCh{{CCf{}{{CCd{c}}}}}{}}{{}c{}}0{{{CCn{c}}e}{{CCn{c}}}{}{{Ah{Od}}}}```{eg{}{{b{c}}}{}}{{{If{cegi}}CDd}{{If{cegi}}}{IhIj}{}{}Ad}{ce{}{}}7{f{{f{h}}}}{{{f{j}}}{{f{jh}}}}{f{{f{c}}}{}}{{{f{j}}}{{f{jc}}}{}}{{{An{c}}}e{}{}}{{{f{{If{cegi}}}}}{{Cd{Cb}}}{IhIj}{}{}Ad}6{{}{{If{ceg}}}{IhIj}{}Ad}{F`{{f{c}}}{}}{F`{{f{jc}}}{}}{{{f{{If{cegi}}}}{f{jCb}}}Cj{IhIj}{}{}Ad}7{{{f{{If{cegi}}}}{f{Cb}}{f{ji}}{f{g}}{f{Fd}}FfFh{f{Fj}}}Cj{IhIj}{}{}Ad}{F`Cj}{{{If{cegi}}k}{{If{cegi}}}{IhIj}{}{}Ad{{D`{}{{Cn{{Id{c{Af{egi}}}}}}}}}}{cc{}}0{ce{}{}}{{{Cd{c}}{Cd{{Af{egi}}}}}{{If{cegi}}}{IhIj}{}{}Ad}{{{If{cegi}}k}{{If{cegi}}}{IhIj}{}{}Ad{{Ah{Od}}}}{{}F`}{{}c{}}0{{{Hj{c}}}{{Hj{h}}}{}}{{{Hn{c}}}{{Hn{h}}}{}}{{{An{c}}}e{}{}}33{{}c{}}{{{f{{If{cegi}}}}{f{jCb}}{f{i}}{f{Il}}}In{IhIj}{}{}Ad}{{{If{cegi}}k}{{If{cegi}}}{IhIj}{}{}Ad{{Ah{Gj}}}}{{{f{{If{cegi}}}}{f{Cb}}FfFh{f{Fj}}{f{i}}}Jh{IhIj}{}{}Ad}{{}{{If{cegi}}}{IhIj}{}{}Ad}4{{{f{{If{cegi}}}}{f{jCb}}Ff{f{i}}{f{jK`}}}Cj{IhIj}{}{}Ad}{{{f{j{If{cegi}}}}{f{jCb}}Ff{f{i}}Kd}{{Df{{Kf{egi}}}}}{IhIj}{}{}Ad}{{{If{cegi}}k}{{If{cegi}}}{IhIj}{}{}Ad{{Ah{AFd}}}}{{{If{cegi}}ck}{{If{cegi}}}{IhIj}{}{}Ad{{Ah{{Af{egi}}}}}}{{{If{cegi}}c{Df{k}}}{{If{cegi}}}{IhIj}{}{}Ad{{Ah{{Af{egi}}}}}}{{{f{{If{cegi}}}}}{{Jj{Od}}}{IhIj}{}{}Ad}8{{{f{{If{cegi}}}}}A@`{IhIj}{}{}Ad}{{{f{{If{cegi}}}}}ACl{IhIj}{}{}Ad}{{}{{G`{c}}}{}}{c{{G`{e}}}{}{}}{{}{{G`{c}}}{}}{{}{{G`{c{AEf{c}}}}}{}}{fAEh}{ce{}{}}{{}c{}}{f{{Df{{f{c}}}}}{}}{{{f{j{If{cegi}}}}{f{jCb}}{f{AEj}}FfFh{f{i}}{f{jAEl}}{f{j{AEn{e}}}}{f{Fj}}}Cj{IhIj}{}{}Ad}{{}c{}}{{{If{cegi}}k}{{If{cegi}}}{IhIj}{}{}Ad{{Ah{Od}}}}{F`{{If{cegi}}}{IhIj}{}{}Ad}{k{{If{cegi}}}{IhIj}{}{}Ad{{D`{}{{Cn{{Id{c{Af{egi}}}}}}}}}}`````````````````````{eg{}{{b{c}}}{}}0000000{ce{}{}}000000088888888{f{{f{h}}}}0000000{{{f{j}}}{{f{jh}}}}0000000{{{f{J`}}}{{f{Dd}}}}00{CDfAFl}{CDfAFb}{f{{f{c}}}{}}0000000{{{f{j}}}{{f{jc}}}{}}0000000{{{An{c}}}e{}{}}0000000{{{f{J`}}}Bf}{{{f{J`}}}J`}{{{f{CDh}}}CDh}{{{f{CDf}}}CDf}{{{f{Jb}}}Jb}{{{f{CDj}}}CDj}{{{f{Jd}}}Jd}{{{f{CDl}}}CDl}{{f{f{jc}}}Cj{}}000000{{fCl}Cj}000000{{{f{J`}}{f{J`}}}AHf}{{{f{CDh}}{f{CDh}}}AHf}{{Jd{f{{Lf{CDj}}}}e}{{Af{cgi}}}{}{{Dn{J`}{{Dl{c}}}}Ch}Jf{{Bn{}{{Hb{Hd}}}}}}{{}c{}}{{{f{CDn}}Jd{Df{{f{Dd}}}}{f{Dd}}{f{{Lf{CDj}}}}}{{Af{ceg}}}{}Jf{{Bn{}{{Hb{Hd}}}}}}{JdGj}{{f{f{c}}}AHf{}}0{ce{}{}}0000000{{}CE`}{F`{{f{c}}}{}}0000000{F`{{f{jc}}}{}}0000000{c{{G`{J`}}}CEb}0{{{f{CEd}}}{{G`{CEf}}}}{{{f{J`}}}{{Df{{f{Dd}}}}}}{f{{f{c}}}{}}0000000{F`Cj}0000000{{{f{J`}}{f{J`}}}Bf}{{{f{CDh}}{f{CDh}}}Bf}{{{f{CDf}}{f{CDf}}}Bf}{{{f{CDl}}{f{CDl}}}Bf}{{f{f{c}}}Bf{}}00000{{{f{J`}}{f{jFl}}}{{G`{CjFn}}}}0{{{f{CDh}}{f{jFl}}}{{G`{CjFn}}}}0{{{f{CDf}}{f{jFl}}}{{G`{CjFn}}}}{{{f{CE`}}{f{jFl}}}Gb}{{{f{Jb}}{f{jFl}}}Gb}{{{f{CDj}}{f{jFl}}}Gb}{{{f{Jd}}{f{jFl}}}Gb}{{{f{CDl}}{f{jFl}}}Gb}?{cc{}}000000{{{f{l}}}Jd}{lJd}2{EdCDl}{{{f{l}}}CDl}{lCDl}55555555{c{{G`{J`Cj}}}{{Nj{BHl}}}}03{ce{}{}}0000000{{{f{Dd}}}{{G`{J`CEh}}}}{JdGj}00000{{{f{J`}}}Bf}0{{{f{J`}}{f{jc}}}CjAIb}{{{f{CDh}}{f{jc}}}CjAIb}{{Jd{f{CDh}}{f{CDj}}F`e}{{Af{cgi}}}{}{{Dn{J`}{{Dl{c}}}}}Jf{{Bn{}{{Hb{Hd}}}}}}{{{f{CDn}}Jd{f{CDh}}{f{CDj}}F`}{{Af{ceg}}}{}Jf{{Bn{}{{Hb{Hd}}}}}}{{{f{J`}}}{{Df{{CEj{{f{Dd}}}}}}}}{{{f{J`}}}{{Df{{f{Dd}}}}}}{{{f{CDn}}Jd{f{J`}}{f{Dd}}{f{CDj}}}{{Af{ceg}}}{}Jf{{Bn{}{{Hb{Hd}}}}}}{{{f{CE`}}}{{f{{CEl{J`}}}}}}{{{f{J`}}{AOf{CEn}}}{{f{Dd}}}}{{{f{J`}}{CF`{CEn}}}{{f{Dd}}}}{{{f{J`}}{CFb{CEn}}}{{f{Dd}}}}{{{f{J`}}CFd}{{f{Dd}}}}{{}F`}0000000{CDlAFj}{CDlCDf}{CDlAFd}{{}c{}}000000000000000{{{Hj{c}}}{{Hj{h}}}{}}0000000{{{Hl{c}}}{{Hl{h}}}{}}0000{{{Hn{c}}}{{Hn{h}}}{}}0000000{{{An{c}}}e{}{}}00000004444444444444444{{}c{}}0000000{J`Bj}{{{f{J`}}}Bf}{{{f{i}}Jd{f{Jb}}F`}{{Af{ceg}}}{}Jf{{Bn{}{{Hb{Hd}}}}}{{CDn{ceg}}}}{{{f{CE`}}}{{f{{Lf{Jb}}}}}}{{{f{J`}}{f{Dd}}}{{G`{J`CEh}}}}{fF`}{fCl}?{{{f{J`}}{f{J`}}}{{Df{Bj}}}}{{}CE`}9{J`c{}}{{}CFf}{{{f{i}}JdBJ`{f{{Lf{{Cd{Jb}}}}}}}{{Af{ceg}}}{}Jf{{Bn{}{{Hb{Hd}}}}}{{CDn{ceg}}}}{{{f{CDn}}JdBJ`{f{{Lf{{Cd{Jb}}}}}}}{{Af{ceg}}}{}Jf{{Bn{}{{Hb{Hd}}}}}}{{{f{J`}}}CFh}{{Jd{f{CDj}}e}{{Af{cgi}}}{}{{Dn{J`}{{Dl{c}}}}}Jf{{Bn{}{{Hb{Hd}}}}}}{{{f{CDn}}Jd{f{CDj}}}{{Af{ceg}}}{}Jf{{Bn{}{{Hb{Hd}}}}}}{{{f{Dd}}}{{`{{BGn{}{{Cn{Jb}}}}}}}}{{{f{Dd}}}{{G`{J`CEh}}}}{{{f{Dd}}}CE`}{{{f{Dd}}c}{{G`{J`CEh}}}D`}{{{f{J`}}{f{J`}}}{{Df{AHf}}}}{{{f{CDh}}{f{CDh}}}{{Df{AHf}}}}{{{f{J`}}}{{Df{{f{Dd}}}}}}{{{f{J`}}}{{f{Dd}}}}{{{f{J`}}}{{Df{{CFj{BIf}}}}}}{{{f{jJ`}}}{{G`{CFlCj}}}}{{{f{J`}}}{{Df{BJj}}}}0{{{f{jCE`}}{f{Dd}}}Cj}5{{{f{J`}}}CFn}{{{f{jJ`}}}{{CGb{CG`}}}}6{{{f{J`}}c}G`CGd}0{{{f{jJ`}}{Df{{f{Dd}}}}}Cj}{{{f{jJ`}}{Df{{f{Dd}}}}}{{G`{CjCEh}}}}{{{f{jJ`}}CGf}{{G`{CjCj}}}}{{{f{jJ`}}{Df{{f{Dd}}}}}{{G`{CjCj}}}}{{{f{jJ`}}{f{Dd}}}Cj}{{{f{jJ`}}{Df{BJj}}}{{G`{CjCj}}}}5{{{f{jJ`}}{f{Dd}}}{{G`{CjCj}}}}0{fCEd}{{{f{J`}}c}{{G`{{Cd{CGh}}BIj}}}{{Dn{}{{Dl{{Df{BJj}}}}}}}}{JdGj}{{{f{CDj}}CDl}{{Hl{{Lf{{Nh{J`}}}}}}}}{fCl}{JdCDl}3{{{f{J`}}}{{G`{CChCj}}}}{fc{}}000000{fADl}0{fBj}0{{}{{G`{c}}}{}}0000000{{{f{Dd}}}{{G`{J`}}}}{c{{G`{e}}}{}{}}0{F`{{G`{CDh}}}}111111{{}{{G`{c}}}{}}0000000{{}{{G`{c{AEf{c}}}}}{}}0000000{fAEh}0000000{ce{}{}}0000000{{}c{}}0000000{{{f{i}}Jd{f{{Lf{{Cd{Jb}}}}}}}{{Af{ceg}}}{}Jf{{Bn{}{{Hb{Hd}}}}}{{CDn{ceg}}}}{{{f{CDn}}Jd{f{{Lf{{Cd{Jb}}}}}}}{{Af{ceg}}}{}Jf{{Bn{}{{Hb{Hd}}}}}}{f{{Df{{f{c}}}}}{}}0000000{{{f{J`}}}{{f{Dd}}}}{{ce}{{Af{J`gi}}}{{D`{}{{Cn{{f{Jb}}}}}}}{{Ah{Jd}}}Jf{{Bn{}{{Hb{Hd}}}}}}{{ce{f{m}}}{{Af{gik}}}{{D`{}{{Cn{{f{Jb}}}}}}}{{Ah{Jd}}}{}Jf{{Bn{}{{Hb{Hd}}}}}{{CDn{gik}}}}{{}c{}}0000000{cJd{{Ah{CDl}}}}{{ce}Jd{{Ah{Gj}}}{{Ah{CDl}}}}{CGjCDj}{CGlBj}{CGnCd}{CGlDf}{CGlCd}{CGnDf}{CGjBj}{CGjJ`}```````{eg{}{{b{c}}}{}}00{ce{}{}}00{{}c{}}00{f{{f{h}}}}00{{{f{j}}}{{f{jh}}}}00{A@bAFl}{A@bAFb}{f{{f{c}}}{}}00{{{f{j}}}{{f{jc}}}{}}00{{{An{c}}}e{}{}}00{{{f{A@b}}}A@b}{{f{f{jc}}}Cj{}}{{fCl}Cj};;;{{{f{l}}}A@b}{{}c{}}{{}CH`}1{F`{{f{c}}}{}}00{F`{{f{jc}}}{}}00:::{F`Cj}00{{{f{A@b}}{f{A@b}}}Bf}{{{f{CH`}}{f{jFl}}}Gb}{{{f{A@b}}{f{jFl}}}Gb}{{{CHb{cegi}}k}{{CHb{cegi}}}{LdCh}{}LlBnAh}{cc{}}00000{ce{}{}}00{{}F`}00{{}c{}}00000{{{Hj{c}}}{{Hj{h}}}{}}00{{{Hl{c}}}{{Hl{h}}}{}}{{{Hn{c}}}{{Hn{h}}}{}}00{{{An{c}}}e{}{}}00444444{{}c{}}00{{{f{jCH`}}{f{{Lf{c}}}}{f{j{Df{F`}}}}g{Df{{f{Dn}}}}f}{{CHb{ceik}}}{LdCh}{}{{AHj{c}{{Dl{e}}}}}LlBn}{{}CH`}2{{{CHb{cegi}}AFnM`}{{Kf{egi}}}{LdCh}{}LlBn}{{{CHb{cegi}}k}{{CHb{cegi}}}{LdCh}{}LlBn{{Ah{AFd}}}}{A@bAFl}{A@bAFj}{{{f{{Ll{}{{AFh{c}}}}}}{f{c}}}A@b{}}1{{{CHb{cegi}}k}{{CHb{cegi}}}{LdCh}{}LlBn{{Ah{AIf}}}}{{{CHb{cegi}}AJd}{{CHb{cegi}}}{LdCh}{}LlBn}{{{CHb{cegi}}k}{{CHb{cegi}}}{LdCh}{}LlBn{{Ah{Gj}}}}{fc{}}{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{AEf{c}}}}}{}}00{fAEh}00{ce{}{}}00{{}c{}}00{f{{Df{{f{c}}}}}{}}00{{}c{}}00{{{CHb{cegi}}M`}{{CHb{cegi}}}{LdCh}{}LlBn}````````````````````````````````````````````{eg{}{{b{c}}}{}}00000000000000000{{{CHd{ceg}}}{{CHd{ceg}}}{}AbAd}{ce{}{}}00000000000000000666666666666666666{f{{f{h}}}}00000000000000000{{{f{j}}}{{f{jh}}}}00000000000000000{CHfAFl}{CHfAFb}{f{{f{c}}}{}}00000000000000000{{{f{j}}}{{f{jc}}}{}}00000000000000000{{{An{c}}}e{}{}}00000000000000000{{{f{CHh}}FfAFn}Bf}{{{f{{f{{L`{ceg}}}}}}FfAFn}Bf{}AbAd}{{{f{{Kj{ceg}}}}}{{Cd{Cb}}}{}KlAd}{{{L`{ceg}}i}{{L`{ceg}}}{}AbAdAh}{{{CHd{ceg}}i}{{CHd{ceg}}}{}AbAdAh}{{{Kj{ceg}}i}{{Kj{ceg}}}{}KlAdAh}{{{f{CHj}}}CHj}{{{f{{CHl{c}}}}}{{CHl{c}}}Ch}{{{f{CHn}}}CHn}{{{f{CI`}}}CI`}{{{f{Kn}}}Kn}{{{f{CIb}}}CIb}{{{f{CId}}}CId}{{{f{CIf}}}CIf}{{{f{CIh}}}CIh}{{{f{CIj}}}CIj}{{{f{CIl}}}CIl}{{{f{A@d}}}A@d}{{{f{CHf}}}CHf}{{{f{CIn}}}CIn}{{f{f{jc}}}Cj{}}0000000000000{{fCl}Cj}0000000000000{{{f{Kn}}{f{Kn}}}AHf}{{{f{CIb}}{f{CIb}}}AHf}{CInAFj}{{f{f{c}}}AHf{}}0{ce{}{}}00000000000000000{{{CHd{ceg}}i}{{CHd{ceg}}}{}AbAd{{Ah{{CJ`{ceg}}}}}}{{{f{l}}}A@d}{{}c{}}{{}CIh}{F`{{f{c}}}{}}00000000000000000{F`{{f{jc}}}{}}00000000000000000{{{f{{Kj{ceg}}}}{f{jCb}}}Cj{}KlAd}{f{{f{c}}}{}}00000000000000000{{{f{{L`{ceg}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}}Cj{}AbAd}{{{f{{CHd{ceg}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}Bf}Cj{}AbAd}{{{f{{Kj{ceg}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}}Cj{}KlAd}{F`Cj}00000000000000000{{ik}{{CJ`{ceg}}}{}AbAd{{Ah{{Af{ceg}}}}}{{Ah{{Af{ceg}}}}}}{{{f{CHj}}{f{CHj}}}Bf}{{{f{CHn}}{f{CHn}}}Bf}{{{f{Kn}}{f{Kn}}}Bf}{{{f{CIb}}{f{CIb}}}Bf}{{{f{A@d}}{f{A@d}}}Bf}{{{f{CHf}}{f{CHf}}}Bf}{{{f{CIn}}{f{CIn}}}Bf}{{f{f{c}}}Bf{}}00000000000{{{f{CHj}}{f{jFl}}}Gb}{{{f{{CHl{c}}}}{f{jFl}}}GbGd}{{{f{CHn}}{f{jFl}}}Gb}{{{f{CI`}}{f{jFl}}}Gb}{{{f{Kn}}{f{jFl}}}Gb}{{{f{CIb}}{f{jFl}}}Gb}{{{f{CId}}{f{jFl}}}Gb}{{{f{CIf}}{f{jFl}}}Gb}{{{f{CIh}}{f{jFl}}}Gb}{{{f{CIj}}{f{jFl}}}Gb}{{{f{CIl}}{f{jFl}}}Gb}{{{f{A@d}}{f{jFl}}}Gb}{{{f{CHf}}{f{jFl}}}Gb}{{{f{CIn}}{f{jFl}}}Gb}{cc{}}{i{{L`{ceg}}}{}AbAd{{Ah{{Af{ceg}}}}}}{{{Af{ceg}}}{{CJ`{ceg}}}{}AbAd}22222222222222222222222222222222222{ce{}{}}00000000000000000{{{f{CHj}}{f{jc}}}CjAIb}{{{f{CI`}}{f{jc}}}CjAIb}{{{f{Kn}}{f{jc}}}CjAIb}{{{f{CIb}}{f{jc}}}CjAIb}{{{Kj{ceg}}i}{{Kj{ceg}}}{}KlAd{{Ah{Od}}}}{A@dCHf}{A@dCIn}{{}F`}00000000000000000{{}c{}}00000000000000000000000000000000000{{{Hj{c}}}{{Hj{h}}}{}}00000000000000000{{{Hl{c}}}{{Hl{h}}}{}}0000000000000{{{Hn{c}}}{{Hn{h}}}{}}00000000000000000{{{An{c}}}e{}{}}00000000000000000444444444444444444444444444444444444{{}c{}}00000000000000000{{{f{{CHd{ceg}}}}FfAFn}Bf{}AbAd}{{{f{{Kj{ceg}}}}{f{jCb}}{f{g}}{f{Il}}}In{}KlAd}{{{f{{Kj{ceg}}}}{f{Cb}}FfFh{f{Fj}}{f{g}}}Jh{}KlAd}{i{{L`{ceg}}}{}AbAd{{Ah{{Af{ceg}}}}}}{i{{CJ`{ceg}}}{}AbAd{{Ah{{Af{ceg}}}}}}{i{{CHd{ceg}}}{}AbAd{{Ah{{Af{ceg}}}}}}{{{f{{Kh{c}}}}k}{{Kj{egi}}}{}{}KlAd{{Dn{Kn{f{c}}Bf}{{Dl{{L`{egi}}}}}}}}7{{{Kj{ceg}}i}{{Kj{ceg}}}{}KlAd{{Dn{Kn}{{Dl{c}}}}}}{{{Kj{ceg}}i}{{Kj{ceg}}}{}KlAd{{Dn{CId}{{Dl{c}}}}}}{{{Kj{ceg}}ik}{{Kj{ceg}}}{}KlAd{{Ah{Gj}}}{{Dn{CIl}{{Dl{c}}}}}}{{{f{{Kj{ceg}}}}{f{jCb}}Ff{f{g}}{f{jK`}}}Cj{}KlAd}{{{f{j{Kj{ceg}}}}{f{jCb}}Ff{f{g}}Kd}{{Df{{Kf{ceg}}}}}{}KlAd}{{{CHd{ceg}}i}{{CHd{ceg}}}{}AbAd{{Ah{AFd}}}}{{{f{CI`}}M`Jj}{{CJb{KnFj}}}}{{{f{Kn}}{f{Kn}}}{{Df{AHf}}}}{{{f{CIb}}{f{CIb}}}{{Df{AHf}}}}{A@dCIn}{CIlM`}{{{f{{Kj{ceg}}}}}{{Jj{Od}}}{}KlAd}{{{Kj{ceg}}i}{{Kj{ceg}}}{}KlAd{{Ah{Gj}}}}{{{f{CHj}}{f{Fj}}M`M`}{{Id{FjFj}}}}{CIlCIb}{{{f{CHj}}FjM`M`}Fj}{{{f{CI`}}M`Jj}{{CJb{CIb{Id{CHjFjM`}}}}}}{{{f{CI`}}}{{`{{BGn{}{{Cn{{f{CIb}}}}}}}}}}`{{{f{{Kj{ceg}}}}}A@`{}KlAd}{{{f{{Kl{}{{AFh{c}}}}}}{f{c}}}A@d{}}{{{L`{ceg}}i}{{L`{ceg}}}{}AbAd{{Dn{{f{e}}}{{Dl{ACb}}}}}}{{{CHd{ceg}}i}{{CHd{ceg}}}{}AbAd{{Dn{{f{e}}}{{Dl{ACb}}}}}}{{{Kj{ceg}}i}{{Kj{ceg}}}{}KlAd{{Dn{{f{e}}}{{Dl{A@d}}}}}}{{{f{{Kj{ceg}}}}}ACl{}KlAd}{{{L`{ceg}}{CHd{ceg}}}{{L`{ceg}}}{}AbAd}{fc{}}0000000000000{{}{{G`{c}}}{}}00000000000000000{c{{G`{e}}}{}{}}00000000000000000{{}{{G`{c}}}{}}00000000000000000{{}{{G`{c{AEf{c}}}}}{}}00000000000000000{fAEh}00000000000000000{ce{}{}}00000000000000000{{}c{}}00000000000000000{f{{Df{{f{c}}}}}{}}00000000000000000{{{f{j{Kj{ceg}}}}{f{jCb}}{f{AEj}}FfFh{f{g}}{f{jAEl}}{f{j{AEn{c}}}}{f{Fj}}}Cj{}KlAd}{{}c{}}00000000000000000{{{Kj{ceg}}i}{{Kj{ceg}}}{}KlAd{{Ah{Od}}}}{CInM`}{CJdHj}{CJdCHj}1{CJdM`}{CJfKn}{CJhKn}{CJjKn}{CJhCIf}{CJlHj}{CJlCHj}1{CJlCIb}{CJlM`}``````{eg{}{{b{c}}}{}}00{{{f{{Kh{c}}}}KnCHn}{{Df{Kn}}}{}}{ce{}{}}00{{}c{}}00{f{{f{h}}}}00{{{f{j}}}{{f{jh}}}}00{f{{f{c}}}{}}00{{{f{j}}}{{f{jc}}}{}}00{{{An{c}}}e{}{}}00{{{f{{Kh{c}}}}}{{Kh{c}}}Ch}{{{f{CJn}}}CJn}{{{f{CK`}}}CK`}{{f{f{jc}}}Cj{}}00{{fCl}Cj}00{{{f{j{Kh{c}}}}Kn}{{Df{{Id{cKn}}}}}{}}<<<{{}CK`}{F`{{f{c}}}{}}00{F`{{f{jc}}}{}}00;;;{F`Cj}{{{f{j{Kh{c}}}}KnCIf}Cj{}}11{{{f{CK`}}{f{CK`}}}Bf}{{{f{{Kh{c}}}}{f{jFl}}}GbGd}{{{f{CJn}}{f{jFl}}}Gb}{{{f{CK`}}{f{jFl}}}Gb}{cc{}}00000{{{f{j{CJb{Knc}}}}{CHl{c}}F`}CJn{}}{ce{}{}}00{{{f{{Kh{c}}}}Kn}{{Df{{f{c}}}}}{}}{{{f{j{Kh{c}}}}Kn}{{Df{{f{jc}}}}}{}}{{}F`}00{KhCJn}{{}c{}}00000{{{Hj{c}}}{{Hj{h}}}{}}00{{{Hl{c}}}{{Hl{h}}}{}}00{{{Hn{c}}}{{Hn{h}}}{}}00{{{An{c}}}e{}{}}00444444{{}c{}}00{{{f{{Kh{c}}}}}Bf{}}{{{f{{Kh{c}}}}}{{`{{BGn{}{{Cn{{Id{{f{Kn}}{f{c}}}}}}}}}}}{}}{{{f{j{Kh{c}}}}}{{`{{BGn{}{{Cn{{Id{{f{Kn}}{f{jc}}}}}}}}}}}{}}{{{f{{Kh{c}}}}}{{f{CI`}}}{}}{{{f{{Kh{c}}}}}F`{}}{{{f{j{Kh{c}}}}Kn}Cj{}}{{{f{{Kh{c}}}}}{{Df{Kn}}}{}}{{{f{j{Kh{c}}}}KnCIj}Cj{}}{c{{Id{{Kh{c}}Kn}}}{}}9{KhCJb}{{{f{CK`}}}{{Df{{Id{KnAFn}}}}}}{{{f{CK`}}}{{Df{{Id{CIbCHj}}}}}}{{{f{j{Kh{c}}}}CIbM`}Cj{}}{{{f{j{Kh{c}}}}}Cj{}}{{{f{j{Kh{c}}}}CHjKnc}{{Df{{Id{KnCIb}}}}}{}}{{{f{j{Kh{c}}}}KnKnCIh}Cj{}}{{{f{j{Kh{c}}}}KnKn}Cj{}}{fc{}}00{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{AEf{c}}}}}{}}00{fAEh}00{ce{}{}}00{{}c{}}00{f{{Df{{f{c}}}}}{}}00{{}c{}}00{e{{Kh{c}}}{}{{Ah{{CHl{c}}}}}}{CKbCHj}{CKdAFn}{CKdKn}{CKbCIb}```````````````{eg{}{{b{c}}}{}}0000{ce{}{}}000099999{f{{f{h}}}}0000{{{f{j}}}{{f{jh}}}}0000{ACfAFl}{ACfAFb}{f{{f{c}}}{}}0000{{{f{j}}}{{f{jc}}}{}}0000{{{An{c}}}e{}{}}0000{{{Lb{cegikm}}o}{{Lb{cegikm}}}{LdIjCh}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBnAh}{{{f{{CKf{c}}}}}{{CKf{c}}}Ch}{{{f{{CKh{c}}}}}{{CKh{c}}}Ch}{{{f{ACd}}}ACd}{{{f{ACf}}}ACf}{{f{f{jc}}}Cj{}}000{{fCl}Cj}000{CKhBIf}?????{{{f{l}}ACd}ACf}{{}c{}}{{}{{CKf{c}}}{}}1{F`{{f{c}}}{}}0000{F`{{f{jc}}}{}}0000?????{{{f{{Lb{cegikm}}}}{f{Cb}}{f{jm}}{f{k}}{f{Fd}}FfFh{f{Fj}}}Cj{ChLdIj}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn}{F`Cj}0000{{{f{{CKf{c}}}}{f{{CKf{c}}}}}BfIj}{{{f{{CKh{c}}}}{f{{CKh{c}}}}}BfIj}{{{f{ACd}}{f{ACd}}}Bf}{{{f{ACf}}{f{ACf}}}Bf}{{f{f{c}}}Bf{}}00{{{f{{CKf{c}}}}{f{jFl}}}GbGd}{{{f{{CKh{c}}}}{f{jFl}}}GbGd}{{{f{ACd}}{f{jFl}}}Gb}{{{f{ACf}}{f{jFl}}}Gb}{{{Lb{cegikm}}o}{{Lb{cegikm}}}{LdIjCh}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBnAh}{CKh}{cc{}}000000000{ce{}{}}0000{{{Lb{cegikm}}CKf}{{Lb{cegikm}}}{LdIjCh}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn}{ACfAFj}{{}F`}0000{{}c{}}000000000{{{Hj{c}}}{{Hj{h}}}{}}0000{{{Hl{c}}}{{Hl{h}}}{}}000{{{Hn{c}}}{{Hn{h}}}{}}0000{{{An{c}}}e{}{}}00004444444444{{}c{}}0000{{{f{{Lb{cegikm}}}}{f{jCb}}{f{m}}{f{Il}}}In{ChLdIj}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn}{CKhAIf}>{{{Lb{cegikm}}o}{{Lb{cegikm}}}{LdIjCh}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn{{Dn{{f{k}}}{{Dl{A@b}}}}}}{{{f{{Lb{cegikm}}}}{f{Cb}}FfFh{f{Fj}}{f{m}}}Jh{ChLdIj}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn}{{e{Df{g}}k}{{Lb{cegimo}}}{LdIjCh}{{Lh{{Lf{c}}}}}{{Lh{c}}}Ch{{Dn{c}{{Dl{i}}}}}LjBn}5{{{Lb{cegikm}}i}{{Lb{cegikm}}}{LdIjCh}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn}0{{{f{j{Lb{cegikm}}}}{f{jCb}}Ff{f{m}}Kd}{{Df{{Kf{ikm}}}}}{ChLdIj}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn}{{{Lb{cegikm}}o}{{Lb{cegikm}}}{LdIjCh}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn{{Ah{AFd}}}}{{{Lb{cegikm}}o}{{Lb{cegikm}}}{LdIjCh}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn{{Ah{Bj}}}}{ACfAFj}{CKhAJd}{{{f{{Lb{cegikm}}}}}{{Jj{Od}}}{ChLdIj}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn}{CKhDf}{{{f{{Lb{cegikm}}}}}A@`{ChLdIj}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn}{{{f{{Lj{}{{AFh{c}}}}}}{f{c}}ACd}ACf{}}{{{Lb{cegikm}}o}{{Lb{cegikm}}}{LdIjCh}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn{{Dn{{f{k}}ACd}{{Dl{ACf}}}}}}{{{f{{Lb{cegikm}}}}}ACl{ChLdIj}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn}7{{{Lb{cegikm}}o}{{Lb{cegikm}}}{LdIjCh}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn{{Ah{AIf}}}}{{{Lb{cegikm}}AJd}{{Lb{cegikm}}}{LdIjCh}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn}{{{Lb{cegikm}}o}{{Lb{cegikm}}}{LdIjCh}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn{{Ah{Gj}}}}{fc{}}000{{}{{G`{c}}}{}}0000{c{{G`{e}}}{}{}}0000{{}{{G`{c}}}{}}0000{{}{{G`{c{AEf{c}}}}}{}}0000{fAEh}0000{ce{}{}}0000{{}c{}}0000{f{{Df{{f{c}}}}}{}}0000{{{f{j{Lb{cegikm}}}}{f{jCb}}{f{AEj}}FfFh{f{m}}{f{jAEl}}{f{j{AEn{i}}}}{f{Fj}}}Cj{ChLdIj}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn}{{}c{}}0000{{{Lb{cegikm}}o}{{Lb{cegikm}}}{LdIjCh}{{Lh{{Lf{c}}}}}{{Lh{c}}}ChLjBn{{Ah{Od}}}}{CKjCKh}0{CKlDf}{CKnBf}`{eg{}{{b{c}}}{}}{{{Ln{ceg}}i}{{Ln{ceg}}}Ch{}Ad{{Ah{Gj}}}}{ce{}{}}:{f{{f{h}}}}{{{f{j}}}{{f{jh}}}}{f{{f{c}}}{}}{{{f{j}}}{{f{jc}}}{}}{{{An{c}}}e{}{}}{{{f{{Ln{ceg}}}}}{{Cd{Cb}}}Ch{}Ad}6{F`{{f{c}}}{}}{F`{{f{jc}}}{}}{{{f{{Ln{ceg}}}}{f{jCb}}}CjCh{}Ad}6{{{f{{Ln{ceg}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}}CjCh{}Ad}{F`Cj}{cc{}}0{ce{}{}}{{}F`}{{}c{}}0{{{Hj{c}}}{{Hj{h}}}{}}{{{Hn{c}}}{{Hn{h}}}{}}<22{{}c{}}{{{Ln{ceg}}i}{{Ln{ceg}}}Ch{}AdOn}{{{f{{Ln{ceg}}}}{f{jCb}}{f{g}}{f{Il}}}InCh{}Ad}{{{f{{Ln{ceg}}}}{f{Cb}}FfFh{f{Fj}}{f{g}}}JhCh{}Ad}{i{{Ln{ceg}}}Ch{}Ad{{Ah{{Af{ceg}}}}}}{{{Ln{ceg}}c}{{Ln{ceg}}}Ch{}Ad}{{{Ln{ceg}}i}{{Ln{ceg}}}Ch{}Ad{{Dn{Jj}{{Dl{c}}}}}}0{{{f{{Ln{ceg}}}}{f{jCb}}Ff{f{g}}{f{jK`}}}CjCh{}Ad}{{{f{j{Ln{ceg}}}}{f{jCb}}Ff{f{g}}Kd}{{Df{{Kf{ceg}}}}}Ch{}Ad}{{{f{{Ln{ceg}}}}}{{Jj{Od}}}Ch{}Ad}0{{{f{{Ln{ceg}}}}}A@`Ch{}Ad}{{{f{{Ln{ceg}}}}}AClCh{}Ad}{{}{{G`{c}}}{}}{c{{G`{e}}}{}{}}{{}{{G`{c}}}{}}{{}{{G`{c{AEf{c}}}}}{}}{fAEh}{ce{}{}}{{}c{}}{f{{Df{{f{c}}}}}{}}{{{f{j{Ln{ceg}}}}{f{jCb}}{f{AEj}}FfFh{f{g}}{f{jAEl}}{f{j{AEn{c}}}}{f{Fj}}}CjCh{}Ad}{{}c{}}``````{eg{}{{b{c}}}{}}0{ce{}{}}055{f{{f{h}}}}0{{{f{j}}}{{f{jh}}}}0{ABdAFl}0{ABdAFb}{f{{f{c}}}{}}0{{{f{j}}}{{f{jc}}}{}}0{{{An{c}}}e{}{}}0{{{Md{c}}e}{{Md{c}}}MfAh}{{{f{ABd}}}ABd}{{f{f{jc}}}Cj{}}{{fCl}Cj};;{{{f{l}}}ABd}{{}c{}}{F`{{f{c}}}{}}0{F`{{f{jc}}}{}}0::{{{f{{Md{c}}}}{f{Cb}}{f{je}}{f{c}}{f{Fd}}FfFh{f{Fj}}}CjMfAd}{F`Cj}0{{{f{ABd}}{f{ABd}}}Bf}{{{f{ABd}}{f{jFl}}}Gb}{cc{}}000{ce{}{}}0{{{Md{c}}e}{{Md{c}}}Mf{{Ah{Od}}}}{{}F`}0{{}c{}}000{{{Hj{c}}}{{Hj{h}}}{}}0{{{Hl{c}}}{{Hl{h}}}{}}0{{{Hn{c}}}{{Hn{h}}}{}}0{{{An{c}}}e{}{}}04444{{}c{}}0{{{f{{Md{c}}}}{f{jCb}}{f{e}}{f{Il}}}InMfAd}8{{{Mb{M`}}M`}{{Md{c}}}Mf}{{{f{l}}}ABd}0{{{f{{Md{c}}}}}{{Jj{Od}}}Mf}{{{f{{Mf{}{{AFh{c}}}}}}{f{c}}}ABd{}}{{{Md{c}}e}{{Md{c}}}Mf{{Dn{{f{c}}}{{Dl{ABd}}}}}}3{fc{}}{{}{{G`{c}}}{}}0{c{{G`{e}}}{}{}}0{{}{{G`{c}}}{}}0{{}{{G`{c{AEf{c}}}}}{}}0{fAEh}0{ce{}{}}0{{}c{}}0{f{{Df{{f{c}}}}}{}}0{{{Md{c}}}{{Md{c}}}Mf}{{}c{}}0>````````````````````{eg{}{{b{c}}}{}}00000{ce{}{}}00000555555{f{{f{h}}}}00000{{{f{j}}}{{f{jh}}}}00000{A@jAFj}{f{{f{c}}}{}}00000{{{f{j}}}{{f{jc}}}{}}00000{{{An{c}}}e{}{}}000003{{{Mj{c}}e}{{Mj{c}}}Ml{{Ah{Gj}}}}{{{Mj{c}}e}{{Mj{c}}}MlAh}{{{f{CL`}}}CL`}{{{f{CLb}}}CLb}{{{f{CLd}}}CLd}{{{f{A@j}}}A@j}{{f{f{jc}}}Cj{}}000{{fCl}Cj}000>>>>>>{{{f{l}}}A@j}{{}c{}}{F`{{f{c}}}{}}00000{F`{{f{jc}}}{}}00000>>>>>>{{{f{{Mj{c}}}}{f{Cb}}{f{jCLf}}{f{c}}{f{Fd}}FfFh{f{Fj}}}CjMl}{F`Cj}00000{{{f{CL`}}{f{CL`}}}Bf}{{{f{CLb}}{f{CLb}}}Bf}{{{f{CLd}}{f{CLd}}}Bf}{{{f{A@j}}{f{A@j}}}Bf}{{f{f{c}}}Bf{}}00000000{{{f{Mh}}{f{jFl}}}Gb}{{{f{CL`}}{f{jFl}}}Gb}{{{f{CLb}}{f{jFl}}}Gb}{{{f{CLd}}{f{jFl}}}Gb}0{{{f{A@j}}{f{jFl}}}Gb}{cc{}}000{CLhCLd}11111111{ce{}{}}00000{{}F`}00000{{}c{}}00000000000{{{Hj{c}}}{{Hj{h}}}{}}00000{{{Hl{c}}}{{Hl{h}}}{}}000{{{Hn{c}}}{{Hn{h}}}{}}00000{{{An{c}}}e{}{}}00000444444444444{{}c{}}00000{{{f{{Mj{c}}}}{f{jCb}}{f{CLf}}{f{Il}}}InMl}{{{f{Mh}}}{{Mj{c}}}Ml}{c{{G`{MhCLd}}}{{Nj{{Lf{Cl}}}}}}{{{f{{Mj{c}}}}}{{Jj{Od}}}Ml}{{{f{{Mj{c}}}}}A@`Ml}{{{f{{Ml{}{{AFh{c}}}}}}{f{c}}}A@j{}}{{{Mj{c}}e}{{Mj{c}}}Ml{{Dn{{f{c}}}{{Dl{A@j}}}}}}{{{f{{Mj{c}}}}}AClMl}{fc{}}000{fADl}{fBj}{{{Mj{c}}e}{{Mj{c}}}Ml{{Ah{Gj}}}}{{}{{G`{c}}}{}}00000{c{{G`{e}}}{}{}}00000{{}{{G`{c}}}{}}00000{{}{{G`{c{AEf{c}}}}}{}}00000{fAEh}00000{ce{}{}}00000{{}c{}}00000{f{{Df{{f{c}}}}}{}}00000{{}c{}}00000{{cCLb}{{G`{MhCLd}}}{{Nj{{Lf{Cl}}}}}}{{cCL`CLb}{{G`{MhCLd}}}{{Nj{{Lf{Cl}}}}}}``````````{eg{}{{b{c}}}{}}00{ce{}{}}00666{f{{f{h}}}}00{{{f{j}}}{{f{jh}}}}00{AAnAFl}{AAnAFj}{AAnM`}{f{{f{c}}}{}}00{{{f{j}}}{{f{jc}}}{}}00{{{An{c}}}e{}{}}00{{{Mn{ceg}}i}{{Mn{ceg}}}ChNbBnAh}{{{f{AAl}}}AAl}{{{f{AAn}}}AAn}{{f{f{jc}}}Cj{}}0{{fCl}Cj}0==={{{f{l}}AAl}AAn}{{}c{}}{F`{{f{c}}}{}}00{F`{{f{jc}}}{}}00=;;;{{{f{{Mn{ceg}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}}CjChNbBn}{F`Cj}00{{{f{AAl}}{f{AAl}}}Bf}{{{f{AAn}}{f{AAn}}}Bf}{{f{f{c}}}Bf{}}00{{{f{AAl}}{f{jFl}}}Gb}{{{f{AAn}}{f{jFl}}}Gb}?{cc{}}00000{ce{}{}}00{{}F`}00{{}c{}}00000{{{Hj{c}}}{{Hj{h}}}{}}00{{{Hl{c}}}{{Hl{h}}}{}}00{{{Hn{c}}}{{Hn{h}}}{}}00{{{An{c}}}e{}{}}00444444{{}c{}}00{{{f{{Mn{ceg}}}}{f{jCb}}{f{g}}{f{Il}}}InChNbBn}{{{f{{Mn{ceg}}}}{f{Cb}}FfFh{f{Fj}}{f{g}}}JhChNbBn}{{ce{Df{e}}i}{{Mn{gkm}}}{{Ah{Bj}}}{N`Ih}Ch{{Eh{e}{{Dl{g}}}}}NbBn}{{{Mn{ceg}}i}{{Mn{ceg}}}ChNbBn{{Ah{Gj}}}}{{{f{{Mn{ceg}}}}}{{Jj{Od}}}ChNbBn}1{{{f{{Mn{ceg}}}}}A@`ChNbBn}{{{f{{Nb{}{{AFh{c}}}}}}{f{c}}AAl}AAn{}}{{{Mn{ceg}}i}{{Mn{ceg}}}ChNbBn{{Dn{{f{e}}AAl}{{Dl{AAn}}}}}}{{{f{{Mn{ceg}}}}}AClChNbBn}{AAnDf}{{{Mn{ceg}}i}{{Mn{ceg}}}ChNbBn{{Ah{AIf}}}}{{{Mn{ceg}}AJd}{{Mn{ceg}}}ChNbBn}8{{{Mn{ceg}}CAn}{{Mn{ceg}}}ChNbBn}{fc{}}0{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{AEf{c}}}}}{}}00{fAEh}00{ce{}{}}00{{}c{}}00{f{{Df{{f{c}}}}}{}}00{{{f{j{Mn{ceg}}}}{f{jCb}}{f{AEj}}FfFh{f{g}}{f{jAEl}}{f{j{AEn{c}}}}{f{Fj}}}CjChNbBn}{{}c{}}00{{{Mn{ceg}}i}{{Mn{ceg}}}ChNbBn{{Ah{Od}}}}{CLjBf}{CLlBf}``````````{eg{}{{b{c}}}{}}00{ce{}{}}00888{f{{f{h}}}}00{{{f{j}}}{{f{jh}}}}00{f{{f{c}}}{}}00{{{f{j}}}{{f{jc}}}{}}00{{{An{c}}}e{}{}}00{{{Gh{c}}e}{{Gh{c}}}GlAh}{{{f{AAj}}}AAj}{{{f{CLn}}}CLn}{{f{f{jc}}}Cj{}}0{{fCl}Cj}0{AAjAFj};;;{{{f{l}}}AAj}{{}c{}}{F`{{f{c}}}{}}00{F`{{f{jc}}}{}}00<<<{{{f{{Gh{c}}}}{f{Cb}}{f{je}}{f{c}}{f{Fd}}FfFh{f{Fj}}}CjGlAd}{F`Cj}00{{{f{AAj}}{f{AAj}}}Bf}{{{f{CLn}}{f{CLn}}}Bf}{{{f{CLn}}M`}{{Id{M`M`}}}}{AAjCLn}{{{f{AAj}}{f{jFl}}}Gb}{{{f{CLn}}{f{jFl}}}Gb}{cc{}}00000{ce{}{}}00{c{{Gh{e}}}{{Ah{Gj}}}Gl}{{}F`}00{{}c{}}00000{{{Hj{c}}}{{Hj{h}}}{}}00{{{Hl{c}}}{{Hl{h}}}{}}00{{{Hn{c}}}{{Hn{h}}}{}}00{{{An{c}}}e{}{}}00444444{{}c{}}00{{{f{{Gh{c}}}}{f{jCb}}{f{e}}{f{Il}}}InGlAd}{AAjAJ`}{{{f{{Gh{c}}}}}{{Jj{Od}}}Gl}{{{f{{Gl{}{{AFh{c}}}}}}{f{c}}}AAj{}}{{{Gh{c}}e}{{Gh{c}}}Gl{{Dn{{f{c}}}{{Dl{AAj}}}}}}{fc{}}0{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{AEf{c}}}}}{}}00{fAEh}00{ce{}{}}00{{}c{}}00{f{{Df{{f{c}}}}}{}}00{c{{Gh{e}}}{{Ah{Gj}}}Gl}{{}c{}}00{AAjBJj}`````````````````````````{{{f{CM`}}}CMb}0{eg{}{{b{c}}}{}}00000000000{{CMdCMf}CMd}{{{Nl{ceg}}}{{Nl{ceg}}}{}NnAd}000{{{Nl{ceg}}CMf}{{Nl{ceg}}}{}NnAd}0{ce{}{}}00000000000::::::::::::{f{{f{h}}}}00000000000{{{f{j}}}{{f{jh}}}}00000000000{CMhDf}{CMhAFb}{CMjAFb}{f{{f{c}}}{}}00000000000{{{f{j}}}{{f{jc}}}{}}00000000000{{{f{CM`}}}Fj}{{{An{c}}}e{}{}}00000000000{{{f{{Nl{ceg}}}}}{{Cd{Cb}}}{}NnAd}{{{Nl{ceg}}i}{{Nl{ceg}}}{}NnAdAh}{{{f{CMb}}}CMb}{{{f{CMl}}}CMl}{{{f{CMn}}}CMn}{{{f{CMd}}}CMd}{{{f{CMf}}}CMf}{{{f{CN`}}}CN`}{{{f{CM`}}}CM`}{{{f{AAf}}}AAf}{{{f{AAh}}}AAh}{{{f{CMh}}}CMh}{{{f{CMj}}}CMj}{{f{f{jc}}}Cj{}}0000000000{{fCl}Cj}0000000000{CMjAFj}{ce{}{}}00000000000{AAhACb}{{{f{CM`}}}Fj}{{{f{l}}AAf}AAh}{{}c{}}{{}CMb}{{}CMl}{{}CMn}{{}CMd}{{}CMf}{F`{{f{c}}}{}}00000000000{F`{{f{jc}}}{}}00000000000{{{f{{Nl{ceg}}}}{f{jCb}}}Cj{}NnAd}{{{Nl{ceg}}i}{{Nl{ceg}}}{}NnAd{{Ah{CMn}}}}{f{{f{c}}}{}}00000000000{{{f{{Nl{ceg}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}}Cj{}NnAd}{F`Cj}00000000000{{{f{CMb}}{f{CMb}}}Bf}{{{f{CMl}}{f{CMl}}}Bf}{{{f{CMn}}{f{CMn}}}Bf}{{{f{CMd}}{f{CMd}}}Bf}{{{f{CMf}}{f{CMf}}}Bf}{{{f{CN`}}{f{CN`}}}Bf}{{{f{AAf}}{f{AAf}}}Bf}{{{f{AAh}}{f{AAh}}}Bf}{{{f{CMh}}{f{CMh}}}Bf}{{{f{CMj}}{f{CMj}}}Bf}{{f{f{c}}}Bf{}}00000000{{{f{CMb}}{f{jFl}}}{{G`{CjFn}}}}{{{f{CMl}}{f{jFl}}}{{G`{CjFn}}}}{{{f{CMn}}{f{jFl}}}Gb}{{{f{CMd}}{f{jFl}}}Gb}{{{f{CMf}}{f{jFl}}}Gb}{{{f{CN`}}{f{jFl}}}Gb}{{{f{CM`}}{f{jFl}}}Gb}{{{f{AAf}}{f{jFl}}}Gb}{{{f{AAh}}{f{jFl}}}Gb}{{{f{CMh}}{f{jFl}}}Gb}{{{f{CMj}}{f{jFl}}}Gb}{cc{}}00000{{{f{Dd}}}CN`}111111111111111111{ce{}{}}00000000000{AAhDf}{{{f{CN`}}{f{jc}}}CjAIb}{{{Nl{ceg}}i}{{Nl{ceg}}}{}NnAd{{Ah{Od}}}}{{{Nl{ceg}}}{{Nl{ceg}}}{}NnAd}{{{f{CMn}}}{{Df{{f{CMd}}}}}}{AAhCMh}{{{Nl{ceg}}i}{{Nl{ceg}}}{}NnAd{{Ah{CN`}}}}{{}F`}00000000000{{}c{}}00000000000000000000000{{{Hj{c}}}{{Hj{h}}}{}}00000000000{{{Hl{c}}}{{Hl{h}}}{}}0000000000{{{Hn{c}}}{{Hn{h}}}{}}00000000000{{{An{c}}}e{}{}}00000000000444444444444444444444444{{}c{}}00000000000{{{f{{Nl{ceg}}}}{f{jCb}}{f{g}}{f{Il}}}In{}NnAd}{{CMdc}CMd{{Ah{Gj}}}}{{{f{{Nl{ceg}}}}{f{Cb}}FfFh{f{Fj}}{f{g}}}Jh{}NnAd}{i{{Nl{ceg}}}{}NnAd{{Ah{{Af{ceg}}}}}}{{}CMd}{cCN`{{Ah{{CBn{Dd}}}}}}66666{{{Nl{ceg}}i}{{Nl{ceg}}}{}NnAd{{Dn{CM`}{{Dl{c}}}}}}{{{f{{Nl{ceg}}}}{f{jCb}}Ff{f{g}}{f{jK`}}}Cj{}NnAd}{{{f{j{Nl{ceg}}}}{f{jCb}}Ff{f{g}}Kd}{{Df{{Kf{ceg}}}}}{}NnAd}{{{f{CM`}}}CMl}{{cCMb}{{Gf{e}}}{{Ah{CN`}}}{}}0{CMhCMj}:{{{f{{Nl{ceg}}}}}{{Jj{Od}}}{}NnAd}{{cCMl}{{Gf{e}}}{{Ah{CN`}}}{}}{{{Nl{ceg}}i}{{Nl{ceg}}}{}NnAd{{Ah{Gj}}}}={{{f{{Nl{ceg}}}}}A@`{}NnAd}{{{f{{Nn{}{{AFh{c}}}}}}{f{c}}AAf}AAh{}}{{{Nl{ceg}}i}{{Nl{ceg}}}{}NnAd{{Dn{{f{e}}AAf}{{Dl{AAh}}}}}}{{{f{{Nl{ceg}}}}}ACl{}NnAd}{fc{}}0000000000{{}{{G`{c}}}{}}00000000000{c{{G`{e}}}{}{}}00000000000{{}{{G`{c}}}{}}00000000000{{}{{G`{c{AEf{c}}}}}{}}00000000000{fAEh}00000000000{ce{}{}}00000000000{{}c{}}00000000000{{}CN`}{f{{Df{{f{c}}}}}{}}00000000000{{{f{j{Nl{ceg}}}}{f{jCb}}{f{AEj}}FfFh{f{g}}{f{jAEl}}{f{j{AEn{c}}}}{f{Fj}}}Cj{}NnAd}{{{f{CMn}}}{{Df{{f{CMd}}}}}}{AAhCMh}{{}c{}}00000000000{{{Nl{ceg}}i}{{Nl{ceg}}}{}NnAd{{Ah{Od}}}}{{CMdc}CMd{{Ah{Gj}}}}{{ik}{{Nl{ceg}}}{}NnAd{{Ah{{Af{ceg}}}}}{{Ah{CMn}}}}{CMbM`}{CMlM`}10{CNbCMd}0{CNdBf}{CNfBf}{CNhBf}0121001````````{eg{}{{b{c}}}{}}00{ce{}{}}00{{}c{}}00{f{{f{h}}}}00{{{f{j}}}{{f{jh}}}}00{f{{f{c}}}{}}00{{{f{j}}}{{f{jc}}}{}}00{{{An{c}}}e{}{}}00{{{f{CNj}}}CNj}{{f{f{jc}}}Cj{}}{{fCl}Cj}999{{}CNl}{F`{{f{c}}}{}}00{F`{{f{jc}}}{}}00888{{{f{{Ob{}{{Jl{c}}{CNn{e}}}}}}{f{c}}FhFj}eKbCO`}{{{f{{O`{ce}}}}{f{Cb}}{f{jg}}{f{i}}{f{Fd}}FfFh{f{Fj}}}Cj{}{{Ob{c}}}COb{}}{F`Cj}00{{{f{CNj}}{f{jFl}}}{{G`{CjFn}}}}{{{f{CNl}}{f{jFl}}}{{G`{CjFn}}}}{cc{}}00000{ce{}{}}00{{{f{CNl}}}{{Df{{f{c}}}}}{}}{{{f{jCNl}}}{{Df{{f{jc}}}}}{}}{{{f{CNl}}}Bf}{{{O`{ce}}g}{{O`{ce}}}{}{{Ob{c}}}{{Ah{Od}}}}{{}F`}00{{}c{}}00000{{{Hj{c}}}{{Hj{h}}}{}}00{{{Hl{c}}}{{Hl{h}}}{}}0{{{Hn{c}}}{{Hn{h}}}{}}00{{{An{c}}}e{}{}}00444444{{}c{}}00{{{f{{O`{ce}}}}{f{jCb}}{f{g}}{f{Il}}}In{}{{Ob{c}}}COb}{{{f{CNj}}}Jj}{{{f{{Ob{}{{Jl{c}}{CNn{e}}}}}}{f{c}}FjFh}JhKbCO`}0{{{f{{O`{ce}}}}{f{Cb}}FfFh{f{Fj}}{f{g}}}Jh{}{{Ob{c}}}COb}{e{{O`{ce}}}{}{{Ob{c}}}}5{{{f{CNj}}}BGd}{{{f{CNj}}}{{Jj{BGd}}}}1{{{f{CO`}}{f{COd}}{f{COf}}COh{f{jCNl}}{f{Fj}}{f{CNj}}}Cj}{{{f{CNj}}}COj}{{{f{CO`}}{f{jCOl}}{f{CNl}}{f{COn}}{f{{Fj{BGd}}}}}Cj}{{{f{CNj}}}BH`}{{{f{{O`{ce}}}}}{{Jj{Od}}}{}{{Ob{c}}}}{{{f{{O`{ce}}}}}A@`{}{{Ob{c}}}}{{{f{jCNl}}c}CjD@`}{{{f{{O`{ce}}}}}ACl{}{{Ob{c}}}}{fc{}}{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{AEf{c}}}}}{}}00{fAEh}00{ce{}{}}00{{}c{}}00{f{{Df{{f{c}}}}}{}}00{{{f{{Ob{}{{Jl{c}}{CNn{e}}}}}}{f{jc}}{f{AEj}}FjFh}{{Df{{d{g}}}}}KbCO`{}}0{{{f{j{O`{ce}}}}{f{jCb}}{f{AEj}}FfFh{f{g}}{f{jAEl}}{f{j{AEn{c}}}}{f{Fj}}}Cj{}{{Ob{c}}}COb}{{}c{}}00{{{O`{ce}}g}{{O`{ce}}}{}{{Ob{c}}}{{Ah{Od}}}}{{{Jj{BGd}}BH`}CNj}```````````````{eg{}{{b{c}}}{}}00000{ce{}{}}00000888888{f{{f{h}}}}00000{{{f{j}}}{{f{jh}}}}00000{D@bAFl}{D@dId}{D@dAFb}{D@bAFj}{D@bM`}{f{{f{c}}}{}}00000{{{f{j}}}{{f{jc}}}{}}00000{{{An{c}}}e{}{}}00000{{{Of{ceg}}i}{{Of{ceg}}}{Ih{Oh{Cl}}Oj}ChOlAh}{{{f{AA`}}}AA`}{{{f{AAb}}}AAb}{{{f{D@d}}}D@d}{{{f{D@b}}}D@b}{{{f{D@f}}}D@f}{{f{f{jc}}}Cj{}}0000{{fCl}Cj}0000{ce{}{}}00000{{{f{l}}AA`}AAb}{{}c{}}{{{Of{ceg}}i}{{Of{ceg}}}{Ih{Oh{Cl}}Oj}ChOl{{Ah{c}}}}{F`{{f{c}}}{}}00000{F`{{f{jc}}}{}}00000{f{{f{c}}}{}}00000{{{f{{Of{ceg}}}}{f{Cb}}{f{ji}}{f{g}}{f{Fd}}FfFh{f{Fj}}}Cj{Ih{Ah{BH`}}D@h}ChOlAd}{F`Cj}00000{{{f{AA`}}{f{AA`}}}Bf}{{{f{AAb}}{f{AAb}}}Bf}{{{f{D@d}}{f{D@d}}}Bf}{{{f{D@b}}{f{D@b}}}Bf}{{{f{D@f}}{f{D@f}}}Bf}{{f{f{c}}}Bf{}}00{{{f{AA`}}{f{jFl}}}Gb}{{{f{AAb}}{f{jFl}}}Gb}{{{f{D@d}}{f{jFl}}}Gb}{{{f{D@b}}{f{jFl}}}Gb}{{{f{D@f}}{f{jFl}}}Gb}{cc{}}00000000000{ce{}{}}00000{AAbD@b}{{{Of{ceg}}i}{{Of{ceg}}}{Ih{Oh{Cl}}Oj}ChOl{{Ah{Gj}}}}{{}F`}00000{{}c{}}00000000000{{{Hj{c}}}{{Hj{h}}}{}}00000{{{Hl{c}}}{{Hl{h}}}{}}0000{{{Hn{c}}}{{Hn{h}}}{}}00000{{{An{c}}}e{}{}}00000444444444444{{}c{}}00000{{{f{{Of{ceg}}}}{f{jCb}}{f{i}}{f{Il}}}In{Ih{Ah{BH`}}D@h}ChOlAd}{{{f{{Of{ceg}}}}{f{Cb}}FfFh{f{Fj}}{f{i}}}Jh{Ih{Ah{BH`}}D@h}ChOlAd}{{{Mb{c}}cg}{{Of{cei}}}{Ih{Oh{Cl}}Oj}Ch{{Dn{c}{{Dl{e}}}}}Ol}{{{Of{ceg}}e}{{Of{ceg}}}{Ih{Oh{Cl}}Oj}ChOl}{AAbD@d}{D@bD@f}{{{Of{ceg}}i}{{Of{ceg}}}{Ih{Oh{Cl}}Oj}ChOl{{Ah{c}}}}{{{f{{Of{ceg}}}}}{{Jj{Od}}}{Ih{Ah{BH`}}D@h}ChOl}{{{f{{Of{ceg}}}}}A@`{Ih{Ah{BH`}}D@h}ChOl}2{{{f{{Ol{}{{AFh{c}}}}}}{f{c}}AA`}AAb{}}{{{Of{ceg}}i}{{Of{ceg}}}{Ih{Oh{Cl}}Oj}ChOl{{Dn{{f{g}}AA`}{{Dl{AAb}}}}}}{{{f{{Of{ceg}}}}}ACl{Ih{Ah{BH`}}D@h}ChOl}{fc{}}0000{{}{{G`{c}}}{}}00000{c{{G`{e}}}{}{}}00000{{}{{G`{c}}}{}}00000{{}{{G`{c{AEf{c}}}}}{}}00000{fAEh}00000{ce{}{}}00000{{}c{}}00000{f{{Df{{f{c}}}}}{}}00000{{{f{j{Of{ceg}}}}{f{jCb}}{f{AEj}}FfFh{f{i}}{f{jAEl}}{f{j{AEn{e}}}}{f{Fj}}}Cj{Ih{Ah{BH`}}D@h}ChOlAd}{{}c{}}00000{{{Of{ceg}}i}{{Of{ceg}}}{Ih{Oh{Cl}}Oj}ChOl{{Ah{Od}}}}{D@dM`}{{AAbc}AAb{{Ah{Gj}}}}{D@jAJ`}{D@lM`}{D@jBJj}`````````{eg{}{{b{c}}}{}}000{ce{}{}}000;;;;{f{{f{h}}}}000{{{f{j}}}{{f{jh}}}}000{f{{f{c}}}{}}000{{{f{j}}}{{f{jc}}}{}}000{{{An{c}}}e{}{}}000{{{ACh{c}}e}{{ACh{c}}}H`Ah}{{{f{ACj}}}ACj}{{{f{A@f}}}A@f}{{{f{A@h}}}A@h}{{f{f{jc}}}Cj{}}00{{fCl}Cj}00{A@hDf}<<<<{{{ACh{c}}CC`}{{ACh{c}}}H`}{{{f{ACj}}}{{f{D@n}}}}{{}c{}}{{}A@h}{F`{{f{c}}}{}}000{F`{{f{jc}}}{}}000????{{{f{{ACh{c}}}}{f{Cb}}{f{je}}{f{c}}{f{Fd}}FfFh{f{Fj}}}CjH`Hf}{F`Cj}000{{{f{ACj}}{f{ACj}}}Bf}{{{f{A@f}}{f{A@f}}}Bf}{{{f{A@h}}{f{A@h}}}Bf}{{f{f{c}}}Bf{}}00000{{{f{ACj}}{f{jFl}}}{{G`{CjFn}}}}{{{f{A@f}}{f{jFl}}}Gb}{{{f{A@h}}{f{jFl}}}Gb}{cc{}}{cACj{{Ah{CCh}}}}1{A@h{{DA`{c}}}{}}222222{cACj{{Ah{{CBn{{Lf{Cl}}}}}}}}{cACj{{Ah{CCh}}}}{c{{ACh{e}}}{{Ah{CCh}}}H`}{ce{}{}}000{{{f{ACj}}{f{jc}}}CjAIb}{{{ACh{c}}e}{{ACh{c}}}H`{{Ah{Od}}}}{{{f{ACj}}}BJ`}{{}F`}000{{}c{}}0000000{{{Hj{c}}}{{Hj{h}}}{}}000{{{Hl{c}}}{{Hl{h}}}{}}000{{{Hn{c}}}{{Hn{h}}}{}}000{{{An{c}}}e{}{}}00044444444{{}c{}}000{{{f{{ACh{c}}}}{f{jCb}}{f{e}}{f{Il}}}InH`Hf}{c{{ACh{e}}}{{Ah{ACj}}}H`}2{{{ACh{c}}e}{{ACh{c}}}H`{{Ah{M`}}}}{{{ACh{c}}e}{{ACh{c}}}H`{{Ah{CCb}}}}{{{f{{ACh{c}}}}}{{Jj{Od}}}H`}{{{f{{H`{}{{AFh{c}}}}}}{f{c}}A@f}A@h{}}{{{ACh{c}}e}{{ACh{c}}}H`{{Dn{{f{c}}A@f}{{Dl{A@h}}}}}}{fc{}}00{{}{{G`{c}}}{}}000{c{{G`{e}}}{}{}}000{{}{{G`{c}}}{}}000{{}{{G`{c{AEf{c}}}}}{}}000{fAEh}000{ce{}{}}000{{}c{}}000{f{{Df{{f{c}}}}}{}}000{{}c{}}000{{{ACh{c}}e}{{ACh{c}}}H`{{Ah{Od}}}}```````````````````````````{eg{}{{b{c}}}{}}000000{{{Nf{cegi}}k}{{Nf{cegi}}}Ch{}GnBn{{Ah{AId}}}}{{{Nf{cegi}}k}{{Nf{cegi}}}Ch{}GnBn{{Ah{AJj}}}}{ce{}{}}0000007777777{f{{f{h}}}}000000{{{f{j}}}{{f{jh}}}}000000{{{Nh{ce}}g}{{Nh{ce}}}{}{}{{Ah{AFl}}}}{{{Nh{ce}}{Df{g}}}{{Nh{ce}}}{}{}{{Ah{AFl}}}}{{{f{l}}}AAd}{{{Nh{ce}}g}{{Nh{ce}}}{}{}{{Ah{AFb}}}}{{{Nh{ce}}{Df{g}}}{{Nh{ce}}}{}{}{{Ah{AFb}}}}{f{{f{c}}}{}}000000{{{f{j}}}{{f{jc}}}{}}000000{{{An{c}}}e{}{}}000000{{{Nf{cegi}}}{{Nf{cegi}}}Ch{}GnBn}{{{f{j{DAh{}{{DAb{c}}{DAd{e}}{DAf{g}}}}}}F`}Cj{IjCh}{}{{BGn{}{{Cn{{Id{{AOf{F`}}e}}}}}}}}{{{Nf{cegi}}k}{{Nf{cegi}}}Ch{}GnBnAh}{{{f{AJd}}}AJd}{{{f{CAn}}}CAn}{{{f{AIf}}}AIf}{{{f{{Nh{ce}}}}}{{Nh{ce}}}ChCh}{{{f{AAd}}}AAd}{{f{f{jc}}}Cj{}}0000{{fCl}Cj}0000{{{Nf{cegi}}k}{{Nf{cegi}}}Ch{}GnBn{{Ah{AFj}}}}{{{Nh{ce}}g}{{Nh{ce}}}{}{}{{Ah{AFj}}}}{NhDf}{AAdDf}{{{Nf{cegi}}{Df{k}}}{{Nf{cegi}}}Ch{}GnBn{{Ah{AFj}}}}{{{Nh{ce}}{Df{g}}}{{Nh{ce}}}{}{}{{Ah{AFj}}}}{ce{}{}}000000{{{f{{DAh{}{{DAb{c}}{DAd{e}}{DAf{g}}}}}}}F`{IjCh}{}{{BGn{}{{Cn{{Id{{AOf{F`}}e}}}}}}}}{{{f{l}}}AAd}0{{}c{}}{{}{{Nf{cegi}}}Ch{}GnBn}{{}AJd}{{}CAn}{{}AIf}{{}{{Nh{ce}}}{}{}}{{}{{DAj{c}}}{KbDAl}}{{}AAd}{F`{{f{c}}}{}}000000{F`{{f{jc}}}{}}000000{f{{f{c}}}{}}000000{{{f{jc}}{f{Fd}}FffAAd{f{Fj}}}CjBn}{{{f{{Nf{cegi}}}}{f{Cb}}{f{ji}}{f{g}}{f{Fd}}FfFh{f{Fj}}}CjCh{}GnBn}{F`Cj}000000{{{f{AJd}}{f{AJd}}}Bf}{{{f{CAn}}{f{CAn}}}Bf}{{{f{AIf}}{f{AIf}}}Bf}{{{f{{Nh{ce}}}}{f{{Nh{ce}}}}}Bf{}Ij}{{{f{AAd}}{f{AAd}}}Bf}{{f{f{c}}}Bf{}}00000{{{f{AJd}}{f{jFl}}}{{G`{CjFn}}}}{{{f{CAn}}{f{jFl}}}{{G`{CjFn}}}}{{{f{AIf}}{f{jFl}}}{{G`{CjFn}}}}{{{f{{Nh{ce}}}}{f{jFl}}}{{G`{CjFn}}}GdGd}{{{f{{DAj{c}}}}{f{jFl}}}{{G`{CjFn}}}{GdDAl}}{{{f{AAd}}{f{jFl}}}{{G`{CjFn}}}}{{{Nf{cegi}}k}{{Nf{cegi}}}Ch{}GnBnAh}{{{Nh{ce}}g}{{Nh{ce}}}{}{}{{Ah{e}}}}{NhDf}{{{Nh{ce}}{Df{g}}}{{Nh{ce}}}{}{}{{Ah{e}}}}{cc{}}000{M`AIf}{GjAIf}2{{{f{Dd}}}{{Nh{ce}}}{}{}}333333333{e{{Nf{cgik}}}Ch{{D`{}{{Cn{{Nh{c}}}}}}}{}GnBn}{ce{}{}}000000{{{f{AJd}}{f{jc}}}CjAIb}{{{f{CAn}}{f{jc}}}CjAIb}{{{f{AIf}}{f{jc}}}CjAIb}{{{Nf{cegi}}k}{{Nf{cegi}}}Ch{}GnBn{{Ah{Od}}}};{{{f{j{DAh{}{{DAb{c}}{DAd{e}}{DAf{g}}}}}}{f{Dd}}}g{IjCh}{}{{BGn{}{{Cn{{Id{{AOf{F`}}e}}}}}}}}{{}F`}000000{{}c{}}0000000000000{{{Hj{c}}}{{Hj{h}}}{}}000000{{{Hl{c}}}{{Hl{h}}}{}}00000{{{Hn{c}}}{{Hn{h}}}{}}000000{{{An{c}}}e{}{}}00000044444444444444{On{{CBn{Dd}}}}{{}c{}}000000{{{f{jDAj}}{f{c}}{f{Il}}OdOd{f{Dd}}AIf{Df{Gj}}DfAIdAJjAJdCAn}InBn}{{{f{{Nf{cegi}}}}{f{jCb}}{f{i}}{f{Il}}}InCh{}GnBn}{{{Nf{cegi}}k}{{Nf{cegi}}}Ch{}GnBn{{Ah{AIf}}}}{{{Nh{ce}}g}{{Nh{ce}}}{}{}{{Ah{AIf}}}}{NhDf}{{{Nh{ce}}g}{{Nh{ce}}}{}{}{{Ah{c}}}}1{{{Nh{ce}}{Df{g}}}{{Nh{ce}}}{}{}{{Ah{c}}}}{{{f{{Nf{cegi}}}}{f{Cb}}FfFh{f{Fj}}{f{i}}}JhCh{}GnBn}{{{f{c}}}{{DAh{}{{DAb{c}}{DAd{e}}{DAf{g}}}}}{IjCh}{}{{BGn{}{{Cn{{Id{{AOf{F`}}e}}}}}}}}{{}{{Nf{cegi}}}Ch{}GnBn}{c{{Nh{eg}}}On{}{}};;;;;;;{{{Nf{cegi}}k}{{Nf{cegi}}}Ch{}GnBn{{Dn{c}{{Dl{e}}}}}}{{{Nh{ce}}g}{{Nh{ce}}}{}{}{{Ah{AFd}}}}{NhAFd}{{{f{l}}}AAd}0{{{Nf{cegi}}k}{{Nf{cegi}}}Ch{}GnBn{{Ah{Gj}}}}{{{f{{Nf{cegi}}}}}{{Jj{Od}}}Ch{}GnBn}{{{Nh{ce}}g}{{Nh{ce}}}{}{}{{Ah{Gj}}}}={{{f{{Nf{cegi}}}}}A@`Ch{}GnBn}{{{Nh{ce}}Bf}{{Nh{ce}}}{}{}}{NhBf}{{{f{{Gn{}{{AFh{c}}}}}}{f{c}}}AAd{}}{{{Nf{cegi}}k}{{Nf{cegi}}}Ch{}GnBn{{Dn{{f{g}}}{{Dl{AAd}}}}}}8{{{f{{Nf{cegi}}}}}AClCh{}GnBn}{NhCBn}{{AIfGj}Gj}{fc{}}0000{{{Nh{ce}}}{{Nh{ce}}}{}{}}{{}{{G`{c}}}{}}000000{c{{G`{e}}}{}{}}000000{{}{{G`{c}}}{}}000000{{}{{G`{c{AEf{c}}}}}{}}000000{fAEh}000000{ce{}{}}000000{{}c{}}000000?>{f{{Df{{f{c}}}}}{}}000000{{{f{j{DAh{}{{DAb{c}}{DAd{e}}{DAf{g}}}}}}{f{c}}}Cj{IjCh}{}{{BGn{}{{Cn{{Id{{AOf{F`}}e}}}}}}}}{{{f{j{Nf{cegi}}}}{f{jCb}}{f{AEj}}FfFh{f{i}}{f{jAEl}}{f{j{AEn{e}}}}{f{Fj}}}CjCh{}GnBn}{{}c{}}000000{{{Nf{cegi}}k}{{Nf{cegi}}}Ch{}GnBn{{Ah{Od}}}}{e{{Nf{cgik}}}Ch{{Nj{{Lf{{Nh{c}}}}}}}{}GnBn}{{{Nf{cegi}}CAn}{{Nf{cegi}}}Ch{}GnBn}`````````````````````````````````````````````````````````````````{eg{}{{b{c}}}{}}00000000000{ce{}{}}00000000000999999999999{f{{f{h}}}}00000000000{{{f{j}}}{{f{jh}}}}00000000000{DAn{{f{Dd}}}}{A@nAFl}{A@nAFb}{f{{f{c}}}{}}00000000000{{{f{j}}}{{f{jc}}}{}}00000000000{{{An{c}}}e{}{}}00000000000{{{ADd{cegi}}k}{{ADd{cegi}}}DAh{}ADfBnAh}{{{f{DB`}}}DB`}{{{f{DBb}}}DBb}{{{f{DBd}}}DBd}{{{f{DBf}}}DBf}{{{f{DAn}}}DAn}{{{f{{DBh{c}}}}}{{DBh{c}}}Ch}{{{f{DBj}}}DBj}{{{f{A@l}}}A@l}{{{f{A@n}}}A@n}{{f{f{jc}}}Cj{}}00000000{{fCl}Cj}00000000{ce{}{}}00000000000{{{f{{AD`{c}}}}}{{Id{F`F`}}}Bn}{{{f{l}}A@l}A@n}{{}c{}}{{}{{AD`{c}}}Bn}{{}DBf}{{}DAn}{F`{{f{c}}}{}}00000000000{F`{{f{jc}}}{}}00000000000{{{f{DBd}}}DBl}{f{{f{c}}}{}}00000000000{{{f{{ADd{cegi}}}}{f{Cb}}{f{ji}}{f{g}}{f{Fd}}FfFh{f{Fj}}}CjDAh{}ADfBn}{F`Cj}00000000000{DBfDAn}{{{f{DB`}}{f{DB`}}}Bf}{{{f{DBb}}{f{DBb}}}Bf}{{{f{DBd}}{f{DBd}}}Bf}{{{f{DBf}}{f{DBf}}}Bf}{{{f{DAn}}{f{DAn}}}Bf}{{{f{{DBh{c}}}}{f{{DBh{c}}}}}BfIj}{{{f{DBj}}{f{DBj}}}Bf}{{{f{A@l}}{f{A@l}}}Bf}{{{f{A@n}}{f{A@n}}}Bf}{{f{f{c}}}Bf{}}00000000000{{{f{{AD`{c}}}}{f{jFl}}}GbBn}{{{f{DB`}}{f{jFl}}}{{G`{CjFn}}}}{{{f{DBb}}{f{jFl}}}{{G`{CjFn}}}}{{{f{DBd}}{f{jFl}}}{{G`{CjFn}}}}{{{f{DBf}}{f{jFl}}}{{G`{CjFn}}}}{{{f{DAn}}{f{jFl}}}{{G`{CjFn}}}}{{{f{{DBn{c}}}}{f{jFl}}}Gb{GdDAh}}{{{f{{DBh{c}}}}{f{jFl}}}GbGd}{{{f{DBj}}{f{jFl}}}Gb}{{{f{A@l}}{f{jFl}}}Gb}{{{f{A@n}}{f{jFl}}}Gb}{{{f{j{DBn{c}}}}}CjDAh}{{{ADd{cegi}}k}{{ADd{cegi}}}DAh{}ADfBnAh}{cc{}}00000000000000000000000{DBj{{Df{{DBh{c}}}}}{}}{ce{}{}}00000000000{{{ADd{cegi}}k}{{ADd{cegi}}}DAh{}ADfBn{{Ah{Od}}}}{{{ADd{cegi}}{f{Dd}}DC`}{{ADd{DCbegi}}}DAh{}ADf{{Bn{}{{Hb{Hd}}}}Bn}}{{{ADd{cegi}}{DCf{f{f{g}}}{{Dl{DCd}}}}}{{ADd{kegi}}}DAh{}ADfBnDAh}{A@nAFj}{{}F`}00000000000{{}c{}}00000000000000000000000{{{Hj{c}}}{{Hj{h}}}{}}00000000000{{{Hl{c}}}{{Hl{h}}}{}}00000000{{{Hn{c}}}{{Hn{h}}}{}}00000000000{{{An{c}}}e{}{}}00000000000444444444444444444444444{{}c{}}00000000000{{{f{DB`}}}Bf}{{{f{{DBn{c}}}}}BfDAh}0{DBjDCh}{{{ADd{cegi}}k}{{ADd{cegi}}}DAh{}ADfBn{{Dn{DBj}{{Dl{{Df{{DBh{e}}}}}}}}}}{{{f{{ADd{cegi}}}}{f{jCb}}{f{i}}{f{Il}}}InDAh{}ADfBn}{{{f{{AD`{c}}}}F`}{{Df{DBf}}}Bn}{{{f{{AD`{c}}}}}F`Bn}{{{f{{AD`{c}}}}}{{Df{DAn}}}Bn}{{{ADd{cegi}}k}{{ADd{cegi}}}DAh{}ADfBn{{Ah{AIf}}}}{{{f{{AD`{c}}}}}{{`{{BGn{}{{Cn{DBf}}}}}}}Bn}{{{ADd{cegi}}k}{{ADd{cegi}}}DAh{}ADfBn{{Ah{Gj}}}}0{DBjDCj}{{{f{{ADd{cegi}}}}{f{Cb}}FfFh{f{Fj}}{f{i}}}JhDAh{}ADfBn}{{{f{{AD`{c}}}}}{{ADd{ADbegc}}}Bn{}ADf}{{}{{AD`{c}}}Bn}???{{{ADd{cegi}}k}{{ADd{cegi}}}DAh{}ADfBn{{Dn{DB`}{{Dl{e}}}}}}{{{f{{ADd{cegi}}}}{f{jCb}}Ff{f{i}}{f{jK`}}}CjDAh{}ADfBn}{{{ADd{cegi}}k}{{ADd{cegi}}}DAh{}ADfBn{{Ah{AFd}}}}{{{f{j{AD`{c}}}}DB`}CjBn}{{{ADd{cegi}}k}{{ADd{cegi}}}DAh{}ADfBnOn}{A@nAFj}{{{f{{AD`{c}}}}}{{Df{Bj}}}Bn}1{{{f{{ADd{cegi}}}}}{{Jj{Od}}}DAh{}ADfBn}<{{{f{{ADd{cegi}}}}}A@`DAh{}ADfBn}{DBjA@l}{{{f{{ADf{}{{AFh{c}}}}}}{f{c}}A@l}A@n{}}{{{ADd{cegi}}k}{{ADd{cegi}}}DAh{}ADfBn{{Dn{{f{g}}A@l}{{Dl{A@n}}}}}}{{{f{{ADd{cegi}}}}}AClDAh{}ADfBn}{{{f{{AD`{c}}}}}BjBn}{DBfCBn}{DBjDf}{fc{}}00000000{{}{{G`{c}}}{}}00000000000{c{{G`{e}}}{}{}}00000000000{{}{{G`{c}}}{}}00000000000{{}{{G`{c{AEf{c}}}}}{}}00000000000{fAEh}00000000000{ce{}{}}00000000000{{}c{}}00000000000{{{f{j{DBn{c}}}}}CjDAh}{f{{Df{{f{c}}}}}{}}00000000000{{{f{j{ADd{cegi}}}}{f{jCb}}{f{AEj}}FfFh{f{i}}{f{jAEl}}{f{j{AEn{e}}}}{f{Fj}}}CjDAh{}ADfBn}{A@nAFj}{{}c{}}00000000000{DBdDBd}{{{ADd{cegi}}k}{{ADd{cegi}}}DAh{}ADfBn{{Ah{Gj}}}}{{{f{Dd}}}{{AD`{c}}}Bn}{{{ADd{cegi}}CAn}{{ADd{cegi}}}DAh{}ADfBn}{DClBJh}{DCnBf}````{{}AFd}``````````````{eg{}{{b{c}}}{}}0000000{{{ADh{ceg}}i}{{ADh{ceg}}}ChADjBn{{Ah{AId}}}}{ce{}{}}0000000????????{f{{f{h}}}}0000000{{{f{j}}}{{f{jh}}}}0000000{ABhAFl}{ABhAFb}{f{{f{c}}}{}}0000000{{{f{j}}}{{f{jc}}}{}}0000000{{{An{c}}}e{}{}}0000000{{{ADh{ceg}}i}{{ADh{ceg}}}ChADjBnAh}{{{f{DD`}}}DD`}{{{f{{CBf{c}}}}}{{CBf{c}}}Ch}{{{f{DDb}}}DDb}{{{f{DDd}}}DDd}{{{f{{DDf{c}}}}}{{DDf{c}}}{ChDAl}}{{{f{ABf}}}ABf}{{{f{ABh}}}ABh}{{f{f{jc}}}Cj{}}000000{{fCl}Cj}000000{CBfBIf}{ce{}{}}0000000`{{{f{{DDf{c}}}}}DDhDAl}{{{f{l}}ABf}ABh}{{}c{}}{{}{{DDf{c}}}{KbDAl}}{F`{{f{c}}}{}}0000000{F`{{f{jc}}}{}}0000000{{{f{{ADh{ceg}}}}{f{jCb}}}CjChADjBn}{f{{f{c}}}{}}0000000{{{f{{ADh{ceg}}}}{f{Cb}}{f{jg}}{f{e}}FfFh{Df{{f{DD`}}}}{f{Fj}}}CjChADjBn}{{{f{{ADh{ceg}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}}CjChADjBn}{F`Cj}0000000{{{f{DDd}}{f{DDd}}}Bf}{{{f{ABf}}{f{ABf}}}Bf}{{{f{ABh}}{f{ABh}}}Bf}{{f{f{c}}}Bf{}}00000{{{f{DD`}}{f{jFl}}}Gb}0{{{f{{CBf{c}}}}{f{jFl}}}GbGd}{{{f{DDb}}{f{jFl}}}Gb}{{{f{DDd}}{f{jFl}}}Gb}{{{f{{DDf{c}}}}{f{jFl}}}Gb{GdDAl}}{{{f{ABf}}{f{jFl}}}Gb}{{{f{ABh}}{f{jFl}}}Gb}{c{{Gf{e}}}{{Ah{DDd}}}{}}{{{f{j{DDf{c}}}}}CjDAl}0{{{ADh{ceg}}}{{ADh{ceg}}}ChADjBn}{CBf}{cc{}}0000{BjDDd}{{{f{Dd}}}DDd}22222222222{ce{}{}}0000000{{{f{DDd}}{f{jc}}}CjAIb}{{{ADh{ceg}}CBf}{{ADh{ceg}}}ChADjBn}{ABhAFj}{{{ADh{ceg}}i}{{ADh{ceg}}}ChADjBn{{Ah{DDd}}}}{{}F`}0000000{{{f{jDD`}}F`BIf}Cj}{{{f{jDD`}}F`DD`}Cj}{{}c{}}000000000000000{{{Hj{c}}}{{Hj{h}}}{}}0000000{{{Hl{c}}}{{Hl{h}}}{}}000000{{{Hn{c}}}{{Hn{h}}}{}}0000000{{{An{c}}}e{}{}}00000004444444444444444{{}c{}}0000000{{{f{DD`}}}Bf}{{{f{{DDf{c}}}}}BfDAl}0{{{f{{ADh{ceg}}}}{f{jCb}}{f{g}}{f{Il}}}InChADjBn}{{{f{{ADh{ceg}}}}{f{jCb}}{f{g}}{f{Il}}{Df{{f{DD`}}}}}InChADjBn}{{{f{DD`}}}F`}{{{ADh{ceg}}i}{{ADh{ceg}}}ChADjBn{{Ah{AIf}}}}{{{f{{ADh{ceg}}}}{f{Cb}}FfFh{f{Fj}}{f{g}}}JhChADjBn}{{cF`}{{Gf{e}}}{{Ah{DDd}}}{}}{{{f{j{DDf{c}}}}F`}CjDAl}0{c{{Gf{e}}}{{Ah{DDd}}}{}}{{{f{j{DDf{c}}}}}CjDAl}0100{{{f{Dd}}{f{Dd}}}{{ADh{ceg}}}ChADjBn}{{{f{Dd}}}DD`}{cDDd{{Ah{{CBn{Dd}}}}}}{{}{{DDf{c}}}DAl}{{{f{DD`}}F`}F`}{{}c{}}{{{ADh{ceg}}i}{{ADh{ceg}}}ChADjBn{{Dn{Bj}{{Dl{c}}}}}}{{{ADh{ceg}}{Df{i}}}{{ADh{ceg}}}ChADjBn{{Dn{Bj}{{Dl{c}}}}}}10{{{ADh{ceg}}c}{{ADh{ceg}}}ChADjBn}{{{ADh{ceg}}{Df{c}}}{{ADh{ceg}}}ChADjBn}{{{f{{ADh{ceg}}}}{f{jCb}}Ff{f{g}}{f{jK`}}}CjChADjBn}{{{ADh{ceg}}i}{{ADh{ceg}}}ChADjBn{{Ah{AFd}}}}{ABhAFj}8{{{f{jDD`}}F`}Cj}{{{f{jDD`}}F`F`}Cj}{{{ADh{ceg}}Bf}{{ADh{ceg}}}ChADjBn}{{{f{DD`}}}DD`}{{{f{DD`}}F`F`}DD`}{c{{Gf{e}}}{{Ah{DDd}}}{}}{{{f{j{DDf{c}}}}}CjDAl}07{CBfDDb}{{{f{{ADh{ceg}}}}}{{Jj{Od}}}ChADjBn}{{{ADh{ceg}}i}{{ADh{ceg}}}ChADjBn{{Ah{Gj}}}}{CBfDf}{CBfM`}{{{f{{ADh{ceg}}}}}A@`ChADjBn}{{{f{{ADj{}{{AFh{c}}}}}}{f{c}}ABf}ABh{}}{{{ADh{ceg}}i}{{ADh{ceg}}}ChADjBn{{Dn{{f{e}}ABf}{{Dl{ABh}}}}}}{{{f{{ADh{ceg}}}}}AClChADjBn}{fc{}}000000{fADl}{fBj}{{}{{G`{c}}}{}}0000000{c{{G`{e}}}{}{}}0000000{{}{{G`{c}}}{}}0000000{{}{{G`{c{AEf{c}}}}}{}}0000000{fAEh}0000000{ce{}{}}0000000{{}c{}}0000000{{{f{j{DDf{c}}}}}CjDAl}0{{}DDd}{{{f{DD`}}F`}DD`}{f{{Df{{f{c}}}}}{}}0000000{{{f{j{ADh{ceg}}}}{f{jCb}}{f{AEj}}FfFh{f{g}}{f{jAEl}}{f{j{AEn{c}}}}{f{Fj}}}CjChADjBn}{ABhAFj}{{}c{}}0000000{{{ADh{ceg}}i}{{ADh{ceg}}}ChADjBn{{Ah{Od}}}}{DDjBf}````{eg{}{{b{c}}}{}}0{ce{}{}}0;;{f{{f{h}}}}0{{{f{j}}}{{f{jh}}}}0{f{{f{c}}}{}}0{{{f{j}}}{{f{jc}}}{}}0{{{An{c}}}e{}{}}0{{{f{DDh}}}DDh}{{{f{DDl}}}DDl}{{f{f{jc}}}Cj{}}0{{fCl}Cj}099{{}DDh}{F`{{f{c}}}{}}0{F`{{f{jc}}}{}}099{F`Cj}0{{{f{DDh}}{f{DDh}}}Bf}{{{f{DDl}}{f{DDl}}}Bf}{{f{f{c}}}Bf{}}00000{{{f{DDh}}{f{jFl}}}Gb}{{{f{DDl}}{f{jFl}}}Gb}{cc{}}000{ce{}{}}0{{}F`}0{{}c{}}000{{{Hj{c}}}{{Hj{h}}}{}}0{{{Hl{c}}}{{Hl{h}}}{}}0{{{Hn{c}}}{{Hn{h}}}{}}0{{{An{c}}}e{}{}}04444{{}c{}}00{{{f{DDh}}{f{DD`}}}{{Df{{Id{F`F`}}}}}}{{{f{DDh}}{f{DD`}}}DDl}{fc{}}0{{}{{G`{c}}}{}}0{c{{G`{e}}}{}{}}0{{}{{G`{c}}}{}}0{{}{{G`{c{AEf{c}}}}}{}}0{fAEh}0{ce{}{}}0{{}c{}}0{f{{Df{{f{c}}}}}{}}0{{}c{}}0{DDnF`}0``````````````````````````````````````````````````{eg{}{{b{c}}}{}}00{ce{}{}}00555{f{{f{h}}}}00{{{f{j}}}{{f{jh}}}}00{EdAFj}{nAFj}{{{f{DE`}}}n}{f{{f{c}}}{}}00{{{f{j}}}{{f{jc}}}{}}00{{{An{c}}}e{}{}}00{{{f{Ed}}}Ed}{{{f{DEb}}}DEb}{{{f{n}}}n}{{f{f{jc}}}Cj{}}00{{fCl}Cj}00===:{{{f{l}}}n}{F`{{f{c}}}{}}00{F`{{f{jc}}}{}}00:::{F`Cj}00{{{f{Ed}}{f{Ed}}}Bf}{{{f{DEb}}{f{DEb}}}Bf}{{{f{n}}{f{n}}}Bf}{{{f{Ed}}{f{jFl}}}{{G`{CjFn}}}}{{{f{DEb}}{f{jFl}}}{{G`{CjFn}}}}0{{{f{n}}{f{jFl}}}{{G`{CjFn}}}}{cc{}}00000{ce{}{}}00{{}F`}00{{}c{}}00000{{{Hj{c}}}{{Hj{h}}}{}}00{{{Hl{c}}}{{Hl{h}}}{}}00{{{Hn{c}}}{{Hn{h}}}{}}00{{{An{c}}}e{}{}}00444444{{}c{}}00{{BjEd}DEb}`{EdAFj}00{nAFj}{fc{}}00{fADl}{fBj}{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{AEf{c}}}}}{}}00{fAEh}00{ce{}{}}00{{}c{}}00{f{{Df{{f{c}}}}}{}}00{{}c{}}00={{BjEdc}DEb{{Eh{Ed}{{Dl{Ef}}}}}}``{{}DEd}000000000000000000000```````{eg{}{{b{c}}}{}}0000000{ce{}{}}000000066666666{f{{f{h}}}}0000000{{{f{j}}}{{f{jh}}}}0000000{EdAFj}{EfDEf}{DEfDEh}{DEjDEh}{DElDEh}{DEnDEh}{DF`DEh}{DFbDEh}{f{{f{c}}}{}}0000000{{{f{j}}}{{f{jc}}}{}}0000000{{{An{c}}}e{}{}}0000000{{{f{Ef}}}Ef}{{{f{DEh}}}DEh}{{{f{DEf}}}DEf}{{{f{DEj}}}DEj}{{{f{DEl}}}DEl}{{{f{DEn}}}DEn}{{{f{DF`}}}DF`}{{{f{DFb}}}DFb}{{f{f{jc}}}Cj{}}0000000{{fCl}Cj}0000000{DEhAFj}{ce{}{}}0000000{EdAFj}{EfDFb}{F`{{f{c}}}{}}0000000{F`{{f{jc}}}{}}0000000{f{{f{c}}}{}}0000000{F`Cj}0000000{{{f{Ef}}{f{Ef}}}Bf}{{{f{DEh}}{f{DEh}}}Bf}{{{f{DEf}}{f{DEf}}}Bf}{{{f{DEj}}{f{DEj}}}Bf}{{{f{DEl}}{f{DEl}}}Bf}{{{f{DEn}}{f{DEn}}}Bf}{{{f{DF`}}{f{DF`}}}Bf}{{{f{DFb}}{f{DFb}}}Bf}{{{f{Ef}}{f{jFl}}}{{G`{CjFn}}}}{{{f{DEh}}{f{jFl}}}{{G`{CjFn}}}}{{{f{DEf}}{f{jFl}}}{{G`{CjFn}}}}{{{f{DEj}}{f{jFl}}}{{G`{CjFn}}}}{{{f{DEl}}{f{jFl}}}{{G`{CjFn}}}}{{{f{DEn}}{f{jFl}}}{{G`{CjFn}}}}{{{f{DF`}}{f{jFl}}}{{G`{CjFn}}}}{{{f{DFb}}{f{jFl}}}{{G`{CjFn}}}}{cc{}}000000000000000{ce{}{}}0000000{EdEf}{{AFjAFjAFj}DEj}{{AFjAFj}DEl}{{AFjAFjAFj}DEn}{{AFjAFjAFj}DF`}{{AFjAFjAFj}DFb}{{}F`}0000000{{}c{}}000000000000000{{{Hj{c}}}{{Hj{h}}}{}}0000000{{{Hl{c}}}{{Hl{h}}}{}}0000000{{{Hn{c}}}{{Hn{h}}}{}}0000000{{{An{c}}}e{}{}}00000004444444444444444{{}c{}}0000000{EfBf}{{AFjAFj}DEh}{{AFjAFj}DEf}{EdAFj}{EfDEj}{EfDEl}{DEfDEh}{DEjDEh}{DElDEh}{DEnDEh}{DF`DEh}{DFbDEh}8{EfDEn}9{DEhAFj}{fc{}}0000000{{}{{G`{c}}}{}}0000000{c{{G`{e}}}{}{}}0000000{{}{{G`{c}}}{}}0000000{{}{{G`{c{AEf{c}}}}}{}}0000000{fAEh}0000000{ce{}{}}0000000{{}c{}}0000000{f{{Df{{f{c}}}}}{}}0000000{{}c{}}0000000{EdAFj}{EfDF`}{DEfDEh}{DEjDEh}{DElDEh}{DEnDEh}{DF`DEh}{DFbDEh}``````````{eg{}{{b{c}}}{}}00{ce{}{}}00<<<{f{{f{h}}}}00{{{f{j}}}{{f{jh}}}}00{AC`AFj}0{AC`M`}{f{{f{c}}}{}}00{{{f{j}}}{{f{jc}}}{}}00{{{An{c}}}e{}{}}00{{{ADn{ceg}}i}{{ADn{ceg}}}{}AE`BnAh}{{{f{ABn}}}ABn}{{{f{AC`}}}AC`}{{f{f{jc}}}Cj{}}0{{fCl}Cj}0<<<{{{f{l}}ABn}AC`}{{}c{}}{F`{{f{c}}}{}}00{F`{{f{jc}}}{}}00;;;{{{f{{ADn{ceg}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}}Cj{}AE`Bn}{F`Cj}00{{{f{ABn}}{f{ABn}}}Bf}{{{f{AC`}}{f{AC`}}}Bf}{{f{f{c}}}Bf{}}00{{{f{ABn}}{f{jFl}}}Gb}{{{f{AC`}}{f{jFl}}}Gb}?{AC`AFj}0{AC`M`}{cc{}}00000{ce{}{}}00{{}F`}00{{}c{}}00000{{{Hj{c}}}{{Hj{h}}}{}}00{{{Hl{c}}}{{Hl{h}}}{}}0{{{Hn{c}}}{{Hn{h}}}{}}00{{{An{c}}}e{}{}}00444444{{}c{}}00{{{ADn{ceg}}i}{{ADn{ceg}}}{}AE`BnOn}{{{f{{ADn{ceg}}}}{f{jCb}}{f{g}}{f{Il}}}In{}AE`Bn}{{{f{{ADn{ceg}}}}{f{Cb}}FfFh{f{Fj}}{f{g}}}Jh{}AE`Bn}{Bf{{ADn{ceg}}}{}AE`Bn}{{{ADn{ceg}}i}{{ADn{ceg}}}{}AE`Bn{{Dn{Bf}{{Dl{c}}}}}}{{{ADn{ceg}}{Df{i}}}{{ADn{ceg}}}{}AE`Bn{{Dn{Bf}{{Dl{c}}}}}}{{{ADn{ceg}}i}{{ADn{ceg}}}{}AE`Bn{{Ah{Gj}}}}{{{f{{ADn{ceg}}}}}{{Jj{Od}}}{}AE`Bn}1{{{f{{ADn{ceg}}}}}A@`{}AE`Bn}{{{f{{AE`{}{{AFh{c}}}}}}{f{c}}ABn}AC`{}}{{{ADn{ceg}}i}{{ADn{ceg}}}{}AE`Bn{{Dn{{f{e}}ABn}{{Dl{AC`}}}}}}{{{f{{ADn{ceg}}}}}ACl{}AE`Bn}{{{ADn{ceg}}AId}{{ADn{ceg}}}{}AE`Bn}{{{ADn{ceg}}i}{{ADn{ceg}}}{}AE`Bn{{Ah{AIf}}}}{{{ADn{ceg}}AJd}{{ADn{ceg}}}{}AE`Bn}8{{{ADn{ceg}}CAn}{{ADn{ceg}}}{}AE`Bn}{fc{}}0{{}{{G`{c}}}{}}00{c{{G`{e}}}{}{}}00{{}{{G`{c}}}{}}00{{}{{G`{c{AEf{c}}}}}{}}00{fAEh}00{ce{}{}}00{{}c{}}00{f{{Df{{f{c}}}}}{}}00{{{f{j{ADn{ceg}}}}{f{jCb}}{f{AEj}}FfFh{f{g}}{f{jAEl}}{f{j{AEn{c}}}}{f{Fj}}}Cj{}AE`Bn}{{}c{}}00{{{ADn{ceg}}i}{{ADn{ceg}}}{}AE`Bn{{Ah{Od}}}}{DFdBf}{DFfBf}```````{eg{}{{b{c}}}{}}0{ce{}{}}088{f{{f{h}}}}0{{{f{j}}}{{f{jh}}}}0{f{{f{c}}}{}}0{{{f{j}}}{{f{jc}}}{}}0{{{An{c}}}e{}{}}0{{{f{{AEd{ceg}}}}}{{Cd{Cb}}}{}AbBn}{{{AEd{ceg}}i}{{AEd{ceg}}}{}AbBnAh}{{{f{AEb}}}AEb}{{f{f{jc}}}Cj{}}{{fCl}Cj}::{{}AEb}{F`{{f{c}}}{}}0{F`{{f{jc}}}{}}0{{{f{{AEd{ceg}}}}{f{jCb}}}Cj{}AbBn};;{{{f{{AEd{ceg}}}}{f{Cb}}{f{jg}}{f{e}}{f{Fd}}FfFh{f{Fj}}}Cj{}AbBn}{F`Cj}0{{{f{AEb}}{f{AEb}}}Bf}{{f{f{c}}}Bf{}}00{{{f{AEb}}{f{jFl}}}Gb}{cc{}}000{ce{}{}}0{{{AEd{ceg}}i}{{AEd{ceg}}}{}AbBn{{Ah{Gj}}}}{{}F`}0{{}c{}}000{{{Hj{c}}}{{Hj{h}}}{}}0{{{Hl{c}}}{{Hl{h}}}{}}{{{Hn{c}}}{{Hn{h}}}{}}0{{{An{c}}}e{}{}}04444{{}c{}}0{{{f{{AEd{ceg}}}}{f{jCb}}{f{g}}{f{Il}}}In{}AbBn}{{{f{{AEd{ceg}}}}{f{Cb}}FfFh{f{Fj}}{f{g}}}Jh{}AbBn}{{ikAEb}{{AEd{ceg}}}{}AbBn{{Ah{{Af{ceg}}}}}{{Ah{{Af{ceg}}}}}}3{{{f{j{AEd{ceg}}}}{f{jCb}}Ff{f{g}}Kd}{{Df{{Kf{ceg}}}}}{}AbBn};{{{f{{AEd{ceg}}}}}{{Jj{Od}}}{}AbBn}0{{{AEd{ceg}}Bf}{{AEd{ceg}}}{}AbBn}{{{f{{AEd{ceg}}}}}A@`{}AbBn}{{{AEd{ceg}}i}{{AEd{ceg}}}{}AbBn{{Dn{{f{e}}}{{Dl{ACb}}}}}}{{{f{{AEd{ceg}}}}}ACl{}AbBn}{fc{}}{{}{{G`{c}}}{}}0{c{{G`{e}}}{}{}}0{{}{{G`{c}}}{}}0{{}{{G`{c{AEf{c}}}}}{}}0{fAEh}0{ce{}{}}0{{}c{}}0{f{{Df{{f{c}}}}}{}}0{{{f{j{AEd{ceg}}}}{f{jCb}}{f{AEj}}FfFh{f{g}}{f{jAEl}}{f{j{AEn{c}}}}{f{Fj}}}Cj{}AbBn}{{}c{}}0````````{eg{}{{b{c}}}{}}{ce{}{}}5{f{{f{h}}}}{{{f{j}}}{{f{jh}}}}{f{{f{c}}}{}}{{{f{j}}}{{f{jc}}}{}}{{{An{c}}}e{}{}}{{{AF`{ceg}}i}{{AF`{ceg}}}{Ih{Oh{Cl}}Oj}ChOlAh}6`{{{AF`{ceg}}i}{{AF`{ceg}}}{Ih{Oh{Cl}}Oj}ChOl{{Ah{c}}}}{F`{{f{c}}}{}}{F`{{f{jc}}}{}}6{{{f{{AF`{ceg}}}}{f{Cb}}{f{ji}}{f{g}}{f{Fd}}FfFh{f{Fj}}}Cj{Ih{Ah{BH`}}D@h}ChOlAd}{F`Cj}{cc{}}0{ce{}{}}{{{AF`{ceg}}i}{{AF`{ceg}}}{Ih{Oh{Cl}}Oj}ChOl{{Ah{Od}}}}{{}F`}{{}c{}}0{{{Hj{c}}}{{Hj{h}}}{}}{{{Hn{c}}}{{Hn{h}}}{}}=22{{}c{}}{{{f{{AF`{ceg}}}}{f{jCb}}{f{i}}{f{Il}}}In{Ih{Ah{BH`}}D@h}ChOlAd}{{{f{{AF`{ceg}}}}{f{Cb}}FfFh{f{Fj}}{f{i}}}Jh{Ih{Ah{BH`}}D@h}ChOlAd}{{{Mb{c}}cg}{{AF`{cei}}}{Ih{Oh{Cl}}Oj}Ch{{Dn{c}{{Dl{e}}}}}Ol}{{{AF`{ceg}}e}{{AF`{ceg}}}{Ih{Oh{Cl}}Oj}ChOl}{{{AF`{ceg}}i}{{AF`{ceg}}}{Ih{Oh{Cl}}Oj}ChOl{{Ah{c}}}}{{{f{{AF`{ceg}}}}}{{Jj{Od}}}{Ih{Ah{BH`}}D@h}ChOl}{{{f{{AF`{ceg}}}}}A@`{Ih{Ah{BH`}}D@h}ChOl}{{{AF`{ceg}}c}{{AF`{ceg}}}{Ih{Oh{Cl}}Oj}ChOl}{{{AF`{ceg}}i}{{AF`{ceg}}}{Ih{Oh{Cl}}Oj}ChOl{{Dn{{f{g}}AA`}{{Dl{AAb}}}}}}{{{f{{AF`{ceg}}}}}ACl{Ih{Ah{BH`}}D@h}ChOl}{{}{{G`{c}}}{}}{c{{G`{e}}}{}{}}{{}{{G`{c}}}{}}{{}{{G`{c{AEf{c}}}}}{}}{fAEh}{ce{}{}}{{}c{}}{f{{Df{{f{c}}}}}{}}{{{f{j{AF`{ceg}}}}{f{jCb}}{f{AEj}}FfFh{f{i}}{f{jAEl}}{f{j{AEn{e}}}}{f{Fj}}}Cj{Ih{Ah{BH`}}D@h}ChOlAd}{{}c{}}{{{AF`{ceg}}i}{{AF`{ceg}}}{Ih{Oh{Cl}}Oj}ChOl{{Ah{Gj}}}}","D":"ADLhEEd","p":[[10,"TransformMatrix",14737],[5,"Action",13870,14738],[1,"reference",null,null,1],[10,"Any",14739],[0,"mut"],[6,"Theme",13870,14740],[5,"Style",14404,14740],[5,"Container",7928],[10,"Catalog",7928],[10,"Renderer",14741],[5,"Element",14742],[10,"Into",14743,null,1],[5,"Button",388],[10,"Catalog",388],[5,"BakedParameters",14744],[5,"Canvas",7604],[10,"Renderer",14745],[10,"Program",7604,14746],[1,"bool"],[5,"Checkbox",7611],[5,"String",14747],[10,"Catalog",7611],[10,"Renderer",14748],[5,"Lazy",13870,14749],[5,"Tree",14750],[5,"Vec",14751],[10,"Hash",14752],[10,"Clone",14753],[1,"unit"],[1,"u8"],[17,"Item"],[10,"IntoIterator",14754],[5,"State",7821],[1,"str"],[6,"Option",14755,null,1],[5,"ComboBox",7821],[10,"Display",14756],[17,"Output"],[10,"Fn",14757],[10,"Catalog",7821],[10,"Component",13870,14758],[5,"Palette",14404,14759],[5,"Extended",14405,14759],[10,"FnOnce",14757],[8,"StyleFn",8911],[8,"StyleFn",9047],[8,"StyleFn",10046],[1,"usize"],[5,"Responsive",13870,14760],[5,"Style",14741],[5,"Layout",14761],[6,"Cursor",14762],[5,"Rectangle",14763],[5,"Formatter",14756],[5,"Error",14756],[6,"Result",14764,null,1],[8,"Result",14756],[10,"Debug",14756],[5,"Task",14765],[5,"Rule",10901],[5,"Pixels",14766],[10,"Catalog",10901],[10,"Catalog",12281,14767],[10,"Catalog",12084],[17,"Font"],[5,"Font",14768],[10,"Renderer",14769],[5,"Image",8115],[5,"Box",14770,null,1],[5,"Arc",14771,null,1],[5,"Rc",14772,null,1],[6,"RedrawRequest",14773],[6,"Status",14774],[1,"tuple",null,null,1],[5,"Column",8376],[10,"Copy",14775],[10,"PartialEq",14776],[5,"Limits",14777],[5,"Node",14778],[5,"Url",8437,14779],[6,"Item",8437],[5,"Settings",8437],[10,"Catalog",8437],[6,"Interaction",14780],[5,"Size",14781],[17,"State"],[17,"Event"],[10,"Operation",14782],[10,"Default",14783],[5,"Vector",14784],[5,"Element",14785],[5,"State",9888],[5,"PaneGrid",9047],[10,"Catalog",9047],[5,"Pane",9047,14786],[5,"Content",9047,14787],[5,"PickList",10046],[10,"ToString",14747],[1,"slice"],[10,"Borrow",14788],[10,"Catalog",10046],[10,"Catalog",8911],[5,"Pop",10305],[1,"f32"],[5,"RangeInclusive",14789],[5,"ProgressBar",10358],[10,"Catalog",10358],[5,"Data",10459],[5,"QRCode",10459],[10,"Catalog",10459],[5,"Radio",10743],[10,"Eq",14776],[10,"Catalog",10743],[5,"Instant",14790],[5,"Rich",12281,14791],[5,"Span",12281,14748],[10,"AsRef",14743],[5,"Scrollable",11043],[10,"Catalog",11043],[5,"Shader",11647],[10,"Program",11647,14792],[6,"Length",14793],[5,"Slider",11795],[10,"From",14743,null,1],[10,"PartialOrd",14776],[10,"Catalog",11795],[10,"IntoFragment",12281,14748],[6,"State",14750],[5,"Style",8911],[5,"Style",9047],[6,"Status",12084],[5,"Style",12084],[5,"Style",10459],[6,"Status",12678],[5,"Style",12678],[6,"Status",11795],[5,"Style",11795],[5,"Style",12281,14767],[6,"Status",11043],[5,"Style",11043],[5,"Style",10901],[6,"Status",10743],[5,"Style",10743],[6,"Status",388],[5,"Style",388],[5,"Style",10358],[6,"Status",13295],[5,"Style",13295],[6,"Status",7611],[5,"Style",7611],[6,"Status",14412],[5,"Style",14412],[5,"Style",7928],[6,"Status",10046],[5,"Style",10046],[5,"Svg",12084],[5,"Handle",12084,14769],[5,"Tag",14750],[8,"Text",12281],[5,"Content",12678],[5,"PlainText",14794],[5,"TextEditor",12678],[10,"Catalog",12678],[5,"TextInput",13295],[10,"Catalog",13295],[5,"SmolStr",14795],[5,"Toggler",14412],[10,"Catalog",14412],[6,"Position",14574],[5,"Tooltip",14574],[5,"OutOfBounds",14796],[5,"TypeId",14739],[6,"Event",7604,14774],[10,"Clipboard",14797],[5,"Shell",14798],[5,"VerticalSlider",14678],[5,"Border",14799],[5,"Padding",14800],[5,"Shadow",14801],[17,"Class"],[5,"Color",14802],[6,"Background",14803],[5,"Point",14804],[5,"Path",7604,14805],[5,"Group",7604,14806],[6,"Gradient",7604,14807],[5,"Fill",7604,14808],[5,"Stroke",7604,14809],[6,"LineCap",7604,14809],[6,"LineJoin",7604,14809],[5,"LineDash",7604,14809],[6,"Style",7604,14810],[5,"Text",7604,14811],[5,"Image",7604,14812],[6,"Ordering",14776],[8,"Geometry",7604],[10,"FnMut",14757],[6,"FilterMethod",8115,14812],[5,"Linear",1253,14807],[6,"Handle",8115,14812],[10,"Hasher",14752],[6,"Horizontal",14813],[6,"LineHeight",12281,14748],[5,"Builder",1483,14814],[5,"Packed",1253,14807],[5,"Path",7518,14815],[5,"Radians",14816],[5,"Radius",14799],[6,"Rule",1240,14808],[6,"Shaping",12281,14748],[5,"UnknownUnit",6148,14817],[5,"Transform2D",6148,14818],[6,"Vertical",14813],[5,"ColorStop",14819],[6,"Gradient",14819],[1,"array"],[5,"Arc",1483,14820],[5,"Elliptical",1484,14820],[5,"PathCommands",7518,14821],[5,"PathCommandsSlice",7518,14821],[5,"PathSlice",7518,14815],[5,"PathBuffer",7518,14822],[5,"PathBufferSlice",7518,14822],[5,"EndpointId",7518,14823],[5,"BuilderImpl",7518,14815],[5,"Point2D",6148,14824],[5,"BuilderWithAttributes",7518,14815],[5,"PathCommandsBuilder",3136,14821],[5,"NoAttributes",7565,14825],[5,"Builder",7234,14822],[5,"ArcFlags",7518,14826],[6,"Event",7518,14827],[5,"Iter",7518,14815],[5,"IterWithAttributes",7518,14815],[5,"IdIter",7518,14815],[5,"Polygon",7518,14828],[5,"IdPolygon",7518,14828],[6,"LineCap",7518,14823],[6,"LineJoin",7518,14823],[6,"Side",7518,14823],[6,"FillRule",7518,14823],[6,"Winding",7518,14823],[5,"ControlPointId",7518,14823],[5,"EventId",7518,14823],[5,"Events",3136,14821],[10,"AttributeStore",7518,14823],[5,"AttributeSlice",7518,14823],[10,"PositionStore",7518,14823],[10,"Position",7518,14823],[5,"PolygonIdIter",7520,14828],[5,"Range",14789],[5,"Iter",3136,14821],[5,"Reversed",7518,14815],[1,"i16"],[5,"Iter",7234,14822],[5,"PolygonIter",7520,14828],[5,"IdPolygonIter",7520,14828],[5,"PathEvents",7520,14828],[5,"CommandsPathSlice",3136,14821],[5,"NoAttributes",7031,14829],[5,"WithSvg",7565,14825],[10,"Transformation",7021,14830],[15,"Begin",2740],[15,"End",2740],[15,"Quadratic",2740],[15,"Cubic",2740],[15,"Line",2740],[10,"PathBuilder",7565,14825],[5,"Vector2D",6148,14831],[5,"Angle",7023,14832],[5,"LineSegment",7023,14833],[10,"SvgPathBuilder",7565,14825],[5,"Box2D",6148,14834],[5,"BorderRadii",7565,14825],[5,"Flattened",7565,14825],[5,"Transformed",7565,14825],[17,"PathType"],[10,"Build",7565,14825],[5,"PointEvents",3136,14821],[5,"LineEquation",7023,14833],[10,"Scalar",7023,14835],[5,"Triangle",7023,14836],[10,"Add",14837],[10,"AddAssign",14837],[17,"Scalar"],[10,"Segment",7023,14838],[5,"Arc",7023,14826],[5,"CubicBezierSegment",7023,14839],[5,"QuadraticBezierSegment",7023,14840],[8,"Rotation",7023,14841],[10,"Rem",14837],[10,"Sub",14837],[10,"Mul",14837],[10,"One",14842],[10,"FloatConst",14843],[10,"ApproxEq",6787,14844],[10,"NumCast",14845],[5,"SvgArc",7023,14826],[5,"Line",7023,14833],[5,"ArrayVec",4233,14846],[10,"Trig",6148,14847],[10,"Div",14837],[10,"DivAssign",14837],[5,"Flattened",4222,14826],[5,"Flattened",4704,14839],[5,"Flattened",6978,14840],[5,"FlattenedT",6978,14840],[8,"Size",7023],[10,"Float",14843],[8,"Transform",7023,14841],[8,"Box2D",7023,14848],[10,"MulAssign",14837],[10,"Neg",14837],[1,"u32"],[10,"Zero",14842],[10,"Real",14849],[5,"Size2D",6148,14850],[10,"SubAssign",14837],[10,"Iterator",14851],[1,"f64"],[8,"Translation",7023,14841],[8,"Point",7023],[8,"Vector",7023],[5,"ArrayString",4233,14852],[5,"IntoIter",4233,14846],[5,"Path",14853],[5,"CapacityError",4233,14854],[10,"Ord",14776],[5,"Drain",4233,14846],[10,"RangeBounds",14789],[1,"char"],[10,"FromIterator",14754],[5,"Error",14855],[5,"Utf8Error",14856],[5,"Arguments",14756],[1,"u64"],[1,"i8"],[1,"i64"],[1,"i128"],[1,"i32"],[1,"u16"],[1,"u128"],[6,"Endian",14857],[10,"Signed",14858],[5,"Size3D",6148,14850],[5,"Vector3D",6148,14831],[5,"Length",6148,14859],[5,"Point3D",6148,14824],[5,"Scale",6148,14860],[5,"SideOffsets2D",6148,14861],[5,"Translation2D",6148,14862],[5,"Translation3D",6148,14862],[5,"BoolVector2D",6148,14831],[5,"BoolVector3D",6148,14831],[5,"Rotation2D",6148,14863],[5,"Transform3D",6148,14864],[5,"Rotation3D",6148,14863],[5,"Rect",6148,14865],[5,"Box3D",6148,14866],[5,"RigidTransform3D",6148,14867],[10,"Ceil",6876,14868],[10,"One",6876,14868],[5,"HomogeneousVector",6148,14869],[10,"Zero",6876,14868],[10,"Euclid",14870],[10,"Floor",6876,14868],[10,"Round",6876,14868],[10,"Saturating",14871],[8,"Rotation2D",6868,14848],[8,"SideOffsets2D",6868,14848],[8,"Size3D",6868,14848],[8,"Rotation3D",6868,14848],[8,"Transform2D",6868,14848],[8,"Transform3D",6868,14848],[8,"Box3D",6868,14848],[8,"Rect",6868,14848],[8,"RigidTransform3D",6868,14848],[8,"HomogeneousVector",6868,14848],[8,"Point3D",6868,14848],[8,"Vector3D",6868,14848],[8,"Translation2D",6868,14848],[8,"Translation3D",6868,14848],[5,"FlatteningParameters",6978,14840],[5,"FromPolyline",7031,14829],[10,"PathIterator",7031,14829],[5,"Flattened",7031,14829],[5,"Transformed",7031,14829],[8,"Rotation",7195,14872],[8,"Size",7195,14872],[8,"Transform",7195,14872],[8,"Box2D",7195,14872],[8,"Angle",7195,14872],[8,"Point",7195,14872],[8,"Vector",7195,14872],[8,"Translation",7195,14872],[5,"BuilderWithAttributes",7234,14822],[5,"IterBridge",14873],[5,"Icon",7611],[6,"Wrapping",12281,14748],[15,"Active",7818],[15,"Hovered",7818],[15,"Disabled",7818],[5,"Icon",13295],[5,"Id",7928],[8,"StyleFn",7928],[5,"Linear",14819],[6,"Cow",14874],[6,"ContentFit",14875],[6,"Rotation",14876],[17,"Handle"],[10,"Renderer",14812],[5,"PathBuf",14853],[5,"Bytes",14877],[5,"Id",14812],[5,"Viewer",8276],[15,"Rgba",8272],[5,"State",8276],[6,"Alignment",14813],[5,"Highlight",8437,14748],[6,"HeadingLevel",8437,14878],[5,"Text",8437],[5,"Style",8437],[10,"Viewer",8437],[5,"Content",8437],[10,"Deserializer",14879],[6,"Signature",14880],[6,"Error",14881],[6,"ParseError",14882],[6,"Host",14883],[5,"HashSet",14884],[6,"Position",14885],[5,"RangeTo",14789],[5,"RangeFrom",14789],[5,"RangeFull",14789],[5,"ParseOptions",14779],[6,"Origin",14886],[5,"Split",14887],[5,"PathSegmentsMut",14888],[5,"Parse",14889],[5,"UrlQuery",14779],[5,"Serializer",14889],[10,"Serializer",14890],[6,"IpAddr",14891],[6,"SocketAddr",14892],[15,"Image",8902],[15,"CodeBlock",8902],[15,"List",8902],[5,"State",8911],[5,"Menu",8911],[5,"TitleBar",9047,14893],[5,"Highlight",9047],[10,"Draggable",9047,14894],[6,"Axis",9047,14895],[6,"Configuration",9047,14896],[6,"Direction",9047,14897],[6,"Node",9047,14898],[5,"Split",9047,14899],[6,"DragEvent",9047],[6,"Target",9047],[6,"Region",9047],[6,"Edge",9047],[5,"ResizeEvent",9047],[5,"Line",9047],[5,"Controls",9047,14900],[5,"BTreeMap",14901],[15,"Split",9875],[15,"Picked",9879],[15,"Dropped",9879],[15,"Canceled",9879],[15,"Split",9883],[5,"Internal",9888],[6,"Action",9888],[15,"Resizing",10042],[15,"Dragging",10042],[6,"Handle",10046],[5,"Icon",10046],[15,"Dynamic",10301],[15,"Arrow",10301],[15,"Opened",10304],[6,"Version",10459],[6,"ErrorCorrection",10459],[6,"Error",10459],[8,"Renderer",13870,14902],[6,"QrError",14903],[15,"Active",10899],[15,"Hovered",10899],[6,"FillMode",10901],[5,"Viewport",11043],[5,"AbsoluteOffset",11043,14904],[5,"Scrollbar",11043],[6,"Anchor",11043],[5,"Rail",11043],[5,"Scroller",11043],[5,"RelativeOffset",11043,14904],[6,"Direction",11043],[5,"Id",11043],[15,"Both",11635],[15,"Active",11637],[15,"Hovered",11637],[15,"Dragged",11637],[5,"Viewport",11647,14905],[5,"Storage",11647,14906],[17,"Primitive"],[10,"Primitive",11647,14906],[10,"Renderer",14906],[5,"Device",14907],[5,"Queue",14908],[6,"TextureFormat",14909],[5,"Transformation",14910],[5,"CommandEncoder",14911],[5,"TextureView",14912],[10,"Send",14775],[5,"Handle",11795],[5,"Rail",11795],[6,"HandleShape",11795],[10,"FromPrimitive",14845],[15,"Rectangle",12081],[15,"Circle",12081],[6,"Data",14769],[8,"StyleFn",12084],[17,"Settings"],[17,"Highlight"],[17,"Iterator"],[10,"Highlighter",12281,14794],[5,"State",12281,14767],[10,"Paragraph",14913],[6,"LineEnding",12678,14914],[6,"Action",12678,14914],[6,"Edit",12678,14914],[6,"Motion",12678,14914],[5,"Line",12678,14914],[6,"Binding",12678],[5,"KeyPress",12678],[6,"Direction",14914],[5,"State",12678],[6,"Theme",14915],[5,"Highlighter",14915],[5,"Format",14794],[1,"fn"],[6,"Key",14916],[5,"Modifiers",14917],[15,"Scroll",13293],[15,"Focused",13294],[5,"Value",13295,14918],[6,"Side",13295],[5,"Id",13295],[5,"State",13295],[5,"Cursor",13725],[15,"Focused",13724],[6,"State",13725],[15,"Selection",13821],[10,"Base",14404,14740],[5,"Custom",14404,14740],[5,"LazyLock",14919],[5,"Background",14405,14759],[5,"Pair",14405,14759],[5,"Primary",14405,14759],[5,"Secondary",14405,14759],[5,"Success",14405,14759],[5,"Warning",14405,14759],[5,"Danger",14405,14759],[15,"Active",14572],[15,"Hovered",14572],[8,"PathEvent",7518],[8,"IdEvent",7518],[8,"Fragment",12281]],"r":[[0,14740],[1,14738],[2,388],[3,7604],[4,14740],[5,14740],[6,14740],[7,14740],[8,7611],[9,14920],[10,7821],[11,14758],[12,7928],[13,14740],[14,14740],[15,14740],[16,14758],[17,14740],[18,14740],[19,14740],[20,8115],[21,14740],[22,14740],[23,14740],[24,14749],[25,14740],[26,14740],[27,14921],[28,14740],[29,14740],[30,14740],[31,9047],[32,10046],[33,14922],[34,10305],[35,14902],[36,10358],[37,10459],[38,10743],[39,14902],[40,14760],[41,14923],[42,10901],[43,11043],[44,14902],[45,11647],[46,11795],[47,14740],[48,14740],[49,14924],[50,14925],[51,14758],[52,12084],[53,12281],[54,12678],[55,13295],[56,14740],[57,14926],[58,14412],[59,14740],[60,14740],[61,14740],[62,14574],[63,14678],[64,14760],[65,14749],[66,14740],[67,14738],[68,14738],[69,14760],[70,14749],[71,14740],[72,14738],[73,14760],[74,14749],[75,14740],[76,14738],[77,14760],[78,14749],[79,14740],[80,14738],[81,14760],[82,14749],[83,14740],[84,14738],[85,14740],[86,14760],[87,14749],[88,14740],[89,14738],[90,14760],[91,14749],[92,14740],[93,14738],[94,14927],[95,14927],[96,14927],[98,14927],[99,14760],[100,14749],[101,14740],[102,14738],[104,14927],[105,14738],[106,14927],[107,14927],[108,14927],[110,14927],[111,14749],[112,14740],[113,14738],[114,14740],[115,14738],[116,14740],[117,14738],[118,14740],[119,14927],[123,14927],[124,14928],[125,14760],[126,14749],[127,14740],[128,14738],[130,14927],[132,14740],[133,14740],[134,14740],[135,14740],[136,14740],[137,14740],[138,14740],[139,14740],[140,14740],[141,14740],[142,14740],[143,14740],[144,14740],[145,14740],[146,14740],[147,14740],[148,14740],[149,14740],[150,14740],[151,14740],[152,14760],[153,14749],[154,14740],[155,14738],[156,14760],[157,14749],[158,14740],[159,14738],[160,14749],[161,14760],[162,14749],[163,14740],[164,14738],[165,14760],[166,14749],[167,14760],[168,14749],[169,14740],[170,14738],[171,14740],[172,14740],[173,14740],[174,14740],[175,14738],[176,14927],[177,14927],[178,14760],[179,14749],[180,14740],[181,14738],[182,14760],[183,14749],[184,14740],[185,14738],[186,14760],[187,14749],[188,14740],[189,14738],[191,14927],[192,14927],[193,14927],[194,14927],[196,14927],[197,14760],[198,14749],[199,14740],[200,14738],[201,14760],[202,14749],[203,14740],[204,14738],[205,14760],[206,14749],[207,14740],[208,14738],[209,14760],[210,14749],[211,14740],[212,14738],[213,14740],[214,14738],[215,14760],[216,14749],[217,14740],[218,14738],[219,14760],[220,14749],[221,14740],[222,14738],[223,14760],[224,14749],[225,14740],[226,14738],[227,14760],[228,14749],[229,14740],[230,14738],[231,14738],[232,14760],[233,14749],[234,14740],[235,14738],[237,14927],[239,14760],[240,14749],[241,14928],[244,14927],[245,14760],[246,14749],[247,14760],[248,14749],[249,14740],[250,14927],[251,14758],[252,14758],[253,14760],[254,14749],[256,14760],[257,14749],[258,14740],[260,14927],[262,14927],[263,14927],[265,14927],[267,14927],[268,14738],[270,14927],[272,14927],[274,14738],[275,14738],[276,14928],[277,14927],[280,14927],[281,14927],[282,14927],[288,14927],[290,14927],[291,14760],[292,14749],[293,14758],[294,14758],[295,14749],[297,14927],[298,14927],[299,14927],[302,14760],[303,14749],[304,14740],[305,14740],[306,14740],[307,14740],[308,14740],[309,14740],[310,14740],[311,14740],[312,14740],[313,14740],[314,14740],[315,14740],[316,14740],[317,14740],[318,14740],[319,14740],[320,14740],[322,14927],[323,14760],[324,14749],[326,14927],[330,14927],[332,14927],[333,14929],[334,14927],[335,14740],[336,14738],[337,14740],[338,14740],[340,14927],[342,14927],[343,14760],[344,14749],[345,14740],[346,14738],[347,14760],[348,14749],[349,14740],[350,14738],[351,14760],[352,14749],[353,14740],[354,14738],[355,14760],[356,14749],[357,14740],[358,14738],[359,14760],[360,14749],[361,14740],[362,14738],[363,14760],[364,14749],[365,14740],[366,14738],[367,14760],[368,14749],[369,14740],[370,14738],[371,14760],[372,14749],[373,14740],[374,14738],[375,14758],[376,14760],[377,14749],[378,14927],[379,14927],[381,14927],[382,14927],[383,14758],[384,14760],[385,14749],[386,14740],[387,14738],[553,14738],[554,14809],[555,14809],[558,14774],[559,14808],[562,14807],[563,14810],[564,14806],[565,14812],[566,14774],[567,14774],[568,14809],[569,14809],[570,14809],[571,14807],[572,14809],[573,14774],[574,14805],[575,14746],[576,14809],[577,14809],[578,14810],[579,14809],[580,14746],[581,14809],[582,14810],[583,14811],[584,14774],[585,14774],[586,14806],[587,14807],[588,14808],[589,14805],[590,14809],[591,14809],[592,14809],[593,14809],[594,14810],[595,14811],[596,14774],[597,14812],[599,14806],[600,14807],[601,14808],[602,14805],[603,14809],[604,14809],[605,14809],[606,14809],[607,14810],[608,14811],[609,14774],[610,14812],[612,14806],[613,14807],[614,14808],[615,14805],[616,14809],[617,14809],[618,14809],[619,14809],[620,14810],[621,14811],[622,14774],[623,14812],[625,14806],[626,14807],[627,14808],[628,14805],[629,14809],[630,14809],[631,14809],[632,14809],[633,14810],[634,14811],[635,14774],[636,14812],[638,14806],[639,14807],[640,14808],[641,14805],[642,14809],[643,14809],[644,14809],[645,14809],[646,14810],[647,14811],[648,14774],[649,14812],[651,14806],[652,14807],[653,14808],[654,14805],[655,14809],[656,14809],[657,14809],[658,14809],[659,14810],[660,14811],[661,14774],[662,14812],[664,14806],[665,14807],[666,14808],[667,14805],[668,14809],[669,14809],[670,14809],[671,14809],[672,14810],[673,14811],[674,14774],[675,14812],[677,14806],[678,14807],[679,14808],[680,14805],[681,14809],[682,14809],[683,14809],[684,14809],[685,14810],[686,14811],[687,14774],[688,14812],[690,14805],[691,14806],[692,14807],[693,14808],[694,14805],[695,14809],[696,14809],[697,14809],[698,14809],[699,14810],[700,14811],[701,14774],[702,14812],[703,14806],[704,14807],[705,14808],[706,14805],[707,14809],[708,14809],[709,14809],[710,14809],[711,14810],[712,14811],[713,14774],[714,14812],[715,14806],[716,14807],[717,14808],[718,14805],[719,14809],[720,14809],[721,14809],[722,14809],[723,14810],[724,14811],[725,14774],[726,14812],[727,14806],[728,14811],[729,14806],[730,14806],[731,14807],[732,14808],[733,14805],[734,14809],[735,14809],[736,14809],[737,14809],[738,14810],[739,14811],[740,14774],[741,14812],[743,14811],[744,14808],[745,14809],[746,14809],[747,14809],[748,14809],[749,14811],[750,14806],[751,14807],[752,14808],[753,14805],[754,14809],[755,14809],[756,14809],[757,14809],[758,14810],[759,14811],[760,14774],[761,14812],[763,14806],[764,14807],[765,14808],[766,14805],[767,14809],[768,14809],[769,14809],[770,14809],[771,14810],[772,14811],[773,14774],[774,14812],[776,14806],[777,14807],[778,14808],[779,14805],[780,14809],[781,14809],[782,14809],[783,14809],[784,14810],[785,14811],[786,14774],[787,14812],[789,14746],[791,14811],[792,14806],[793,14807],[794,14808],[795,14805],[796,14809],[797,14809],[798,14809],[799,14809],[800,14810],[801,14811],[802,14774],[803,14812],[805,14806],[806,14807],[807,14810],[808,14774],[809,14812],[810,14806],[811,14806],[812,14806],[813,14745],[814,14812],[815,14812],[816,14806],[817,14807],[818,14808],[819,14805],[820,14809],[821,14809],[822,14809],[823,14809],[824,14810],[825,14811],[826,14774],[827,14812],[829,14811],[830,14806],[831,14807],[832,14807],[833,14808],[834,14808],[835,14808],[836,14808],[837,14805],[838,14809],[839,14809],[840,14809],[841,14809],[842,14810],[843,14810],[844,14810],[845,14811],[846,14811],[847,14811],[848,14774],[849,14812],[850,14812],[852,14806],[853,14807],[854,14808],[855,14805],[856,14809],[857,14809],[858,14809],[859,14809],[860,14810],[861,14811],[862,14774],[863,14812],[865,14806],[866,14807],[867,14808],[868,14805],[869,14809],[870,14809],[871,14809],[872,14809],[873,14810],[874,14811],[875,14774],[876,14812],[878,14930],[879,14812],[880,14806],[882,14811],[883,14806],[884,14807],[885,14808],[886,14805],[887,14809],[888,14809],[889,14809],[890,14809],[891,14810],[892,14811],[893,14774],[894,14812],[896,14806],[897,14807],[898,14808],[899,14805],[900,14809],[901,14809],[902,14809],[903,14809],[904,14810],[905,14811],[906,14774],[907,14812],[909,14806],[910,14807],[911,14808],[912,14805],[913,14809],[914,14809],[915,14809],[916,14809],[917,14810],[918,14811],[919,14774],[920,14812],[922,14806],[923,14807],[924,14808],[925,14805],[926,14809],[927,14809],[928,14809],[929,14809],[930,14810],[931,14811],[932,14774],[933,14812],[935,14806],[936,14807],[937,14808],[938,14805],[939,14809],[940,14809],[941,14809],[942,14809],[943,14810],[944,14811],[945,14774],[946,14812],[948,14806],[949,14807],[950,14808],[951,14805],[952,14809],[953,14809],[954,14809],[955,14809],[956,14810],[957,14811],[958,14774],[959,14812],[961,14806],[962,14807],[963,14808],[964,14805],[965,14809],[966,14809],[967,14809],[968,14809],[969,14810],[970,14811],[971,14774],[972,14812],[974,14806],[975,14807],[976,14808],[977,14805],[978,14809],[979,14809],[980,14809],[981,14809],[982,14810],[983,14811],[984,14774],[985,14812],[987,14806],[988,14807],[989,14808],[990,14805],[991,14809],[992,14809],[993,14809],[994,14809],[995,14810],[996,14811],[997,14774],[998,14812],[1000,14806],[1001,14807],[1002,14808],[1003,14805],[1004,14809],[1005,14809],[1006,14809],[1007,14809],[1008,14810],[1009,14811],[1010,14774],[1011,14812],[1013,14806],[1015,14805],[1016,14809],[1017,14809],[1018,14811],[1019,14809],[1020,14746],[1021,14746],[1023,14805],[1024,14812],[1026,14808],[1027,14809],[1028,14809],[1029,14809],[1030,14809],[1031,14811],[1032,14809],[1033,14812],[1034,14812],[1035,14807],[1036,14806],[1037,14745],[1038,14811],[1039,14805],[1040,14805],[1041,14812],[1042,14812],[1043,14805],[1044,14808],[1045,14809],[1046,14811],[1048,14811],[1049,14812],[1050,14812],[1052,14745],[1053,14808],[1054,14809],[1056,14806],[1057,14807],[1058,14808],[1059,14805],[1060,14809],[1061,14809],[1062,14809],[1063,14809],[1064,14810],[1065,14811],[1066,14774],[1067,14812],[1068,14805],[1069,14806],[1070,14807],[1071,14808],[1072,14805],[1073,14809],[1074,14809],[1075,14809],[1076,14809],[1077,14810],[1078,14811],[1079,14774],[1080,14812],[1082,14806],[1083,14807],[1084,14808],[1085,14805],[1086,14809],[1087,14809],[1088,14809],[1089,14809],[1090,14810],[1091,14811],[1092,14774],[1093,14812],[1095,14806],[1096,14807],[1097,14808],[1098,14805],[1099,14809],[1100,14809],[1101,14809],[1102,14809],[1103,14810],[1104,14811],[1105,14774],[1106,14812],[1108,14806],[1109,14807],[1110,14808],[1111,14805],[1112,14809],[1113,14809],[1114,14809],[1115,14809],[1116,14810],[1117,14811],[1118,14774],[1119,14812],[1121,14806],[1122,14807],[1123,14808],[1124,14805],[1125,14809],[1126,14809],[1127,14809],[1128,14809],[1129,14810],[1130,14811],[1131,14774],[1132,14812],[1134,14806],[1135,14807],[1136,14808],[1137,14805],[1138,14809],[1139,14809],[1140,14809],[1141,14809],[1142,14810],[1143,14811],[1144,14774],[1145,14812],[1147,14806],[1148,14807],[1149,14808],[1150,14805],[1151,14809],[1152,14809],[1153,14809],[1154,14809],[1155,14810],[1156,14811],[1157,14774],[1158,14812],[1160,14806],[1161,14806],[1162,14807],[1163,14808],[1164,14805],[1165,14809],[1166,14809],[1167,14809],[1168,14809],[1169,14810],[1170,14811],[1171,14774],[1172,14812],[1174,14746],[1175,14746],[1177,14811],[1178,14806],[1179,14807],[1180,14808],[1181,14805],[1182,14809],[1183,14809],[1184,14809],[1185,14809],[1186,14810],[1187,14811],[1188,14774],[1189,14812],[1192,14809],[1193,14809],[1194,14809],[1195,14809],[1196,14809],[1197,14808],[1198,14808],[1199,14810],[1200,14808],[1201,14808],[1202,14810],[1203,14810],[1204,14808],[1205,14808],[1206,14808],[1207,14808],[1208,14808],[1209,14808],[1210,14808],[1211,14808],[1212,14808],[1213,14808],[1214,14808],[1215,14808],[1216,14808],[1217,14808],[1218,14808],[1219,14808],[1220,14808],[1221,14808],[1222,14808],[1223,14808],[1224,14808],[1225,14808],[1226,14808],[1227,14808],[1228,14808],[1229,14808],[1230,14808],[1231,14808],[1232,14808],[1233,14808],[1234,14808],[1235,14808],[1236,14808],[1237,14808],[1238,14808],[1239,14808],[1240,14808],[1241,14808],[1242,14808],[1243,14808],[1244,14808],[1245,14808],[1246,14808],[1247,14808],[1248,14808],[1249,14808],[1250,14807],[1251,14807],[1252,14807],[1253,14807],[1254,14807],[1255,14807],[1256,14807],[1257,14807],[1258,14807],[1259,14807],[1260,14807],[1261,14807],[1262,14807],[1263,14807],[1264,14807],[1265,14807],[1266,14807],[1267,14807],[1268,14807],[1269,14807],[1270,14807],[1271,14807],[1272,14807],[1273,14807],[1274,14807],[1275,14807],[1276,14807],[1277,14807],[1278,14807],[1279,14807],[1280,14807],[1281,14807],[1282,14807],[1283,14807],[1284,14807],[1285,14807],[1286,14807],[1287,14807],[1288,14807],[1289,14807],[1290,14807],[1291,14807],[1292,14807],[1293,14807],[1294,14807],[1295,14807],[1296,14807],[1297,14807],[1298,14807],[1299,14807],[1300,14807],[1301,14807],[1302,14807],[1303,14807],[1304,14807],[1305,14807],[1306,14807],[1307,14807],[1308,14807],[1309,14807],[1310,14807],[1311,14807],[1312,14807],[1313,14807],[1314,14807],[1315,14807],[1316,14807],[1317,14807],[1318,14807],[1319,14807],[1320,14807],[1321,14807],[1322,14807],[1323,14807],[1324,14807],[1325,14807],[1326,14807],[1327,14807],[1328,14807],[1329,14807],[1330,14807],[1331,14807],[1332,14807],[1333,14807],[1334,14807],[1335,14807],[1336,14807],[1337,14807],[1338,14807],[1339,14807],[1340,14807],[1341,14807],[1342,14807],[1343,14807],[1344,14807],[1345,14820],[1346,14814],[1347,14805],[1348,14814],[1349,14820],[1350,14805],[1351,14814],[1352,14814],[1353,14814],[1354,14820],[1355,14814],[1356,14820],[1357,14814],[1358,14820],[1359,14814],[1360,14820],[1361,14814],[1362,14814],[1363,14820],[1364,14814],[1365,14820],[1366,14814],[1367,14814],[1368,14820],[1369,14820],[1370,14814],[1371,14820],[1372,14820],[1373,14820],[1374,14814],[1375,14814],[1376,14820],[1377,14814],[1378,14814],[1379,14820],[1380,14814],[1381,14820],[1382,14814],[1383,14820],[1384,14814],[1385,14820],[1386,14814],[1387,14820],[1388,14820],[1389,14814],[1390,14820],[1391,14814],[1392,14820],[1393,14814],[1394,14820],[1395,14814],[1396,14820],[1397,14814],[1398,14820],[1399,14814],[1400,14820],[1401,14814],[1402,14820],[1403,14814],[1404,14820],[1405,14814],[1406,14820],[1407,14814],[1408,14820],[1409,14814],[1410,14820],[1411,14814],[1412,14820],[1413,14814],[1414,14820],[1415,14814],[1416,14814],[1417,14814],[1418,14814],[1419,14814],[1420,14820],[1421,14814],[1422,14814],[1423,14820],[1424,14820],[1425,14814],[1426,14820],[1427,14814],[1428,14820],[1429,14814],[1430,14820],[1431,14814],[1432,14820],[1433,14814],[1434,14820],[1435,14814],[1436,14820],[1437,14814],[1438,14820],[1439,14814],[1440,14820],[1441,14814],[1442,14820],[1443,14820],[1444,14820],[1445,14820],[1446,14820],[1447,14820],[1448,14820],[1449,14820],[1450,14820],[1451,14820],[1452,14820],[1453,14820],[1454,14820],[1455,14820],[1456,14820],[1457,14820],[1458,14820],[1459,14820],[1460,14820],[1461,14820],[1462,14820],[1463,14820],[1464,14820],[1465,14820],[1466,14820],[1467,14820],[1468,14820],[1469,14820],[1470,14820],[1471,14820],[1472,14820],[1473,14820],[1474,14820],[1475,14820],[1476,14820],[1477,14820],[1478,14820],[1479,14820],[1480,14820],[1481,14820],[1482,14820],[1483,14820],[1484,14820],[1485,14820],[1486,14820],[1487,14820],[1488,14820],[1489,14820],[1490,14820],[1491,14820],[1492,14820],[1493,14820],[1494,14820],[1495,14826],[1496,14823],[1497,14823],[1498,14823],[1499,14823],[1502,14827],[1503,14823],[1504,14815],[1505,14815],[1506,14815],[1507,14823],[1508,14823],[1511,14827],[1514,14827],[1515,14823],[1516,14823],[1517,14827],[1518,14823],[1519,14823],[1520,14823],[1521,14823],[1522,14823],[1523,14827],[1524,14815],[1525,14828],[1526,14815],[1527,14815],[1530,14827],[1531,14823],[1532,14823],[1533,14823],[1534,14823],[1535,14823],[1536,14823],[1537,14823],[1538,14823],[1539,14815],[1540,14822],[1541,14822],[1542,14821],[1543,14821],[1544,14827],[1545,14815],[1546,14828],[1547,14823],[1548,14823],[1549,14823],[1550,14823],[1553,14827],[1554,14815],[1555,14823],[1556,14823],[1557,14823],[1558,14823],[1559,14823],[1560,14815],[1561,14826],[1562,14823],[1563,14821],[1564,14821],[1565,14827],[1566,14815],[1567,14815],[1568,14815],[1569,14815],[1570,14815],[1571,14815],[1572,14815],[1573,14822],[1574,14822],[1575,14828],[1576,14828],[1577,14823],[1578,14823],[1579,14823],[1580,14823],[1581,14823],[1582,14823],[1583,14823],[1584,14823],[1585,14815],[1586,14826],[1587,14823],[1588,14821],[1589,14821],[1590,14827],[1591,14815],[1592,14815],[1593,14815],[1594,14815],[1595,14815],[1596,14815],[1597,14815],[1598,14822],[1599,14822],[1600,14828],[1601,14828],[1602,14823],[1603,14823],[1604,14823],[1605,14823],[1606,14823],[1607,14823],[1608,14823],[1609,14823],[1610,14815],[1611,14826],[1612,14823],[1613,14821],[1614,14821],[1615,14827],[1616,14815],[1617,14815],[1618,14815],[1619,14815],[1620,14815],[1621,14815],[1622,14815],[1623,14822],[1624,14822],[1625,14828],[1626,14828],[1627,14823],[1628,14823],[1629,14823],[1630,14823],[1631,14823],[1632,14823],[1633,14823],[1634,14823],[1635,14815],[1636,14826],[1637,14823],[1638,14821],[1639,14821],[1640,14827],[1641,14815],[1642,14815],[1643,14815],[1644,14815],[1645,14815],[1646,14815],[1647,14815],[1648,14822],[1649,14822],[1650,14828],[1651,14828],[1652,14823],[1653,14823],[1654,14823],[1655,14823],[1656,14823],[1657,14823],[1658,14823],[1659,14823],[1660,14815],[1661,14826],[1662,14823],[1663,14821],[1664,14821],[1665,14827],[1666,14815],[1667,14815],[1668,14815],[1669,14815],[1670,14815],[1671,14815],[1672,14815],[1673,14822],[1674,14822],[1675,14828],[1676,14828],[1677,14823],[1678,14823],[1679,14823],[1680,14823],[1681,14823],[1682,14823],[1683,14823],[1684,14823],[1685,14821],[1686,14815],[1687,14822],[1688,14815],[1689,14815],[1690,14815],[1691,14815],[1692,14815],[1693,14815],[1694,14826],[1695,14823],[1696,14821],[1697,14821],[1698,14827],[1699,14815],[1700,14815],[1701,14815],[1702,14815],[1703,14815],[1704,14815],[1705,14815],[1706,14822],[1707,14822],[1708,14828],[1709,14828],[1710,14823],[1711,14823],[1712,14823],[1713,14823],[1714,14823],[1715,14823],[1716,14823],[1717,14823],[1718,14815],[1719,14826],[1720,14823],[1721,14821],[1722,14821],[1723,14827],[1724,14815],[1725,14815],[1726,14815],[1727,14815],[1728,14815],[1729,14815],[1730,14815],[1731,14822],[1732,14822],[1733,14828],[1734,14828],[1735,14823],[1736,14823],[1737,14823],[1738,14823],[1739,14823],[1740,14823],[1741,14823],[1742,14823],[1743,14815],[1744,14815],[1745,14815],[1746,14823],[1747,14821],[1748,14815],[1749,14822],[1750,14815],[1751,14815],[1752,14826],[1753,14823],[1754,14821],[1755,14821],[1756,14827],[1757,14815],[1758,14815],[1759,14815],[1760,14815],[1761,14815],[1762,14815],[1763,14815],[1764,14822],[1765,14822],[1766,14828],[1767,14828],[1768,14823],[1769,14823],[1770,14823],[1771,14823],[1772,14823],[1773,14823],[1774,14823],[1775,14823],[1776,14822],[1777,14826],[1778,14821],[1779,14821],[1780,14827],[1781,14815],[1782,14815],[1783,14815],[1784,14815],[1785,14815],[1786,14815],[1787,14815],[1788,14822],[1789,14822],[1790,14828],[1791,14828],[1792,14823],[1793,14823],[1794,14823],[1795,14823],[1796,14823],[1797,14823],[1798,14823],[1799,14823],[1800,14826],[1801,14821],[1802,14821],[1803,14827],[1804,14815],[1805,14815],[1806,14815],[1807,14815],[1808,14815],[1809,14815],[1810,14815],[1811,14822],[1812,14822],[1813,14828],[1814,14828],[1815,14823],[1816,14823],[1817,14823],[1818,14823],[1819,14823],[1820,14823],[1821,14823],[1822,14823],[1823,14826],[1824,14821],[1825,14821],[1826,14827],[1827,14815],[1828,14815],[1829,14815],[1830,14815],[1831,14815],[1832,14815],[1833,14815],[1834,14822],[1835,14822],[1836,14828],[1837,14828],[1838,14823],[1839,14823],[1840,14823],[1841,14823],[1842,14823],[1843,14823],[1844,14823],[1845,14823],[1846,14828],[1847,14828],[1848,14823],[1849,14815],[1850,14826],[1851,14823],[1852,14821],[1853,14821],[1854,14827],[1855,14815],[1856,14815],[1857,14815],[1858,14815],[1859,14815],[1860,14815],[1861,14815],[1862,14822],[1863,14822],[1864,14828],[1865,14828],[1866,14823],[1867,14823],[1868,14823],[1869,14823],[1870,14823],[1871,14823],[1872,14823],[1873,14823],[1874,14815],[1875,14815],[1876,14815],[1877,14826],[1878,14815],[1879,14815],[1880,14822],[1881,14815],[1882,14826],[1883,14823],[1884,14821],[1885,14821],[1886,14827],[1887,14815],[1888,14815],[1889,14815],[1890,14815],[1891,14815],[1892,14815],[1893,14815],[1894,14822],[1895,14822],[1896,14828],[1897,14828],[1898,14823],[1899,14823],[1900,14823],[1901,14823],[1902,14823],[1903,14823],[1904,14823],[1905,14823],[1906,14815],[1907,14826],[1908,14823],[1909,14821],[1910,14821],[1911,14827],[1912,14815],[1913,14815],[1914,14815],[1915,14815],[1916,14815],[1917,14815],[1918,14815],[1919,14822],[1920,14822],[1921,14828],[1922,14828],[1923,14823],[1924,14823],[1925,14823],[1926,14823],[1927,14823],[1928,14823],[1929,14823],[1930,14823],[1931,14815],[1932,14826],[1933,14823],[1934,14821],[1935,14821],[1936,14827],[1937,14815],[1938,14815],[1939,14815],[1940,14815],[1941,14815],[1942,14815],[1943,14815],[1944,14822],[1945,14822],[1946,14828],[1947,14828],[1948,14823],[1949,14823],[1950,14823],[1951,14823],[1952,14823],[1953,14823],[1954,14823],[1955,14823],[1956,14815],[1957,14826],[1958,14823],[1959,14821],[1960,14821],[1961,14827],[1962,14815],[1963,14815],[1964,14815],[1965,14815],[1966,14815],[1967,14815],[1968,14815],[1969,14822],[1970,14822],[1971,14828],[1972,14828],[1973,14823],[1974,14823],[1975,14823],[1976,14823],[1977,14823],[1978,14823],[1979,14823],[1980,14823],[1981,14815],[1982,14815],[1983,14815],[1984,14826],[1985,14827],[1986,14823],[1987,14823],[1988,14823],[1989,14823],[1990,14823],[1991,14823],[1992,14823],[1993,14823],[1994,14827],[1995,14827],[1996,14827],[1997,14823],[1998,14823],[1999,14823],[2000,14823],[2001,14823],[2002,14823],[2003,14823],[2004,14823],[2005,14823],[2006,14823],[2007,14823],[2008,14823],[2009,14821],[2010,14821],[2011,14828],[2012,14828],[2013,14821],[2014,14815],[2015,14815],[2016,14815],[2017,14815],[2018,14826],[2019,14821],[2020,14821],[2021,14827],[2022,14815],[2023,14815],[2024,14815],[2025,14822],[2026,14822],[2027,14823],[2028,14823],[2029,14823],[2030,14823],[2031,14823],[2032,14823],[2033,14823],[2034,14823],[2035,14815],[2036,14815],[2037,14826],[2038,14823],[2039,14821],[2040,14821],[2041,14821],[2042,14827],[2043,14827],[2044,14815],[2045,14815],[2046,14815],[2047,14815],[2048,14815],[2049,14815],[2050,14815],[2051,14815],[2052,14822],[2053,14822],[2054,14828],[2055,14828],[2056,14823],[2057,14823],[2058,14823],[2059,14823],[2060,14823],[2061,14823],[2062,14823],[2063,14823],[2064,14815],[2065,14826],[2066,14823],[2067,14821],[2068,14821],[2069,14827],[2070,14815],[2071,14815],[2072,14815],[2073,14815],[2074,14815],[2075,14815],[2076,14815],[2077,14822],[2078,14822],[2079,14828],[2080,14828],[2081,14823],[2082,14823],[2083,14823],[2084,14823],[2085,14823],[2086,14823],[2087,14823],[2088,14823],[2089,14815],[2090,14822],[2091,14815],[2092,14826],[2093,14823],[2094,14821],[2095,14821],[2096,14827],[2097,14815],[2098,14815],[2099,14815],[2100,14815],[2101,14815],[2102,14815],[2103,14815],[2104,14822],[2105,14822],[2106,14828],[2107,14828],[2108,14823],[2109,14823],[2110,14823],[2111,14823],[2112,14823],[2113,14823],[2114,14823],[2115,14823],[2116,14823],[2117,14823],[2118,14823],[2119,14823],[2120,14815],[2121,14815],[2122,14822],[2123,14822],[2124,14823],[2125,14815],[2126,14815],[2127,14828],[2128,14823],[2129,14815],[2130,14815],[2131,14828],[2132,14827],[2133,14823],[2134,14823],[2135,14823],[2136,14823],[2137,14815],[2138,14815],[2139,14828],[2140,14815],[2141,14815],[2142,14815],[2143,14815],[2144,14828],[2145,14822],[2146,14822],[2147,14815],[2148,14826],[2149,14823],[2150,14821],[2151,14821],[2152,14827],[2153,14815],[2154,14815],[2155,14815],[2156,14815],[2157,14815],[2158,14815],[2159,14815],[2160,14822],[2161,14822],[2162,14828],[2163,14828],[2164,14823],[2165,14823],[2166,14823],[2167,14823],[2168,14823],[2169,14823],[2170,14823],[2171,14823],[2172,14815],[2173,14826],[2174,14823],[2175,14821],[2176,14821],[2177,14827],[2178,14815],[2179,14815],[2180,14815],[2181,14815],[2182,14815],[2183,14815],[2184,14815],[2185,14822],[2186,14822],[2187,14828],[2188,14828],[2189,14823],[2190,14823],[2191,14823],[2192,14823],[2193,14823],[2194,14823],[2195,14823],[2196,14823],[2197,14815],[2198,14826],[2199,14823],[2200,14821],[2201,14821],[2202,14827],[2203,14815],[2204,14815],[2205,14815],[2206,14815],[2207,14815],[2208,14815],[2209,14815],[2210,14822],[2211,14822],[2212,14828],[2213,14828],[2214,14823],[2215,14823],[2216,14823],[2217,14823],[2218,14823],[2219,14823],[2220,14823],[2221,14823],[2222,14815],[2223,14826],[2224,14823],[2225,14821],[2226,14821],[2227,14827],[2228,14815],[2229,14815],[2230,14815],[2231,14815],[2232,14815],[2233,14815],[2234,14815],[2235,14822],[2236,14822],[2237,14828],[2238,14828],[2239,14823],[2240,14823],[2241,14823],[2242,14823],[2243,14823],[2244,14823],[2245,14823],[2246,14823],[2247,14815],[2248,14826],[2249,14823],[2250,14821],[2251,14821],[2252,14827],[2253,14815],[2254,14815],[2255,14815],[2256,14815],[2257,14815],[2258,14822],[2259,14822],[2260,14828],[2261,14828],[2262,14823],[2263,14823],[2264,14823],[2265,14823],[2266,14823],[2267,14823],[2268,14823],[2269,14823],[2270,14815],[2271,14826],[2272,14823],[2273,14821],[2274,14821],[2275,14827],[2276,14815],[2277,14815],[2278,14815],[2279,14815],[2280,14815],[2281,14815],[2282,14815],[2283,14822],[2284,14822],[2285,14828],[2286,14828],[2287,14823],[2288,14823],[2289,14823],[2290,14823],[2291,14823],[2292,14823],[2293,14823],[2294,14823],[2295,14815],[2296,14826],[2297,14823],[2298,14821],[2299,14821],[2300,14827],[2301,14815],[2302,14815],[2303,14815],[2304,14815],[2305,14815],[2306,14815],[2307,14815],[2308,14822],[2309,14822],[2310,14828],[2311,14828],[2312,14823],[2313,14823],[2314,14823],[2315,14823],[2316,14823],[2317,14823],[2318,14823],[2319,14823],[2320,14815],[2321,14826],[2322,14823],[2323,14821],[2324,14821],[2325,14827],[2326,14815],[2327,14815],[2328,14815],[2329,14815],[2330,14815],[2331,14815],[2332,14815],[2333,14822],[2334,14822],[2335,14828],[2336,14828],[2337,14823],[2338,14823],[2339,14823],[2340,14823],[2341,14823],[2342,14823],[2343,14823],[2344,14823],[2345,14815],[2346,14826],[2347,14823],[2348,14821],[2349,14821],[2350,14827],[2351,14815],[2352,14815],[2353,14815],[2354,14815],[2355,14815],[2356,14815],[2357,14815],[2358,14822],[2359,14822],[2360,14828],[2361,14828],[2362,14823],[2363,14823],[2364,14823],[2365,14823],[2366,14823],[2367,14823],[2368,14823],[2369,14823],[2370,14815],[2371,14821],[2372,14815],[2373,14815],[2374,14815],[2375,14815],[2376,14815],[2377,14815],[2378,14815],[2379,14815],[2380,14826],[2381,14823],[2382,14821],[2383,14821],[2384,14827],[2385,14815],[2386,14815],[2387,14815],[2388,14815],[2389,14815],[2390,14815],[2391,14815],[2392,14822],[2393,14822],[2394,14828],[2395,14828],[2396,14823],[2397,14823],[2398,14823],[2399,14823],[2400,14823],[2401,14823],[2402,14823],[2403,14823],[2404,14827],[2405,14815],[2406,14822],[2407,14822],[2408,14823],[2409,14823],[2410,14823],[2411,14823],[2412,14821],[2413,14821],[2414,14815],[2415,14815],[2416,14822],[2417,14822],[2418,14828],[2419,14828],[2420,14815],[2421,14815],[2422,14823],[2423,14826],[2424,14815],[2425,14815],[2426,14822],[2427,14822],[2428,14815],[2429,14815],[2430,14815],[2431,14823],[2432,14823],[2433,14815],[2434,14815],[2435,14815],[2436,14822],[2437,14815],[2438,14815],[2439,14815],[2440,14815],[2441,14821],[2442,14821],[2443,14821],[2444,14821],[2445,14826],[2446,14815],[2447,14815],[2448,14822],[2449,14823],[2450,14823],[2451,14815],[2452,14815],[2453,14815],[2454,14815],[2455,14815],[2456,14823],[2457,14823],[2458,14823],[2459,14823],[2460,14823],[2461,14828],[2462,14821],[2463,14815],[2464,14828],[2465,14828],[2466,14823],[2467,14823],[2468,14815],[2469,14815],[2470,14815],[2471,14815],[2472,14815],[2473,14815],[2474,14822],[2475,14815],[2476,14815],[2477,14815],[2478,14826],[2479,14827],[2480,14823],[2481,14826],[2482,14821],[2483,14821],[2484,14827],[2485,14815],[2486,14815],[2487,14815],[2488,14815],[2489,14815],[2490,14815],[2491,14815],[2492,14822],[2493,14822],[2494,14828],[2495,14828],[2496,14823],[2497,14823],[2498,14823],[2499,14823],[2500,14823],[2501,14823],[2502,14823],[2503,14823],[2504,14823],[2505,14823],[2506,14823],[2507,14823],[2508,14827],[2509,14815],[2510,14815],[2511,14826],[2512,14823],[2513,14821],[2514,14821],[2515,14827],[2516,14815],[2517,14815],[2518,14815],[2519,14815],[2520,14815],[2521,14815],[2522,14815],[2523,14822],[2524,14822],[2525,14828],[2526,14828],[2527,14823],[2528,14823],[2529,14823],[2530,14823],[2531,14823],[2532,14823],[2533,14823],[2534,14823],[2535,14815],[2536,14826],[2537,14823],[2538,14821],[2539,14821],[2540,14827],[2541,14815],[2542,14815],[2543,14815],[2544,14815],[2545,14815],[2546,14815],[2547,14815],[2548,14822],[2549,14822],[2550,14828],[2551,14828],[2552,14823],[2553,14823],[2554,14823],[2555,14823],[2556,14823],[2557,14823],[2558,14823],[2559,14823],[2560,14815],[2561,14826],[2562,14823],[2563,14821],[2564,14821],[2565,14827],[2566,14815],[2567,14815],[2568,14815],[2569,14815],[2570,14815],[2571,14815],[2572,14815],[2573,14822],[2574,14822],[2575,14828],[2576,14828],[2577,14823],[2578,14823],[2579,14823],[2580,14823],[2581,14823],[2582,14823],[2583,14823],[2584,14823],[2585,14815],[2586,14826],[2587,14823],[2588,14821],[2589,14821],[2590,14827],[2591,14815],[2592,14815],[2593,14815],[2594,14815],[2595,14815],[2596,14815],[2597,14815],[2598,14822],[2599,14822],[2600,14828],[2601,14828],[2602,14823],[2603,14823],[2604,14823],[2605,14823],[2606,14823],[2607,14823],[2608,14823],[2609,14823],[2610,14815],[2611,14826],[2612,14823],[2613,14821],[2614,14821],[2615,14827],[2616,14815],[2617,14815],[2618,14815],[2619,14815],[2620,14815],[2621,14815],[2622,14815],[2623,14822],[2624,14822],[2625,14828],[2626,14828],[2627,14823],[2628,14823],[2629,14823],[2630,14823],[2631,14823],[2632,14823],[2633,14823],[2634,14823],[2635,14815],[2636,14826],[2637,14823],[2638,14821],[2639,14821],[2640,14827],[2641,14815],[2642,14815],[2643,14815],[2644,14815],[2645,14815],[2646,14815],[2647,14815],[2648,14822],[2649,14822],[2650,14828],[2651,14828],[2652,14823],[2653,14823],[2654,14823],[2655,14823],[2656,14823],[2657,14823],[2658,14823],[2659,14823],[2660,14815],[2661,14826],[2662,14823],[2663,14821],[2664,14821],[2665,14827],[2666,14815],[2667,14815],[2668,14815],[2669,14815],[2670,14815],[2671,14815],[2672,14815],[2673,14822],[2674,14822],[2675,14828],[2676,14828],[2677,14823],[2678,14823],[2679,14823],[2680,14823],[2681,14823],[2682,14823],[2683,14823],[2684,14823],[2685,14815],[2686,14826],[2687,14823],[2688,14821],[2689,14821],[2690,14827],[2691,14815],[2692,14815],[2693,14815],[2694,14815],[2695,14815],[2696,14815],[2697,14815],[2698,14822],[2699,14822],[2700,14828],[2701,14828],[2702,14823],[2703,14823],[2704,14823],[2705,14823],[2706,14823],[2707,14823],[2708,14823],[2709,14823],[2710,14815],[2711,14826],[2712,14823],[2713,14821],[2714,14821],[2715,14827],[2716,14815],[2717,14815],[2718,14815],[2719,14815],[2720,14815],[2721,14815],[2722,14815],[2723,14822],[2724,14822],[2725,14828],[2726,14828],[2727,14823],[2728,14823],[2729,14823],[2730,14823],[2731,14823],[2732,14823],[2733,14823],[2734,14823],[2735,14815],[2736,14815],[2737,14822],[2738,14827],[2739,14815],[2779,14825],[2780,14825],[2781,14825],[2782,14825],[2783,14825],[2784,14825],[2785,14825],[2786,14825],[2787,14825],[2788,14825],[2789,14825],[2790,14825],[2791,14825],[2792,14825],[2793,14825],[2794,14825],[2795,14825],[2796,14825],[2797,14825],[2798,14825],[2799,14825],[2800,14825],[2801,14825],[2802,14825],[2803,14825],[2804,14825],[2805,14825],[2806,14825],[2807,14825],[2808,14825],[2809,14825],[2810,14825],[2811,14825],[2812,14825],[2813,14825],[2814,14825],[2815,14825],[2816,14825],[2817,14825],[2818,14825],[2819,14825],[2820,14825],[2821,14825],[2822,14825],[2823,14825],[2824,14825],[2825,14825],[2826,14825],[2827,14825],[2828,14825],[2829,14825],[2830,14825],[2831,14825],[2832,14825],[2833,14825],[2834,14825],[2835,14825],[2836,14825],[2837,14825],[2838,14825],[2839,14825],[2840,14825],[2841,14825],[2842,14825],[2843,14825],[2844,14825],[2845,14825],[2846,14825],[2847,14825],[2848,14825],[2849,14825],[2850,14825],[2851,14825],[2852,14825],[2853,14825],[2854,14825],[2855,14825],[2856,14825],[2857,14825],[2858,14825],[2859,14825],[2860,14825],[2861,14825],[2862,14825],[2863,14825],[2864,14825],[2865,14825],[2866,14825],[2867,14825],[2868,14825],[2869,14825],[2870,14825],[2871,14825],[2872,14825],[2873,14825],[2874,14825],[2875,14825],[2876,14825],[2877,14825],[2878,14825],[2879,14825],[2880,14825],[2881,14825],[2882,14825],[2883,14825],[2884,14825],[2885,14825],[2886,14825],[2887,14825],[2888,14825],[2889,14825],[2890,14825],[2891,14825],[2892,14825],[2893,14825],[2894,14825],[2895,14825],[2896,14825],[2897,14825],[2898,14825],[2899,14825],[2900,14825],[2901,14825],[2902,14825],[2903,14825],[2904,14825],[2905,14825],[2906,14825],[2907,14825],[2908,14825],[2909,14825],[2910,14825],[2911,14825],[2912,14825],[2913,14825],[2914,14825],[2915,14825],[2916,14825],[2917,14825],[2918,14825],[2919,14825],[2920,14825],[2921,14825],[2922,14825],[2923,14825],[2924,14825],[2925,14825],[2926,14825],[2927,14825],[2928,14825],[2929,14825],[2930,14825],[2931,14825],[2932,14825],[2933,14825],[2934,14825],[2935,14825],[2936,14825],[2937,14825],[2938,14825],[2939,14825],[2940,14825],[2941,14825],[2942,14825],[2943,14825],[2944,14825],[2945,14825],[2946,14825],[2947,14825],[2948,14825],[2949,14825],[2950,14825],[2951,14825],[2952,14825],[2953,14825],[2954,14825],[2955,14825],[2956,14825],[2957,14825],[2958,14825],[2959,14825],[2960,14825],[2961,14825],[2962,14825],[2963,14825],[2964,14825],[2965,14825],[2966,14825],[2967,14825],[2968,14825],[2969,14825],[2970,14825],[2971,14825],[2972,14825],[2973,14825],[2974,14825],[2975,14825],[2976,14825],[2977,14825],[2978,14825],[2979,14825],[2980,14825],[2981,14825],[2982,14825],[2983,14825],[2984,14825],[2985,14825],[2986,14825],[2987,14825],[2988,14825],[2989,14825],[2990,14825],[2991,14825],[2992,14825],[2993,14825],[2994,14825],[2995,14825],[2996,14825],[2997,14825],[2998,14825],[2999,14825],[3000,14825],[3001,14825],[3002,14825],[3003,14825],[3004,14825],[3005,14825],[3006,14825],[3007,14825],[3008,14825],[3009,14825],[3010,14825],[3011,14825],[3012,14825],[3013,14825],[3014,14825],[3015,14825],[3016,14825],[3017,14825],[3018,14825],[3019,14825],[3020,14825],[3021,14825],[3022,14825],[3023,14825],[3024,14825],[3025,14825],[3026,14825],[3027,14825],[3028,14825],[3029,14825],[3030,14825],[3031,14825],[3032,14825],[3033,14825],[3034,14825],[3035,14825],[3036,14825],[3037,14825],[3038,14825],[3039,14825],[3040,14825],[3041,14825],[3042,14825],[3043,14825],[3044,14825],[3045,14825],[3046,14825],[3047,14825],[3048,14825],[3049,14825],[3050,14825],[3051,14825],[3052,14825],[3053,14825],[3054,14825],[3055,14825],[3056,14825],[3057,14825],[3058,14825],[3059,14825],[3060,14825],[3061,14825],[3062,14825],[3063,14825],[3064,14825],[3065,14825],[3066,14825],[3067,14825],[3068,14825],[3069,14825],[3070,14825],[3071,14825],[3072,14825],[3073,14825],[3074,14825],[3075,14825],[3076,14825],[3077,14825],[3078,14825],[3079,14825],[3080,14825],[3081,14825],[3082,14825],[3083,14825],[3084,14825],[3085,14825],[3086,14825],[3087,14825],[3088,14825],[3089,14825],[3090,14825],[3091,14825],[3092,14825],[3093,14825],[3094,14825],[3095,14825],[3096,14825],[3097,14825],[3098,14825],[3099,14825],[3100,14825],[3101,14825],[3102,14825],[3103,14825],[3104,14825],[3105,14825],[3106,14825],[3107,14825],[3108,14825],[3109,14825],[3110,14825],[3111,14825],[3112,14825],[3113,14825],[3114,14825],[3115,14825],[3116,14825],[3117,14825],[3118,14825],[3119,14825],[3120,14825],[3121,14825],[3122,14825],[3123,14825],[3124,14825],[3125,14825],[3126,14825],[3127,14825],[3128,14825],[3129,14825],[3130,14825],[3131,14825],[3132,14825],[3133,14825],[3134,14825],[3135,14825],[3136,14821],[3137,14821],[3138,14821],[3139,14821],[3140,14821],[3141,14821],[3142,14821],[3143,14821],[3144,14821],[3145,14821],[3146,14821],[3147,14821],[3148,14821],[3149,14821],[3150,14821],[3151,14821],[3152,14821],[3153,14821],[3154,14821],[3155,14821],[3156,14821],[3157,14821],[3158,14821],[3159,14821],[3160,14821],[3161,14821],[3162,14821],[3163,14821],[3164,14821],[3165,14821],[3166,14821],[3167,14821],[3168,14821],[3169,14821],[3170,14821],[3171,14821],[3172,14821],[3173,14821],[3174,14821],[3175,14821],[3176,14821],[3177,14821],[3178,14821],[3179,14821],[3180,14821],[3181,14821],[3182,14821],[3183,14821],[3184,14821],[3185,14821],[3186,14821],[3187,14821],[3188,14821],[3189,14821],[3190,14821],[3191,14821],[3192,14821],[3193,14821],[3194,14821],[3195,14821],[3196,14821],[3197,14821],[3198,14821],[3199,14821],[3200,14821],[3201,14821],[3202,14821],[3203,14821],[3204,14821],[3205,14821],[3206,14821],[3207,14821],[3208,14821],[3209,14821],[3210,14821],[3211,14821],[3212,14821],[3213,14821],[3214,14821],[3215,14821],[3216,14821],[3217,14821],[3218,14821],[3219,14821],[3220,14821],[3221,14821],[3222,14821],[3223,14821],[3224,14821],[3225,14821],[3226,14821],[3227,14821],[3228,14821],[3229,14821],[3230,14821],[3231,14821],[3232,14821],[3233,14821],[3234,14821],[3235,14821],[3236,14821],[3237,14821],[3238,14821],[3239,14821],[3240,14821],[3241,14821],[3242,14821],[3243,14821],[3244,14821],[3245,14821],[3246,14821],[3247,14821],[3248,14821],[3249,14821],[3250,14821],[3251,14821],[3252,14821],[3253,14821],[3254,14821],[3255,14821],[3256,14821],[3257,14821],[3258,14821],[3259,14821],[3260,14821],[3261,14821],[3262,14821],[3263,14821],[3264,14821],[3265,14821],[3266,14821],[3267,14821],[3268,14821],[3269,14821],[3270,14821],[3271,14821],[3272,14821],[3273,14821],[3274,14821],[3275,14821],[3276,14821],[3277,14821],[3278,14821],[3279,14821],[3280,14821],[3281,14821],[3282,14821],[3283,14821],[3284,14821],[3285,14821],[3286,14821],[3287,14821],[3288,14821],[3289,14821],[3290,14821],[3291,14821],[3292,14821],[3293,14821],[3294,14821],[3295,14821],[3296,14821],[3297,14821],[3298,14821],[3299,14821],[3300,14821],[3301,14821],[3302,14821],[3303,14821],[3304,14821],[3305,14821],[3306,14821],[3307,14821],[3308,14821],[3309,14821],[3310,14821],[3311,14821],[3312,14821],[3313,14821],[3314,14821],[3315,14821],[3316,14821],[3317,14821],[3318,14821],[3319,14821],[3320,14821],[3321,14821],[3322,14821],[3323,14821],[3324,14821],[3325,14821],[3326,14821],[3327,14821],[3328,14821],[3329,14821],[3330,14821],[3331,14821],[3332,14821],[3333,14821],[3334,14821],[3335,14821],[3336,14821],[3337,14821],[3338,14821],[3339,14821],[3340,14821],[3341,14821],[3342,14821],[3343,14821],[3344,14821],[3345,14821],[3346,14821],[3347,14821],[3348,14821],[3349,14821],[3350,14821],[3351,14821],[3352,14821],[3353,14821],[3354,14821],[3355,14821],[3356,14821],[3357,14821],[3358,14821],[3359,14821],[3360,14832],[3361,14826],[3362,14826],[3363,14848],[3364,14839],[3365,14835],[3366,14835],[3367,14835],[3368,14835],[3369,14835],[3370,14835],[3371,14833],[3372,14833],[3373,14833],[3374,14835],[3375,14835],[3376,14835],[3377,14835],[3379,14840],[3380,14841],[3381,14835],[3382,14835],[3383,14835],[3384,14838],[3385,14848],[3386,14838],[3388,14826],[3389,14835],[3390,14835],[3391,14835],[3392,14841],[3393,14841],[3394,14836],[3396,14835],[3397,14833],[3398,14836],[3399,14836],[3400,14836],[3401,14826],[3402,14826],[3403,14839],[3404,14833],[3405,14833],[3406,14833],[3407,14840],[3408,14836],[3409,14832],[3410,14832],[3411,14832],[3412,14832],[3413,14838],[3414,14826],[3415,14826],[3416,14839],[3417,14839],[3418,14833],[3419,14833],[3420,14840],[3421,14840],[3422,14841],[3423,14832],[3424,14832],[3425,14832],[3426,14838],[3427,14826],[3428,14826],[3429,14839],[3430,14839],[3431,14833],[3432,14840],[3433,14841],[3434,14826],[3435,14826],[3436,14839],[3437,14833],[3438,14833],[3439,14833],[3440,14840],[3441,14836],[3442,14832],[3443,14826],[3444,14826],[3445,14839],[3446,14833],[3447,14833],[3448,14833],[3449,14840],[3450,14836],[3451,14832],[3452,14826],[3453,14826],[3454,14839],[3455,14833],[3456,14833],[3457,14833],[3458,14840],[3459,14836],[3460,14832],[3461,14826],[3462,14826],[3463,14839],[3464,14833],[3465,14833],[3466,14833],[3467,14840],[3468,14836],[3469,14832],[3470,14833],[3471,14836],[3472,14836],[3473,14839],[3474,14840],[3475,14836],[3476,14838],[3477,14826],[3478,14826],[3479,14839],[3480,14839],[3481,14833],[3482,14833],[3483,14840],[3484,14840],[3485,14826],[3486,14826],[3487,14839],[3488,14833],[3489,14833],[3490,14833],[3491,14840],[3492,14836],[3493,14832],[3494,14826],[3495,14826],[3496,14839],[3497,14833],[3498,14833],[3499,14833],[3500,14840],[3501,14836],[3502,14832],[3503,14826],[3504,14839],[3505,14833],[3506,14840],[3507,14836],[3508,14826],[3509,14839],[3510,14840],[3511,14836],[3512,14826],[3513,14839],[3514,14840],[3515,14836],[3516,14840],[3517,14833],[3518,14836],[3519,14836],[3520,14826],[3521,14826],[3522,14839],[3523,14833],[3524,14833],[3525,14833],[3526,14840],[3527,14836],[3528,14832],[3529,14826],[3530,14840],[3531,14832],[3532,14836],[3533,14826],[3534,14826],[3535,14833],[3536,14833],[3537,14833],[3538,14826],[3539,14826],[3540,14839],[3541,14833],[3542,14833],[3543,14833],[3544,14840],[3545,14836],[3546,14832],[3547,14826],[3548,14826],[3549,14839],[3550,14833],[3551,14833],[3552,14833],[3553,14840],[3554,14836],[3555,14832],[3556,14826],[3557,14826],[3558,14839],[3559,14833],[3560,14833],[3561,14833],[3562,14840],[3563,14836],[3564,14832],[3565,14833],[3566,14840],[3567,14826],[3568,14826],[3569,14839],[3570,14833],[3571,14833],[3572,14833],[3573,14840],[3574,14836],[3575,14832],[3576,14836],[3577,14833],[3578,14840],[3579,14839],[3580,14839],[3581,14841],[3582,14839],[3583,14839],[3584,14832],[3585,14832],[3586,14826],[3587,14826],[3588,14839],[3589,14833],[3590,14833],[3591,14833],[3592,14840],[3593,14836],[3594,14832],[3595,14826],[3596,14826],[3597,14839],[3598,14833],[3599,14833],[3600,14833],[3601,14840],[3602,14836],[3603,14832],[3604,14838],[3605,14826],[3606,14839],[3607,14839],[3608,14833],[3609,14840],[3610,14840],[3611,14833],[3612,14833],[3613,14833],[3614,14840],[3615,14832],[3616,14832],[3617,14832],[3618,14826],[3619,14826],[3620,14839],[3621,14833],[3622,14833],[3623,14833],[3624,14840],[3625,14836],[3626,14832],[3627,14839],[3628,14840],[3629,14839],[3630,14826],[3631,14826],[3632,14839],[3633,14833],[3634,14833],[3635,14833],[3636,14840],[3637,14836],[3638,14832],[3639,14838],[3640,14839],[3641,14839],[3642,14833],[3643,14840],[3644,14840],[3645,14838],[3646,14839],[3647,14839],[3648,14833],[3649,14840],[3650,14840],[3651,14826],[3652,14835],[3653,14826],[3654,14826],[3655,14839],[3656,14833],[3657,14833],[3658,14840],[3659,14836],[3660,14832],[3661,14833],[3662,14833],[3663,14833],[3664,14833],[3665,14832],[3666,14832],[3667,14832],[3668,14826],[3669,14839],[3670,14840],[3671,14826],[3672,14839],[3673,14840],[3674,14826],[3675,14839],[3676,14840],[3677,14839],[3678,14840],[3679,14826],[3680,14826],[3681,14839],[3682,14840],[3683,14840],[3684,14840],[3685,14838],[3686,14826],[3687,14826],[3688,14839],[3689,14839],[3690,14833],[3691,14833],[3692,14840],[3693,14840],[3694,14826],[3695,14826],[3696,14839],[3697,14833],[3698,14833],[3699,14833],[3700,14840],[3701,14836],[3702,14832],[3703,14826],[3704,14826],[3705,14826],[3706,14826],[3707,14839],[3708,14840],[3709,14838],[3710,14826],[3711,14826],[3712,14826],[3713,14839],[3714,14839],[3715,14833],[3716,14840],[3717,14840],[3718,14839],[3719,14826],[3720,14839],[3721,14826],[3722,14839],[3723,14839],[3724,14840],[3725,14839],[3726,14840],[3727,14826],[3728,14826],[3729,14839],[3730,14826],[3731,14826],[3732,14839],[3733,14839],[3734,14840],[3735,14839],[3736,14840],[3737,14839],[3738,14840],[3739,14839],[3740,14840],[3741,14832],[3742,14832],[3743,14832],[3744,14838],[3745,14826],[3746,14826],[3747,14826],[3748,14826],[3749,14826],[3750,14839],[3751,14839],[3752,14839],[3753,14833],[3754,14833],[3755,14833],[3756,14833],[3757,14833],[3758,14840],[3759,14840],[3760,14840],[3761,14836],[3762,14832],[3763,14826],[3764,14839],[3765,14833],[3766,14840],[3767,14826],[3768,14826],[3769,14839],[3770,14833],[3771,14833],[3772,14833],[3773,14840],[3774,14836],[3775,14832],[3776,14826],[3777,14826],[3778,14839],[3779,14833],[3780,14833],[3781,14833],[3782,14840],[3783,14836],[3784,14832],[3785,14826],[3786,14832],[3787,14826],[3788,14832],[3790,14833],[3791,14833],[3792,14826],[3793,14826],[3794,14839],[3795,14833],[3796,14833],[3797,14833],[3798,14840],[3799,14836],[3800,14832],[3801,14833],[3802,14833],[3803,14833],[3804,14833],[3805,14836],[3806,14833],[3807,14833],[3808,14836],[3809,14826],[3810,14826],[3811,14839],[3812,14833],[3813,14833],[3814,14833],[3815,14840],[3816,14836],[3817,14832],[3818,14826],[3819,14826],[3820,14839],[3821,14833],[3822,14833],[3823,14833],[3824,14840],[3825,14836],[3826,14832],[3827,14826],[3828,14826],[3829,14839],[3830,14833],[3831,14833],[3832,14833],[3833,14840],[3834,14836],[3835,14832],[3836,14826],[3837,14826],[3838,14839],[3839,14833],[3840,14833],[3841,14833],[3842,14840],[3843,14836],[3844,14832],[3845,14826],[3846,14826],[3847,14839],[3848,14833],[3849,14833],[3850,14833],[3851,14840],[3852,14836],[3853,14832],[3854,14826],[3855,14826],[3856,14839],[3857,14833],[3858,14833],[3859,14833],[3860,14840],[3861,14836],[3862,14832],[3863,14826],[3864,14826],[3865,14839],[3866,14833],[3867,14833],[3868,14833],[3869,14840],[3870,14836],[3871,14832],[3872,14826],[3873,14826],[3874,14839],[3875,14833],[3876,14833],[3877,14833],[3878,14840],[3879,14836],[3880,14832],[3881,14826],[3882,14826],[3883,14839],[3884,14833],[3885,14833],[3886,14833],[3887,14840],[3888,14836],[3889,14832],[3890,14833],[3891,14840],[3892,14832],[3893,14833],[3894,14839],[3895,14840],[3896,14839],[3897,14840],[3898,14839],[3899,14826],[3900,14833],[3901,14839],[3902,14840],[3903,14839],[3904,14840],[3905,14826],[3906,14833],[3907,14840],[3908,14832],[3909,14833],[3910,14833],[3911,14839],[3912,14840],[3913,14839],[3914,14840],[3915,14839],[3916,14840],[3917,14839],[3918,14840],[3919,14840],[3920,14840],[3921,14841],[3922,14841],[3923,14841],[3924,14841],[3925,14841],[3926,14841],[3927,14848],[3928,14833],[3929,14848],[3930,14832],[3931,14832],[3932,14832],[3933,14833],[3934,14833],[3935,14832],[3936,14839],[3937,14833],[3938,14833],[3939,14833],[3940,14833],[3941,14832],[3942,14832],[3943,14841],[3944,14833],[3945,14832],[3946,14833],[3947,14841],[3948,14839],[3949,14839],[3950,14832],[3951,14832],[3952,14826],[3953,14826],[3954,14838],[3955,14826],[3956,14826],[3957,14839],[3958,14839],[3959,14833],[3960,14833],[3961,14840],[3962,14840],[3963,14826],[3964,14833],[3965,14832],[3966,14833],[3967,14833],[3968,14832],[3969,14841],[3970,14839],[3971,14833],[3972,14839],[3973,14833],[3974,14833],[3975,14833],[3976,14833],[3977,14833],[3978,14838],[3979,14826],[3980,14826],[3981,14839],[3982,14839],[3983,14833],[3984,14833],[3985,14840],[3986,14840],[3987,14833],[3988,14838],[3989,14826],[3990,14826],[3991,14839],[3992,14839],[3993,14833],[3994,14833],[3995,14840],[3996,14840],[3997,14833],[3998,14833],[3999,14840],[4000,14833],[4001,14826],[4002,14832],[4003,14832],[4004,14832],[4005,14832],[4006,14826],[4007,14826],[4008,14833],[4009,14838],[4010,14826],[4011,14826],[4012,14839],[4013,14839],[4014,14833],[4015,14833],[4016,14840],[4017,14840],[4018,14826],[4019,14839],[4020,14833],[4021,14840],[4022,14826],[4023,14840],[4024,14832],[4025,14839],[4026,14833],[4027,14833],[4028,14840],[4029,14832],[4030,14839],[4031,14833],[4032,14833],[4033,14840],[4034,14832],[4035,14833],[4036,14826],[4037,14826],[4038,14839],[4039,14833],[4040,14833],[4041,14833],[4042,14840],[4043,14836],[4044,14832],[4045,14839],[4046,14839],[4047,14826],[4048,14833],[4049,14841],[4050,14836],[4051,14839],[4052,14833],[4053,14840],[4054,14833],[4055,14832],[4056,14826],[4057,14826],[4058,14839],[4059,14833],[4060,14833],[4061,14833],[4062,14840],[4063,14836],[4064,14832],[4065,14826],[4066,14826],[4067,14839],[4068,14833],[4069,14833],[4070,14833],[4071,14840],[4072,14836],[4073,14832],[4074,14826],[4075,14826],[4076,14839],[4077,14833],[4078,14833],[4079,14833],[4080,14840],[4081,14836],[4082,14832],[4083,14826],[4084,14826],[4085,14839],[4086,14833],[4087,14833],[4088,14833],[4089,14840],[4090,14836],[4091,14832],[4092,14832],[4093,14826],[4094,14826],[4095,14839],[4096,14833],[4097,14833],[4098,14833],[4099,14840],[4100,14836],[4101,14832],[4102,14826],[4103,14826],[4104,14839],[4105,14833],[4106,14833],[4107,14833],[4108,14840],[4109,14836],[4110,14832],[4111,14826],[4112,14826],[4113,14839],[4114,14833],[4115,14833],[4116,14833],[4117,14840],[4118,14836],[4119,14832],[4120,14826],[4121,14826],[4122,14839],[4123,14833],[4124,14833],[4125,14833],[4126,14840],[4127,14836],[4128,14832],[4129,14841],[4130,14835],[4131,14841],[4132,14833],[4133,14833],[4134,14833],[4135,14826],[4136,14826],[4137,14839],[4138,14833],[4139,14833],[4140,14833],[4141,14840],[4142,14836],[4143,14832],[4145,14838],[4146,14826],[4147,14826],[4148,14839],[4149,14839],[4150,14833],[4151,14833],[4152,14840],[4153,14840],[4154,14841],[4157,14839],[4158,14840],[4159,14839],[4160,14840],[4161,14826],[4162,14826],[4163,14838],[4164,14826],[4165,14826],[4166,14839],[4167,14839],[4168,14833],[4169,14833],[4170,14840],[4171,14840],[4172,14841],[4175,14839],[4176,14840],[4177,14839],[4178,14840],[4179,14832],[4180,14826],[4181,14826],[4182,14826],[4183,14826],[4184,14826],[4185,14826],[4186,14826],[4187,14826],[4188,14826],[4189,14826],[4190,14826],[4191,14826],[4192,14826],[4193,14826],[4194,14826],[4195,14826],[4196,14826],[4197,14826],[4198,14826],[4199,14826],[4200,14826],[4201,14826],[4202,14826],[4203,14826],[4204,14826],[4205,14826],[4206,14826],[4207,14826],[4208,14826],[4209,14826],[4210,14826],[4211,14826],[4212,14826],[4213,14826],[4214,14826],[4215,14826],[4216,14826],[4217,14826],[4218,14826],[4219,14826],[4220,14826],[4221,14826],[4222,14826],[4223,14826],[4224,14826],[4225,14826],[4226,14826],[4227,14826],[4228,14826],[4229,14826],[4230,14826],[4231,14826],[4232,14826],[4233,14852],[4234,14846],[4235,14854],[4236,14846],[4237,14846],[4238,14846],[4239,14846],[4240,14846],[4241,14852],[4242,14854],[4243,14846],[4244,14846],[4245,14846],[4246,14852],[4247,14854],[4248,14846],[4249,14846],[4250,14846],[4251,14852],[4252,14854],[4253,14846],[4254,14846],[4255,14846],[4256,14852],[4257,14854],[4258,14846],[4259,14846],[4260,14846],[4261,14852],[4262,14854],[4263,14846],[4264,14846],[4265,14852],[4266,14846],[4267,14846],[4268,14852],[4269,14846],[4270,14852],[4271,14846],[4272,14852],[4273,14852],[4274,14846],[4275,14846],[4276,14852],[4277,14846],[4278,14846],[4279,14846],[4280,14846],[4281,14852],[4282,14852],[4283,14854],[4284,14846],[4285,14846],[4286,14846],[4287,14846],[4288,14852],[4289,14852],[4290,14854],[4291,14846],[4292,14846],[4293,14846],[4294,14852],[4295,14854],[4296,14846],[4297,14852],[4298,14846],[4299,14852],[4300,14846],[4301,14846],[4302,14852],[4303,14854],[4304,14846],[4305,14852],[4306,14846],[4307,14846],[4308,14852],[4309,14854],[4310,14846],[4311,14846],[4312,14852],[4313,14854],[4314,14846],[4315,14852],[4316,14854],[4317,14846],[4318,14852],[4319,14854],[4320,14846],[4321,14846],[4322,14846],[4323,14852],[4324,14854],[4325,14846],[4326,14852],[4327,14846],[4328,14846],[4329,14846],[4330,14846],[4331,14852],[4332,14852],[4333,14854],[4334,14846],[4335,14846],[4336,14846],[4337,14846],[4338,14852],[4339,14852],[4340,14854],[4341,14846],[4342,14846],[4343,14846],[4344,14852],[4345,14854],[4346,14846],[4347,14846],[4348,14846],[4349,14846],[4350,14846],[4351,14846],[4352,14846],[4353,14852],[4354,14854],[4355,14854],[4356,14846],[4357,14846],[4358,14846],[4359,14846],[4360,14852],[4361,14852],[4362,14854],[4363,14846],[4364,14846],[4365,14846],[4366,14852],[4367,14852],[4368,14852],[4369,14854],[4370,14854],[4371,14854],[4372,14846],[4373,14846],[4374,14846],[4375,14846],[4376,14852],[4377,14852],[4378,14854],[4379,14854],[4380,14846],[4381,14846],[4382,14846],[4383,14846],[4384,14852],[4385,14852],[4386,14854],[4387,14846],[4388,14846],[4389,14846],[4390,14852],[4391,14854],[4392,14852],[4393,14846],[4394,14846],[4395,14846],[4396,14846],[4397,14852],[4398,14854],[4399,14852],[4400,14846],[4401,14852],[4402,14852],[4403,14846],[4404,14852],[4405,14852],[4406,14846],[4407,14852],[4408,14846],[4409,14846],[4410,14846],[4411,14852],[4412,14854],[4413,14846],[4414,14846],[4415,14846],[4416,14846],[4417,14852],[4418,14854],[4419,14846],[4420,14846],[4421,14846],[4422,14852],[4423,14854],[4424,14846],[4425,14846],[4426,14846],[4427,14852],[4428,14854],[4429,14846],[4430,14846],[4431,14846],[4432,14852],[4433,14854],[4434,14846],[4435,14846],[4436,14846],[4437,14852],[4438,14854],[4439,14846],[4440,14846],[4441,14846],[4442,14852],[4443,14854],[4444,14846],[4445,14846],[4446,14846],[4447,14852],[4448,14854],[4449,14846],[4450,14846],[4451,14846],[4452,14852],[4453,14854],[4454,14846],[4455,14846],[4456,14846],[4457,14846],[4458,14846],[4459,14846],[4460,14846],[4461,14846],[4462,14846],[4463,14846],[4464,14852],[4465,14854],[4466,14846],[4467,14852],[4468,14846],[4469,14852],[4470,14846],[4471,14852],[4472,14852],[4473,14846],[4474,14852],[4475,14852],[4476,14852],[4477,14846],[4478,14852],[4479,14852],[4480,14846],[4481,14846],[4482,14846],[4483,14846],[4484,14846],[4485,14846],[4486,14846],[4487,14846],[4488,14846],[4489,14846],[4490,14846],[4491,14846],[4492,14846],[4493,14846],[4494,14846],[4495,14846],[4496,14846],[4497,14846],[4498,14846],[4499,14846],[4500,14846],[4501,14846],[4502,14846],[4503,14846],[4504,14846],[4505,14846],[4506,14846],[4507,14852],[4508,14854],[4509,14846],[4510,14852],[4511,14846],[4512,14846],[4513,14846],[4514,14846],[4515,14846],[4516,14852],[4517,14846],[4518,14852],[4519,14852],[4520,14854],[4521,14846],[4522,14852],[4523,14846],[4524,14846],[4525,14852],[4526,14852],[4527,14846],[4528,14846],[4529,14852],[4530,14846],[4531,14852],[4532,14846],[4533,14846],[4534,14852],[4535,14854],[4536,14846],[4537,14846],[4538,14852],[4539,14846],[4540,14846],[4541,14846],[4542,14846],[4543,14846],[4544,14852],[4545,14854],[4546,14852],[4547,14854],[4548,14852],[4549,14854],[4550,14846],[4551,14852],[4552,14846],[4553,14846],[4554,14846],[4555,14852],[4556,14854],[4557,14846],[4558,14846],[4559,14846],[4560,14846],[4561,14846],[4562,14852],[4563,14852],[4564,14852],[4565,14854],[4566,14846],[4567,14846],[4568,14846],[4569,14846],[4570,14852],[4571,14854],[4572,14846],[4573,14846],[4574,14846],[4575,14852],[4576,14854],[4577,14846],[4578,14852],[4579,14852],[4580,14846],[4581,14846],[4582,14846],[4583,14852],[4584,14854],[4585,14846],[4586,14846],[4587,14846],[4588,14852],[4589,14854],[4590,14846],[4591,14846],[4592,14846],[4593,14852],[4594,14854],[4595,14846],[4596,14846],[4597,14846],[4598,14852],[4599,14854],[4600,14846],[4601,14846],[4602,14846],[4603,14852],[4604,14854],[4605,14846],[4606,14846],[4607,14846],[4608,14846],[4609,14846],[4610,14846],[4611,14846],[4612,14846],[4613,14846],[4614,14846],[4615,14846],[4616,14846],[4617,14846],[4618,14846],[4619,14846],[4620,14846],[4621,14846],[4622,14846],[4623,14846],[4624,14846],[4625,14846],[4626,14846],[4627,14846],[4628,14846],[4629,14846],[4630,14846],[4631,14846],[4632,14846],[4633,14846],[4634,14846],[4635,14846],[4636,14846],[4637,14846],[4638,14846],[4639,14846],[4640,14846],[4641,14846],[4642,14846],[4643,14846],[4644,14846],[4645,14846],[4646,14846],[4647,14846],[4648,14846],[4649,14846],[4650,14846],[4651,14846],[4652,14846],[4653,14846],[4654,14852],[4655,14846],[4656,14846],[4657,14846],[4658,14846],[4659,14846],[4660,14846],[4661,14846],[4662,14852],[4663,14846],[4664,14846],[4665,14846],[4666,14846],[4667,14846],[4668,14852],[4669,14839],[4670,14839],[4671,14839],[4672,14839],[4673,14839],[4674,14839],[4675,14839],[4676,14839],[4677,14839],[4678,14839],[4679,14839],[4680,14839],[4681,14839],[4682,14839],[4683,14839],[4684,14839],[4685,14839],[4686,14839],[4687,14839],[4688,14839],[4689,14839],[4690,14839],[4691,14839],[4692,14839],[4693,14839],[4694,14839],[4695,14839],[4696,14839],[4697,14839],[4698,14839],[4699,14839],[4700,14839],[4701,14839],[4702,14839],[4703,14839],[4704,14839],[4705,14839],[4706,14839],[4707,14839],[4708,14839],[4709,14839],[4710,14839],[4711,14839],[4712,14839],[4713,14832],[4714,14831],[4715,14831],[4716,14834],[4717,14866],[4718,14869],[4719,14859],[4720,14824],[4721,14824],[4722,14865],[4723,14867],[4724,14863],[4725,14863],[4726,14860],[4727,14861],[4728,14850],[4729,14850],[4730,14818],[4731,14864],[4732,14862],[4733,14862],[4734,14847],[4735,14817],[4736,14831],[4737,14831],[4738,14850],[4739,14850],[4740,14831],[4741,14831],[4742,14834],[4743,14866],[4744,14869],[4745,14859],[4746,14824],[4747,14824],[4748,14865],[4749,14867],[4750,14863],[4751,14863],[4752,14860],[4753,14861],[4754,14850],[4755,14850],[4756,14862],[4757,14862],[4758,14831],[4759,14831],[4760,14818],[4761,14864],[4762,14831],[4763,14831],[4764,14817],[4765,14859],[4766,14859],[4767,14824],[4768,14824],[4769,14824],[4770,14824],[4771,14860],[4772,14861],[4773,14850],[4774,14850],[4775,14850],[4776,14850],[4777,14862],[4778,14862],[4779,14831],[4780,14831],[4781,14831],[4782,14831],[4783,14859],[4784,14824],[4785,14824],[4786,14824],[4787,14824],[4788,14861],[4789,14850],[4790,14850],[4791,14862],[4792,14862],[4793,14831],[4794,14831],[4795,14824],[4796,14824],[4797,14831],[4798,14831],[4799,14831],[4800,14831],[4801,14863],[4802,14831],[4803,14831],[4804,14831],[4805,14831],[4806,14831],[4807,14859],[4808,14824],[4809,14824],[4810,14863],[4811,14863],[4812,14831],[4813,14831],[4814,14818],[4815,14864],[4816,14818],[4817,14864],[4818,14859],[4819,14824],[4820,14824],[4821,14863],[4822,14863],[4823,14831],[4824,14831],[4825,14818],[4826,14818],[4827,14864],[4828,14864],[4829,14817],[4830,14817],[4831,14834],[4832,14865],[4833,14850],[4834,14863],[4835,14863],[4836,14863],[4837,14863],[4838,14834],[4839,14866],[4840,14869],[4841,14859],[4842,14824],[4843,14824],[4844,14865],[4845,14867],[4846,14863],[4847,14863],[4848,14860],[4849,14861],[4850,14850],[4851,14850],[4852,14862],[4853,14862],[4854,14831],[4855,14831],[4856,14818],[4857,14864],[4858,14831],[4859,14831],[4860,14817],[4861,14834],[4862,14866],[4863,14869],[4864,14859],[4865,14824],[4866,14824],[4867,14865],[4868,14867],[4869,14863],[4870,14863],[4871,14860],[4872,14861],[4873,14850],[4874,14850],[4875,14862],[4876,14862],[4877,14831],[4878,14831],[4879,14818],[4880,14864],[4881,14831],[4882,14831],[4883,14817],[4884,14834],[4885,14866],[4886,14869],[4887,14859],[4888,14824],[4889,14824],[4890,14865],[4891,14867],[4892,14863],[4893,14863],[4894,14860],[4895,14861],[4896,14850],[4897,14850],[4898,14862],[4899,14862],[4900,14831],[4901,14831],[4902,14818],[4903,14864],[4904,14831],[4905,14831],[4906,14817],[4907,14834],[4908,14866],[4909,14869],[4910,14859],[4911,14824],[4912,14824],[4913,14865],[4914,14867],[4915,14863],[4916,14863],[4917,14860],[4918,14861],[4919,14850],[4920,14850],[4921,14862],[4922,14862],[4923,14831],[4924,14831],[4925,14818],[4926,14864],[4927,14831],[4928,14831],[4929,14817],[4930,14834],[4931,14866],[4932,14869],[4933,14859],[4934,14824],[4935,14824],[4936,14865],[4937,14867],[4938,14863],[4939,14863],[4940,14860],[4941,14861],[4942,14850],[4943,14850],[4944,14862],[4945,14862],[4946,14831],[4947,14831],[4948,14818],[4949,14864],[4950,14831],[4951,14831],[4952,14817],[4953,14834],[4954,14866],[4955,14869],[4956,14859],[4957,14824],[4958,14824],[4959,14865],[4960,14867],[4961,14863],[4962,14863],[4963,14860],[4964,14861],[4965,14850],[4966,14850],[4967,14862],[4968,14862],[4969,14831],[4970,14831],[4971,14818],[4972,14864],[4973,14831],[4974,14831],[4975,14817],[4976,14861],[4977,14866],[4978,14831],[4979,14831],[4980,14834],[4981,14866],[4982,14869],[4983,14859],[4984,14824],[4985,14824],[4986,14865],[4987,14867],[4988,14863],[4989,14863],[4990,14860],[4991,14861],[4992,14850],[4993,14850],[4994,14862],[4995,14862],[4996,14831],[4997,14831],[4998,14818],[4999,14864],[5000,14831],[5001,14831],[5002,14817],[5003,14834],[5004,14866],[5005,14859],[5006,14824],[5007,14824],[5008,14865],[5009,14860],[5010,14850],[5011,14850],[5012,14862],[5013,14862],[5014,14831],[5015,14831],[5016,14818],[5017,14864],[5018,14834],[5019,14866],[5020,14859],[5021,14824],[5022,14824],[5023,14865],[5024,14867],[5025,14863],[5026,14863],[5027,14850],[5028,14850],[5029,14831],[5030,14831],[5031,14824],[5032,14824],[5033,14824],[5034,14824],[5035,14850],[5036,14850],[5037,14850],[5038,14850],[5039,14831],[5040,14831],[5041,14831],[5042,14831],[5043,14834],[5044,14866],[5045,14865],[5046,14824],[5047,14824],[5048,14860],[5049,14850],[5050,14850],[5051,14831],[5052,14831],[5053,14831],[5054,14831],[5055,14834],[5056,14866],[5057,14869],[5058,14859],[5059,14824],[5060,14824],[5061,14865],[5062,14867],[5063,14863],[5064,14863],[5065,14860],[5066,14861],[5067,14850],[5068,14850],[5069,14862],[5070,14862],[5071,14831],[5072,14831],[5073,14818],[5074,14864],[5075,14831],[5076,14831],[5077,14817],[5078,14834],[5079,14866],[5080,14869],[5081,14859],[5082,14824],[5083,14824],[5084,14865],[5085,14867],[5086,14863],[5087,14863],[5088,14860],[5089,14861],[5090,14850],[5091,14850],[5092,14862],[5093,14862],[5094,14831],[5095,14831],[5096,14818],[5097,14864],[5098,14831],[5099,14831],[5100,14817],[5101,14834],[5102,14866],[5103,14869],[5104,14859],[5105,14824],[5106,14824],[5107,14865],[5108,14867],[5109,14863],[5110,14863],[5111,14860],[5112,14861],[5113,14850],[5114,14850],[5115,14862],[5116,14862],[5117,14831],[5118,14831],[5119,14818],[5120,14864],[5121,14831],[5122,14831],[5123,14817],[5124,14859],[5125,14860],[5126,14817],[5127,14859],[5128,14860],[5129,14817],[5130,14831],[5131,14831],[5132,14831],[5133,14831],[5134,14834],[5135,14866],[5136,14869],[5137,14859],[5138,14824],[5139,14824],[5140,14865],[5141,14867],[5142,14863],[5143,14863],[5144,14860],[5145,14861],[5146,14850],[5147,14850],[5148,14862],[5149,14862],[5150,14831],[5151,14831],[5152,14818],[5153,14864],[5154,14831],[5155,14831],[5156,14817],[5157,14834],[5158,14866],[5159,14865],[5160,14850],[5161,14850],[5162,14834],[5163,14866],[5164,14834],[5165,14866],[5166,14865],[5167,14847],[5168,14831],[5169,14831],[5170,14867],[5171,14817],[5172,14834],[5173,14866],[5174,14859],[5175,14824],[5176,14824],[5177,14865],[5178,14860],[5179,14861],[5180,14850],[5181,14850],[5182,14862],[5183,14862],[5184,14831],[5185,14831],[5186,14818],[5187,14864],[5188,14817],[5189,14847],[5190,14866],[5191,14850],[5192,14834],[5193,14866],[5194,14869],[5195,14859],[5196,14824],[5197,14824],[5198,14865],[5199,14867],[5200,14863],[5201,14863],[5202,14860],[5203,14861],[5204,14850],[5205,14850],[5206,14862],[5207,14862],[5208,14831],[5209,14831],[5210,14818],[5211,14864],[5212,14831],[5213,14831],[5214,14817],[5215,14834],[5216,14866],[5217,14869],[5218,14859],[5219,14824],[5220,14824],[5221,14865],[5222,14867],[5223,14863],[5224,14863],[5225,14860],[5226,14861],[5227,14850],[5228,14850],[5229,14862],[5230,14862],[5231,14831],[5232,14831],[5233,14818],[5234,14864],[5235,14831],[5236,14831],[5237,14817],[5238,14818],[5239,14864],[5240,14824],[5241,14824],[5242,14834],[5243,14834],[5244,14866],[5245,14866],[5246,14859],[5247,14859],[5248,14859],[5249,14824],[5250,14824],[5251,14824],[5252,14824],[5253,14865],[5254,14865],[5255,14861],[5256,14861],[5257,14850],[5258,14850],[5259,14850],[5260,14850],[5261,14831],[5262,14831],[5263,14831],[5264,14831],[5265,14834],[5266,14834],[5267,14866],[5268,14866],[5269,14859],[5270,14824],[5271,14824],[5272,14824],[5273,14824],[5274,14865],[5275,14865],[5276,14861],[5277,14861],[5278,14850],[5279,14850],[5280,14850],[5281,14850],[5282,14831],[5283,14831],[5284,14831],[5285,14831],[5286,14824],[5287,14824],[5288,14831],[5289,14831],[5290,14834],[5291,14866],[5292,14869],[5293,14859],[5294,14824],[5295,14824],[5296,14865],[5297,14867],[5298,14863],[5299,14863],[5300,14860],[5301,14861],[5302,14850],[5303,14850],[5304,14862],[5305,14862],[5306,14831],[5307,14831],[5308,14818],[5309,14864],[5310,14831],[5311,14831],[5312,14817],[5313,14834],[5314,14866],[5315,14869],[5316,14859],[5317,14824],[5318,14824],[5319,14865],[5320,14867],[5321,14863],[5322,14863],[5323,14860],[5324,14861],[5325,14850],[5326,14850],[5327,14862],[5328,14862],[5329,14831],[5330,14831],[5331,14818],[5332,14864],[5333,14831],[5334,14831],[5335,14817],[5336,14834],[5337,14866],[5338,14869],[5339,14859],[5340,14824],[5341,14824],[5342,14865],[5343,14867],[5344,14863],[5345,14863],[5346,14860],[5347,14861],[5348,14850],[5349,14850],[5350,14862],[5351,14862],[5352,14831],[5353,14831],[5354,14818],[5355,14864],[5356,14831],[5357,14831],[5358,14817],[5359,14850],[5360,14850],[5361,14831],[5362,14831],[5363,14834],[5364,14834],[5365,14834],[5366,14866],[5367,14866],[5368,14866],[5369,14869],[5370,14869],[5371,14869],[5372,14859],[5373,14859],[5374,14859],[5375,14824],[5376,14824],[5377,14824],[5378,14824],[5379,14824],[5380,14824],[5381,14865],[5382,14865],[5383,14865],[5384,14867],[5385,14867],[5386,14867],[5387,14863],[5388,14863],[5389,14863],[5390,14863],[5391,14863],[5392,14863],[5393,14860],[5394,14860],[5395,14860],[5396,14861],[5397,14861],[5398,14861],[5399,14850],[5400,14850],[5401,14850],[5402,14850],[5403,14850],[5404,14850],[5405,14862],[5406,14862],[5407,14862],[5408,14862],[5409,14862],[5410,14862],[5411,14831],[5412,14831],[5413,14831],[5414,14831],[5415,14831],[5416,14831],[5417,14818],[5418,14818],[5419,14818],[5420,14864],[5421,14864],[5422,14864],[5423,14831],[5424,14831],[5425,14831],[5426,14831],[5427,14831],[5428,14831],[5429,14817],[5430,14817],[5431,14817],[5432,14863],[5433,14824],[5434,14831],[5435,14847],[5436,14824],[5437,14824],[5438,14824],[5439,14824],[5440,14850],[5441,14850],[5442,14850],[5443,14850],[5444,14831],[5445,14831],[5446,14831],[5447,14831],[5448,14834],[5449,14866],[5450,14869],[5451,14859],[5452,14824],[5453,14824],[5454,14865],[5455,14867],[5456,14863],[5457,14863],[5458,14860],[5459,14861],[5460,14850],[5461,14850],[5462,14862],[5463,14862],[5464,14831],[5465,14831],[5466,14818],[5467,14864],[5468,14831],[5469,14831],[5470,14817],[5471,14834],[5472,14834],[5473,14866],[5474,14866],[5475,14869],[5476,14869],[5477,14869],[5478,14869],[5479,14869],[5480,14859],[5481,14824],[5482,14824],[5483,14824],[5484,14824],[5485,14824],[5486,14824],[5487,14865],[5488,14865],[5489,14867],[5490,14867],[5491,14867],[5492,14863],[5493,14863],[5494,14860],[5495,14861],[5496,14850],[5497,14850],[5498,14850],[5499,14850],[5500,14850],[5501,14850],[5502,14850],[5503,14850],[5504,14862],[5505,14862],[5506,14862],[5507,14862],[5508,14831],[5509,14831],[5510,14831],[5511,14831],[5512,14831],[5513,14831],[5514,14831],[5515,14831],[5516,14831],[5517,14818],[5518,14818],[5519,14864],[5520,14864],[5521,14831],[5522,14831],[5523,14817],[5524,14834],[5525,14866],[5526,14869],[5527,14859],[5528,14824],[5529,14824],[5530,14865],[5531,14867],[5532,14863],[5533,14863],[5534,14860],[5535,14861],[5536,14850],[5537,14850],[5538,14862],[5539,14862],[5540,14831],[5541,14831],[5542,14818],[5543,14864],[5544,14831],[5545,14831],[5546,14817],[5547,14831],[5548,14818],[5549,14864],[5550,14818],[5551,14864],[5552,14861],[5553,14824],[5554,14824],[5555,14861],[5556,14850],[5557,14850],[5558,14831],[5559,14831],[5560,14834],[5561,14866],[5562,14834],[5563,14866],[5564,14865],[5565,14867],[5566,14864],[5567,14834],[5568,14866],[5569,14865],[5570,14834],[5571,14866],[5572,14869],[5573,14859],[5574,14824],[5575,14824],[5576,14865],[5577,14867],[5578,14863],[5579,14863],[5580,14860],[5581,14861],[5582,14850],[5583,14850],[5584,14862],[5585,14862],[5586,14831],[5587,14831],[5588,14818],[5589,14864],[5590,14831],[5591,14831],[5592,14817],[5593,14867],[5594,14834],[5595,14866],[5596,14824],[5597,14824],[5598,14865],[5599,14867],[5600,14863],[5601,14863],[5602,14850],[5603,14850],[5604,14862],[5605,14862],[5606,14831],[5607,14831],[5608,14818],[5609,14864],[5610,14861],[5611,14861],[5612,14859],[5613,14860],[5614,14863],[5615,14850],[5616,14850],[5617,14831],[5618,14831],[5619,14834],[5620,14866],[5621,14869],[5622,14859],[5623,14824],[5624,14824],[5625,14865],[5626,14867],[5627,14863],[5628,14863],[5629,14860],[5630,14861],[5631,14850],[5632,14850],[5633,14862],[5634,14862],[5635,14831],[5636,14831],[5637,14818],[5638,14864],[5639,14831],[5640,14831],[5641,14817],[5642,14834],[5643,14866],[5644,14865],[5645,14850],[5646,14850],[5647,14861],[5648,14863],[5649,14867],[5650,14863],[5651,14863],[5652,14860],[5653,14862],[5654,14862],[5655,14818],[5656,14864],[5657,14834],[5658,14866],[5659,14865],[5660,14834],[5661,14866],[5662,14869],[5663,14859],[5664,14824],[5665,14824],[5666,14865],[5667,14867],[5668,14863],[5669,14863],[5670,14860],[5671,14861],[5672,14850],[5673,14850],[5674,14862],[5675,14862],[5676,14831],[5677,14831],[5678,14818],[5679,14864],[5680,14831],[5681,14831],[5682,14817],[5683,14834],[5684,14865],[5685,14834],[5686,14866],[5687,14865],[5688,14834],[5689,14866],[5690,14834],[5691,14866],[5692,14865],[5693,14834],[5694,14866],[5695,14869],[5696,14859],[5697,14824],[5698,14824],[5699,14865],[5700,14867],[5701,14863],[5702,14863],[5703,14860],[5704,14861],[5705,14850],[5706,14850],[5707,14862],[5708,14862],[5709,14831],[5710,14831],[5711,14818],[5712,14864],[5713,14831],[5714,14831],[5715,14817],[5716,14834],[5717,14866],[5718,14869],[5719,14859],[5720,14824],[5721,14824],[5722,14865],[5723,14867],[5724,14863],[5725,14863],[5726,14860],[5727,14861],[5728,14850],[5729,14850],[5730,14862],[5731,14862],[5732,14831],[5733,14831],[5734,14818],[5735,14864],[5736,14831],[5737,14831],[5738,14817],[5739,14834],[5740,14866],[5741,14869],[5742,14859],[5743,14824],[5744,14824],[5745,14865],[5746,14867],[5747,14863],[5748,14863],[5749,14860],[5750,14861],[5751,14850],[5752,14850],[5753,14862],[5754,14862],[5755,14831],[5756,14831],[5757,14818],[5758,14864],[5759,14831],[5760,14831],[5761,14817],[5762,14834],[5763,14866],[5764,14869],[5765,14859],[5766,14824],[5767,14824],[5768,14865],[5769,14867],[5770,14863],[5771,14863],[5772,14860],[5773,14861],[5774,14850],[5775,14850],[5776,14862],[5777,14862],[5778,14831],[5779,14831],[5780,14818],[5781,14864],[5782,14831],[5783,14831],[5784,14817],[5785,14834],[5786,14866],[5787,14869],[5788,14859],[5789,14824],[5790,14824],[5791,14865],[5792,14867],[5793,14863],[5794,14863],[5795,14860],[5796,14861],[5797,14850],[5798,14850],[5799,14862],[5800,14862],[5801,14831],[5802,14831],[5803,14818],[5804,14864],[5805,14831],[5806,14831],[5807,14817],[5808,14834],[5809,14866],[5810,14869],[5811,14859],[5812,14824],[5813,14824],[5814,14865],[5815,14867],[5816,14863],[5817,14863],[5818,14860],[5819,14861],[5820,14850],[5821,14850],[5822,14862],[5823,14862],[5824,14831],[5825,14831],[5826,14818],[5827,14864],[5828,14831],[5829,14831],[5830,14817],[5831,14834],[5832,14866],[5833,14869],[5834,14859],[5835,14824],[5836,14824],[5837,14865],[5838,14867],[5839,14863],[5840,14863],[5841,14860],[5842,14861],[5843,14850],[5844,14850],[5845,14862],[5846,14862],[5847,14831],[5848,14831],[5849,14818],[5850,14864],[5851,14831],[5852,14831],[5853,14817],[5854,14834],[5855,14866],[5856,14869],[5857,14859],[5858,14824],[5859,14824],[5860,14865],[5861,14867],[5862,14863],[5863,14863],[5864,14860],[5865,14861],[5866,14850],[5867,14850],[5868,14862],[5869,14862],[5870,14831],[5871,14831],[5872,14818],[5873,14864],[5874,14831],[5875,14831],[5876,14817],[5877,14834],[5878,14866],[5879,14869],[5880,14859],[5881,14824],[5882,14824],[5883,14865],[5884,14867],[5885,14863],[5886,14863],[5887,14860],[5888,14861],[5889,14850],[5890,14850],[5891,14862],[5892,14862],[5893,14831],[5894,14831],[5895,14818],[5896,14864],[5897,14831],[5898,14831],[5899,14817],[5900,14867],[5901,14863],[5902,14863],[5903,14860],[5904,14862],[5905,14862],[5906,14818],[5907,14864],[5908,14864],[5909,14864],[5910,14834],[5911,14866],[5912,14865],[5913,14850],[5914,14850],[5915,14834],[5916,14866],[5917,14824],[5918,14824],[5919,14865],[5920,14850],[5921,14850],[5922,14831],[5923,14831],[5924,14860],[5925,14862],[5926,14862],[5927,14818],[5928,14864],[5929,14834],[5930,14866],[5931,14863],[5932,14850],[5933,14850],[5934,14861],[5935,14863],[5936,14863],[5937,14861],[5938,14831],[5939,14831],[5940,14834],[5941,14866],[5942,14859],[5943,14824],[5944,14824],[5945,14865],[5946,14863],[5947,14850],[5948,14850],[5949,14831],[5950,14831],[5951,14850],[5952,14850],[5953,14831],[5954,14831],[5955,14818],[5956,14864],[5957,14818],[5958,14864],[5959,14864],[5960,14864],[5961,14818],[5962,14864],[5963,14818],[5964,14864],[5965,14864],[5966,14864],[5967,14818],[5968,14864],[5969,14818],[5970,14864],[5971,14864],[5972,14864],[5973,14864],[5974,14864],[5975,14864],[5976,14864],[5977,14824],[5978,14824],[5979,14831],[5980,14831],[5981,14859],[5982,14824],[5983,14824],[5984,14865],[5985,14860],[5986,14850],[5987,14850],[5988,14831],[5989,14831],[5990,14834],[5991,14866],[5992,14865],[5993,14865],[5994,14859],[5995,14824],[5996,14824],[5997,14865],[5998,14860],[5999,14850],[6000,14850],[6001,14831],[6002,14831],[6003,14834],[6004,14866],[6005,14865],[6006,14865],[6007,14834],[6008,14834],[6009,14866],[6010,14866],[6011,14859],[6012,14859],[6013,14824],[6014,14824],[6015,14824],[6016,14824],[6017,14865],[6018,14865],[6019,14860],[6020,14861],[6021,14861],[6022,14850],[6023,14850],[6024,14850],[6025,14850],[6026,14831],[6027,14831],[6028,14831],[6029,14831],[6030,14834],[6031,14834],[6032,14866],[6033,14866],[6034,14859],[6035,14824],[6036,14824],[6037,14824],[6038,14824],[6039,14865],[6040,14865],[6041,14861],[6042,14861],[6043,14850],[6044,14850],[6045,14850],[6046,14850],[6047,14831],[6048,14831],[6049,14831],[6050,14831],[6051,14864],[6052,14859],[6053,14824],[6054,14824],[6055,14861],[6056,14850],[6057,14850],[6058,14831],[6059,14831],[6060,14834],[6061,14866],[6062,14869],[6063,14859],[6064,14824],[6065,14824],[6066,14865],[6067,14867],[6068,14863],[6069,14860],[6070,14861],[6071,14850],[6072,14850],[6073,14862],[6074,14862],[6075,14831],[6076,14831],[6077,14818],[6078,14864],[6079,14864],[6080,14861],[6081,14867],[6082,14831],[6083,14831],[6084,14863],[6085,14863],[6086,14831],[6087,14831],[6088,14831],[6089,14831],[6090,14850],[6091,14850],[6092,14831],[6093,14831],[6094,14834],[6095,14866],[6096,14859],[6097,14824],[6098,14824],[6099,14865],[6100,14860],[6101,14861],[6102,14850],[6103,14850],[6104,14862],[6105,14862],[6106,14831],[6107,14831],[6108,14818],[6109,14864],[6110,14817],[6111,14817],[6112,14860],[6113,14831],[6114,14831],[6115,14831],[6116,14831],[6117,14824],[6118,14824],[6119,14865],[6120,14864],[6121,14834],[6122,14865],[6123,14818],[6124,14864],[6125,14864],[6126,14818],[6127,14864],[6128,14859],[6129,14860],[6130,14817],[6131,14864],[6132,14824],[6133,14824],[6134,14824],[6135,14818],[6136,14864],[6137,14818],[6138,14864],[6139,14818],[6140,14864],[6141,14831],[6142,14831],[6143,14864],[6144,14863],[6145,14863],[6146,14863],[6147,14832],[6148,14847],[6149,14865],[6150,14831],[6151,14831],[6152,14824],[6153,14824],[6154,14861],[6155,14831],[6156,14831],[6157,14818],[6158,14864],[6159,14867],[6160,14834],[6161,14866],[6162,14824],[6163,14824],[6164,14824],[6165,14824],[6166,14865],[6167,14850],[6168,14850],[6169,14850],[6170,14850],[6171,14831],[6172,14831],[6173,14831],[6174,14831],[6175,14834],[6176,14866],[6177,14865],[6178,14834],[6179,14866],[6180,14865],[6181,14859],[6182,14859],[6183,14834],[6184,14866],[6185,14865],[6186,14818],[6187,14864],[6188,14831],[6189,14831],[6190,14831],[6191,14831],[6192,14831],[6193,14831],[6194,14834],[6195,14847],[6196,14834],[6197,14866],[6198,14865],[6199,14850],[6200,14850],[6201,14864],[6202,14863],[6203,14824],[6204,14824],[6205,14850],[6206,14850],[6207,14862],[6208,14862],[6209,14831],[6210,14831],[6211,14831],[6212,14831],[6213,14863],[6214,14859],[6215,14824],[6216,14824],[6217,14824],[6218,14824],[6219,14824],[6220,14824],[6221,14860],[6222,14861],[6223,14850],[6224,14850],[6225,14862],[6226,14862],[6227,14831],[6228,14831],[6229,14859],[6230,14824],[6231,14824],[6232,14824],[6233,14824],[6234,14861],[6235,14850],[6236,14850],[6237,14862],[6238,14862],[6239,14831],[6240,14831],[6241,14859],[6242,14859],[6243,14850],[6244,14850],[6245,14850],[6246,14850],[6247,14831],[6248,14831],[6249,14831],[6250,14831],[6251,14847],[6252,14867],[6253,14863],[6254,14863],[6255,14818],[6256,14864],[6257,14818],[6258,14864],[6259,14818],[6260,14864],[6261,14818],[6262,14864],[6263,14824],[6264,14831],[6265,14864],[6266,14824],[6267,14863],[6268,14831],[6269,14818],[6270,14824],[6271,14824],[6272,14850],[6273,14850],[6274,14862],[6275,14862],[6276,14831],[6277,14831],[6278,14818],[6279,14864],[6280,14824],[6281,14831],[6282,14818],[6283,14864],[6284,14818],[6285,14864],[6286,14864],[6287,14865],[6288,14834],[6289,14866],[6290,14824],[6291,14824],[6292,14865],[6293,14850],[6294,14850],[6295,14862],[6296,14862],[6297,14831],[6298,14831],[6299,14834],[6300,14866],[6301,14824],[6302,14824],[6303,14865],[6304,14850],[6305,14850],[6306,14862],[6307,14862],[6308,14831],[6309,14831],[6310,14834],[6311,14866],[6312,14824],[6313,14824],[6314,14865],[6315,14850],[6316,14850],[6317,14862],[6318,14862],[6319,14831],[6320,14831],[6321,14834],[6322,14866],[6323,14824],[6324,14824],[6325,14865],[6326,14850],[6327,14850],[6328,14862],[6329,14862],[6330,14831],[6331,14831],[6332,14834],[6333,14866],[6334,14865],[6335,14834],[6336,14866],[6337,14869],[6338,14859],[6339,14824],[6340,14824],[6341,14865],[6342,14867],[6343,14863],[6344,14863],[6345,14860],[6346,14861],[6347,14850],[6348,14850],[6349,14862],[6350,14862],[6351,14831],[6352,14831],[6353,14818],[6354,14864],[6355,14831],[6356,14831],[6357,14817],[6358,14831],[6359,14831],[6360,14869],[6361,14869],[6362,14834],[6363,14831],[6364,14867],[6365,14863],[6366,14863],[6367,14862],[6368,14862],[6369,14831],[6370,14831],[6371,14824],[6372,14824],[6373,14850],[6374,14850],[6375,14862],[6376,14862],[6377,14831],[6378,14831],[6379,14824],[6380,14831],[6381,14834],[6382,14866],[6383,14824],[6384,14824],[6385,14865],[6386,14850],[6387,14850],[6388,14862],[6389,14862],[6390,14831],[6391,14831],[6392,14865],[6393,14850],[6394,14834],[6395,14866],[6396,14824],[6397,14824],[6398,14865],[6399,14867],[6400,14863],[6401,14863],[6402,14850],[6403,14850],[6404,14862],[6405,14862],[6406,14831],[6407,14831],[6408,14818],[6409,14864],[6410,14834],[6411,14866],[6412,14824],[6413,14824],[6414,14865],[6415,14850],[6416,14850],[6417,14862],[6418,14862],[6419,14831],[6420,14831],[6421,14824],[6422,14824],[6423,14850],[6424,14850],[6425,14862],[6426,14862],[6427,14861],[6428,14862],[6429,14860],[6430,14862],[6431,14860],[6432,14862],[6433,14863],[6434,14863],[6435,14860],[6436,14860],[6437,14862],[6438,14862],[6439,14818],[6440,14818],[6441,14863],[6442,14862],[6443,14864],[6444,14864],[6445,14863],[6446,14860],[6447,14862],[6448,14864],[6449,14864],[6450,14860],[6451,14862],[6452,14862],[6453,14860],[6454,14862],[6455,14862],[6456,14863],[6457,14863],[6458,14860],[6459,14860],[6460,14862],[6461,14818],[6462,14818],[6463,14863],[6464,14864],[6465,14863],[6466,14864],[6467,14834],[6468,14866],[6469,14865],[6470,14818],[6471,14864],[6472,14867],[6473,14834],[6474,14866],[6475,14859],[6476,14824],[6477,14824],[6478,14865],[6479,14860],[6480,14850],[6481,14850],[6482,14862],[6483,14862],[6484,14831],[6485,14831],[6486,14818],[6487,14864],[6488,14834],[6489,14866],[6490,14869],[6491,14859],[6492,14824],[6493,14824],[6494,14865],[6495,14867],[6496,14863],[6497,14863],[6498,14860],[6499,14861],[6500,14850],[6501,14850],[6502,14862],[6503,14862],[6504,14831],[6505,14831],[6506,14818],[6507,14864],[6508,14831],[6509,14831],[6510,14817],[6511,14834],[6512,14866],[6513,14869],[6514,14859],[6515,14824],[6516,14824],[6517,14865],[6518,14867],[6519,14863],[6520,14863],[6521,14860],[6522,14861],[6523,14850],[6524,14850],[6525,14862],[6526,14862],[6527,14831],[6528,14831],[6529,14818],[6530,14864],[6531,14831],[6532,14831],[6533,14817],[6534,14834],[6535,14866],[6536,14869],[6537,14859],[6538,14824],[6539,14824],[6540,14865],[6541,14867],[6542,14863],[6543,14863],[6544,14860],[6545,14861],[6546,14850],[6547,14850],[6548,14862],[6549,14862],[6550,14831],[6551,14831],[6552,14818],[6553,14864],[6554,14831],[6555,14831],[6556,14817],[6557,14834],[6558,14866],[6559,14869],[6560,14859],[6561,14824],[6562,14824],[6563,14865],[6564,14867],[6565,14863],[6566,14863],[6567,14860],[6568,14861],[6569,14850],[6570,14850],[6571,14862],[6572,14862],[6573,14831],[6574,14831],[6575,14818],[6576,14864],[6577,14831],[6578,14831],[6579,14817],[6580,14831],[6581,14831],[6582,14834],[6583,14866],[6584,14869],[6585,14859],[6586,14824],[6587,14824],[6588,14865],[6589,14867],[6590,14863],[6591,14863],[6592,14860],[6593,14861],[6594,14850],[6595,14850],[6596,14862],[6597,14862],[6598,14831],[6599,14831],[6600,14818],[6601,14864],[6602,14831],[6603,14831],[6604,14817],[6605,14834],[6606,14866],[6607,14869],[6608,14859],[6609,14824],[6610,14824],[6611,14865],[6612,14867],[6613,14863],[6614,14863],[6615,14860],[6616,14861],[6617,14850],[6618,14850],[6619,14862],[6620,14862],[6621,14831],[6622,14831],[6623,14818],[6624,14864],[6625,14831],[6626,14831],[6627,14817],[6628,14834],[6629,14866],[6630,14869],[6631,14859],[6632,14824],[6633,14824],[6634,14865],[6635,14867],[6636,14863],[6637,14863],[6638,14860],[6639,14861],[6640,14850],[6641,14850],[6642,14862],[6643,14862],[6644,14831],[6645,14831],[6646,14818],[6647,14864],[6648,14831],[6649,14831],[6650,14817],[6651,14834],[6652,14866],[6653,14865],[6654,14863],[6655,14834],[6656,14866],[6657,14869],[6658,14859],[6659,14824],[6660,14824],[6661,14865],[6662,14867],[6663,14863],[6664,14863],[6665,14860],[6666,14861],[6667,14850],[6668,14850],[6669,14862],[6670,14862],[6671,14831],[6672,14831],[6673,14818],[6674,14864],[6675,14831],[6676,14831],[6677,14817],[6678,14831],[6679,14831],[6680,14863],[6681,14861],[6682,14866],[6683,14850],[6684,14834],[6685,14866],[6686,14869],[6687,14859],[6688,14824],[6689,14824],[6690,14865],[6691,14867],[6692,14863],[6693,14863],[6694,14860],[6695,14861],[6696,14850],[6697,14850],[6698,14862],[6699,14862],[6700,14831],[6701,14831],[6702,14818],[6703,14864],[6704,14831],[6705,14831],[6706,14817],[6707,14869],[6708,14834],[6709,14866],[6710,14865],[6711,14850],[6712,14850],[6713,14818],[6714,14864],[6715,14831],[6716,14831],[6717,14831],[6718,14831],[6719,14831],[6720,14818],[6721,14864],[6722,14869],[6723,14824],[6724,14824],[6725,14862],[6726,14862],[6727,14831],[6728,14831],[6729,14831],[6730,14831],[6731,14834],[6732,14866],[6733,14865],[6734,14824],[6735,14831],[6736,14831],[6737,14866],[6738,14824],[6739,14831],[6740,14831],[6741,14866],[6742,14869],[6743,14824],[6744,14824],[6745,14862],[6746,14862],[6747,14831],[6748,14831],[6749,14831],[6750,14831],[6751,14834],[6752,14866],[6753,14865],[6754,14824],[6755,14831],[6756,14824],[6757,14831],[6758,14831],[6759,14866],[6760,14869],[6761,14824],[6762,14862],[6763,14831],[6764,14831],[6765,14866],[6766,14834],[6767,14866],[6768,14859],[6769,14824],[6770,14824],[6771,14824],[6772,14824],[6773,14865],[6774,14861],[6775,14850],[6776,14850],[6777,14850],[6778,14850],[6779,14831],[6780,14831],[6781,14831],[6782,14831],[6783,14824],[6784,14824],[6785,14831],[6786,14831],[6787,14844],[6788,14844],[6789,14844],[6790,14844],[6791,14931],[6792,14931],[6793,14848],[6794,14848],[6795,14848],[6796,14848],[6797,14848],[6798,14848],[6799,14848],[6800,14848],[6801,14848],[6802,14848],[6803,14848],[6804,14848],[6805,14848],[6806,14848],[6807,14848],[6808,14848],[6809,14848],[6810,14848],[6811,14848],[6812,14848],[6813,14848],[6814,14848],[6815,14848],[6817,14848],[6818,14848],[6819,14848],[6820,14848],[6821,14848],[6822,14848],[6823,14848],[6824,14848],[6825,14848],[6826,14848],[6827,14848],[6828,14848],[6829,14848],[6830,14848],[6831,14848],[6832,14848],[6833,14848],[6834,14848],[6835,14848],[6836,14848],[6837,14848],[6838,14848],[6839,14848],[6840,14848],[6841,14848],[6842,14848],[6843,14848],[6844,14848],[6845,14848],[6846,14848],[6847,14848],[6848,14848],[6849,14848],[6850,14848],[6851,14848],[6852,14848],[6853,14848],[6854,14848],[6855,14848],[6857,14848],[6859,14848],[6861,14848],[6862,14848],[6863,14848],[6864,14848],[6866,14848],[6868,14848],[6869,14848],[6870,14848],[6871,14848],[6872,14848],[6873,14848],[6874,14848],[6875,14848],[6876,14868],[6877,14868],[6878,14868],[6879,14868],[6880,14868],[6881,14868],[6882,14868],[6883,14868],[6884,14868],[6885,14868],[6886,14840],[6887,14840],[6888,14840],[6889,14840],[6890,14840],[6891,14840],[6892,14840],[6893,14840],[6894,14840],[6895,14840],[6896,14840],[6897,14840],[6898,14840],[6899,14840],[6900,14840],[6901,14840],[6902,14840],[6903,14840],[6904,14840],[6905,14840],[6906,14840],[6907,14840],[6908,14840],[6909,14840],[6910,14840],[6911,14840],[6912,14840],[6913,14840],[6914,14840],[6915,14840],[6916,14840],[6917,14840],[6918,14840],[6919,14840],[6920,14840],[6921,14840],[6922,14840],[6923,14840],[6924,14840],[6925,14840],[6926,14840],[6927,14840],[6928,14840],[6929,14840],[6930,14840],[6931,14840],[6932,14840],[6933,14840],[6934,14840],[6935,14840],[6936,14840],[6937,14840],[6938,14840],[6939,14840],[6940,14840],[6941,14840],[6942,14840],[6943,14840],[6944,14840],[6945,14840],[6946,14840],[6947,14840],[6948,14840],[6949,14840],[6950,14840],[6951,14840],[6952,14840],[6953,14840],[6954,14840],[6955,14840],[6956,14840],[6957,14840],[6958,14840],[6959,14840],[6960,14840],[6961,14840],[6962,14840],[6963,14840],[6964,14840],[6965,14840],[6966,14840],[6967,14840],[6968,14840],[6969,14840],[6970,14840],[6971,14840],[6972,14840],[6973,14840],[6974,14840],[6975,14840],[6976,14840],[6977,14840],[6978,14840],[6979,14840],[6980,14840],[6981,14840],[6982,14840],[6983,14840],[6984,14840],[6985,14840],[6986,14840],[6987,14840],[6988,14840],[6989,14840],[6990,14840],[6991,14840],[6992,14840],[6993,14840],[6994,14840],[6995,14840],[6996,14840],[6997,14840],[6998,14840],[6999,14840],[7000,14840],[7001,14840],[7002,14840],[7003,14840],[7004,14840],[7005,14838],[7006,14838],[7007,14830],[7008,14838],[7009,14838],[7010,14838],[7011,14838],[7012,14838],[7013,14838],[7014,14838],[7015,14838],[7016,14838],[7017,14838],[7018,14838],[7019,14838],[7020,14838],[7021,14830],[7022,14830],[7023,14838],[7024,14838],[7025,14932],[7026,14932],[7027,14932],[7028,14932],[7029,14932],[7030,14932],[7031,14829],[7032,14829],[7033,14829],[7034,14829],[7035,14829],[7036,14829],[7037,14829],[7038,14829],[7039,14829],[7040,14829],[7041,14829],[7042,14829],[7043,14829],[7044,14829],[7045,14829],[7046,14829],[7047,14829],[7048,14829],[7049,14829],[7050,14829],[7051,14829],[7052,14829],[7053,14829],[7054,14829],[7055,14829],[7056,14829],[7057,14829],[7058,14829],[7059,14829],[7060,14829],[7061,14829],[7062,14829],[7063,14829],[7064,14829],[7065,14829],[7066,14829],[7067,14829],[7068,14829],[7069,14829],[7070,14829],[7071,14829],[7072,14829],[7073,14829],[7074,14829],[7075,14829],[7076,14829],[7077,14829],[7078,14829],[7079,14829],[7080,14829],[7081,14829],[7082,14829],[7083,14829],[7084,14829],[7085,14829],[7086,14829],[7087,14829],[7088,14829],[7089,14829],[7090,14829],[7091,14829],[7092,14829],[7093,14829],[7094,14829],[7095,14829],[7096,14829],[7097,14829],[7098,14829],[7099,14829],[7100,14829],[7101,14829],[7102,14829],[7103,14829],[7104,14829],[7105,14829],[7106,14829],[7107,14829],[7108,14829],[7109,14829],[7110,14829],[7111,14829],[7112,14829],[7113,14829],[7114,14829],[7115,14829],[7116,14829],[7117,14829],[7118,14829],[7119,14829],[7120,14829],[7121,14829],[7122,14829],[7123,14829],[7124,14829],[7125,14829],[7126,14829],[7127,14829],[7128,14829],[7129,14829],[7130,14829],[7131,14829],[7132,14829],[7133,14829],[7134,14829],[7135,14829],[7136,14829],[7137,14829],[7138,14829],[7139,14829],[7140,14829],[7141,14829],[7142,14829],[7143,14829],[7144,14829],[7145,14829],[7146,14829],[7147,14829],[7148,14829],[7149,14829],[7150,14829],[7151,14829],[7152,14829],[7153,14829],[7154,14829],[7155,14829],[7156,14829],[7157,14829],[7158,14829],[7159,14829],[7160,14829],[7161,14829],[7162,14829],[7163,14829],[7164,14829],[7165,14829],[7166,14829],[7167,14829],[7168,14829],[7169,14829],[7170,14829],[7171,14829],[7172,14829],[7173,14829],[7174,14829],[7175,14829],[7176,14829],[7177,14829],[7178,14829],[7179,14829],[7180,14829],[7181,14829],[7182,14829],[7183,14829],[7184,14829],[7185,14829],[7186,14829],[7187,14829],[7188,14829],[7189,14829],[7190,14829],[7191,14829],[7192,14829],[7193,14829],[7194,14829],[7195,14872],[7196,14872],[7197,14872],[7198,14872],[7199,14872],[7200,14872],[7201,14872],[7202,14872],[7203,14872],[7204,14872],[7205,14872],[7206,14872],[7207,14872],[7208,14872],[7209,14872],[7210,14872],[7211,14872],[7212,14872],[7213,14872],[7214,14872],[7215,14872],[7216,14872],[7217,14872],[7218,14872],[7219,14872],[7220,14872],[7221,14872],[7222,14872],[7223,14872],[7224,14872],[7225,14815],[7226,14815],[7227,14815],[7228,14815],[7229,14815],[7230,14815],[7231,14815],[7232,14815],[7233,14815],[7234,14822],[7235,14822],[7236,14822],[7237,14822],[7238,14822],[7239,14822],[7240,14822],[7241,14822],[7242,14822],[7243,14822],[7244,14822],[7245,14822],[7246,14822],[7247,14822],[7248,14822],[7249,14822],[7250,14822],[7251,14822],[7252,14822],[7253,14822],[7254,14822],[7255,14822],[7256,14822],[7257,14822],[7258,14822],[7259,14822],[7260,14822],[7261,14822],[7262,14822],[7263,14822],[7264,14822],[7265,14822],[7266,14822],[7267,14822],[7268,14822],[7269,14822],[7270,14822],[7271,14822],[7272,14822],[7273,14822],[7274,14822],[7275,14822],[7276,14822],[7277,14822],[7278,14822],[7279,14822],[7280,14822],[7281,14822],[7282,14822],[7283,14822],[7284,14822],[7285,14822],[7286,14822],[7287,14822],[7288,14822],[7289,14822],[7290,14822],[7291,14822],[7292,14822],[7293,14822],[7294,14822],[7295,14822],[7296,14822],[7297,14822],[7298,14822],[7299,14822],[7300,14822],[7301,14822],[7302,14822],[7303,14822],[7304,14822],[7305,14822],[7306,14822],[7307,14822],[7308,14822],[7309,14822],[7310,14822],[7311,14822],[7312,14822],[7313,14822],[7314,14822],[7315,14822],[7316,14822],[7317,14822],[7318,14822],[7319,14822],[7320,14822],[7321,14822],[7322,14822],[7323,14822],[7324,14822],[7325,14822],[7326,14822],[7327,14822],[7328,14822],[7329,14822],[7330,14822],[7331,14822],[7332,14822],[7333,14822],[7334,14822],[7335,14822],[7336,14822],[7337,14822],[7338,14822],[7339,14822],[7340,14822],[7341,14822],[7342,14822],[7343,14822],[7344,14822],[7345,14822],[7346,14822],[7347,14822],[7348,14822],[7349,14822],[7350,14822],[7351,14822],[7352,14822],[7353,14822],[7354,14822],[7355,14822],[7356,14822],[7357,14822],[7358,14822],[7359,14822],[7360,14822],[7361,14822],[7362,14822],[7363,14822],[7364,14822],[7365,14822],[7366,14822],[7367,14822],[7368,14822],[7369,14822],[7370,14822],[7371,14822],[7372,14822],[7373,14822],[7374,14822],[7375,14822],[7376,14822],[7377,14822],[7378,14822],[7379,14822],[7380,14822],[7381,14822],[7382,14822],[7383,14822],[7384,14828],[7385,14828],[7386,14828],[7387,14828],[7388,14828],[7389,14828],[7390,14828],[7391,14828],[7392,14828],[7393,14828],[7394,14828],[7395,14828],[7396,14828],[7397,14828],[7398,14828],[7399,14828],[7400,14828],[7401,14828],[7402,14828],[7403,14828],[7404,14828],[7405,14828],[7406,14828],[7407,14828],[7408,14828],[7409,14828],[7410,14828],[7411,14828],[7412,14828],[7413,14828],[7414,14828],[7415,14828],[7416,14828],[7417,14828],[7418,14828],[7419,14828],[7420,14828],[7421,14828],[7422,14828],[7423,14828],[7424,14828],[7425,14828],[7426,14828],[7427,14828],[7428,14828],[7429,14828],[7430,14828],[7431,14828],[7432,14828],[7433,14828],[7434,14828],[7435,14828],[7436,14828],[7437,14828],[7438,14828],[7439,14828],[7440,14828],[7441,14828],[7442,14828],[7443,14828],[7444,14828],[7445,14828],[7446,14828],[7447,14828],[7448,14828],[7449,14828],[7450,14828],[7451,14828],[7452,14828],[7453,14828],[7454,14828],[7455,14828],[7456,14828],[7457,14828],[7458,14828],[7459,14828],[7460,14828],[7461,14828],[7462,14828],[7463,14828],[7464,14828],[7465,14828],[7466,14828],[7467,14828],[7468,14828],[7469,14828],[7470,14828],[7471,14828],[7472,14828],[7473,14828],[7474,14828],[7475,14828],[7476,14828],[7477,14828],[7478,14828],[7479,14828],[7480,14828],[7481,14828],[7482,14828],[7483,14828],[7484,14828],[7485,14828],[7486,14828],[7487,14828],[7488,14828],[7489,14828],[7490,14828],[7491,14828],[7492,14828],[7493,14828],[7494,14828],[7495,14828],[7496,14828],[7497,14828],[7498,14828],[7499,14828],[7500,14828],[7501,14828],[7502,14828],[7503,14828],[7504,14828],[7505,14828],[7506,14828],[7507,14828],[7508,14828],[7509,14828],[7510,14828],[7511,14828],[7512,14828],[7513,14828],[7514,14828],[7515,14828],[7516,14828],[7517,14828],[7518,14828],[7519,14828],[7520,14828],[7521,14828],[7522,14828],[7523,14828],[7524,14828],[7525,14828],[7526,14828],[7527,14828],[7528,14828],[7529,14828],[7530,14828],[7531,14828],[7532,14828],[7533,14828],[7534,14828],[7535,14828],[7536,14828],[7537,14828],[7538,14828],[7539,14828],[7540,14828],[7541,14828],[7542,14828],[7543,14828],[7544,14828],[7545,14828],[7546,14828],[7547,14828],[7548,14828],[7549,14828],[7550,14828],[7551,14828],[7552,14828],[7553,14828],[7554,14828],[7555,14828],[7556,14828],[7557,14828],[7558,14828],[7559,14828],[7560,14825],[7561,14825],[7562,14829],[7563,14825],[7564,14825],[7565,14825],[7566,14825],[7567,14825],[7568,14825],[7569,14825],[7570,14825],[7571,14825],[7572,14825],[7573,14825],[7574,14825],[7575,14825],[7576,14825],[7577,14825],[7578,14825],[7579,14825],[7580,14825],[7581,14825],[7582,14825],[7583,14825],[7584,14825],[7585,14825],[7586,14825],[7587,14825],[7588,14825],[7589,14825],[7590,14825],[7591,14809],[7592,14809],[7593,14810],[7594,14809],[7595,14809],[7596,14809],[7597,14809],[7598,14809],[7599,14809],[7600,14810],[7601,14809],[7602,14809],[7603,14810],[7604,14809],[7605,14809],[7606,14809],[7607,14809],[7608,14809],[7609,14809],[7610,14809],[8115,14812],[8116,14812],[8117,14812],[8119,14812],[8120,14812],[8121,14812],[8122,14812],[8123,8276],[8124,14812],[8125,14812],[8127,14812],[8128,14812],[8130,14812],[8131,14812],[8133,14812],[8134,14812],[8136,14812],[8137,14812],[8139,14812],[8140,14812],[8142,14812],[8143,14812],[8145,14812],[8146,14812],[8148,14812],[8149,14812],[8150,14812],[8151,14812],[8152,14812],[8153,14812],[8154,14812],[8155,14812],[8158,14812],[8159,14812],[8160,14812],[8162,14812],[8163,14812],[8165,14812],[8166,14812],[8170,14812],[8171,14812],[8173,14812],[8174,14812],[8175,14812],[8176,14812],[8177,14812],[8178,14812],[8179,14812],[8180,14812],[8182,14812],[8183,14812],[8185,14812],[8186,14812],[8187,14812],[8188,14812],[8190,14812],[8191,14812],[8193,14812],[8194,14812],[8195,14812],[8196,14812],[8197,14812],[8199,14812],[8201,14812],[8202,14812],[8203,14812],[8205,14812],[8206,14812],[8208,14812],[8209,14812],[8211,14812],[8212,14812],[8214,14812],[8215,14812],[8217,14812],[8218,14812],[8220,14812],[8221,14812],[8223,14812],[8224,14812],[8226,14812],[8227,14812],[8229,14812],[8230,14812],[8235,14812],[8240,14812],[8241,14812],[8242,14812],[8243,14812],[8245,14812],[8246,14812],[8248,14812],[8249,14812],[8251,14812],[8252,14812],[8254,14812],[8255,14812],[8257,14812],[8258,14812],[8260,14812],[8261,14812],[8263,14812],[8264,14812],[8268,14812],[8269,14812],[8374,8376],[8440,14878],[8441,14878],[8442,14878],[8443,14878],[8444,14878],[8445,14878],[8447,14878],[8448,14748],[8456,14779],[8458,14779],[8459,14878],[8460,14748],[8466,14779],[8467,14878],[8468,14748],[8474,14779],[8475,14878],[8476,14748],[8482,14779],[8483,14878],[8484,14748],[8490,14779],[8491,14878],[8492,14748],[8498,14779],[8499,14779],[8500,14779],[8501,14748],[8502,14748],[8503,14779],[8504,14878],[8505,14748],[8511,14779],[8512,14878],[8513,14748],[8519,14779],[8520,14878],[8521,14748],[8527,14779],[8528,14779],[8529,14878],[8530,14748],[8535,14779],[8536,14878],[8537,14748],[8542,14779],[8543,14878],[8544,14748],[8549,14779],[8550,14878],[8555,14779],[8556,14878],[8557,14779],[8558,14878],[8559,14748],[8566,14779],[8567,14878],[8568,14748],[8574,14779],[8575,14878],[8576,14748],[8582,14779],[8583,14779],[8584,14779],[8585,14779],[8586,14779],[8587,14878],[8588,14748],[8594,14779],[8595,14878],[8596,14748],[8602,14779],[8603,14878],[8604,14748],[8606,14779],[8607,14779],[8608,14779],[8609,14878],[8610,14878],[8611,14878],[8612,14779],[8613,14779],[8614,14878],[8615,14878],[8616,14748],[8622,14779],[8623,14779],[8624,14878],[8625,14748],[8636,14779],[8637,14878],[8638,14748],[8644,14779],[8645,14779],[8647,14779],[8648,14878],[8649,14748],[8655,14779],[8662,14779],[8663,14779],[8664,14779],[8665,14878],[8668,14779],[8669,14779],[8672,14779],[8673,14779],[8674,14779],[8675,14779],[8676,14779],[8677,14878],[8678,14748],[8687,14779],[8688,14878],[8689,14748],[8695,14779],[8696,14878],[8697,14748],[8703,14779],[8704,14878],[8705,14748],[8711,14779],[8712,14878],[8713,14748],[8716,14779],[8717,14878],[8718,14748],[8724,14779],[8725,14878],[8726,14748],[8732,14779],[8733,14878],[8734,14748],[8740,14779],[8741,14878],[8742,14748],[8748,14779],[8749,14878],[8750,14748],[8756,14779],[8757,14779],[8760,14779],[8761,14779],[8762,14779],[8764,14779],[8768,14779],[8771,14779],[8775,14779],[8777,14779],[8778,14779],[8779,14878],[8780,14779],[8781,14779],[8782,14779],[8783,14779],[8784,14779],[8785,14779],[8787,14779],[8788,14779],[8789,14779],[8790,14779],[8791,14779],[8792,14779],[8793,14779],[8794,14779],[8795,14779],[8796,14779],[8797,14779],[8798,14779],[8799,14779],[8800,14779],[8801,14779],[8802,14779],[8803,14779],[8806,14779],[8809,14779],[8810,14779],[8811,14878],[8812,14748],[8817,14779],[8818,14878],[8819,14779],[8820,14878],[8821,14779],[8822,14878],[8823,14748],[8829,14779],[8830,14779],[8831,14878],[8832,14878],[8833,14748],[8839,14779],[8840,14878],[8841,14748],[8847,14779],[8848,14878],[8849,14748],[8855,14779],[8856,14878],[8857,14748],[8863,14779],[8864,14878],[8865,14748],[8871,14779],[8872,14878],[8873,14748],[8881,14779],[8882,14878],[8883,14748],[8889,14779],[8892,14779],[8893,14878],[8894,14748],[9047,14895],[9053,14896],[9054,14787],[9055,14900],[9056,14897],[9057,14897],[9059,14894],[9065,14895],[9066,14897],[9069,14898],[9070,14786],[9071,14896],[9072,14898],[9078,14897],[9080,14899],[9081,14896],[9082,14898],[9083,9888],[9087,14893],[9089,14897],[9090,14895],[9091,14787],[9092,14900],[9093,14893],[9095,14895],[9096,14896],[9097,14897],[9098,14898],[9099,14786],[9100,14899],[9109,14893],[9110,14787],[9111,14900],[9112,14893],[9114,14895],[9115,14896],[9116,14897],[9117,14898],[9118,14786],[9119,14899],[9128,14787],[9129,14900],[9130,14893],[9132,14895],[9133,14896],[9134,14897],[9135,14898],[9136,14786],[9137,14899],[9146,14787],[9147,14900],[9148,14893],[9150,14895],[9151,14896],[9152,14897],[9153,14898],[9154,14786],[9155,14899],[9164,14787],[9165,14900],[9166,14893],[9168,14895],[9169,14896],[9170,14897],[9171,14898],[9172,14786],[9173,14899],[9184,14787],[9185,14900],[9186,14893],[9188,14895],[9189,14896],[9190,14897],[9191,14898],[9192,14786],[9193,14899],[9202,14787],[9203,14900],[9204,14893],[9206,14895],[9207,14896],[9208,14897],[9209,14898],[9210,14786],[9211,14899],[9220,14787],[9221,14900],[9222,14893],[9224,14895],[9225,14896],[9226,14897],[9227,14898],[9228,14786],[9229,14899],[9238,14894],[9239,14787],[9241,14787],[9242,14893],[9244,14895],[9245,14896],[9246,14897],[9247,14898],[9248,14786],[9249,14899],[9258,14895],[9259,14896],[9260,14897],[9261,14898],[9262,14786],[9263,14899],[9272,14895],[9273,14896],[9274,14897],[9275,14898],[9276,14786],[9277,14899],[9286,14786],[9287,14899],[9289,14786],[9290,14899],[9291,14787],[9292,14900],[9293,14893],[9295,14895],[9296,14896],[9297,14897],[9298,14898],[9299,14786],[9300,14899],[9309,14893],[9313,14787],[9314,14900],[9315,14893],[9317,14895],[9318,14896],[9319,14897],[9320,14898],[9321,14786],[9322,14899],[9331,14787],[9332,14900],[9333,14893],[9335,14895],[9336,14896],[9337,14897],[9338,14898],[9339,14786],[9340,14899],[9350,14787],[9351,14900],[9352,14893],[9354,14895],[9355,14896],[9356,14897],[9357,14898],[9358,14786],[9359,14899],[9368,14787],[9369,14893],[9371,14787],[9372,14900],[9373,14893],[9375,14895],[9376,14896],[9377,14897],[9378,14898],[9379,14786],[9380,14899],[9389,14900],[9390,14895],[9391,14897],[9392,14786],[9393,14899],[9397,14895],[9398,14895],[9399,14895],[9400,14897],[9401,14897],[9402,14897],[9403,14786],[9404,14786],[9405,14786],[9406,14899],[9407,14899],[9408,14899],[9409,14895],[9410,14896],[9411,14897],[9412,14898],[9413,14786],[9414,14899],[9423,14787],[9424,14787],[9425,14900],[9426,14900],[9427,14893],[9429,14895],[9430,14896],[9431,14897],[9432,14898],[9433,14786],[9434,14899],[9443,14787],[9444,14900],[9445,14893],[9447,14895],[9448,14896],[9449,14897],[9450,14898],[9451,14786],[9452,14899],[9461,14787],[9462,14900],[9463,14893],[9465,14895],[9466,14896],[9467,14897],[9468,14898],[9469,14786],[9470,14899],[9479,14895],[9480,14898],[9481,14786],[9482,14899],[9486,14787],[9487,14900],[9488,14893],[9490,14895],[9491,14896],[9492,14897],[9493,14898],[9494,14786],[9495,14899],[9504,14787],[9505,14900],[9506,14893],[9508,14895],[9509,14896],[9510,14897],[9511,14898],[9512,14786],[9513,14899],[9522,14787],[9523,14900],[9524,14893],[9526,14895],[9527,14896],[9528,14897],[9529,14898],[9530,14786],[9531,14899],[9540,14787],[9541,14900],[9542,14893],[9544,14895],[9545,14896],[9546,14897],[9547,14898],[9548,14786],[9549,14899],[9558,14895],[9559,14896],[9560,14897],[9561,14898],[9562,14786],[9563,14899],[9572,14787],[9573,14900],[9574,14893],[9576,14895],[9577,14896],[9578,14897],[9579,14898],[9580,14786],[9581,14899],[9590,14787],[9591,14900],[9592,14893],[9594,14895],[9595,14896],[9596,14897],[9597,14898],[9598,14786],[9599,14899],[9608,14787],[9609,14900],[9610,14893],[9612,14895],[9613,14896],[9614,14897],[9615,14898],[9616,14786],[9617,14899],[9626,14787],[9627,14900],[9628,14893],[9630,14895],[9631,14896],[9632,14897],[9633,14898],[9634,14786],[9635,14899],[9644,14787],[9645,14900],[9646,14893],[9648,14895],[9649,14896],[9650,14897],[9651,14898],[9652,14786],[9653,14899],[9662,14893],[9665,14787],[9666,14900],[9667,14893],[9675,14893],[9676,14898],[9677,14786],[9678,14899],[9683,14895],[9685,14895],[9686,14898],[9687,14898],[9691,14787],[9692,14893],[9695,14787],[9696,14895],[9697,14896],[9698,14897],[9699,14898],[9700,14786],[9701,14899],[9710,14787],[9711,14900],[9712,14893],[9714,14895],[9715,14896],[9716,14897],[9717,14898],[9718,14786],[9719,14899],[9728,14787],[9729,14900],[9730,14893],[9732,14895],[9733,14896],[9734,14897],[9735,14898],[9736,14786],[9737,14899],[9746,14787],[9747,14900],[9748,14893],[9750,14895],[9751,14896],[9752,14897],[9753,14898],[9754,14786],[9755,14899],[9764,14787],[9765,14900],[9766,14893],[9768,14895],[9769,14896],[9770,14897],[9771,14898],[9772,14786],[9773,14899],[9782,14787],[9783,14900],[9784,14893],[9786,14895],[9787,14896],[9788,14897],[9789,14898],[9790,14786],[9791,14899],[9800,14787],[9801,14900],[9802,14893],[9804,14895],[9805,14896],[9806,14897],[9807,14898],[9808,14786],[9809,14899],[9818,14787],[9819,14900],[9820,14893],[9822,14895],[9823,14896],[9824,14897],[9825,14898],[9826,14786],[9827,14899],[9836,14787],[9837,14900],[9838,14893],[9840,14895],[9841,14896],[9842,14897],[9843,14898],[9844,14786],[9845,14899],[9855,14787],[9856,14900],[9857,14893],[9859,14895],[9860,14896],[9861,14897],[9862,14898],[9863,14786],[9864,14899],[11043,14904],[11051,14904],[11057,14904],[11058,14904],[11071,14904],[11072,14904],[11090,14904],[11091,14904],[11102,14904],[11103,14904],[11114,14904],[11115,14904],[11126,14904],[11127,14904],[11141,14904],[11142,14904],[11153,14904],[11154,14904],[11166,14904],[11167,14904],[11179,14904],[11180,14904],[11190,14904],[11191,14904],[11201,14904],[11202,14904],[11214,14904],[11215,14904],[11229,14904],[11230,14904],[11235,14904],[11236,14904],[11247,14904],[11248,14904],[11261,14904],[11262,14904],[11274,14904],[11275,14904],[11285,14904],[11286,14904],[11304,14904],[11305,14904],[11316,14904],[11317,14904],[11329,14904],[11330,14904],[11341,14904],[11342,14904],[11360,14904],[11361,14904],[11372,14904],[11373,14904],[11384,14904],[11385,14904],[11396,14904],[11397,14904],[11407,14904],[11408,14904],[11419,14904],[11420,14904],[11431,14904],[11432,14904],[11443,14904],[11444,14904],[11455,14904],[11456,14904],[11467,14904],[11468,14904],[11484,14904],[11485,14904],[11505,14904],[11506,14904],[11517,14904],[11518,14904],[11529,14904],[11530,14904],[11541,14904],[11542,14904],[11553,14904],[11554,14904],[11565,14904],[11566,14904],[11577,14904],[11578,14904],[11589,14904],[11590,14904],[11602,14904],[11603,14904],[11617,14904],[11618,14904],[11631,14904],[11632,14904],[11633,14904],[11634,14904],[11647,14738],[11648,14906],[11649,14792],[11650,14792],[11652,14792],[11653,14906],[11654,14905],[11655,14905],[11656,14906],[11658,14905],[11659,14906],[11661,14905],[11662,14906],[11664,14905],[11665,14906],[11667,14905],[11668,14906],[11670,14905],[11671,14906],[11673,14905],[11674,14906],[11676,14905],[11677,14906],[11679,14905],[11680,14905],[11681,14905],[11682,14905],[11683,14906],[11685,14906],[11686,14905],[11687,14906],[11689,14905],[11690,14906],[11692,14905],[11693,14906],[11695,14792],[11697,14905],[11698,14906],[11700,14905],[11701,14906],[11702,14905],[11703,14906],[11705,14905],[11706,14906],[11708,14905],[11709,14906],[11711,14906],[11712,14906],[11713,14906],[11715,14905],[11716,14906],[11718,14905],[11719,14906],[11721,14905],[11722,14906],[11724,14905],[11725,14906],[11727,14905],[11729,14905],[11730,14906],[11732,14905],[11733,14906],[11735,14905],[11736,14906],[11738,14905],[11739,14906],[11741,14905],[11742,14906],[11745,14905],[11746,14792],[11747,14792],[11750,14906],[11751,14905],[11752,14905],[11753,14905],[11754,14906],[11755,14905],[11756,14906],[11757,14905],[11760,14906],[11762,14905],[11763,14905],[11764,14906],[11766,14905],[11767,14906],[11769,14905],[11770,14906],[11772,14905],[11773,14906],[11775,14905],[11776,14906],[11778,14905],[11779,14906],[11781,14905],[11782,14906],[11784,14905],[11785,14906],[11787,14792],[11788,14792],[11790,14905],[11791,14906],[11794,14905],[12086,14769],[12093,14769],[12097,14769],[12101,14769],[12105,14769],[12109,14769],[12113,14769],[12117,14769],[12121,14769],[12126,14769],[12129,14769],[12132,14769],[12136,14769],[12141,14769],[12144,14769],[12148,14769],[12152,14769],[12157,14769],[12161,14769],[12164,14769],[12165,14769],[12166,14769],[12170,14769],[12173,14769],[12174,14769],[12179,14769],[12183,14769],[12184,14769],[12186,14769],[12190,14769],[12192,14769],[12193,14769],[12197,14769],[12201,14769],[12205,14769],[12209,14769],[12213,14769],[12217,14769],[12221,14769],[12225,14769],[12229,14769],[12241,14769],[12244,14769],[12248,14769],[12252,14769],[12256,14769],[12260,14769],[12264,14769],[12268,14769],[12272,14769],[12276,14769],[12281,14748],[12282,14748],[12283,14748],[12285,14767],[12286,14767],[12287,14748],[12288,14748],[12289,14794],[12290,14794],[12291,14748],[12292,14794],[12293,14748],[12294,14748],[12296,14748],[12297,14791],[12298,14794],[12299,14748],[12300,14748],[12301,14767],[12302,14767],[12303,14767],[12305,14748],[12306,14748],[12307,14748],[12308,14791],[12309,14748],[12310,14748],[12311,14748],[12312,14748],[12313,14767],[12314,14767],[12315,14791],[12316,14791],[12317,14791],[12318,14748],[12319,14748],[12320,14748],[12321,14748],[12322,14767],[12323,14767],[12324,14791],[12325,14748],[12326,14748],[12327,14748],[12328,14748],[12329,14767],[12330,14767],[12331,14791],[12332,14748],[12333,14748],[12334,14748],[12335,14748],[12336,14767],[12337,14767],[12338,14791],[12339,14748],[12340,14748],[12341,14748],[12342,14748],[12343,14767],[12344,14767],[12345,14748],[12346,14748],[12347,14767],[12348,14748],[12349,14748],[12350,14791],[12351,14748],[12352,14748],[12353,14748],[12354,14748],[12355,14767],[12356,14767],[12357,14791],[12358,14748],[12359,14748],[12360,14748],[12361,14748],[12362,14767],[12363,14767],[12364,14791],[12365,14748],[12366,14748],[12367,14748],[12368,14748],[12369,14767],[12370,14767],[12371,14791],[12372,14794],[12373,14791],[12374,14748],[12375,14748],[12376,14748],[12377,14748],[12378,14767],[12379,14748],[12380,14748],[12381,14748],[12382,14748],[12383,14767],[12384,14748],[12385,14748],[12386,14748],[12387,14748],[12388,14767],[12389,14791],[12390,14748],[12391,14748],[12392,14767],[12393,14791],[12394,14748],[12395,14791],[12396,14748],[12397,14748],[12398,14748],[12399,14748],[12400,14767],[12401,14767],[12402,14794],[12403,14767],[12404,14767],[12405,14767],[12406,14791],[12407,14748],[12408,14748],[12409,14748],[12410,14748],[12411,14767],[12412,14767],[12413,14791],[12414,14748],[12415,14748],[12416,14748],[12417,14748],[12418,14767],[12419,14767],[12420,14791],[12421,14748],[12422,14748],[12423,14748],[12424,14748],[12425,14767],[12426,14767],[12427,14791],[12428,14748],[12429,14748],[12430,14748],[12431,14748],[12432,14767],[12433,14767],[12434,14767],[12435,14791],[12436,14791],[12437,14748],[12438,14748],[12439,14748],[12440,14748],[12441,14767],[12442,14767],[12443,14748],[12444,14748],[12445,14748],[12446,14748],[12447,14767],[12448,14748],[12449,14748],[12450,14748],[12451,14748],[12452,14748],[12453,14748],[12454,14748],[12455,14748],[12456,14748],[12457,14748],[12458,14767],[12459,14767],[12460,14791],[12461,14748],[12462,14748],[12463,14748],[12464,14791],[12465,14748],[12466,14748],[12467,14748],[12468,14748],[12469,14748],[12470,14748],[12471,14748],[12472,14767],[12473,14767],[12474,14791],[12475,14748],[12476,14748],[12477,14748],[12478,14748],[12479,14767],[12480,14767],[12481,14791],[12482,14791],[12483,14748],[12484,14748],[12485,14748],[12486,14748],[12487,14767],[12488,14767],[12489,14748],[12490,14748],[12491,14748],[12492,14791],[12493,14748],[12494,14794],[12495,14791],[12496,14748],[12497,14748],[12498,14748],[12499,14748],[12500,14767],[12501,14767],[12502,14791],[12503,14748],[12504,14748],[12505,14748],[12506,14748],[12507,14767],[12508,14767],[12509,14791],[12510,14748],[12511,14748],[12512,14748],[12513,14748],[12514,14767],[12515,14767],[12516,14791],[12517,14748],[12518,14748],[12519,14748],[12520,14748],[12521,14767],[12522,14767],[12523,14748],[12524,14748],[12525,14748],[12526,14748],[12527,14767],[12528,14767],[12529,14791],[12530,14748],[12531,14748],[12532,14748],[12533,14748],[12534,14767],[12535,14767],[12536,14791],[12537,14748],[12538,14748],[12539,14748],[12540,14748],[12541,14767],[12542,14767],[12543,14791],[12544,14748],[12545,14748],[12546,14748],[12547,14748],[12548,14767],[12549,14767],[12550,14791],[12551,14748],[12552,14748],[12553,14748],[12554,14748],[12555,14767],[12556,14767],[12557,14748],[12558,14791],[12559,14748],[12560,14748],[12561,14748],[12562,14748],[12563,14767],[12564,14767],[12565,14767],[12566,14791],[12567,14791],[12568,14748],[12569,14748],[12570,14748],[12571,14748],[12572,14748],[12573,14791],[12574,14794],[12575,14791],[12576,14748],[12577,14791],[12578,14748],[12579,14748],[12580,14748],[12581,14748],[12582,14767],[12583,14767],[12584,14791],[12585,14748],[12586,14748],[12587,14767],[12588,14767],[12589,14791],[12590,14791],[12591,14748],[12592,14748],[12593,14791],[12594,14748],[12595,14748],[12596,14767],[12597,14791],[12598,14767],[12599,14791],[12600,14748],[12601,14748],[12602,14748],[12603,14748],[12604,14748],[12605,14748],[12606,14767],[12607,14748],[12608,14791],[12609,14748],[12610,14748],[12611,14748],[12612,14748],[12613,14767],[12614,14767],[12615,14791],[12616,14748],[12617,14748],[12618,14748],[12619,14748],[12620,14767],[12621,14767],[12622,14791],[12623,14748],[12624,14748],[12625,14748],[12626,14748],[12627,14767],[12628,14767],[12629,14791],[12630,14748],[12631,14748],[12632,14748],[12633,14748],[12634,14767],[12635,14767],[12636,14791],[12637,14748],[12638,14748],[12639,14748],[12640,14748],[12641,14767],[12642,14767],[12643,14791],[12644,14748],[12645,14748],[12646,14748],[12647,14748],[12648,14767],[12649,14767],[12650,14791],[12651,14748],[12652,14748],[12653,14748],[12654,14748],[12655,14767],[12656,14767],[12657,14748],[12658,14748],[12659,14791],[12660,14748],[12661,14748],[12662,14748],[12663,14748],[12664,14767],[12665,14767],[12666,14794],[12667,14791],[12668,14791],[12669,14748],[12670,14748],[12671,14748],[12672,14748],[12673,14767],[12674,14767],[12675,14791],[12676,14791],[12677,14791],[12678,14914],[12680,14914],[12685,14914],[12688,14914],[12689,14914],[12692,14914],[12695,14914],[12696,14914],[12697,14914],[12698,14914],[12699,14914],[12700,14914],[12701,14914],[12702,14914],[12705,14914],[12707,14914],[12710,14914],[12711,14914],[12712,14914],[12713,14914],[12714,14914],[12715,14914],[12716,14914],[12718,14914],[12719,14914],[12720,14914],[12721,14914],[12723,14914],[12724,14914],[12725,14914],[12727,14914],[12729,14914],[12731,14914],[12740,14914],[12741,14914],[12742,14914],[12745,14914],[12746,14914],[12747,14914],[12748,14914],[12749,14914],[12757,14914],[12758,14914],[12759,14914],[12760,14914],[12761,14914],[12769,14914],[12770,14914],[12771,14914],[12772,14914],[12773,14914],[12781,14914],[12782,14914],[12783,14914],[12784,14914],[12785,14914],[12793,14914],[12794,14914],[12795,14914],[12796,14914],[12797,14914],[12803,14914],[12808,14914],[12809,14914],[12810,14914],[12811,14914],[12812,14914],[12820,14914],[12821,14914],[12822,14914],[12823,14914],[12824,14914],[12832,14914],[12833,14914],[12834,14914],[12835,14914],[12836,14914],[12843,14914],[12844,14914],[12845,14914],[12846,14914],[12847,14914],[12852,14914],[12853,14914],[12854,14914],[12855,14914],[12856,14914],[12861,14914],[12862,14914],[12863,14914],[12864,14914],[12865,14914],[12872,14914],[12873,14914],[12874,14914],[12875,14914],[12876,14914],[12886,14914],[12887,14914],[12890,14914],[12891,14914],[12892,14914],[12893,14914],[12894,14914],[12902,14914],[12903,14914],[12904,14914],[12905,14914],[12906,14914],[12912,14914],[12915,14914],[12916,14914],[12917,14914],[12918,14914],[12919,14914],[12928,14914],[12929,14914],[12930,14914],[12931,14914],[12932,14914],[12938,14914],[12939,14914],[12940,14914],[12941,14914],[12942,14914],[12943,14914],[12948,14914],[12949,14914],[12950,14914],[12951,14914],[12952,14914],[12953,14914],[12961,14914],[12962,14914],[12963,14914],[12964,14914],[12965,14914],[12975,14914],[12976,14914],[12977,14914],[12978,14914],[12979,14914],[12987,14914],[12988,14914],[12989,14914],[12990,14914],[12991,14914],[13000,14914],[13001,14914],[13002,14914],[13003,14914],[13004,14914],[13016,14914],[13017,14914],[13018,14914],[13019,14914],[13020,14914],[13028,14914],[13029,14914],[13030,14914],[13031,14914],[13032,14914],[13040,14914],[13041,14914],[13042,14914],[13043,14914],[13044,14914],[13052,14914],[13053,14914],[13054,14914],[13055,14914],[13056,14914],[13062,14914],[13063,14914],[13064,14914],[13065,14914],[13066,14914],[13073,14914],[13074,14914],[13075,14914],[13076,14914],[13077,14914],[13085,14914],[13086,14914],[13087,14914],[13088,14914],[13089,14914],[13097,14914],[13098,14914],[13099,14914],[13100,14914],[13101,14914],[13109,14914],[13110,14914],[13111,14914],[13112,14914],[13113,14914],[13121,14914],[13122,14914],[13123,14914],[13124,14914],[13125,14914],[13131,14914],[13149,14914],[13150,14914],[13167,14914],[13169,14914],[13170,14914],[13171,14914],[13172,14914],[13173,14914],[13180,14914],[13181,14914],[13182,14914],[13183,14914],[13184,14914],[13192,14914],[13193,14914],[13194,14914],[13195,14914],[13196,14914],[13204,14914],[13205,14914],[13206,14914],[13207,14914],[13208,14914],[13216,14914],[13217,14914],[13218,14914],[13219,14914],[13220,14914],[13228,14914],[13229,14914],[13230,14914],[13231,14914],[13232,14914],[13240,14914],[13241,14914],[13242,14914],[13243,14914],[13244,14914],[13252,14914],[13253,14914],[13254,14914],[13255,14914],[13256,14914],[13265,14914],[13266,14914],[13267,14914],[13268,14914],[13269,14914],[13279,14914],[13280,14914],[13281,14914],[13282,14914],[13283,14914],[13289,14914],[13298,13725],[13313,14918],[13315,14918],[13324,14918],[13332,14918],[13340,14918],[13348,14918],[13358,14918],[13366,14918],[13374,14918],[13382,14918],[13389,14918],[13396,14918],[13405,14918],[13418,14918],[13426,14918],[13435,14918],[13445,14918],[13461,14918],[13462,14918],[13475,14918],[13485,14918],[13493,14918],[13505,14918],[13512,14918],[13513,14918],[13515,14918],[13523,14918],[13531,14918],[13538,14918],[13546,14918],[13554,14918],[13562,14918],[13570,14918],[13578,14918],[13585,14918],[13590,14918],[13603,14918],[13606,14918],[13617,14918],[13618,14918],[13619,14918],[13621,14918],[13622,14918],[13636,14918],[13643,14918],[13644,14918],[13646,14918],[13654,14918],[13662,14918],[13670,14918],[13678,14918],[13686,14918],[13694,14918],[13704,14918],[13706,14918],[13716,14918],[13823,14740],[13824,14759],[13825,14759],[13826,14759],[13827,14759],[13828,14740],[13829,14740],[13830,14740],[13831,14740],[13832,14740],[13833,14740],[13834,14759],[13835,14759],[13836,14740],[13837,14740],[13838,14759],[13839,14740],[13840,14759],[13841,14759],[13842,14740],[13843,14740],[13844,14759],[13845,14759],[13846,14759],[13847,14740],[13848,14740],[13849,14740],[13850,14759],[13851,14740],[13852,14759],[13853,14740],[13854,14759],[13855,14759],[13856,14740],[13857,14740],[13858,14759],[13859,14740],[13860,14759],[13861,14759],[13862,14759],[13863,14740],[13864,14740],[13865,14740],[13866,14759],[13867,14759],[13868,14759],[13869,14740],[13870,14740],[13871,14740],[13872,14740],[13873,14759],[13874,14740],[13875,14740],[13876,14759],[13877,14740],[13878,14740],[13879,14759],[13880,14740],[13881,14740],[13882,14759],[13883,14740],[13884,14740],[13885,14759],[13886,14740],[13887,14740],[13888,14759],[13889,14740],[13890,14740],[13891,14759],[13892,14740],[13893,14740],[13894,14759],[13895,14740],[13896,14740],[13897,14759],[13898,14740],[13899,14740],[13900,14759],[13901,14740],[13902,14740],[13903,14759],[13904,14740],[13905,14740],[13906,14759],[13907,14740],[13908,14740],[13909,14759],[13910,14740],[13911,14740],[13912,14759],[13913,14740],[13914,14759],[13915,14740],[13916,14740],[13917,14759],[13918,14740],[13919,14740],[13920,14759],[13921,14740],[13922,14740],[13923,14759],[13924,14740],[13925,14740],[13926,14759],[13927,14740],[13928,14740],[13929,14759],[13930,14740],[13931,14740],[13932,14740],[13933,14759],[13934,14740],[13935,14740],[13936,14759],[13937,14740],[13938,14740],[13939,14759],[13940,14740],[13941,14740],[13942,14759],[13943,14740],[13944,14740],[13945,14759],[13946,14740],[13947,14740],[13948,14759],[13949,14740],[13950,14740],[13951,14759],[13952,14740],[13953,14740],[13954,14759],[13955,14740],[13956,14740],[13957,14759],[13958,14740],[13959,14740],[13960,14759],[13961,14740],[13962,14740],[13963,14759],[13964,14740],[13965,14740],[13966,14759],[13967,14740],[13968,14740],[13969,14759],[13970,14740],[13971,14740],[13972,14740],[13973,14740],[13974,14759],[13975,14759],[13976,14759],[13977,14740],[13978,14759],[13979,14740],[13980,14740],[13981,14740],[13982,14740],[13983,14759],[13984,14740],[13985,14740],[13986,14759],[13987,14740],[13988,14740],[13989,14759],[13990,14740],[13991,14740],[13992,14759],[13993,14740],[13994,14740],[13995,14759],[13996,14740],[13997,14740],[13998,14759],[13999,14740],[14000,14740],[14001,14759],[14002,14740],[14003,14740],[14004,14759],[14005,14740],[14006,14740],[14007,14759],[14008,14740],[14009,14740],[14010,14759],[14011,14740],[14012,14759],[14013,14759],[14014,14759],[14015,14759],[14016,14759],[14017,14759],[14018,14759],[14019,14759],[14020,14759],[14021,14759],[14022,14759],[14023,14759],[14024,14759],[14025,14759],[14026,14759],[14027,14759],[14028,14759],[14029,14759],[14030,14759],[14031,14759],[14032,14759],[14033,14759],[14034,14759],[14035,14759],[14036,14759],[14037,14759],[14038,14759],[14039,14759],[14040,14759],[14041,14759],[14042,14759],[14043,14759],[14044,14759],[14045,14759],[14046,14759],[14047,14759],[14048,14759],[14049,14759],[14050,14759],[14051,14759],[14052,14759],[14053,14759],[14054,14759],[14055,14759],[14056,14759],[14057,14759],[14058,14759],[14059,14759],[14060,14759],[14061,14759],[14062,14759],[14063,14759],[14064,14759],[14065,14759],[14066,14759],[14067,14759],[14068,14759],[14069,14759],[14070,14759],[14071,14759],[14072,14759],[14073,14759],[14074,14759],[14075,14759],[14076,14759],[14077,14759],[14078,14759],[14079,14759],[14080,14759],[14081,14759],[14082,14759],[14083,14759],[14084,14759],[14085,14759],[14086,14759],[14087,14759],[14088,14759],[14089,14759],[14090,14759],[14091,14759],[14092,14759],[14093,14759],[14094,14759],[14095,14759],[14096,14759],[14097,14759],[14098,14759],[14099,14759],[14100,14759],[14101,14759],[14102,14759],[14103,14759],[14104,14759],[14105,14759],[14106,14759],[14107,14759],[14108,14759],[14109,14759],[14110,14759],[14111,14759],[14112,14759],[14113,14759],[14114,14759],[14115,14759],[14116,14759],[14117,14759],[14118,14759],[14119,14759],[14120,14759],[14121,14759],[14122,14759],[14123,14759],[14124,14759],[14125,14759],[14126,14759],[14127,14759],[14128,14759],[14129,14759],[14130,14759],[14131,14759],[14132,14759],[14133,14759],[14134,14759],[14135,14759],[14136,14759],[14137,14759],[14138,14759],[14139,14759],[14140,14759],[14141,14759],[14142,14759],[14143,14759],[14144,14759],[14145,14759],[14146,14759],[14147,14759],[14148,14759],[14149,14759],[14150,14759],[14151,14759],[14152,14759],[14153,14759],[14154,14759],[14155,14759],[14156,14759],[14157,14759],[14158,14759],[14159,14759],[14160,14759],[14161,14759],[14162,14759],[14163,14759],[14164,14759],[14165,14759],[14166,14759],[14167,14759],[14168,14759],[14169,14759],[14170,14759],[14171,14759],[14172,14759],[14173,14759],[14174,14759],[14175,14759],[14176,14759],[14177,14759],[14178,14759],[14179,14759],[14180,14759],[14181,14759],[14182,14759],[14183,14759],[14184,14759],[14185,14759],[14186,14759],[14187,14759],[14188,14759],[14189,14759],[14190,14759],[14191,14759],[14192,14759],[14193,14759],[14194,14759],[14195,14759],[14196,14759],[14197,14759],[14198,14759],[14199,14759],[14200,14759],[14201,14759],[14202,14759],[14203,14759],[14204,14759],[14205,14759],[14206,14759],[14207,14759],[14208,14759],[14209,14759],[14210,14759],[14211,14759],[14212,14759],[14213,14759],[14214,14759],[14215,14759],[14216,14759],[14217,14759],[14218,14759],[14219,14759],[14220,14759],[14221,14759],[14222,14759],[14223,14759],[14224,14759],[14225,14759],[14226,14759],[14227,14759],[14228,14759],[14229,14759],[14230,14759],[14231,14759],[14232,14759],[14233,14759],[14234,14759],[14235,14759],[14236,14759],[14237,14759],[14238,14759],[14239,14759],[14240,14759],[14241,14759],[14242,14759],[14243,14759],[14244,14759],[14245,14759],[14246,14759],[14247,14759],[14248,14759],[14249,14759],[14250,14759],[14251,14759],[14252,14759],[14253,14759],[14254,14759],[14255,14759],[14256,14759],[14257,14759],[14258,14759],[14259,14759],[14260,14759],[14261,14759],[14262,14759],[14263,14759],[14264,14759],[14265,14759],[14266,14759],[14267,14759],[14268,14759],[14269,14759],[14270,14759],[14271,14759],[14272,14759],[14273,14759],[14274,14759],[14275,14759],[14276,14759],[14277,14759],[14278,14759],[14279,14759],[14280,14759],[14281,14759],[14282,14759],[14283,14759],[14284,14759],[14285,14759],[14286,14759],[14287,14759],[14288,14759],[14289,14759],[14290,14759],[14291,14759],[14292,14759],[14293,14759],[14294,14759],[14295,14759],[14296,14759],[14297,14759],[14298,14759],[14299,14759],[14300,14759],[14301,14759],[14302,14759],[14303,14759],[14304,14759],[14305,14759],[14306,14759],[14307,14759],[14308,14759],[14309,14759],[14310,14759],[14311,14759],[14312,14759],[14313,14759],[14314,14759],[14315,14759],[14316,14759],[14317,14759],[14318,14759],[14319,14759],[14320,14759],[14321,14759],[14322,14759],[14323,14759],[14324,14759],[14325,14759],[14326,14759],[14327,14759],[14328,14759],[14329,14759],[14330,14759],[14331,14759],[14332,14759],[14333,14759],[14334,14759],[14335,14759],[14336,14759],[14337,14759],[14338,14759],[14339,14759],[14340,14759],[14341,14759],[14342,14759],[14343,14759],[14344,14759],[14345,14759],[14346,14759],[14347,14759],[14348,14759],[14349,14759],[14350,14759],[14351,14759],[14352,14759],[14353,14759],[14354,14759],[14355,14759],[14356,14759],[14357,14759],[14358,14759],[14359,14759],[14360,14759],[14361,14759],[14362,14759],[14363,14759],[14364,14759],[14365,14759],[14366,14759],[14367,14759],[14368,14759],[14369,14759],[14370,14759],[14371,14759],[14372,14759],[14373,14759],[14374,14759],[14375,14759],[14376,14759],[14377,14759],[14378,14759],[14379,14759],[14380,14759],[14381,14759],[14382,14759],[14383,14759],[14384,14759],[14385,14759],[14386,14759],[14387,14759],[14388,14759],[14389,14759],[14390,14759],[14391,14759],[14392,14759],[14393,14759],[14394,14759],[14395,14759],[14396,14759],[14397,14759],[14398,14759],[14399,14759],[14400,14759],[14401,14759],[14402,14759],[14403,14759],[14404,14759],[14405,14759],[14406,14759],[14407,14759],[14408,14759],[14409,14759],[14410,14759],[14411,14759],[14678,11795],[14680,11795],[14681,11795],[14682,11795],[14683,11795],[14684,11795],[14696,11795]],"b":[[134,"impl-Catalog-for-Theme"],[135,"impl-Catalog-for-Theme"],[136,"impl-Catalog-for-Theme"],[137,"impl-Catalog-for-Theme"],[138,"impl-Catalog-for-Theme"],[139,"impl-Catalog-for-Theme"],[140,"impl-Catalog-for-Theme"],[141,"impl-Catalog-for-Theme"],[142,"impl-Catalog-for-Theme"],[143,"impl-Catalog-for-Theme"],[144,"impl-Catalog-for-Theme"],[145,"impl-Catalog-for-Theme"],[146,"impl-Catalog-for-Theme"],[147,"impl-Catalog-for-Theme"],[148,"impl-Default-for-Theme"],[149,"impl-Catalog-for-Theme"],[150,"impl-Catalog-for-Theme"],[151,"impl-Catalog-for-Theme"],[173,"impl-Debug-for-Theme"],[174,"impl-Display-for-Theme"],[304,"impl-Catalog-for-Theme"],[305,"impl-Catalog-for-Theme"],[306,"impl-Catalog-for-Theme"],[307,"impl-Catalog-for-Theme"],[308,"impl-Catalog-for-Theme"],[309,"impl-Catalog-for-Theme"],[310,"impl-Catalog-for-Theme"],[311,"impl-Catalog-for-Theme"],[312,"impl-Catalog-for-Theme"],[313,"impl-Catalog-for-Theme"],[314,"impl-Catalog-for-Theme"],[315,"impl-Catalog-for-Theme"],[316,"impl-Catalog-for-Theme"],[317,"impl-Catalog-for-Theme"],[318,"impl-Catalog-for-Theme"],[319,"impl-Catalog-for-Theme"],[320,"impl-Catalog-for-Theme"],[833,"impl-From%3CColor%3E-for-Fill"],[834,"impl-From%3CLinear%3E-for-Fill"],[835,"impl-From%3CGradient%3E-for-Fill"],[843,"impl-From%3CColor%3E-for-Style"],[844,"impl-From%3CGradient%3E-for-Style"],[845,"impl-From%3C%26str%3E-for-Text"],[847,"impl-From%3CString%3E-for-Text"],[1691,"impl-BuilderWithAttributes"],[1692,"impl-PathBuilder-for-BuilderWithAttributes"],[1744,"impl-Build-for-BuilderWithAttributes"],[1745,"impl-BuilderWithAttributes"],[1875,"impl-PathBuilder-for-BuilderWithAttributes"],[1876,"impl-BuilderWithAttributes"],[1982,"impl-BuilderWithAttributes"],[1983,"impl-PathBuilder-for-BuilderWithAttributes"],[2140,"impl-Index%3CEndpointId%3E-for-Path"],[2141,"impl-Index%3CControlPointId%3E-for-Path"],[2142,"impl-Index%3CControlPointId%3E-for-PathSlice%3C\'l%3E"],[2143,"impl-Index%3CEndpointId%3E-for-PathSlice%3C\'l%3E"],[2373,"impl-IntoIterator-for-PathSlice%3C\'l%3E"],[2374,"impl-IntoIterator-for-%26PathSlice%3C\'l%3E"],[2429,"impl-PathBuilder-for-BuilderWithAttributes"],[2430,"impl-BuilderWithAttributes"],[2454,"impl-BuilderWithAttributes"],[2455,"impl-PathBuilder-for-BuilderWithAttributes"],[2469,"impl-PathBuilder-for-BuilderWithAttributes"],[2470,"impl-BuilderWithAttributes"],[2472,"impl-BuilderWithAttributes"],[2473,"impl-PathBuilder-for-BuilderWithAttributes"],[2842,"impl-NoAttributes%3CB%3E"],[2843,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[2857,"impl-Build-for-Flattened%3CBuilder%3E"],[2858,"impl-Flattened%3CBuilder%3E"],[2860,"impl-WithSvg%3CBuilder%3E"],[2861,"impl-Build-for-WithSvg%3CBuilder%3E"],[2862,"impl-Build-for-NoAttributes%3CB%3E"],[2863,"impl-NoAttributes%3CB%3E"],[2878,"impl-WithSvg%3CBuilder%3E"],[2879,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[2890,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[2891,"impl-WithSvg%3CBuilder%3E"],[2892,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[2893,"impl-NoAttributes%3CB%3E"],[2920,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[2921,"impl-NoAttributes%3CB%3E"],[2931,"impl-Debug-for-BorderRadii"],[2932,"impl-Display-for-BorderRadii"],[3009,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[3010,"impl-WithSvg%3CBuilder%3E"],[3011,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[3012,"impl-NoAttributes%3CB%3E"],[3014,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[3015,"impl-WithSvg%3CBuilder%3E"],[3035,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[3036,"impl-WithSvg%3CBuilder%3E"],[3037,"impl-NoAttributes%3CB%3E"],[3038,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[3059,"impl-SvgPathBuilder-for-WithSvg%3CBuilder%3E"],[3060,"impl-WithSvg%3CBuilder%3E"],[3061,"impl-NoAttributes%3CB%3E"],[3062,"impl-PathBuilder-for-NoAttributes%3CB%3E"],[3248,"impl-Index%3CControlPointId%3E-for-CommandsPathSlice%3C\'l,+Endpoint,+ControlPoint%3E"],[3249,"impl-Index%3CEndpointId%3E-for-CommandsPathSlice%3C\'l,+Endpoint,+ControlPoint%3E"],[3410,"impl-Add-for-Angle%3CT%3E"],[3411,"impl-Add%3C%26Angle%3CT%3E%3E-for-Angle%3CT%3E"],[3414,"impl-Arc%3CS%3E"],[3415,"impl-Segment-for-Arc%3CS%3E"],[3416,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3417,"impl-CubicBezierSegment%3CS%3E"],[3418,"impl-LineSegment%3CS%3E"],[3419,"impl-Segment-for-LineSegment%3CS%3E"],[3420,"impl-QuadraticBezierSegment%3CS%3E"],[3421,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3427,"impl-Segment-for-Arc%3CS%3E"],[3428,"impl-Arc%3CS%3E"],[3429,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3430,"impl-CubicBezierSegment%3CS%3E"],[3477,"impl-Segment-for-Arc%3CS%3E"],[3478,"impl-Arc%3CS%3E"],[3479,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3480,"impl-CubicBezierSegment%3CS%3E"],[3481,"impl-Segment-for-LineSegment%3CS%3E"],[3482,"impl-LineSegment%3CS%3E"],[3483,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3484,"impl-QuadraticBezierSegment%3CS%3E"],[3606,"impl-CubicBezierSegment%3CS%3E"],[3607,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3609,"impl-QuadraticBezierSegment%3CS%3E"],[3610,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3615,"impl-Div%3CT%3E-for-Angle%3CT%3E"],[3616,"impl-Div-for-Angle%3CT%3E"],[3640,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3641,"impl-CubicBezierSegment%3CS%3E"],[3643,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3644,"impl-QuadraticBezierSegment%3CS%3E"],[3646,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3647,"impl-CubicBezierSegment%3CS%3E"],[3649,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3650,"impl-QuadraticBezierSegment%3CS%3E"],[3686,"impl-Segment-for-Arc%3CS%3E"],[3687,"impl-Arc%3CS%3E"],[3688,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3689,"impl-CubicBezierSegment%3CS%3E"],[3690,"impl-Segment-for-LineSegment%3CS%3E"],[3691,"impl-LineSegment%3CS%3E"],[3692,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3693,"impl-QuadraticBezierSegment%3CS%3E"],[3710,"impl-Segment-for-Arc%3CS%3E"],[3711,"impl-Arc%3CS%3E"],[3713,"impl-CubicBezierSegment%3CS%3E"],[3714,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3716,"impl-QuadraticBezierSegment%3CS%3E"],[3717,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3745,"impl-From%3CSvgArc%3CS%3E%3E-for-Arc%3CS%3E"],[3746,"impl-Arc%3CS%3E"],[3747,"impl-Segment-for-Arc%3CS%3E"],[3750,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3751,"impl-CubicBezierSegment%3CS%3E"],[3753,"impl-LineSegment%3CS%3E"],[3755,"impl-Segment-for-LineSegment%3CS%3E"],[3759,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3760,"impl-QuadraticBezierSegment%3CS%3E"],[3955,"impl-Segment-for-Arc%3CS%3E"],[3956,"impl-Arc%3CS%3E"],[3957,"impl-CubicBezierSegment%3CS%3E"],[3958,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3959,"impl-Segment-for-LineSegment%3CS%3E"],[3960,"impl-LineSegment%3CS%3E"],[3961,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3962,"impl-QuadraticBezierSegment%3CS%3E"],[3979,"impl-Segment-for-Arc%3CS%3E"],[3980,"impl-Arc%3CS%3E"],[3981,"impl-CubicBezierSegment%3CS%3E"],[3982,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3983,"impl-LineSegment%3CS%3E"],[3984,"impl-Segment-for-LineSegment%3CS%3E"],[3985,"impl-QuadraticBezierSegment%3CS%3E"],[3986,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3989,"impl-Arc%3CS%3E"],[3990,"impl-Segment-for-Arc%3CS%3E"],[3991,"impl-CubicBezierSegment%3CS%3E"],[3992,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[3993,"impl-Segment-for-LineSegment%3CS%3E"],[3994,"impl-LineSegment%3CS%3E"],[3995,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[3996,"impl-QuadraticBezierSegment%3CS%3E"],[4004,"impl-Sum%3C%26Angle%3CT%3E%3E-for-Angle%3CT%3E"],[4005,"impl-Sum-for-Angle%3CT%3E"],[4010,"impl-Segment-for-Arc%3CS%3E"],[4011,"impl-Arc%3CS%3E"],[4012,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[4013,"impl-CubicBezierSegment%3CS%3E"],[4014,"impl-LineSegment%3CS%3E"],[4015,"impl-Segment-for-LineSegment%3CS%3E"],[4016,"impl-QuadraticBezierSegment%3CS%3E"],[4017,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[4146,"impl-Arc%3CS%3E"],[4147,"impl-Segment-for-Arc%3CS%3E"],[4148,"impl-CubicBezierSegment%3CS%3E"],[4149,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[4150,"impl-LineSegment%3CS%3E"],[4151,"impl-Segment-for-LineSegment%3CS%3E"],[4152,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[4153,"impl-QuadraticBezierSegment%3CS%3E"],[4164,"impl-Segment-for-Arc%3CS%3E"],[4165,"impl-Arc%3CS%3E"],[4166,"impl-Segment-for-CubicBezierSegment%3CS%3E"],[4167,"impl-CubicBezierSegment%3CS%3E"],[4168,"impl-LineSegment%3CS%3E"],[4169,"impl-Segment-for-LineSegment%3CS%3E"],[4170,"impl-Segment-for-QuadraticBezierSegment%3CS%3E"],[4171,"impl-QuadraticBezierSegment%3CS%3E"],[4272,"impl-AsRef%3CPath%3E-for-ArrayString%3CCAP%3E"],[4273,"impl-AsRef%3Cstr%3E-for-ArrayString%3CCAP%3E"],[4358,"impl-PartialEq-for-ArrayVec%3CT,+CAP%3E"],[4359,"impl-PartialEq%3C%5BT%5D%3E-for-ArrayVec%3CT,+CAP%3E"],[4360,"impl-PartialEq-for-ArrayString%3CCAP%3E"],[4361,"impl-PartialEq%3Cstr%3E-for-ArrayString%3CCAP%3E"],[4376,"impl-Display-for-ArrayString%3CCAP%3E"],[4377,"impl-Debug-for-ArrayString%3CCAP%3E"],[4378,"impl-Display-for-CapacityError%3CT%3E"],[4379,"impl-Debug-for-CapacityError%3CT%3E"],[4401,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[4402,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[4404,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[4405,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[4456,"impl-IntoIterator-for-ArrayVec%3CT,+CAP%3E"],[4457,"impl-IntoIterator-for-%26mut+ArrayVec%3CT,+CAP%3E"],[4458,"impl-IntoIterator-for-%26ArrayVec%3CT,+CAP%3E"],[4471,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[4472,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[4478,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[4479,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[4518,"impl-PartialOrd-for-ArrayString%3CCAP%3E"],[4519,"impl-PartialOrd%3Cstr%3E-for-ArrayString%3CCAP%3E"],[4562,"impl-TryFrom%3C%26str%3E-for-ArrayString%3CCAP%3E"],[4564,"impl-TryFrom%3CArguments%3C\'a%3E%3E-for-ArrayString%3CCAP%3E"],[4765,"impl-Add-for-Length%3CT,+U%3E"],[4766,"impl-Add%3C%26Length%3CT,+U%3E%3E-for-Length%3CT,+U%3E"],[4767,"impl-Add%3CSize2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[4768,"impl-Add%3CVector2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[4769,"impl-Add%3CSize3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[4770,"impl-Add%3CVector3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[4773,"impl-Add%3C%26Size2D%3CT,+U%3E%3E-for-Size2D%3CT,+U%3E"],[4774,"impl-Add-for-Size2D%3CT,+U%3E"],[4775,"impl-Add-for-Size3D%3CT,+U%3E"],[4776,"impl-Add%3C%26Size3D%3CT,+U%3E%3E-for-Size3D%3CT,+U%3E"],[4779,"impl-Add%3C%26Vector2D%3CT,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[4780,"impl-Add-for-Vector2D%3CT,+U%3E"],[4781,"impl-Add%3C%26Vector3D%3CT,+U%3E%3E-for-Vector3D%3CT,+U%3E"],[4782,"impl-Add-for-Vector3D%3CT,+U%3E"],[4784,"impl-AddAssign%3CSize2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[4785,"impl-AddAssign%3CVector2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[4786,"impl-AddAssign%3CSize3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[4787,"impl-AddAssign%3CVector3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[4825,"impl-Transform2D%3CT,+Src,+Dst%3E"],[4826,"impl-ApproxEq%3CT%3E-for-Transform2D%3CT,+Src,+Dst%3E"],[4827,"impl-Transform3D%3CT,+Src,+Dst%3E"],[4828,"impl-ApproxEq%3CT%3E-for-Transform3D%3CT,+Src,+Dst%3E"],[5031,"impl-Point2D%3CT,+U%3E"],[5032,"impl-Ceil-for-Point2D%3CT,+U%3E"],[5033,"impl-Ceil-for-Point3D%3CT,+U%3E"],[5034,"impl-Point3D%3CT,+U%3E"],[5035,"impl-Size2D%3CT,+U%3E"],[5036,"impl-Ceil-for-Size2D%3CT,+U%3E"],[5037,"impl-Size3D%3CT,+U%3E"],[5038,"impl-Ceil-for-Size3D%3CT,+U%3E"],[5039,"impl-Vector2D%3CT,+U%3E"],[5040,"impl-Ceil-for-Vector2D%3CT,+U%3E"],[5041,"impl-Vector3D%3CT,+U%3E"],[5042,"impl-Ceil-for-Vector3D%3CT,+U%3E"],[5242,"impl-Div%3CT%3E-for-Box2D%3CT,+U%3E"],[5243,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Box2D%3CT,+U2%3E"],[5244,"impl-Div%3CT%3E-for-Box3D%3CT,+U%3E"],[5245,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Box3D%3CT,+U2%3E"],[5246,"impl-Div%3CScale%3CT,+Src,+Dst%3E%3E-for-Length%3CT,+Dst%3E"],[5247,"impl-Div%3CLength%3CT,+Src%3E%3E-for-Length%3CT,+Dst%3E"],[5248,"impl-Div%3CT%3E-for-Length%3CT,+U%3E"],[5249,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Point2D%3CT,+U2%3E"],[5250,"impl-Div%3CT%3E-for-Point2D%3CT,+U%3E"],[5251,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Point3D%3CT,+U2%3E"],[5252,"impl-Div%3CT%3E-for-Point3D%3CT,+U%3E"],[5253,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Rect%3CT,+U2%3E"],[5254,"impl-Div%3CT%3E-for-Rect%3CT,+U%3E"],[5255,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-SideOffsets2D%3CT,+U2%3E"],[5256,"impl-Div%3CT%3E-for-SideOffsets2D%3CT,+U%3E"],[5257,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Size2D%3CT,+U2%3E"],[5258,"impl-Div%3CT%3E-for-Size2D%3CT,+U%3E"],[5259,"impl-Div%3CT%3E-for-Size3D%3CT,+U%3E"],[5260,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Size3D%3CT,+U2%3E"],[5261,"impl-Div%3CT%3E-for-Vector2D%3CT,+U%3E"],[5262,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Vector2D%3CT,+U2%3E"],[5263,"impl-Div%3CScale%3CT,+U1,+U2%3E%3E-for-Vector3D%3CT,+U2%3E"],[5264,"impl-Div%3CT%3E-for-Vector3D%3CT,+U%3E"],[5265,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Box2D%3CT,+U%3E"],[5266,"impl-DivAssign%3CT%3E-for-Box2D%3CT,+U%3E"],[5267,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Box3D%3CT,+U%3E"],[5268,"impl-DivAssign%3CT%3E-for-Box3D%3CT,+U%3E"],[5270,"impl-DivAssign%3CT%3E-for-Point2D%3CT,+U%3E"],[5271,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Point2D%3CT,+U%3E"],[5272,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Point3D%3CT,+U%3E"],[5273,"impl-DivAssign%3CT%3E-for-Point3D%3CT,+U%3E"],[5274,"impl-DivAssign%3CT%3E-for-Rect%3CT,+U%3E"],[5275,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Rect%3CT,+U%3E"],[5276,"impl-DivAssign%3CT%3E-for-SideOffsets2D%3CT,+U%3E"],[5277,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-SideOffsets2D%3CT,+U%3E"],[5278,"impl-DivAssign%3CT%3E-for-Size2D%3CT,+U%3E"],[5279,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Size2D%3CT,+U%3E"],[5280,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Size3D%3CT,+U%3E"],[5281,"impl-DivAssign%3CT%3E-for-Size3D%3CT,+U%3E"],[5282,"impl-DivAssign%3CT%3E-for-Vector2D%3CT,+U%3E"],[5283,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[5284,"impl-DivAssign%3CScale%3CT,+U,+U%3E%3E-for-Vector3D%3CT,+U%3E"],[5285,"impl-DivAssign%3CT%3E-for-Vector3D%3CT,+U%3E"],[5436,"impl-Floor-for-Point2D%3CT,+U%3E"],[5437,"impl-Point2D%3CT,+U%3E"],[5438,"impl-Point3D%3CT,+U%3E"],[5439,"impl-Floor-for-Point3D%3CT,+U%3E"],[5440,"impl-Size2D%3CT,+U%3E"],[5441,"impl-Floor-for-Size2D%3CT,+U%3E"],[5442,"impl-Floor-for-Size3D%3CT,+U%3E"],[5443,"impl-Size3D%3CT,+U%3E"],[5444,"impl-Vector2D%3CT,+U%3E"],[5445,"impl-Floor-for-Vector2D%3CT,+U%3E"],[5446,"impl-Vector3D%3CT,+U%3E"],[5447,"impl-Floor-for-Vector3D%3CT,+U%3E"],[5475,"impl-From%3CVector2D%3CT,+U%3E%3E-for-HomogeneousVector%3CT,+U%3E"],[5476,"impl-From%3CPoint2D%3CT,+U%3E%3E-for-HomogeneousVector%3CT,+U%3E"],[5478,"impl-From%3CVector3D%3CT,+U%3E%3E-for-HomogeneousVector%3CT,+U%3E"],[5479,"impl-From%3CPoint3D%3CT,+U%3E%3E-for-HomogeneousVector%3CT,+U%3E"],[5481,"impl-From%3C%5BT;+2%5D%3E-for-Point2D%3CT,+U%3E"],[5483,"impl-From%3C(T,+T)%3E-for-Point2D%3CT,+U%3E"],[5485,"impl-From%3C(T,+T,+T)%3E-for-Point3D%3CT,+U%3E"],[5486,"impl-From%3C%5BT;+3%5D%3E-for-Point3D%3CT,+U%3E"],[5490,"impl-From%3CVector3D%3CT,+Dst%3E%3E-for-RigidTransform3D%3CT,+Src,+Dst%3E"],[5491,"impl-From%3CRotation3D%3CT,+Src,+Dst%3E%3E-for-RigidTransform3D%3CT,+Src,+Dst%3E"],[5497,"impl-From%3CVector2D%3CT,+U%3E%3E-for-Size2D%3CT,+U%3E"],[5498,"impl-From%3C%5BT;+2%5D%3E-for-Size2D%3CT,+U%3E"],[5499,"impl-From%3C(T,+T)%3E-for-Size2D%3CT,+U%3E"],[5501,"impl-From%3CVector3D%3CT,+U%3E%3E-for-Size3D%3CT,+U%3E"],[5502,"impl-From%3C%5BT;+3%5D%3E-for-Size3D%3CT,+U%3E"],[5503,"impl-From%3C(T,+T,+T)%3E-for-Size3D%3CT,+U%3E"],[5508,"impl-From%3CSize2D%3CT,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[5510,"impl-From%3C(T,+T)%3E-for-Vector2D%3CT,+U%3E"],[5511,"impl-From%3C%5BT;+2%5D%3E-for-Vector2D%3CT,+U%3E"],[5512,"impl-From%3CTranslation2D%3CT,+Src,+Dst%3E%3E-for-Vector2D%3CT,+Src%3E"],[5513,"impl-From%3C(T,+T,+T)%3E-for-Vector3D%3CT,+U%3E"],[5514,"impl-From%3CTranslation3D%3CT,+Src,+Dst%3E%3E-for-Vector3D%3CT,+Src%3E"],[5516,"impl-From%3C%5BT;+3%5D%3E-for-Vector3D%3CT,+U%3E"],[6007,"impl-Mul%3CT%3E-for-Box2D%3CT,+U%3E"],[6008,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Box2D%3CT,+U1%3E"],[6009,"impl-Mul%3CT%3E-for-Box3D%3CT,+U%3E"],[6010,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Box3D%3CT,+U1%3E"],[6011,"impl-Mul%3CScale%3CT,+Src,+Dst%3E%3E-for-Length%3CT,+Src%3E"],[6012,"impl-Mul%3CT%3E-for-Length%3CT,+U%3E"],[6013,"impl-Mul%3CT%3E-for-Point2D%3CT,+U%3E"],[6014,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Point2D%3CT,+U1%3E"],[6015,"impl-Mul%3CT%3E-for-Point3D%3CT,+U%3E"],[6016,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Point3D%3CT,+U1%3E"],[6017,"impl-Mul%3CT%3E-for-Rect%3CT,+U%3E"],[6018,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Rect%3CT,+U1%3E"],[6020,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-SideOffsets2D%3CT,+U1%3E"],[6021,"impl-Mul%3CT%3E-for-SideOffsets2D%3CT,+U%3E"],[6022,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Size2D%3CT,+U1%3E"],[6023,"impl-Mul%3CT%3E-for-Size2D%3CT,+U%3E"],[6024,"impl-Mul%3CT%3E-for-Size3D%3CT,+U%3E"],[6025,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Size3D%3CT,+U1%3E"],[6026,"impl-Mul%3CT%3E-for-Vector2D%3CT,+U%3E"],[6027,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Vector2D%3CT,+U1%3E"],[6028,"impl-Mul%3CT%3E-for-Vector3D%3CT,+U%3E"],[6029,"impl-Mul%3CScale%3CT,+U1,+U2%3E%3E-for-Vector3D%3CT,+U1%3E"],[6030,"impl-MulAssign%3CT%3E-for-Box2D%3CT,+U%3E"],[6031,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Box2D%3CT,+U%3E"],[6032,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Box3D%3CT,+U%3E"],[6033,"impl-MulAssign%3CT%3E-for-Box3D%3CT,+U%3E"],[6035,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Point2D%3CT,+U%3E"],[6036,"impl-MulAssign%3CT%3E-for-Point2D%3CT,+U%3E"],[6037,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Point3D%3CT,+U%3E"],[6038,"impl-MulAssign%3CT%3E-for-Point3D%3CT,+U%3E"],[6039,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Rect%3CT,+U%3E"],[6040,"impl-MulAssign%3CT%3E-for-Rect%3CT,+U%3E"],[6041,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-SideOffsets2D%3CT,+U%3E"],[6042,"impl-MulAssign%3CT%3E-for-SideOffsets2D%3CT,+U%3E"],[6043,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Size2D%3CT,+U%3E"],[6044,"impl-MulAssign%3CT%3E-for-Size2D%3CT,+U%3E"],[6045,"impl-MulAssign%3CT%3E-for-Size3D%3CT,+U%3E"],[6046,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Size3D%3CT,+U%3E"],[6047,"impl-MulAssign%3CT%3E-for-Vector2D%3CT,+U%3E"],[6048,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[6049,"impl-MulAssign%3CScale%3CT,+U,+U%3E%3E-for-Vector3D%3CT,+U%3E"],[6050,"impl-MulAssign%3CT%3E-for-Vector3D%3CT,+U%3E"],[6162,"impl-Point2D%3CT,+U%3E"],[6163,"impl-Round-for-Point2D%3CT,+U%3E"],[6164,"impl-Point3D%3CT,+U%3E"],[6165,"impl-Round-for-Point3D%3CT,+U%3E"],[6167,"impl-Round-for-Size2D%3CT,+U%3E"],[6168,"impl-Size2D%3CT,+U%3E"],[6169,"impl-Round-for-Size3D%3CT,+U%3E"],[6170,"impl-Size3D%3CT,+U%3E"],[6171,"impl-Round-for-Vector2D%3CT,+U%3E"],[6172,"impl-Vector2D%3CT,+U%3E"],[6173,"impl-Round-for-Vector3D%3CT,+U%3E"],[6174,"impl-Vector3D%3CT,+U%3E"],[6215,"impl-Sub%3CVector2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[6216,"impl-Sub-for-Point2D%3CT,+U%3E"],[6217,"impl-Sub%3CSize2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[6218,"impl-Sub%3CVector3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[6219,"impl-Sub%3CSize3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[6220,"impl-Sub-for-Point3D%3CT,+U%3E"],[6230,"impl-SubAssign%3CSize2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[6231,"impl-SubAssign%3CVector2D%3CT,+U%3E%3E-for-Point2D%3CT,+U%3E"],[6232,"impl-SubAssign%3CSize3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[6233,"impl-SubAssign%3CVector3D%3CT,+U%3E%3E-for-Point3D%3CT,+U%3E"],[6241,"impl-Sum%3C%26Length%3CT,+U%3E%3E-for-Length%3CT,+U%3E"],[6242,"impl-Sum-for-Length%3CT,+U%3E"],[6243,"impl-Sum-for-Size2D%3CT,+U%3E"],[6244,"impl-Sum%3C%26Size2D%3CT,+U%3E%3E-for-Size2D%3CT,+U%3E"],[6245,"impl-Sum-for-Size3D%3CT,+U%3E"],[6246,"impl-Sum%3C%26Size3D%3CT,+U%3E%3E-for-Size3D%3CT,+U%3E"],[6247,"impl-Sum-for-Vector2D%3CT,+U%3E"],[6248,"impl-Sum%3C%26Vector2D%3CT,+U%3E%3E-for-Vector2D%3CT,+U%3E"],[6249,"impl-Sum-for-Vector3D%3CT,+U%3E"],[6250,"impl-Sum%3C%26Vector3D%3CT,+U%3E%3E-for-Vector3D%3CT,+U%3E"],[6433,"impl-Rotation2D%3CT,+Src,+Dst%3E"],[6434,"impl-Transformation%3CS%3E-for-Rotation2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[6435,"impl-Transformation%3CS%3E-for-Scale%3CS,+UnknownUnit,+UnknownUnit%3E"],[6436,"impl-Scale%3CT,+Src,+Dst%3E"],[6437,"impl-Translation2D%3CT,+Src,+Dst%3E"],[6438,"impl-Transformation%3CS%3E-for-Translation2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[6439,"impl-Transform2D%3CT,+Src,+Dst%3E"],[6440,"impl-Transformation%3CS%3E-for-Transform2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[6456,"impl-Transformation%3CS%3E-for-Rotation2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[6457,"impl-Rotation2D%3CT,+Src,+Dst%3E"],[6458,"impl-Scale%3CT,+Src,+Dst%3E"],[6459,"impl-Transformation%3CS%3E-for-Scale%3CS,+UnknownUnit,+UnknownUnit%3E"],[6461,"impl-Transform2D%3CT,+Src,+Dst%3E"],[6462,"impl-Transformation%3CS%3E-for-Transform2D%3CS,+UnknownUnit,+UnknownUnit%3E"],[6769,"impl-Point2D%3CT,+U%3E"],[6770,"impl-Zero-for-Point2D%3CT,+U%3E"],[6771,"impl-Point3D%3CT,+U%3E"],[6772,"impl-Zero-for-Point3D%3CT,+U%3E"],[6775,"impl-Zero-for-Size2D%3CT,+U%3E"],[6776,"impl-Size2D%3CT,+U%3E"],[6777,"impl-Size3D%3CT,+U%3E"],[6778,"impl-Zero-for-Size3D%3CT,+U%3E"],[6779,"impl-Zero-for-Vector2D%3CT,+U%3E"],[6780,"impl-Vector2D%3CT,+U%3E"],[6781,"impl-Vector3D%3CT,+U%3E"],[6782,"impl-Zero-for-Vector3D%3CT,+U%3E"],[7254,"impl-PathBuilder-for-Builder%3C\'l%3E"],[7255,"impl-Builder%3C\'l%3E"],[7256,"impl-BuilderWithAttributes%3C\'l%3E"],[7257,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[7264,"impl-Builder%3C\'l%3E"],[7265,"impl-Build-for-Builder%3C\'l%3E"],[7266,"impl-Build-for-BuilderWithAttributes%3C\'l%3E"],[7267,"impl-BuilderWithAttributes%3C\'l%3E"],[7277,"impl-PathBuilder-for-Builder%3C\'l%3E"],[7278,"impl-Builder%3C\'l%3E"],[7279,"impl-BuilderWithAttributes%3C\'l%3E"],[7280,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[7293,"impl-Builder%3C\'l%3E"],[7294,"impl-PathBuilder-for-Builder%3C\'l%3E"],[7295,"impl-BuilderWithAttributes%3C\'l%3E"],[7296,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[7337,"impl-Builder%3C\'l%3E"],[7338,"impl-PathBuilder-for-Builder%3C\'l%3E"],[7339,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[7340,"impl-BuilderWithAttributes%3C\'l%3E"],[7346,"impl-PathBuilder-for-Builder%3C\'l%3E"],[7347,"impl-Builder%3C\'l%3E"],[7348,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[7349,"impl-BuilderWithAttributes%3C\'l%3E"],[7350,"impl-PathBuilder-for-Builder%3C\'l%3E"],[7351,"impl-Builder%3C\'l%3E"],[7352,"impl-PathBuilder-for-BuilderWithAttributes%3C\'l%3E"],[7353,"impl-BuilderWithAttributes%3C\'l%3E"],[7763,"impl-Checkbox%3C\'a,+Message,+Theme,+Renderer%3E"],[7764,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-Checkbox%3C\'_,+Message,+Theme,+Renderer%3E"],[7902,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-ComboBox%3C\'_,+T,+Message,+Theme,+Renderer%3E"],[7903,"impl-ComboBox%3C\'a,+T,+Message,+Theme,+Renderer%3E"],[8017,"impl-From%3CLinear%3E-for-Style"],[8018,"impl-From%3CGradient%3E-for-Style"],[8019,"impl-From%3CColor%3E-for-Style"],[8186,"impl-From%3C%26Handle%3E-for-Handle"],[8187,"impl-From%3CT%3E-for-Handle"],[8612,"impl-Debug-for-Url"],[8613,"impl-Display-for-Url"],[8614,"impl-Display-for-HeadingLevel"],[8615,"impl-Debug-for-HeadingLevel"],[8630,"impl-From%3C%26Theme%3E-for-Settings"],[8631,"impl-From%3CTheme%3E-for-Settings"],[8633,"impl-From%3CPalette%3E-for-Style"],[8634,"impl-From%3C%26Theme%3E-for-Style"],[8635,"impl-From%3CTheme%3E-for-Style"],[8672,"impl-Index%3CRange%3CPosition%3E%3E-for-Url"],[8673,"impl-Index%3CRangeTo%3CPosition%3E%3E-for-Url"],[8674,"impl-Index%3CRangeFrom%3CPosition%3E%3E-for-Url"],[8675,"impl-Index%3CRangeFull%3E-for-Url"],[10592,"impl-Debug-for-Error"],[10593,"impl-Display-for-Error"],[10856,"impl-Radio%3C\'a,+Message,+Theme,+Renderer%3E"],[10857,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-Radio%3C\'_,+Message,+Theme,+Renderer%3E"],[12468,"impl-From%3Cf32%3E-for-LineHeight"],[12469,"impl-From%3CPixels%3E-for-LineHeight"],[12589,"impl-Rich%3C\'a,+Link,+Message,+Theme,+Renderer%3E"],[12590,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-Rich%3C\'_,+Link,+Message,+Theme,+Renderer%3E"],[13132,"impl-State%3CHighlighter%3E"],[13133,"impl-Focusable-for-State%3CHighlighter%3E"],[13159,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-TextEditor%3C\'_,+Highlighter,+Message,+Theme,+Renderer%3E"],[13160,"impl-TextEditor%3C\'a,+Highlighter,+Message,+Theme,+Renderer%3E"],[13442,"impl-TextInput%3C\'a,+Message,+Theme,+Renderer%3E"],[13443,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-TextInput%3C\'_,+Message,+Theme,+Renderer%3E"],[13461,"impl-Display-for-Value"],[13462,"impl-Debug-for-Value"],[13470,"impl-Focusable-for-State%3CP%3E"],[13471,"impl-State%3CP%3E"],[13479,"impl-From%3CString%3E-for-Id"],[13480,"impl-From%3C%26str%3E-for-Id"],[13586,"impl-State%3CP%3E"],[13587,"impl-Focusable-for-State%3CP%3E"],[13588,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-TextInput%3C\'_,+Message,+Theme,+Renderer%3E"],[13589,"impl-TextInput%3C\'a,+Message,+Theme,+Renderer%3E"],[13594,"impl-State%3CP%3E"],[13595,"impl-TextInput-for-State%3CP%3E"],[13597,"impl-State%3CP%3E"],[13598,"impl-TextInput-for-State%3CP%3E"],[13600,"impl-TextInput-for-State%3CP%3E"],[13601,"impl-State%3CP%3E"],[13624,"impl-State%3CP%3E"],[13625,"impl-TextInput-for-State%3CP%3E"],[13628,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-TextInput%3C\'_,+Message,+Theme,+Renderer%3E"],[13629,"impl-TextInput%3C\'a,+Message,+Theme,+Renderer%3E"],[13701,"impl-State%3CP%3E"],[13702,"impl-Focusable-for-State%3CP%3E"],[13930,"impl-Display-for-Custom"],[13931,"impl-Debug-for-Custom"],[14529,"impl-Toggler%3C\'a,+Message,+Theme,+Renderer%3E"],[14530,"impl-Widget%3CMessage,+Theme,+Renderer%3E-for-Toggler%3C\'_,+Message,+Theme,+Renderer%3E"]],"c":"OjAAAAEAAAAAAAoAEAAAAAwAEQA0AH0A/AD9ACYBJwF4AYABNSI=","e":"OjAAAAEAAAAAAIMsEAAAABguIBDv3OyN3///f/AA/8CT/////9+B/8DD////HsPEBgAEgDCB//8zAA//////Bh6A/z//85///x+/4///vxhG/v//fwQAAAD4////////////////9//////9//7/////v/7/P/4/HnDl//9/8v8BwP///////////////7+A+CEAEf/f///////////////9f/r/QOL//7t//of5////PT///8H//2P8e3P/Jz///wj+/88///T+wf/gwi8ODg7AB/7//////////////////z/5////////R/////////////////3/////////////////////////g/3/D5QAAP7//////3///+P///8fAADA//////////////////////////////f//38eFuT6w/sP9w////+v////////////////////////////////////////////D+ADAAD6///2//3+j32+//+/+3Twf//g/////z+f/x+8qiq8V/3p/////98fAf/////v///////f4P//4P////9f/////////9CPz9fx/z9Tdvv/////X9X//yDC/2/4//8//3/+/19r////mtb/HwmBqv+AWAUAwJ0V8///q/+vAfj//////////08gwBD8/f2al4XRl5oWfPt/vuc/hP7//////////+//WRvsbBD+/95/7/+D////Acf//+H//z////fv/99f8Pn/P/D///9//ofz////B/8DAI5/vn//4/////////////+f/3/v//8DAACA////////PwD/+WOD///////////////////////j//8PAAACAHAA////////////h///Pwbh/+f+/////3/+/////3/4///////////w//////////8RAP7//7bVGtytr+L//w8AQPj//wcAAPD//z8B8P//jzUAAOD/////////////////////////////HwACAAAEAPD//4OH9/D//////+8fQAwAgP//AgGOADAIAQDAB/AAg/////8fAAAAAgEAAAAA4P//fygAEAAAAAAAEJgCALIAAgD+/////////////5///////////0///3/s////APh8xM8HbyoJAP//v8D////7mc+bUvr/////x//4////////fwHA9OT///////8D/w//////z5//////D4B/0QYA/////////+M//v//////////gf//////////4f/h/////////////wEAAgAAAADA///z//57/v//B/55+P///xchEfz/////A/7///yPN/z/kaD+/3+AA/8P/Ed+x//73/zP8f//lxwY7f//ewfw////v//9v5vjOf7//xX////ngP//73958/8vif//v/T/z/Svo/8HfgH4/////w/////+///w////+v///3+A/R//AQb+HwD/////////H4wAGAABiPj///////////zjHwDA/5//P/3/4T/+/38C+P//fwAAAAAQ8P+///////////9//v//////f+P///////3/P/7////////5/7//////BgDw/////4///wEA+P////////////////////9/Q8wEhP7///////////////////////////8DAID7/////f9+3Dn8//8DCPD///8DAMD//3/+//7fp////3/A/3zw/////48SSvj//////x/o/+/+hv9/4H/8Pv/nzf9/iP//BgAA////v///8f8///////8P+f8f+P//////M3////////8/APz/8d9/fv8//Mf///+U4P///wcA////fuf/z/gd////5f//fwcAAID/B/z//////+P//9//9////9//w////+////////8PBP7//wX/DwD////////////////iG0T+///////////////9f/4fAAAB//////9+/HD8//+jgP3//88DAPj////B///+/z/+////f+D/+YH///////9g/P///////38AwP///7//Hv///7/y+Dz8////l/z/////AQAA4M////+D//+P/z/wh/////f//x9g+f8ff8D//////7+/QPyBBPn+///////z9w8AAAAAAAAAAP////////+P//////f/////x/////3///f///8fAPy//4f/B4D//////////////08C5AJF/P///////////////9//AwgA+Pf////P//+////vH/7///f//78A4/8//gH4/////////zOSAoEAJPL/////////v/z3D/z/////n5////z/PwAAAAAAAPz/8f//+f8//uP//x/4////BwAAAPD/////D/D//////++f//////9/gP9/4B/g/////////x8A4P///////////x8AgP8//vvP//8D/uP//28owf///w/A/3///583//9t/f//vn/71n/M/wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA","P":[[64,"T,M,D"],[68,"Message"],[69,"C,T"],[73,"C"],[77,""],[86,"T"],[94,"Message,Theme,Renderer,"],[99,"WpParam,T"],[104,"Message,Theme,Renderer,P"],[105,"Message"],[106,"Message,Theme,Renderer,"],[110,",Message,Theme,Renderer"],[111,"Message,Theme,Renderer,Dependency,View"],[112,""],[113,"Message"],[114,"T"],[116,""],[118,"Catalog::Class"],[119,"Message,Theme,Renderer,"],[123,"T,Message,,Theme,Renderer"],[124,"Message,Theme,Renderer,C"],[125,"C,T"],[130,"Message,Theme,Renderer,"],[132,""],[133,""],[134,"Catalog::Class"],[141,""],[144,"Catalog::Class"],[148,""],[150,"Catalog::Class"],[152,"T"],[160,"Message,Theme,Renderer,Dependency,View"],[161,"T"],[165,"Message,Theme,Renderer"],[166,"Message,Theme,Renderer,Dependency,View"],[167,""],[175,"Message"],[176,"T"],[186,"U,T"],[191,",Theme"],[192,""],[193,"Message,Theme,Renderer,,"],[194,",Message,Theme,Renderer"],[196,"Handle,"],[197,""],[201,"U"],[209,"T"],[219,"WpParam,T"],[223,"U"],[231,"Message"],[232,"T"],[237,"Key,Message,Theme,Renderer,"],[239,"Message,Theme,Renderer"],[240,"Message,Theme,Renderer,Dependency,View"],[241,"Dependency,Message,Theme,Renderer,View,"],[243,",,Theme,Renderer"],[244,"Message,Theme,Renderer,"],[245,"Message,Theme,Renderer"],[246,"Message,Theme,Renderer,Dependency,View"],[247,"Message,Theme,Renderer,"],[248,"Dependency,Message,Theme,Renderer,View,"],[249,"T"],[250,"Message,Theme,Renderer,"],[251,"Component::State,Component::Event"],[253,"Message,Theme,Renderer"],[254,"Message,Theme,Renderer,Dependency,View"],[256,"Message,Theme,Renderer"],[257,"Message,Theme,Renderer,Dependency,View"],[258,""],[260,"T,Message,Theme,Renderer,"],[262,"T,L,V,Message,,Theme,Renderer"],[263,"Message,Theme,Renderer,"],[267,"Theme"],[268,"Message"],[270,"Theme"],[272,",V,Message,,Theme,Renderer"],[274,"Message"],[276,"Message,Theme,Renderer,"],[277,"Link,,Message,Theme,Renderer"],[280,"Message,Theme,Renderer,"],[290,"Message,P"],[291,"Message,Theme,Renderer"],[292,"Message,Theme,Renderer,Dependency,View"],[293,"Component::State,Component::Event"],[295,"Message,Theme,Renderer,Dependency,View"],[297,"T,Message,,Theme"],[298,",Link,Font"],[299,"Message,Theme,Renderer,"],[302,"Message,Theme,Renderer"],[303,"Message,Theme,Renderer,Dependency,View"],[304,""],[306,"Catalog::Class"],[310,""],[311,"Catalog::Class"],[320,""],[322,",Theme"],[323,"Message,Theme,Renderer"],[324,"Message,Theme,Renderer,Dependency,View"],[326,",Theme,Renderer"],[330,"Renderer,Message,Theme"],[332,"Message,Theme,Renderer"],[334,"NewTheme,Message,Renderer,,OldTheme"],[335,"T"],[337,""],[340,"Message,Theme,Renderer"],[342,"Message,Theme,Renderer,,"],[343,"C"],[347,"U,T"],[351,"U"],[359,""],[363,"C,U"],[367,"C"],[371,"T"],[375,"Component::State,Component::Event,Message"],[376,"Message,Theme,Renderer"],[377,"Message,Theme,Renderer,Dependency,View"],[378,",Theme,Renderer"],[379,",Theme"],[381,"T,Message,,Theme"],[382,""],[383,"Component::State,Component::Event,Theme,Renderer"],[384,"V"],[398,"T,M,D"],[401,"C,T"],[404,"C"],[407,""],[415,"T"],[421,"WpParam,T"],[424,"Message,Theme,Renderer"],[425,"Message,Theme,Renderer,"],[426,"Message,Theme,Renderer"],[427,""],[429,"T"],[431,""],[433,"C,T"],[436,""],[437,"Catalog::Class"],[438,""],[439,"T"],[445,"Message,Theme,Renderer"],[446,"T"],[449,"Message,Theme,Renderer"],[450,""],[455,"K"],[458,""],[460,"T"],[466,"U,T"],[469,"Message,Theme,Renderer,"],[470,""],[473,"U"],[479,"T"],[487,"WpParam,T"],[490,"U"],[496,"T"],[499,"Message,Theme,Renderer"],[501,"Message,Theme,Renderer,"],[502,"T"],[503,"Message,Theme,Renderer"],[505,"Message,Theme,Renderer,"],[506,"Message,Theme,Renderer"],[508,"Message,Theme,Renderer,P"],[509,""],[512,"Message,Theme,Renderer"],[514,"Catalog::Class"],[515,"Message,Theme,Renderer,"],[516,""],[517,"Message,Theme,Renderer"],[518,""],[520,"T"],[522,"C"],[525,"U,T"],[528,"U"],[534,""],[537,"C,U"],[540,"C"],[543,"T"],[546,"Message,Theme,Renderer"],[547,"V"],[550,""],[551,"Message,Theme,Renderer,"],[552,""],[586,"T,M,D"],[599,"C,T"],[612,"C"],[625,""],[651,"T"],[677,"WpParam,T"],[690,""],[702,"H"],[703,"T"],[715,""],[729,"K"],[730,"C,T"],[743,""],[750,"T"],[789,"Program::State,Renderer,Theme"],[790,"Message,Theme,Renderer,P"],[791,""],[792,""],[809,"H"],[810,"K"],[814,""],[827,"H"],[828,"Message,Theme,Renderer,P"],[829,""],[830,"T"],[832,""],[836,"T"],[843,""],[846,"T"],[847,""],[848,"T"],[849,""],[850,"T"],[865,"U,T"],[879,""],[880,"__H"],[881,"Message,Theme,Renderer,P,"],[882,""],[896,"U"],[922,"T"],[961,"WpParam,T"],[974,"U"],[1000,"T"],[1013,""],[1014,"Message,Theme,Renderer,P"],[1015,""],[1020,"Program::State"],[1022,"Message,Theme,Renderer,P"],[1023,""],[1025,"Message,Theme,Renderer,P"],[1026,"T"],[1032,""],[1033,""],[1034,""],[1041,""],[1042,""],[1047,"Message,Theme,Renderer,P"],[1048,""],[1051,"Message,Theme,Renderer,P"],[1053,""],[1055,"Message,Theme,Renderer,P"],[1056,"T"],[1068,""],[1069,"C"],[1082,"U,T"],[1095,"U"],[1121,""],[1134,"C,U"],[1147,"C"],[1160,""],[1161,"T"],[1174,"Program::State,Message"],[1176,"Message,Theme,Renderer,P"],[1177,""],[1178,"V"],[1191,"Message,Theme,Renderer,P,"],[1192,""],[1204,"T,M,D"],[1205,"C,T"],[1206,"C"],[1207,""],[1209,"T"],[1211,"WpParam,T"],[1212,""],[1213,"T"],[1214,""],[1215,"C,T"],[1216,"T"],[1219,""],[1221,"K"],[1224,""],[1225,"T"],[1227,"U,T"],[1228,""],[1229,"U"],[1231,"T"],[1234,"WpParam,T"],[1235,"U"],[1237,"T"],[1238,""],[1240,"T"],[1241,"C"],[1242,"U,T"],[1243,"U"],[1245,""],[1246,"C,U"],[1247,"C"],[1248,"T"],[1249,"V"],[1254,"T,M,D"],[1256,""],[1257,""],[1258,"C,T"],[1260,"C"],[1262,""],[1266,"T"],[1270,"WpParam,T"],[1272,""],[1274,"T"],[1276,""],[1278,"C,T"],[1280,"T"],[1286,""],[1293,"T"],[1297,"U,T"],[1299,""],[1301,"U"],[1305,"T"],[1311,"WpParam,T"],[1313,"U"],[1317,"T"],[1320,""],[1325,"T"],[1327,"C"],[1329,"U,T"],[1331,"U"],[1335,""],[1337,"C,U"],[1339,"C"],[1341,"T"],[1343,"V"],[1348,"T,M,D"],[1351,""],[1353,"C,T"],[1355,"C"],[1357,""],[1362,"T"],[1366,""],[1367,"WpParam,T"],[1369,""],[1372,"T"],[1373,""],[1375,"C,T"],[1377,""],[1378,"T"],[1384,""],[1389,"T"],[1393,"U,T"],[1395,""],[1397,"U"],[1401,"T"],[1407,"WpParam,T"],[1409,"U"],[1413,"T"],[1415,""],[1418,"T"],[1419,""],[1424,"T"],[1425,"C"],[1427,"U,T"],[1429,"U"],[1433,""],[1435,"C,U"],[1437,"C"],[1439,"T"],[1441,"V"],[1445,"T,M,D"],[1446,"C,T"],[1447,"C"],[1448,""],[1450,"T"],[1452,"WpParam,T"],[1453,""],[1456,"T"],[1457,""],[1458,"C,T"],[1459,"T"],[1462,""],[1466,"T"],[1467,""],[1468,"T"],[1469,"U,T"],[1470,""],[1471,"U"],[1473,"T"],[1476,"WpParam,T"],[1477,"U"],[1479,"T"],[1480,""],[1485,"T"],[1486,"C"],[1487,"U,T"],[1488,"U"],[1490,""],[1491,"C,U"],[1492,"C"],[1493,"T"],[1494,"V"],[1535,""],[1560,"T,M,D"],[1585,"C,T"],[1610,"C"],[1635,""],[1693,"T"],[1743,""],[1751,"WpParam,T"],[1776,""],[1780,"Endpoint,ControlPoint"],[1781,""],[1790,"T"],[1791,""],[1800,"T"],[1823,""],[1849,"C,T"],[1874,""],[1881,"T"],[1956,""],[1985,"Endpoint,ControlPoint"],[1986,""],[1994,"K"],[2009,""],[2011,"T"],[2012,""],[2013,"Endpoint,ControlPoint"],[2014,""],[2021,"Endpoint,ControlPoint"],[2022,""],[2035,"F"],[2036,"T"],[2041,""],[2042,"T"],[2043,"Ep,Cp"],[2044,"T"],[2046,""],[2047,"T"],[2091,"U,T"],[2116,""],[2127,"Endpoint"],[2128,""],[2131,"Endpoint"],[2132,"Endpoint,ControlPoint,__H"],[2133,"__H"],[2137,""],[2139,"T"],[2140,""],[2144,"T"],[2145,""],[2172,"U"],[2222,"T"],[2295,"WpParam,T"],[2320,"U"],[2370,"I"],[2371,""],[2375,"I"],[2378,""],[2379,"T"],[2404,"Ep,Cp"],[2405,""],[2418,"T"],[2419,""],[2445,"T"],[2449,""],[2461,"T"],[2462,"Endpoint,ControlPoint"],[2463,""],[2479,"Ep,Cp"],[2480,""],[2481,"T"],[2504,""],[2508,"T"],[2510,"C"],[2535,"U,T"],[2560,"U"],[2610,""],[2635,"C,U"],[2660,"C"],[2685,"T"],[2710,"V"],[2735,""],[2738,"Ep,Cp"],[2739,""],[2788,"T,M,D"],[2793,""],[2795,"B"],[2796,""],[2798,"B"],[2799,""],[2801,"B"],[2802,""],[2804,"B"],[2805,""],[2809,"B"],[2810,""],[2812,"B"],[2813,""],[2815,"B"],[2816,"Builder"],[2817,""],[2818,"Builder"],[2819,"C,T"],[2824,"C"],[2829,""],[2840,"Builder"],[2841,"Builder,Transform"],[2842,"B"],[2844,"T"],[2854,""],[2856,"Build::PathType"],[2857,"Builder"],[2859,"Builder,Transform"],[2860,"Builder"],[2862,"B"],[2863,"P,B"],[2864,"WpParam,T"],[2869,""],[2870,"B"],[2871,"T"],[2873,""],[2878,"Builder"],[2880,"B"],[2881,"C,T"],[2886,""],[2888,"Builder"],[2889,"Builder,Transform"],[2890,"Builder"],[2892,"B"],[2894,"Builder"],[2895,""],[2896,"B"],[2897,"T"],[2912,""],[2918,"Builder"],[2919,"Builder,Transform"],[2920,"B"],[2922,""],[2923,"B"],[2924,""],[2929,"Builder"],[2930,"B"],[2931,""],[2933,"B"],[2934,"T"],[2944,"U,T"],[2949,"B,__H"],[2950,""],[2951,"Builder"],[2952,""],[2957,"B"],[2959,"U"],[2969,"T"],[2984,"WpParam,T"],[2989,"U"],[2999,"B"],[3000,"T"],[3005,""],[3007,"Builder"],[3008,"Builder,Transform"],[3009,"Builder"],[3011,"B"],[3013,""],[3014,"Builder"],[3017,"Builder,Transform"],[3018,"Builder"],[3019,""],[3020,"B"],[3021,"T"],[3023,""],[3024,"Builder"],[3025,"Builder,Transform"],[3026,"B"],[3027,""],[3030,"B"],[3031,""],[3033,"Builder"],[3034,"Builder,Transform"],[3035,"Builder"],[3037,"B"],[3039,""],[3040,"Builder"],[3041,""],[3042,"Builder"],[3043,""],[3044,"Builder"],[3045,""],[3046,"Builder"],[3047,""],[3048,"Builder"],[3049,""],[3050,"Builder"],[3051,""],[3052,"Builder"],[3053,""],[3057,"Builder"],[3058,"Builder,Transform"],[3059,"Builder"],[3061,"B"],[3063,"Builder"],[3064,"Builder,Transform"],[3066,""],[3067,"Builder"],[3068,""],[3069,"Builder"],[3070,""],[3071,"Builder"],[3072,""],[3073,"Builder"],[3074,"T"],[3076,""],[3080,"Transform"],[3082,"Builder,Transform"],[3083,"B,Transform"],[3084,"C"],[3089,"U,T"],[3094,"U"],[3104,""],[3109,"C,U"],[3114,"C"],[3119,"T"],[3124,""],[3125,"Builder"],[3126,"V"],[3131,"B"],[3132,""],[3134,"B"],[3143,"T,M,D"],[3148,"C,T"],[3153,"C"],[3158,""],[3169,"T"],[3179,""],[3180,"WpParam,T"],[3185,"Endpoint,ControlPoint"],[3186,""],[3187,"Endpoint,ControlPoint"],[3188,""],[3189,"Endpoint,ControlPoint"],[3190,"T"],[3195,""],[3200,"C,T"],[3205,""],[3207,"T"],[3222,""],[3228,"Endpoint,ControlPoint"],[3230,""],[3231,"T"],[3241,"U,T"],[3246,"Endpoint,ControlPoint"],[3250,""],[3255,"U"],[3265,"T"],[3277,"WpParam,T"],[3282,"U"],[3292,"I"],[3295,"T"],[3300,"Endpoint,ControlPoint"],[3301,""],[3303,"Endpoint,ControlPoint"],[3304,""],[3305,"Endpoint,ControlPoint"],[3306,"T"],[3307,"Ep,Cp"],[3308,""],[3309,"T"],[3314,"C"],[3319,"U,T"],[3324,"U"],[3334,""],[3339,"C,U"],[3344,"C"],[3349,"T"],[3354,"V"],[3359,""],[3397,"S"],[3398,""],[3399,"S"],[3401,"T,M,D"],[3410,"T"],[3413,"Segment::Scalar"],[3414,"S"],[3422,""],[3423,"T"],[3426,"Segment::Scalar"],[3427,"S"],[3434,"C,T"],[3443,"C"],[3452,""],[3470,"S"],[3471,""],[3472,"S"],[3476,"Segment::Scalar"],[3477,"S"],[3485,"T"],[3503,"S"],[3518,""],[3519,"S"],[3520,"WpParam,T"],[3529,"S,NewS"],[3531,"T,NewT"],[3532,"S"],[3533,""],[3534,"S"],[3546,"T"],[3556,""],[3565,"S"],[3567,"C,T"],[3576,"S"],[3578,""],[3582,"S"],[3584,"T"],[3604,"Segment::Scalar"],[3605,"S"],[3615,"T"],[3627,"S"],[3630,""],[3639,"Segment::Scalar"],[3640,"S"],[3645,"Segment::Scalar"],[3646,"S"],[3652,""],[3653,"S"],[3660,"T"],[3661,"S"],[3662,"K"],[3668,"S"],[3679,""],[3680,"S"],[3685,"Segment::Scalar"],[3686,"S"],[3702,"T"],[3703,"S,F"],[3709,"Segment::Scalar"],[3710,"S"],[3711,"S,F"],[3714,"S"],[3716,"S,F"],[3717,"S"],[3718,"S,F"],[3741,"T"],[3744,"Segment::Scalar"],[3745,"S"],[3748,"T"],[3750,"S"],[3752,"T"],[3753,"S"],[3754,"T"],[3755,"S"],[3756,"T"],[3759,"S"],[3761,"T"],[3763,""],[3767,"T"],[3776,"U,T"],[3785,"S"],[3786,"T"],[3787,"S"],[3788,"T,__H"],[3789,""],[3790,"S"],[3792,""],[3801,"S"],[3809,"U"],[3827,"T"],[3854,"WpParam,T"],[3863,"U"],[3881,"T"],[3890,"S"],[3892,"T"],[3893,"S"],[3905,""],[3906,"S"],[3908,"T"],[3909,"S"],[3921,""],[3928,"S"],[3929,""],[3930,"T"],[3933,"S"],[3935,"T"],[3936,"S"],[3941,"T"],[3943,"S"],[3944,""],[3945,"T"],[3946,"S"],[3950,"T"],[3951,""],[3954,"Segment::Scalar"],[3955,"S"],[3965,"T"],[3966,"S"],[3968,"T"],[3969,"S"],[3978,"Segment::Scalar"],[3979,"S"],[3988,"Segment::Scalar"],[3989,"S"],[4001,""],[4002,"T"],[4004,"T,I"],[4006,""],[4008,"S"],[4009,"Segment::Scalar"],[4010,"S"],[4018,""],[4022,"S"],[4024,"T"],[4025,"S"],[4029,"T"],[4030,"S"],[4034,"T"],[4035,"S"],[4036,"T"],[4045,"S"],[4050,"S,T"],[4054,"S"],[4055,"T,NewT"],[4056,"C"],[4065,"U,T"],[4074,"U"],[4092,"T"],[4093,""],[4102,"C,U"],[4111,"C"],[4120,"T"],[4130,""],[4131,"S"],[4132,""],[4133,"S"],[4135,"V"],[4144,""],[4145,"Segment::Scalar"],[4146,"S"],[4154,""],[4157,"S"],[4161,""],[4163,"Segment::Scalar"],[4164,"S"],[4172,""],[4175,"S"],[4179,"T"],[4184,"T,M,D"],[4185,"C,T"],[4186,"C"],[4187,""],[4189,"T"],[4191,"WpParam,T"],[4192,""],[4193,"C,T"],[4194,"T"],[4197,""],[4199,"T"],[4200,""],[4201,"T"],[4202,"U,T"],[4203,""],[4204,"U"],[4206,"T"],[4209,"WpParam,T"],[4210,"U"],[4212,"I"],[4213,"T"],[4214,""],[4215,"S"],[4216,""],[4222,"C"],[4223,"U,T"],[4224,"U"],[4226,""],[4227,"C,U"],[4228,"C"],[4229,"T"],[4230,"V"],[4231,""],[4238,"T,M,D"],[4243,"C,T"],[4248,"C"],[4253,""],[4263,"T"],[4265,""],[4266,"T"],[4268,""],[4269,"T"],[4270,""],[4271,"T"],[4272,""],[4274,"T"],[4276,""],[4277,"T"],[4281,""],[4282,"T"],[4289,""],[4290,"T"],[4291,"WpParam,T"],[4296,"T"],[4297,""],[4298,"T"],[4299,""],[4300,"T"],[4302,""],[4303,"T"],[4305,""],[4306,"T"],[4310,""],[4314,"T"],[4315,""],[4316,"T"],[4317,"K"],[4320,"C,T"],[4325,"T"],[4326,""],[4327,"T"],[4332,""],[4333,"T"],[4338,""],[4339,"T"],[4346,"T,R"],[4347,""],[4348,"T"],[4350,""],[4351,"T"],[4352,""],[4355,"T"],[4356,"U"],[4358,"T"],[4360,""],[4362,"T"],[4363,"K"],[4372,"T,I"],[4373,""],[4374,"T"],[4376,""],[4378,"T"],[4384,""],[4385,"T"],[4392,""],[4393,"T,I"],[4394,"U,T"],[4399,""],[4400,"T"],[4401,""],[4403,"T"],[4404,""],[4406,"T,H"],[4407,"H"],[4408,""],[4413,"T"],[4414,"U"],[4424,"T"],[4439,"WpParam,T"],[4444,"U"],[4454,"T"],[4459,"I"],[4461,"T"],[4467,""],[4468,"T"],[4469,""],[4470,"T"],[4471,""],[4473,"T"],[4474,""],[4477,"T"],[4478,""],[4480,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ,FromK"],[4481,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ,FromK,FromL"],[4482,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ"],[4483,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI"],[4484,""],[4485,"FromA"],[4486,"FromA,FromB"],[4487,"FromA,FromB,FromC"],[4488,"FromA,FromB,FromC,FromD,FromE,FromF,FromG"],[4489,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH"],[4490,"FromA,FromB,FromC,FromD"],[4491,"FromA,FromB,FromC,FromD,FromE"],[4492,"FromA,FromB,FromC,FromD,FromE,FromF"],[4494,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ,FromK,FromL"],[4495,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH"],[4496,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI"],[4497,""],[4498,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ"],[4499,"FromA"],[4500,"FromA,FromB"],[4501,"FromA,FromB,FromC"],[4502,"FromA,FromB,FromC,FromD,FromE,FromF,FromG"],[4503,"FromA,FromB,FromC,FromD,FromE"],[4504,"FromA,FromB,FromC,FromD,FromE,FromF,FromG,FromH,FromI,FromJ,FromK"],[4505,"FromA,FromB,FromC,FromD"],[4506,"T"],[4507,""],[4508,"T"],[4510,""],[4511,"T"],[4518,""],[4520,"T"],[4522,""],[4523,"T"],[4525,""],[4527,"T"],[4529,""],[4530,"T"],[4531,""],[4532,"T,F"],[4533,"T"],[4534,""],[4535,"T"],[4538,""],[4539,"T"],[4546,""],[4550,"T"],[4551,""],[4552,"C"],[4557,"T"],[4558,"U,T"],[4559,"T"],[4560,"U,T"],[4562,""],[4563,"U,T"],[4564,""],[4565,"U,T"],[4566,"T"],[4567,"U"],[4577,"T"],[4578,""],[4585,"C,U"],[4590,"C"],[4595,"T"],[4600,"V"],[4605,""],[4671,"T,M,D"],[4672,"C,T"],[4673,"C"],[4674,""],[4676,"T"],[4678,"WpParam,T"],[4679,"C,T"],[4680,""],[4682,"T"],[4685,""],[4686,"T"],[4687,""],[4688,"T"],[4689,"U,T"],[4690,""],[4691,"U"],[4693,"T"],[4696,"WpParam,T"],[4697,"U"],[4699,"I"],[4700,"T"],[4701,"S"],[4703,""],[4704,"C"],[4705,"U,T"],[4706,"U"],[4708,""],[4709,"C,U"],[4710,"C"],[4711,"T"],[4712,"V"],[4738,"T,U"],[4742,"T,M,D"],[4765,"T,U"],[4771,"T,Src,Dst"],[4772,"T,U"],[4777,"T,Src,Dst1,Dst2"],[4779,"T,U"],[4791,"T,Src,Dst"],[4793,"T,U"],[4797,""],[4802,"T,U"],[4805,""],[4807,"T"],[4808,"T,U"],[4810,"T"],[4812,"T,U"],[4814,"T"],[4816,"T,Src,Dst"],[4818,"T,U"],[4821,"T,Src,Dst"],[4823,"T,U"],[4825,"T,Src,Dst"],[4831,"T,U"],[4834,"T,Src,Dst"],[4838,"C,T"],[4861,"C"],[4884,""],[4930,"T"],[4976,""],[4977,"T,U"],[4978,""],[4980,"WpParam,T"],[5003,"T,U,NewT"],[5009,"T,Src,Dst,NewT"],[5010,"T,U,NewT"],[5012,"T,Src,Dst,NewT"],[5014,"T,U,NewT"],[5016,"T,Src,Dst,NewT"],[5018,"T,U,V"],[5024,"T,Src,Dst,Src2,Dst2"],[5027,"T,U,V"],[5031,"T,U"],[5048,"T,Src,Dst"],[5049,"T,U"],[5062,"T,Src,Dst"],[5066,"T,U"],[5069,"T,Src,Dst"],[5071,"T,U"],[5073,"T,Src,Dst"],[5075,""],[5078,"T"],[5101,""],[5124,"T,U"],[5125,"T,Src,Dst"],[5126,""],[5127,"K"],[5130,"T,U"],[5134,"C,T"],[5157,"T,U"],[5167,""],[5168,"T,U"],[5170,"T,Src,Dst"],[5172,"T,U"],[5178,"T,Src,Dst"],[5179,"T,U"],[5182,"T,Src,Dst"],[5184,"T,U"],[5186,"T,Src,Dst"],[5188,""],[5190,"T,U"],[5191,""],[5192,"T"],[5238,"T,Src,Dst"],[5240,"T,U"],[5243,"T,U2,U1"],[5244,"T,U"],[5245,"T,U2,U1"],[5246,"T,Dst,Src"],[5248,"T,U"],[5249,"T,U2,U1"],[5250,"T,U"],[5251,"T,U2,U1"],[5252,"T,U"],[5253,"T,U2,U1"],[5254,"T,U"],[5255,"T,U2,U1"],[5256,"T,U"],[5257,"T,U2,U1"],[5258,"T,U"],[5260,"T,U2,U1"],[5261,"T,U"],[5262,"T,U2,U1"],[5264,"T,U"],[5290,"T"],[5313,""],[5336,"T,U"],[5343,"T,Src,Dst"],[5347,"T,U"],[5350,"T,Src,Dst"],[5352,"T,U"],[5354,"T,Src,Dst"],[5356,""],[5359,"T,U"],[5363,"K"],[5432,"T,Src,Dst"],[5433,"T,U"],[5435,""],[5436,"T,U"],[5455,"T,Src,Dst"],[5459,"T,U"],[5462,"T,Src,Dst"],[5464,"T,U"],[5466,"T,Src,Dst"],[5468,""],[5471,"T"],[5472,"T,U"],[5474,"T"],[5475,"T,U"],[5477,"T"],[5478,"T,U"],[5480,"T"],[5481,"T,U"],[5482,"T"],[5483,"T,U"],[5484,"T"],[5485,"T,U"],[5487,"T"],[5488,"T,U"],[5489,"T"],[5490,"T,Dst,Src"],[5491,"T,Src,Dst"],[5492,"T"],[5497,"T,U"],[5500,"T"],[5501,"T,U"],[5504,"T"],[5505,"T,Src,Dst"],[5507,"T"],[5508,"T,U"],[5509,"T"],[5510,"T,U"],[5512,"T,Src,Dst"],[5513,"T,U"],[5514,"T,Src,Dst"],[5515,"T"],[5516,"T,U"],[5517,"T"],[5518,"T,Src,Dst"],[5519,"T"],[5520,"T,Src,Dst"],[5521,"T"],[5547,"T,U"],[5548,"T,Src,Dst"],[5552,"T,U"],[5562,"I,T,U"],[5565,"T,Src,Dst"],[5567,"T,U"],[5570,"U,T"],[5593,"T,Dst,Src"],[5594,"T,U"],[5599,"T,Src,Dst"],[5602,"T,U"],[5604,"T,Src,Dst"],[5606,"T,U"],[5608,"T,Src,Dst"],[5610,"T,U"],[5613,"T,Src,Dst"],[5615,"T,U"],[5619,"T,U,H"],[5626,"T,Src,Dst,H"],[5630,"T,U,H"],[5633,"T,Src,Dst,H"],[5635,"T,U,H"],[5637,"T,Src,Dst,H"],[5639,"__H"],[5642,"T,U"],[5645,""],[5647,"T,U"],[5648,""],[5649,"T,Src,Dst"],[5657,"T,U"],[5660,""],[5683,"T,U"],[5693,"U"],[5739,"T"],[5808,"WpParam,T"],[5831,"U"],[5877,"T"],[5900,"T,Src,Dst"],[5910,"T,U"],[5924,"T,Src,Dst"],[5929,"T,U"],[5931,"T,Src,Dst"],[5932,"T,U"],[5935,""],[5938,"T,U"],[5946,"T,Src,Dst"],[5947,"T,U"],[5955,""],[5977,"T,U,V,F"],[5981,"T,U"],[5985,"T,Src,Dst"],[5986,"T,U"],[5990,""],[5992,"T,U"],[5998,"T,Src,Dst"],[5999,"T,U"],[6003,""],[6005,"T,U"],[6008,"T,U1,U2"],[6009,"T,U"],[6010,"T,U1,U2"],[6011,"T,Src,Dst"],[6012,"T,U"],[6014,"T,U1,U2"],[6015,"T,U"],[6016,"T,U1,U2"],[6017,"T,U"],[6018,"T,U1,U2"],[6019,"T,A,B,C"],[6020,"T,U1,U2"],[6021,"T,U"],[6022,"T,U1,U2"],[6023,"T,U"],[6025,"T,U1,U2"],[6026,"T,U"],[6027,"T,U1,U2"],[6028,"T,U"],[6029,"T,U1,U2"],[6030,"T,U"],[6051,"T,Src,Dst"],[6052,"T,U"],[6067,"T,Src,Dst"],[6070,"T,U"],[6073,"T,Src,Dst"],[6075,"T,U"],[6077,"T,Src,Dst"],[6080,"T,U"],[6081,"T,Src,Dst"],[6082,""],[6084,"T,Src,Dst"],[6086,"T,U"],[6088,""],[6090,"T,U"],[6094,"T"],[6112,"T,Src,Dst"],[6113,"T,U"],[6115,""],[6117,"T,U"],[6119,""],[6120,"T,Src,Dst"],[6121,"T,U"],[6123,"T,Src,Dst"],[6128,"T,U"],[6129,"T,Src,Dst"],[6130,""],[6131,"T,Src,Dst"],[6132,"T,U"],[6134,"U"],[6135,"T,Src,Dst"],[6141,"T,U"],[6143,"T,Src,Dst"],[6145,""],[6146,"T,Src,Dst"],[6147,""],[6149,"T,U"],[6154,""],[6155,"T,U"],[6157,"T,Src,Dst"],[6159,""],[6160,"T,U"],[6183,"S,T,U"],[6186,"T,Src,Dst"],[6188,"T,U"],[6195,""],[6196,"T,U"],[6198,""],[6199,"T,U"],[6201,"T,Src,Dst"],[6203,"T,U"],[6207,"T,Src,Dst"],[6209,"T,U"],[6213,"T,Src,Dst"],[6214,"T,U"],[6221,"T,Src,Dst"],[6222,"T,U"],[6225,"T,Src,Dst2,Dst1"],[6227,"T,U"],[6237,"T,Src,Dst"],[6239,"T,U"],[6241,"T,U,I"],[6251,""],[6252,"T,Src,Dst,Dst2"],[6253,"T,Src,Dst,NewSrc"],[6254,"T,Src,Dst,NewDst"],[6257,"T,Src,Dst"],[6263,"T,U"],[6265,"T,Src,Dst"],[6266,"T,U"],[6267,"T,Src,Dst"],[6268,"T,U"],[6269,"T,Src,Dst"],[6270,"T,U"],[6274,"T,Src,Dst"],[6276,"T,U"],[6278,"T,Src,Dst"],[6280,"T,U"],[6282,"T,Src,Dst"],[6287,"T,U"],[6295,"T,Src,Dst"],[6297,"T,U"],[6306,"T,Src,Dst"],[6308,"T,U"],[6317,"T,Src,Dst"],[6319,"T,U"],[6328,"T,Src,Dst"],[6330,"T,U"],[6335,"T"],[6358,"T,U"],[6364,"T,Src,Dst"],[6369,"T,U"],[6375,"T,Src,Dst"],[6377,"T,U"],[6388,"T,Src,Dst"],[6390,"T,U"],[6399,"T,Src,Dst"],[6402,"T,U"],[6404,"T,Src,Dst"],[6406,"T,U"],[6408,"T,Src,Dst"],[6410,"T,U"],[6417,"T,Src,Dst"],[6419,"T,U"],[6425,"T,Src,Dst"],[6427,""],[6428,"T,Src,Dst"],[6434,"S"],[6436,"T,Src,Dst"],[6438,"S"],[6439,"T,Src,Dst"],[6440,"S"],[6441,"T,Src,Dst"],[6456,"S"],[6457,"T,Src,Dst"],[6459,"S"],[6461,"T,Src,Dst"],[6462,"S"],[6463,"T,Src,Dst"],[6467,"T,U"],[6470,"T,Src,Dst"],[6472,""],[6473,"T,U,NewT"],[6479,"T,Src,Dst,NewT"],[6480,"T,U,NewT"],[6482,"T,Src,Dst,NewT"],[6484,"T,U,NewT"],[6486,"T,Src,Dst,NewT"],[6488,"C"],[6511,"U,T"],[6534,"U"],[6580,"T,U"],[6582,""],[6605,"C,U"],[6628,"C"],[6651,"T,U"],[6654,"T,Src,Dst"],[6655,"T"],[6678,"T,U"],[6680,"T,Src,Dst"],[6681,"T,U"],[6684,"V"],[6707,""],[6708,"T,U"],[6711,""],[6713,"T,Src,Dst,NewDst"],[6715,"T,U"],[6720,"T,Src,Dst,NewSrc"],[6722,""],[6731,"T,U"],[6736,""],[6737,"T,U"],[6740,""],[6741,"T,U"],[6742,""],[6751,"T,U"],[6758,""],[6759,"T,U"],[6760,""],[6765,"T,U"],[6783,"T,U,V,F"],[6788,"Eps"],[6789,""],[6790,"Eps"],[6791,"T"],[6813,""],[6890,"T,M,D"],[6893,"C,T"],[6896,"C"],[6899,""],[6905,"T"],[6911,"WpParam,T"],[6914,"C,T"],[6917,""],[6918,"T"],[6927,""],[6930,"T"],[6933,""],[6934,"T"],[6937,"U,T"],[6940,""],[6943,"U"],[6949,"T"],[6958,"WpParam,T"],[6961,"U"],[6967,"I"],[6969,"T"],[6972,"S"],[6977,""],[6978,"C"],[6981,"U,T"],[6984,"U"],[6990,""],[6993,"C,U"],[6996,"C"],[6999,"T"],[7002,"V"],[7008,"Segment::Scalar"],[7021,"S"],[7023,"Segment::Scalar"],[7025,"S"],[7036,"T,M,D"],[7040,"C,T"],[7044,"C"],[7048,""],[7056,"T"],[7064,"WpParam,T"],[7068,"Iter"],[7069,"C,T"],[7073,"T"],[7085,""],[7091,"T"],[7099,"U,T"],[7103,""],[7107,"U"],[7115,"T"],[7127,"WpParam,T"],[7131,"U"],[7139,"I"],[7143,"T"],[7147,"Iter"],[7148,"T,I"],[7149,"Iter"],[7152,"I,T"],[7153,"Iter"],[7156,"T"],[7158,"C"],[7162,"U,T"],[7166,"U"],[7174,""],[7178,"C,U"],[7182,"C"],[7186,"T"],[7190,"V"],[7194,"Iter"],[7204,""],[7239,"T,M,D"],[7242,"C,T"],[7245,"C"],[7248,""],[7258,"T"],[7264,""],[7268,"WpParam,T"],[7271,""],[7272,"T"],[7273,""],[7274,"C,T"],[7277,""],[7281,"T"],[7290,""],[7297,"T"],[7303,"U,T"],[7306,""],[7309,"U"],[7315,"T"],[7324,"WpParam,T"],[7327,"U"],[7333,"I"],[7334,"T"],[7337,""],[7355,"T"],[7356,"C"],[7359,"U,T"],[7362,"U"],[7368,""],[7371,"C,U"],[7374,"C"],[7377,"T"],[7380,"V"],[7383,""],[7390,"T,M,D"],[7394,"C,T"],[7398,"C"],[7402,""],[7410,"T"],[7418,"WpParam,T"],[7422,""],[7423,"T"],[7425,""],[7426,"T"],[7430,""],[7436,"C,T"],[7440,"T"],[7452,""],[7456,"T"],[7464,"U,T"],[7468,""],[7472,"U"],[7480,"T"],[7492,"WpParam,T"],[7496,"U"],[7504,"I"],[7508,"T"],[7512,""],[7514,"T"],[7516,""],[7517,"T"],[7518,""],[7520,"T"],[7524,"C"],[7528,"U,T"],[7532,"U"],[7540,""],[7544,"C,U"],[7548,"C"],[7552,"T"],[7556,"V"],[7565,""],[7567,"Build::PathType"],[7568,""],[7621,"T,M,D"],[7625,"C,T"],[7629,"C"],[7633,""],[7643,"T"],[7651,"WpParam,T"],[7655,"Message,Theme,Renderer,"],[7656,"Font"],[7657,""],[7659,"T"],[7662,""],[7666,"C,T"],[7670,""],[7671,"Catalog::Class"],[7672,"T"],[7684,"Message,Theme,Renderer"],[7685,""],[7689,"Font"],[7690,""],[7692,"K"],[7695,"Font"],[7696,""],[7698,"Message,Theme,Renderer,"],[7699,""],[7700,"T"],[7708,"U,T"],[7712,"Message,Theme,Renderer"],[7713,""],[7718,"U"],[7726,"T"],[7737,"WpParam,T"],[7741,"U"],[7749,"T"],[7753,"Message,Theme,Renderer"],[7754,""],[7755,"Message,Theme,Renderer"],[7756,",Message,Theme,Renderer"],[7757,"Message,Theme,Renderer,F"],[7759,"Message,Theme,Renderer"],[7760,""],[7763,"Message,Theme,Renderer,"],[7764,"Message,Theme,Renderer"],[7765,""],[7766,"Message,Theme,Renderer,"],[7767,"Message,Theme,Renderer"],[7768,"Catalog::Class"],[7769,"Message,Theme,Renderer,"],[7770,""],[7771,"Message,Theme,Renderer"],[7772,""],[7773,"Message,Theme,Renderer,"],[7774,"Message,Theme,Renderer"],[7775,"Message,Theme,Renderer,"],[7776,"Message,Theme,Renderer"],[7777,"T"],[7780,"C"],[7784,"U,T"],[7788,"U"],[7796,""],[7800,"C,U"],[7804,"C"],[7808,"T"],[7812,"Message,Theme,Renderer"],[7813,"V"],[7817,"Message,Theme,Renderer,"],[7818,""],[7824,"T,M,D"],[7826,"C,T"],[7828,"C"],[7830,""],[7834,"T"],[7838,"WpParam,T"],[7840,"T,Message,Theme,Renderer"],[7841,"T"],[7843,""],[7844,"C,T"],[7846,"T"],[7847,"Catalog::Class"],[7849,"T"],[7855,"T,Message,Theme,Renderer"],[7856,""],[7858,"T"],[7859,"T,Message,Theme,Renderer"],[7860,"T"],[7864,"U,T"],[7866,"T,Message,Theme,Renderer"],[7867,""],[7869,"T,Message,Theme,Renderer,"],[7871,"U"],[7875,"T"],[7879,"WpParam,T"],[7881,"U"],[7885,"T"],[7887,"T,Message,Theme,Renderer"],[7888,"T,Message,Theme,Renderer,"],[7891,"T,Message,Theme,Renderer"],[7892,"T,Message,,Theme,Renderer"],[7893,"T"],[7895,"T,Message,Theme,Renderer"],[7896,"T,Message,Theme,Renderer,"],[7897,"T,Message,Theme,Renderer"],[7898,"T,Message,Theme,Renderer,"],[7899,"T"],[7900,"T,Message,Theme,Renderer"],[7901,"T,Message,Theme,Renderer,"],[7902,"T,Message,Theme,Renderer"],[7906,"T"],[7907,"C"],[7909,"U,T"],[7911,"U"],[7915,""],[7917,"C,U"],[7919,"C"],[7921,"T"],[7923,"T,Message,Theme,Renderer"],[7924,"V"],[7926,"T,Message,Theme,Renderer,"],[7927,"T"],[7934,"T,M,D"],[7937,"Message,Theme,Renderer,"],[7943,"C,T"],[7946,"C"],[7949,""],[7955,""],[7957,""],[7958,""],[7959,""],[7961,"T"],[7967,"WpParam,T"],[7970,"Message,Theme,Renderer,"],[7973,"Message,Theme,Renderer"],[7974,"Message,Theme,Renderer,"],[7975,"Message,Theme,Renderer"],[7976,""],[7978,"T"],[7980,""],[7982,""],[7983,"C,T"],[7986,""],[7988,"Catalog::Class"],[7989,""],[7990,"T"],[7996,"Message,Theme,Renderer"],[7997,"T"],[8000,"Message,Theme,Renderer"],[8001,"Renderer"],[8002,""],[8007,"K"],[8010,""],[8012,"T"],[8013,"Theme"],[8014,""],[8015,"T"],[8017,""],[8020,"T"],[8023,"U,T"],[8026,"__H"],[8027,"Message,Theme,Renderer,"],[8029,""],[8032,"U"],[8038,"T"],[8046,"WpParam,T"],[8049,"U"],[8055,"T"],[8058,""],[8059,"Message,Theme,Renderer"],[8060,"Message,Theme,Renderer,"],[8062,"Message,Theme,Renderer"],[8063,"Message,Theme,Renderer,"],[8064,""],[8065,"T"],[8066,"Message,Theme,Renderer"],[8068,"Message,Theme,Renderer,P"],[8069,""],[8072,""],[8073,""],[8074,"Message,Theme,Renderer"],[8076,"Catalog::Class"],[8077,"Message,Theme,Renderer,"],[8078,""],[8079,"Message,Theme,Renderer"],[8080,""],[8081,"T"],[8083,"Theme"],[8084,"C"],[8087,"U,T"],[8090,"U"],[8096,""],[8099,"C,U"],[8102,"C"],[8105,""],[8106,"T"],[8109,"Message,Theme,Renderer"],[8110,""],[8111,"V"],[8114,"Message,Theme,Renderer,"],[8124,"T,M,D"],[8127,"C,T"],[8130,"C"],[8133,""],[8139,"T"],[8145,"WpParam,T"],[8148,""],[8150,"T"],[8152,""],[8154,"C,T"],[8157,"Handle"],[8158,""],[8159,"T"],[8168,"Handle,Renderer"],[8169,"Handle,Renderer,Theme"],[8170,""],[8175,"K"],[8181,"Handle"],[8182,""],[8184,"Handle"],[8185,"T"],[8186,""],[8187,"T"],[8193,""],[8194,"T"],[8195,""],[8196,"U,T"],[8199,"__H"],[8200,"Handle,"],[8201,""],[8205,"U"],[8211,"T"],[8220,"WpParam,T"],[8223,"U"],[8229,"T"],[8232,"Handle,Renderer"],[8234,"Handle,"],[8235,"T"],[8236,"Handle,"],[8239,"Handle"],[8240,"T"],[8242,"C"],[8245,"U,T"],[8248,"U"],[8254,""],[8257,"C,U"],[8260,"C"],[8263,"T"],[8267,"Handle"],[8268,"V"],[8271,"Handle,"],[8272,""],[8278,"T,M,D"],[8280,"C,T"],[8282,"C"],[8284,""],[8288,"T"],[8292,"WpParam,T"],[8294,""],[8295,"T"],[8296,""],[8297,"C,T"],[8299,"Handle"],[8300,""],[8301,"T"],[8307,"Handle,Renderer,Theme"],[8308,""],[8310,"Handle"],[8311,""],[8312,"T"],[8316,"U,T"],[8318,"Handle,"],[8319,""],[8321,"U"],[8325,"T"],[8331,"WpParam,T"],[8333,"U"],[8337,"T"],[8339,""],[8340,"Handle,Renderer"],[8341,"Handle"],[8343,"Handle,Renderer"],[8344,"Handle,T"],[8345,""],[8346,"T"],[8347,"Handle,"],[8348,"Handle"],[8349,"Renderer"],[8350,"Handle"],[8353,"T"],[8354,"C"],[8356,"U,T"],[8358,"U"],[8362,""],[8364,"C,U"],[8366,"C"],[8368,"T"],[8370,"Handle,Renderer,Message"],[8371,"V"],[8373,"Handle,"],[8377,"T,M,D"],[8378,"Key,Message,Theme,Renderer"],[8379,"C,T"],[8380,"C"],[8381,""],[8383,"T"],[8385,"WpParam,T"],[8386,"Key,Message,Theme,Renderer"],[8387,"C,T"],[8388,"Key,Message,Renderer"],[8389,"T"],[8391,"Key,Message,Theme,Renderer"],[8392,"T"],[8393,"Key,Message,Theme,Renderer"],[8394,""],[8395,"Key,Message,Theme,Renderer,"],[8396,"T"],[8398,"U,T"],[8399,"Key,Message,Theme,Renderer"],[8400,"Key,Message,Theme,Renderer,"],[8401,""],[8402,"U"],[8404,"T"],[8406,"WpParam,T"],[8407,"U"],[8409,"T"],[8410,"Key,Message,Theme,Renderer"],[8411,"Key,Message,Theme,Renderer,"],[8412,"Key,Message,Theme,Renderer"],[8414,"T"],[8415,"Key,Message,Theme,Renderer"],[8417,"Key,Message,Theme,Renderer,P"],[8418,"Key,Message,Theme,Renderer,"],[8420,"Key,Message,Theme,Renderer"],[8421,"Key,Message,Theme,Renderer,"],[8422,"Key,Message,Theme,Renderer"],[8424,"C"],[8425,"U,T"],[8426,"U"],[8428,""],[8429,"C,U"],[8430,"C"],[8431,"T"],[8432,"Key,Message,Theme,Renderer"],[8433,"V"],[8434,"Key,Message,Theme,Renderer,"],[8435,"Key,Message,Theme,Renderer"],[8436,"Key,Message,Theme,Renderer,"],[8458,"T,M,D"],[8466,"C,T"],[8474,"C"],[8482,""],[8503,"T"],[8519,"WpParam,T"],[8527,""],[8535,"T"],[8542,""],[8551,"Message,,Theme,Renderer"],[8552,"Catalog::Class"],[8553,"Message,Theme,Renderer"],[8554,""],[8555,"K"],[8557,"C,T"],[8565,""],[8566,"T"],[8582,"D"],[8584,""],[8586,"T"],[8594,""],[8606,"K"],[8612,""],[8623,"T"],[8630,""],[8632,"T"],[8633,""],[8636,"T"],[8644,"P"],[8646,""],[8647,"U,T"],[8655,""],[8664,"H"],[8665,"__H"],[8666,"Message,,Theme,Renderer"],[8667,"Message,Theme,Renderer"],[8668,""],[8670,"Message,Theme,Renderer"],[8671,""],[8687,"U"],[8703,"T"],[8724,"WpParam,T"],[8732,"U"],[8748,"T"],[8756,""],[8758,"Message,Theme,Renderer,"],[8759,""],[8766,"T"],[8767,"Message"],[8768,""],[8769,"Message,Theme,Renderer,"],[8770,"Message,Theme,Renderer"],[8771,""],[8772,"Message,,Theme,Renderer"],[8773,"Message,Theme,Renderer"],[8774,""],[8777,"I"],[8778,""],[8791,"S"],[8793,""],[8803,""],[8804,""],[8810,"T"],[8817,""],[8821,"C"],[8829,""],[8830,"U,T"],[8832,""],[8833,"U,T"],[8839,"U"],[8855,""],[8863,"C,U"],[8871,"C"],[8879,"Message,Theme,Renderer,"],[8880,"Message,Theme,Renderer"],[8881,"T"],[8889,""],[8890,",,Theme,Renderer"],[8891,",,Message,Theme,Renderer,"],[8892,"V"],[8900,""],[8901,","],[8902,""],[8917,"T,M,D"],[8920,"C,T"],[8923,"C"],[8926,""],[8934,"T"],[8940,"WpParam,T"],[8943,""],[8944,"T"],[8945,""],[8946,"C,T"],[8949,""],[8950,"Catalog::Class"],[8951,""],[8952,"Catalog::Class"],[8953,"T"],[8962,""],[8968,"T,Message,Theme,Renderer,"],[8969,"T"],[8975,"U,T"],[8978,""],[8981,"U"],[8987,"T"],[8994,"WpParam,T"],[8997,"U"],[9003,"T"],[9006,"T,Message,,Theme,Renderer"],[9007,""],[9008,"T"],[9009,"T,Message,Theme,Renderer"],[9010,"T,Message,Theme,Renderer,P"],[9011,""],[9013,"Catalog::Class"],[9014,""],[9015,"T,Message,Theme,Renderer,"],[9016,"T,Message,Theme,Renderer"],[9017,"T,Message,Theme,Renderer,"],[9018,"T"],[9019,"C"],[9022,"U,T"],[9025,"U"],[9031,""],[9034,"C,U"],[9037,"C"],[9040,"T"],[9043,"V"],[9046,"T,Message,Theme,Renderer"],[9091,"T,M,D"],[9109,"Message,Theme,Renderer"],[9110,"C,T"],[9128,"C"],[9146,""],[9184,"T"],[9220,"WpParam,T"],[9238,""],[9239,"Message,Theme,Renderer"],[9241,"Message,Theme,Renderer,"],[9244,""],[9245,"T"],[9246,""],[9258,"T"],[9272,""],[9289,"K"],[9291,"C,T"],[9309,"Message,Theme,Renderer,"],[9310,""],[9311,"Catalog::Class"],[9312,""],[9313,"T"],[9349,"Message,Theme,Renderer"],[9350,"T"],[9368,"Message,Theme,Renderer"],[9371,""],[9389,"Message,Theme,Renderer,,"],[9390,""],[9397,"K"],[9409,""],[9410,"T"],[9411,""],[9423,"T"],[9424,"Message,Theme,Renderer,T"],[9425,"Message,Theme,Renderer"],[9426,"T"],[9461,"U,T"],[9479,"__H"],[9480,"H"],[9481,"__H"],[9483,"Message,Theme,Renderer,"],[9484,""],[9504,"U"],[9540,"T"],[9590,"WpParam,T"],[9608,"U"],[9644,"T"],[9662,"Message,Theme,Renderer"],[9665,"Message,Theme,Renderer,"],[9668,"T,Message,Theme,Renderer,"],[9669,"T"],[9670,"Message,Theme,Renderer,F"],[9672,"Message,Theme,Renderer,,F"],[9673,"Message,Theme,Renderer"],[9675,"Message,Theme,Renderer,P"],[9676,""],[9681,"Message,Theme,Renderer"],[9682,"Message,Theme,Renderer,"],[9683,""],[9689,"Message,Theme,Renderer"],[9690,"Catalog::Class"],[9691,"Message,Theme,Renderer,"],[9694,"Message,Theme,Renderer"],[9696,"T"],[9710,"C"],[9728,"U,T"],[9746,"U"],[9782,""],[9800,"C,U"],[9818,"C"],[9836,"T"],[9854,"Message,Theme,Renderer"],[9855,"V"],[9873,"Message,Theme,Renderer,"],[9874,""],[9894,"T,M,D"],[9897,"T"],[9898,"C,T"],[9901,"C"],[9904,""],[9910,"T"],[9916,"WpParam,T"],[9919,"T"],[9920,""],[9922,"T"],[9925,""],[9928,"T"],[9929,"C,T"],[9932,""],[9933,"T"],[9942,""],[9943,"T"],[9944,""],[9947,"T"],[9948,""],[9950,"T"],[9957,"U,T"],[9960,"T"],[9962,""],[9966,"U"],[9972,"T"],[9981,"WpParam,T"],[9984,"U"],[9990,"T"],[10003,""],[10006,"T"],[10014,"C"],[10017,"U,T"],[10020,"U"],[10026,""],[10029,"C,U"],[10032,"C"],[10035,"T"],[10038,"V"],[10041,"T,"],[10042,""],[10061,"T,M,D"],[10066,"C,T"],[10071,"C"],[10076,""],[10088,"T"],[10098,"WpParam,T"],[10103,"T,L,V,Message,Theme,Renderer,"],[10104,"Font"],[10106,""],[10108,"T"],[10112,""],[10117,"C,T"],[10122,""],[10123,"Catalog::Class"],[10124,"Font"],[10125,"Catalog::Class"],[10126,"T"],[10141,"T,L,V,Message,Theme,Renderer"],[10142,""],[10147,"Font"],[10149,""],[10151,"K"],[10154,"Font"],[10156,""],[10158,"T,L,V,Message,Theme,Renderer,"],[10159,""],[10160,"T"],[10170,"U,T"],[10175,"T,L,V,Message,Theme,Renderer"],[10176,""],[10182,"U"],[10192,"T"],[10206,"WpParam,T"],[10211,"U"],[10221,"T"],[10226,"T,L,V,Message,Theme,Renderer"],[10227,""],[10228,"T,L,V,Message,Theme,Renderer,"],[10230,"T,L,V,Message,Theme,Renderer"],[10231,"T,L,V,Message,,Theme,Renderer"],[10232,"T"],[10233,"T,L,V,Message,Theme,Renderer"],[10236,"T,L,V,Message,Theme,Renderer,P"],[10237,"T,L,V,Message,Theme,Renderer,"],[10238,""],[10240,"T,L,V,Message,Theme,Renderer"],[10241,""],[10242,"T,L,V,Message,Theme,Renderer"],[10243,"Catalog::Class"],[10244,"T,L,V,Message,Theme,Renderer,"],[10245,"T,L,V,Message,Theme,Renderer"],[10246,""],[10247,"T,L,V,Message,Theme,Renderer,"],[10248,"T,L,V,Message,Theme,Renderer"],[10249,"T,L,V,Message,Theme,Renderer,"],[10250,"T"],[10254,"C"],[10259,"U,T"],[10264,"U"],[10274,""],[10279,"C,U"],[10284,"C"],[10289,"T"],[10294,"T,L,V,Message,Theme,Renderer"],[10295,"V"],[10300,"T,L,V,Message,Theme,Renderer,"],[10301,""],[10306,"T,M,D"],[10307,"Message,Theme,Renderer,"],[10308,"C,T"],[10309,"C"],[10310,""],[10312,"T"],[10314,"WpParam,T"],[10315,"Message,Theme,Renderer"],[10316,"C,T"],[10317,"T"],[10319,"Message,Theme,Renderer"],[10320,"T"],[10321,"Message,Theme,Renderer"],[10322,""],[10323,"T"],[10325,"U,T"],[10326,""],[10327,"U"],[10329,"T"],[10331,"WpParam,T"],[10332,"U"],[10334,"T"],[10335,"Message,Theme,Renderer,"],[10336,"Message,Theme,Renderer"],[10338,"Message,Theme,Renderer,"],[10339,"Message,Theme,Renderer"],[10340,"Message,Theme,Renderer,"],[10342,"Message,Theme,Renderer"],[10348,"C"],[10349,"U,T"],[10350,"U"],[10352,""],[10353,"C,U"],[10354,"C"],[10355,"T"],[10356,"Message,Theme,Renderer"],[10357,"V"],[10364,"T,M,D"],[10366,"C,T"],[10368,"C"],[10370,""],[10377,"T"],[10381,"WpParam,T"],[10383,"Theme,"],[10384,""],[10385,"T"],[10386,""],[10387,"C,T"],[10389,""],[10390,"Catalog::Class"],[10391,"T"],[10397,"Theme,Renderer"],[10398,""],[10402,"T"],[10406,"U,T"],[10408,"Theme,"],[10409,""],[10411,"U"],[10415,"T"],[10421,"WpParam,T"],[10423,"U"],[10427,"T"],[10429,"Theme,Renderer"],[10430,"Theme,"],[10431,"Theme"],[10432,""],[10434,"Theme"],[10435,"Catalog::Class"],[10436,"Theme,"],[10437,""],[10438,"T"],[10439,"C"],[10441,"U,T"],[10443,"U"],[10447,""],[10449,"C,U"],[10451,"C"],[10453,"T"],[10455,"Theme"],[10456,"V"],[10458,""],[10479,"T,M,D"],[10485,"C,T"],[10491,"C"],[10497,""],[10510,"T"],[10522,"WpParam,T"],[10528,""],[10529,"Theme,"],[10531,""],[10535,"T"],[10539,""],[10543,"C,T"],[10549,""],[10550,"Catalog::Class"],[10551,"T"],[10569,"Theme"],[10570,""],[10580,"K"],[10589,""],[10595,"T"],[10599,""],[10600,"T"],[10608,"U,T"],[10614,""],[10620,"U"],[10632,"T"],[10648,"WpParam,T"],[10654,"U"],[10666,"T"],[10672,"Theme"],[10674,""],[10675,"Theme"],[10677,"Catalog::Class"],[10678,"Theme,"],[10679,"Theme"],[10680,"T"],[10684,""],[10686,"Theme,"],[10687,"C"],[10693,"U,T"],[10699,"U"],[10711,""],[10717,"C,U"],[10723,"C"],[10729,"T"],[10735,"V"],[10741,""],[10753,"T,M,D"],[10756,"C,T"],[10759,"C"],[10762,""],[10771,"T"],[10777,"WpParam,T"],[10780,"Message,Theme,Renderer,"],[10781,""],[10783,"T"],[10785,""],[10787,"C,T"],[10790,""],[10791,"Catalog::Class"],[10792,"T"],[10798,""],[10799,"T"],[10802,"Message,Theme,Renderer"],[10803,""],[10808,"K"],[10811,""],[10813,"Message,Theme,Renderer,"],[10814,"T"],[10820,"U,T"],[10823,""],[10826,"U"],[10832,"T"],[10841,"WpParam,T"],[10844,"U"],[10850,"T"],[10853,"Message,Theme,Renderer"],[10855,",V,Message,F,Theme,Renderer"],[10856,"Message,Theme,Renderer,"],[10857,"Message,Theme,Renderer"],[10858,"Message,Theme,Renderer,"],[10859,"Message,Theme,Renderer"],[10860,"Catalog::Class"],[10861,"Message,Theme,Renderer,"],[10862,"Message,Theme,Renderer"],[10863,""],[10864,"Message,Theme,Renderer,"],[10865,"Message,Theme,Renderer"],[10866,"Message,Theme,Renderer,"],[10867,"Message,Theme,Renderer"],[10868,"T"],[10870,"C"],[10873,"U,T"],[10876,"U"],[10882,""],[10885,"C,U"],[10888,"C"],[10891,"T"],[10894,"Message,Theme,Renderer"],[10895,"V"],[10898,"Message,Theme,Renderer,"],[10899,""],[10911,"T,M,D"],[10914,"C,T"],[10917,"C"],[10920,""],[10926,"T"],[10932,"WpParam,T"],[10935,"Theme,"],[10936,""],[10938,"T"],[10940,""],[10943,"C,T"],[10946,""],[10947,"Catalog::Class"],[10948,"T"],[10957,"Theme,Renderer"],[10958,""],[10967,"T"],[10973,"U,T"],[10976,",Theme"],[10977,""],[10980,"U"],[10986,"T"],[10995,"WpParam,T"],[10998,"U"],[11004,"T"],[11007,"Theme,Renderer"],[11008,""],[11009,"Theme"],[11010,"Catalog::Class"],[11011,"Theme,"],[11012,"T"],[11014,"C"],[11017,"U,T"],[11020,"U"],[11026,""],[11029,"C,U"],[11032,"C"],[11035,"T"],[11038,",Theme"],[11039,"V"],[11042,""],[11070,"T,M,D"],[11082,""],[11083,"Message,Theme,Renderer"],[11089,"C,T"],[11101,"C"],[11113,""],[11140,"T"],[11164,""],[11165,"WpParam,T"],[11177,"Message,Theme,Renderer"],[11178,"Message,Theme,Renderer,"],[11179,""],[11190,"T"],[11201,""],[11213,"C,T"],[11225,""],[11228,"Catalog::Class"],[11229,""],[11234,"T"],[11258,"Message,Theme,Renderer"],[11259,"Message,Theme,Renderer,"],[11260,"T"],[11272,"Message,Theme,Renderer"],[11273,""],[11295,"K"],[11304,""],[11315,"T"],[11321,""],[11322,"T"],[11340,"U,T"],[11352,""],[11353,"__H"],[11354,"Message,Theme,Renderer,"],[11355,"Message,Theme,Renderer"],[11356,""],[11358,"Message,Theme,Renderer,"],[11359,""],[11371,"U"],[11395,"T"],[11430,"WpParam,T"],[11442,"U"],[11466,"T"],[11478,"Message,Theme,Renderer"],[11479,""],[11480,"Message,Theme,Renderer"],[11481,"Message,Theme,Renderer,"],[11482,""],[11483,""],[11484,"T"],[11489,"Message,Theme,Renderer,"],[11490,"Message,Theme,Renderer"],[11492,""],[11493,",T"],[11495,""],[11496,""],[11497,"Message,Theme,Renderer"],[11498,",T"],[11499,"Message,Theme,Renderer,"],[11500,""],[11501,"Message,Theme,Renderer"],[11502,"Catalog::Class"],[11503,"Message,Theme,Renderer,"],[11504,"Message,Theme,Renderer"],[11505,"T"],[11516,"C"],[11528,"U,T"],[11540,"U"],[11564,""],[11576,"C,U"],[11588,"C"],[11600,""],[11601,"T"],[11613,"Message,Theme,Renderer"],[11614,""],[11616,"V"],[11628,"Message,Theme,Renderer,"],[11629,""],[11630,"Message,Theme,Renderer,,"],[11631,""],[11655,"T,M,D"],[11658,"C,T"],[11661,"C"],[11664,""],[11670,"T"],[11676,"WpParam,T"],[11679,""],[11680,"T"],[11681,""],[11682,"C,T"],[11685,""],[11686,"T"],[11695,"Program::State,Program::Primitive"],[11696,"Message,P,Renderer,Theme"],[11697,""],[11702,"T"],[11708,"U,T"],[11711,"T"],[11713,""],[11714,"Message,P,"],[11715,""],[11718,"U"],[11724,"T"],[11732,"WpParam,T"],[11735,"U"],[11741,"T"],[11744,"Message,P,Renderer"],[11745,""],[11746,"Program::State,Program::Primitive"],[11748,"Message,P,Renderer"],[11749,"Message,P"],[11750,"T"],[11751,""],[11758,"Message,P"],[11760,"T"],[11761,"Message,P"],[11762,"T"],[11763,"C"],[11766,"U,T"],[11769,"U"],[11775,""],[11778,"C,U"],[11781,"C"],[11784,"T"],[11787,"Program::State,Program::Primitive,Message"],[11789,"Message,P,Renderer"],[11790,"V"],[11793,"Message,P,"],[11794,""],[11810,"T,M,D"],[11816,"C,T"],[11822,"C"],[11828,""],[11845,"T"],[11857,"WpParam,T"],[11863,"T,Message,Theme,"],[11864,""],[11869,"T"],[11874,""],[11879,"C,T"],[11885,""],[11886,"Catalog::Class"],[11887,"T,Message,Theme,"],[11888,"T"],[11906,"T,Message,Theme,Renderer"],[11907,""],[11918,"K"],[11921,""],[11926,"T"],[11938,"U,T"],[11944,""],[11945,"T,Message,Theme,"],[11946,""],[11952,"U"],[11964,"T"],[11981,"WpParam,T"],[11987,"U"],[11999,"T"],[12005,"T,Message,Theme,Renderer"],[12007,"T,Message,F,Theme"],[12008,"T,Message,Theme"],[12009,""],[12011,"T,Message,Theme,"],[12012,"T,Message,Theme"],[12014,"T,Message,Theme,"],[12015,"Catalog::Class"],[12016,"T,Message,Theme,"],[12017,"T,Message,Theme"],[12018,"T"],[12023,"C"],[12029,"U,T"],[12035,"U"],[12047,""],[12053,"C,U"],[12059,"C"],[12065,"T"],[12071,"T,Message,Theme,Renderer"],[12072,"V"],[12078,"T,Message,Theme,"],[12079,""],[12080,""],[12081,""],[12093,"T,M,D"],[12097,"C,T"],[12101,"C"],[12105,""],[12113,"T"],[12121,"WpParam,T"],[12125,"Theme,"],[12126,""],[12129,"T"],[12132,""],[12136,"C,T"],[12140,"Theme"],[12141,""],[12142,"Catalog::Class"],[12143,""],[12144,"T"],[12156,"Theme,Renderer"],[12157,""],[12164,"K"],[12170,""],[12173,"T"],[12176,"Theme"],[12177,"T"],[12183,""],[12185,",Theme"],[12186,"U,T"],[12190,"H"],[12191,"Theme,"],[12192,""],[12197,"U"],[12205,"T"],[12217,"WpParam,T"],[12221,"U"],[12229,"T"],[12233,"Theme,Renderer"],[12234,",Theme"],[12235,"T"],[12236,"Theme,"],[12238,"Theme"],[12239,"Catalog::Class"],[12240,"Theme,"],[12241,"T"],[12244,"C"],[12248,"U,T"],[12252,"U"],[12260,""],[12264,"C,U"],[12268,"C"],[12272,"T"],[12276,"V"],[12280,"Theme,"],[12308,"T,M,D"],[12315,"Link,Message,Theme,Renderer,"],[12317,"C,T"],[12324,"C"],[12331,""],[12345,"Link,Font,"],[12347,""],[12348,"Link,Font,"],[12350,"T"],[12364,"WpParam,T"],[12371,"Link,Message,Theme,Renderer"],[12372,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[12373,"Link,Message,Theme,Renderer,"],[12374,""],[12377,"Link,Font"],[12378,""],[12379,"T"],[12384,""],[12389,"Link,Message,Theme,Renderer,"],[12390,"Link,Font,"],[12391,""],[12393,"Link,Message,Theme,Renderer,"],[12394,"Link,Font,"],[12395,"C,T"],[12402,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[12403,""],[12405,"Catalog::Class"],[12406,"Link,Message,Theme,Renderer"],[12407,""],[12410,"Link,Font"],[12411,"P"],[12412,""],[12413,"T"],[12434,"Renderer"],[12435,"Link,Message,Theme,Renderer"],[12436,""],[12446,"Link,Font"],[12447,""],[12448,"K"],[12454,""],[12457,"Link,Font"],[12458,"P"],[12459,""],[12460,"Link,Message,Theme,Renderer,"],[12461,"Link,Font,"],[12462,""],[12463,"Link,Font,"],[12464,"T"],[12468,""],[12470,"T"],[12471,"Link,Font"],[12472,"T"],[12481,"Link,T,Message,Theme,Renderer"],[12482,"U,T"],[12489,"__H"],[12491,"H"],[12492,"Link,Message,Theme,Renderer,"],[12493,""],[12494,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[12495,""],[12502,"U"],[12516,"T"],[12536,"WpParam,T"],[12543,"U"],[12557,""],[12558,"T"],[12565,"Renderer"],[12566,"Link,Message,Theme,Renderer"],[12567,"Link,Message,Theme,Renderer,"],[12568,"Link,Font,"],[12569,""],[12570,"Link,Font,"],[12571,""],[12572,"Link,Font,"],[12573,"Link,Message,Theme,Renderer"],[12574,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[12575,"Link,Message,Theme,Renderer"],[12576,",Link,Font"],[12577,"T"],[12584,"Link,Message,Theme,Renderer,"],[12585,"Link,Font,"],[12586,""],[12589,"Link,Message,Theme,Renderer,"],[12590,"Link,Message,Theme,Renderer"],[12591,"Link,Font,"],[12592,""],[12593,"Link,Message,Theme,Renderer"],[12594,"Link,Font"],[12595,""],[12596,"Catalog::Class"],[12597,"Link,Message,Theme,Renderer,"],[12598,""],[12599,"Link,Message,Theme,Renderer"],[12600,""],[12602,"T"],[12607,"Link,Font"],[12608,"C"],[12615,"U,T"],[12622,"U"],[12636,""],[12643,"C,U"],[12650,"C"],[12657,"Link,Font"],[12658,""],[12659,"T"],[12666,"Highlighter::Settings,Highlighter::Highlight,Highlighter::Iterator"],[12667,"Link,Message,Theme,Renderer"],[12668,"V"],[12675,"Link,Message,Theme,Renderer,"],[12676,"Link,,Message,Theme,Renderer"],[12677,"Link,Message,Theme,Renderer"],[12743,"T,M,D"],[12755,"C,T"],[12767,"C"],[12779,""],[12806,"T"],[12830,"WpParam,T"],[12842,"Highlighter,Message,Theme,Renderer,"],[12843,""],[12848,"Message"],[12849,""],[12852,"T"],[12861,""],[12870,"C,T"],[12882,"R"],[12883,""],[12884,"Catalog::Class"],[12885,"Renderer"],[12886,""],[12888,"T"],[12912,""],[12913,"T"],[12925,"Highlighter,Message,Theme,Renderer"],[12926,""],[12944,"Message"],[12945,""],[12948,"K"],[12960,"Renderer"],[12961,""],[12966,"Highlighter"],[12967,"Message"],[12968,""],[12971,"Highlighter"],[12972,"Highlighter,Message,Theme,Renderer,"],[12973,"T"],[12997,"Message"],[12998,"U,T"],[13010,"Highlighter,Message,Theme,Renderer,"],[13011,"Highlighter,Message,Theme,Renderer"],[13012,"Highlighter,Message,Theme,Renderer,H"],[13013,""],[13026,"U"],[13050,"T"],[13083,"WpParam,T"],[13095,"U"],[13119,"T"],[13131,""],[13132,"Highlighter"],[13134,""],[13135,"Highlighter,Message,Theme,Renderer,"],[13136,"Highlighter,Message,Theme,Renderer"],[13137,"R"],[13140,"Highlighter,Message,Theme,Renderer,"],[13141,"R"],[13142,"Highlighter,Message,Theme,Renderer,"],[13144,""],[13145,"Highlighter,Message,Theme,Renderer"],[13146,"Renderer,Message,Theme"],[13147,"R"],[13148,"T"],[13151,"Highlighter,Message,Theme,Renderer,"],[13152,"Highlighter,Message,Theme,Renderer"],[13153,"Highlighter,Message,Theme,Renderer,"],[13154,"R"],[13155,"Highlighter,Message,Theme,Renderer,"],[13156,""],[13157,"R"],[13158,""],[13159,"Highlighter,Message,Theme,Renderer"],[13160,"Highlighter,Message,Theme,Renderer,"],[13161,"Highlighter,Message,Theme,Renderer"],[13162,""],[13163,"Catalog::Class"],[13164,"Highlighter,Message,Theme,Renderer,"],[13165,"Highlighter,Message,Theme,Renderer"],[13166,"R"],[13167,""],[13169,"T"],[13178,"C"],[13190,"U,T"],[13202,"U"],[13226,""],[13238,"C,U"],[13250,"C"],[13262,"Highlighter"],[13263,"T"],[13275,"Highlighter,Message,Theme,Renderer"],[13276,""],[13277,"V"],[13289,""],[13290,"Highlighter,Message,Theme,Renderer,"],[13291,"R"],[13292,"Highlighter,Message,Theme,Renderer"],[13293,""],[13314,"T,M,D"],[13322,"Message,Theme,Renderer,"],[13323,"C,T"],[13331,"C"],[13339,""],[13357,"T"],[13373,"WpParam,T"],[13381,"Message,Theme,Renderer,"],[13382,""],[13383,"Font"],[13384,""],[13386,"P"],[13387,""],[13389,"T"],[13396,""],[13404,"C,T"],[13413,"P"],[13414,""],[13415,"Catalog::Class"],[13416,"P"],[13417,"T"],[13433,"Message,Theme,Renderer"],[13434,"T"],[13442,"Message,Theme,Renderer"],[13444,""],[13455,"K"],[13461,""],[13463,"Font"],[13464,""],[13466,"P"],[13467,""],[13469,",T"],[13470,"P"],[13472,"Message,Theme,Renderer"],[13473,""],[13474,"T"],[13479,""],[13481,"T"],[13492,"U,T"],[13500,"__H"],[13501,"Message,Theme,Renderer"],[13502,""],[13503,"Message,Theme,Renderer,"],[13504,""],[13514,"U"],[13530,"T"],[13553,"WpParam,T"],[13561,"U"],[13577,"T"],[13585,""],[13586,"P"],[13588,"Message,Theme,Renderer"],[13590,""],[13591,"Message,Theme,Renderer,"],[13592,"Message,Theme,Renderer"],[13593,",T"],[13594,"P"],[13596,",T"],[13597,"P"],[13599,",T"],[13600,"P"],[13602,"Message,Theme,Renderer"],[13603,""],[13604,""],[13605,"P"],[13606,""],[13607,"T"],[13608,"Message,Theme,Renderer,"],[13612,"Message,Theme,Renderer"],[13615,"Message,Theme,Renderer,P"],[13616,""],[13620,"Message,Theme,Renderer"],[13621,""],[13623,",T"],[13624,"P"],[13626,""],[13628,"Message,Theme,Renderer"],[13629,"Message,Theme,Renderer,"],[13630,""],[13632,"Message,Theme,Renderer"],[13633,"Catalog::Class"],[13634,"Message,Theme,Renderer,"],[13635,"Message,Theme,Renderer"],[13636,"T"],[13643,""],[13645,"C"],[13653,"U,T"],[13661,"U"],[13677,""],[13685,"C,U"],[13693,"C"],[13701,"P"],[13703,""],[13705,"T"],[13713,"Message,Theme,Renderer"],[13714,""],[13715,"V"],[13723,"Message,Theme,Renderer,"],[13724,""],[13729,"T,M,D"],[13731,"C,T"],[13733,"C"],[13735,""],[13739,"T"],[13743,"WpParam,T"],[13745,""],[13747,"T"],[13749,""],[13751,"C,T"],[13753,""],[13754,"T"],[13760,""],[13764,"K"],[13770,""],[13772,"T"],[13776,"U,T"],[13778,""],[13780,"U"],[13784,"T"],[13790,"WpParam,T"],[13792,"U"],[13796,"T"],[13799,""],[13801,"T"],[13803,"C"],[13805,"U,T"],[13807,"U"],[13811,""],[13813,"C,U"],[13815,"C"],[13817,"T"],[13819,"V"],[13821,""],[13873,"T,M,D"],[13876,"C,T"],[13879,"C"],[13882,""],[13891,"T"],[13897,"WpParam,T"],[13900,""],[13903,"T"],[13906,""],[13909,"C,T"],[13912,""],[13914,"T"],[13923,""],[13933,"T"],[13939,"U,T"],[13942,""],[13945,"U"],[13951,"T"],[13960,"WpParam,T"],[13963,"U"],[13969,"T"],[13972,""],[13978,"T"],[13981,""],[13983,"C"],[13986,"U,T"],[13989,"U"],[13995,""],[13998,"C,U"],[14001,"C"],[14004,"T"],[14007,"V"],[14010,""],[14011,""],[14014,""],[14043,"T,M,D"],[14051,"C,T"],[14059,"C"],[14067,""],[14091,"T"],[14107,"WpParam,T"],[14115,""],[14123,"T"],[14131,""],[14140,"C,T"],[14148,""],[14150,"T"],[14174,""],[14198,"T"],[14214,"U,T"],[14222,""],[14236,"U"],[14252,"T"],[14276,"WpParam,T"],[14284,"U"],[14300,"T"],[14308,""],[14324,"T"],[14332,"C"],[14340,"U,T"],[14348,"U"],[14364,""],[14372,"C,U"],[14380,"C"],[14388,"T"],[14396,"V"],[14404,""],[14422,"T,M,D"],[14425,"C,T"],[14428,"C"],[14431,""],[14440,"T"],[14446,"WpParam,T"],[14449,"Message,Theme,Renderer,"],[14450,""],[14452,"T"],[14454,""],[14456,"C,T"],[14459,""],[14460,"Catalog::Class"],[14461,"T"],[14470,"Message,Theme,Renderer"],[14471,""],[14476,"K"],[14479,""],[14481,"Message,Theme,Renderer,"],[14482,""],[14485,"T"],[14491,"U,T"],[14494,""],[14497,"U"],[14503,"T"],[14511,"WpParam,T"],[14514,"U"],[14520,"T"],[14523,"Message,Theme,Renderer,"],[14524,"Message,Theme,Renderer"],[14527,"Message,Theme,Renderer,"],[14530,"Message,Theme,Renderer"],[14531,"Message,Theme,Renderer,"],[14532,"Message,Theme,Renderer"],[14533,"Catalog::Class"],[14534,"Message,Theme,Renderer,"],[14535,"Message,Theme,Renderer"],[14537,"Message,Theme,Renderer,"],[14538,"Message,Theme,Renderer"],[14539,"Message,Theme,Renderer,"],[14540,"Message,Theme,Renderer"],[14541,"T"],[14543,"C"],[14546,"U,T"],[14549,"U"],[14555,""],[14558,"C,U"],[14561,"C"],[14564,"T"],[14567,"Message,Theme,Renderer"],[14568,"V"],[14571,"Message,Theme,Renderer,"],[14572,""],[14581,"T,M,D"],[14583,"C,T"],[14585,"C"],[14587,""],[14591,"T"],[14595,"WpParam,T"],[14597,"Message,Theme,Renderer"],[14598,"Message,Theme,Renderer,"],[14599,""],[14600,"T"],[14601,""],[14602,"C,T"],[14604,""],[14605,"T"],[14609,"Message,Theme,Renderer"],[14610,"T"],[14612,"Message,Theme,Renderer"],[14613,""],[14616,"K"],[14619,""],[14620,"T"],[14624,"U,T"],[14626,"Message,Theme,Renderer,"],[14627,""],[14629,"U"],[14633,"T"],[14638,"WpParam,T"],[14640,"U"],[14644,"T"],[14646,"Message,Theme,Renderer"],[14648,"Message,Theme,Renderer,,"],[14649,"T"],[14650,"Message,Theme,Renderer"],[14651,"Message,Theme,Renderer,"],[14652,"Message,Theme,Renderer"],[14656,"Message,Theme,Renderer,"],[14657,"Message,Theme,Renderer"],[14658,"T"],[14659,"C"],[14661,"U,T"],[14663,"U"],[14667,""],[14669,"C,U"],[14671,"C"],[14673,"T"],[14675,"Message,Theme,Renderer"],[14676,"V"],[14686,"T,M,D"],[14687,"C,T"],[14688,"C"],[14689,""],[14691,"T"],[14693,"WpParam,T"],[14694,"T,Message,Theme,"],[14695,"C,T"],[14697,"T,Message,Theme,"],[14698,"T"],[14701,"T,Message,Theme,Renderer"],[14702,""],[14703,"T"],[14705,"U,T"],[14706,"T,Message,Theme,"],[14707,""],[14708,"U"],[14710,"T"],[14712,"WpParam,T"],[14713,"U"],[14715,"T"],[14716,"T,Message,Theme,Renderer"],[14718,"T,Message,F,Theme"],[14719,"T,Message,Theme"],[14720,"T,Message,Theme,"],[14721,"T,Message,Theme"],[14724,"T,Message,Theme,"],[14725,"T,Message,Theme"],[14726,"C"],[14727,"U,T"],[14728,"U"],[14730,""],[14731,"C,U"],[14732,"C"],[14733,"T"],[14734,"T,Message,Theme,Renderer"],[14735,"V"],[14736,"T,Message,Theme,"]]}],["iced_winit",{"t":"EGPPEFEPNNNNNNNNNNNNNNNNCNNNNNCENNNNNNNNNNNNNNNNNEENNNNNNNNNNNNNNNNNNNNNNNNCENNCNCNNNNNNNNNNNNNNNNNNNEFNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNHHHHHHHHHHHHHHHHHHHHRRRKRFRNNNNNNNNHNNNNNNNNNNNNNNNNNNNNNNMNNHNNNNNNMNMNNNNNNNMNHMNNNFNNNNNNNNNNNNNNNNNONNNNONNNNNNNNNNNNNNNNNNNNH","n":["Clipboard","Error","ExecutorCreationFailed","GraphicsCreationFailed","Program","Proxy","Settings","WindowCreationFailed","adapt_into_using","","arrays_from","","arrays_into","","as_any","","as_any_mut","","borrow","","borrow_mut","","cam16_into_unclamped","","clipboard","clone","clone_into","clone_to_uninit","components_from","","conversion","core","deref","","deref_mut","","drop","","fmt","","","free_slots","from","","","from_angle","","from_stimulus","","futures","graphics","init","","into","","into_angle","","into_any","","into_any_arc","","into_any_rc","","into_cam16_unclamped","","into_color","","into_color_unclamped","","into_stimulus","","new","poll_close","poll_flush","poll_ready","program","runtime","send","send_action","settings","start_send","system","to_owned","to_smolstr","to_string","try_components_into","","try_from","","try_into","","try_into_color","","type_id","","uints_from","","uints_into","","vzip","","winit","Clipboard","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","components_from","connect","deref","deref_mut","drop","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","read","","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","unconnected","vzip","window_id","write","","cursor_position","fullscreen","icon","ime_purpose","key","key_code","mode","modifiers","mouse_button","mouse_interaction","native_key_code","physical_key","position","resize_direction","touch_event","user_attention","visible","window_attributes","window_event","window_level","Executor","Flags","Message","Program","Renderer","State","Theme","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","background_color","borrow","borrow_mut","build_user_interfaces","cam16_into_unclamped","components_from","cursor","deref","deref_mut","drop","fmt","from","from_angle","from_stimulus","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","logical_size","modifiers","new","","physical_size","run","scale_factor","","style","subscription","synchronize","text_color","theme","","title","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","update","","user_force_quit","view","viewport","viewport_version","vzip","Settings","adapt_into_using","arrays_from","arrays_into","as_any","as_any_mut","borrow","borrow_mut","cam16_into_unclamped","clone","clone_into","clone_to_uninit","components_from","default","deref","deref_mut","drop","fmt","fonts","from","","from_angle","from_stimulus","id","init","into","into_angle","into_any","into_any_arc","into_any_rc","into_cam16_unclamped","into_color","into_color_unclamped","into_stimulus","null_value","to_owned","try_components_into","try_from","try_into","try_into_color","type_id","uints_from","uints_into","vzip","fetch_information"],"q":[[0,"iced_winit"],[102,"iced_winit::clipboard"],[142,"iced_winit::conversion"],[162,"iced_winit::program"],[227,"iced_winit::settings"],[271,"iced_winit::system"],[272,"palette::chromatic_adaptation"],[273,"core::any"],[274,"palette::cam16::parameters"],[275,"iced_winit::proxy"],[276,"iced_winit::error"],[277,"core::fmt"],[278,"iced_graphics::error"],[279,"alloc::boxed"],[280,"alloc::sync"],[281,"alloc::rc"],[282,"iced_runtime"],[283,"winit::event_loop"],[284,"core::future::future"],[285,"core::pin"],[286,"core::task::wake"],[287,"core::result"],[288,"core::task::poll"],[289,"smol_str"],[290,"alloc::string"],[291,"palette::convert::try_from_into_color"],[292,"winit::window"],[293,"iced_core::clipboard"],[294,"core::option"],[295,"dpi"],[296,"iced_core::point"],[297,"winit::monitor"],[298,"iced_core::window::mode"],[299,"iced_core::window::icon"],[300,"winit::icon"],[301,"iced_core::input_method"],[302,"winit::keyboard"],[303,"iced_core::keyboard::key"],[304,"iced_core::keyboard::modifiers"],[305,"winit::event"],[306,"iced_core::mouse::button"],[307,"iced_core::mouse::interaction"],[308,"cursor_icon"],[309,"iced_core::size"],[310,"iced_core::window::position"],[311,"iced_core::window::direction"],[312,"iced_core::touch"],[313,"iced_core::window::user_attention"],[314,"iced_core::window::settings"],[315,"iced_core::event"],[316,"iced_core::window::level"],[317,"iced_winit::program::state"],[318,"iced_core::color"],[319,"iced_runtime::debug"],[320,"iced_core::window::id"],[321,"iced_runtime::user_interface"],[322,"rustc_hash"],[323,"iced_graphics::compositor"],[324,"iced_core::mouse::cursor"],[325,"iced_runtime::task"],[326,"core::marker"],[327,"iced_futures::executor"],[328,"iced_core::renderer"],[329,"iced_core::text"],[330,"iced_graphics::settings"],[331,"iced_core::theme"],[332,"iced_futures::subscription"],[333,"iced_core::element"],[334,"iced_graphics::viewport"],[335,"alloc::vec"],[336,"iced_core::settings"],[337,"iced_runtime::system"]],"i":"``Ad0```00l10101010101010`00010``10101011001101010``101010101010101010100000``00`0`0111010101010101010``D`00000000000000000000000000000000000000````````````````````In00`0`0Ij0000000`0000000000000000000000100`011100101000000010`1000`Lf000000000000000000000000000000000000000000`","f":"````````{eg{}{{b{c}}}{}}0{ce{}{}}0{{}c{}}0{d{{d{f}}}}0{{{d{h}}}{{d{hf}}}}0{d{{d{c}}}{}}0{{{d{h}}}{{d{hc}}}{}}0{{{j{c}}}e{}{}}0`{{{d{{l{c}}}}}{{l{c}}}{}}{{d{d{hc}}}n{}}{{dA`}n}99``{Ab{{d{c}}}{}}0{Ab{{d{hc}}}{}}0{Abn}0{{{d{Ad}}{d{hAf}}}Ah}0{{{d{{l{c}}}}{d{hAf}}}AhAj}{{{d{h{l{c}}}}Ab}n{}}{cc{}}{AlAd}111{ce{}{}}0``{{}Ab}0{{}c{}}000{{{An{c}}}{{An{f}}}{}}0{{{B`{c}}}{{B`{f}}}{}}0{{{Bb{c}}}{{Bb{f}}}{}}0{{{j{c}}}e{}{}}04444{{}c{}}0{{{Bf{{Bd{c}}}}}{{Bl{{l{c}}{`{{Bj{}{{Bh{n}}}}}}}}}{}}{{{Bn{{d{h{l{c}}}}}}{d{hC`}}}{{Cd{{Cb{ne}}}}}{}{}}00``{{{d{h{l{c}}}}c}nAj}{{{d{h{l{c}}}}{Bd{c}}}nAj}`{{{Bn{{d{h{l{c}}}}}}{Bd{c}}}{{Cb{ne}}}{}{}}`{dc{}}{dCf}{dCh}{{}{{Cb{c}}}{}}0{c{{Cb{e}}}{}{}}0{{}{{Cb{c}}}{}}0{{}{{Cb{c{Cj{c}}}}}{}}0{dCl}0{ce{}{}}0{{}c{}}0{{}c{}}0``{eg{}{{b{c}}}{}}{ce{}{}}3{d{{d{f}}}}{{{d{h}}}{{d{hf}}}}{d{{d{c}}}{}}{{{d{h}}}{{d{hc}}}{}}{{{j{c}}}e{}{}}5{{{B`{Cn}}}D`}{Ab{{d{c}}}{}}{Ab{{d{hc}}}{}}{Abn}{cc{}}0{ce{}{}}{{}Ab}{{}c{}}0{{{An{c}}}{{An{f}}}{}}{{{Bb{c}}}{{Bb{f}}}{}}:22{{}c{}}{{{d{D`}}Db}{{Dd{Ch}}}}0{{}{{Cb{c}}}{}}{c{{Cb{e}}}{}{}}{{}{{Cb{c}}}{}}{{}{{Cb{c{Cj{c}}}}}{}}{dCl}{ce{}{}}{{}c{}}{{}D`}{{}c{}}{{{d{D`}}}{{Dd{Df}}}}{{{d{hD`}}DbCh}n}0{{{Dj{Dh}}Dh}Dl}{{{Dd{Dn}}E`}{{Dd{Eb}}}}{Ed{{Dd{Ef}}}}{EhEj}{ElEn}{F`{{Dd{Fb}}}}{{{Dd{Eb}}}E`}{FdFf}{FhFj}{FlFn}{G`Gb}{GdGf}{{{Dd{{d{Dn}}}}GhGj}{{Dd{Gl}}}}{GnH`}{{HbDh}Hd}{HfHh}{E`Hj}{{Hl{d{Hn}}{Dd{Dn}}{Dd{Ch}}}I`}{{IbDhFd}{{Dd{Id}}}}{IfIh}```````{eg{}{{b{c}}}{}}{ce{}{}}{{}c{}}{d{{d{f}}}}{{{d{h}}}{{d{hf}}}}{{{d{{Ij{c}}}}}IlIn}{d{{d{c}}}{}}{{{d{h}}}{{d{hc}}}{}}{{{d{c}}{d{hJ`}}{d{h{`{ce}}}}{Jf{JbJd}}}{{Jf{JbJh}}}In{{Jl{}{{Jj{}}}}}}{{{j{c}}}e{}{}}8{{{d{{Ij{c}}}}}JnIn}{Ab{{d{c}}}{}}{Ab{{d{hc}}}{}}{Abn}{{{d{{Ij{c}}}}{d{hAf}}}AhIn}{cc{}}0{ce{}{}}{{}Ab}{{}c{}}0{{{An{c}}}{{An{f}}}{}}{{{B`{c}}}{{B`{f}}}{}}{{{Bb{c}}}{{Bb{f}}}{}}<33{{}c{}}{{{d{{Ij{c}}}}}{{Gh{K`}}}In}{{{d{{Ij{c}}}}}FdIn}{c{{Bl{{In{}{{Kb{e}}{Kd{g}}{Kf{i}}{Jj{k}}{Kh{c}}}}{Kj{e}}}}}{}{AjKl}{}Kn{L`Lb}}{{{d{c}}Jb{d{Cn}}}{{Ij{c}}}In}{{{d{{Ij{c}}}}}{{Gh{Ld}}}In}{{LfLh{Dd{Hl}}}{{Cb{nAd}}}}{{{d{{Ij{c}}}}}DhIn}{{{d{{In{}{{Kb{c}}{Kd{e}}{Kf{g}}{Jj{i}}{Kh{k}}}}}}Jb}Dh{AjKl}{}Kn{L`Lb}{}}{{{d{{In{}{{Kb{c}}{Kd{e}}{Kf{g}}{Jj{i}}{Kh{k}}}}}}{d{e}}}Lj{AjKl}{}Kn{L`Lb}{}}{{{d{{In{}{{Kb{c}}{Kd{e}}{Kf{g}}{Jj{i}}{Kh{k}}}}}}}{{Ll{c}}}{AjKl}{}Kn{L`Lb}{}}{{{d{h{Ij{c}}}}{d{c}}Jb{d{Cn}}}nIn}{{{d{{Ij{c}}}}}IlIn}{{{d{{In{}{{Kb{c}}{Kd{e}}{Kf{g}}{Jj{i}}{Kh{k}}}}}}Jb}e{AjKl}{}Kn{L`Lb}{}}{{{d{{Ij{c}}}}}dIn}{{{d{{In{}{{Kb{c}}{Kd{e}}{Kf{g}}{Jj{i}}{Kh{k}}}}}}Jb}Ch{AjKl}{}Kn{L`Lb}{}}{{}{{Cb{c}}}{}}{c{{Cb{e}}}{}{}}{{}{{Cb{c}}}{}}{{}{{Cb{c{Cj{c}}}}}{}}{dCl}{ce{}{}}{{}c{}}{{{d{h{In{}{{Kb{c}}{Kd{e}}{Kf{g}}{Jj{i}}{Kh{k}}}}}}c}{{Kj{c}}}{AjKl}{}Kn{L`Lb}{}}{{{d{h{Ij{c}}}}{d{Cn}}{d{Ib}}{d{hJ`}}}nIn}{{{d{Ib}}Fd}Hj}{{{d{{In{}{{Kb{c}}{Kd{e}}{Kf{g}}{Jj{i}}{Kh{k}}}}}}Jb}{{Ln{cei}}}{AjKl}{}Kn{L`Lb}{}}{{{d{{Ij{c}}}}}{{d{M`}}}In}{{{d{{Ij{c}}}}}MbIn}{{}c{}}`{eg{}{{b{c}}}{}}{ce{}{}}9{d{{d{f}}}}{{{d{h}}}{{d{hf}}}}{d{{d{c}}}{}}{{{d{h}}}{{d{hc}}}{}}{{{j{c}}}e{}{}}{{{d{Lf}}}Lf}{{d{d{hc}}}n{}}{{dA`}n}8{{}Lf}{Ab{{d{c}}}{}}{Ab{{d{hc}}}{}}{Abn}{{{d{Lf}}{d{hAf}}}Ah}{LfMd}{MfLf}{cc{}}0{ce{}{}}{LfDd}{{}Ab}{{}c{}}0{{{An{c}}}{{An{f}}}{}}{{{B`{c}}}{{B`{f}}}{}}{{{Bb{c}}}{{Bb{f}}}{}}{{{j{c}}}e{}{}}44{{}c{}}0{dc{}}{{}{{Cb{c}}}{}}{c{{Cb{e}}}{}{}}{{}{{Cb{c}}}{}}{{}{{Cb{c{Cj{c}}}}}{}}{dCl}{ce{}{}}{{}c{}}{{}c{}}{{}{{Kj{Mh}}}}","D":"Jl","p":[[10,"TransformMatrix",272],[1,"reference",null,null,1],[10,"Any",273],[0,"mut"],[5,"BakedParameters",274],[5,"Proxy",0,275],[1,"unit"],[1,"u8"],[1,"usize"],[6,"Error",0,276],[5,"Formatter",277],[8,"Result",277],[10,"Debug",277],[6,"Error",278],[5,"Box",279,null,1],[5,"Arc",280,null,1],[5,"Rc",281,null,1],[6,"Action",282],[5,"EventLoopProxy",283],[17,"Output"],[10,"Future",284,null,1],[1,"tuple",null,null,1],[5,"Pin",285],[5,"Context",286],[6,"Result",287,null,1],[6,"Poll",288],[5,"SmolStr",289],[5,"String",290],[5,"OutOfBounds",291],[5,"TypeId",273],[5,"Window",292],[5,"Clipboard",102],[6,"Kind",293],[6,"Option",294,null,1],[5,"WindowId",292],[1,"f64"],[5,"PhysicalPosition",295],[5,"Point",296],[5,"MonitorHandle",297],[6,"Mode",298],[6,"Fullscreen",292],[5,"Icon",299],[5,"Icon",300],[6,"Purpose",301],[6,"ImePurpose",292],[6,"Key",302],[6,"Key",303],[6,"KeyCode",302],[6,"Code",303],[5,"ModifiersState",302],[5,"Modifiers",304],[6,"MouseButton",305],[6,"Button",306],[6,"Interaction",307],[6,"CursorIcon",308],[6,"NativeKeyCode",302],[6,"NativeCode",303],[6,"PhysicalKey",302],[6,"Physical",303],[5,"Size",309],[6,"Position",310],[6,"Position",295],[6,"Direction",311],[6,"ResizeDirection",292],[5,"Touch",305],[6,"Event",312],[6,"UserAttention",313],[6,"UserAttentionType",292],[1,"bool"],[5,"Settings",314],[1,"str"],[5,"WindowAttributes",292],[6,"WindowEvent",305],[6,"Event",315],[6,"Level",316],[6,"WindowLevel",292],[5,"State",162,317],[5,"Color",318],[10,"Program",162],[5,"Debug",319],[5,"Id",320],[5,"Cache",321],[8,"FxHashMap",322],[5,"UserInterface",321],[17,"Renderer"],[10,"Compositor",323],[6,"Cursor",324],[1,"f32"],[17,"Message"],[17,"Theme"],[17,"Executor"],[17,"Flags"],[5,"Task",325],[10,"Send",326],[10,"Executor",327],[10,"Renderer",328],[10,"Renderer",329],[1,"u32"],[5,"Settings",227],[5,"Settings",330],[5,"Style",331],[5,"Subscription",332],[5,"Element",333],[5,"Viewport",334],[1,"u64"],[5,"Vec",335],[5,"Settings",336],[5,"Information",337]],"r":[[0,102],[1,276],[2,276],[3,276],[4,162],[5,275],[6,227],[7,276],[8,276],[9,275],[10,276],[11,275],[12,276],[13,275],[14,276],[15,275],[16,276],[17,275],[18,276],[19,275],[20,276],[21,275],[22,276],[23,275],[25,275],[26,275],[27,275],[28,276],[29,275],[32,276],[33,275],[34,276],[35,275],[36,276],[37,275],[38,276],[39,276],[40,275],[41,275],[42,276],[43,276],[44,275],[45,276],[46,275],[47,276],[48,275],[51,276],[52,275],[53,276],[54,275],[55,276],[56,275],[57,276],[58,275],[59,276],[60,275],[61,276],[62,275],[63,276],[64,275],[65,276],[66,275],[67,276],[68,275],[69,276],[70,275],[71,275],[72,275],[73,275],[74,275],[77,275],[78,275],[80,275],[82,275],[83,276],[84,276],[85,276],[86,275],[87,276],[88,275],[89,276],[90,275],[91,276],[92,275],[93,276],[94,275],[95,276],[96,275],[97,276],[98,275],[99,276],[100,275],[167,317],[169,317],[170,317],[171,317],[172,317],[173,317],[174,317],[175,317],[176,317],[178,317],[179,317],[180,317],[181,317],[182,317],[183,317],[184,317],[185,317],[186,317],[187,317],[188,317],[189,317],[190,317],[191,317],[192,317],[193,317],[194,317],[195,317],[196,317],[197,317],[198,317],[199,317],[201,317],[202,317],[204,317],[208,317],[209,317],[211,317],[213,317],[214,317],[215,317],[216,317],[217,317],[218,317],[219,317],[221,317],[224,317],[225,317],[226,317]],"b":[[38,"impl-Debug-for-Error"],[39,"impl-Display-for-Error"],[128,"impl-Clipboard"],[129,"impl-Clipboard-for-Clipboard"],[140,"impl-Clipboard"],[141,"impl-Clipboard-for-Clipboard"]],"c":"OjAAAAAAAAA=","e":"OzAAAAEAALoAIQABAAAABQAAAAcAAAAJAA8AGgAEACAACQAsAAAALgAHADgADwBJAAIATQAAAFEAAABTABMAaAAIAHIAAgB2AAIAegAGAIIABwCLAAAAjgAAAKoABACwAAEAswABALYAAwC7AAIAvwAHANYABgDjAAAA5QAQAPcAAAD5AAEA/AAAAP4AEQA=","P":[[8,"T,M,D"],[10,"C,T"],[12,"C"],[14,""],[18,"T"],[22,"WpParam,T"],[25,"T"],[27,""],[28,"C,T"],[32,"T"],[36,""],[40,"T"],[43,""],[44,"T"],[47,"U,T"],[51,""],[53,"U"],[57,"T"],[63,"WpParam,T"],[65,"U"],[69,"T"],[72,"T,Sink::Error"],[77,"T"],[80,"T,Sink::Error"],[82,"T"],[83,""],[85,"C"],[87,"U,T"],[89,"U"],[93,""],[95,"C,U"],[97,"C"],[99,"V"],[103,"T,M,D"],[104,"C,T"],[105,"C"],[106,""],[108,"T"],[110,"WpParam,T"],[111,"C,T"],[112,""],[113,"T"],[115,""],[116,"T"],[118,"U,T"],[119,""],[120,"U"],[122,"T"],[124,"WpParam,T"],[125,"U"],[127,"T"],[128,""],[130,"C"],[131,"U,T"],[132,"U"],[134,""],[135,"C,U"],[136,"C"],[137,""],[138,"V"],[139,""],[169,"T,M,D"],[170,"C,T"],[171,"C"],[172,""],[174,"P"],[175,"T"],[177,"P,C"],[178,"WpParam,T"],[179,"C,T"],[180,"P"],[181,"T"],[183,""],[184,"P"],[185,"T"],[187,"U,T"],[188,""],[189,"U"],[191,"T"],[194,"WpParam,T"],[195,"U"],[197,"T"],[198,"P"],[200,"Program::Flags,Program::Message,Program::Theme,Program::Executor,Program::Renderer"],[201,"P"],[203,""],[204,"P"],[205,"Program::Message,Program::Theme,Program::Executor,Program::Renderer,Program::Flags"],[208,"P"],[210,"Program::Message,Program::Theme,Program::Executor,Program::Renderer,Program::Flags"],[211,"P"],[212,"Program::Message,Program::Theme,Program::Executor,Program::Renderer,Program::Flags"],[213,"C"],[214,"U,T"],[215,"U"],[217,""],[218,"C,U"],[219,"C"],[220,"Program::Message,Program::Theme,Program::Executor,Program::Renderer,Program::Flags"],[221,"P"],[222,""],[223,"Program::Message,Program::Theme,Program::Executor,Program::Renderer,Program::Flags"],[224,"P"],[226,"V"],[228,"T,M,D"],[229,"C,T"],[230,"C"],[231,""],[233,"T"],[235,"WpParam,T"],[236,""],[237,"T"],[238,""],[239,"C,T"],[240,""],[241,"T"],[243,""],[247,"T"],[249,"U,T"],[250,""],[252,"U"],[254,"T"],[257,"WpParam,T"],[258,"U"],[260,"T"],[263,"C"],[264,"U,T"],[265,"U"],[267,""],[268,"C,U"],[269,"C"],[270,"V"],[271,""]]}]]')); if (typeof exports !== 'undefined') exports.searchIndex = searchIndex; else if (window.initSearch) window.initSearch(searchIndex); -//{"start":39,"fragment_lengths":[1643,911357,158502,12259,53685,3743,284218,47249,13793,18276,504006,14524]} \ No newline at end of file +//{"start":39,"fragment_lengths":[1643,911579,158608,12259,53685,3743,284218,47249,13793,18276,504006,14524]} \ No newline at end of file diff --git a/search.desc/iced/iced-desc-0-.js b/search.desc/iced/iced-desc-0-.js index f9b08d5e637..09856e0c49c 100644 --- a/search.desc/iced/iced-desc-0-.js +++ b/search.desc/iced/iced-desc-0-.js @@ -1 +1 @@ -searchState.loadedDescShard("iced", 0, "iced is a cross-platform GUI library focused on simplicity …\nA list with all the defined themes.\nAlignment on the axis of a container.\nThe animation of some particular state.\nThe black color.\nThe background of some element.\nA border.\nThe built-in Catppuccin Frappé variant.\nThe built-in Catppuccin Latte variant.\nThe built-in Catppuccin Macchiato variant.\nThe built-in Catppuccin Mocha variant.\nAlign at the center of the axis.\nA color in the sRGB color space.\nA solid color.\nScale as big as it can be without needing to crop or hide …\nThe strategy used to fit the contents of a widget to its …\nScale the image to cover all of the bounding box, cropping …\nA Theme that uses a Custom palette.\nA non-monospaced sans-serif font with normal Weight.\nThe built-in dark variant.\nDegrees\nThe built-in Dracula variant.\nA generic widget.\nAlign at the end of the axis.\nContains the error value\nAn error that occurred while running an application.\nA user interface event.\nA type that can run futures.\nThe executor of the program.\nThe futures executor could not be created.\nThe built-in Ferra variant:\nDistort the image so the widget is 100% covered without …\nFill all the remaining space\nFill a portion of the remaining space relative to other …\nFill a fixed amount of space\nThe element will float while rotating. The layout will be …\nA font.\nA fill which transitions colors progressively along a …\nLinearly interpolate between several colors.\nThe application graphics context could not be created.\nThe built-in Gruvbox Dark variant.\nThe built-in Gruvbox Light variant.\nA Transformation that preserves whatever is transformed.\nA rectangle starting at Point::ORIGIN with infinite width …\nA Size with infinite width and height.\nAn input method event\nThe built-in Kanagawa Dragon variant.\nThe built-in Kanagawa Lotus variant.\nThe built-in Kanagawa Wave variant.\nA keyboard event\nThe strategy used to fill space in a specific dimension.\nThe built-in light variant.\nA linear gradient interpolates colors along a direction at …\nA monospaced font with normal Weight.\nThe message of the program.\nThe built-in Moonfly variant.\nA mouse event\nThe built-in Nightfly variant.\nDon’t resize or scale the image at all.\nThe built-in Nord variant.\nThe origin (i.e. a Point at (0, 0)).\nContains the success value\nThe built-in Oxocarbon variant.\nThe amount of radians in half a circle.\nAn amount of space to pad for each side of a box\nAn amount of logical pixels.\nA 2D point.\nThe primary rendering option.\nThe internal definition of a Program.\nThe range of degrees of a circle.\nThe range of radians of a circle.\nRadians\nAn axis-aligned rectangle.\nThe default graphics renderer for iced.\nThe renderer of the program.\nThe result of running an iced program.\nThe strategy used to rotate the content.\nScale the image down if it’s too big for the space, but …\nThe secondary (or fallback) rendering option.\nThe settings of an iced program.\nA shadow.\nFill the least amount of space\nAn amount of space in 2 dimensions.\nThe built-in Solarized Dark variant.\nThe built-in Solarized Light variant.\nThe element will be solid while rotating. The layout will …\nAlign at the start of the axis.\nThe state of the program.\nA request to listen to external events.\nA color with no opacity.\nA set of concurrent actions to be performed by the iced …\nA built-in theme.\nThe theme of the program.\nThe built-in Tokyo Night variant.\nThe built-in Tokyo Night Light variant.\nThe built-in Tokyo Night Storm variant.\nA touch event\nA 2D transformation matrix.\nA Size with a width and height of 1 unit.\nA 2D vector.\nThe white color.\nA window event\nThe application window could not be created.\nPadding of zero\nZero pixels.\nA Size with zero width and height.\nThe zero Vector.\nTransparency, 0.0 - 1.0\nCreates a new Task that can be aborted with the returned …\nLeverage advanced concepts like custom widgets.\nAlign and position widgets.\nExecutes a new Task after this one, only when it produces …\nExecutes a new Task after this one, only when it succeeds …\nAnimate your applications.\nIf set to true, the renderer will try to perform …\nCreate and run iced applications step by step.\nCreates an iced Application given its title, update, and …\nApplies the Rotation to the given Size, returning the …\nReturns the area of the Rectangle.\nMakes the Animation automatically reverse when repeating.\nBlue component, 0.0 - 1.0\nCombines the given tasks and produces a single Task that …\nBatches all the provided subscriptions and returns the …\nThe blur radius of the shadow.\nDraw lines around containers.\nSets the bottom of the Padding.\nBottom padding\nReturns the Point at the center of the Rectangle.\nReturns the X coordinate of the Point at the center of the …\nReturns the Y coordinate of the Point at the center of the …\nChains a new Task to be performed once the current one …\nAccess the clipboard.\nCreates a new Task that collects all the output of the …\nSets the Color of the Border.\nThe color of the border.\nThe color of the shadow.\nCreates a Color with shorter and cleaner syntax.\nReturns true if the given Point is contained in the …\nCreates a new custom Theme from the given Palette.\nCreates a new custom Theme from the given Palette, with a …\nCreate and run daemons that run in the background.\nCreates an iced Daemon given its title, update, and view …\nThe default Font to be used.\nThe text size that will be used by default.\nReturns the angle of the Rotation in Degrees.\nSets a delay for the Animation.\nCreates a new Task that discards the result of the current …\nComputes the distance to another Point.\nReturns the minimum distance from the given Point to any …\nCreates a new Task that instantly produces the given value.\nSets the duration of the Animation to the given value.\nSets the Easing function of the Animation.\nAdapts the Length so it can contain the other Length and …\nRuns the given closure inside the Executor.\nHandle events of a user interface.\nChoose your preferred executor to power your application.\nCreates a Task that exits the iced runtime.\nExpands the Rectangle a given amount.\nExpands this Size by the given amount.\nReturns the palette::Extended of the Theme.\nThe Family of the Font.\nReturns the fill factor of the Length.\nFits the Padding between the provided inner and outer Size.\nAttempt to apply the given fit for a content size within …\nReturns the “fluid” variant of the Length.\nLoad and use fonts.\nThe fonts to load on boot.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCreates a Color from its linear RGBA components.\nCreates a Color from its RGB components.\nCreates a Color from its RGB8 components.\nCreates a Color from its RGBA components.\nCreates a Color from its RGB8 components and an alpha …\nCreates a new Task that runs the given Future and produces …\nGreen component, 0.0 - 1.0\nTransitions the Animation from its current state to the …\nTransitions the Animation from its current state to the …\nColors that transition progressively.\nHeight of the rectangle.\nThe height.\nReturns the total amount of horizontal Padding.\nThe identifier of the application.\nProjects the Animation into an interpolated value at the …\nProjects the Animation into an interpolated value at the …\nComputes the intersection with the given Rectangle.\nReturns whether the Rectangle intersects with the given …\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nConverts the Color into its linear values.\nConverts the Color into its RGBA8 equivalent.\nReturns the inverted Color.\nInverts the Color in-place.\nReturns true if the Animation is currently in progress.\nReturns true iff the Length is either Length::Fill or\nReturns true if the current Rectangle is completely within …\nListen and react to keyboard events.\nSets the left of the Padding.\nLeft padding\nMaps the output of a Task with the given closure.\nTransforms the Subscription output with the given function.\nReturns the maximum of each component of this size and …\nReturns the minimum of each component of this size and …\nListen and react to mouse events.\nA function that can never be called.\nCreates a new Executor.\nCreates a new Animation with the given initial state.\nCreate a Padding that is equal on all sides.\nCreates a new Point with the given coordinates.\nCreates a new Rectangle with its top-left corner in the …\nCreates a new Size with the given width and height.\nCreates a new Vector with the given components.\nCreates a Task that does nothing.\nReturns an empty Subscription that will not produce any …\nThe offset of the shadow.\nCreates an orthographic projection.\nDisplay interactive elements on top of other widgets.\nSpace stuff around the perimeter.\nReturns the Palette of the Theme.\nParses a Color from a hex string.\nCreates a Task that runs the given Future to completion …\nReturns the position of the top left corner of the …\nSets the duration of the Animation to 200ms.\nRed component, 0.0 - 1.0\nReturns the angle of the Rotation in Radians.\nReturns a mutable reference to the angle of the Rotation …\nThe Radius of the border.\nMakes the Animation repeat a given amount of times.\nMakes the Animation repeat forever.\nSets the right of the Padding.\nRight padding\nRotates the Rectangle and returns the smallest Rectangle …\nRotates the given Size and returns the minimum Size …\nSets the Radius of the Border.\nRuns a basic iced application with default Settings given …\nRuns the Program.\nRuns the Program.\nCreates a Task that runs the given Stream to completion …\nReturns a Subscription that will call the given function …\nRuns the Program with the given Settings and a closure …\nRuns the Program with the given Settings and a closure …\nReturns a Subscription that will create and asynchronously …\nCreates a uniform scaling transformation.\nScales the alpha channel of the Gradient by the given …\nScales the alpha channel of the Background by the given …\nScales the alpha channel of the Color by the given factor.\nReturns the scale factor of the Transformation.\nShrinks the Rectangle a given amount.\nReturns the Size of the Rectangle.\nSets the duration of the Animation to 400ms.\nSnaps the Rectangle to unsigned integer coordinates.\nSpawns a future in the Executor.\nCreate asynchronous streams of data.\nCreates a new Task that runs the given Stream and produces …\nThe Stretch of the Font.\nThe Style of the Font.\nRetrieve system information.\nCreate runtime tasks.\nUse the built-in theme and styles.\nPerforms a new Task for every output of the current Task …\nListen and react to time.\nCalculates the line in which the angle intercepts the …\nSets the top of the Padding.\nTop padding\nListen and react to touch events.\nCreates a translate transformation.\nReturns the translation of the Transformation.\nComputes the union with the given Rectangle.\nRetuns the current state of the Animation.\nReturns the total amount of vertical Padding.\nSets the duration of the Animation to 100ms.\nSets the duration of the Animation to 500ms.\nThe Weight of the Font.\nUse the built-in widgets or create your own.\nSets the width of the Border.\nThe width of the border.\nWidth of the rectangle.\nThe width.\nConfigure the window of your application in native …\nAdds a value to the Subscription context.\nCreates a non-monospaced Font with the given Family::Name …\nCreates a new square Rectangle with the center at the …\nCreates a new Rectangle with its top-left corner at the …\nCreates a new axis-aligned Rectangle from the given …\nThe X coordinate.\nX coordinate of the top-left corner.\nThe X component of the Vector\nThe Y coordinate.\nY coordinate of the top-left corner.\nThe Y component of the Vector\nA buffer for short-term storage and transfer within and …\nThe bounds of a Node and its children, using absolute …\nAn interactive component that can be displayed on top of …\nA component that can be used by widgets to draw themselves …\nA connection to the state of a shell.\nA paragraph.\nA component that displays information and allows …\nReturns whether the widgets of the current application …\nReturns the bounds of the Layout.\nThe bounds of the paragraph.\nMarks the current event as captured. Prevents “event …\nReturns the state Tree of the children of the Widget.\nReturns an iterator over the Layout of the children of a …\nClears all of the recorded primitives in the Renderer.\nAccess the clipboard.\nThe content of the paragraph.\nReconciles the Widget with the provided Tree.\nDraws the Overlay using the associated Renderer.\nDraws the Widget using the associated Renderer.\nEnds recording a new layer.\nEnds recording a new layer.\nReturns the current event::Status of the Shell.\nFills a Quad with the provided Background.\nThe font of the Text.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nThe horizontal alignment of the Text.\nLoad and draw raster graphics.\nReturns the current InputMethod strategy.\nReturns the current InputMethod strategy.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nInvalidates the current application layout.\nInvalidates the current application widgets.\nReturns true if the Shell contains no published messages\nReturns whether the current event has been captured.\nReturns whether the current layout is invalid or not.\nReturns true if the cursor is over the Overlay.\nPosition your widgets properly.\nReturns the layout Node of the Overlay.\nReturns the layout::Node of the Widget.\nThe line height of the Text.\nMerges the current Shell with another one by applying the …\nHandle mouse events.\nReturns the current mouse::Interaction of the Overlay.\nReturns the current mouse::Interaction of the Widget.\nCreates a new Layout for the given Node at the origin.\nCreates a new Shell with the provided buffer of messages.\nApplies a widget::Operation to the Overlay.\nApplies an Operation to the Widget.\nDisplay interactive elements on top of other widgets.\nReturns the nested overlay of the Overlay, if there is any.\nReturns the overlay of the Widget, if there is any.\nReturns the position of the Layout.\nPublish the given Message for an application to process it.\nReads the current content of the Clipboard as text.\nReturns the request a redraw should happen, if any.\nWrite your own renderer.\nReplaces the redraw request of the Shell; without conflict …\nRequests the current InputMethod strategy.\nRequests a new frame to be drawn as soon as possible.\nRequests a new frame to be drawn at the given …\nTriggers the given function if the layout is invalid, …\nThe Shaping strategy of the Text.\nReturns the Size of the Widget in lengths.\nThe size of the Text in logical pixels.\nReturns a Size hint for laying out the Widget.\nStarts recording a new layer.\nStarts recording with a new Transformation.\nReturns the State of the Widget.\nWrite your own subscriptions.\nLoad and draw vector graphics.\nReturns the Tag of the Widget.\nDraw and interact with text.\nProcesses a runtime Event.\nProcesses a runtime Event.\nThe vertical alignment of the Text.\nCreate custom widgets and operate on them.\nDraws the primitives recorded in the given closure in a …\nCreates a new Layout for the given Node with the provided …\nApplies a Transformation to the primitives recorded in the …\nApplies a translation to the primitives recorded in the …\nThe Wrapping strategy of the Text.\nWrites the given text contents to the Clipboard.\nA buffer for short-term storage and transfer within and …\nThe kind of Clipboard.\nA null implementation of the Clipboard trait.\nThe primary clipboard.\nThe standard clipboard.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nReads the current content of the Clipboard as text.\nWrites the given text contents to the Clipboard.\nA cheaply cloneable and sliceable chunk of contiguous …\nA handle pointing to some encoded image bytes in-memory.\nImage filtering strategy.\nA handle of some image data.\nThe image Handle to be displayed. Iced exposes its own …\nThe unique identifier of some Handle data.\nA raster image that can be drawn.\nBilinear interpolation.\nNearest neighbor.\nA file handle. The image data will be read from the file …\nA Renderer that can render raster graphics.\nA handle pointing to decoded image pixels in RGBA format.\nClears the buffer, removing all data.\nCreates Bytes instance from slice, by copying it.\nDraws an Image inside the provided bounds.\nSets the filter method of the Image.\nThe filter method of the image.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCreates an image Handle containing the encoded image data …\nCreate Bytes with a buffer whose lifetime is controlled …\nCreates an image Handle pointing to the image of the given …\nCreates an image Handle containing the decoded image …\nCreates a new Bytes from a static slice.\nThe handle of the image.\nReturns the unique identifier of the Handle.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns true if the Bytes has a length of 0.\nReturns true if this is the only reference to the data and …\nReturns the number of bytes contained in this Bytes.\nReturns the dimensions of an image for the given Handle.\nCreates a new empty Bytes.\nCreates a new Image with the given handle.\nSets the opacity of the Image.\nThe opacity of the image.\nSets the rotation of the Image.\nThe rotation to be applied to the image; on its center.\nReturns a slice of self for the provided range.\nReturns a slice of self that is equivalent to the given …\nSets whether the Image should be snapped to the pixel grid.\nIf set to true, the image will be snapped to the pixel …\nSplits the bytes into two at the given index.\nSplits the bytes into two at the given index.\nShortens the buffer, keeping the first len bytes and …\nTry to convert self into BytesMut.\nThe height of the image.\nThe id of this handle.\nThe pixels.\nThe width of the image.\nThe bounds of a Node and its children, using absolute …\nA set of size constraints for layouting.\nNo limits\nThe bounds of an element and its children.\nAligns the Node in the given space.\nMutable reference version of Self::align.\nComputes the resulting Node that fits the Limits given …\nReturns the bounds of the Node.\nReturns the children of the Node.\nComputes the resulting Node that fits the Limits given …\nCreates a new Node that wraps a single child with some …\nDistribute elements using a flex-based layout.\nReturns the argument unchanged.\nReturns the argument unchanged.\nApplies a height constraint to the current Limits.\nCalls U::from(self).\nCalls U::from(self).\nRemoves the minimum width constraint for the current Limits…\nReturns the maximum Size of the Limits.\nApplies a maximum height constraint to the current Limits.\nApplies a maximum width constraint to the current Limits.\nReturns the minimum Size of the Limits.\nApplies a minimum height constraint to the current Limits.\nApplies a minimum width constraint to the current Limits.\nMoves the Node to the given position.\nMutable reference version of Self::move_to.\nCreates new Limits with the given minimum and maximum Size.\nCreates a new Node with the given Size.\nProduces a Node with two children nodes one right next to …\nComputes the Node that fits the Limits given some width, …\nComputes a padded Node with a positioning step.\nComputes the resulting Size that fits the Limits given …\nShrinks the current Limits by the given Size.\nReturns the Size of the Node.\nComputes the resulting Node that fits the Limits given …\nTranslates the Node by the given translation.\nTranslates the Node by the given translation.\nApplies a width constraint to the current Limits.\nCreates a new Node with the given Size and children.\nThe main axis of a flex layout.\nThe horizontal axis\nThe vertical axis\nReturns the argument unchanged.\nCalls U::from(self).\nComputes the flex layout with the given axis and limits, …\nThe cursor has a defined position.\nThe back mouse button.\nThe button of a mouse.\nA mouse button was pressed.\nA mouse button was released.\nA mouse click.\nThe mouse cursor state.\nThe mouse cursor entered the window.\nThe mouse cursor left the window.\nThe mouse cursor was moved\nA mouse event.\nThe forward mouse button.\nThe interaction of a mouse cursor.\nThe left mouse button.\nThe cursor has a defined position, but it’s levitating …\nA line-based scroll movement\nThe middle (wheel) button.\nSome other button.\nA pixel-based scroll movement\nThe right mouse button.\nA scroll movement.\nThe cursor is currently unavailable (i.e. out of bounds or …\nThe mouse wheel was scrolled.\nTrack mouse clicks.\nReturns the argument unchanged.\nCalls U::from(self).\nReturns the Kind of Click.\nCreates a new Click with the given position and previous …\nReturns the position of the Click.\nThe scroll movement.\nThe new position of the mouse cursor\nThe number of horizontal lines scrolled\nThe number of horizontal pixels scrolled\nThe number of vertical lines scrolled\nThe number of vertical pixels scrolled\nA mouse click.\nA double click\nThe kind of mouse click.\nA single click\nA triple click\nReturns the argument unchanged.\nCalls U::from(self).\nA generic Overlay.\nAn Overlay container that displays multiple overlay …\nAn interactive component that can be displayed on top of …\nDraws the Overlay using the associated Renderer.\nDraws the Element and its children using the given Layout.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns a Group of overlay Element children.\nCalls U::from(self).\nCalls U::from(self).\nReturns true if the cursor is over the Element.\nReturns true if the cursor is over the Overlay.\nReturns the layout Node of the Overlay.\nComputes the layout of the Element in the given bounds.\nApplies a transformation to the produced message of the …\nReturns the current mouse::Interaction of the Element.\nReturns the current mouse::Interaction of the Overlay.\nCreates a new Element containing the given Overlay.\nCreates an empty Group.\nApplies a widget::Operation to the Element.\nApplies a widget::Operation to the Overlay.\nReturns the nested overlay of the Element, if there is any.\nTurns the Group into an overlay overlay::Element.\nReturns the nested overlay of the Overlay, if there is any.\nAdds an overlay::Element to the Group.\nProcesses a runtime Event.\nProcesses a runtime Event.\nCreates a Group with the given elements.\nA headless renderer is a renderer that can render …\nA polygon with four sides.\nA component that can be used by widgets to draw themselves …\nThe styling attributes of a Renderer.\nThe Border of the Quad. The border is drawn on the inside …\nThe bounds of the Quad.\nClears all of the recorded primitives in the Renderer.\nEnds recording a new layer.\nEnds recording a new layer.\nFills a Quad with the provided Background.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCreates a new Headless renderer;\nDraws offscreen into a screenshot, returning a collection …\nThe Shadow of the Quad.\nStarts recording a new layer.\nStarts recording with a new Transformation.\nThe text color\nDraws the primitives recorded in the given closure in a …\nApplies a Transformation to the primitives recorded in the …\nApplies a translation to the primitives recorded in the …\nA subscription event.\nA stream of runtime events.\nThe hasher used for identifying subscriptions.\nA user interacted with a user interface in a window.\nDescribes an event specific to MacOS\nA MacOS specific event\nThe events that will be produced by a Subscription with …\nA platform specific event\nA platform specific event.\nTriggered when the app receives an URL from the system\nThe description of a Subscription.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCreates a Subscription from a Recipe describing it.\nHashes the Recipe.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns the different recipes of the Subscription.\nExecutes the Recipe and produces the stream of events of …\nThe Event describing the interaction.\nThe event::Status of the interaction.\nThe window holding the interface of the interaction.\nIn-memory data\nThe data of a vectorial image.\nA handle of Svg data.\nFile data\nA Renderer that can render vector graphics.\nA raster image that can be drawn.\nSets the Color filter of the Svg.\nThe Color filter to be applied to the Svg.\nReturns a reference to the SVG Data.\nDraws an SVG with the given Handle, an optional Color …\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCreates an SVG Handle from raw bytes containing either an …\nCreates an SVG Handle pointing to the vector image of the …\nThe handle of the Svg.\nReturns the unique identifier of the Handle.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns the default dimensions of an SVG for the given …\nCreates a new Svg with the given handle.\nSets the opacity of the Svg.\nThe opacity of the Svg.\nSets the rotation of the Svg.\nThe rotation to be applied to the image; on its center.\nThe char representing a ▼ icon in the built-in ICON_FONT.\nAn absolute height in logical pixels.\nAdvanced text shaping and font fallback.\nNo shaping and no font fallback.\nBorrowed data.\nA bounds difference.\nThe char representing a ✔ icon in the ICON_FONT.\nThe point was within the bounds of the returned character …\nThe difference detected in some text.\nA component that can be used by widgets to edit multi-line …\nThe Editor of this Renderer.\nThe font of the Editor.\nThe font of this Paragraph.\nThe font type used.\nA fragment of Text.\nWraps at the glyph level.\nA text highlight.\nThe output of the Highlighter.\nA type capable of highlighting text.\nThe result of hit testing on text.\nThe icon font of the backend.\nA trait for converting a value to some text Fragment.\nThe highlight iterator type.\nThe height of a line of text in a paragraph.\nNo wrapping.\nNo difference.\nOwned data.\nA text paragraph.\nThe Paragraph of this Renderer.\nA factor of the size of the text.\nA renderer capable of measuring and drawing Text.\nThe settings to configure the Highlighter.\nA shape difference.\nThe shaping strategy of some text.\nA span of text.\nA paragraph.\nWraps at the word level.\nWraps at the word level, or fallback to glyph level if a …\nThe wrapping strategy of some text.\nSets the Background of the Span.\nThe Background of the highlight.\nSets the Background of the Span, if any.\nSets the Border of the Span.\nThe Border of the highlight.\nSets the Border of the Span, if any.\nReturns the current boundaries of the Editor.\nThe bounds of the paragraph.\nNotifies the Highlighter that the line at the given index …\nSets the Color of the Span.\nThe Color of the Span.\nSets the Color of the Span, if any.\nCompares the Paragraph with some desired Text and returns …\nThe content of the paragraph.\nReturns the current line of the Highlighter.\nReturns the current Cursor of the Editor.\nComputes the cursor position of the Hit .\nReturns the current cursor position of the Editor.\nReturns the default Self::Font.\nReturns the default size of Text.\nEdit text.\nDraws the given Editor at the given position and with the …\nDraws the given Paragraph at the given position and with …\nDraws the given Text at the given position and with the …\nSets the font of the Span.\nThe font of the Text.\nThe font of the Span.\nSets the font of the Span, if any.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the distance to the given grapheme index in the …\nRuns a text Highlighter in the Editor.\nThe Highlight of the Span.\nHighlights the given line.\nHighlight text.\nTests whether the provided point is within the boundaries …\nTests whether the provided point is within the boundaries …\nReturns the horizontal alignment of the Paragraph.\nThe horizontal alignment of the Text.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nConverts the value to some text Fragment.\nReturns true if the Editor has no contents.\nReturns the text of the given line in the Editor, if it …\nReturns the amount of lines in the Editor.\nSets the LineHeight of the Span.\nThe line height of the Text.\nThe LineHeight of the Span.\nSets the link of the Span.\nThe link of the Span.\nSets the link of the Span, if any.\nReturns the minimum boundaries to fit the current contents …\nReturns the minimum boundaries that can fit the contents …\nReturns the minimum height that can fit the contents of …\nReturns the minimum width that can fit the contents of the …\nCreates a new Highlighter from its Self::Settings.\nCreates a new Span of text with the given text fragment.\nSets the Padding of the Span.\nThe Padding of the Span.\nDraw paragraphs.\nPerforms an Action on the Editor.\nLays out the Paragraph with some new boundaries.\nReturns the current selected text of the Editor.\nThe Shaping strategy of the Text.\nSets the size of the Span.\nThe size of the Text in logical pixels.\nThe size of the Span in Pixels.\nReturns all bounds for the provided Span index of the …\nSets whether the Span should be struck through or not.\nWhether the Span should be struck through or not.\nThe Fragment of text.\nReturns the LineHeight in absolute logical pixels.\nTurns the Span into a static one.\nSets whether the Span should be underlined or not.\nWhether the Span should be underlined or not.\nUpdates the Editor with some new attributes.\nUpdates the Highlighter with some new Self::Settings.\nReturns the vertical alignment of the Paragraph.\nThe vertical alignment of the Text.\nCreates a new Paragraph laid out with the given Text.\nCreates a new Editor laid out with the given text.\nCreates a new Paragraph laid out with the given Text.\nThe Wrapping strategy of the Text.\nAn interaction with an Editor.\nDelete the previous character.\nCursor without a selection\nClick the Editor at the given Point.\nUse \\r for line ending (many legacy systems)\nUse \\r\\n for line ending (Windows-style)\nThe cursor of an Editor.\nDelete the next character.\nA direction in some text.\nMove to the end of the text.\nMove to the start of the text.\nMove down.\nDrag the mouse on the Editor to the given Point.\nAn action that edits text.\nPerform an Edit.\nA component that can be used by widgets to edit multi-line …\nMove to the end of the line.\nBreak the current line.\nThe font of the Editor.\nMove to the start of the line.\nInsert the given character.\nMove left.\n<-\nUse \\n for line ending (POSIX-style)\nUse \\n\\r for line ending (some legacy systems)\nA line of an Editor.\nThe line ending of a Line.\nA cursor movement.\nApply a Motion.\nNo line ending\nMove to the start of the next window.\nMove to the start of the previous window.\nPaste the given text.\nMove right.\n->\nScroll the Editor a certain amount of lines.\nSelect text with a given Motion.\nSelect the entire buffer.\nSelect the line at the current cursor.\nSelect the word at the current cursor.\nCursor selecting a range of text\nMove up.\nMove to the left boundary of a word.\nMove to the right boundary of a word.\nReturns the current boundaries of the Editor.\nReturns the current Cursor of the Editor.\nReturns the current cursor position of the Editor.\nThe line ending of the Line.\nReturns the argument unchanged.\nReturns the argument unchanged.\nRuns a text Highlighter in the Editor.\nCalls U::from(self).\nCalls U::from(self).\nReturns true if the Editor has no contents.\nReturns the text of the given line in the Editor, if it …\nReturns the amount of lines in the Editor.\nReturns the minimum boundaries to fit the current contents …\nPerforms an Action on the Editor.\nReturns the current selected text of the Editor.\nThe raw text of the Line.\nUpdates the Editor with some new attributes.\nCreates a new Editor laid out with the given text.\nThe amount of lines to scroll.\nThe format of some text.\nThe output of the Highlighter.\nA type capable of highlighting text.\nThe highlight iterator type.\nA highlighter that highlights nothing.\nThe settings to configure the Highlighter.\nNotifies the Highlighter that the line at the given index …\nThe Color of the text.\nReturns the current line of the Highlighter.\nThe Font of the text.\nReturns the argument unchanged.\nReturns the argument unchanged.\nHighlights the given line.\nCalls U::from(self).\nCalls U::from(self).\nCreates a new Highlighter from its Self::Settings.\nUpdates the Highlighter with some new Self::Settings.\nThe font of this Paragraph.\nA text paragraph.\nA Paragraph of plain text.\nCompares the Paragraph with some desired Text and returns …\nReturns the argument unchanged.\nReturns the distance to the given grapheme index in the …\nTests whether the provided point is within the boundaries …\nTests whether the provided point is within the boundaries …\nReturns the horizontal alignment of the Paragraph.\nReturns the horizontal alignment of the Paragraph.\nCalls U::from(self).\nReturns the minimum boundaries that can fit the contents …\nReturns the minimum boundaries that can fit the contents …\nReturns the minimum height that can fit the contents of …\nReturns the minimum height that can fit the contents of the\nReturns the minimum width that can fit the contents of the …\nReturns the minimum width that can fit the contents of the …\nCreates a new Plain paragraph.\nReturns the cached Paragraph.\nLays out the Paragraph with some new boundaries.\nReturns all bounds for the provided Span index of the …\nUpdates the plain Paragraph to match the given Text, if …\nReturns the vertical alignment of the Paragraph.\nReturns the vertical alignment of the Paragraph.\nCreates a new Paragraph laid out with the given Text.\nCreates a new Paragraph laid out with the given Text.\nThe identifier of a generic widget.\nA piece of logic that can traverse the widget tree of an …\nA bunch of text.\nA persistent state widget tree.\nA component that displays information and allows …\nSets the alignment::Horizontal of the Text.\nSets the alignment::Vertical of the Text.\nCenters the Text, both horizontally and vertically.\nReturns the state Tree of the children of the Widget.\nThe children of the root widget of the Tree.\nSets the style class of the Text.\nSets the Color of the Text.\nSets the Color of the Text, if Some.\nOperates on a widget that contains other widgets.\nOperates on a custom widget with some state.\nReconciles the Widget with the provided Tree.\nReconciles the current tree with the provided Widget.\nReconciles the children of the tree with the provided list …\nReconciles the children of the tree with the provided list …\nDraws the Widget using the associated Renderer.\nCreates an empty, stateless Tree with no children.\nFinishes the Operation and returns its Outcome.\nOperates on a widget that can be focused.\nSets the Font of the Text.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nSets the height of the Text boundaries.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns the layout::Node of the Widget.\nSets the LineHeight of the Text.\nReturns the current mouse::Interaction of the Widget.\nCreate a new fragment of Text with the given contents.\nCreates a new Tree for the provided Widget.\nCreates a custom Id.\nCreates a new Task that runs the given widget::Operation …\nApplies an Operation to the Widget.\nQuery or update internal widget state.\nReturns the overlay of the Widget, if there is any.\nOperates on a widget that can be scrolled.\nSets the Shaping strategy of the Text.\nReturns the Size of the Widget in lengths.\nSets the size of the Text.\nReturns a Size hint for laying out the Widget.\nReturns the State of the Widget.\nThe State of the Tree.\nSets the style of the Text.\nReturns the Tag of the Widget.\nThe tag of the Tree.\nText widgets display information through writing.\nOperates on a widget that contains some text.\nOperates on a widget that has text input.\nStore internal widget state in a state tree to ensure …\nCreates a unique Id.\nProcesses a runtime Event.\nSets the width of the Text boundaries.\nSets the Wrapping strategy of the Text.\nThe Operation needs to be followed by another Operation.\nThe internal state of a widget that can be focused.\nThe Operation produced no result.\nA piece of logic that can traverse the widget tree of an …\nThe result of an Operation.\nThe internal state of a widget that can be scrolled.\nThe Operation produced some result.\nThe internal state of a widget that has text input.\nWraps the Operation in a black box, erasing its returning …\nOperates on a widget that contains other widgets.\nOperates on a custom widget with some state.\nFinishes the Operation and returns its Outcome.\nFocuses the widget.\nOperate on widgets that can be focused.\nOperates on a widget that can be focused.\nReturns the argument unchanged.\nCalls U::from(self).\nReturns whether the widget is focused or not.\nMaps the output of an Operation using the given function.\nMoves the cursor of the text input to an arbitrary …\nMoves the cursor of the text input to the end of the input …\nMoves the cursor of the text input to the front of the …\nProduces an Operation that applies the given Operation to …\nScroll the widget by the given AbsoluteOffset along the …\nScroll the widget to the given AbsoluteOffset along the …\nOperate on widgets that can be scrolled.\nOperates on a widget that can be scrolled.\nSelects all the content of the text input.\nSnaps the scroll of the widget to the given percentage …\nOperates on a widget that contains some text.\nOperate on widgets that have text input.\nOperates on a widget that has text input.\nChains the output of an Operation with the provided …\nUnfocuses the widget.\nA summary of the focusable widgets present on a widget …\nThe internal state of a widget that can be focused.\nProduces an Operation that generates a Count and chains it …\nProduces an Operation that searches for the current …\nProduces an Operation that focuses the widget with the …\nFocuses the widget.\nProduces an Operation that searches for the current …\nProduces an Operation that searches for the current …\nThe index of the current focused widget, if any.\nReturns the argument unchanged.\nCalls U::from(self).\nReturns whether the widget is focused or not.\nThe total amount of focusable widgets.\nUnfocuses the widget.\nThe amount of absolute offset in each direction of a …\nThe amount of relative offset in each direction of a …\nThe internal state of a widget that can be scrolled.\nProduces an Operation that scrolls the widget with the …\nScroll the widget by the given AbsoluteOffset along the …\nProduces an Operation that scrolls the widget with the …\nScroll the widget to the given AbsoluteOffset along the …\nProduces an Operation that snaps the widget with the given …\nSnaps the scroll of the widget to the given percentage …\nThe amount of horizontal offset\nThe amount of horizontal offset\nThe amount of vertical offset\nThe amount of vertical offset\nThe internal state of a widget that has text input.\nProduces an Operation that moves the cursor of the widget …\nMoves the cursor of the text input to an arbitrary …\nProduces an Operation that moves the cursor of the widget …\nMoves the cursor of the text input to the end of the input …\nProduces an Operation that moves the cursor of the widget …\nMoves the cursor of the text input to the front of the …\nProduces an Operation that selects all the content of the …\nSelects all the content of the text input.\nAn absolute height in logical pixels.\nAdvanced text shaping and font fallback.\nNo shaping and no font fallback.\nThe theme catalog of a Text.\nThe item class of this Catalog.\nWraps at the glyph level.\nThe height of a line of text in a paragraph.\nNo wrapping.\nA factor of the size of the text.\nThe shaping strategy of some text.\nThe internal state of a Text widget.\nThe appearance of some text.\nA styling function for a Text.\nA bunch of text.\nWraps at the word level.\nWraps at the word level, or fallback to glyph level if a …\nThe wrapping strategy of some text.\nText with the default base color.\nThe Color of the text.\nText conveying some negative information, like an error.\nThe default text styling; color is inherited.\nThe default class produced by this Catalog.\nDraws text using the same logic as the Text widget.\nProduces the layout::Node of a Text widget.\nText conveying some important information, like an action.\nText conveying some secondary information, like a footnote.\nThe Style of a class with the given status.\nText conveying some positive information, like a …\nNo meaningful internal state.\nSome meaningful internal state.\nThe internal State of a widget.\nThe identifier of some widget state.\nA persistent state widget tree.\nThe children of the root widget of the Tree.\nReconciles the current_children with the provided list of …\nDowncasts the State to T and returns a mutable reference …\nDowncasts the State to T and returns a reference to it.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCreates a new State.\nCreates a Tag for a state of type T.\nThe State of the Tree.\nCreates a Tag for a stateless widget.\nThe tag of the Tree.\nAlignment on the axis of a container.\nAlign bottom\nAlign at the center of the axis.\nHorizontally centered\nVertically centered\nAlign at the end of the axis.\nThe horizontal Alignment of some resource.\nAlign left\nAlign right\nAlign at the start of the axis.\nAlign top\nThe vertical Alignment of some resource.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nThe animation of some particular state.\nDefines a float representation for arbitrary types\nA type implementing Interpolable can be used with …\nReturns the argument unchanged.\nCalls U::from(self).\nThe underlying definition and configuration of an iced …\nThe title logic of some Application.\nThe update logic of some Application.\nThe view logic of some Application.\nSets the Settings::antialiasing of the Application.\nCreates an iced Application given its title, update, and …\nSets the window::Settings::position to …\nSets the window::Settings::decorations of the Application.\nSets the default Font of the Application.\nSets the executor of the Application.\nSets the window::Settings::exit_on_close_request of the …\nAdds a font to the list of fonts that will be loaded at …\nReturns the argument unchanged.\nCalls U::from(self).\nSets the window::Settings::level of the Application.\nSets the window::Settings::position of the Application.\nSets the window::Settings::resizable of the Application.\nRuns the Application.\nRuns the Application with a closure that creates the …\nSets the scale factor of the Application.\nSets the Settings that will be used to run the Application.\nSets the style logic of the Application.\nSets the subscription logic of the Application.\nSets the theme logic of the Application.\nProduces the title of the Application.\nSets the window::Settings::transparent of the Application.\nProcesses the message and updates the state of the …\nProduces the widget of the Application.\nSets the window::Settings of the Application.\nSets the window::Settings::size of the Application.\nA border.\nThe border radii for the corners of a graphics primitive …\nCreates a new Radius with the given value as bottom left …\nSets the bottom left and bottom right values of the Radius.\nCreates a new Radius with the given bottom left value.\nSets the bottom left value of the Radius.\nBottom left radius\nCreates a new Radius with the given bottom right value.\nSets the bottom right value of the Radius.\nBottom right radius\nCreates a new Border with the given Color.\nThe color of the border.\nReturns the argument unchanged.\nCalls U::from(self).\nCreates a new Radius with the given value as top left and …\nSets the top left and bottom left values of the Radius.\nCreates a new Radius with the same value for each corner.\nCreates a new Radius with the same value for each corner.\nThe Radius of the border.\nCreates a new Radius with the given value as top right and …\nSets the top right and bottom right values of the Radius.\nCreates a new Border with the given Radius.\nCreates a new Radius with the given value as top left and …\nSets the top left and top right values of the Radius.\nCreates a new Radius with the given top left value.\nSets the top left value of the Radius.\nTop left radius\nCreates a new Radius with the given top right value.\nSets the top right value of the Radius.\nTop right radius\nCreates a new Border with the given width.\nThe width of the border.\nRead the current contents of the clipboard.\nRead the current contents of the primary clipboard.\nWrite the given contents to the clipboard.\nWrite the given contents to the primary clipboard.\nThe underlying definition and configuration of an iced …\nThe title logic of some Daemon.\nThe view logic of some Daemon.\nSets the Settings::antialiasing of the Daemon.\nCreates an iced Daemon given its title, update, and view …\nSets the default Font of the Daemon.\nSets the executor of the Daemon.\nAdds a font to the list of fonts that will be loaded at …\nReturns the argument unchanged.\nCalls U::from(self).\nRuns the Daemon.\nRuns the Daemon with a closure that creates the initial …\nSets the scale factor of the Daemon.\nSets the Settings that will be used to run the Daemon.\nSets the style logic of the Daemon.\nSets the subscription logic of the Daemon.\nSets the theme logic of the Daemon.\nProduces the title of the Daemon.\nProduces the widget of the Daemon.\nThe Event was handled and processed by a widget.\nA user interface event.\nThe Event was NOT handled by any widget.\nAn input method event\nA keyboard event\nA mouse event\nThe status of an Event after being processed.\nA touch event\nA window event\nReturns the argument unchanged.\nCalls U::from(self).\nReturns a Subscription to all the ignored runtime events.\nCreates a Subscription that produces a message for every …\nCreates a Subscription that notifies of custom application …\nCreates a Subscription that listens and filters all the …\nMerges two Status into one.\nA default cross-platform executor.\nA type that can run futures.\nRuns the given closure inside the Executor.\nCreates a new Executor.\nSpawns a future in the Executor.\nGlyphs in cursive fonts generally use a more informal …\nAn error while loading a font.\nA font family.\nFantasy fonts are primarily decorative or expressive fonts …\nA font.\nThe sole criterion of a monospace font is that all glyphs …\nThe name of a font family of choice.\nGlyphs in sans-serif fonts, as the term is used in CSS, …\nSerif fonts represent the formal text style for a script.\nThe width of some text.\nThe style of some text.\nThe weight of some text.\nThe Family of the Font.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nLoad a font from its bytes.\nThe Stretch of the Font.\nThe Style of the Font.\nThe Weight of the Font.\nA point along the gradient vector where the specified color…\nA fill which transitions colors progressively along a …\nA linear gradient.\nA linear gradient interpolates colors along a direction at …\nAdds a new ColorStop, defined by an offset and a color, to …\nAdds multiple ColorStops to the gradient.\nHow the Gradient is angled within its bounds.\nThe color of the gradient at the specified offset.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCreates a new Linear gradient with the given angle in …\nOffset along the gradient vector.\nScales the alpha channel of the Linear gradient by the …\nColorStops along the linear gradient path.\nThe “alt” key.\nThe “command” key.\nThe “control” key.\nA key string that corresponds to the character typed by …\nA keyboard event.\nA key on the keyboard.\nA keyboard key was pressed.\nA keyboard key was released.\nThe “windows” key on Windows, “command” key on …\nThe left side of the keyboard.\nThe location of a key on the keyboard.\nThe current state of the keyboard modifiers.\nThe keyboard modifiers have changed.\nA key with an established name.\nThe numpad of the keyboard.\nThe right side of the keyboard.\nThe “shift” key.\nThe standard group of keys on the keyboard.\nAn unidentified key.\nGet a flags value with all known bits set.\nReturns true if the ALT key is pressed in the Modifiers.\nConvert Key::Character(SmolStr) to Key::Character(&str) so …\nThe bitwise and (&) of the bits in two flags values.\nThe bitwise and (&) of the bits in two flags values.\nThe bitwise or (|) of the bits in two flags values.\nThe bitwise or (|) of the bits in two flags values.\nGet the underlying bits value.\nThe bitwise exclusive-or (^) of the bits in two flags …\nThe bitwise exclusive-or (^) of the bits in two flags …\nReturns true if a “command key” is pressed in the …\nThe bitwise negation (!) of the bits in a flags value, …\nWhether all set bits in a source flags value are also set …\nReturns true if the CTRL key is pressed in the Modifiers.\nThe intersection of a source flags value with the …\nGet a flags value with all bits unset.\nThe bitwise or (|) of the bits in each flags value.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nConvert from a bits value.\nConvert from a bits value exactly.\nConvert from a bits value, unsetting any unknown bits.\nThe bitwise or (|) of the bits in each flags value.\nGet a flags value with the bits of a flag with the given …\nThe bitwise or (|) of the bits in two flags values.\nThe bitwise and (&) of the bits in two flags values.\nWhether any set bits in a source flags value are also set …\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nWhether all known bits in this flags value are set.\nWhether all bits in this flags value are unset.\nYield a set of contained flags values.\nYield a set of contained named flags values.\nReturns true if the “jump key” is pressed in the …\nIdentify keyboard keys.\nReturns true if the LOGO key is pressed in the Modifiers.\nReturns true if the “command key” is pressed on a …\nThe bitwise negation (!) of the bits in a flags value, …\nListens to keyboard key presses and calls the given …\nListens to keyboard key releases and calls the given …\nThe intersection of a source flags value with the …\nCall insert when value is true or remove when value is …\nReturns true if the SHIFT key is pressed in the Modifiers.\nThe intersection of a source flags value with the …\nThe intersection of a source flags value with the …\nThe bitwise exclusive-or (^) of the bits in two flags …\nThe bitwise exclusive-or (^) of the bits in two flags …\nThe bitwise or (|) of the bits in two flags values.\nThe key pressed.\nThe key released.\nThe location of the key.\nThe location of the key.\nThe key pressed with all keyboard modifiers applied, …\nThe key released with all keyboard modifiers applied, …\nThe state of the modifier keys.\nThe state of the modifier keys.\nThe physical key pressed.\nThe physical key released.\nThe text produced by the key press, if any.\nSwitch the input mode on an external AVR (audio/video …\nToggle the power on an external AVR (audio/video …\nThe Accept (Commit, OK) key. Accept current option or …\nRedo or repeat an action.\nFound on Sun’s USB keyboard.\nInitiate the multi-candidate mode.\nThe Alt (Alternative) key.\nThe Alternate Graphics (AltGr or AltGraph) key.\nAlt, Option, or ⌥.\nAlt, Option, or ⌥. This is labeled AltGr on many …\nAn Android “scancode”.\nThe Application switch key, which provides a list of …\nNavigate or traverse downward. (KEYCODE_DPAD_DOWN)\n↓\nNavigate or traverse leftward. (KEYCODE_DPAD_LEFT)\n←\nNavigate or traverse rightward. (KEYCODE_DPAD_RIGHT)\n→\nNavigate or traverse upward. (KEYCODE_DPAD_UP)\n↑\nThe Attention (Attn) key.\nAdjust audio balance leftward. (VK_AUDIO_BALANCE_LEFT)\nAdjust audio balance rightward. (VK_AUDIO_BALANCE_RIGHT)\nDecrease audio bass boost or cycle down through bass boost …\nToggle bass boost on/off. (APPCOMMAND_BASS_BOOST)\nIncrease audio bass boost or cycle up through bass boost …\nAdjust audio fader towards front. (VK_FADER_FRONT)\nAdjust audio fader towards rear. (VK_FADER_REAR)\nAdvance surround audio mode to next available mode. (…\nDecrease treble. (APPCOMMAND_TREBLE_DOWN)\nIncrease treble. (APPCOMMAND_TREBLE_UP)\nDecrease audio volume. (APPCOMMAND_VOLUME_DOWN, …\nToggle between muted state and prior volume level. (…\nIncrease audio volume. (APPCOMMAND_VOLUME_UP, …\n` on a US keyboard. This is also called a backtick or …\nUsed for both the US \\ (on the 101-key layout) and also …\nUsed to remove the character to the left of the cursor. …\nBackspace or ⌫. Labeled Delete on Apple keyboards.\n[ on a US keyboard.\n] on a US keyboard.\nThe Brightness Down key. Typically controls the display …\nThe Brightness Up key. Typically controls the display …\nNavigate to previous content or page in current history. (…\nSome laptops place this key to the left of the ↑ key.\nOpen the list of browser favorites. (…\nNavigate to next content or page in current history. (…\nSome laptops place this key to the right of the ↑ key.\nGo to the user’s preferred home page. (…\nThe “home” button on Android.\nRefresh the current page or content. (…\nCall up the user’s preferred search page. (…\nStop loading the current page or content. (…\nThe Call key. (KEYCODE_CALL)\nThe Camera key. (KEYCODE_CAMERA)\nThe Camera focus key. (KEYCODE_FOCUS)\nThe Caps Lock (Capital) key.\nCapsLock or ⇪\nSelect next (numerically or logically) lower channel. (…\nSelect next (numerically or logically) higher channel. (…\nA key string that corresponds to the character typed by …\nRemove the currently selected input.\nClose the current document or message (Note: This …\nToggle the display of Closed Captions. (VK_CC, …\nCode representing the location of a physical key.\nA known key code\nInitiate the Code Input mode to allow characters to be …\nGeneral purpose color-coded media function key, as index 0 …\nGeneral purpose color-coded media function key, as index 1 …\nGeneral purpose color-coded media function key, as index 2 …\nGeneral purpose color-coded media function key, as index 3 …\nGeneral purpose color-coded media function key, as index 4 …\nGeneral purpose color-coded media function key, as index 5 …\n, on a US keyboard.\nThe Compose key, also known as “Multi_key” on the X …\nShow the application’s context menu. This key is …\nThe application context menu key, which is typically found …\nThe Control or Ctrl key.\nControl or ⌃\nControl or ⌃\nConvert the current input method sequence.\nJapanese: 変 (henkan)\nCopy the current selection. (APPCOMMAND_COPY)\nFound on Sun’s USB keyboard.\nThe Cursor Select key.\nCut the current selection. (APPCOMMAND_CUT)\nFound on Sun’s USB keyboard.\nSelect Digital Video Rrecorder. (KEYCODE_DVR)\nUsed to delete the character to the right of the cursor. …\n⌦. The forward delete key. Note that on Apple keyboards, …\n0 on a US keyboard.\n1 on a US keyboard.\n2 on a US keyboard.\n3 on a US keyboard.\n4 on a US keyboard.\n5 on a US keyboard.\n6 on a US keyboard.\n7 on a US keyboard.\n8 on a US keyboard.\n9 on a US keyboard.\nAdjust brightness of device, by toggling between or …\nSwap video sources. (VK_DISPLAY_SWAP)\nThe Eisu key. This key may close the IME, but its purpose …\nToggle removable media to eject (open) and insert (close) …\nEject or ⏏. This key is placed in the function section …\nThe End key, used with keyboard entry to go to the end of …\nPage Down, End, or ↘\nThe End Call key. (KEYCODE_ENDCALL)\nThe Enter or key. Used to activate current selection …\nEnter or ↵. Labeled Return on Apple keyboards.\n= on a US keyboard.\nThe Erase to End of Field key. This key deletes all …\nThe Esc key. This key was originally used to initiate an …\nEsc or ⎋\nThe Extend Selection (Exsel) key.\nExit the current application. (VK_EXIT)\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nClear program or content stored as favorite 0. (…\nClear program or content stored as favorite 1. (…\nClear program or content stored as favorite 2. (…\nClear program or content stored as favorite 3. (…\nSelect (recall) program or content stored as favorite 0. (…\nSelect (recall) program or content stored as favorite 1. (…\nSelect (recall) program or content stored as favorite 2. (…\nSelect (recall) program or content stored as favorite 3. (…\nStore current program or content as favorite 0. (…\nStore current program or content as favorite 1. (…\nStore current program or content as favorite 2. (…\nStore current program or content as favorite 3. (…\nThe Final Mode Final key used on some Asian keyboards, to …\nOpen the Find dialog. (APPCOMMAND_FIND)\nFound on Sun’s USB keyboard.\nThe Function switch Fn key. Activating this key …\nFn This is typically a hardware key that does not generate …\nThe Function-Lock (FnLock or F-Lock) key. Activating this …\nFLock or FnLock. Function Lock key. Found on the Microsoft …\nThe Back key. (KEYCODE_BACK)\nThe Home key, which goes to the phone’s main screen. (…\nSwitch to the first character group. (ISO/IEC 9995)\nSwitch to the last character group. (ISO/IEC 9995)\nSwitch to the next character group. (ISO/IEC 9995)\nSwitch to the previous character group. (ISO/IEC 9995)\nToggle display of program or content guide. (VK_GUIDE, …\nIf guide is active and displayed, then display next …\nIf guide is active and displayed, then display previous …\nToggle between Hangul and English modes.\nThe (Half-Width) Characters key.\nThe Headset Hook key. (KEYCODE_HEADSETHOOK)\nOpen a help dialog or toggle display of help information. (…\nHelp. Not present on standard PC keyboards.\nThe Hibernate key. This key saves the current state of the …\nThe Hiragana (Japanese Kana characters) key.\nUse for dedicated ひらがな key found on some Japanese …\nThe Hiragana/Katakana toggle key. (…\nThe Home key, used with keyboard entry, to go to start of …\nHome or ↖\nToggle display of information about currently selected …\nToggle between text modes for insertion or overtyping. (…\nInsert or Ins. Not present on Apple keyboards.\nToggle instant replay. (VK_INSTANT_REPLAY)\nLocated between the left Shift and Z keys. Labeled \\ on a …\nLocated between the / and right Shift keys. Labeled \\ (ro) …\nLocated between the = and Backspace keys. Labeled ¥ (yen) …\nThe Kana Mode (Kana Lock) key. This key is used to enter …\nJapanese: カタカナ/ひらがな/ローマ字 …\nThe Kanji (Japanese name for ideographic characters of …\nThe Katakana (Japanese Kana characters) key.\nUse for dedicated カタカナ key found on some Japanese …\nA key on the keyboard.\nThe 11 key found on media numpads that have buttons from 1 …\nThe 12 key found on media numpads that have buttons from 1 …\na on a US keyboard. Labeled q on an AZERTY (e.g., French) …\nb on a US keyboard.\nc on a US keyboard.\nd on a US keyboard.\ne on a US keyboard.\nf on a US keyboard.\ng on a US keyboard.\nh on a US keyboard.\ni on a US keyboard.\nj on a US keyboard.\nk on a US keyboard.\nl on a US keyboard.\nm on a US keyboard.\nn on a US keyboard.\no on a US keyboard.\np on a US keyboard.\nq on a US keyboard. Labeled a on an AZERTY (e.g., French) …\nr on a US keyboard.\ns on a US keyboard.\nt on a US keyboard.\nu on a US keyboard.\nv on a US keyboard.\nw on a US keyboard. Labeled z on an AZERTY (e.g., French) …\nx on a US keyboard.\ny on a US keyboard. Labeled z on a QWERTZ (e.g., German) …\nz on a US keyboard. Labeled w on an AZERTY (e.g., French) …\nKorean: HangulMode 한/영 (han/yeong)\nKorean: Hanja 한 (hanja)\nJapanese (word-processing keyboard): Katakana\nJapanese (word-processing keyboard): Hiragana\nJapanese (word-processing keyboard): Zenkaku/Hankaku\nSometimes labelled My Computer on the keyboard\nSometimes labelled Calculator on the keyboard\nThe first generic “LaunchApplication” key. This is …\nThe second generic “LaunchApplication” key. This is …\nThe “Calendar” key. (KEYCODE_CALENDAR)\nThe “Contacts” key. (KEYCODE_CONTACTS)\nThe “Mail” key. (APPCOMMAND_LAUNCH_MAIL)\nThe “Media Player” key. (APPCOMMAND_LAUNCH_MEDIA_SELECT…\nLaunch linked content, if available and appropriate. (…\nList the current program. (VK_LIST)\nToggle display listing of currently available live content …\nLock or unlock current content or program. (VK_LOCK)\nA macOS “scancode”.\nOpen an editor to forward the current message. (…\nOpen an editor to reply to the current message. (…\nSend the current message. (APPCOMMAND_SEND_MAIL)\nToggle between manner mode state: silent, vibrate, ring, …\nShow a list of media applications: audio/video players and …\nAudio track key. (KEYCODE_MEDIA_AUDIO_TRACK)\nClose the current media, for example to close a CD or DVD …\nInitiate or continue forward playback at faster than …\nSelect previously selected channel or media. (VK_LAST, …\nPause the currently playing media. (APPCOMMAND_MEDIA_PAUSE…\nInitiate or continue media playback at normal speed, if …\nToggle media between play and pause states. (…\nInitiate or resume recording of currently selected media. (…\nInitiate or continue reverse playback at faster than …\nSkip backward to next content or program. (…\nSkip forward to next content or program. (VK_SKIP, …\nStep backward to next content or program. (…\nStep forward to next content or program. (…\nStop media playing, pausing, forwarding, rewinding, or …\nMedia top menu. (KEYCODE_MEDIA_TOP_MENU)\nSeek to next media or program track. (…\nSeek to previous media or program track. (…\nToggle the microphone on/off. (APPCOMMAND_MIC_ON_OFF_TOGGLE…\nDecrease microphone volume. (…\nMute the microphone. (APPCOMMAND_MICROPHONE_VOLUME_MUTE, …\nIncrease microphone volume. (…\n- on a US keyboard.\nToggle between or cycle through input modes of IMEs.\nA named key.\nA key with an established name.\nContains the platform-native physical key identifier.\nNavigate in. (KEYCODE_NAVIGATE_IN)\nNavigate to next key. (KEYCODE_NAVIGATE_NEXT)\nNavigate out. (KEYCODE_NAVIGATE_OUT)\nNavigate to previous key. (KEYCODE_NAVIGATE_PREVIOUS)\nOpen a new document or message. (APPCOMMAND_NEW)\nCycle to next favorite channel (in favorites list). (…\nCycle to next user profile (if there are multiple user …\nAccept current input method sequence without conversion in …\nJapanese: 無変換 (muhenkan)\nThe Notification key. (KEYCODE_NOTIFICATION)\nThe NumLock or Number Lock key. Used to toggle numpad mode …\nOn the Mac, this is used for the numpad Clear key.\n0 Ins on a keyboard. 0 on a phone or remote control\n1 End on a keyboard. 1 or 1 QZ on a phone or remote control\n2 ↓ on a keyboard. 2 ABC on a phone or remote control\n3 PgDn on a keyboard. 3 DEF on a phone or remote control\n4 ← on a keyboard. 4 GHI on a phone or remote control\n5 on a keyboard. 5 JKL on a phone or remote control\n6 → on a keyboard. 6 MNO on a phone or remote control\n7 Home on a keyboard. 7 PQRS or 7 PRS on a phone or remote …\n8 ↑ on a keyboard. 8 TUV on a phone or remote control\n9 PgUp on a keyboard. 9 WXYZ or 9 WXY on a phone or remote …\n+\nFound on the Microsoft Natural Keyboard.\nC or A (All Clear). Also for use with numpads that have a …\nC (Clear Entry)\n, (thousands separator). For locales where the thousands …\n. Del. For locales where the decimal separator is “,” …\n/\n=\n# on a phone or remote control device. This key is …\nM Add current entry to the value stored in memory.\nM Clear the value stored in memory.\nM Replace the current entry with the value stored in …\nM Replace the value stored in memory with the current …\nM Subtract current entry from the value stored in memory.\n on a keyboard. For use with numpads that provide …\n( Found on the Microsoft Natural Keyboard.\n) Found on the Microsoft Natural Keyboard.\n* on a phone or remote control device.\n-\nAccess on-demand content or programs. (VK_ON_DEMAND)\nOpen an existing document or message. (APPCOMMAND_OPEN)\nFound on Sun’s USB keyboard.\nScroll down or display next page of content.\nPage Down, PgDn, or ⇟\nScroll up or display previous page of content.\nPage Up, PgUp, or ⇞\nPairing key to pair devices. (KEYCODE_PAIRING)\nThe Paste key. (APPCOMMAND_PASTE)\nFound on Sun’s USB keyboard.\nPause the current state or application (as appropriate).\nPause Break\n. on a US keyboard.\nRepresents the location of a physical key.\nMove picture-in-picture window down. (VK_PINP_DOWN)\nMove picture-in-picture window. (VK_PINP_MOVE)\nToggle display of picture-in-picture window. (…\nMove picture-in-picture window up. (VK_PINP_UP)\nPlay or resume the current state or application (as …\nDecrease media playback speed. (VK_PLAY_SPEED_DOWN)\nReset playback to normal speed. (VK_PLAY_SPEED_RESET)\nIncrease media playback speed. (VK_PLAY_SPEED_UP)\nToggle power state. (KEYCODE_POWER) Note: Note: Some …\nThis key is placed in the function section on some Apple …\nThe PowerOff key. Sometime called PowerDown.\nPrint the current document or message. (APPCOMMAND_PRINT)\nInitiate print-screen function.\nPrtScr SysRq or Print Screen\nThe properties (Props) key.\nFound on Sun’s USB keyboard.\n’ on a US keyboard.\nToggle random media or content shuffle mode. (…\nNot a physical key, but this key code is sent when the …\nToggle or cycle between media recording speeds. (…\nRedo the last action. (APPCOMMAND_REDO)\nToggle RF (radio frequency) input bypass mode (pass RF …\nThe Roman characters function key.\nSwitch the input mode on an external STB (set top box). (…\nToggle the power on an external STB (set top box). (…\nSave the current document or message. (APPCOMMAND_SAVE)\nToggle scan channels mode. (VK_SCAN_CHANNELS_TOGGLE)\nAdvance display screen mode to next available mode. (…\nToggle between scrolling and cursor movement modes.\nScroll Lock\nFound on Sun’s USB keyboard.\n; on a US keyboard.\nToggle display of device settings screen. (VK_SETTINGS, …\nUsed to enable shift modifier function for interpreting …\nShift or ⇧\nShift or ⇧\n/ on a US keyboard.\nGeneral purpose virtual function key, as index 1.\nGeneral purpose virtual function key, as index 2.\nGeneral purpose virtual function key, as index 3.\nGeneral purpose virtual function key, as index 4.\nUsed in text to insert a space between words. Usually …\n (space)\nShow correction list when a word is incorrectly …\nToggle between dictation mode and command/control mode. (…\nSpellcheck the current document or selection. (…\nToggle split screen mode. (VK_SPLIT_SCREEN_TOGGLE)\nThe Standby key. This key turns off the display and places …\nToggle display of subtitles, if available. (VK_SUBTITLE)\nUsed to enable “super” modifier function for …\nThe Windows, ⌘, Command, or other OS symbol key.\nThe Windows, ⌘, Command, or other OS symbol key.\nThe Symbol modifier key (used on some virtual keyboards).\nSwitch to viewing TV. (KEYCODE_TV)\nTV 3D Mode. (KEYCODE_3D_MODE)\nToggle between antenna and cable input. (…\nAudio description. (KEYCODE_TV_AUDIO_DESCRIPTION)\nAudio description mixing volume down. (…\nAudio description mixing volume up. (…\nContents menu. (KEYCODE_TV_CONTENTS_MENU)\nContents menu. (KEYCODE_TV_DATA_SERVICE)\nSwitch the input mode on an external TV. (KEYCODE_TV_INPUT)\nSwitch to component input #1. (KEYCODE_TV_INPUT_COMPONENT_1…\nSwitch to component input #2. (KEYCODE_TV_INPUT_COMPONENT_2…\nSwitch to composite input #1. (KEYCODE_TV_INPUT_COMPOSITE_1…\nSwitch to composite input #2. (KEYCODE_TV_INPUT_COMPOSITE_2…\nSwitch to HDMI input #1. (KEYCODE_TV_INPUT_HDMI_1)\nSwitch to HDMI input #2. (KEYCODE_TV_INPUT_HDMI_2)\nSwitch to HDMI input #3. (KEYCODE_TV_INPUT_HDMI_3)\nSwitch to HDMI input #4. (KEYCODE_TV_INPUT_HDMI_4)\nSwitch to VGA input #1. (KEYCODE_TV_INPUT_VGA_1)\nMedia context menu. (KEYCODE_TV_MEDIA_CONTEXT_MENU)\nToggle network. (KEYCODE_TV_NETWORK)\nNumber entry. (KEYCODE_TV_NUMBER_ENTRY)\nToggle the power on an external TV. (KEYCODE_TV_POWER)\nRadio. (KEYCODE_TV_RADIO_SERVICE)\nSatellite. (KEYCODE_TV_SATELLITE)\nBroadcast Satellite. (KEYCODE_TV_SATELLITE_BS)\nCommunication Satellite. (KEYCODE_TV_SATELLITE_CS)\nToggle between available satellites. (…\nAnalog Terrestrial. (KEYCODE_TV_TERRESTRIAL_ANALOG)\nDigital Terrestrial. (KEYCODE_TV_TERRESTRIAL_DIGITAL)\nTimer programming. (KEYCODE_TV_TIMER_PROGRAMMING)\nThe Horizontal Tabulation Tab key.\nTab or ⇥\nToggle display of teletext, if available (VK_TELETEXT, …\nUndo the last action. (APPCOMMAND_UNDO)\nFound on Sun’s USB keyboard.\nAn unidentified key.\nAn unidentified code.\nThis variant is used when the key cannot be translated to …\nAdvance video mode to next available mode. (…\nThe WakeUp key. (KEYCODE_WAKEUP)\nA Windows “scancode”.\nCause device to identify itself in some manner, e.g., …\nAn XKB “keycode”.\nThe Zenkaku (Full-Width) Characters key.\nThe Zenkaku/Hankaku (full-width/half-width) toggle key. (…\nThe ZoomIn key. (KEYCODE_ZOOM_IN)\nThe ZoomOut key. (KEYCODE_ZOOM_OUT)\nToggle between full-screen and scaled content, or alter …\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nThe cursor has a defined position.\nThe back mouse button.\nThe button of a mouse.\nA mouse button was pressed.\nA mouse button was released.\nThe mouse cursor state.\nThe mouse cursor entered the window.\nThe mouse cursor left the window.\nThe mouse cursor was moved\nA mouse event.\nThe forward mouse button.\nThe interaction of a mouse cursor.\nThe left mouse button.\nThe cursor has a defined position, but it’s levitating …\nA line-based scroll movement\nThe middle (wheel) button.\nSome other button.\nA pixel-based scroll movement\nThe right mouse button.\nA scroll movement.\nThe cursor is currently unavailable (i.e. out of bounds or …\nThe mouse wheel was scrolled.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns true if the Cursor is levitating over a layer …\nReturns true if the Cursor is over the given bounds.\nBrings the Cursor back to the current layer.\nMakes the Cursor levitate over a layer above.\nReturns the absolute position of the Cursor, if available.\nReturns the relative position of the Cursor from the given …\nReturns the relative position of the Cursor inside the …\nReturns the absolute position of the Cursor, if available …\nThe scroll movement.\nThe new position of the mouse cursor\nThe number of horizontal lines scrolled\nThe number of horizontal pixels scrolled\nThe number of vertical lines scrolled\nThe number of vertical pixels scrolled\nA generic overlay.\nBuild and show dropdown menus.\nThe theme catalog of a Menu.\nThe item class of the Catalog.\nA list of selectable options.\nThe local state of a Menu.\nThe appearance of a Menu.\nA styling function for a Menu.\nThe Background of the menu.\nThe Border of the menu.\nThe default style of the list of a Menu.\nThe default class produced by the Catalog.\nThe default class for the scrollable of the Menu.\nThe default class for the scrollable of the Menu.\nSets the font of the Menu.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCreates a new Menu with the given State, a list of options,\nCreates a new State for a Menu.\nTurns the Menu into an overlay Element at the given target …\nSets the Padding of the Menu.\nThe background Color of a selected option in the menu.\nThe text Color of a selected option in the menu.\nThe Style of a class with the given status.\nThe text Color of the menu.\nSets the text text::LineHeight of the Menu.\nSets the text::Shaping strategy of the Menu.\nSets the text size of the Menu.\nSets the width of the Menu.\nAn amount of space to pad for each side of a box\nCreate a Padding that is equal on all sides.\nCreate some bottom Padding.\nBottom padding\nCreate some left Padding.\nLeft padding\nCreate some right Padding.\nRight padding\nCreate some top Padding.\nTop padding\nCreates a new Stream that produces the items sent from a …\nCreates a new Stream that produces the items sent from a …\nContains information about the system (e.g. system name, …\nDetailed processor model information\nThe number of physical cores on the processor\nQuery for available system information.\nReturns the argument unchanged.\nModel information for the active graphics adapter\nUnderlying graphics backend for rendering\nCalls U::from(self).\nTotal RAM size, in bytes\nMemory used by this process, in bytes\nOperating system kernel version\nThe operating system name\nShort operating system version number\nLong operating system version\nA handle to a Task that can be used for aborting it.\nA set of concurrent actions to be performed by the iced …\nAborts the Task of this Handle.\nReturns a new Handle that will call Handle::abort whenever …\nReturns the argument unchanged.\nCalls U::from(self).\nReturns true if the Task of this Handle has been aborted.\nThe default blank style of a Theme.\nThe built-in Catppuccin Frappé variant of a Palette.\nThe built-in Catppuccin Latte variant of a Palette.\nThe built-in Catppuccin Macchiato variant of a Palette.\nThe built-in Catppuccin Mocha variant of a Palette.\nThe built-in Catppuccin Frappé variant.\nThe built-in Catppuccin Latte variant.\nThe built-in Catppuccin Macchiato variant.\nThe built-in Catppuccin Mocha variant.\nA Theme with a customized Palette.\nA Theme that uses a Custom palette.\nThe built-in dark variant of a Palette.\nThe built-in Dracula variant of a Palette.\nThe built-in dark variant.\nThe built-in Dracula variant.\nThe built-in Ferra variant of a Palette.\nThe built-in Ferra variant:\nThe built-in Gruvbox Dark variant of a Palette.\nThe built-in Gruvbox Light variant of a Palette.\nThe built-in Gruvbox Dark variant.\nThe built-in Gruvbox Light variant.\nThe built-in Kanagawa Dragon variant of a Palette.\nThe built-in Kanagawa Lotus variant of a Palette.\nThe built-in Kanagawa Wave variant of a Palette.\nThe built-in Kanagawa Dragon variant.\nThe built-in Kanagawa Lotus variant.\nThe built-in Kanagawa Wave variant.\nThe built-in light variant of a Palette.\nThe built-in light variant.\nThe built-in Moonfly variant of a Palette.\nThe built-in Moonfly variant.\nThe built-in Nightfly variant of a Palette.\nThe built-in Nord variant of a Palette.\nThe built-in Nightfly variant.\nThe built-in Nord variant.\nThe built-in Oxocarbon variant of a Palette.\nThe built-in Oxocarbon variant.\nA color palette.\nThe built-in Solarized Dark variant of a Palette.\nThe built-in Solarized Light variant of a Palette.\nThe built-in Solarized Dark variant.\nThe built-in Solarized Light variant.\nThe base style of a Theme.\nThe built-in Tokyo Night variant of a Palette.\nThe built-in Tokyo Night Light variant of a Palette.\nThe built-in Tokyo Night Storm variant of a Palette.\nA built-in theme.\nThe built-in Tokyo Night variant.\nThe built-in Tokyo Night Light variant.\nThe built-in Tokyo Night Storm variant.\nThe background Color of the Palette.\nThe background Color of the application.\nReturns the default base Style of a Theme.\nThe danger Color of the Palette.\nThe default Style of a built-in Theme.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCreates a Custom theme from the given Palette.\nDefine the colors of a theme.\nThe primary Color of the Palette.\nThe success Color of the Palette.\nThe text Color of the Palette.\nThe default text Color of the application.\nThe warning Color of the Palette.\nCreates a Custom theme from the given Palette with a …\nA set of background colors.\nA set of danger colors.\nThe built-in Catppuccin Frappé variant of an Extended …\nThe built-in Catppuccin Latte variant of an Extended …\nThe built-in Catppuccin Macchiato variant of an Extended …\nThe built-in Catppuccin Mocha variant of an Extended …\nThe built-in dark variant of an Extended palette.\nThe built-in Dracula variant of an Extended palette.\nThe built-in Ferra variant of an Extended palette.\nThe built-in Gruvbox Dark variant of an Extended palette.\nThe built-in Gruvbox Light variant of an Extended palette.\nThe built-in Kanagawa Dragon variant of an Extended …\nThe built-in Kanagawa Lotus variant of an Extended palette.\nThe built-in Kanagawa Wave variant of an Extended palette.\nThe built-in light variant of an Extended palette.\nThe built-in Moonfly variant of an Extended palette.\nThe built-in Nightfly variant of an Extended palette.\nThe built-in Nord variant of an Extended palette.\nThe built-in Oxocarbon variant of an Extended palette.\nThe built-in Solarized Dark variant of an Extended palette.\nThe built-in Solarized Light variant of an Extended …\nThe built-in Tokyo Night variant of an Extended palette.\nThe built-in Tokyo Night variant of an Extended palette.\nThe built-in Tokyo Night Storm variant of an Extended …\nAn extended set of colors generated from a Palette.\nA pair of background and text colors.\nA color palette.\nA set of primary colors.\nA set of secondary colors.\nA set of success colors.\nA set of warning colors.\nThe background Color of the Palette.\nThe set of background colors.\nThe base background color.\nThe base primary color.\nThe base secondary color.\nThe base success color.\nThe base warning color.\nThe base danger color.\nThe background color.\nThe danger Color of the Palette.\nThe set of danger colors.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nGenerates an Extended palette from a simple Palette.\nGenerates a set of Primary colors from the base, …\nGenerates a set of Secondary colors from the base and text …\nGenerates a set of Success colors from the base, …\nGenerates a set of Warning colors from the base, …\nGenerates a set of Danger colors from the base, …\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nWhether the palette is dark or not.\nCreates a new Pair from a background Color and some text …\nGenerates a set of Background colors from the base and …\nThe primary Color of the Palette.\nThe set of primary colors.\nThe set of secondary colors.\nA stronger version of the base background color.\nA stronger version of the base primary color.\nA stronger version of the base secondary color.\nA stronger version of the base success color.\nA stronger version of the base warning color.\nA stronger version of the base danger color.\nThe success Color of the Palette.\nThe set of success colors.\nThe text Color of the Palette.\nThe text color.\nThe warning Color of the Palette.\nThe set of warning colors.\nA weaker version of the base background color.\nA weaker version of the base primary color.\nA weaker version of the base secondary color.\nA weaker version of the base success color.\nA weaker version of the base warning color.\nA weaker version of the base danger color.\nA Duration type to represent a span of time, typically …\nA measurement of a monotonically nondecreasing clock. …\nThe maximum duration.\nThe duration of one microsecond.\nThe duration of one millisecond.\nThe duration of one nanosecond.\nThe duration of one second.\nA duration of zero time.\nComputes the absolute difference between self and other.\nPanics\nPanics\nReturns the total number of whole microseconds contained …\nReturns the total number of whole milliseconds contained …\nReturns the number of milliseconds contained by this …\nReturns the number of milliseconds contained by this …\nReturns the total number of nanoseconds contained by this …\nReturns the number of whole seconds contained by this …\nReturns the number of seconds contained by this Duration …\nReturns the number of seconds contained by this Duration …\nReturns Some(t) where t is the time self + duration if t …\nChecked Duration addition. Computes self + other, …\nChecked Duration division. Computes self / other, …\nReturns the amount of time elapsed from another instant to …\nChecked Duration multiplication. Computes self * other, …\nReturns Some(t) where t is the time self - duration if t …\nChecked Duration subtraction. Computes self - other, …\nCreates a Duration representing the given amount of days.\nDivides Duration by Duration and returns f32.\nDivides Duration by Duration and returns f64.\nDivides Duration by f32.\nDivides Duration by f64.\nReturns the amount of time elapsed from another instant to …\nReturns the amount of time elapsed since this instant.\nReturns a Subscription that produces messages at a set …\nReturns the argument unchanged.\nReturns the argument unchanged.\nCreates a new Duration from the specified number of days.\nCreates a new Duration from the specified number of hours.\nCreates a new Duration from the specified number of …\nCreates a new Duration from the specified number of …\nCreates a new Duration from the specified number of …\nCreates a new Duration from the specified number of …\nCreates a new Duration from the specified number of whole …\nCreates a new Duration from the specified number of …\nCreates a new Duration from the specified number of …\nCreates a new Duration from the specified number of weeks.\nCreates a Duration representing the given amount of hours.\nCalls U::from(self).\nCalls U::from(self).\nReturns true if this Duration spans no time.\nCreates a Duration representing the given amount of …\nCreates a Duration representing the given amount of …\nMultiplies Duration by f32.\nMultiplies Duration by f64.\nCreates a new Duration from the specified number of whole …\nReturns an instant corresponding to “now”.\nReturns a Subscription that runs the given async function …\nSaturating Duration addition. Computes self + other, …\nReturns the amount of time elapsed from another instant to …\nSaturating Duration multiplication. Computes self * other, …\nSaturating Duration subtraction. Computes self - other, …\nCreates a Duration representing the given amount of …\nReturns the amount of time elapsed from another instant to …\nPanics\nPanics\nReturns the fractional part of this Duration, in whole …\nReturns the fractional part of this Duration, in whole …\nReturns the fractional part of this Duration, in …\nThe checked version of from_secs_f32.\nThe checked version of from_secs_f64.\nA touch interaction.\nA unique identifier representing a finger on a touch …\nA touch interaction was ended.\nA touch interaction was canceled.\nAn on-going touch interaction was moved.\nA touch interaction was started.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nA runtime action that can be performed by some widgets.\nA generic widget that produces a message when pressed.\nA widget capable of drawing 2D graphics.\nThe built-in Catppuccin Frappé variant.\nThe built-in Catppuccin Latte variant.\nThe built-in Catppuccin Macchiato variant.\nThe built-in Catppuccin Mocha variant.\nA box that can be checked.\nA container that distributes its contents vertically.\nA widget for searching and selecting a single value from a …\nA reusable, custom widget that uses The Elm Architecture.\nA widget that aligns its contents inside of its boundaries.\nA Theme that uses a Custom palette.\nThe default girth of a ProgressBar.\nThe default height of a Slider.\nThe default size of a Radio button.\nThe default size of a Toggler.\nThe default spacing of a Radio button.\nThe default width of a VerticalSlider.\nThe built-in dark variant.\nThe built-in Dracula variant.\nThe type of event this Component handles internally.\nThe built-in Ferra variant:\nThe built-in Gruvbox Dark variant.\nThe built-in Gruvbox Light variant.\nA frame that displays an image while keeping aspect ratio.\nThe built-in Kanagawa Dragon variant.\nThe built-in Kanagawa Lotus variant.\nThe built-in Kanagawa Wave variant.\nA widget that only rebuilds its contents when necessary.\nThe built-in light variant.\nThe built-in Moonfly variant.\nEmit messages on mouse events.\nThe built-in Nightfly variant.\nThe built-in Nord variant.\nThe built-in Oxocarbon variant.\nA collection of panes distributed using either vertical or …\nA widget for selecting a single value from a list of …\nA widget that positions its contents at some fixed …\nA widget that can generate messages when its content pops …\nThe primary rendering option.\nA bar that displays progress.\nA type of matrix barcode consisting of squares arranged in …\nA circular button representing a choice.\nThe default graphics renderer for iced.\nA widget that is aware of its dimensions.\nA container that distributes its contents horizontally.\nDisplay a horizontal or vertical rule for dividing content.\nA widget that can vertically display an infinite amount of …\nThe secondary (or fallback) rendering option.\nA widget which can render custom shaders with Iced’s wgpu…\nAn horizontal bar and a handle that selects a single value …\nThe built-in Solarized Dark variant.\nThe built-in Solarized Light variant.\nAn amount of empty space.\nA container that displays children on top of each other.\nThe internal state of this Component.\nA vector graphics image.\nA bunch of text.\nA multi-line text input.\nA field that can be filled with text.\nA built-in theme.\nA widget that applies any Theme to its contents.\nA toggler widget.\nThe built-in Tokyo Night variant.\nThe built-in Tokyo Night Light variant.\nThe built-in Tokyo Night Storm variant.\nAn element to display a widget over another.\nAn vertical bar and a handle that selects a single value …\nAligns the contents of the Container to the bottom.\nAligns the contents of the Container to the left.\nAligns the contents of the Container to the right.\nAligns the contents of the Container to the top.\nSets the horizontal alignment of the contents of the Column…\nSets the content alignment for the horizontal axis of the …\nSets the horizontal alignment of the TextInput.\nSets the vertical alignment of the contents of the Row .\nSets the content alignment for the vertical axis of the …\nAnchors the vertical Scrollable direction to the bottom.\nAnchors the horizontal Scrollable direction to the left.\nAnchors the horizontal Scrollable direction to the right.\nAnchors the vertical Scrollable direction to the top.\nSets the Anchor of the horizontal direction of the …\nSets the Anchor of the vertical direction of the Scrollable…\nMarks the Action as “capturing”. See Self::capture.\nSets the distance in Pixels to use in anticipation of the …\nSets the Background of the Themer.\nCreates a new Container that fills all the available space …\nCreates a new Container that fills all the available space …\nCreates a new Container that fills all the available space …\nButtons allow your users to perform actions by pressing …\nCreates a new Button with the provided content.\nCanvases can be leveraged to draw interactive 2D graphics.\nCreates a new Canvas.\nCreates a new “capturing” Action. A capturing Action …\nSets the size of the squares of the grid cell of the QRCode…\nCreates a new Container that fills all the available space …\nCenters the contents in both the horizontal and vertical …\nCreates a new Container that fills all the available space …\nSets the width of the Container and centers its contents …\nCreates a new Container that fills all the available space …\nSets the height of the Container and centers its contents …\nCheckboxes can be used to let users make binary choices.\nCreates a new Checkbox.\nSets the style class of the Button.\nSets the style class of the Checkbox.\nSets the style class of the Container.\nSets the style class of the PaneGrid.\nSets the style class of the PickList.\nSets the style class of the ProgressBar.\nSets the style class of the Radio button.\nSets the style class of the Rule.\nSets the style class of the Scrollable.\nSets the style class of the Slider.\nSets the style class of the TextEditor.\nSets the style class of the TextInput.\nSets the style class of the Toggler.\nSets the style class of the Tooltip.\nSets the style class of the VerticalSlider.\nSets the style class of the Svg.\nSets the style class of the QRCode.\nSets whether the contents of the Column should be clipped …\nSets whether the contents of the Row should be clipped on …\nSets whether the contents of the Button should be clipped …\nSets whether the contents of the Container should be …\nCreates a new Column with the given children.\nCreates a Column with the given children.\nCombo boxes display a dropdown list of searchable and …\nCreates a new ComboBox.\nTurns an implementor of Component into an Element that can …\nContainers let you align a widget inside their boundaries.\nCreates a new Container with the provided content.\nSets the ContentFit of the Svg.\nSets the ContentFit of the Image.\nSets the optional default value for the Slider.\nSets the optional default value for the VerticalSlider.\nSets the Direction of the Scrollable.\nDraws the TextInput with the given Renderer, overriding its\nExtends the Column with the given children.\nExtends the Row with the given children.\nExtends the Stack with the given children.\nSets the FilterMethod of the Image.\nFocuses the next focusable widget.\nFocuses the previous focusable widget.\nSets the Renderer::Font of the text of the Checkbox.\nSets the Renderer::Font of the ComboBox.\nSets the font of the PickList.\nSets the text font of the Radio button.\nSets the Font of the TextEditor.\nSets the Font of the TextInput.\nSets the Renderer::Font of the text of the Toggler\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCreates a new Svg that will display the contents of the …\nCreates a Column from an already allocated Vec.\nCreates a Row from an already allocated Vec.\nCreates a Stack from an already allocated Vec.\nSets the gap between the content and its Tooltip.\nSets the height of the ProgressBar.\nSets the Handle of the PickList.\nSets the height of the Column.\nSets the height of the Pin.\nSets the height of the Row.\nSets the height of the Stack.\nSets the height of the Button.\nSets the height of the Container.\nSets the height of the PaneGrid.\nSets the height of the Scrollable.\nSets the height of the Slider.\nSets the height of the TextEditor.\nSets the height of the VerticalSlider.\nSet the height of the custom Shader.\nSets the height of the Svg.\nSets the height of the Space.\nSets the height of the Image boundaries.\nSets the height of the Canvas.\nHighlights the TextEditor using the given syntax and theme.\nHighlights the TextEditor with the given Highlighter and a …\nCreates a horizontal Rule with the given height.\nMakes the Scrollable scroll horizontally, with default …\nCreates a horizontal Rule with the given height.\nCreates a new Space widget that fills the available …\nDisplays a widget on top of another one, only when the …\nCreates an Element that displays the iced logo with the …\nSets the Icon of the Checkbox.\nSets the text_input::Icon of the ComboBox.\nSets the Icon of the TextInput.\nSets the Id of the Container.\nSets the Id of the Scrollable.\nSets the Id of the TextInput.\nImages display raster graphics in different formats (PNG, …\nCreates a new Image.\nSets the style class of the input of the ComboBox.\nSets the style of the input of the ComboBox.\nThe mouse::Interaction to use when hovering the area.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nConverts the Action into its internal parts.\nSets the key of the Pop widget, for continuity.\nSets the closure to produce key bindings on key presses.\nKeyed widgets can provide hints to ensure continuity.\nCreates a new keyed::Column from an iterator of elements.\nCreates a keyed Column with the given children.\nSets the label of the Toggler.\nLays out the TextInput, overriding its Value if provided.\nCreates a new Lazy widget with the given data Dependency …\nSets the width of the ProgressBar.\nSets the LineHeight of the ComboBox.\nSets the text::LineHeight of the TextEditor.\nSets the text::LineHeight of the TextInput.\nMarkdown widgets can parse and display Markdown.\nDisplay a bunch of Markdown items.\nSets the maximum height of the Container.\nSets the maximum height of the TextEditor.\nSets the maximum width of the Column.\nSets the maximum width of the Container.\nSets the style class of the menu of the ComboBox.\nSets the style class of the Menu.\nSets the style of the menu of the ComboBox.\nSets the style of the Menu.\nSets the minimum height of the TextEditor.\nA container intercepting mouse events.\nCreates an empty Column.\nCreates a MouseArea with the given content.\nCreates a Pin widget with the given content.\nCreates an empty Row.\nCreates an empty Stack.\nCreates an empty Themer that applies the given Theme to …\nCreates a new Button with the given content.\nCreates a new Checkbox.\nCreates a new ComboBox with the given list of options, a …\nCreates a Container with the given content.\nCreates a PaneGrid with the given State and view function.\nCreates a new PickList with the given list of options, the …\nCreates a new Pop widget with the given content.\nCreates a new ProgressBar.\nCreates a new Radio button.\nCreates a new vertical Scrollable.\nCreates a new Slider.\nCreates new TextEditor with the given Content.\nCreates a new TextInput with the given placeholder and its …\nCreates a new Toggler.\nCreates a new Tooltip.\nCreates a new VerticalSlider.\nCreates a new Responsive widget with a closure that …\nCreates a new Lazy widget with the given data Dependency …\nCreate a new custom Shader.\nCreates a new Svg from the given Handle.\nCreates a new QRCode with the provided Data.\nCreates an amount of empty Space with the given width and …\nCreates a new Image with the given path.\nCreates a new Canvas.\nSets the message that should be produced when some action …\nSets the message that will be produced when a Pane of the …\nSets the message that will be produced when the outside …\nSets the message that will be produced when the PickList …\nThe message to emit on a double click.\nEnables the drag and drop interactions of the PaneGrid, …\nThe message to emit when the mouse enters the area.\nThe message to emit when the mouse exits the area.\nSets the message to be produced when the content pops out …\nSets the message that should be produced when some text is …\nSets the message that should be produced when some text is …\nSets the message that should be produced when some text is …\nThe message to emit on a middle button press.\nThe message to emit on a middle button release.\nThe message to emit when the mouse moves in the area.\nSets the message that will be produced when the ComboBox …\nSets the message that will be produced when the PickList …\nSets the message that will be produced when an option of …\nSets the message that should be produced when some text is …\nSets the message that should be produced when some text is …\nThe message to emit on a left button press.\nSets the message that will be produced when the Button is …\nSets the message that will be produced when the Button is …\nSets the message that will be produced when the Button is …\nThe message to emit on a left button release.\nSets the release message of the Slider. This is called …\nSets the release message of the VerticalSlider. This is …\nEnables the resize interactions of the PaneGrid, which will\nSets the message to be produced when the content changes …\nThe message to emit on a right button press.\nThe message to emit on a right button release.\nThe message to emit when scroll wheel is used\nSets a function to call when the Scrollable is scrolled.\nSets the message to be produced when the content pops into …\nSets the message that should be produced when the TextInput…\nSets the message that should be produced when the TextInput…\nSets the function that will be called when the Checkbox is …\nSets the message that should be produced when a user …\nSets the function that will be called when the Checkbox is …\nSets the message that should be produced when a user …\nSets the opacity of the Svg.\nSets the opacity of the Image.\nWraps the given widget and captures any mouse button …\nUpdate the Component state based on the provided Operation\nDisplay interactive elements on top of other widgets.\nSets the Padding of the Column.\nSets the Padding of the Row.\nSets the Padding of the Button.\nSets the Padding of the ComboBox.\nSets the Padding of the Container.\nSets the Padding of the PickList.\nSets the Padding of the TextEditor.\nSets the Padding of the TextInput.\nSets the padding of the Tooltip.\nPane grids let your users split regions of your …\nCreates a PaneGrid with the given pane_grid::State and …\nPick lists display a dropdown list of selectable options.\nCreates a new PickList.\nCreates a new Pin widget with the given content.\nSets the placeholder of the PickList.\nSets the placeholder of the TextEditor.\nGenerate messages when content pops in and out of view.\nCreates a new Pop widget.\nSets the position of the Pin; where the pinned widget will …\nProgress bars visualize the progression of an extended …\nCreates a new ProgressBar.\nCreates a new Action that publishes the given Message for …\nAdds an element to the Column.\nAdds an Element to the Row.\nAdds an element to the Stack.\nAdds an element to the Column, if Some.\nAdds an element to the Row, if Some.\nAdds an element to the Stack, if Some.\nQR codes display information in a type of two-dimensional …\nCreates a new QRCode widget from the given Data.\nRadio buttons let users choose a single option from a …\nCreates a new Radio.\nCreates a new Action that requests a redraw to happen as …\nCreates a new Action that requests a redraw to happen at …\nCreates a new Responsive widget with a closure that …\nCreates a new Rich text widget with the provided spans.\nCreates some Rich text with the given spans.\nCreates a new Container that fills all the available space …\nCreates a new Container that fills all the available space …\nApplies the given Rotation to the Svg.\nApplies the given Rotation to the Image.\nCreates a new Row from an iterator.\nCreates a Row with the given children.\nRules divide space horizontally or vertically.\nSets the scale of the Image.\nScrollables let users navigate an endless amount of …\nCreates a new Scrollable with the provided content.\nConverts the TextInput into a secure password input.\nA custom shader widget for wgpu applications.\nCreates a new Shader.\nSets the optional “shift” step for the Slider.\nSets the optional “shift” step for the VerticalSlider.\nSets the size of the Checkbox.\nSets the text sixe of the ComboBox.\nSets the size of the Radio button.\nSets the text size of the TextEditor.\nSets the text size of the TextInput.\nSets the size of the Toggler.\nReturns a Size hint for laying out the Component.\nSliders let users set a value by moving an indicator.\nCreates a new Slider.\nSets whether the Tooltip is snapped within the viewport.\nSets the vertical spacing between elements.\nSets the horizontal spacing between elements.\nSets the spacing between the Checkbox and the text.\nSets the spacing between the panes of the PaneGrid.\nSets the spacing between the Radio button and the text.\nEmbeds the Scrollbar into the Scrollable, instead of …\nSets the spacing between the Toggler and the text.\nCreates a new Span of text with the provided content.\nCreates a new Stack with the given children.\nCreates a Stack with the given children.\nSets the step size of the Slider.\nSets the step size of the VerticalSlider.\nSets the style of the Button.\nSets the style of the Checkbox.\nSets the style of the Container.\nSets the style of the PaneGrid.\nSets the style of the PickList.\nSets the style of the ProgressBar.\nSets the style of the Radio button.\nSets the style of the Rule.\nSets the style of this Scrollable.\nSets the style of the Slider.\nSets the style of the TextEditor.\nSets the style of the TextInput.\nSets the style of the Toggler.\nSets the style of the Tooltip.\nSets the style of the VerticalSlider.\nSets the style of the Svg.\nSets the style of the QRCode.\nSvg widgets display vector graphics in your application.\nCreates a new Svg widget from the given Handle.\nDraw and interact with text.\nCreates a new Text widget with the provided content.\nCreates a new Text widget with the provided content.\nSets the horizontal alignment of the text of the Toggler\nSets the default text Color of the Themer.\nText editors display a multi-line text input for text …\nCreates a new TextEditor.\nText inputs display fields that can be filled with text.\nCreates a new TextInput.\nSets the text text::LineHeight of the Checkbox.\nSets the text text::LineHeight of the PickList.\nSets the text text::LineHeight of the Radio button.\nSets the text text::LineHeight of the Toggler.\nSets the text::Shaping strategy of the Checkbox.\nSets the text::Shaping strategy of the PickList.\nSets the text::Shaping strategy of the Radio button.\nSets the text::Shaping strategy of the Toggler.\nSets the text size of the Checkbox.\nSets the text size of the PickList.\nSets the text size of the Radio button.\nSets the text size o the Toggler.\nSets the text::Wrapping strategy of the Checkbox.\nSets the text::Wrapping strategy of the Radio button.\nSets the text::Wrapping strategy of the Toggler.\nUse the built-in theme and styles.\nA widget that applies any Theme to its contents.\nTogglers let users make binary choices by toggling a …\nCreates a new Toggler.\nTooltips display a hint of information over some element …\nCreates a new Tooltip for the provided content with the …\nSets the size of the entire QRCode.\nProcesses an Event and updates the Component state …\nCreates a new Text widget that displays the provided value.\nTurns the ProgressBar into a vertical ProgressBar.\nCreates a vertical Rule with the given width.\nCreates a vertical Rule with the given width.\nSliders let users set a value by moving an indicator.\nCreates a new VerticalSlider.\nCreates a new Space widget that fills the available …\nProduces the widgets of the Component, which may trigger …\nSets the width of the Column.\nSets the width of the Pin.\nSets the width of the Row.\nSets the width of the Stack.\nSets the width of the Button.\nSets the width of the Checkbox.") \ No newline at end of file +searchState.loadedDescShard("iced", 0, "iced is a cross-platform GUI library focused on simplicity …\nA list with all the defined themes.\nAlignment on the axis of a container.\nThe animation of some particular state.\nThe black color.\nThe background of some element.\nA border.\nThe built-in Catppuccin Frappé variant.\nThe built-in Catppuccin Latte variant.\nThe built-in Catppuccin Macchiato variant.\nThe built-in Catppuccin Mocha variant.\nAlign at the center of the axis.\nA color in the sRGB color space.\nA solid color.\nScale as big as it can be without needing to crop or hide …\nThe strategy used to fit the contents of a widget to its …\nScale the image to cover all of the bounding box, cropping …\nA Theme that uses a Custom palette.\nA non-monospaced sans-serif font with normal Weight.\nThe built-in dark variant.\nDegrees\nThe built-in Dracula variant.\nA generic widget.\nAlign at the end of the axis.\nContains the error value\nAn error that occurred while running an application.\nA user interface event.\nA type that can run futures.\nThe executor of the program.\nThe futures executor could not be created.\nThe built-in Ferra variant:\nDistort the image so the widget is 100% covered without …\nFill all the remaining space\nFill a portion of the remaining space relative to other …\nFill a fixed amount of space\nThe element will float while rotating. The layout will be …\nA font.\nA fill which transitions colors progressively along a …\nLinearly interpolate between several colors.\nThe application graphics context could not be created.\nThe built-in Gruvbox Dark variant.\nThe built-in Gruvbox Light variant.\nA Transformation that preserves whatever is transformed.\nA rectangle starting at Point::ORIGIN with infinite width …\nA Size with infinite width and height.\nAn input method event\nThe built-in Kanagawa Dragon variant.\nThe built-in Kanagawa Lotus variant.\nThe built-in Kanagawa Wave variant.\nA keyboard event\nThe strategy used to fill space in a specific dimension.\nThe built-in light variant.\nA linear gradient interpolates colors along a direction at …\nA monospaced font with normal Weight.\nThe message of the program.\nThe built-in Moonfly variant.\nA mouse event\nThe built-in Nightfly variant.\nDon’t resize or scale the image at all.\nThe built-in Nord variant.\nThe origin (i.e. a Point at (0, 0)).\nContains the success value\nThe built-in Oxocarbon variant.\nThe amount of radians in half a circle.\nAn amount of space to pad for each side of a box\nAn amount of logical pixels.\nA 2D point.\nThe primary rendering option.\nThe internal definition of a Program.\nThe range of degrees of a circle.\nThe range of radians of a circle.\nRadians\nAn axis-aligned rectangle.\nThe default graphics renderer for iced.\nThe renderer of the program.\nThe result of running an iced program.\nThe strategy used to rotate the content.\nScale the image down if it’s too big for the space, but …\nThe secondary (or fallback) rendering option.\nThe settings of an iced program.\nA shadow.\nFill the least amount of space\nAn amount of space in 2 dimensions.\nThe built-in Solarized Dark variant.\nThe built-in Solarized Light variant.\nThe element will be solid while rotating. The layout will …\nAlign at the start of the axis.\nThe state of the program.\nA request to listen to external events.\nA color with no opacity.\nA set of concurrent actions to be performed by the iced …\nA built-in theme.\nThe theme of the program.\nThe built-in Tokyo Night variant.\nThe built-in Tokyo Night Light variant.\nThe built-in Tokyo Night Storm variant.\nA touch event\nA 2D transformation matrix.\nA Size with a width and height of 1 unit.\nA 2D vector.\nThe white color.\nA window event\nThe application window could not be created.\nPadding of zero\nZero pixels.\nA Size with zero width and height.\nThe zero Vector.\nTransparency, 0.0 - 1.0\nCreates a new Task that can be aborted with the returned …\nLeverage advanced concepts like custom widgets.\nAlign and position widgets.\nExecutes a new Task after this one, only when it produces …\nExecutes a new Task after this one, only when it succeeds …\nAnimate your applications.\nIf set to true, the renderer will try to perform …\nCreate and run iced applications step by step.\nCreates an iced Application given its title, update, and …\nApplies the Rotation to the given Size, returning the …\nReturns the area of the Rectangle.\nMakes the Animation automatically reverse when repeating.\nBlue component, 0.0 - 1.0\nCombines the given tasks and produces a single Task that …\nBatches all the provided subscriptions and returns the …\nThe blur radius of the shadow.\nDraw lines around containers.\nSets the bottom of the Padding.\nBottom padding\nReturns the Point at the center of the Rectangle.\nReturns the X coordinate of the Point at the center of the …\nReturns the Y coordinate of the Point at the center of the …\nChains a new Task to be performed once the current one …\nAccess the clipboard.\nCreates a new Task that collects all the output of the …\nSets the Color of the Border.\nThe color of the border.\nThe color of the shadow.\nCreates a Color with shorter and cleaner syntax.\nReturns true if the given Point is contained in the …\nCreates a new custom Theme from the given Palette.\nCreates a new custom Theme from the given Palette, with a …\nCreate and run daemons that run in the background.\nCreates an iced Daemon given its title, update, and view …\nThe default Font to be used.\nThe text size that will be used by default.\nReturns the angle of the Rotation in Degrees.\nSets a delay for the Animation.\nCreates a new Task that discards the result of the current …\nComputes the distance to another Point.\nReturns the minimum distance from the given Point to any …\nCreates a new Task that instantly produces the given value.\nSets the duration of the Animation to the given value.\nSets the Easing function of the Animation.\nAdapts the Length so it can contain the other Length and …\nRuns the given closure inside the Executor.\nHandle events of a user interface.\nChoose your preferred executor to power your application.\nCreates a Task that exits the iced runtime.\nExpands the Rectangle a given amount.\nExpands this Size by the given amount.\nReturns the palette::Extended of the Theme.\nThe Family of the Font.\nReturns the fill factor of the Length.\nFits the Padding between the provided inner and outer Size.\nAttempt to apply the given fit for a content size within …\nReturns the “fluid” variant of the Length.\nLoad and use fonts.\nThe fonts to load on boot.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCreates a Color from its linear RGBA components.\nCreates a Color from its RGB components.\nCreates a Color from its RGB8 components.\nCreates a Color from its RGBA components.\nCreates a Color from its RGB8 components and an alpha …\nCreates a new Task that runs the given Future and produces …\nGreen component, 0.0 - 1.0\nTransitions the Animation from its current state to the …\nTransitions the Animation from its current state to the …\nColors that transition progressively.\nHeight of the rectangle.\nThe height.\nReturns the total amount of horizontal Padding.\nThe identifier of the application.\nProjects the Animation into an interpolated value at the …\nProjects the Animation into an interpolated value at the …\nComputes the intersection with the given Rectangle.\nReturns whether the Rectangle intersects with the given …\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nConverts the Color into its linear values.\nConverts the Color into its RGBA8 equivalent.\nReturns the inverted Color.\nInverts the Color in-place.\nReturns true if the Animation is currently in progress.\nReturns true iff the Length is either Length::Fill or\nReturns true if the current Rectangle is completely within …\nListen and react to keyboard events.\nSets the left of the Padding.\nLeft padding\nMaps the output of a Task with the given closure.\nTransforms the Subscription output with the given function.\nReturns the maximum of each component of this size and …\nReturns the minimum of each component of this size and …\nListen and react to mouse events.\nA function that can never be called.\nCreates a new Executor.\nCreates a new Animation with the given initial state.\nCreate a Padding that is equal on all sides.\nCreates a new Point with the given coordinates.\nCreates a new Rectangle with its top-left corner in the …\nCreates a new Size with the given width and height.\nCreates a new Vector with the given components.\nCreates a Task that does nothing.\nReturns an empty Subscription that will not produce any …\nThe offset of the shadow.\nCreates an orthographic projection.\nDisplay interactive elements on top of other widgets.\nSpace stuff around the perimeter.\nReturns the Palette of the Theme.\nParses a Color from a hex string.\nCreates a Task that runs the given Future to completion …\nReturns the position of the top left corner of the …\nSets the duration of the Animation to 200ms.\nRed component, 0.0 - 1.0\nReturns the angle of the Rotation in Radians.\nReturns a mutable reference to the angle of the Rotation …\nThe Radius of the border.\nReturns the remaining Duration of the Animation.\nMakes the Animation repeat a given amount of times.\nMakes the Animation repeat forever.\nSets the right of the Padding.\nRight padding\nRotates the Rectangle and returns the smallest Rectangle …\nRotates the given Size and returns the minimum Size …\nSets the Radius of the Border.\nRuns a basic iced application with default Settings given …\nRuns the Program.\nRuns the Program.\nCreates a Task that runs the given Stream to completion …\nReturns a Subscription that will call the given function …\nRuns the Program with the given Settings and a closure …\nRuns the Program with the given Settings and a closure …\nReturns a Subscription that will create and asynchronously …\nCreates a uniform scaling transformation.\nScales the alpha channel of the Gradient by the given …\nScales the alpha channel of the Background by the given …\nScales the alpha channel of the Color by the given factor.\nReturns the scale factor of the Transformation.\nShrinks the Rectangle a given amount.\nReturns the Size of the Rectangle.\nSets the duration of the Animation to 400ms.\nSnaps the Rectangle to unsigned integer coordinates.\nSpawns a future in the Executor.\nCreate asynchronous streams of data.\nCreates a new Task that runs the given Stream and produces …\nThe Stretch of the Font.\nThe Style of the Font.\nRetrieve system information.\nCreate runtime tasks.\nUse the built-in theme and styles.\nPerforms a new Task for every output of the current Task …\nListen and react to time.\nCalculates the line in which the angle intercepts the …\nSets the top of the Padding.\nTop padding\nListen and react to touch events.\nCreates a translate transformation.\nReturns the translation of the Transformation.\nComputes the union with the given Rectangle.\nRetuns the current state of the Animation.\nReturns the total amount of vertical Padding.\nSets the duration of the Animation to 100ms.\nSets the duration of the Animation to 500ms.\nThe Weight of the Font.\nUse the built-in widgets or create your own.\nSets the width of the Border.\nThe width of the border.\nWidth of the rectangle.\nThe width.\nConfigure the window of your application in native …\nAdds a value to the Subscription context.\nCreates a non-monospaced Font with the given Family::Name …\nCreates a new square Rectangle with the center at the …\nCreates a new Rectangle with its top-left corner at the …\nCreates a new axis-aligned Rectangle from the given …\nThe X coordinate.\nX coordinate of the top-left corner.\nThe X component of the Vector\nThe Y coordinate.\nY coordinate of the top-left corner.\nThe Y component of the Vector\nA buffer for short-term storage and transfer within and …\nThe bounds of a Node and its children, using absolute …\nAn interactive component that can be displayed on top of …\nA component that can be used by widgets to draw themselves …\nA connection to the state of a shell.\nA paragraph.\nA component that displays information and allows …\nReturns whether the widgets of the current application …\nReturns the bounds of the Layout.\nThe bounds of the paragraph.\nMarks the current event as captured. Prevents “event …\nReturns the state Tree of the children of the Widget.\nReturns an iterator over the Layout of the children of a …\nClears all of the recorded primitives in the Renderer.\nAccess the clipboard.\nThe content of the paragraph.\nReconciles the Widget with the provided Tree.\nDraws the Overlay using the associated Renderer.\nDraws the Widget using the associated Renderer.\nEnds recording a new layer.\nEnds recording a new layer.\nReturns the current event::Status of the Shell.\nFills a Quad with the provided Background.\nThe font of the Text.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nThe horizontal alignment of the Text.\nLoad and draw raster graphics.\nReturns the current InputMethod strategy.\nReturns the current InputMethod strategy.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nInvalidates the current application layout.\nInvalidates the current application widgets.\nReturns true if the Shell contains no published messages\nReturns whether the current event has been captured.\nReturns whether the current layout is invalid or not.\nReturns true if the cursor is over the Overlay.\nPosition your widgets properly.\nReturns the layout Node of the Overlay.\nReturns the layout::Node of the Widget.\nThe line height of the Text.\nMerges the current Shell with another one by applying the …\nHandle mouse events.\nReturns the current mouse::Interaction of the Overlay.\nReturns the current mouse::Interaction of the Widget.\nCreates a new Layout for the given Node at the origin.\nCreates a new Shell with the provided buffer of messages.\nApplies a widget::Operation to the Overlay.\nApplies an Operation to the Widget.\nDisplay interactive elements on top of other widgets.\nReturns the nested overlay of the Overlay, if there is any.\nReturns the overlay of the Widget, if there is any.\nReturns the position of the Layout.\nPublish the given Message for an application to process it.\nReads the current content of the Clipboard as text.\nReturns the request a redraw should happen, if any.\nWrite your own renderer.\nReplaces the redraw request of the Shell; without conflict …\nRequests the current InputMethod strategy.\nRequests a new frame to be drawn as soon as possible.\nRequests a new frame to be drawn at the given …\nTriggers the given function if the layout is invalid, …\nThe Shaping strategy of the Text.\nReturns the Size of the Widget in lengths.\nThe size of the Text in logical pixels.\nReturns a Size hint for laying out the Widget.\nStarts recording a new layer.\nStarts recording with a new Transformation.\nReturns the State of the Widget.\nWrite your own subscriptions.\nLoad and draw vector graphics.\nReturns the Tag of the Widget.\nDraw and interact with text.\nProcesses a runtime Event.\nProcesses a runtime Event.\nThe vertical alignment of the Text.\nCreate custom widgets and operate on them.\nDraws the primitives recorded in the given closure in a …\nCreates a new Layout for the given Node with the provided …\nApplies a Transformation to the primitives recorded in the …\nApplies a translation to the primitives recorded in the …\nThe Wrapping strategy of the Text.\nWrites the given text contents to the Clipboard.\nA buffer for short-term storage and transfer within and …\nThe kind of Clipboard.\nA null implementation of the Clipboard trait.\nThe primary clipboard.\nThe standard clipboard.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nReads the current content of the Clipboard as text.\nWrites the given text contents to the Clipboard.\nA cheaply cloneable and sliceable chunk of contiguous …\nA handle pointing to some encoded image bytes in-memory.\nImage filtering strategy.\nA handle of some image data.\nThe image Handle to be displayed. Iced exposes its own …\nThe unique identifier of some Handle data.\nA raster image that can be drawn.\nBilinear interpolation.\nNearest neighbor.\nA file handle. The image data will be read from the file …\nA Renderer that can render raster graphics.\nA handle pointing to decoded image pixels in RGBA format.\nClears the buffer, removing all data.\nCreates Bytes instance from slice, by copying it.\nDraws an Image inside the provided bounds.\nSets the filter method of the Image.\nThe filter method of the image.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCreates an image Handle containing the encoded image data …\nCreate Bytes with a buffer whose lifetime is controlled …\nCreates an image Handle pointing to the image of the given …\nCreates an image Handle containing the decoded image …\nCreates a new Bytes from a static slice.\nThe handle of the image.\nReturns the unique identifier of the Handle.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns true if the Bytes has a length of 0.\nReturns true if this is the only reference to the data and …\nReturns the number of bytes contained in this Bytes.\nReturns the dimensions of an image for the given Handle.\nCreates a new empty Bytes.\nCreates a new Image with the given handle.\nSets the opacity of the Image.\nThe opacity of the image.\nSets the rotation of the Image.\nThe rotation to be applied to the image; on its center.\nReturns a slice of self for the provided range.\nReturns a slice of self that is equivalent to the given …\nSets whether the Image should be snapped to the pixel grid.\nIf set to true, the image will be snapped to the pixel …\nSplits the bytes into two at the given index.\nSplits the bytes into two at the given index.\nShortens the buffer, keeping the first len bytes and …\nTry to convert self into BytesMut.\nThe height of the image.\nThe id of this handle.\nThe pixels.\nThe width of the image.\nThe bounds of a Node and its children, using absolute …\nA set of size constraints for layouting.\nNo limits\nThe bounds of an element and its children.\nAligns the Node in the given space.\nMutable reference version of Self::align.\nComputes the resulting Node that fits the Limits given …\nReturns the bounds of the Node.\nReturns the children of the Node.\nComputes the resulting Node that fits the Limits given …\nCreates a new Node that wraps a single child with some …\nDistribute elements using a flex-based layout.\nReturns the argument unchanged.\nReturns the argument unchanged.\nApplies a height constraint to the current Limits.\nCalls U::from(self).\nCalls U::from(self).\nRemoves the minimum width constraint for the current Limits…\nReturns the maximum Size of the Limits.\nApplies a maximum height constraint to the current Limits.\nApplies a maximum width constraint to the current Limits.\nReturns the minimum Size of the Limits.\nApplies a minimum height constraint to the current Limits.\nApplies a minimum width constraint to the current Limits.\nMoves the Node to the given position.\nMutable reference version of Self::move_to.\nCreates new Limits with the given minimum and maximum Size.\nCreates a new Node with the given Size.\nProduces a Node with two children nodes one right next to …\nComputes the Node that fits the Limits given some width, …\nComputes a padded Node with a positioning step.\nComputes the resulting Size that fits the Limits given …\nShrinks the current Limits by the given Size.\nReturns the Size of the Node.\nComputes the resulting Node that fits the Limits given …\nTranslates the Node by the given translation.\nTranslates the Node by the given translation.\nApplies a width constraint to the current Limits.\nCreates a new Node with the given Size and children.\nThe main axis of a flex layout.\nThe horizontal axis\nThe vertical axis\nReturns the argument unchanged.\nCalls U::from(self).\nComputes the flex layout with the given axis and limits, …\nThe cursor has a defined position.\nThe back mouse button.\nThe button of a mouse.\nA mouse button was pressed.\nA mouse button was released.\nA mouse click.\nThe mouse cursor state.\nThe mouse cursor entered the window.\nThe mouse cursor left the window.\nThe mouse cursor was moved\nA mouse event.\nThe forward mouse button.\nThe interaction of a mouse cursor.\nThe left mouse button.\nThe cursor has a defined position, but it’s levitating …\nA line-based scroll movement\nThe middle (wheel) button.\nSome other button.\nA pixel-based scroll movement\nThe right mouse button.\nA scroll movement.\nThe cursor is currently unavailable (i.e. out of bounds or …\nThe mouse wheel was scrolled.\nTrack mouse clicks.\nReturns the argument unchanged.\nCalls U::from(self).\nReturns the Kind of Click.\nCreates a new Click with the given position and previous …\nReturns the position of the Click.\nThe scroll movement.\nThe new position of the mouse cursor\nThe number of horizontal lines scrolled\nThe number of horizontal pixels scrolled\nThe number of vertical lines scrolled\nThe number of vertical pixels scrolled\nA mouse click.\nA double click\nThe kind of mouse click.\nA single click\nA triple click\nReturns the argument unchanged.\nCalls U::from(self).\nA generic Overlay.\nAn Overlay container that displays multiple overlay …\nAn interactive component that can be displayed on top of …\nDraws the Overlay using the associated Renderer.\nDraws the Element and its children using the given Layout.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns a Group of overlay Element children.\nCalls U::from(self).\nCalls U::from(self).\nReturns true if the cursor is over the Element.\nReturns true if the cursor is over the Overlay.\nReturns the layout Node of the Overlay.\nComputes the layout of the Element in the given bounds.\nApplies a transformation to the produced message of the …\nReturns the current mouse::Interaction of the Element.\nReturns the current mouse::Interaction of the Overlay.\nCreates a new Element containing the given Overlay.\nCreates an empty Group.\nApplies a widget::Operation to the Element.\nApplies a widget::Operation to the Overlay.\nReturns the nested overlay of the Element, if there is any.\nTurns the Group into an overlay overlay::Element.\nReturns the nested overlay of the Overlay, if there is any.\nAdds an overlay::Element to the Group.\nProcesses a runtime Event.\nProcesses a runtime Event.\nCreates a Group with the given elements.\nA headless renderer is a renderer that can render …\nA polygon with four sides.\nA component that can be used by widgets to draw themselves …\nThe styling attributes of a Renderer.\nThe Border of the Quad. The border is drawn on the inside …\nThe bounds of the Quad.\nClears all of the recorded primitives in the Renderer.\nEnds recording a new layer.\nEnds recording a new layer.\nFills a Quad with the provided Background.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCreates a new Headless renderer;\nDraws offscreen into a screenshot, returning a collection …\nThe Shadow of the Quad.\nStarts recording a new layer.\nStarts recording with a new Transformation.\nThe text color\nDraws the primitives recorded in the given closure in a …\nApplies a Transformation to the primitives recorded in the …\nApplies a translation to the primitives recorded in the …\nA subscription event.\nA stream of runtime events.\nThe hasher used for identifying subscriptions.\nA user interacted with a user interface in a window.\nDescribes an event specific to MacOS\nA MacOS specific event\nThe events that will be produced by a Subscription with …\nA platform specific event\nA platform specific event.\nTriggered when the app receives an URL from the system\nThe description of a Subscription.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCreates a Subscription from a Recipe describing it.\nHashes the Recipe.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns the different recipes of the Subscription.\nExecutes the Recipe and produces the stream of events of …\nThe Event describing the interaction.\nThe event::Status of the interaction.\nThe window holding the interface of the interaction.\nIn-memory data\nThe data of a vectorial image.\nA handle of Svg data.\nFile data\nA Renderer that can render vector graphics.\nA raster image that can be drawn.\nSets the Color filter of the Svg.\nThe Color filter to be applied to the Svg.\nReturns a reference to the SVG Data.\nDraws an SVG with the given Handle, an optional Color …\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCreates an SVG Handle from raw bytes containing either an …\nCreates an SVG Handle pointing to the vector image of the …\nThe handle of the Svg.\nReturns the unique identifier of the Handle.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns the default dimensions of an SVG for the given …\nCreates a new Svg with the given handle.\nSets the opacity of the Svg.\nThe opacity of the Svg.\nSets the rotation of the Svg.\nThe rotation to be applied to the image; on its center.\nThe char representing a ▼ icon in the built-in ICON_FONT.\nAn absolute height in logical pixels.\nAdvanced text shaping and font fallback.\nNo shaping and no font fallback.\nBorrowed data.\nA bounds difference.\nThe char representing a ✔ icon in the ICON_FONT.\nThe point was within the bounds of the returned character …\nThe difference detected in some text.\nA component that can be used by widgets to edit multi-line …\nThe Editor of this Renderer.\nThe font of the Editor.\nThe font of this Paragraph.\nThe font type used.\nA fragment of Text.\nWraps at the glyph level.\nA text highlight.\nThe output of the Highlighter.\nA type capable of highlighting text.\nThe result of hit testing on text.\nThe icon font of the backend.\nA trait for converting a value to some text Fragment.\nThe highlight iterator type.\nThe height of a line of text in a paragraph.\nNo wrapping.\nNo difference.\nOwned data.\nA text paragraph.\nThe Paragraph of this Renderer.\nA factor of the size of the text.\nA renderer capable of measuring and drawing Text.\nThe settings to configure the Highlighter.\nA shape difference.\nThe shaping strategy of some text.\nA span of text.\nA paragraph.\nWraps at the word level.\nWraps at the word level, or fallback to glyph level if a …\nThe wrapping strategy of some text.\nSets the Background of the Span.\nThe Background of the highlight.\nSets the Background of the Span, if any.\nSets the Border of the Span.\nThe Border of the highlight.\nSets the Border of the Span, if any.\nReturns the current boundaries of the Editor.\nThe bounds of the paragraph.\nNotifies the Highlighter that the line at the given index …\nSets the Color of the Span.\nThe Color of the Span.\nSets the Color of the Span, if any.\nCompares the Paragraph with some desired Text and returns …\nThe content of the paragraph.\nReturns the current line of the Highlighter.\nReturns the current Cursor of the Editor.\nComputes the cursor position of the Hit .\nReturns the current cursor position of the Editor.\nReturns the default Self::Font.\nReturns the default size of Text.\nEdit text.\nDraws the given Editor at the given position and with the …\nDraws the given Paragraph at the given position and with …\nDraws the given Text at the given position and with the …\nSets the font of the Span.\nThe font of the Text.\nThe font of the Span.\nSets the font of the Span, if any.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the distance to the given grapheme index in the …\nRuns a text Highlighter in the Editor.\nThe Highlight of the Span.\nHighlights the given line.\nHighlight text.\nTests whether the provided point is within the boundaries …\nTests whether the provided point is within the boundaries …\nReturns the horizontal alignment of the Paragraph.\nThe horizontal alignment of the Text.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nConverts the value to some text Fragment.\nReturns true if the Editor has no contents.\nReturns the text of the given line in the Editor, if it …\nReturns the amount of lines in the Editor.\nSets the LineHeight of the Span.\nThe line height of the Text.\nThe LineHeight of the Span.\nSets the link of the Span.\nThe link of the Span.\nSets the link of the Span, if any.\nReturns the minimum boundaries to fit the current contents …\nReturns the minimum boundaries that can fit the contents …\nReturns the minimum height that can fit the contents of …\nReturns the minimum width that can fit the contents of the …\nCreates a new Highlighter from its Self::Settings.\nCreates a new Span of text with the given text fragment.\nSets the Padding of the Span.\nThe Padding of the Span.\nDraw paragraphs.\nPerforms an Action on the Editor.\nLays out the Paragraph with some new boundaries.\nReturns the current selected text of the Editor.\nThe Shaping strategy of the Text.\nSets the size of the Span.\nThe size of the Text in logical pixels.\nThe size of the Span in Pixels.\nReturns all bounds for the provided Span index of the …\nSets whether the Span should be struck through or not.\nWhether the Span should be struck through or not.\nThe Fragment of text.\nReturns the LineHeight in absolute logical pixels.\nTurns the Span into a static one.\nSets whether the Span should be underlined or not.\nWhether the Span should be underlined or not.\nUpdates the Editor with some new attributes.\nUpdates the Highlighter with some new Self::Settings.\nReturns the vertical alignment of the Paragraph.\nThe vertical alignment of the Text.\nCreates a new Paragraph laid out with the given Text.\nCreates a new Editor laid out with the given text.\nCreates a new Paragraph laid out with the given Text.\nThe Wrapping strategy of the Text.\nAn interaction with an Editor.\nDelete the previous character.\nCursor without a selection\nClick the Editor at the given Point.\nUse \\r for line ending (many legacy systems)\nUse \\r\\n for line ending (Windows-style)\nThe cursor of an Editor.\nDelete the next character.\nA direction in some text.\nMove to the end of the text.\nMove to the start of the text.\nMove down.\nDrag the mouse on the Editor to the given Point.\nAn action that edits text.\nPerform an Edit.\nA component that can be used by widgets to edit multi-line …\nMove to the end of the line.\nBreak the current line.\nThe font of the Editor.\nMove to the start of the line.\nInsert the given character.\nMove left.\n<-\nUse \\n for line ending (POSIX-style)\nUse \\n\\r for line ending (some legacy systems)\nA line of an Editor.\nThe line ending of a Line.\nA cursor movement.\nApply a Motion.\nNo line ending\nMove to the start of the next window.\nMove to the start of the previous window.\nPaste the given text.\nMove right.\n->\nScroll the Editor a certain amount of lines.\nSelect text with a given Motion.\nSelect the entire buffer.\nSelect the line at the current cursor.\nSelect the word at the current cursor.\nCursor selecting a range of text\nMove up.\nMove to the left boundary of a word.\nMove to the right boundary of a word.\nReturns the current boundaries of the Editor.\nReturns the current Cursor of the Editor.\nReturns the current cursor position of the Editor.\nThe line ending of the Line.\nReturns the argument unchanged.\nReturns the argument unchanged.\nRuns a text Highlighter in the Editor.\nCalls U::from(self).\nCalls U::from(self).\nReturns true if the Editor has no contents.\nReturns the text of the given line in the Editor, if it …\nReturns the amount of lines in the Editor.\nReturns the minimum boundaries to fit the current contents …\nPerforms an Action on the Editor.\nReturns the current selected text of the Editor.\nThe raw text of the Line.\nUpdates the Editor with some new attributes.\nCreates a new Editor laid out with the given text.\nThe amount of lines to scroll.\nThe format of some text.\nThe output of the Highlighter.\nA type capable of highlighting text.\nThe highlight iterator type.\nA highlighter that highlights nothing.\nThe settings to configure the Highlighter.\nNotifies the Highlighter that the line at the given index …\nThe Color of the text.\nReturns the current line of the Highlighter.\nThe Font of the text.\nReturns the argument unchanged.\nReturns the argument unchanged.\nHighlights the given line.\nCalls U::from(self).\nCalls U::from(self).\nCreates a new Highlighter from its Self::Settings.\nUpdates the Highlighter with some new Self::Settings.\nThe font of this Paragraph.\nA text paragraph.\nA Paragraph of plain text.\nCompares the Paragraph with some desired Text and returns …\nReturns the argument unchanged.\nReturns the distance to the given grapheme index in the …\nTests whether the provided point is within the boundaries …\nTests whether the provided point is within the boundaries …\nReturns the horizontal alignment of the Paragraph.\nReturns the horizontal alignment of the Paragraph.\nCalls U::from(self).\nReturns the minimum boundaries that can fit the contents …\nReturns the minimum boundaries that can fit the contents …\nReturns the minimum height that can fit the contents of …\nReturns the minimum height that can fit the contents of the\nReturns the minimum width that can fit the contents of the …\nReturns the minimum width that can fit the contents of the …\nCreates a new Plain paragraph.\nReturns the cached Paragraph.\nLays out the Paragraph with some new boundaries.\nReturns all bounds for the provided Span index of the …\nUpdates the plain Paragraph to match the given Text, if …\nReturns the vertical alignment of the Paragraph.\nReturns the vertical alignment of the Paragraph.\nCreates a new Paragraph laid out with the given Text.\nCreates a new Paragraph laid out with the given Text.\nThe identifier of a generic widget.\nA piece of logic that can traverse the widget tree of an …\nA bunch of text.\nA persistent state widget tree.\nA component that displays information and allows …\nSets the alignment::Horizontal of the Text.\nSets the alignment::Vertical of the Text.\nCenters the Text, both horizontally and vertically.\nReturns the state Tree of the children of the Widget.\nThe children of the root widget of the Tree.\nSets the style class of the Text.\nSets the Color of the Text.\nSets the Color of the Text, if Some.\nOperates on a widget that contains other widgets.\nOperates on a custom widget with some state.\nReconciles the Widget with the provided Tree.\nReconciles the current tree with the provided Widget.\nReconciles the children of the tree with the provided list …\nReconciles the children of the tree with the provided list …\nDraws the Widget using the associated Renderer.\nCreates an empty, stateless Tree with no children.\nFinishes the Operation and returns its Outcome.\nOperates on a widget that can be focused.\nSets the Font of the Text.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nSets the height of the Text boundaries.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns the layout::Node of the Widget.\nSets the LineHeight of the Text.\nReturns the current mouse::Interaction of the Widget.\nCreate a new fragment of Text with the given contents.\nCreates a new Tree for the provided Widget.\nCreates a custom Id.\nCreates a new Task that runs the given widget::Operation …\nApplies an Operation to the Widget.\nQuery or update internal widget state.\nReturns the overlay of the Widget, if there is any.\nOperates on a widget that can be scrolled.\nSets the Shaping strategy of the Text.\nReturns the Size of the Widget in lengths.\nSets the size of the Text.\nReturns a Size hint for laying out the Widget.\nReturns the State of the Widget.\nThe State of the Tree.\nSets the style of the Text.\nReturns the Tag of the Widget.\nThe tag of the Tree.\nText widgets display information through writing.\nOperates on a widget that contains some text.\nOperates on a widget that has text input.\nStore internal widget state in a state tree to ensure …\nCreates a unique Id.\nProcesses a runtime Event.\nSets the width of the Text boundaries.\nSets the Wrapping strategy of the Text.\nThe Operation needs to be followed by another Operation.\nThe internal state of a widget that can be focused.\nThe Operation produced no result.\nA piece of logic that can traverse the widget tree of an …\nThe result of an Operation.\nThe internal state of a widget that can be scrolled.\nThe Operation produced some result.\nThe internal state of a widget that has text input.\nWraps the Operation in a black box, erasing its returning …\nOperates on a widget that contains other widgets.\nOperates on a custom widget with some state.\nFinishes the Operation and returns its Outcome.\nFocuses the widget.\nOperate on widgets that can be focused.\nOperates on a widget that can be focused.\nReturns the argument unchanged.\nCalls U::from(self).\nReturns whether the widget is focused or not.\nMaps the output of an Operation using the given function.\nMoves the cursor of the text input to an arbitrary …\nMoves the cursor of the text input to the end of the input …\nMoves the cursor of the text input to the front of the …\nProduces an Operation that applies the given Operation to …\nScroll the widget by the given AbsoluteOffset along the …\nScroll the widget to the given AbsoluteOffset along the …\nOperate on widgets that can be scrolled.\nOperates on a widget that can be scrolled.\nSelects all the content of the text input.\nSnaps the scroll of the widget to the given percentage …\nOperates on a widget that contains some text.\nOperate on widgets that have text input.\nOperates on a widget that has text input.\nChains the output of an Operation with the provided …\nUnfocuses the widget.\nA summary of the focusable widgets present on a widget …\nThe internal state of a widget that can be focused.\nProduces an Operation that generates a Count and chains it …\nProduces an Operation that searches for the current …\nProduces an Operation that focuses the widget with the …\nFocuses the widget.\nProduces an Operation that searches for the current …\nProduces an Operation that searches for the current …\nThe index of the current focused widget, if any.\nReturns the argument unchanged.\nCalls U::from(self).\nReturns whether the widget is focused or not.\nThe total amount of focusable widgets.\nUnfocuses the widget.\nThe amount of absolute offset in each direction of a …\nThe amount of relative offset in each direction of a …\nThe internal state of a widget that can be scrolled.\nProduces an Operation that scrolls the widget with the …\nScroll the widget by the given AbsoluteOffset along the …\nProduces an Operation that scrolls the widget with the …\nScroll the widget to the given AbsoluteOffset along the …\nProduces an Operation that snaps the widget with the given …\nSnaps the scroll of the widget to the given percentage …\nThe amount of horizontal offset\nThe amount of horizontal offset\nThe amount of vertical offset\nThe amount of vertical offset\nThe internal state of a widget that has text input.\nProduces an Operation that moves the cursor of the widget …\nMoves the cursor of the text input to an arbitrary …\nProduces an Operation that moves the cursor of the widget …\nMoves the cursor of the text input to the end of the input …\nProduces an Operation that moves the cursor of the widget …\nMoves the cursor of the text input to the front of the …\nProduces an Operation that selects all the content of the …\nSelects all the content of the text input.\nAn absolute height in logical pixels.\nAdvanced text shaping and font fallback.\nNo shaping and no font fallback.\nThe theme catalog of a Text.\nThe item class of this Catalog.\nWraps at the glyph level.\nThe height of a line of text in a paragraph.\nNo wrapping.\nA factor of the size of the text.\nThe shaping strategy of some text.\nThe internal state of a Text widget.\nThe appearance of some text.\nA styling function for a Text.\nA bunch of text.\nWraps at the word level.\nWraps at the word level, or fallback to glyph level if a …\nThe wrapping strategy of some text.\nText with the default base color.\nThe Color of the text.\nText conveying some negative information, like an error.\nThe default text styling; color is inherited.\nThe default class produced by this Catalog.\nDraws text using the same logic as the Text widget.\nProduces the layout::Node of a Text widget.\nText conveying some important information, like an action.\nText conveying some secondary information, like a footnote.\nThe Style of a class with the given status.\nText conveying some positive information, like a …\nNo meaningful internal state.\nSome meaningful internal state.\nThe internal State of a widget.\nThe identifier of some widget state.\nA persistent state widget tree.\nThe children of the root widget of the Tree.\nReconciles the current_children with the provided list of …\nDowncasts the State to T and returns a mutable reference …\nDowncasts the State to T and returns a reference to it.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCreates a new State.\nCreates a Tag for a state of type T.\nThe State of the Tree.\nCreates a Tag for a stateless widget.\nThe tag of the Tree.\nAlignment on the axis of a container.\nAlign bottom\nAlign at the center of the axis.\nHorizontally centered\nVertically centered\nAlign at the end of the axis.\nThe horizontal Alignment of some resource.\nAlign left\nAlign right\nAlign at the start of the axis.\nAlign top\nThe vertical Alignment of some resource.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nThe animation of some particular state.\nDefines a float representation for arbitrary types\nA type implementing Interpolable can be used with …\nReturns the argument unchanged.\nCalls U::from(self).\nThe underlying definition and configuration of an iced …\nThe title logic of some Application.\nThe update logic of some Application.\nThe view logic of some Application.\nSets the Settings::antialiasing of the Application.\nCreates an iced Application given its title, update, and …\nSets the window::Settings::position to …\nSets the window::Settings::decorations of the Application.\nSets the default Font of the Application.\nSets the executor of the Application.\nSets the window::Settings::exit_on_close_request of the …\nAdds a font to the list of fonts that will be loaded at …\nReturns the argument unchanged.\nCalls U::from(self).\nSets the window::Settings::level of the Application.\nSets the window::Settings::position of the Application.\nSets the window::Settings::resizable of the Application.\nRuns the Application.\nRuns the Application with a closure that creates the …\nSets the scale factor of the Application.\nSets the Settings that will be used to run the Application.\nSets the style logic of the Application.\nSets the subscription logic of the Application.\nSets the theme logic of the Application.\nProduces the title of the Application.\nSets the window::Settings::transparent of the Application.\nProcesses the message and updates the state of the …\nProduces the widget of the Application.\nSets the window::Settings of the Application.\nSets the window::Settings::size of the Application.\nA border.\nThe border radii for the corners of a graphics primitive …\nCreates a new Radius with the given value as bottom left …\nSets the bottom left and bottom right values of the Radius.\nCreates a new Radius with the given bottom left value.\nSets the bottom left value of the Radius.\nBottom left radius\nCreates a new Radius with the given bottom right value.\nSets the bottom right value of the Radius.\nBottom right radius\nCreates a new Border with the given Color.\nThe color of the border.\nReturns the argument unchanged.\nCalls U::from(self).\nCreates a new Radius with the given value as top left and …\nSets the top left and bottom left values of the Radius.\nCreates a new Radius with the same value for each corner.\nCreates a new Radius with the same value for each corner.\nThe Radius of the border.\nCreates a new Radius with the given value as top right and …\nSets the top right and bottom right values of the Radius.\nCreates a new Border with the given Radius.\nCreates a new Radius with the given value as top left and …\nSets the top left and top right values of the Radius.\nCreates a new Radius with the given top left value.\nSets the top left value of the Radius.\nTop left radius\nCreates a new Radius with the given top right value.\nSets the top right value of the Radius.\nTop right radius\nCreates a new Border with the given width.\nThe width of the border.\nRead the current contents of the clipboard.\nRead the current contents of the primary clipboard.\nWrite the given contents to the clipboard.\nWrite the given contents to the primary clipboard.\nThe underlying definition and configuration of an iced …\nThe title logic of some Daemon.\nThe view logic of some Daemon.\nSets the Settings::antialiasing of the Daemon.\nCreates an iced Daemon given its title, update, and view …\nSets the default Font of the Daemon.\nSets the executor of the Daemon.\nAdds a font to the list of fonts that will be loaded at …\nReturns the argument unchanged.\nCalls U::from(self).\nRuns the Daemon.\nRuns the Daemon with a closure that creates the initial …\nSets the scale factor of the Daemon.\nSets the Settings that will be used to run the Daemon.\nSets the style logic of the Daemon.\nSets the subscription logic of the Daemon.\nSets the theme logic of the Daemon.\nProduces the title of the Daemon.\nProduces the widget of the Daemon.\nThe Event was handled and processed by a widget.\nA user interface event.\nThe Event was NOT handled by any widget.\nAn input method event\nA keyboard event\nA mouse event\nThe status of an Event after being processed.\nA touch event\nA window event\nReturns the argument unchanged.\nCalls U::from(self).\nReturns a Subscription to all the ignored runtime events.\nCreates a Subscription that produces a message for every …\nCreates a Subscription that notifies of custom application …\nCreates a Subscription that listens and filters all the …\nMerges two Status into one.\nA default cross-platform executor.\nA type that can run futures.\nRuns the given closure inside the Executor.\nCreates a new Executor.\nSpawns a future in the Executor.\nGlyphs in cursive fonts generally use a more informal …\nAn error while loading a font.\nA font family.\nFantasy fonts are primarily decorative or expressive fonts …\nA font.\nThe sole criterion of a monospace font is that all glyphs …\nThe name of a font family of choice.\nGlyphs in sans-serif fonts, as the term is used in CSS, …\nSerif fonts represent the formal text style for a script.\nThe width of some text.\nThe style of some text.\nThe weight of some text.\nThe Family of the Font.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nLoad a font from its bytes.\nThe Stretch of the Font.\nThe Style of the Font.\nThe Weight of the Font.\nA point along the gradient vector where the specified color…\nA fill which transitions colors progressively along a …\nA linear gradient.\nA linear gradient interpolates colors along a direction at …\nAdds a new ColorStop, defined by an offset and a color, to …\nAdds multiple ColorStops to the gradient.\nHow the Gradient is angled within its bounds.\nThe color of the gradient at the specified offset.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCreates a new Linear gradient with the given angle in …\nOffset along the gradient vector.\nScales the alpha channel of the Linear gradient by the …\nColorStops along the linear gradient path.\nThe “alt” key.\nThe “command” key.\nThe “control” key.\nA key string that corresponds to the character typed by …\nA keyboard event.\nA key on the keyboard.\nA keyboard key was pressed.\nA keyboard key was released.\nThe “windows” key on Windows, “command” key on …\nThe left side of the keyboard.\nThe location of a key on the keyboard.\nThe current state of the keyboard modifiers.\nThe keyboard modifiers have changed.\nA key with an established name.\nThe numpad of the keyboard.\nThe right side of the keyboard.\nThe “shift” key.\nThe standard group of keys on the keyboard.\nAn unidentified key.\nGet a flags value with all known bits set.\nReturns true if the ALT key is pressed in the Modifiers.\nConvert Key::Character(SmolStr) to Key::Character(&str) so …\nThe bitwise and (&) of the bits in two flags values.\nThe bitwise and (&) of the bits in two flags values.\nThe bitwise or (|) of the bits in two flags values.\nThe bitwise or (|) of the bits in two flags values.\nGet the underlying bits value.\nThe bitwise exclusive-or (^) of the bits in two flags …\nThe bitwise exclusive-or (^) of the bits in two flags …\nReturns true if a “command key” is pressed in the …\nThe bitwise negation (!) of the bits in a flags value, …\nWhether all set bits in a source flags value are also set …\nReturns true if the CTRL key is pressed in the Modifiers.\nThe intersection of a source flags value with the …\nGet a flags value with all bits unset.\nThe bitwise or (|) of the bits in each flags value.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nConvert from a bits value.\nConvert from a bits value exactly.\nConvert from a bits value, unsetting any unknown bits.\nThe bitwise or (|) of the bits in each flags value.\nGet a flags value with the bits of a flag with the given …\nThe bitwise or (|) of the bits in two flags values.\nThe bitwise and (&) of the bits in two flags values.\nWhether any set bits in a source flags value are also set …\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nWhether all known bits in this flags value are set.\nWhether all bits in this flags value are unset.\nYield a set of contained flags values.\nYield a set of contained named flags values.\nReturns true if the “jump key” is pressed in the …\nIdentify keyboard keys.\nReturns true if the LOGO key is pressed in the Modifiers.\nReturns true if the “command key” is pressed on a …\nThe bitwise negation (!) of the bits in a flags value, …\nListens to keyboard key presses and calls the given …\nListens to keyboard key releases and calls the given …\nThe intersection of a source flags value with the …\nCall insert when value is true or remove when value is …\nReturns true if the SHIFT key is pressed in the Modifiers.\nThe intersection of a source flags value with the …\nThe intersection of a source flags value with the …\nThe bitwise exclusive-or (^) of the bits in two flags …\nThe bitwise exclusive-or (^) of the bits in two flags …\nThe bitwise or (|) of the bits in two flags values.\nThe key pressed.\nThe key released.\nThe location of the key.\nThe location of the key.\nThe key pressed with all keyboard modifiers applied, …\nThe key released with all keyboard modifiers applied, …\nThe state of the modifier keys.\nThe state of the modifier keys.\nThe physical key pressed.\nThe physical key released.\nThe text produced by the key press, if any.\nSwitch the input mode on an external AVR (audio/video …\nToggle the power on an external AVR (audio/video …\nThe Accept (Commit, OK) key. Accept current option or …\nRedo or repeat an action.\nFound on Sun’s USB keyboard.\nInitiate the multi-candidate mode.\nThe Alt (Alternative) key.\nThe Alternate Graphics (AltGr or AltGraph) key.\nAlt, Option, or ⌥.\nAlt, Option, or ⌥. This is labeled AltGr on many …\nAn Android “scancode”.\nThe Application switch key, which provides a list of …\nNavigate or traverse downward. (KEYCODE_DPAD_DOWN)\n↓\nNavigate or traverse leftward. (KEYCODE_DPAD_LEFT)\n←\nNavigate or traverse rightward. (KEYCODE_DPAD_RIGHT)\n→\nNavigate or traverse upward. (KEYCODE_DPAD_UP)\n↑\nThe Attention (Attn) key.\nAdjust audio balance leftward. (VK_AUDIO_BALANCE_LEFT)\nAdjust audio balance rightward. (VK_AUDIO_BALANCE_RIGHT)\nDecrease audio bass boost or cycle down through bass boost …\nToggle bass boost on/off. (APPCOMMAND_BASS_BOOST)\nIncrease audio bass boost or cycle up through bass boost …\nAdjust audio fader towards front. (VK_FADER_FRONT)\nAdjust audio fader towards rear. (VK_FADER_REAR)\nAdvance surround audio mode to next available mode. (…\nDecrease treble. (APPCOMMAND_TREBLE_DOWN)\nIncrease treble. (APPCOMMAND_TREBLE_UP)\nDecrease audio volume. (APPCOMMAND_VOLUME_DOWN, …\nToggle between muted state and prior volume level. (…\nIncrease audio volume. (APPCOMMAND_VOLUME_UP, …\n` on a US keyboard. This is also called a backtick or …\nUsed for both the US \\ (on the 101-key layout) and also …\nUsed to remove the character to the left of the cursor. …\nBackspace or ⌫. Labeled Delete on Apple keyboards.\n[ on a US keyboard.\n] on a US keyboard.\nThe Brightness Down key. Typically controls the display …\nThe Brightness Up key. Typically controls the display …\nNavigate to previous content or page in current history. (…\nSome laptops place this key to the left of the ↑ key.\nOpen the list of browser favorites. (…\nNavigate to next content or page in current history. (…\nSome laptops place this key to the right of the ↑ key.\nGo to the user’s preferred home page. (…\nThe “home” button on Android.\nRefresh the current page or content. (…\nCall up the user’s preferred search page. (…\nStop loading the current page or content. (…\nThe Call key. (KEYCODE_CALL)\nThe Camera key. (KEYCODE_CAMERA)\nThe Camera focus key. (KEYCODE_FOCUS)\nThe Caps Lock (Capital) key.\nCapsLock or ⇪\nSelect next (numerically or logically) lower channel. (…\nSelect next (numerically or logically) higher channel. (…\nA key string that corresponds to the character typed by …\nRemove the currently selected input.\nClose the current document or message (Note: This …\nToggle the display of Closed Captions. (VK_CC, …\nCode representing the location of a physical key.\nA known key code\nInitiate the Code Input mode to allow characters to be …\nGeneral purpose color-coded media function key, as index 0 …\nGeneral purpose color-coded media function key, as index 1 …\nGeneral purpose color-coded media function key, as index 2 …\nGeneral purpose color-coded media function key, as index 3 …\nGeneral purpose color-coded media function key, as index 4 …\nGeneral purpose color-coded media function key, as index 5 …\n, on a US keyboard.\nThe Compose key, also known as “Multi_key” on the X …\nShow the application’s context menu. This key is …\nThe application context menu key, which is typically found …\nThe Control or Ctrl key.\nControl or ⌃\nControl or ⌃\nConvert the current input method sequence.\nJapanese: 変 (henkan)\nCopy the current selection. (APPCOMMAND_COPY)\nFound on Sun’s USB keyboard.\nThe Cursor Select key.\nCut the current selection. (APPCOMMAND_CUT)\nFound on Sun’s USB keyboard.\nSelect Digital Video Rrecorder. (KEYCODE_DVR)\nUsed to delete the character to the right of the cursor. …\n⌦. The forward delete key. Note that on Apple keyboards, …\n0 on a US keyboard.\n1 on a US keyboard.\n2 on a US keyboard.\n3 on a US keyboard.\n4 on a US keyboard.\n5 on a US keyboard.\n6 on a US keyboard.\n7 on a US keyboard.\n8 on a US keyboard.\n9 on a US keyboard.\nAdjust brightness of device, by toggling between or …\nSwap video sources. (VK_DISPLAY_SWAP)\nThe Eisu key. This key may close the IME, but its purpose …\nToggle removable media to eject (open) and insert (close) …\nEject or ⏏. This key is placed in the function section …\nThe End key, used with keyboard entry to go to the end of …\nPage Down, End, or ↘\nThe End Call key. (KEYCODE_ENDCALL)\nThe Enter or key. Used to activate current selection …\nEnter or ↵. Labeled Return on Apple keyboards.\n= on a US keyboard.\nThe Erase to End of Field key. This key deletes all …\nThe Esc key. This key was originally used to initiate an …\nEsc or ⎋\nThe Extend Selection (Exsel) key.\nExit the current application. (VK_EXIT)\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nClear program or content stored as favorite 0. (…\nClear program or content stored as favorite 1. (…\nClear program or content stored as favorite 2. (…\nClear program or content stored as favorite 3. (…\nSelect (recall) program or content stored as favorite 0. (…\nSelect (recall) program or content stored as favorite 1. (…\nSelect (recall) program or content stored as favorite 2. (…\nSelect (recall) program or content stored as favorite 3. (…\nStore current program or content as favorite 0. (…\nStore current program or content as favorite 1. (…\nStore current program or content as favorite 2. (…\nStore current program or content as favorite 3. (…\nThe Final Mode Final key used on some Asian keyboards, to …\nOpen the Find dialog. (APPCOMMAND_FIND)\nFound on Sun’s USB keyboard.\nThe Function switch Fn key. Activating this key …\nFn This is typically a hardware key that does not generate …\nThe Function-Lock (FnLock or F-Lock) key. Activating this …\nFLock or FnLock. Function Lock key. Found on the Microsoft …\nThe Back key. (KEYCODE_BACK)\nThe Home key, which goes to the phone’s main screen. (…\nSwitch to the first character group. (ISO/IEC 9995)\nSwitch to the last character group. (ISO/IEC 9995)\nSwitch to the next character group. (ISO/IEC 9995)\nSwitch to the previous character group. (ISO/IEC 9995)\nToggle display of program or content guide. (VK_GUIDE, …\nIf guide is active and displayed, then display next …\nIf guide is active and displayed, then display previous …\nToggle between Hangul and English modes.\nThe (Half-Width) Characters key.\nThe Headset Hook key. (KEYCODE_HEADSETHOOK)\nOpen a help dialog or toggle display of help information. (…\nHelp. Not present on standard PC keyboards.\nThe Hibernate key. This key saves the current state of the …\nThe Hiragana (Japanese Kana characters) key.\nUse for dedicated ひらがな key found on some Japanese …\nThe Hiragana/Katakana toggle key. (…\nThe Home key, used with keyboard entry, to go to start of …\nHome or ↖\nToggle display of information about currently selected …\nToggle between text modes for insertion or overtyping. (…\nInsert or Ins. Not present on Apple keyboards.\nToggle instant replay. (VK_INSTANT_REPLAY)\nLocated between the left Shift and Z keys. Labeled \\ on a …\nLocated between the / and right Shift keys. Labeled \\ (ro) …\nLocated between the = and Backspace keys. Labeled ¥ (yen) …\nThe Kana Mode (Kana Lock) key. This key is used to enter …\nJapanese: カタカナ/ひらがな/ローマ字 …\nThe Kanji (Japanese name for ideographic characters of …\nThe Katakana (Japanese Kana characters) key.\nUse for dedicated カタカナ key found on some Japanese …\nA key on the keyboard.\nThe 11 key found on media numpads that have buttons from 1 …\nThe 12 key found on media numpads that have buttons from 1 …\na on a US keyboard. Labeled q on an AZERTY (e.g., French) …\nb on a US keyboard.\nc on a US keyboard.\nd on a US keyboard.\ne on a US keyboard.\nf on a US keyboard.\ng on a US keyboard.\nh on a US keyboard.\ni on a US keyboard.\nj on a US keyboard.\nk on a US keyboard.\nl on a US keyboard.\nm on a US keyboard.\nn on a US keyboard.\no on a US keyboard.\np on a US keyboard.\nq on a US keyboard. Labeled a on an AZERTY (e.g., French) …\nr on a US keyboard.\ns on a US keyboard.\nt on a US keyboard.\nu on a US keyboard.\nv on a US keyboard.\nw on a US keyboard. Labeled z on an AZERTY (e.g., French) …\nx on a US keyboard.\ny on a US keyboard. Labeled z on a QWERTZ (e.g., German) …\nz on a US keyboard. Labeled w on an AZERTY (e.g., French) …\nKorean: HangulMode 한/영 (han/yeong)\nKorean: Hanja 한 (hanja)\nJapanese (word-processing keyboard): Katakana\nJapanese (word-processing keyboard): Hiragana\nJapanese (word-processing keyboard): Zenkaku/Hankaku\nSometimes labelled My Computer on the keyboard\nSometimes labelled Calculator on the keyboard\nThe first generic “LaunchApplication” key. This is …\nThe second generic “LaunchApplication” key. This is …\nThe “Calendar” key. (KEYCODE_CALENDAR)\nThe “Contacts” key. (KEYCODE_CONTACTS)\nThe “Mail” key. (APPCOMMAND_LAUNCH_MAIL)\nThe “Media Player” key. (APPCOMMAND_LAUNCH_MEDIA_SELECT…\nLaunch linked content, if available and appropriate. (…\nList the current program. (VK_LIST)\nToggle display listing of currently available live content …\nLock or unlock current content or program. (VK_LOCK)\nA macOS “scancode”.\nOpen an editor to forward the current message. (…\nOpen an editor to reply to the current message. (…\nSend the current message. (APPCOMMAND_SEND_MAIL)\nToggle between manner mode state: silent, vibrate, ring, …\nShow a list of media applications: audio/video players and …\nAudio track key. (KEYCODE_MEDIA_AUDIO_TRACK)\nClose the current media, for example to close a CD or DVD …\nInitiate or continue forward playback at faster than …\nSelect previously selected channel or media. (VK_LAST, …\nPause the currently playing media. (APPCOMMAND_MEDIA_PAUSE…\nInitiate or continue media playback at normal speed, if …\nToggle media between play and pause states. (…\nInitiate or resume recording of currently selected media. (…\nInitiate or continue reverse playback at faster than …\nSkip backward to next content or program. (…\nSkip forward to next content or program. (VK_SKIP, …\nStep backward to next content or program. (…\nStep forward to next content or program. (…\nStop media playing, pausing, forwarding, rewinding, or …\nMedia top menu. (KEYCODE_MEDIA_TOP_MENU)\nSeek to next media or program track. (…\nSeek to previous media or program track. (…\nToggle the microphone on/off. (APPCOMMAND_MIC_ON_OFF_TOGGLE…\nDecrease microphone volume. (…\nMute the microphone. (APPCOMMAND_MICROPHONE_VOLUME_MUTE, …\nIncrease microphone volume. (…\n- on a US keyboard.\nToggle between or cycle through input modes of IMEs.\nA named key.\nA key with an established name.\nContains the platform-native physical key identifier.\nNavigate in. (KEYCODE_NAVIGATE_IN)\nNavigate to next key. (KEYCODE_NAVIGATE_NEXT)\nNavigate out. (KEYCODE_NAVIGATE_OUT)\nNavigate to previous key. (KEYCODE_NAVIGATE_PREVIOUS)\nOpen a new document or message. (APPCOMMAND_NEW)\nCycle to next favorite channel (in favorites list). (…\nCycle to next user profile (if there are multiple user …\nAccept current input method sequence without conversion in …\nJapanese: 無変換 (muhenkan)\nThe Notification key. (KEYCODE_NOTIFICATION)\nThe NumLock or Number Lock key. Used to toggle numpad mode …\nOn the Mac, this is used for the numpad Clear key.\n0 Ins on a keyboard. 0 on a phone or remote control\n1 End on a keyboard. 1 or 1 QZ on a phone or remote control\n2 ↓ on a keyboard. 2 ABC on a phone or remote control\n3 PgDn on a keyboard. 3 DEF on a phone or remote control\n4 ← on a keyboard. 4 GHI on a phone or remote control\n5 on a keyboard. 5 JKL on a phone or remote control\n6 → on a keyboard. 6 MNO on a phone or remote control\n7 Home on a keyboard. 7 PQRS or 7 PRS on a phone or remote …\n8 ↑ on a keyboard. 8 TUV on a phone or remote control\n9 PgUp on a keyboard. 9 WXYZ or 9 WXY on a phone or remote …\n+\nFound on the Microsoft Natural Keyboard.\nC or A (All Clear). Also for use with numpads that have a …\nC (Clear Entry)\n, (thousands separator). For locales where the thousands …\n. Del. For locales where the decimal separator is “,” …\n/\n=\n# on a phone or remote control device. This key is …\nM Add current entry to the value stored in memory.\nM Clear the value stored in memory.\nM Replace the current entry with the value stored in …\nM Replace the value stored in memory with the current …\nM Subtract current entry from the value stored in memory.\n on a keyboard. For use with numpads that provide …\n( Found on the Microsoft Natural Keyboard.\n) Found on the Microsoft Natural Keyboard.\n* on a phone or remote control device.\n-\nAccess on-demand content or programs. (VK_ON_DEMAND)\nOpen an existing document or message. (APPCOMMAND_OPEN)\nFound on Sun’s USB keyboard.\nScroll down or display next page of content.\nPage Down, PgDn, or ⇟\nScroll up or display previous page of content.\nPage Up, PgUp, or ⇞\nPairing key to pair devices. (KEYCODE_PAIRING)\nThe Paste key. (APPCOMMAND_PASTE)\nFound on Sun’s USB keyboard.\nPause the current state or application (as appropriate).\nPause Break\n. on a US keyboard.\nRepresents the location of a physical key.\nMove picture-in-picture window down. (VK_PINP_DOWN)\nMove picture-in-picture window. (VK_PINP_MOVE)\nToggle display of picture-in-picture window. (…\nMove picture-in-picture window up. (VK_PINP_UP)\nPlay or resume the current state or application (as …\nDecrease media playback speed. (VK_PLAY_SPEED_DOWN)\nReset playback to normal speed. (VK_PLAY_SPEED_RESET)\nIncrease media playback speed. (VK_PLAY_SPEED_UP)\nToggle power state. (KEYCODE_POWER) Note: Note: Some …\nThis key is placed in the function section on some Apple …\nThe PowerOff key. Sometime called PowerDown.\nPrint the current document or message. (APPCOMMAND_PRINT)\nInitiate print-screen function.\nPrtScr SysRq or Print Screen\nThe properties (Props) key.\nFound on Sun’s USB keyboard.\n’ on a US keyboard.\nToggle random media or content shuffle mode. (…\nNot a physical key, but this key code is sent when the …\nToggle or cycle between media recording speeds. (…\nRedo the last action. (APPCOMMAND_REDO)\nToggle RF (radio frequency) input bypass mode (pass RF …\nThe Roman characters function key.\nSwitch the input mode on an external STB (set top box). (…\nToggle the power on an external STB (set top box). (…\nSave the current document or message. (APPCOMMAND_SAVE)\nToggle scan channels mode. (VK_SCAN_CHANNELS_TOGGLE)\nAdvance display screen mode to next available mode. (…\nToggle between scrolling and cursor movement modes.\nScroll Lock\nFound on Sun’s USB keyboard.\n; on a US keyboard.\nToggle display of device settings screen. (VK_SETTINGS, …\nUsed to enable shift modifier function for interpreting …\nShift or ⇧\nShift or ⇧\n/ on a US keyboard.\nGeneral purpose virtual function key, as index 1.\nGeneral purpose virtual function key, as index 2.\nGeneral purpose virtual function key, as index 3.\nGeneral purpose virtual function key, as index 4.\nUsed in text to insert a space between words. Usually …\n (space)\nShow correction list when a word is incorrectly …\nToggle between dictation mode and command/control mode. (…\nSpellcheck the current document or selection. (…\nToggle split screen mode. (VK_SPLIT_SCREEN_TOGGLE)\nThe Standby key. This key turns off the display and places …\nToggle display of subtitles, if available. (VK_SUBTITLE)\nUsed to enable “super” modifier function for …\nThe Windows, ⌘, Command, or other OS symbol key.\nThe Windows, ⌘, Command, or other OS symbol key.\nThe Symbol modifier key (used on some virtual keyboards).\nSwitch to viewing TV. (KEYCODE_TV)\nTV 3D Mode. (KEYCODE_3D_MODE)\nToggle between antenna and cable input. (…\nAudio description. (KEYCODE_TV_AUDIO_DESCRIPTION)\nAudio description mixing volume down. (…\nAudio description mixing volume up. (…\nContents menu. (KEYCODE_TV_CONTENTS_MENU)\nContents menu. (KEYCODE_TV_DATA_SERVICE)\nSwitch the input mode on an external TV. (KEYCODE_TV_INPUT)\nSwitch to component input #1. (KEYCODE_TV_INPUT_COMPONENT_1…\nSwitch to component input #2. (KEYCODE_TV_INPUT_COMPONENT_2…\nSwitch to composite input #1. (KEYCODE_TV_INPUT_COMPOSITE_1…\nSwitch to composite input #2. (KEYCODE_TV_INPUT_COMPOSITE_2…\nSwitch to HDMI input #1. (KEYCODE_TV_INPUT_HDMI_1)\nSwitch to HDMI input #2. (KEYCODE_TV_INPUT_HDMI_2)\nSwitch to HDMI input #3. (KEYCODE_TV_INPUT_HDMI_3)\nSwitch to HDMI input #4. (KEYCODE_TV_INPUT_HDMI_4)\nSwitch to VGA input #1. (KEYCODE_TV_INPUT_VGA_1)\nMedia context menu. (KEYCODE_TV_MEDIA_CONTEXT_MENU)\nToggle network. (KEYCODE_TV_NETWORK)\nNumber entry. (KEYCODE_TV_NUMBER_ENTRY)\nToggle the power on an external TV. (KEYCODE_TV_POWER)\nRadio. (KEYCODE_TV_RADIO_SERVICE)\nSatellite. (KEYCODE_TV_SATELLITE)\nBroadcast Satellite. (KEYCODE_TV_SATELLITE_BS)\nCommunication Satellite. (KEYCODE_TV_SATELLITE_CS)\nToggle between available satellites. (…\nAnalog Terrestrial. (KEYCODE_TV_TERRESTRIAL_ANALOG)\nDigital Terrestrial. (KEYCODE_TV_TERRESTRIAL_DIGITAL)\nTimer programming. (KEYCODE_TV_TIMER_PROGRAMMING)\nThe Horizontal Tabulation Tab key.\nTab or ⇥\nToggle display of teletext, if available (VK_TELETEXT, …\nUndo the last action. (APPCOMMAND_UNDO)\nFound on Sun’s USB keyboard.\nAn unidentified key.\nAn unidentified code.\nThis variant is used when the key cannot be translated to …\nAdvance video mode to next available mode. (…\nThe WakeUp key. (KEYCODE_WAKEUP)\nA Windows “scancode”.\nCause device to identify itself in some manner, e.g., …\nAn XKB “keycode”.\nThe Zenkaku (Full-Width) Characters key.\nThe Zenkaku/Hankaku (full-width/half-width) toggle key. (…\nThe ZoomIn key. (KEYCODE_ZOOM_IN)\nThe ZoomOut key. (KEYCODE_ZOOM_OUT)\nToggle between full-screen and scaled content, or alter …\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nThe cursor has a defined position.\nThe back mouse button.\nThe button of a mouse.\nA mouse button was pressed.\nA mouse button was released.\nThe mouse cursor state.\nThe mouse cursor entered the window.\nThe mouse cursor left the window.\nThe mouse cursor was moved\nA mouse event.\nThe forward mouse button.\nThe interaction of a mouse cursor.\nThe left mouse button.\nThe cursor has a defined position, but it’s levitating …\nA line-based scroll movement\nThe middle (wheel) button.\nSome other button.\nA pixel-based scroll movement\nThe right mouse button.\nA scroll movement.\nThe cursor is currently unavailable (i.e. out of bounds or …\nThe mouse wheel was scrolled.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns true if the Cursor is levitating over a layer …\nReturns true if the Cursor is over the given bounds.\nBrings the Cursor back to the current layer.\nMakes the Cursor levitate over a layer above.\nReturns the absolute position of the Cursor, if available.\nReturns the relative position of the Cursor from the given …\nReturns the relative position of the Cursor inside the …\nReturns the absolute position of the Cursor, if available …\nThe scroll movement.\nThe new position of the mouse cursor\nThe number of horizontal lines scrolled\nThe number of horizontal pixels scrolled\nThe number of vertical lines scrolled\nThe number of vertical pixels scrolled\nA generic overlay.\nBuild and show dropdown menus.\nThe theme catalog of a Menu.\nThe item class of the Catalog.\nA list of selectable options.\nThe local state of a Menu.\nThe appearance of a Menu.\nA styling function for a Menu.\nThe Background of the menu.\nThe Border of the menu.\nThe default style of the list of a Menu.\nThe default class produced by the Catalog.\nThe default class for the scrollable of the Menu.\nThe default class for the scrollable of the Menu.\nSets the font of the Menu.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCreates a new Menu with the given State, a list of options,\nCreates a new State for a Menu.\nTurns the Menu into an overlay Element at the given target …\nSets the Padding of the Menu.\nThe background Color of a selected option in the menu.\nThe text Color of a selected option in the menu.\nThe Style of a class with the given status.\nThe text Color of the menu.\nSets the text text::LineHeight of the Menu.\nSets the text::Shaping strategy of the Menu.\nSets the text size of the Menu.\nSets the width of the Menu.\nAn amount of space to pad for each side of a box\nCreate a Padding that is equal on all sides.\nCreate some bottom Padding.\nBottom padding\nCreate some left Padding.\nLeft padding\nCreate some right Padding.\nRight padding\nCreate some top Padding.\nTop padding\nCreates a new Stream that produces the items sent from a …\nCreates a new Stream that produces the items sent from a …\nContains information about the system (e.g. system name, …\nDetailed processor model information\nThe number of physical cores on the processor\nQuery for available system information.\nReturns the argument unchanged.\nModel information for the active graphics adapter\nUnderlying graphics backend for rendering\nCalls U::from(self).\nTotal RAM size, in bytes\nMemory used by this process, in bytes\nOperating system kernel version\nThe operating system name\nShort operating system version number\nLong operating system version\nA handle to a Task that can be used for aborting it.\nA set of concurrent actions to be performed by the iced …\nAborts the Task of this Handle.\nReturns a new Handle that will call Handle::abort whenever …\nReturns the argument unchanged.\nCalls U::from(self).\nReturns true if the Task of this Handle has been aborted.\nThe default blank style of a Theme.\nThe built-in Catppuccin Frappé variant of a Palette.\nThe built-in Catppuccin Latte variant of a Palette.\nThe built-in Catppuccin Macchiato variant of a Palette.\nThe built-in Catppuccin Mocha variant of a Palette.\nThe built-in Catppuccin Frappé variant.\nThe built-in Catppuccin Latte variant.\nThe built-in Catppuccin Macchiato variant.\nThe built-in Catppuccin Mocha variant.\nA Theme with a customized Palette.\nA Theme that uses a Custom palette.\nThe built-in dark variant of a Palette.\nThe built-in Dracula variant of a Palette.\nThe built-in dark variant.\nThe built-in Dracula variant.\nThe built-in Ferra variant of a Palette.\nThe built-in Ferra variant:\nThe built-in Gruvbox Dark variant of a Palette.\nThe built-in Gruvbox Light variant of a Palette.\nThe built-in Gruvbox Dark variant.\nThe built-in Gruvbox Light variant.\nThe built-in Kanagawa Dragon variant of a Palette.\nThe built-in Kanagawa Lotus variant of a Palette.\nThe built-in Kanagawa Wave variant of a Palette.\nThe built-in Kanagawa Dragon variant.\nThe built-in Kanagawa Lotus variant.\nThe built-in Kanagawa Wave variant.\nThe built-in light variant of a Palette.\nThe built-in light variant.\nThe built-in Moonfly variant of a Palette.\nThe built-in Moonfly variant.\nThe built-in Nightfly variant of a Palette.\nThe built-in Nord variant of a Palette.\nThe built-in Nightfly variant.\nThe built-in Nord variant.\nThe built-in Oxocarbon variant of a Palette.\nThe built-in Oxocarbon variant.\nA color palette.\nThe built-in Solarized Dark variant of a Palette.\nThe built-in Solarized Light variant of a Palette.\nThe built-in Solarized Dark variant.\nThe built-in Solarized Light variant.\nThe base style of a Theme.\nThe built-in Tokyo Night variant of a Palette.\nThe built-in Tokyo Night Light variant of a Palette.\nThe built-in Tokyo Night Storm variant of a Palette.\nA built-in theme.\nThe built-in Tokyo Night variant.\nThe built-in Tokyo Night Light variant.\nThe built-in Tokyo Night Storm variant.\nThe background Color of the Palette.\nThe background Color of the application.\nReturns the default base Style of a Theme.\nThe danger Color of the Palette.\nThe default Style of a built-in Theme.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCreates a Custom theme from the given Palette.\nDefine the colors of a theme.\nThe primary Color of the Palette.\nThe success Color of the Palette.\nThe text Color of the Palette.\nThe default text Color of the application.\nThe warning Color of the Palette.\nCreates a Custom theme from the given Palette with a …\nA set of background colors.\nA set of danger colors.\nThe built-in Catppuccin Frappé variant of an Extended …\nThe built-in Catppuccin Latte variant of an Extended …\nThe built-in Catppuccin Macchiato variant of an Extended …\nThe built-in Catppuccin Mocha variant of an Extended …\nThe built-in dark variant of an Extended palette.\nThe built-in Dracula variant of an Extended palette.\nThe built-in Ferra variant of an Extended palette.\nThe built-in Gruvbox Dark variant of an Extended palette.\nThe built-in Gruvbox Light variant of an Extended palette.\nThe built-in Kanagawa Dragon variant of an Extended …\nThe built-in Kanagawa Lotus variant of an Extended palette.\nThe built-in Kanagawa Wave variant of an Extended palette.\nThe built-in light variant of an Extended palette.\nThe built-in Moonfly variant of an Extended palette.\nThe built-in Nightfly variant of an Extended palette.\nThe built-in Nord variant of an Extended palette.\nThe built-in Oxocarbon variant of an Extended palette.\nThe built-in Solarized Dark variant of an Extended palette.\nThe built-in Solarized Light variant of an Extended …\nThe built-in Tokyo Night variant of an Extended palette.\nThe built-in Tokyo Night variant of an Extended palette.\nThe built-in Tokyo Night Storm variant of an Extended …\nAn extended set of colors generated from a Palette.\nA pair of background and text colors.\nA color palette.\nA set of primary colors.\nA set of secondary colors.\nA set of success colors.\nA set of warning colors.\nThe background Color of the Palette.\nThe set of background colors.\nThe base background color.\nThe base primary color.\nThe base secondary color.\nThe base success color.\nThe base warning color.\nThe base danger color.\nThe background color.\nThe danger Color of the Palette.\nThe set of danger colors.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nGenerates an Extended palette from a simple Palette.\nGenerates a set of Primary colors from the base, …\nGenerates a set of Secondary colors from the base and text …\nGenerates a set of Success colors from the base, …\nGenerates a set of Warning colors from the base, …\nGenerates a set of Danger colors from the base, …\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nWhether the palette is dark or not.\nCreates a new Pair from a background Color and some text …\nGenerates a set of Background colors from the base and …\nThe primary Color of the Palette.\nThe set of primary colors.\nThe set of secondary colors.\nA stronger version of the base background color.\nA stronger version of the base primary color.\nA stronger version of the base secondary color.\nA stronger version of the base success color.\nA stronger version of the base warning color.\nA stronger version of the base danger color.\nThe success Color of the Palette.\nThe set of success colors.\nThe text Color of the Palette.\nThe text color.\nThe warning Color of the Palette.\nThe set of warning colors.\nA weaker version of the base background color.\nA weaker version of the base primary color.\nA weaker version of the base secondary color.\nA weaker version of the base success color.\nA weaker version of the base warning color.\nA weaker version of the base danger color.\nA Duration type to represent a span of time, typically …\nA measurement of a monotonically nondecreasing clock. …\nThe maximum duration.\nThe duration of one microsecond.\nThe duration of one millisecond.\nThe duration of one nanosecond.\nThe duration of one second.\nA duration of zero time.\nComputes the absolute difference between self and other.\nPanics\nPanics\nReturns the total number of whole microseconds contained …\nReturns the total number of whole milliseconds contained …\nReturns the number of milliseconds contained by this …\nReturns the number of milliseconds contained by this …\nReturns the total number of nanoseconds contained by this …\nReturns the number of whole seconds contained by this …\nReturns the number of seconds contained by this Duration …\nReturns the number of seconds contained by this Duration …\nReturns Some(t) where t is the time self + duration if t …\nChecked Duration addition. Computes self + other, …\nChecked Duration division. Computes self / other, …\nReturns the amount of time elapsed from another instant to …\nChecked Duration multiplication. Computes self * other, …\nReturns Some(t) where t is the time self - duration if t …\nChecked Duration subtraction. Computes self - other, …\nCreates a Duration representing the given amount of days.\nDivides Duration by Duration and returns f32.\nDivides Duration by Duration and returns f64.\nDivides Duration by f32.\nDivides Duration by f64.\nReturns the amount of time elapsed from another instant to …\nReturns the amount of time elapsed since this instant.\nReturns a Subscription that produces messages at a set …\nReturns the argument unchanged.\nReturns the argument unchanged.\nCreates a new Duration from the specified number of days.\nCreates a new Duration from the specified number of hours.\nCreates a new Duration from the specified number of …\nCreates a new Duration from the specified number of …\nCreates a new Duration from the specified number of …\nCreates a new Duration from the specified number of …\nCreates a new Duration from the specified number of whole …\nCreates a new Duration from the specified number of …\nCreates a new Duration from the specified number of …\nCreates a new Duration from the specified number of weeks.\nCreates a Duration representing the given amount of hours.\nCalls U::from(self).\nCalls U::from(self).\nReturns true if this Duration spans no time.\nCreates a Duration representing the given amount of …\nCreates a Duration representing the given amount of …\nMultiplies Duration by f32.\nMultiplies Duration by f64.\nCreates a new Duration from the specified number of whole …\nReturns an instant corresponding to “now”.\nReturns a Subscription that runs the given async function …\nSaturating Duration addition. Computes self + other, …\nReturns the amount of time elapsed from another instant to …\nSaturating Duration multiplication. Computes self * other, …\nSaturating Duration subtraction. Computes self - other, …\nCreates a Duration representing the given amount of …\nReturns the amount of time elapsed from another instant to …\nPanics\nPanics\nReturns the fractional part of this Duration, in whole …\nReturns the fractional part of this Duration, in whole …\nReturns the fractional part of this Duration, in …\nThe checked version of from_secs_f32.\nThe checked version of from_secs_f64.\nA touch interaction.\nA unique identifier representing a finger on a touch …\nA touch interaction was ended.\nA touch interaction was canceled.\nAn on-going touch interaction was moved.\nA touch interaction was started.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nA runtime action that can be performed by some widgets.\nA generic widget that produces a message when pressed.\nA widget capable of drawing 2D graphics.\nThe built-in Catppuccin Frappé variant.\nThe built-in Catppuccin Latte variant.\nThe built-in Catppuccin Macchiato variant.\nThe built-in Catppuccin Mocha variant.\nA box that can be checked.\nA container that distributes its contents vertically.\nA widget for searching and selecting a single value from a …\nA reusable, custom widget that uses The Elm Architecture.\nA widget that aligns its contents inside of its boundaries.\nA Theme that uses a Custom palette.\nThe default girth of a ProgressBar.\nThe default height of a Slider.\nThe default size of a Radio button.\nThe default size of a Toggler.\nThe default spacing of a Radio button.\nThe default width of a VerticalSlider.\nThe built-in dark variant.\nThe built-in Dracula variant.\nThe type of event this Component handles internally.\nThe built-in Ferra variant:\nThe built-in Gruvbox Dark variant.\nThe built-in Gruvbox Light variant.\nA frame that displays an image while keeping aspect ratio.\nThe built-in Kanagawa Dragon variant.\nThe built-in Kanagawa Lotus variant.\nThe built-in Kanagawa Wave variant.\nA widget that only rebuilds its contents when necessary.\nThe built-in light variant.\nThe built-in Moonfly variant.\nEmit messages on mouse events.\nThe built-in Nightfly variant.\nThe built-in Nord variant.\nThe built-in Oxocarbon variant.\nA collection of panes distributed using either vertical or …\nA widget for selecting a single value from a list of …\nA widget that positions its contents at some fixed …\nA widget that can generate messages when its content pops …\nThe primary rendering option.\nA bar that displays progress.\nA type of matrix barcode consisting of squares arranged in …\nA circular button representing a choice.\nThe default graphics renderer for iced.\nA widget that is aware of its dimensions.\nA container that distributes its contents horizontally.\nDisplay a horizontal or vertical rule for dividing content.\nA widget that can vertically display an infinite amount of …\nThe secondary (or fallback) rendering option.\nA widget which can render custom shaders with Iced’s wgpu…\nAn horizontal bar and a handle that selects a single value …\nThe built-in Solarized Dark variant.\nThe built-in Solarized Light variant.\nAn amount of empty space.\nA container that displays children on top of each other.\nThe internal state of this Component.\nA vector graphics image.\nA bunch of text.\nA multi-line text input.\nA field that can be filled with text.\nA built-in theme.\nA widget that applies any Theme to its contents.\nA toggler widget.\nThe built-in Tokyo Night variant.\nThe built-in Tokyo Night Light variant.\nThe built-in Tokyo Night Storm variant.\nAn element to display a widget over another.\nAn vertical bar and a handle that selects a single value …\nAligns the contents of the Container to the bottom.\nAligns the contents of the Container to the left.\nAligns the contents of the Container to the right.\nAligns the contents of the Container to the top.\nSets the horizontal alignment of the contents of the Column…\nSets the content alignment for the horizontal axis of the …\nSets the horizontal alignment of the TextInput.\nSets the vertical alignment of the contents of the Row .\nSets the content alignment for the vertical axis of the …\nAnchors the vertical Scrollable direction to the bottom.\nAnchors the horizontal Scrollable direction to the left.\nAnchors the horizontal Scrollable direction to the right.\nAnchors the vertical Scrollable direction to the top.\nSets the Anchor of the horizontal direction of the …\nSets the Anchor of the vertical direction of the Scrollable…\nMarks the Action as “capturing”. See Self::capture.\nSets the distance in Pixels to use in anticipation of the …\nSets the Background of the Themer.\nCreates a new Container that fills all the available space …\nCreates a new Container that fills all the available space …\nCreates a new Container that fills all the available space …\nButtons allow your users to perform actions by pressing …\nCreates a new Button with the provided content.\nCanvases can be leveraged to draw interactive 2D graphics.\nCreates a new Canvas.\nCreates a new “capturing” Action. A capturing Action …\nSets the size of the squares of the grid cell of the QRCode…\nCreates a new Container that fills all the available space …\nCenters the contents in both the horizontal and vertical …\nCreates a new Container that fills all the available space …\nSets the width of the Container and centers its contents …\nCreates a new Container that fills all the available space …\nSets the height of the Container and centers its contents …\nCheckboxes can be used to let users make binary choices.\nCreates a new Checkbox.\nSets the style class of the Button.\nSets the style class of the Checkbox.\nSets the style class of the Container.\nSets the style class of the PaneGrid.\nSets the style class of the PickList.\nSets the style class of the ProgressBar.\nSets the style class of the Radio button.\nSets the style class of the Rule.\nSets the style class of the Scrollable.\nSets the style class of the Slider.\nSets the style class of the TextEditor.\nSets the style class of the TextInput.\nSets the style class of the Toggler.\nSets the style class of the Tooltip.\nSets the style class of the VerticalSlider.\nSets the style class of the Svg.\nSets the style class of the QRCode.\nSets whether the contents of the Column should be clipped …\nSets whether the contents of the Row should be clipped on …\nSets whether the contents of the Button should be clipped …\nSets whether the contents of the Container should be …\nCreates a new Column with the given children.\nCreates a Column with the given children.\nCombo boxes display a dropdown list of searchable and …\nCreates a new ComboBox.\nTurns an implementor of Component into an Element that can …\nContainers let you align a widget inside their boundaries.\nCreates a new Container with the provided content.\nSets the ContentFit of the Svg.\nSets the ContentFit of the Image.\nSets the optional default value for the Slider.\nSets the optional default value for the VerticalSlider.\nSets the Direction of the Scrollable.\nDraws the TextInput with the given Renderer, overriding its\nExtends the Column with the given children.\nExtends the Row with the given children.\nExtends the Stack with the given children.\nSets the FilterMethod of the Image.\nFocuses the next focusable widget.\nFocuses the previous focusable widget.\nSets the Renderer::Font of the text of the Checkbox.\nSets the Renderer::Font of the ComboBox.\nSets the font of the PickList.\nSets the text font of the Radio button.\nSets the Font of the TextEditor.\nSets the Font of the TextInput.\nSets the Renderer::Font of the text of the Toggler\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCreates a new Svg that will display the contents of the …\nCreates a Column from an already allocated Vec.\nCreates a Row from an already allocated Vec.\nCreates a Stack from an already allocated Vec.\nSets the gap between the content and its Tooltip.\nSets the height of the ProgressBar.\nSets the Handle of the PickList.\nSets the height of the Column.\nSets the height of the Pin.\nSets the height of the Row.\nSets the height of the Stack.\nSets the height of the Button.\nSets the height of the Container.\nSets the height of the PaneGrid.\nSets the height of the Scrollable.\nSets the height of the Slider.\nSets the height of the TextEditor.\nSets the height of the VerticalSlider.\nSet the height of the custom Shader.\nSets the height of the Svg.\nSets the height of the Space.\nSets the height of the Image boundaries.\nSets the height of the Canvas.\nHighlights the TextEditor using the given syntax and theme.\nHighlights the TextEditor with the given Highlighter and a …\nCreates a horizontal Rule with the given height.\nMakes the Scrollable scroll horizontally, with default …\nCreates a horizontal Rule with the given height.\nCreates a new Space widget that fills the available …\nDisplays a widget on top of another one, only when the …\nCreates an Element that displays the iced logo with the …\nSets the Icon of the Checkbox.\nSets the text_input::Icon of the ComboBox.\nSets the Icon of the TextInput.\nSets the Id of the Container.\nSets the Id of the Scrollable.\nSets the Id of the TextInput.\nImages display raster graphics in different formats (PNG, …\nCreates a new Image.\nSets the style class of the input of the ComboBox.\nSets the style of the input of the ComboBox.\nThe mouse::Interaction to use when hovering the area.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nConverts the Action into its internal parts.\nSets the key of the Pop widget, for continuity.\nSets the closure to produce key bindings on key presses.\nKeyed widgets can provide hints to ensure continuity.\nCreates a new keyed::Column from an iterator of elements.\nCreates a keyed Column with the given children.\nSets the label of the Toggler.\nLays out the TextInput, overriding its Value if provided.\nCreates a new Lazy widget with the given data Dependency …\nSets the width of the ProgressBar.\nSets the LineHeight of the ComboBox.\nSets the text::LineHeight of the TextEditor.\nSets the text::LineHeight of the TextInput.\nMarkdown widgets can parse and display Markdown.\nDisplay a bunch of Markdown items.\nSets the maximum height of the Container.\nSets the maximum height of the TextEditor.\nSets the maximum width of the Column.\nSets the maximum width of the Container.\nSets the style class of the menu of the ComboBox.\nSets the style class of the Menu.\nSets the style of the menu of the ComboBox.\nSets the style of the Menu.\nSets the minimum height of the TextEditor.\nA container intercepting mouse events.\nCreates an empty Column.\nCreates a MouseArea with the given content.\nCreates a Pin widget with the given content.\nCreates an empty Row.\nCreates an empty Stack.\nCreates an empty Themer that applies the given Theme to …\nCreates a new Button with the given content.\nCreates a new Checkbox.\nCreates a new ComboBox with the given list of options, a …\nCreates a Container with the given content.\nCreates a PaneGrid with the given State and view function.\nCreates a new PickList with the given list of options, the …\nCreates a new Pop widget with the given content.\nCreates a new ProgressBar.\nCreates a new Radio button.\nCreates a new vertical Scrollable.\nCreates a new Slider.\nCreates new TextEditor with the given Content.\nCreates a new TextInput with the given placeholder and its …\nCreates a new Toggler.\nCreates a new Tooltip.\nCreates a new VerticalSlider.\nCreates a new Responsive widget with a closure that …\nCreates a new Lazy widget with the given data Dependency …\nCreate a new custom Shader.\nCreates a new Svg from the given Handle.\nCreates a new QRCode with the provided Data.\nCreates an amount of empty Space with the given width and …\nCreates a new Image with the given path.\nCreates a new Canvas.\nSets the message that should be produced when some action …\nSets the message that will be produced when a Pane of the …\nSets the message that will be produced when the outside …\nSets the message that will be produced when the PickList …\nThe message to emit on a double click.\nEnables the drag and drop interactions of the PaneGrid, …\nThe message to emit when the mouse enters the area.\nThe message to emit when the mouse exits the area.\nSets the message to be produced when the content pops out …\nSets the message that should be produced when some text is …\nSets the message that should be produced when some text is …\nSets the message that should be produced when some text is …\nThe message to emit on a middle button press.\nThe message to emit on a middle button release.\nThe message to emit when the mouse moves in the area.\nSets the message that will be produced when the ComboBox …\nSets the message that will be produced when the PickList …\nSets the message that will be produced when an option of …\nSets the message that should be produced when some text is …\nSets the message that should be produced when some text is …\nThe message to emit on a left button press.\nSets the message that will be produced when the Button is …\nSets the message that will be produced when the Button is …\nSets the message that will be produced when the Button is …\nThe message to emit on a left button release.\nSets the release message of the Slider. This is called …\nSets the release message of the VerticalSlider. This is …\nEnables the resize interactions of the PaneGrid, which will\nSets the message to be produced when the content changes …\nThe message to emit on a right button press.\nThe message to emit on a right button release.\nThe message to emit when scroll wheel is used\nSets a function to call when the Scrollable is scrolled.\nSets the message to be produced when the content pops into …\nSets the message that should be produced when the TextInput…\nSets the message that should be produced when the TextInput…\nSets the function that will be called when the Checkbox is …\nSets the message that should be produced when a user …\nSets the function that will be called when the Checkbox is …\nSets the message that should be produced when a user …\nSets the opacity of the Svg.\nSets the opacity of the Image.\nWraps the given widget and captures any mouse button …\nUpdate the Component state based on the provided Operation\nDisplay interactive elements on top of other widgets.\nSets the Padding of the Column.\nSets the Padding of the Row.\nSets the Padding of the Button.\nSets the Padding of the ComboBox.\nSets the Padding of the Container.\nSets the Padding of the PickList.\nSets the Padding of the TextEditor.\nSets the Padding of the TextInput.\nSets the padding of the Tooltip.\nPane grids let your users split regions of your …\nCreates a PaneGrid with the given pane_grid::State and …\nPick lists display a dropdown list of selectable options.\nCreates a new PickList.\nCreates a new Pin widget with the given content.\nSets the placeholder of the PickList.\nSets the placeholder of the TextEditor.\nGenerate messages when content pops in and out of view.\nCreates a new Pop widget.\nSets the position of the Pin; where the pinned widget will …\nProgress bars visualize the progression of an extended …\nCreates a new ProgressBar.\nCreates a new Action that publishes the given Message for …\nAdds an element to the Column.\nAdds an Element to the Row.\nAdds an element to the Stack.\nAdds an element to the Column, if Some.\nAdds an element to the Row, if Some.\nAdds an element to the Stack, if Some.\nQR codes display information in a type of two-dimensional …\nCreates a new QRCode widget from the given Data.\nRadio buttons let users choose a single option from a …\nCreates a new Radio.\nCreates a new Action that requests a redraw to happen as …\nCreates a new Action that requests a redraw to happen at …\nCreates a new Responsive widget with a closure that …\nCreates a new Rich text widget with the provided spans.\nCreates some Rich text with the given spans.\nCreates a new Container that fills all the available space …\nCreates a new Container that fills all the available space …\nApplies the given Rotation to the Svg.\nApplies the given Rotation to the Image.\nCreates a new Row from an iterator.\nCreates a Row with the given children.\nRules divide space horizontally or vertically.\nSets the scale of the Image.\nScrollables let users navigate an endless amount of …\nCreates a new Scrollable with the provided content.\nConverts the TextInput into a secure password input.\nA custom shader widget for wgpu applications.\nCreates a new Shader.\nSets the optional “shift” step for the Slider.\nSets the optional “shift” step for the VerticalSlider.\nSets the size of the Checkbox.\nSets the text sixe of the ComboBox.\nSets the size of the Radio button.\nSets the text size of the TextEditor.\nSets the text size of the TextInput.\nSets the size of the Toggler.\nReturns a Size hint for laying out the Component.\nSliders let users set a value by moving an indicator.\nCreates a new Slider.\nSets whether the Tooltip is snapped within the viewport.\nSets the vertical spacing between elements.\nSets the horizontal spacing between elements.\nSets the spacing between the Checkbox and the text.\nSets the spacing between the panes of the PaneGrid.\nSets the spacing between the Radio button and the text.\nEmbeds the Scrollbar into the Scrollable, instead of …\nSets the spacing between the Toggler and the text.\nCreates a new Span of text with the provided content.\nCreates a new Stack with the given children.\nCreates a Stack with the given children.\nSets the step size of the Slider.\nSets the step size of the VerticalSlider.\nSets the style of the Button.\nSets the style of the Checkbox.\nSets the style of the Container.\nSets the style of the PaneGrid.\nSets the style of the PickList.\nSets the style of the ProgressBar.\nSets the style of the Radio button.\nSets the style of the Rule.\nSets the style of this Scrollable.\nSets the style of the Slider.\nSets the style of the TextEditor.\nSets the style of the TextInput.\nSets the style of the Toggler.\nSets the style of the Tooltip.\nSets the style of the VerticalSlider.\nSets the style of the Svg.\nSets the style of the QRCode.\nSvg widgets display vector graphics in your application.\nCreates a new Svg widget from the given Handle.\nDraw and interact with text.\nCreates a new Text widget with the provided content.\nCreates a new Text widget with the provided content.\nSets the horizontal alignment of the text of the Toggler\nSets the default text Color of the Themer.\nText editors display a multi-line text input for text …\nCreates a new TextEditor.\nText inputs display fields that can be filled with text.\nCreates a new TextInput.\nSets the text text::LineHeight of the Checkbox.\nSets the text text::LineHeight of the PickList.\nSets the text text::LineHeight of the Radio button.\nSets the text text::LineHeight of the Toggler.\nSets the text::Shaping strategy of the Checkbox.\nSets the text::Shaping strategy of the PickList.\nSets the text::Shaping strategy of the Radio button.\nSets the text::Shaping strategy of the Toggler.\nSets the text size of the Checkbox.\nSets the text size of the PickList.\nSets the text size of the Radio button.\nSets the text size o the Toggler.\nSets the text::Wrapping strategy of the Checkbox.\nSets the text::Wrapping strategy of the Radio button.\nSets the text::Wrapping strategy of the Toggler.\nUse the built-in theme and styles.\nA widget that applies any Theme to its contents.\nTogglers let users make binary choices by toggling a …\nCreates a new Toggler.\nTooltips display a hint of information over some element …\nCreates a new Tooltip for the provided content with the …\nSets the size of the entire QRCode.\nProcesses an Event and updates the Component state …\nCreates a new Text widget that displays the provided value.\nTurns the ProgressBar into a vertical ProgressBar.\nCreates a vertical Rule with the given width.\nCreates a vertical Rule with the given width.\nSliders let users set a value by moving an indicator.\nCreates a new VerticalSlider.\nCreates a new Space widget that fills the available …\nProduces the widgets of the Component, which may trigger …\nSets the width of the Column.\nSets the width of the Pin.\nSets the width of the Row.\nSets the width of the Stack.") \ No newline at end of file diff --git a/search.desc/iced/iced-desc-1-.js b/search.desc/iced/iced-desc-1-.js index aa04f922c0b..2fa3c81518b 100644 --- a/search.desc/iced/iced-desc-1-.js +++ b/search.desc/iced/iced-desc-1-.js @@ -1 +1 @@ -searchState.loadedDescShard("iced", 1, "Sets the width of the ComboBox.\nSets the width of the Container.\nSets the width of the PaneGrid.\nSets the width of the PickList.\nSets the width of the Radio button.\nSets the width of the Scrollable.\nSets the width of the Slider.\nSets the width of the TextEditor.\nSets the width of the TextInput.\nSets the width of the Toggler.\nSets the width of the VerticalSlider.\nSet the width of the custom Shader.\nSets the width of the Svg.\nSets the width of the Space.\nSets the width of the Image boundaries.\nSets the width of the Canvas.\nCreates a Column with the given capacity.\nCreates a Row with the given capacity.\nCreates a Stack with the given capacity.\nCreates a Column with the given elements.\nCreates a Row with the given elements.\nCreates a Stack with the given elements.\nCreates a new Scrollable with the given Direction.\nCreates an amount of vertical Space.\nCreates an amount of horizontal Space.\nTurns the Row into a Wrapping row.\nSets the Wrapping strategy of the TextEditor.\nSets the X coordinate of the Pin.\nSets the Y coordinate of the Pin.\nThe Button can be pressed.\nA generic widget that produces a message when pressed.\nThe theme catalog of a Button.\nThe item class of the Catalog.\nThe Button cannot be pressed.\nThe Button can be pressed and it is being hovered.\nThe Button is being pressed.\nThe possible status of a Button.\nThe style of a button.\nA styling function for a Button.\nThe Background of the button.\nThe Border of the button.\nA danger button; denoting a destructive action.\nThe default class produced by the Catalog.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nA primary button; denoting a main action.\nA secondary button; denoting a complementary action.\nThe Shadow of the button.\nThe Style of a class with the given status.\nA success button; denoting a good outcome.\nA text button; useful for links.\nThe text Color of the button.\nA warning button; denoting a risky action.\nUpdates the Style with the given Background.\nA runtime action that can be performed by some widgets.\nA bevelled corner.\nThe stroke for each sub-path does not extend beyond its …\nA simple cache that stores generated Geometry to avoid …\nA widget capable of drawing 2D graphics.\nA user interface event.\nThe style used to fill geometry.\nThe frame supported by a renderer.\nThe geometry supported by a renderer.\nA fill which linearly interpolates colors along a …\nA Gradient color.\nA cache group.\nA raster image that can be drawn.\nAn input method event\nA keyboard event\nThe shape used at the end of open subpaths when they are …\nThe dash pattern used when stroking the line.\nThe shape used at the corners of paths or basic shapes …\nA linear gradient interpolates colors along a direction …\nA sharp corner.\nA mouse event\nAn immutable set of points that may or may not be …\nThe state and logic of a Canvas.\nAt the end of each sub-path, the shape representing the …\nA round corner.\nA solid Color.\nAt the end of each sub-path, the shape representing the …\nThe internal state mutated by the Program.\nThe style of a stroke.\nThe coloring style of some drawing.\nA bunch of text that can be drawn to a canvas\nA touch event\nA window event\nCreates a new Path representing a circle given its center …\nThe color of the text\nThe contents of the text\nDraws the state of the Program, producing a bunch of …\nComputes the Paths of the Text and draws them using the …\nFill Geometry with a certain style.\nThe filter method of the image.\nThe font of the text\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nA gradient that can be used as a fill for some geometry.\nThe handle of the image.\nThe horizontal alignment of the text\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns true if the Group can only ever have a single Cache…\nCreates a new Path representing a line segment given its …\nThe shape to be used at the end of open subpaths when they …\nThe dash pattern used when stroking the line.\nThe line height of the text.\nThe shape to be used at the corners of paths or basic …\nReturns the current mouse interaction of the Program.\nCreates a new Path with the provided closure.\nThe offset of LineDash::segments to start the pattern.\nThe opacity of the image.\nPacks the Gradient for use in shader code.\nBuild different kinds of 2D shapes.\nThe position of the text relative to the alignment …\nReturns the internal lyon_path::Path.\nCreates a new Path representing a rectangle given its …\nThe rotation to be applied to the image; on its center.\nCreates a new Path representing a rounded rectangle given …\nThe fill rule defines how to determine what is inside and …\nThe alternating lengths of lines and gaps which describe …\nThe shaping strategy of the text.\nThe size of the text\nIf set to true, the image will be snapped to the pixel …\nCreate lines from a Path and assigns them various …\nThe color or gradient of the fill.\nThe color or gradient of the stroke.\nReturns the current Path with the given transform applied …\nGenerates a new unique cache Group.\nUpdates the State of the Program.\nThe vertical alignment of the text\nThe distance between the two edges of the stroke.\nSets the color of the Stroke.\nSets the LineCap of the Stroke.\nSets the LineJoin of the Stroke.\nSets the width of the Stroke.\nThe style used to fill geometry.\nA Gradient color.\nThe fill rule defines how to determine what is inside and …\nA solid Color.\nThe coloring style of some drawing.\nReturns the argument unchanged.\nCalls U::from(self).\nThe fill rule defines how to determine what is inside and …\nThe color or gradient of the fill.\nA fill which linearly interpolates colors along a …\nA linear gradient.\nA linear gradient interpolates colors along a direction …\nPacked Gradient data for use in shader code.\nAdds a new ColorStop, defined by an offset and a color, to …\nAdds multiple ColorStops to the gradient.\nThe absolute ending position of the gradient.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCreates a new Linear builder.\nCreates a new Packed gradient for use in shader code.\nPacks the Gradient for use in shader code.\nThe absolute starting position of the gradient.\nColorStops along the linear gradient direction.\nA segment of a differentiable curve.\nA Path builder.\nAn immutable set of points that may or may not be …\nBuild and draw curves.\nAdds an Arc to the Path from start_angle to end_angle in a …\nAdds a circular arc to the Path with the given control …\nAdds a cubic Bézier curve to the Path given its two …\nBuilds the Path of this Builder.\nThe center of the arc.\nAdds a circle to the Path given its center coordinate and …\nCloses the current sub-path in the Path with a straight …\nAdds an ellipse to the Path using a clockwise direction.\nThe end of the segment’s angle, clockwise rotation from …\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nConnects the last point in the Path to the given Point …\nMoves the starting point of a new sub-path to the given …\nCreates a new Builder.\nAdds a quadratic Bézier curve to the Path given its …\nThe radius of the arc.\nAdds a rectangle to the Path given its top-left corner …\nAdds a rounded rectangle to the Path given its top-left …\nThe start of the segment’s angle, clockwise rotation …\nA segment of a differentiable curve.\nAn elliptical Arc.\nThe center of the arc.\nThe center of the arc.\nThe end of the segment’s angle, clockwise rotation from …\nThe end of the segment’s angle, clockwise rotation from …\nReturns the argument unchanged.\nCalls U::from(self).\nThe radii of the arc’s ellipse. The horizontal and …\nThe radius of the arc.\nThe clockwise rotation of the arc’s ellipse.\nThe start of the segment’s angle, clockwise rotation …\nThe start of the segment’s angle, clockwise rotation …\nFlag parameters for arcs as described by the SVG …\nAn alias for usize.\nA view over a contiguous storage of custom attributes.\nInterface for objects storing custom attributes associated …\nAn alias for a slice of f32 values.\nA beveled corner is to be used to join path segments. The …\nThe default builder for Path.\nA builder for Path with custom attributes.\nThe stroke for each sub-path does not extend beyond its …\nID of a control point in a path.\nID of an endpoint point in a path.\nRepresents an event or edge of path.\nRefers to an event in a path.\nThe fill rule defines how to determine what is inside and …\nA path event representing endpoints and control points as …\nAn iterator of endpoint and control point ids for Path and …\nA view over a sequence of endpoint IDs forming a polygon.\nAn iterator for Path and PathSlice.\nAn iterator for Path and PathSlice.\nLine cap as defined by the SVG specification.\nLine join as defined by the SVG specification.\nA sharp corner is to be used to join path segments.\nSame as a miter join, but if the miter limit is exceeded, …\nAn empty attribute slice.\nA simple path data structure.\nAn object that stores multiple paths contiguously.\nA view on a PathBuffer.\nThe commands of a path encoded in a single array using IDs …\nA view over PathCommands.\nA path event representing endpoints and control points as …\nA view on a Path.\nA view over a sequence of endpoints forming a polygon.\nInterface for types types (typically endpoints and control …\nInterface for objects storing endpoints and control points …\nAn iterator of over a Path traversing the path in reverse.\nAt each end of each sub-path, the shape representing the …\nA round corner is to be used to join path segments.\nThe positive or negative side of a vector or segment.\nAt the end of each sub-path, the shape representing the …\nThe two possible orientations for the edges of a shape to …\nReturns a view on the path commands.\nReturns a view on this Path.\nReturns a slice over an endpoint’s custom attributes.\nReturns a slice over an endpoint’s custom attributes.\nPath building utilities.\nCreates a PathCommandsBuilder to create path commands.\nCreates a Builder to build a path.\nCreates a BuilderWithAttributes to build a path with …\nA generic representation for paths that allow more control …\nReturns the event for a given event ID.\nReturns the event for a given event ID.\nReturns the event for a given event ID.\nReturns the event for a given event ID.\nReturns an iterator over the path, with endpoints and …\nReturns the first endpoint and its custom attributes if …\nIterate on a flattened approximation of the path with …\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the endpoint’s custom attributes as a slice of …\nIterates over the endpoint and control point ids of the …\nIterates over the endpoint and control point ids of the …\nReturns an iterator of IdEvent.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nBuilds a Path from This iterator.\nReturns whether the path buffer is empty.\nReturns whether the path buffer is empty.\nReturns an iterator over the path commands.\nReturns an iterator over the path commands.\nIterates over the entire Path, ignoring custom attributes.\nIterates over the path.\nReturns an iterator of Event<&T>.\nIterates over the entire Path with custom attributes.\nIterates over the entire Path with custom attributes.\nTools to iterate over paths.\nOf the four candidate arc sweeps, two will represent an …\nReturns the last endpoint and its custom attributes if any.\nReturns the number of paths in the path buffer.\nReturns the number of paths in the path buffer.\nf32 version of the lyon_geom types used everywhere. Most …\nCreates an Empty Path.\nReturns the next event id within the path.\nReturns the next event id within the path.\nReturns the next event id within the sub-path.\nReturns the next event id within the path.\nReturns the number of float attributes per endpoint.\nThe default path data structure.\nA container to store multiple paths contiguously.\nReturns an iterator of PathEvent.\nReturns a view on a path made of these commands with …\nSpecific path types for polygons.\nReturns a reversed version of this path in the form of an …\nReturns a reversed version of this path in the form of an …\nCreates an WithSvg to build a path with a rich set of …\nIf sweep is true, then the arc will be drawn in a “…\nlyon_path traits reexported here for convenience.\nApplies a transform to all endpoints and control points of …\nThe radius of each corner of a rounded rectangle.\nBuilds a path.\nA Builder that approximates curves with successions of …\nA convenience wrapper for PathBuilder without custom …\nThe base path building interface.\nThe type of object that is created by this builder.\nA path building interface that tries to stay close to SVG…\nBuilds a path with a transformation applied.\nImplements an SVG-like building interface on top of a …\nAdds a sub-path containing a circle.\nAdds a sub-path containing a circle.\nAdds a sub-path containing a circle.\nAdds a sub-path containing an ellipse.\nAdds a sub-path containing an ellipse.\nAdds a sub-path containing an ellipse.\nAdds a sub-path containing a single line segment.\nAdds a sub-path containing a single line segment.\nAdds a sub-path containing a single line segment.\nAdds a sub-path containing a single point.\nAdds a sub-path containing a single point.\nAdds a sub-path containing a single point.\nAdds a sub-path from a polygon.\nAdds a sub-path from a polygon.\nAdds a sub-path from a polygon.\nAdds a sub-path from a polygon.\nAdds a sub-path from a polygon.\nAdds a sub-path containing a rectangle.\nAdds a sub-path containing a rectangle.\nAdds a sub-path containing a rectangle.\nAdds a sub-path containing a rectangle.\nAdds a sub-path containing a rectangle.\nAdds a sub-path containing a rectangle.\nAdds an elliptical arc.\nStarts a new sub-path at a given position.\nStarts a new sub-path at a given position.\nBuilds a path object, consuming the builder.\nBuilds a path object, consuming the builder.\nEnds the current sub-path by connecting it back to its …\nCloses the current sub path.\nCloses the current sub path.\nCloses the current sub path.\nAdds a cubic bézier curve to the current sub-path.\nAdds a cubic bézier segment to the current sub-path.\nAdds a cubic bézier curve to the current sub-path.\nEnds the current sub path.\nEnds the current sub path.\nReturns a builder that approximates all curves with …\nReturns a builder that approximates all curves with …\nReturns a builder that approximates all curves with …\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nAdds an horizontal line segment.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nAdds a line segment to the current sub-path.\nAdds a line segment to the current sub-path.\nAdds a line segment to the current sub-path.\nStart a new sub-path at the given position.\nApplies the provided path event.\nApplies the provided path event.\nApplies the provided path event.\nAdds a quadratic bézier curve to the current sub-path.\nAdds a quadratic bézier segment to the current sub-path.\nAdds a quadratic bézier curve to the current sub-path.\nEquivalent to arc_to in relative coordinates.\nEquivalent to cubic_bezier_to in relative coordinates.\nAdds an horizontal line segment in relative coordinates.\nEquivalent to line_to in relative coordinates.\nEquivalent to move_to in relative coordinates.\nEquivalent to quadratic_bezier_to in relative coordinates.\nAdds a vertical line segment in relative coordinates.\nHints at the builder that a certain number of endpoints …\nHints at the builder that a certain number of endpoints …\nHints at the builder that a certain number of endpoints …\nHints at the builder that a certain number of endpoints …\nHints at the builder that a certain number of endpoints …\nEquivalent to cubic_bezier_to with implicit first control …\nEquivalent to quadratic_bezier_to with implicit control …\nEquivalent to smooth_cubic_bezier_to in relative …\nEquivalent to smooth_quadratic_bezier_to in relative …\nReturns a builder that applies the given transformation to …\nReturns a builder that applies the given transformation to …\nReturns a builder that applies the given transformation to …\nAdds a vertical line segment.\nReturns a builder that support SVG commands.\nReturns a builder that support SVG commands.\nReturns a builder that support SVG commands.\nA view on a PathCommands buffer and two slices for …\nAn iterator of Event<&Endpoint, &ControlPoint>.\nAn iterator of Event<&Endpoint, &ControlPoint>.\nThe commands of a path encoded in a single array using IDs …\nBuilds path commands.\nA view over PathCommands.\nAn iterator of PathEvent.\nConsumes the builder and returns path commands.\nReturns an iterator over the events of the path using …\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns an iterator over the events of the path using IDs.\nCreates a builder without allocating memory.\nCreates a pre-allocated builder.\nAn angle in radians\nAn elliptic arc curve segment.\nFlag parameters for arcs as described by the SVG …\nA 2d curve segment defined by four points: the beginning …\nAn infinite line defined by a point and a vector.\nA line defined by the equation …\nA linear segment.\nA 2d curve segment defined by three points: the beginning …\nAlias for euclid::default::Rotation2D\nCommon APIs to segment types.\nAn elliptic arc curve segment using the SVG’s end-point …\nAlias for euclid::default::Transform2D\nAlias for euclid::default::Translation2D\nA 2D triangle defined by three points a, b and c.\nReturn the curve after the split point.\nReturn the curve after the split point.\nReturn the curve after the split point.\nReturn the segment after the split point.\nReturn the curve after the split point.\nAngle in radians\nReturns the shortest signed angle between two angles.\nCompute the length of the segment using a flattened …\nCompute the length of the segment using a flattened …\nElliptic arc related maths and tools.\nReturn the curve before the split point.\nReturn the curve before the split point.\nReturn the curve before the split point.\nReturn the segment before the split point.\nReturn the curve before the split point.\nReturns a conservative rectangle that contains the curve.\nReturns a conservative rectangle that contains the curve.\nReturn the smallest rectangle containing this segment.\nReturns the smallest rectangle the curve is contained in\nReturns the smallest rectangle that contains this triangle.\nReturns the smallest range of x that contains this curve.\nReturns the smallest range of x that contains this curve.\nReturns a conservative range of x that contains this …\nReturns the smallest range of y that contains this curve.\nReturns the smallest range of y that contains this curve.\nReturns a conservative range of y that contains this …\nReturns a triangle containing this curve segment.\nCast from one numeric representation to another.\nCreate simple circle.\nClip this segment against a rectangle.\nHorizontally clip this segment against a range of the x …\nVertically clip this segment against a range of the y axis.\nComputes the closest point on this segment to p.\nAnalytic solution to finding the closest point on the …\nComputes the intersection points (if any) between this …\nComputes the intersections (if any) between this segment …\nSample the derivative at t (expecting t between 0 and 1).\nSample the curve’s derivative at t (expecting t between …\nSample the curve’s derivative at t (expecting t between …\nComputes the distance between this segment and a point.\nReturns the shortest distance between this segment and a …\nSample x derivative at t (expecting t between 0 and 1).\nSample the x coordinate of the curve’s derivative at t …\nSample the x coordinate of the curve’s derivative at t …\nSample y derivative at t (expecting t between 0 and 1).\nSample the y coordinate of the curve’s derivative at t …\nSample the y coordinate of the curve’s derivative at t …\nEpsilon constants are usually not a good way to deal with …\nReturns a conservative rectangle that contains the curve.\nReturns a conservative rectangle the curve is contained in.\nReturns a conservative rectangle that contains the curve.\nReturns a conservative range of x that contains this curve.\nReturns a conservative range of x that contains this curve.\nReturns a conservative range of y that contains this curve.\nReturns a conservative range of y that contains this curve.\nComputes a “fat line” of this segment.\nComputes a “fat line” of this segment.\nReturns the flattened representation of the curve as an …\nReturns the flattened representation of the curve as an …\nReturns the flattened representation of the curve as an …\nReturns the flattened representation of the curve as an …\nFind the interval of the beginning of the curve that can …\nSwap the direction of the segment.\nSwap the direction of the segment.\nSwap the beginning and the end of the segment.\nReturns an inverted version of this segment where the …\nSwap the beginning and the end of the segment.\nApproximate the arc with a sequence of cubic bézier …\nApproximates the arc with a sequence of cubic bézier …\nApproximates the curve with sequence of line segments.\nApproximates the curve with sequence of line segments.\nApproximates the curve with sequence of line segments.\nApproximates the curve with sequence of line segments.\nApproximates the curve with sequence of line segments.\nApproximates the curve with sequence of line segments.\nApproximates the curve with sequence of line segments.\nApproximates the curve with sequence of line segments.\nCompute a flattened approximation of the curve, invoking a …\nInvokes a callback at each inflection point if any.\nReturn local x extrema or None if this curve is monotonic.\nReturn local y extrema or None if this curve is monotonic.\nInvokes a callback for each monotonic part of the segment.\nInvokes a callback for each monotonic part of the segment.\nInvokes a callback for each monotonic part of the segment.\nInvokes a callback for each monotonic part of the segment.\nApproximate the arc with a sequence of quadratic bézier …\nApproximates the arc with a sequence of quadratic bézier …\nApproximates the cubic bézier curve with sequence of …\nApproximate the arc with a sequence of quadratic bézier …\nApproximates the arc with a sequence of quadratic bézier …\nApproximates the cubic bézier curve with sequence of …\nInvokes a callback for each x-monotonic part of the …\nInvokes a callback for each x-monotonic part of the …\nInvokes a callback for each x-monotonic part of the …\nInvokes a callback for each x-monotonic part of the …\nInvokes a callback for each y-monotonic part of the …\nInvokes a callback for each y-monotonic part of the …\nInvokes a callback for each y-monotonic part of the …\nInvokes a callback for each y-monotonic part of the …\nStart of the curve.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nConvert from the SVG arc notation.\nSample the curve’s angle at t (expecting t between 0 and …\nThe extent of the element in the U units along the y axis …\nComputes the intersection (if any) between this segment …\nTest for triangle-triangle intersection.\nTest for triangle-segment intersection.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns whether the curve can be approximated with a …\nReturns true if the angle is a finite number.\nReturns true if the curve can be approximated with a …\nReturns true if the curve can be approximated with a …\nReturns whether this segment is fully monotonic.\nReturns whether this segment is fully monotonic.\nReturns true if the curve can be safely approximated with …\nPer SVG spec, this arc should be rendered as a line_to …\nReturns whether this segment is monotonic on the x axis.\nReturns whether this segment is monotonic on the x axis.\nReturns whether this segment is monotonic on the y axis.\nReturns whether this segment is monotonic on the y axis.\nOf the four candidate arc sweeps, two will represent an …\nComputes the length of this segment.\nComputes the length of this segment.\nLinear interpolation between two angles, using the …\nComputes the intersection points (if any) between this …\nComputes the intersection points (if any) between this …\nComputes the intersections (if any) between this segment …\nComputes the intersections (if any) between this segment a …\nComputes the intersection points (if any) between this …\nComputes the intersections (if any) between this segment …\nComputes the intersections (if any) between this segment …\nReturn the x inflection point or None if this curve is …\nReturn the y inflection point or None if this curve is …\nComputes third mid-point of this segment.\nComputes the number of quadratic bézier segments required …\nShorthand for Point::new(x, y).\nReturns this angle in the [0..2*PI[ range.\nComputes the intersection points (if any) between this …\nComputes the intersections (if any) between this segment a …\nSample the curve at t (expecting t between 0 and 1).\nSample the curve at t (expecting t between 0 and 1).\nSample the curve at t (expecting t between 0 and 1).\nSample the segment at t (expecting t between 0 and 1).\nSample the curve at t (expecting t between 0 and 1).\nSample the curve’s tangent at t (expecting t between 0 …\nChanges the segment’s length, moving destination point.\nReturns this angle in the ]-PI..PI] range.\nReturns (sin(self), cos(self)).\nShorthand for Size::new(x, y).\nReturn the parameter values corresponding to a given x …\nReturn the parameter values corresponding to a given y …\nSplit this curve into two sub-curves.\nSplit this curve into two sub-curves.\nSplit this curve into two sub-curves.\nSplit this curve into two sub-segments.\nSplit this curve into two sub-curves.\nReturn the curve inside a given range of t.\nReturn the sub-curve inside a given range of t.\nReturn the sub-curve inside a given range of t.\nReturn the sub-segment inside a given range of t.\nReturn the sub-curve inside a given range of t.\nComputes the squared distance between this segment and a …\nReturned the squared distance to a point.\nReturns the shortest squared distance between this segment …\nComputes the squared length of this segment.\nIf sweep is true, then the arc will be drawn in a “…\nEnd of the curve.\nConverts this arc from endpoints to center notation.\nElevate this curve to a third order bézier.\nCast angle to f32.\nCast angle f64.\nReturns the line containing this segment.\nApproximate the curve with a single quadratic bézier …\nEvaluates an upper bound on the maximum distance between …\nConvert to the SVG arc notation.\nReturns the vector between this segment’s from and to …\n[Not implemented] Applies the transform to this triangle …\nApplies the transform to this curve and returns the …\nApplies the transform to this segment and returns the …\nApplies the transform to this curve and returns the …\nFallible cast from one numeric representation to another.\nShorthand for Vector::new(x, y).\nThe extent of the element in the U units along the x axis …\nSample x at t (expecting t between 0 and 1).\nSample the x coordinate of the curve at t (expecting t …\nSample the x coordinate of the segment at t (expecting t …\nSample the x coordinate of the curve at t (expecting t …\nThe x (traditionally, horizontal) coordinate.\nFind the advancement of the x-most position in the curve.\nFind the advancement of the x-most position in the curve.\nFind the x-least position in the curve.\nFind the advancement of the x-least position in the curve.\nSample y at t (expecting t between 0 and 1).\nSample the y coordinate of the curve at t (expecting t …\nSample the y coordinate of the segment at t (expecting t …\nSample the y coordinate of the curve at t (expecting t …\nThe y (traditionally, vertical) coordinate.\nFind the advancement of the y-most position in the curve.\nFind the advancement of the y-most position in the curve.\nFind the advancement of the y-least position in the curve.\nFind the advancement of the y-least position in the curve.\nAn elliptic arc curve segment.\nFlag parameters for arcs as described by the SVG …\nFlattening iterator for arcs.\nAn elliptic arc curve segment using the SVG’s end-point …\nReturns the argument unchanged.\nCalls U::from(self).\nOf the four candidate arc sweeps, two will represent an …\nIf sweep is true, then the arc will be drawn in a “…\nA string with a fixed capacity.\nA vector with a fixed capacity.\nError value indicating insufficient capacity\nA draining iterator for ArrayVec.\nBy-value iterator for ArrayVec.\nReturn a raw mutable pointer to the vector’s buffer.\nReturn a raw mutable pointer to the string’s buffer.\nReturn a mutable slice containing all elements of the …\nReturns the remaining items of this iterator as a mutable …\nReturn a mutable string slice of the whole ArrayString.\nReturn a raw pointer to the vector’s buffer.\nReturn a raw pointer to the string’s buffer.\nReturn a slice containing all elements of the vector.\nReturns the remaining items of this iterator as a slice.\nReturn a string slice of the whole ArrayString.\nReturn the capacity of the ArrayVec.\nReturn the capacity of the ArrayString.\nRemove all elements in the vector.\nMake the string empty.\nReturn an empty array\nReturn an empty ArrayString\nCreate a draining iterator that removes the specified …\nExtract the overflowing element\nExtend the ArrayVec with an iterator.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCreate a new ArrayString from a str.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCreate a new ArrayString from a byte string literal.\nCreate an ArrayVec from an iterator.\nInsert element at position index.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturn the inner fixed size array, if it is full to its …\nReturn the inner fixed size array.\nReturns whether the ArrayVec is empty.\nReturns whether the string is empty.\nReturn true if the ArrayVec is completely filled to its …\nReturn if the ArrayString is completely filled.\nReturn the number of elements in the ArrayVec.\nReturn the length of the string.\nCreate a new empty ArrayVec.\nCreate a new empty ArrayString.\nCreate a new CapacityError from element.\nCreate a new empty ArrayVec (const fn).\nCreate a new empty ArrayString (const fn).\nRemove the last element in the vector and return it.\nRemoves the last character from the string and returns it.\nRemove the element at index and shift down the following …\nPush element to the end of the vector.\nAdds the given char to the end of the string.\nAdds the given string slice to the end of the string.\nPush element to the end of the vector without checking the …\nReturns the capacity left in the ArrayVec.\nReturns the capacity left in the ArrayString.\nRemove the element at index and shift down the following …\nRemoves a char from this ArrayString at a byte position …\nRetains only the elements specified by the predicate.\nSet the vector’s length without dropping or moving out …\nSet the strings’s length.\nConvert into a CapacityError that does not carry an …\nRemove the element at index and swap the last element into …\nRemove the element at index and swap the last element into …\nReturns the ArrayVec, replacing the original with a new …\nShortens the vector, keeping the first len elements and …\nShortens this ArrayString to the specified length.\nCopy all elements from the slice and append to the ArrayVec…\nInsert element at position index.\nPush element to the end of the vector.\nAdds the given char to the end of the string.\nAdds the given string slice to the end of the string.\nCreate a new ArrayString value fully filled with ASCII …\nA 2d curve segment defined by four points: the beginning …\nReturns the argument unchanged.\nCalls U::from(self).\nAn angle in radians\nA 2d vector of booleans, useful for component-wise logic …\nA 3d vector of booleans, useful for component-wise logic …\nA 2d axis aligned rectangle represented by its minimum and …\nAn axis aligned 3D box represented by its minimum and …\nHomogeneous vector in 3D space.\nA one-dimensional distance, with value represented by T …\nA 2d Point tagged with a unit.\nA 3d Point tagged with a unit.\nA 2d Rectangle optionally tagged with a unit.\nA rigid transformation. All lengths are preserved under …\nA transform that can represent rotations in 2d, …\nA transform that can represent rotations in 3d, …\nA scaling factor between two different units of …\nA group of 2D side offsets, which correspond to …\nA 2d size tagged with a unit.\nA 3d size tagged with a unit.\nA 2d transform represented by a column-major 3 by 3 …\nA 3d transform stored as a column-major 4 by 4 matrix.\nA 2d transformation from a space to another that can only …\nA 3d transformation from a space to another that can only …\nTrait for basic trigonometry functions, so they can be …\nThe default unit.\nA 2d Vector tagged with a unit.\nA 3d Vector tagged with a unit.\nComputes the absolute value of each component.\nComputes the absolute value of each component.\nComputes the vector with absolute values of each component.\nComputes the vector with absolute values of each component.\nReturns true if all components are true and false …\nReturns true if all components are true and false …\nReturns new vector with by-component AND operation applied.\nReturns new vector with by-component AND operation applied.\nAngle in radians\nReturns the signed angle between this vector and the x …\nReturns the signed angle between this vector and another …\nReturns the positive angle between this vector and another …\nReturns true if any component are true and false otherwise.\nReturns true if any component are true and false otherwise.\nReturns true if this transform is approximately equal to …\nReturns true if this transform is approximately equal to …\nReturns true if this transform is approximately equal to …\nReturns true if this transform is approximately equal to …\nReturns true if this transform is approximately equal to …\nUtilities for testing approximate ordering - especially …\nReturns result of multiplication of both components\nCreates a rotation around a given axis.\nCreates a rotation around the x axis.\nCreates a rotation around the y axis.\nCreates a rotation around the z axis.\nShorthand for …\nShorthand for BoolVector2D { x, y }.\nShorthand for BoolVector3D { x, y, z }.\nCast from one numeric representation to another, …\nCast from one numeric representation to another, …\nCast from one numeric representation to another, …\nCast from one numeric representation to another, …\nCast from one numeric representation to another, …\nCast from one numeric representation to another, …\nCast from one numeric representation to another, …\nCast from one numeric representation to another, …\nCast from one numeric representation to another, …\nCast from one numeric representation to another, …\nCast from one numeric representation to another, …\nCast from one numeric representation to another, …\nCast from one numeric representation to another, …\nCast from one numeric representation to another, …\nCast from one numeric representation to another, …\nCast the unit\nCast the unit\nCast the unit\nCast the unit, preserving the numeric value.\nCast the unit, preserving the numeric value.\nCast the unit\nCast the unit, preserving the numeric value.\nCast the unit, preserving the numeric value.\nCast the unit\nCast the unit\nCast the unit.\nCast the unit.\nRounds each component to the smallest integer equal or …\nSee Point2D::ceil.\nRounds each component to the smallest integer equal or …\nSee Point3D::ceil.\nRounds each component to the smallest integer equal or …\nSee Size2D::ceil.\nRounds each component to the smallest integer equal or …\nSee Size3D::ceil.\nRounds each component to the smallest integer equal or …\nSee Vector2D::ceil.\nSee Vector3D::ceil.\nRounds each component to the smallest integer equal or …\nReturns the point each component of which clamped by …\nReturns the point each component of which clamped by …\nReturns the point each component of which clamped by …\nReturns the size each component of which clamped by …\nReturns the size each component of which clamped by …\nReturns the vector each component of which is clamped by …\nReturns the vector each component of which is clamped by …\nReturn this vector with minimum and maximum lengths …\nReturn this vector with minimum and maximum lengths …\nReturns the component-wise division of the two vectors.\nReturns the component-wise division of the two vectors.\nReturns the component-wise multiplication of the two …\nReturns the component-wise multiplication of the two …\nReturns true if this box2d contains the point p. A point …\nReturns true if this box3d contains the point p. A point …\nReturns true if this rectangle contains the point. Points …\nReturns true if this box contains the interior of the …\nReturns true if this box3d contains the interior of the …\nReturns true if this box contains the point p. A point is …\nReturns true if this box3d contains the point p. A point …\nReturns true if this rectangle contains the interior of …\nReturns the norm of the cross product [self.x, self.y, 0] …\nCross product.\nDecompose this into a translation and an rotation to be …\nA set of aliases for all types, tagged with the default …\nReturns the identity transform.\nReturns the identity transform.\nThe extent of the element in the U units along the z axis.\nComputes and returns the determinant of this transform.\nCompute the determinant of the transform.\nCalculates Euclidean division, the matching method for …\nCalculates Euclidean division, the matching method for …\nDot product.\nDot product.\nReturns vector with results of “equal” operation on …\nReturns vector with results of “equal” operation on …\nReturns vector with results of “equal” operation on …\nReturns vector with results of “equal” operation on …\nCreates a rotation from Euler angles.\nCreate a 3d point from this one, using the specified z …\nCreate a 3d vector from this one, using the specified z …\nRounds each component to the biggest integer equal or …\nSee Point2D::floor.\nSee Point3D::floor.\nRounds each component to the biggest integer equal or …\nRounds each component to the biggest integer equal or …\nSee Size2D::floor.\nSee Size3D::floor.\nRounds each component to the biggest integer equal or …\nSee Vector2D::floor.\nRounds each component to the biggest integer equal or …\nRounds each component to the biggest integer equal or …\nSee Vector3D::floor.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nConstructor taking angle and length\nCreate a transform providing its components via an array …\nCreate a transform providing its components via an array …\nEquivalent to from_array with elements packed two at a time\nEquivalent to from_array with elements packed four at a …\nConstructor setting the same value to all sides, taking a …\nConstructor taking properly Lengths instead of scalar …\nConstructor taking properly Lengths instead of scalar …\nConstructor taking a typed Length for each side.\nConstructor taking scalar strongly typed lengths.\nConstructor taking scalar strongly typed lengths.\nConstructor taking properly Lengths instead of scalar …\nConstructor taking properly Lengths instead of scalar …\nConstructor.\nConstructor.\nReturns the smallest box containing all of the provided …\nReturns the smallest box containing all of the provided …\nReturns the smallest rectangle defined by the …\nConvenience function to create a scale transform from a …\nCreates a Box2D of the given size, at offset zero.\nCreates a Box3D of the given size, at offset zero.\nCreates a rect of the given size, at offset zero.\nTag a unitless value with units.\nTag a unitless value with units.\nTag a unitless value with units.\nTag a unitless value with units.\nTag a unitless value with units.\nTag a unitless value with units.\nTag a unitless value with units.\nTag a unitless value with units.\nTag a unitless value with units.\nTag a unitless value with units.\nTag a unitless value with units.\nTag a unitless value with units.\nTag a unit-less value with units.\nTag a unitless value with units.\nTag a unitless value with units.\nTag a unitless value with units.\nConstruct side offsets from min and a max vector offsets.\nConstruct side offsets from min and a max vector offsets.\nUnpack the underlying value from the wrapper.\nReturns the underlying scalar scale factor.\nReturns self.angle as a strongly typed Angle<T>.\nReturns vector with results of “greater then” …\nReturns vector with results of “greater than” …\nReturns vector with results of “greater than” …\nReturns vector with results of “greater than” …\nThe extent of the element in the U units along the y axis …\nThe extent of the element in the U units along the y axis.\nComponent multiplied by the imaginary number i.\nConstruct an identity transform\nCreates the identity rotation.\nCreates the identity rotation.\nCreates an identity scale (1.0).\nCreates no-op translation (both x and y is zero()).\nCreates no-op translation (x, y and z is zero()).\nCreate an identity matrix:\nCreates an identity matrix:\nInflates the box by the specified sizes on each side …\nInflates the box by the specified sizes on each side …\nCalculate the size and position of an inner box.\nCalculate the size and position of an inner rectangle.\nComputes the intersection of two boxes, returning None if …\nComputes the intersection of two boxes without check …\nReturns true if the two boxes intersect.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nInverts the transformation\nReturns the inverse of this rotation.\nReturns the inverse of this rotation.\nThe inverse Scale (1.0 / self).\nReturn the inverse transformation.\nReturn the inverse transformation.\nReturns the inverse transform if possible.\nReturns the inverse transform if possible.\nReturns true if this transform can be represented with a …\nCheck whether shapes on the XY plane with Z pointing …\nReturns true if the size is zero, negative or NaN.\nReturns true if the size is zero, negative or NaN.\nReturns true if any component of size is zero, negative, …\nReturns true if any component of size is zero, negative or …\nReturns true if all members are finite.\nReturns true if all members are finite.\nReturns true if all members are finite.\nReturns true if all members are finite.\nReturns true if all members are finite.\nReturns true if all members are finite.\nReturns true if all members are finite.\nReturns true if all members are finite.\nReturns true if all members are finite.\nReturns true if this scale has no effect.\nCheck if translation does nothing (both x and y is zero()).\nCheck if translation does nothing (x, y and z is zero()).\nReturns whether it is possible to compute the inverse …\nReturns whether it is possible to compute the inverse …\nReturns true if the box has a negative area.\nReturns true if the box has a negative volume.\nReturns true if norm of this quaternion is (approximately) …\nReturns true if both components is positive and false any …\nReturns true if all components is positive and false any …\nReturns true if all side offsets are zero.\nComponent multiplied by the imaginary number j.\nComponent multiplied by the imaginary number k.\nReturns the vector length.\nReturns the vector length.\nLinearly interpolate between this box and another box.\nLinearly interpolate between this box3d and another box3d.\nLinearly interpolate between this length and another …\nLinearly interpolate between this point and another point.\nLinearly interpolate between this point and another point.\nLinearly interpolate between this rectangle and another …\nBasic Linear interpolation between this rotation and …\nLinearly interpolate each component between this size and …\nLinearly interpolate between this size and another size.\nLinearly interpolate each component between this vector …\nLinearly interpolate each component between this vector …\nReturns vector with results of “lower then” operation …\nReturns vector with results of “lower than” operation …\nReturns vector with results of “lower than” operation …\nReturns vector with results of “lower than” operation …\nApply the function f to each component of this point.\nApply the function f to each component of this point.\nApply the function f to each component of this vector.\nApply the function f to each component of this vector.\nReturns maximum between this length and another length.\nReturns the size each component of which are maximum of …\nReturns the size each component of which are maximum of …\nReturns the vector each component of which are maximum of …\nReturns the vector each component of which are maximum of …\nReturns minimum between this length and another length.\nReturns the size each component of which are minimum of …\nReturns the size each component of which are minimum of …\nReturns the vector each component of which are minimum of …\nReturns the vector each component of which are minimum of …\nMultiplies all of the transform’s component by a scalar …\nConstructor.\nConstructor.\nConstructor taking scalar values directly.\nAssociate a value with a unit of measure.\nConstructor taking scalar values directly.\nConstructor taking scalar values directly.\nConstructor.\nConstruct a new rigid transformation, where the rotation …\nCreates a rotation from an angle in radians.\nConstructor taking a scalar for each side.\nConstructor taking scalar values.\nConstructor taking scalar values.\nConstructor taking scalar values directly.\nConstructor taking scalar values directly.\nCreate a transform specifying its components in using the …\nCreate a transform specifying all of it’s component as a …\nCreate a transform representing a 2d transformation from …\nConstructor setting the same value to all sides, taking a …\nConstruct a new rigid transformation, where the translation…\nReturns true if all components are false and false …\nReturns true if all components are false and false …\nComputes the norm of this quaternion.\nReturns a unit quaternion from this one.\nReturns the vector with length of one unit.\nReturns the vector with length of one unit\nReturns new vector with results of negation operation on …\nReturns new vector with results of negation operation on …\nReturns vector with results of “not equal” operation …\nReturns vector with results of “not equal” operation …\nReturns vector with results of “not equal” operation …\nReturns vector with results of “not equal” operation …\nA one-dimensional length, tagged with its units.\nConstructor, setting all components to one.\nConstructor, setting all components to one.\nReturns new vector with by-component OR operation applied.\nReturns new vector with by-component OR operation applied.\nConstructor, setting all components to zero.\nConstructor, setting all components to zero.\nCreate an orthogonal projection transform.\nCalculate the b and position of an outer box.\nCalculate the size and position of an outer rectangle.\nReturns a box that encompasses the result of transforming …\nReturns a 2d box that encompasses the result of …\nReturns a 3d box that encompasses the result of …\nReturns a rectangle that encompasses the result of …\nReturns a rectangle that encompasses the result of …\nCreate a simple perspective transform, projecting to the …\nShorthand for Point2D::new(x, y).\nShorthand for Point3D::new(x, y).\nApplies a rotation before self’s transformation and …\nReturns a transform with a rotation applied before self’…\nApplies a scale before self’s transformation and returns …\nReturns a transform with a scale applied before self’s …\nApplies a translation before self’s transformation and …\nReturns a transform with a translation applied before self…\nReturns this vector projected onto another one.\nReturns this vector projected onto another one.\nReturns a projection of this transform in 2d space.\nCreates a rotation around from a quaternion representation.\nThe real part.\nCreates a rotation from an angle in radians.\nShorthand for …\nReturns a reflection vector using an incident ray and a …\nReturns a reflection vector using an incident ray and a …\nCalculates the least nonnegative remainder of …\nCalculates the least nonnegative remainder of …\nReturn the normalized vector even if the length is larger …\nReturn the normalized vector even if the length is larger …\nReturns a rotation transform.\nCreate a 3d rotation transform from an angle / axis. The …\nReturn a box with edges rounded to integer coordinates, …\nReturn a box3d with edges rounded to integer coordinates, …\nRounds each component to the nearest integer value.\nSee Point2D::round.\nSee Point3D::round.\nRounds each component to the nearest integer value.\nReturn a rectangle with edges rounded to integer …\nSee Size2D::round.\nRounds each component to the nearest integer value.\nRounds each component to the nearest integer value.\nSee Size3D::round.\nSee Vector2D::round.\nRounds each component to the nearest integer value.\nSee Vector3D::round.\nRounds each component to the nearest integer value.\nReturn a box with faces/edges rounded to integer …\nReturn a box3d with faces/edges rounded to integer …\nReturn a rectangle with edges rounded to integer …\nReturn a box with faces/edges rounded to integer …\nReturn a box3d with faces/edges rounded to integer …\nReturn a rectangle with edges rounded to integer …\nCreate a 2d scale transform:\nCreate a 3d scale transform:\nReturns point, each component of which or from a, or from b…\nReturns point, each component of which or from a, or from b…\nReturns size, each component of which or from a, or from b …\nReturns size, each component of which or from a, or from b …\nReturns vector, each component of which or from a, or from …\nReturns vector, each component of which or from a, or from …\nChange the size of the box by adjusting the max endpoint …\nShorthand for Size2D::new(w, h).\nShorthand for Size3D::new(w, h, d).\nCreate a 2d skew transform.\nSpherical linear interpolation between this rotation and …\nConstructor setting all components to the same value.\nConstructor setting all components to the same value.\nConstructor setting all components to the same value.\nConstructor setting all components to the same value.\nConstructor setting all components to the same value.\nConstructor setting all components to the same value.\nReturns the vector’s length squared.\nReturns the vector’s length squared.\nComputes the squared norm of this quaternion.\nReturns the multiplication of the two transforms such that …\nReturns a rotation representing the other rotation …\nReturns a rotation representing this rotation followed by …\nReturns the multiplication of the two matrices such that …\nReturns the multiplication of the two matrices such that …\nApplies a rotation after self’s transformation and …\nReturns a transform with a rotation applied after self’s …\nApplies a scale after self’s transformation and returns …\nReturns a transform with a scale applied after self’s …\nApplies a translation after self’s transformation and …\nReturns a transform with a translation applied after self…\nConvert into a 2d point.\nConvert into a 2d vector.\nCreate a 2D transform picking the relevant terms from this …\nConvert into a 3d point with z-coordinate equals to zero.\nCreates a 3d rotation (around the z axis) from this 2d …\nConvert into a 3d vector with z coordinate equals to …\nCreate a 3D transform from the current transform\nCast into an array with x and y.\nCast into an array with x, y and z.\nReturn this size as an array of two elements (width, then …\nReturn this size as an array of three elements (width, …\nCast into an array with x and y.\nCast into an array with x, y and z.\nCast into an array with x and y.\nCast into an array with x, y and z.\nReturns an array containing this transform’s terms.\nReturns an array containing this transform’s terms.\nCast into an array with x, y, z and 0.\nReturns an array containing this transform’s terms …\nReturns an array containing this transform’s terms …\nEquivalent to to_array with elements packed two at a time …\nEquivalent to to_array with elements packed four at a time …\nEquivalent to to_array_transposed with elements packed …\nCast into an f32 box.\nCast into an f32 box3d.\nCast into an f32 point.\nCast into an f32 point.\nCast into an f32 rectangle.\nCast into an f32 size.\nCast into an f32 size.\nCast into an f32 vector.\nCast into an f32 vector.\nCast into an f32 vector.\nCast into an f32 vector.\nCast into an f64 box.\nCast into an f64 box3d.\nCast into an f64 point.\nCast into an f64 point.\nCast into an f64 rectangle.\nCast into an f64 size.\nCast into an f64 size.\nCast into an f64 vector.\nCast into an f64 vector.\nCast into an f64 vector.\nCast into an f64 vector.\nCast into an i32 box, truncating decimals if any.\nCast into an i32 box3d, truncating decimals if any.\nCast into an i32 point, truncating decimals if any.\nCast into an i32 point, truncating decimals if any.\nCast into an i32 rectangle, truncating decimals if any.\nCast into an i32 size, truncating decimals if any.\nCast into an i32 size, truncating decimals if any.\nCast into an i32 vector, truncating decimals if any.\nCast into an i32 vector, truncating decimals if any.\nCast into an i32 vector, truncating decimals if any.\nCast into an i32 vector, truncating decimals if any.\nCast into an i64 box, truncating decimals if any.\nCast into an i64 box3d, truncating decimals if any.\nCast into an i64 point, truncating decimals if any.\nCast into an i64 point, truncating decimals if any.\nCast into an i64 rectangle, truncating decimals if any.\nCast into an i64 size, truncating decimals if any.\nCast into an i64 size, truncating decimals if any.\nCast into an i64 vector, truncating decimals if any.\nCast into an i64 vector, truncating decimals if any.\nCast into an i64 vector, truncating decimals if any.\nCast into an i64 vector, truncating decimals if any.\nCast this vector into a point.\nCast this vector into a point.\nConvert into Cartesian 2D point.\nConvert into Cartesian 3D point.\nCast this vector into a size.\nReturns the matrix representation of this rotation.\nReturns the matrix representation of this rotation.\nReturns the matrix representation of this translation.\nReturns the matrix representation of this translation.\nCreates translation by this vector in vector units.\nCreates translation by this vector in vector units\nCast into a tuple with x and y.\nCast into a tuple with x, y and z.\nReturn this size as a tuple of two elements (width, then …\nReturn this size as an array of three elements (width, …\nCast into a tuple with x and y.\nCast into a tuple with x, y and z.\nCast into a tuple with x and y.\nCast into a tuple with x, y and z.\nCast into a tuple with x, y, z and 0.\nCast into an u32 box, truncating decimals if any.\nCast into an u32 box3d, truncating decimals if any.\nCast into an u32 point, truncating decimals if any.\nCast into an u32 point, truncating decimals if any.\nCast into an u32 rectangle, truncating decimals if any.\nCast into an u32 size, truncating decimals if any.\nCast into an u32 size, truncating decimals if any.\nCast into an u32 vector, truncating decimals if any.\nCast into an u32 vector, truncating decimals if any.\nCast into an u32 vector, truncating decimals if any.\nCast into an u32 vector, truncating decimals if any.\nCast into an u64 rectangle, truncating decimals if any.\nCast into an u64 size, truncating decimals if any.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nCast into an usize box, truncating decimals if any.\nCast into an usize box3d, truncating decimals if any.\nCast into an usize point, truncating decimals if any.\nCast into an usize point, truncating decimals if any.\nCast into an usize rectangle, truncating decimals if any.\nCast into an uint size, truncating decimals if any.\nCast into an uint size, truncating decimals if any.\nCast into an usize vector, truncating decimals if any.\nCast into an usize vector, truncating decimals if any.\nCast into an usize vector, truncating decimals if any.\nCast into an usize vector, truncating decimals if any.\nCast this point into a vector.\nCast this point into a vector.\nReturn this size as a vector with width and height.\nReturn this size as a vector with width, height and depth.\nCast into a 2D vector.\nCast into a 3D vector.\nTranslate a 2D box and cast its unit.\nReturns the given box transformed by this scale.\nTranslate a 2D box and cast its unit.\nReturns the given box transformed by this scale.\nTranslate a 3D box and cast its unit.\nReturns the given 2d point transformed by this rotation.\nReturns the given point transformed by this scale.\nTranslate a point and cast its unit.\nReturns the given point transformed by this transform.\nReturns the given 2d point transformed by this rotation …\nTranslate a point and cast its unit.\nReturns the given 2d point transformed by this transform, …\nReturns the homogeneous vector corresponding to the …\nReturns the given 3d point transformed by this rotation.\nReturns the given point transformed by this scale.\nTranslate a point and cast its unit.\nReturns the given 3d point transformed by this transform, …\nReturns the homogeneous vector corresponding to the …\nReturns the given rect transformed by this scale.\nTranslate a rectangle and cast its unit.\nTranslate a rectangle and cast its unit.\nReturns the given size transformed by this scale.\nNo-op, just cast the unit.\nNo-op, just cast the unit.\nReturns the given 2d vector transformed by this rotation.\nReturns the given vector transformed by this scale.\nReturns the given vector transformed by this matrix.\nReturns the given 2d vector transformed by this rotation …\nReturns the given 2d vector transformed by this matrix.\nReturns the given 3d vector transformed by this rotation.\nReturns the given 3d vector transformed by this matrix.\nReturns the same box, translated by a vector.\nReturns the same box3d, translated by a vector.\nReturns the same rectangle, translated by a vector.\nCreate a 2d translation transform:\nCreate a 3d translation transform:\nFallible cast from one numeric representation to another, …\nFallible cast from one numeric representation to another, …\nFallible cast from one numeric representation to another, …\nFallible cast from one numeric representation to another, …\nFallible cast from one numeric representation to another, …\nFallible cast from one numeric representation to another, …\nFallible cast from one numeric representation to another, …\nFallible cast from one numeric representation to another, …\nFallible cast from one numeric representation to another, …\nFallible cast from one numeric representation to another, …\nFallible cast from one numeric representation to another, …\nFallible cast from one numeric representation to another, …\nFallible cast from one numeric representation to another, …\nFallible cast from one numeric representation to another, …\nFallible cast from one numeric representation to another, …\nReturns the vector with length of one unit.\nReturns the vector with length of one unit.\nComputes the union of two boxes.\nComputes the union of two boxes.\nCreates a rotation around from a quaternion representation …\nConvenience constructor.\nConvenience constructor.\nReturns the vector part (i, j, k) of this quaternion.\nReturns result of multiplication of all components\nThe extent of the element in the U units along the x axis …\nThe extent of the element in the U units along the x axis.\nReturns the same transform with a different destination …\nReturns the same transform with a different destination …\nReturn this vector scaled to fit the provided length.\nReturn this vector capped to a maximum length.\nReturn this vector capped to a maximum length.\nReturn this vector with a minimum length applied.\nReturn this vector with a minimum length applied.\nReturns the same transform with a different source unit.\nReturns the same transform with a different source unit.\nThe x (traditionally, horizontal) coordinate.\nThe x (traditionally, horizontal) coordinate.\nReturns a 2d point using this point’s x and y coordinates\nReturns a 2d vector using this vector’s x and y …\nReturns a 2d vector using this vector’s x and y …\nReturns a 2d point using this point’s x and z coordinates\nReturns a 2d vector using this vector’s x and z …\nReturns a 2d vector using this vector’s x and z …\nThe y (traditionally, vertical) coordinate.\nThe y (traditionally, vertical) coordinate.\nSwap x and y.\nSwap x and y.\nReturns a 2d point using this point’s x and z coordinates\nReturns a 2d vector using this vector’s x and z …\nReturns a 2d vector using this vector’s y and z …\nThe z (traditionally, depth) coordinate.\nConstructor, setting all sides to zero.\nConstructor, setting all sides to zero.\nThe same as Point2D::origin.\nThe same as Point3D::origin.\nConstructor, setting all sides to zero.\nConstructor, setting all sides to zero.\nThe same as Zero::zero but available without importing …\nThe same as Zero::zero but available without importing …\nConstructor, setting all components to zero.\nConstructor, setting all components to zero.\nConstructor, setting all components to zero.\nConstructor, setting all components to zero.\nApply the function f to each pair of components of this …\nApply the function f to each pair of components of this …\nApply the function f to each pair of components of this …\nApply the function f to each pair of components of this …\nTrait for testing approximate equality\nDefault epsilon value\nReturns true if this object is approximately equal to the …\nReturns true if this object is approximately equal to the …\nAngle in radians\nThe extent of the element in the U units along the z axis.\nThe extent of the element in the U units along the y axis …\nThe extent of the element in the U units along the y axis.\nComponent multiplied by the imaginary number i.\nComponent multiplied by the imaginary number j.\nComponent multiplied by the imaginary number k.\nThe real part.\nThe extent of the element in the U units along the x axis …\nThe extent of the element in the U units along the x axis.\nThe x (traditionally, horizontal) coordinate.\nThe x (traditionally, horizontal) coordinate.\nThe y (traditionally, vertical) coordinate.\nThe y (traditionally, vertical) coordinate.\nThe z (traditionally, depth) coordinate.\nDefines the smallest integer equal or greater than the …\nDefines the biggest integer equal or lower than the …\nDefines the nearest integer value to the original value.\nRounds to the smallest integer equal or greater than the …\nRounds to the biggest integer equal or lower than the …\nRounds to the nearest integer value.\nA flattening iterator for quadratic bézier segments.\nA flattening iterator for quadratic bézier segments.\nA 2d curve segment defined by three points: the beginning …\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCommon APIs to segment types.\nReturn the curve after the split point.\nCompute the length of the segment using a flattened …\nReturn the curve before the split point.\nSample the derivative at t (expecting t between 0 and 1).\nSample x derivative at t (expecting t between 0 and 1).\nSample y derivative at t (expecting t between 0 and 1).\nSwap the direction of the segment.\nApproximates the curve with sequence of line segments.\nStart of the curve.\nSample the curve at t (expecting t between 0 and 1).\nSplit this curve into two sub-curves.\nReturn the curve inside a given range of t.\nEnd of the curve.\nSample x at t (expecting t between 0 and 1).\nSample y at t (expecting t between 0 and 1).\nAngle between vectors v1 and v2 (oriented clockwise …\nAn iterator that consumes Event iterator and yields …\nAn iterator that consumes an iterator of Points and …\nAn extension trait for PathEvent iterators.\nApplies a 2D transform to a path iterator and yields the …\nReturns an iterator that turns curves into line segments.\nReturns an iterator that turns curves into line segments.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCreate the iterator.\nCreates a new transformed path iterator from a path …\nReturns an iterator applying a 2D transform to all of its …\nReturns an iterator applying a 2D transform to all of its …\nAn angle in radians (f32).\nAlias for euclid::default::Box2D<f32>\nAlias for euclid::default::Point2D<f32>.\nAlias for euclid::default::Rotation2D<f32>\nAlias for euclid::default::Scale<f32>\nAlias for euclid::default::Size2D<f32>.\nAlias for euclid::default::Transform2D<f32>\nAlias for euclid::default::Translation2D<f32>\nAlias for euclid::default::Point2D<f32>.\nAngle in radians\nThe extent of the element in the U units along the y axis …\nShorthand for Point::new(x, y).\nShorthand for Size::new(x, y).\nShorthand for Vector::new(x, y).\nThe extent of the element in the U units along the x axis …\nThe x (traditionally, horizontal) coordinate.\nThe y (traditionally, vertical) coordinate.\nThe default builder for Path.\nA builder for Path with custom attributes.\nAn iterator of endpoint and control point ids for Path and …\nAn iterator for Path and PathSlice.\nAn iterator for Path and PathSlice.\nA simple path data structure.\nA view on a Path.\nAn iterator of over a Path traversing the path in reverse.\nA Builder that appends a path to an existing PathBuffer.\nA Builder that appends a path to an existing PathBuffer, …\nIterator over the paths in a PathBufferSlice.\nAn object that stores multiple paths contiguously.\nA view on a PathBuffer.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nA view over a sequence of endpoint IDs forming a polygon.\nAn iterator of Event<EndpointId, ()>.\nAn iterator of PathEvent.\nA view over a sequence of endpoints forming a polygon.\nAn iterator of IdEvent for Polygon.\nAn iterator of Event<&Endpoint, ()>.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nBuilds a path.\nThe base path building interface.\nAn extension trait for PathEvent iterators.\nThe type of object that is created by this builder.\nA path building interface that tries to stay close to SVG…\nAdds an elliptical arc.\nStarts a new sub-path at a given position.\nBuilds a path object, consuming the builder.\nEnds the current sub-path by connecting it back to its …\nAdds a cubic bézier curve to the current sub-path.\nAdds a cubic bézier segment to the current sub-path.\nEnds the current sub path.\nAdds an horizontal line segment.\nAdds a line segment to the current sub-path.\nAdds a line segment to the current sub-path.\nStart a new sub-path at the given position.\nAdds a quadratic bézier curve to the current sub-path.\nAdds a quadratic bézier segment to the current sub-path.\nEquivalent to arc_to in relative coordinates.\nEquivalent to cubic_bezier_to in relative coordinates.\nAdds an horizontal line segment in relative coordinates.\nEquivalent to line_to in relative coordinates.\nEquivalent to move_to in relative coordinates.\nEquivalent to quadratic_bezier_to in relative coordinates.\nAdds a vertical line segment in relative coordinates.\nEquivalent to cubic_bezier_to with implicit first control …\nEquivalent to quadratic_bezier_to with implicit control …\nEquivalent to smooth_cubic_bezier_to in relative …\nEquivalent to smooth_quadratic_bezier_to in relative …\nAdds a vertical line segment.\nA bevelled corner.\nThe stroke for each sub-path does not extend beyond its …\nA Gradient color.\nThe shape used at the end of open subpaths when they are …\nThe dash pattern used when stroking the line.\nThe shape used at the corners of paths or basic shapes …\nA sharp corner.\nAt the end of each sub-path, the shape representing the …\nA round corner.\nA solid Color.\nAt the end of each sub-path, the shape representing the …\nThe style of a stroke.\nThe coloring style of some drawing.\nThe shape to be used at the end of open subpaths when they …\nThe dash pattern used when stroking the line.\nThe shape to be used at the corners of paths or basic …\nThe offset of LineDash::segments to start the pattern.\nThe alternating lengths of lines and gaps which describe …\nThe color or gradient of the stroke.\nThe distance between the two edges of the stroke.\nThe Checkbox can be interacted with.\nThe theme catalog of a Checkbox.\nA box that can be checked.\nThe item class of the Catalog.\nThe Checkbox cannot be interacted with.\nThe Checkbox can be interacted with and it is being …\nThe icon in a Checkbox.\nThe possible status of a Checkbox.\nThe style of a checkbox.\nA styling function for a Checkbox.\nThe Background of the checkbox.\nThe Border of the checkbox.\nThe unicode code point that will be used as the icon.\nA danger checkbox; denoting a negative toggle.\nThe default class produced by the Catalog.\nFont that will be used to display the code_point,\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nThe icon Color of the checkbox.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nThe line height of the icon.\nA primary checkbox; denoting a main toggle.\nA secondary checkbox; denoting a complementary toggle.\nThe shaping strategy of the icon.\nFont size of the content.\nThe Style of a class with the given status.\nA success checkbox; denoting a positive toggle.\nThe text Color of the checkbox.\nIndicates if the Checkbox is currently checked.\nIndicates if the Checkbox is currently checked.\nIndicates if the Checkbox is currently checked.\nThe theme catalog of a ComboBox.\nA widget for searching and selecting a single value from a …\nThe local state of a ComboBox.\nThe default class for the text input of the ComboBox.\nThe default class for the menu of the ComboBox.\nReturns the argument unchanged.\nCalls U::from(self).\nCreates a new State for a ComboBox with the given list of …\nReturns the options of the State.\nCreates a new State for a ComboBox with the given list of …\nThe theme catalog of a Container.\nThe item class of the Catalog.\nA widget that aligns its contents inside of its boundaries.\nThe identifier of a Container.\nThe appearance of a container.\nA styling function for a Container.\nA Container with the given Background.\nUpdates the background of the Style.\nThe Background of the container.\nUpdates the border of the Style.\nThe Border of the container.\nA bordered Container with a background.\nUpdates the text color of the Style.\nA Container with a danger background color.\nA Container with a dark background and white text.\nThe default class produced by the Catalog.\nDraws the background of a Container given its Style and …\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nComputes the layout of a Container.\nCreates a custom Id.\nA Container with a primary background color.\nA rounded Container with a background.\nA Container with a secondary background color.\nUpdates the shadow of the Style.\nThe Shadow of the container.\nThe Style of a class with the given status.\nA Container with a success background color.\nThe text Color of the container.\nA transparent Container.\nCreates a unique Id.\nProduces a Task that queries the visible screen bounds of …\nA handle pointing to some encoded image bytes in-memory.\nImage filtering strategy.\nA handle of some image data.\nA frame that displays an image while keeping aspect ratio.\nBilinear interpolation.\nNearest neighbor.\nA file handle. The image data will be read from the file …\nA handle pointing to decoded image pixels in RGBA format.\nA frame that displays an image with the ability to zoom …\nSets the ContentFit of the Viewer.\nDraws an Image\nSets the FilterMethod of the Viewer.\nReturns the argument unchanged.\nSets the height of the Viewer.\nCalls U::from(self).\nComputes the layout of an Image.\nSets the max scale applied to the image of the Viewer.\nSets the min scale applied to the image of the Viewer.\nCreates a new Viewer with the given State.\nSets the padding of the Viewer.\nSets the percentage the image of the Viewer will be scaled …\nZoom and pan on an image.\nCreates a new Viewer with the given image Handle.\nSets the width of the Viewer.\nThe height of the image.\nThe id of this handle.\nThe pixels.\nThe width of the image.\nThe local state of a Viewer.\nA frame that displays an image with the ability to zoom …\nReturns the argument unchanged.\nCalls U::from(self).\nReturns if the cursor is currently grabbed by the Viewer.\nCreates a new State.\nReturns the bounds of the underlying image, given the …\nA container that distributes its contents vertically while …\nSets the horizontal alignment of the contents of the Column…\nKeyed columns distribute content vertically while keeping …\nExtends the Column with the given children.\nReturns the argument unchanged.\nCreates a Column from already allocated Vecs.\nSets the height of the Column.\nCalls U::from(self).\nSets the maximum width of the Column.\nCreates an empty Column.\nSets the Padding of the Column.\nAdds an element to the Column.\nAdds an element to the Column, if Some.\nSets the vertical spacing between elements.\nSets the width of the Column.\nCreates a Column with the given capacity.\nCreates a Column with the given elements.\nA container that distributes its contents vertically while …\nThe theme catalog of Markdown items.\nA code block.\nA bunch of Markdown that has been parsed.\nA heading.\nA text highlight.\nAn image.\nA Markdown item.\nA list.\nA paragraph.\nConfiguration controlling Markdown rendering in view.\nThe text styling of some Markdown rendering in view.\nA bunch of parsed Markdown text.\nA parsed URL record.\nA view strategy to display a Markdown Item.j\nReturn the serialization of this URL.\nReturn the authority of this URL as an ASCII string.\nThe Background of the highlight.\nThe Border of the highlight.\nReturn whether this URL is a cannot-be-a-base URL, meaning …\nDisplays a code block using the default look.\nThe styling class of a Markdown code block.\nDisplays a code block.\nThe text size used in code blocks.\nSerialize with Serde using the internal representation of …\nIf this URL has a host and it is a domain name (not an IP …\nReturn this URL’s fragment identifier, if any.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nConvert a directory name as std::path::Path into an URL in …\nConvert a file name as std::path::Path into an URL in the …\nCreates a new Style from the given theme::Palette.\nThe text size of level 1 heading.\nThe text size of level 2 heading.\nThe text size of level 3 heading.\nThe text size of level 4 heading.\nThe text size of level 5 heading.\nThe text size of level 6 heading.\nReturn whether the URL has an ‘authority’, which can …\nEquivalent to url.host().is_some().\nDisplays a heading using the default look.\nDisplays a heading.\nReturn the parsed representation of the host for this URL. …\nReturn the string representation of the host (domain or IP …\nDisplays an image.\nReturns the URLs of the Markdown images present in the …\nThe Color to be applied to inline code.\nThe Highlight to be applied to the background of inline …\nThe Padding to be applied to the background of inline code.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturn the serialization of this URL.\nReturn whether the URL is special (has a special scheme)\nDisplays an Item using the given Viewer.\nReturns the Markdown items, ready to be rendered.\nParse a string as an URL, with this URL as the base URL.\nThe Color to be applied to links.\nCreates a relative URL if possible, with this URL as the …\nCreates a new empty Content.\nProduces a message when a link is clicked with the given …\nReturn a default ParseOptions that can fully configure the …\nDisplays an ordered list using the default look and …\nDisplays an ordered list.\nReturn the origin of this URL (…\nDisplays a paragraph using the default look.\nDisplays a paragraph.\nParse the given Markdown content.\nParse an absolute URL from a string.\nCreates some new Content by parsing the given Markdown.\nParse an absolute URL from a string and add params to its …\nReturn the password for this URL, if any, as a …\nReturn the path for this URL, as a percent-encoded ASCII …\nUnless this URL is cannot-be-a-base, return an iterator of …\nReturn an object with methods to manipulate this URL’s …\nReturn the port number for this URL, if any.\nReturn the port number for this URL, or the default port …\nPushes more Markdown into the Content; parsing …\nReturn this URL’s query string, if any, as a …\nParse the URL’s query string, if any, as …\nManipulate this URL’s query string, viewed as a sequence …\nReturn the scheme of this URL, lower-cased, as an ASCII …\nSerialize with Serde using the internal representation of …\nChange this URL’s fragment identifier.\nChange this URL’s host.\nChange this URL’s host to the given IP address.\nChange this URL’s password.\nChange this URL’s path.\nChange this URL’s port number.\nChange this URL’s query string. If query is None, this …\nChange this URL’s scheme.\nChange this URL’s username.\nResolve a URL’s host and port number to SocketAddr.\nThe spacing to be used between elements.\nReturns the rich_text() spans ready to be used for the …\nThe styling of the Markdown.\nThe base text size.\nAssuming the URL is in the file scheme or similar, convert …\nDisplays an unordered list using the default look and …\nDisplays an unordered list.\nReturn the username for this URL (typically the empty …\nDisplay a bunch of Markdown items.\nRuns view but with a custom Viewer to turn an Item into an …\nCreates new Settings with default text size and the given …\nCreates new Settings with the given base text size in …\nThe alternative text of the image.\nThe raw code of the code block.\nThe items of the list.\nThe language of the code block, if any.\nThe styled lines of text in the code block.\nThe first number of the list, if it is ordered.\nThe title of the image.\nThe destination URL of the image.\nBuild and show dropdown menus.\nThe theme catalog of a Menu.\nThe item class of the Catalog.\nA list of selectable options.\nThe local state of a Menu.\nThe appearance of a Menu.\nA styling function for a Menu.\nThe Background of the menu.\nThe Border of the menu.\nThe default style of the list of a Menu.\nThe default class produced by the Catalog.\nThe background Color of a selected option in the menu.\nThe text Color of a selected option in the menu.\nThe Style of a class with the given status.\nThe text Color of the menu.\nA fixed reference line for the measurement of coordinates.\nBottom edge.\nA Pane was picked and then dropped outside of other Pane …\nThe theme catalog of a PaneGrid.\nCenter region.\nThe item class of this Catalog.\nThe arrangement of a PaneGrid.\nThe content of a Pane.\nThe controls of a Pane.\nA four cardinal direction.\n↓\nAn event produced during a drag and drop interaction of a …\nA pane that can be dragged.\nA Pane was dropped on top of another Pane.\nThe edges of an area.\nAn Edge of the full PaneGrid.\nEdge region.\nThe appearance of a highlight of the PaneGrid.\nThe horizontal axis: —\n←\nLeft edge.\nA line.\nA layout node of a PaneGrid.\nA rectangular region in a PaneGrid used to display widgets.\nA Pane.\nThe region of this Node is taken by a Pane.\nA single Pane of the PaneGrid.\nA collection of panes distributed using either vertical or …\nA Pane was picked for dragging.\nThe region of a Pane.\nAn event produced during a resize interaction of a PaneGrid…\n→\nRight edge.\nA divider that splits a region in a PaneGrid into two …\nA split of the available space.\nThe region of this Node is split into two.\nThe state of a PaneGrid.\nThe appearance of a PaneGrid.\nA styling function for a PaneGrid.\nThe Target area a pane can be dropped on.\nThe title bar of a Pane.\nTop edge.\n↑\nThe vertical axis: |\nReturns the adjacent Pane of another Pane in the given …\nSets whether or not the controls attached to this TitleBar …\nThe Background of the pane region.\nThe Border of the pane region.\nReturns whether the Draggable with the given Layout can be …\nSets the style class of the Content.\nSets the style class of the TitleBar.\nCloses the given Pane and returns its internal state and …\nThe Color of the Line.\nSets the controls of the TitleBar.\nThe default style of a PaneGrid.\nThe default class produced by this Catalog.\nDraws the Content with the provided Renderer and Layout.\nDraws the TitleBar with the provided Renderer and Layout.\nDrops the given Pane into the provided Target.\nCreates a new Controls with a full and compact variant. If …\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the internal state of the given Pane, if it exists.\nReturns the internal state of the given Pane with …\nThe appearance of a hovered region highlight.\nThe appearance of a hovered split.\nThe internal state of the PaneGrid.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns true if the amount of panes in the State is 0.\nReturns whether the mouse cursor is over the pick area of …\nReturns an iterator over all the panes of the State, …\nReturns a mutable iterator over all the panes of the State,\nReturns the layout of the State.\nReturns the total amount of panes in the State.\nMaximize the given Pane. Only this pane will be rendered …\nReturns the maximized Pane of the PaneGrid.\nMove Pane to an Edge of the PaneGrid.\nCreates a new Content with the provided body.\nCreates a new Controls with the given content.\nCreates a new TitleBar with the given content.\nCreates a new State, initializing the first pane with the …\nSets the Padding of the TitleBar.\nReturns the rectangular region for each Pane in the Node …\nThe panes of the PaneGrid.\nThe appearance of a picked split.\nThe new ratio of the Split.\nResizes two panes by setting the position of the provided …\nRestore the currently maximized Pane to it’s normal …\nSplits the provided Rectangle on the current Axis with the …\nSplits the given Pane into two in the given Axis and …\nThe Split that is being dragged for resizing.\nCalculates the bounds of the split line in a Rectangle …\nReturns the axis, rectangular region, and ratio for each …\nSplit a target Pane with a given Pane on a given Region.\nReturns an iterator over each Split in this Node.\nThe state of a PaneGrid.\nThe Style of a class with the given status.\nSets the style of the Content.\nSets the style of the TitleBar.\nSwaps the position of the provided panes in the State.\nSets the TitleBar of the Content.\nThe width of the Line.\nCreates a new State with the given Configuration.\nThe left/top Configuration of the split.\nThe direction of the split.\nThe right/bottom Configuration of the split.\nThe ratio of the split in [0.0, 1.0].\nThe picked Pane.\nThe picked Pane.\nThe picked Pane.\nThe Target where the picked Pane was dropped on.\nThe left/top Node of the split.\nThe direction of the split.\nThe right/bottom Node of the split.\nThe Split of this Node.\nThe ratio of the split in [0.0, 1.0].\nThe current action of a PaneGrid.\nA Pane in the PaneGrid is being dragged.\nThe PaneGrid is idle.\nThe internal state of a PaneGrid.\nA Split in the PaneGrid is being dragged.\nThe state of a PaneGrid.\nReturns the argument unchanged.\nReturns the argument unchanged.\nInitializes the Internal state of a PaneGrid from a …\nThe internal state of the PaneGrid.\nCalls U::from(self).\nCalls U::from(self).\nThe panes of the PaneGrid.\nReturns the current Pane that is being dragged, if any.\nReturns the current Split that is being dragged, if any.\nThe Axis of the Split.\nThe starting Point of the drag interaction.\nThe Pane being dragged.\nThe Split being dragged.\nThe PickList can be interacted with.\nDisplays an arrow icon (▼).\nThe theme catalog of a PickList.\nThe item class of the Catalog.\nA custom dynamic handle.\nThe handle to the right side of the PickList.\nThe PickList is being hovered.\nThe icon of a Handle.\nNo handle will be shown.\nThe PickList is open.\nA widget for selecting a single value from a list of …\nA custom static handle.\nThe possible status of a PickList.\nThe appearance of a pick list.\nA styling function for a PickList.\nThe Background of the pick list.\nThe Border of the pick list.\nThe unicode code point that will be used as the icon.\nThe default style of the field of a PickList.\nThe default class produced by the Catalog.\nThe default class for the menu of the PickList.\nFont that will be used to display the code_point,\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nThe handle Color of the pick list.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nLine height of the content.\nThe placeholder Color of the pick list.\nThe shaping strategy of the icon.\nFont size of the content.\nThe Style of a class with the given status.\nThe text Color of the pick list.\nThe Icon used when PickList is closed.\nThe Icon used when PickList is open.\nFont size of the content.\nWhether the PickList is hovered, while open.\nA widget that can generate messages when its content pops …\nThe theme catalog of a ProgressBar.\nThe item class of the Catalog.\nA bar that displays progress.\nThe appearance of a progress bar.\nA styling function for a ProgressBar.\nThe Background of the progress bar.\nThe Background of the bar of the progress bar.\nThe Border of the progress bar.\nThe danger style of a ProgressBar.\nThe default class produced by the Catalog.\nReturns the argument unchanged.\nCalls U::from(self).\nThe primary style of a ProgressBar.\nThe secondary style of a ProgressBar.\nThe Style of a class with the given status.\nThe success style of a ProgressBar.\nThe warning style of a ProgressBar.\nThe theme catalog of a QRCode.\nThe item class of the Catalog.\nThe data of a QRCode.\nThe data is too long to encode in a QR code for the chosen …\nAn error that occurred when building a Data for a QRCode.\nThe error correction level.\nHigh error correction. 30% of the data can be restored.\nA character that does not belong to the character set was …\nThe chosen ECI designator is invalid. A valid designator …\nThe chosen Version and ErrorCorrection combination is …\nLow error correction. 7% of the data can be restored.\nMedium error correction. 15% of the data can be restored.\nA micro QR code version. It should be between 1 and 4.\nA normal QR code version. It should be between 1 and 40.\nA type of matrix barcode consisting of squares arranged in …\nQuartile error correction. 25% of the data can be restored.\nThe appearance of a QR code.\nA styling function for a QRCode.\nOne or more characters in the provided data are not …\nThe size of a QRCode.\nThe color of the QR code background\nThe color of the QR code data cells\nThe default style of a QRCode.\nThe default class produced by the Catalog.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCreates a new Data with the provided data.\nThe Style of a class with the given status.\nCreates a new Data with the provided ErrorCorrection.\nCreates a new Data with the provided Version and …\nThe Radio button can be interacted with.\nThe theme catalog of a Radio.\nThe item class of the Catalog.\nThe Radio button is being hovered.\nA circular button representing a choice.\nThe possible status of a Radio button.\nThe appearance of a radio button.\nA styling function for a Radio.\nThe Background of the radio button.\nThe border Color of the radio button.\nThe border width of the radio button.\nThe default style of a Radio button.\nThe default class produced by the Catalog.\nThe Color of the dot of the radio button.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nThe Style of a class with the given status.\nThe text Color of the radio button.\nIndicates whether the Radio button is currently selected.\nIndicates whether the Radio button is currently selected.\nDifferent offset on each end of the rule, length units. …\nThe theme catalog of a Rule.\nThe item class of the Catalog.\nThe fill mode of a rule.\nFill the whole length of the container.\nUniform offset from each end, length units.\nFill a percent of the length of the container. The rule …\nDisplay a horizontal or vertical rule for dividing content.\nThe appearance of a rule.\nA styling function for a Rule.\nThe color of the rule.\nThe default styling of a Rule.\nThe default class produced by the Catalog.\nReturn the starting offset and length of the rule.\nThe FillMode of the rule.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nThe radius of the line corners.\nThe Style of a class with the given status.\nThe width (thickness) of the rule line.\nThe amount of absolute offset in each direction of a …\nThe Scrollable can be interacted with.\nThe anchor of the scroller of the Scrollable relative to …\nBoth vertical and horizontal scrolling\nThe theme catalog of a Scrollable.\nThe item class of the Catalog.\nThe direction of Scrollable.\nThe Scrollable is being dragged.\nA relative offset that points to the bottom-right of a …\nContent is aligned to the end of the Viewport.\nHorizontal scrolling\nThe Scrollable is being hovered.\nThe identifier of a Scrollable.\nThe appearance of the scrollbar of a scrollable.\nThe amount of relative offset in each direction of a …\nA relative offset that points to the top-left of a …\nA widget that can vertically display an infinite amount of …\nA scrollbar within a Scrollable.\nThe appearance of the scroller of a scrollable.\nScroller is anchoer to the start of the Viewport.\nThe possible status of a Scrollable.\nThe appearance of a scrollable.\nA styling function for a Scrollable.\nVertical scrolling\nThe current Viewport of the Scrollable.\nReturns the AbsoluteOffset of the current Viewport.\nReturns the AbsoluteOffset of the current Viewport, but …\nSets the Anchor of the Scrollbar .\nThe Background of a scrollbar.\nThe Border of a scrollbar.\nThe Border of the scroller.\nReturns the bounds of the current Viewport.\nThe Color of the scroller.\nThe container::Style of a scrollable.\nReturns the content bounds of the current Viewport.\nThe default style of a Scrollable.\nThe default class produced by the Catalog.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nThe Background of the gap between a horizontal and …\nReturns the horizontal Scrollbar, if any.\nThe horizontal Rail appearance.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nSets the scrollbar margin of the Scrollbar .\nCreates new Scrollbar for use in a Scrollable.\nCreates a custom Id.\nReturns the RelativeOffset of the current Viewport.\nProduces a Task that scrolls the Scrollable with the given …\nProduces a Task that scrolls the Scrollable with the given …\nThe appearance of the Scroller of a scrollbar.\nSets the scroller width of the Scrollbar .\nProduces a Task that snaps the Scrollable with the given Id\nSets whether the Scrollbar should be embedded in the …\nThe Style of a class with the given status.\nCreates a unique Id.\nReturns the vertical Scrollbar, if any.\nThe vertical Rail appearance.\nSets the scrollbar width of the Scrollbar .\nThe amount of horizontal offset\nThe amount of horizontal offset\nThe amount of vertical offset\nThe amount of vertical offset\nThe properties of the horizontal scrollbar.\nThe properties of the vertical scrollbar.\nWhether or not the horizontal scrollbar is disabled …\nWhether or not the horizontal scrollbar is disabled …\nWhether or not the horizontal scrollbar is disabled …\nIndicates if the horizontal scrollbar is being dragged.\nIndicates if the horizontal scrollbar is being hovered.\nWhether or not the vertical scrollbar is disabled meaning …\nWhether or not the vertical scrollbar is disabled meaning …\nWhether or not the vertical scrollbar is disabled meaning …\nIndicates if the vertical scrollbar is being dragged.\nIndicates if the vertical scrollbar is being hovered.\nA runtime action that can be performed by some widgets.\nA set of methods which allows a Primitive to be rendered.\nThe type of primitive this Program can draw.\nThe state and logic of a Shader widget.\nA widget which can render custom shaders with Iced’s wgpu…\nThe internal state of the Program.\nStores custom, user-provided types.\nA viewing region for displaying computer graphics.\nDraws the Primitive.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns a reference to the data with type T if it exists …\nReturns a mutable reference to the data with type T if it …\nReturns true if Storage contains a type T.\nCalls U::from(self).\nCalls U::from(self).\nReturns the logical size of the Viewport.\nReturns the current mouse interaction of the Program.\nReturns the physical height of the Viewport.\nReturns the physical size of the Viewport.\nReturns the physical width of the Viewport.\nProcesses the Primitive, allowing for GPU buffer …\nReturns the projection transformation of the Viewport.\nRenders the Primitive.\nReturns the scale factor of the Viewport.\nInserts the data T in to Storage.\nUpdate the internal State of the Program. This can be used …\nCreates a new Viewport with the given physical dimensions …\nThe Slider can be interacted with.\nThe theme catalog of a Slider.\nA circular handle.\nThe item class of the Catalog.\nThe Slider is being dragged.\nThe appearance of the handle of a slider.\nThe shape of the handle of a slider.\nThe Slider is being hovered.\nThe appearance of a slider rail\nA rectangular shape.\nAn horizontal bar and a handle that selects a single value …\nThe possible status of a Slider.\nThe appearance of a slider.\nA styling function for a Slider.\nThe Background of the handle.\nThe backgrounds of the rail of the slider.\nThe border of the rail.\nThe border Color of the handle.\nThe border width of the handle.\nThe default style of a Slider.\nThe default class produced by the Catalog.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nThe appearance of the Handle of the slider.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nThe colors of the rail of the slider.\nThe shape of the handle.\nThe Style of a class with the given status.\nThe width of the stroke of a slider rail.\nChanges the HandleShape of the Style to a circle with the …\nThe border radius of the corners of the rectangle.\nThe radius of the circle.\nThe width of the rectangle.\nThe theme catalog of an Svg.\nThe item class of the Catalog.\nA handle of Svg data.\nThe Svg is being hovered.\nThe Svg is idle.\nThe possible status of an Svg.\nThe appearance of an Svg.\nA styling function for an Svg.\nA vector graphics image.\nThe Color filter of an Svg.\nThe default class produced by the Catalog.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nThe Style of a class with the given status.\nAn absolute height in logical pixels.\nAdvanced text shaping and font fallback.\nNo shaping and no font fallback.\nBorrowed data.\nThe theme catalog of a Text.\nThe item class of this Catalog.\nA fragment of Text.\nWraps at the glyph level.\nThe output of the Highlighter.\nA type capable of highlighting text.\nA trait for converting a value to some text Fragment.\nThe highlight iterator type.\nThe height of a line of text in a paragraph.\nNo wrapping.\nOwned data.\nA factor of the size of the text.\nA bunch of Rich text.\nThe settings to configure the Highlighter.\nThe shaping strategy of some text.\nA span of text.\nThe internal state of a Text widget.\nThe appearance of some text.\nA styling function for a Text.\nA bunch of text.\nWraps at the word level.\nWraps at the word level, or fallback to glyph level if a …\nThe wrapping strategy of some text.\nSets the alignment::Horizontal of the Rich text.\nSets the alignment::Vertical of the Rich text.\nText with the default base color.\nCenters the Rich text, both horizontally and vertically.\nNotifies the Highlighter that the line at the given index …\nSets the default style class of the Rich text.\nSets the default Color of the Rich text.\nThe Color of the Span.\nThe Color of the text.\nSets the default Color of the Rich text, if Some.\nReturns the current line of the Highlighter.\nText conveying some negative information, like an error.\nThe default text styling; color is inherited.\nThe default class produced by this Catalog.\nDraws text using the same logic as the Text widget.\nSets the default font of the Rich text.\nThe font of the Span.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nSets the height of the Rich text boundaries.\nThe Highlight of the Span.\nHighlights the given line.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nConverts the value to some text Fragment.\nProduces the layout::Node of a Text widget.\nSets the default LineHeight of the Rich text.\nThe LineHeight of the Span.\nThe link of the Span.\nCreates a new Highlighter from its Self::Settings.\nCreates a new empty Rich text.\nSets the message that will be produced when a link of the …\nThe Padding of the Span.\nText conveying some important information, like an action.\nText conveying some secondary information, like a footnote.\nSets the default size of the Rich text.\nThe size of the Span in Pixels.\nWhether the Span should be struck through or not.\nThe Style of a class with the given status.\nSets the default style of the Rich text.\nText conveying some positive information, like a …\nThe Fragment of text.\nWhether the Span should be underlined or not.\nUpdates the Highlighter with some new Self::Settings.\nSets the width of the Rich text boundaries.\nCreates a new Rich text with the given text spans.\nSets the Wrapping strategy of the Rich text.\nAn interaction with an Editor.\nThe TextEditor can be interacted with.\nDelete the previous character.\nDelete the previous character.\nA binding to an action in the TextEditor.\nThe theme catalog of a TextEditor.\nThe item class of the Catalog.\nClick the Editor at the given Point.\nThe content of a TextEditor.\nCopy the selection of the TextEditor.\nUse \\r for line ending (many legacy systems)\nUse \\r\\n for line ending (Windows-style)\nProduce the given message.\nCut the selection of the TextEditor.\nDelete the next character.\nDelete the next character.\nThe TextEditor cannot be interacted with.\nMove to the end of the text.\nMove to the start of the text.\nMove down.\nDrag the mouse on the Editor to the given Point.\nAn action that edits text.\nPerform an Edit.\nMove to the end of the line.\nBreak the current line.\nBreak the current line.\nThe TextEditor is focused.\nMove to the start of the line.\nThe TextEditor is being hovered.\nInsert the given character.\nInsert the given character.\nA key press.\nMove left.\nUse \\n for line ending (POSIX-style)\nUse \\n\\r for line ending (some legacy systems)\nA line of an Editor.\nThe line ending of a Line.\nA cursor movement.\nApply a Motion.\nApply a Motion.\nNo line ending\nMove to the start of the next window.\nMove to the start of the previous window.\nPaste the given text.\nPaste the clipboard contents in the TextEditor.\nMove right.\nScroll the Editor a certain amount of lines.\nSelect text with a given Motion.\nSelect text with a given Motion.\nSelect the entire buffer.\nSelect the entire buffer.\nSelect the line at the current cursor.\nSelect the line at the current cursor.\nSelect the word at the current cursor.\nSelect the word at the current cursor.\nA sequence of bindings to execute.\nThe state of a TextEditor.\nThe possible status of a TextEditor.\nThe appearance of a text input.\nA styling function for a TextEditor.\nA multi-line text input.\nUnfocus the TextEditor.\nMove up.\nMove to the left boundary of a word.\nMove to the right boundary of a word.\nGets the string representation of the LineEnding.\nThe Background of the text input.\nThe Border of the text input.\nReturns the current cursor position of the Content.\nThe default style of a TextEditor.\nThe default class produced by the Catalog.\nReturns the Direction of the Motion.\nThe line ending of the Line.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the default Binding for the given key press.\nThe Color of the icon of the text input.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns whether the Action is an editing action.\nReturns whether the TextEditor is currently focused or not.\nThe key pressed.\nReturns the text of the line at the given index, if it …\nReturns the amount of lines of the Content.\nReturns the kind of LineEnding used for separating lines …\nReturns an iterator of the text of the lines in the Content…\nThe state of the keyboard modifiers.\nCreates an empty Content.\nPerforms an Action on the Content.\nThe Color of the placeholder of the text input.\nReturns the selected text of the Content.\nThe Color of the selection of the text input.\nThe current Status of the TextEditor.\nThe Style of a class with the given status.\nReturns the text of the Content.\nThe raw text of the Line.\nThe text produced by the key press.\nThe Color of the value of the text input.\nWidens the Motion, if possible.\nCreates a Content with the given text.\nThe amount of lines to scroll.\nWhether the TextEditor is hovered, while focused.\nThe TextInput can be interacted with.\nThe theme catalog of a TextInput.\nThe item class of the Catalog.\nThe cursor of a text input.\nThe default Padding of a TextInput.\nThe TextInput cannot be interacted with.\nThe TextInput is focused.\nThe TextInput is being hovered.\nThe content of the Icon.\nThe identifier of a TextInput.\nThe left side of a TextInput.\nThe right side of a TextInput.\nThe side of a TextInput.\nThe state of a TextInput.\nThe possible status of a TextInput.\nThe appearance of a text input.\nA styling function for a TextInput.\nA field that can be filled with text.\nThe value of a TextInput.\nThe Background of the text input.\nThe Border of the text input.\nThe unicode code point that will be used as the icon.\nTrack the cursor of a text input.\nReturns the Cursor of the TextInput.\nThe default style of a TextInput.\nThe default class produced by the Catalog.\nProduces a Task that focuses the TextInput with the given …\nFocuses the TextInput.\nThe font that will be used to display the code_point.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nThe Color of the icon of the text input.\nInserts a new char at the given grapheme index.\nInserts a bunch of graphemes at the given grapheme index.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns whether the Value is empty or not.\nReturns whether the TextInput is currently focused or not.\nReturns the total amount of graphemes in the Value.\nProduces a Task that moves the cursor of the TextInput …\nMoves the Cursor of the TextInput to an arbitrary location.\nProduces a Task that moves the cursor of the TextInput …\nMoves the Cursor of the TextInput to the end of the input …\nProduces a Task that moves the cursor of the TextInput …\nMoves the Cursor of the TextInput to the front of the …\nCreates a new Value from a string slice.\nCreates a custom Id.\nCreates a new State, representing an unfocused TextInput.\nReturns the position of the next end of a word from the …\nThe Color of the placeholder of the text input.\nReturns the position of the previous start of a word from …\nRemoves the grapheme at the given index.\nRemoves the graphemes from start to end.\nReturns a new Value with all its graphemes replaced with …\nReturns a new Value containing the graphemes from start …\nProduces a Task that selects all the content of the …\nSelects all the content of the TextInput.\nReturns the current selection of the Cursor for the given …\nThe Color of the selection of the text input.\nThe side of a TextInput where to display the Icon.\nThe font size of the content.\nThe spacing between the Icon and the text in a TextInput.\nReturns the State of the Cursor.\nThe Style of a class with the given status.\nUnfocuses the TextInput.\nCreates a unique Id.\nReturns a new Value containing the graphemes until the …\nThe Color of the value of the text input.\nWhether the TextInput is hovered, while focused.\nThe cursor of a text input.\nCursor without a selection\nCursor selecting a range of text\nThe state of a Cursor.\nReturns the argument unchanged.\nCalls U::from(self).\nThe end of the selection\nThe start of the selection\nThe default blank style of a Theme.\nThe built-in Catppuccin Frappé variant.\nThe built-in Catppuccin Latte variant.\nThe built-in Catppuccin Macchiato variant.\nThe built-in Catppuccin Mocha variant.\nA Theme with a customized Palette.\nA Theme that uses a Custom palette.\nThe built-in dark variant.\nThe built-in Dracula variant.\nThe built-in Ferra variant:\nThe built-in Gruvbox Dark variant.\nThe built-in Gruvbox Light variant.\nThe built-in Kanagawa Dragon variant.\nThe built-in Kanagawa Lotus variant.\nThe built-in Kanagawa Wave variant.\nThe built-in light variant.\nThe built-in Moonfly variant.\nThe built-in Nightfly variant.\nThe built-in Nord variant.\nThe built-in Oxocarbon variant.\nA color palette.\nThe built-in Solarized Dark variant.\nThe built-in Solarized Light variant.\nThe base style of a Theme.\nA built-in theme.\nThe built-in Tokyo Night variant.\nThe built-in Tokyo Night Light variant.\nThe built-in Tokyo Night Storm variant.\nThe background Color of the Palette.\nThe background Color of the application.\nReturns the default base Style of a Theme.\nThe danger Color of the Palette.\nThe default Style of a built-in Theme.\nDefine the colors of a theme.\nThe primary Color of the Palette.\nThe success Color of the Palette.\nThe text Color of the Palette.\nThe default text Color of the application.\nThe warning Color of the Palette.\nA set of background colors.\nA set of danger colors.\nThe built-in Catppuccin Frappé variant of an Extended …\nThe built-in Catppuccin Latte variant of an Extended …") \ No newline at end of file +searchState.loadedDescShard("iced", 1, "Sets the width of the Button.\nSets the width of the Checkbox.\nSets the width of the ComboBox.\nSets the width of the Container.\nSets the width of the PaneGrid.\nSets the width of the PickList.\nSets the width of the Radio button.\nSets the width of the Scrollable.\nSets the width of the Slider.\nSets the width of the TextEditor.\nSets the width of the TextInput.\nSets the width of the Toggler.\nSets the width of the VerticalSlider.\nSet the width of the custom Shader.\nSets the width of the Svg.\nSets the width of the Space.\nSets the width of the Image boundaries.\nSets the width of the Canvas.\nCreates a Column with the given capacity.\nCreates a Row with the given capacity.\nCreates a Stack with the given capacity.\nCreates a Column with the given elements.\nCreates a Row with the given elements.\nCreates a Stack with the given elements.\nCreates a new Scrollable with the given Direction.\nCreates an amount of vertical Space.\nCreates an amount of horizontal Space.\nTurns the Row into a Wrapping row.\nSets the Wrapping strategy of the TextEditor.\nSets the X coordinate of the Pin.\nSets the Y coordinate of the Pin.\nThe Button can be pressed.\nA generic widget that produces a message when pressed.\nThe theme catalog of a Button.\nThe item class of the Catalog.\nThe Button cannot be pressed.\nThe Button can be pressed and it is being hovered.\nThe Button is being pressed.\nThe possible status of a Button.\nThe style of a button.\nA styling function for a Button.\nThe Background of the button.\nThe Border of the button.\nA danger button; denoting a destructive action.\nThe default class produced by the Catalog.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nA primary button; denoting a main action.\nA secondary button; denoting a complementary action.\nThe Shadow of the button.\nThe Style of a class with the given status.\nA success button; denoting a good outcome.\nA text button; useful for links.\nThe text Color of the button.\nA warning button; denoting a risky action.\nUpdates the Style with the given Background.\nA runtime action that can be performed by some widgets.\nA bevelled corner.\nThe stroke for each sub-path does not extend beyond its …\nA simple cache that stores generated Geometry to avoid …\nA widget capable of drawing 2D graphics.\nA user interface event.\nThe style used to fill geometry.\nThe frame supported by a renderer.\nThe geometry supported by a renderer.\nA fill which linearly interpolates colors along a …\nA Gradient color.\nA cache group.\nA raster image that can be drawn.\nAn input method event\nA keyboard event\nThe shape used at the end of open subpaths when they are …\nThe dash pattern used when stroking the line.\nThe shape used at the corners of paths or basic shapes …\nA linear gradient interpolates colors along a direction …\nA sharp corner.\nA mouse event\nAn immutable set of points that may or may not be …\nThe state and logic of a Canvas.\nAt the end of each sub-path, the shape representing the …\nA round corner.\nA solid Color.\nAt the end of each sub-path, the shape representing the …\nThe internal state mutated by the Program.\nThe style of a stroke.\nThe coloring style of some drawing.\nA bunch of text that can be drawn to a canvas\nA touch event\nA window event\nCreates a new Path representing a circle given its center …\nThe color of the text\nThe contents of the text\nDraws the state of the Program, producing a bunch of …\nComputes the Paths of the Text and draws them using the …\nFill Geometry with a certain style.\nThe filter method of the image.\nThe font of the text\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nA gradient that can be used as a fill for some geometry.\nThe handle of the image.\nThe horizontal alignment of the text\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns true if the Group can only ever have a single Cache…\nCreates a new Path representing a line segment given its …\nThe shape to be used at the end of open subpaths when they …\nThe dash pattern used when stroking the line.\nThe line height of the text.\nThe shape to be used at the corners of paths or basic …\nReturns the current mouse interaction of the Program.\nCreates a new Path with the provided closure.\nThe offset of LineDash::segments to start the pattern.\nThe opacity of the image.\nPacks the Gradient for use in shader code.\nBuild different kinds of 2D shapes.\nThe position of the text relative to the alignment …\nReturns the internal lyon_path::Path.\nCreates a new Path representing a rectangle given its …\nThe rotation to be applied to the image; on its center.\nCreates a new Path representing a rounded rectangle given …\nThe fill rule defines how to determine what is inside and …\nThe alternating lengths of lines and gaps which describe …\nThe shaping strategy of the text.\nThe size of the text\nIf set to true, the image will be snapped to the pixel …\nCreate lines from a Path and assigns them various …\nThe color or gradient of the fill.\nThe color or gradient of the stroke.\nReturns the current Path with the given transform applied …\nGenerates a new unique cache Group.\nUpdates the State of the Program.\nThe vertical alignment of the text\nThe distance between the two edges of the stroke.\nSets the color of the Stroke.\nSets the LineCap of the Stroke.\nSets the LineJoin of the Stroke.\nSets the width of the Stroke.\nThe style used to fill geometry.\nA Gradient color.\nThe fill rule defines how to determine what is inside and …\nA solid Color.\nThe coloring style of some drawing.\nReturns the argument unchanged.\nCalls U::from(self).\nThe fill rule defines how to determine what is inside and …\nThe color or gradient of the fill.\nA fill which linearly interpolates colors along a …\nA linear gradient.\nA linear gradient interpolates colors along a direction …\nPacked Gradient data for use in shader code.\nAdds a new ColorStop, defined by an offset and a color, to …\nAdds multiple ColorStops to the gradient.\nThe absolute ending position of the gradient.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCreates a new Linear builder.\nCreates a new Packed gradient for use in shader code.\nPacks the Gradient for use in shader code.\nThe absolute starting position of the gradient.\nColorStops along the linear gradient direction.\nA segment of a differentiable curve.\nA Path builder.\nAn immutable set of points that may or may not be …\nBuild and draw curves.\nAdds an Arc to the Path from start_angle to end_angle in a …\nAdds a circular arc to the Path with the given control …\nAdds a cubic Bézier curve to the Path given its two …\nBuilds the Path of this Builder.\nThe center of the arc.\nAdds a circle to the Path given its center coordinate and …\nCloses the current sub-path in the Path with a straight …\nAdds an ellipse to the Path using a clockwise direction.\nThe end of the segment’s angle, clockwise rotation from …\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nConnects the last point in the Path to the given Point …\nMoves the starting point of a new sub-path to the given …\nCreates a new Builder.\nAdds a quadratic Bézier curve to the Path given its …\nThe radius of the arc.\nAdds a rectangle to the Path given its top-left corner …\nAdds a rounded rectangle to the Path given its top-left …\nThe start of the segment’s angle, clockwise rotation …\nA segment of a differentiable curve.\nAn elliptical Arc.\nThe center of the arc.\nThe center of the arc.\nThe end of the segment’s angle, clockwise rotation from …\nThe end of the segment’s angle, clockwise rotation from …\nReturns the argument unchanged.\nCalls U::from(self).\nThe radii of the arc’s ellipse. The horizontal and …\nThe radius of the arc.\nThe clockwise rotation of the arc’s ellipse.\nThe start of the segment’s angle, clockwise rotation …\nThe start of the segment’s angle, clockwise rotation …\nFlag parameters for arcs as described by the SVG …\nAn alias for usize.\nA view over a contiguous storage of custom attributes.\nInterface for objects storing custom attributes associated …\nAn alias for a slice of f32 values.\nA beveled corner is to be used to join path segments. The …\nThe default builder for Path.\nA builder for Path with custom attributes.\nThe stroke for each sub-path does not extend beyond its …\nID of a control point in a path.\nID of an endpoint point in a path.\nRepresents an event or edge of path.\nRefers to an event in a path.\nThe fill rule defines how to determine what is inside and …\nA path event representing endpoints and control points as …\nAn iterator of endpoint and control point ids for Path and …\nA view over a sequence of endpoint IDs forming a polygon.\nAn iterator for Path and PathSlice.\nAn iterator for Path and PathSlice.\nLine cap as defined by the SVG specification.\nLine join as defined by the SVG specification.\nA sharp corner is to be used to join path segments.\nSame as a miter join, but if the miter limit is exceeded, …\nAn empty attribute slice.\nA simple path data structure.\nAn object that stores multiple paths contiguously.\nA view on a PathBuffer.\nThe commands of a path encoded in a single array using IDs …\nA view over PathCommands.\nA path event representing endpoints and control points as …\nA view on a Path.\nA view over a sequence of endpoints forming a polygon.\nInterface for types types (typically endpoints and control …\nInterface for objects storing endpoints and control points …\nAn iterator of over a Path traversing the path in reverse.\nAt each end of each sub-path, the shape representing the …\nA round corner is to be used to join path segments.\nThe positive or negative side of a vector or segment.\nAt the end of each sub-path, the shape representing the …\nThe two possible orientations for the edges of a shape to …\nReturns a view on the path commands.\nReturns a view on this Path.\nReturns a slice over an endpoint’s custom attributes.\nReturns a slice over an endpoint’s custom attributes.\nPath building utilities.\nCreates a PathCommandsBuilder to create path commands.\nCreates a Builder to build a path.\nCreates a BuilderWithAttributes to build a path with …\nA generic representation for paths that allow more control …\nReturns the event for a given event ID.\nReturns the event for a given event ID.\nReturns the event for a given event ID.\nReturns the event for a given event ID.\nReturns an iterator over the path, with endpoints and …\nReturns the first endpoint and its custom attributes if …\nIterate on a flattened approximation of the path with …\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the endpoint’s custom attributes as a slice of …\nIterates over the endpoint and control point ids of the …\nIterates over the endpoint and control point ids of the …\nReturns an iterator of IdEvent.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nBuilds a Path from This iterator.\nReturns whether the path buffer is empty.\nReturns whether the path buffer is empty.\nReturns an iterator over the path commands.\nReturns an iterator over the path commands.\nIterates over the entire Path, ignoring custom attributes.\nIterates over the path.\nReturns an iterator of Event<&T>.\nIterates over the entire Path with custom attributes.\nIterates over the entire Path with custom attributes.\nTools to iterate over paths.\nOf the four candidate arc sweeps, two will represent an …\nReturns the last endpoint and its custom attributes if any.\nReturns the number of paths in the path buffer.\nReturns the number of paths in the path buffer.\nf32 version of the lyon_geom types used everywhere. Most …\nCreates an Empty Path.\nReturns the next event id within the path.\nReturns the next event id within the path.\nReturns the next event id within the sub-path.\nReturns the next event id within the path.\nReturns the number of float attributes per endpoint.\nThe default path data structure.\nA container to store multiple paths contiguously.\nReturns an iterator of PathEvent.\nReturns a view on a path made of these commands with …\nSpecific path types for polygons.\nReturns a reversed version of this path in the form of an …\nReturns a reversed version of this path in the form of an …\nCreates an WithSvg to build a path with a rich set of …\nIf sweep is true, then the arc will be drawn in a “…\nlyon_path traits reexported here for convenience.\nApplies a transform to all endpoints and control points of …\nThe radius of each corner of a rounded rectangle.\nBuilds a path.\nA Builder that approximates curves with successions of …\nA convenience wrapper for PathBuilder without custom …\nThe base path building interface.\nThe type of object that is created by this builder.\nA path building interface that tries to stay close to SVG…\nBuilds a path with a transformation applied.\nImplements an SVG-like building interface on top of a …\nAdds a sub-path containing a circle.\nAdds a sub-path containing a circle.\nAdds a sub-path containing a circle.\nAdds a sub-path containing an ellipse.\nAdds a sub-path containing an ellipse.\nAdds a sub-path containing an ellipse.\nAdds a sub-path containing a single line segment.\nAdds a sub-path containing a single line segment.\nAdds a sub-path containing a single line segment.\nAdds a sub-path containing a single point.\nAdds a sub-path containing a single point.\nAdds a sub-path containing a single point.\nAdds a sub-path from a polygon.\nAdds a sub-path from a polygon.\nAdds a sub-path from a polygon.\nAdds a sub-path from a polygon.\nAdds a sub-path from a polygon.\nAdds a sub-path containing a rectangle.\nAdds a sub-path containing a rectangle.\nAdds a sub-path containing a rectangle.\nAdds a sub-path containing a rectangle.\nAdds a sub-path containing a rectangle.\nAdds a sub-path containing a rectangle.\nAdds an elliptical arc.\nStarts a new sub-path at a given position.\nStarts a new sub-path at a given position.\nBuilds a path object, consuming the builder.\nBuilds a path object, consuming the builder.\nEnds the current sub-path by connecting it back to its …\nCloses the current sub path.\nCloses the current sub path.\nCloses the current sub path.\nAdds a cubic bézier curve to the current sub-path.\nAdds a cubic bézier segment to the current sub-path.\nAdds a cubic bézier curve to the current sub-path.\nEnds the current sub path.\nEnds the current sub path.\nReturns a builder that approximates all curves with …\nReturns a builder that approximates all curves with …\nReturns a builder that approximates all curves with …\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nAdds an horizontal line segment.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nAdds a line segment to the current sub-path.\nAdds a line segment to the current sub-path.\nAdds a line segment to the current sub-path.\nStart a new sub-path at the given position.\nApplies the provided path event.\nApplies the provided path event.\nApplies the provided path event.\nAdds a quadratic bézier curve to the current sub-path.\nAdds a quadratic bézier segment to the current sub-path.\nAdds a quadratic bézier curve to the current sub-path.\nEquivalent to arc_to in relative coordinates.\nEquivalent to cubic_bezier_to in relative coordinates.\nAdds an horizontal line segment in relative coordinates.\nEquivalent to line_to in relative coordinates.\nEquivalent to move_to in relative coordinates.\nEquivalent to quadratic_bezier_to in relative coordinates.\nAdds a vertical line segment in relative coordinates.\nHints at the builder that a certain number of endpoints …\nHints at the builder that a certain number of endpoints …\nHints at the builder that a certain number of endpoints …\nHints at the builder that a certain number of endpoints …\nHints at the builder that a certain number of endpoints …\nEquivalent to cubic_bezier_to with implicit first control …\nEquivalent to quadratic_bezier_to with implicit control …\nEquivalent to smooth_cubic_bezier_to in relative …\nEquivalent to smooth_quadratic_bezier_to in relative …\nReturns a builder that applies the given transformation to …\nReturns a builder that applies the given transformation to …\nReturns a builder that applies the given transformation to …\nAdds a vertical line segment.\nReturns a builder that support SVG commands.\nReturns a builder that support SVG commands.\nReturns a builder that support SVG commands.\nA view on a PathCommands buffer and two slices for …\nAn iterator of Event<&Endpoint, &ControlPoint>.\nAn iterator of Event<&Endpoint, &ControlPoint>.\nThe commands of a path encoded in a single array using IDs …\nBuilds path commands.\nA view over PathCommands.\nAn iterator of PathEvent.\nConsumes the builder and returns path commands.\nReturns an iterator over the events of the path using …\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns an iterator over the events of the path using IDs.\nCreates a builder without allocating memory.\nCreates a pre-allocated builder.\nAn angle in radians\nAn elliptic arc curve segment.\nFlag parameters for arcs as described by the SVG …\nA 2d curve segment defined by four points: the beginning …\nAn infinite line defined by a point and a vector.\nA line defined by the equation …\nA linear segment.\nA 2d curve segment defined by three points: the beginning …\nAlias for euclid::default::Rotation2D\nCommon APIs to segment types.\nAn elliptic arc curve segment using the SVG’s end-point …\nAlias for euclid::default::Transform2D\nAlias for euclid::default::Translation2D\nA 2D triangle defined by three points a, b and c.\nReturn the curve after the split point.\nReturn the curve after the split point.\nReturn the curve after the split point.\nReturn the segment after the split point.\nReturn the curve after the split point.\nAngle in radians\nReturns the shortest signed angle between two angles.\nCompute the length of the segment using a flattened …\nCompute the length of the segment using a flattened …\nElliptic arc related maths and tools.\nReturn the curve before the split point.\nReturn the curve before the split point.\nReturn the curve before the split point.\nReturn the segment before the split point.\nReturn the curve before the split point.\nReturns a conservative rectangle that contains the curve.\nReturns a conservative rectangle that contains the curve.\nReturn the smallest rectangle containing this segment.\nReturns the smallest rectangle the curve is contained in\nReturns the smallest rectangle that contains this triangle.\nReturns the smallest range of x that contains this curve.\nReturns the smallest range of x that contains this curve.\nReturns a conservative range of x that contains this …\nReturns the smallest range of y that contains this curve.\nReturns the smallest range of y that contains this curve.\nReturns a conservative range of y that contains this …\nReturns a triangle containing this curve segment.\nCast from one numeric representation to another.\nCreate simple circle.\nClip this segment against a rectangle.\nHorizontally clip this segment against a range of the x …\nVertically clip this segment against a range of the y axis.\nComputes the closest point on this segment to p.\nAnalytic solution to finding the closest point on the …\nComputes the intersection points (if any) between this …\nComputes the intersections (if any) between this segment …\nSample the derivative at t (expecting t between 0 and 1).\nSample the curve’s derivative at t (expecting t between …\nSample the curve’s derivative at t (expecting t between …\nComputes the distance between this segment and a point.\nReturns the shortest distance between this segment and a …\nSample x derivative at t (expecting t between 0 and 1).\nSample the x coordinate of the curve’s derivative at t …\nSample the x coordinate of the curve’s derivative at t …\nSample y derivative at t (expecting t between 0 and 1).\nSample the y coordinate of the curve’s derivative at t …\nSample the y coordinate of the curve’s derivative at t …\nEpsilon constants are usually not a good way to deal with …\nReturns a conservative rectangle that contains the curve.\nReturns a conservative rectangle the curve is contained in.\nReturns a conservative rectangle that contains the curve.\nReturns a conservative range of x that contains this curve.\nReturns a conservative range of x that contains this curve.\nReturns a conservative range of y that contains this curve.\nReturns a conservative range of y that contains this curve.\nComputes a “fat line” of this segment.\nComputes a “fat line” of this segment.\nReturns the flattened representation of the curve as an …\nReturns the flattened representation of the curve as an …\nReturns the flattened representation of the curve as an …\nReturns the flattened representation of the curve as an …\nFind the interval of the beginning of the curve that can …\nSwap the direction of the segment.\nSwap the direction of the segment.\nSwap the beginning and the end of the segment.\nReturns an inverted version of this segment where the …\nSwap the beginning and the end of the segment.\nApproximate the arc with a sequence of cubic bézier …\nApproximates the arc with a sequence of cubic bézier …\nApproximates the curve with sequence of line segments.\nApproximates the curve with sequence of line segments.\nApproximates the curve with sequence of line segments.\nApproximates the curve with sequence of line segments.\nApproximates the curve with sequence of line segments.\nApproximates the curve with sequence of line segments.\nApproximates the curve with sequence of line segments.\nApproximates the curve with sequence of line segments.\nCompute a flattened approximation of the curve, invoking a …\nInvokes a callback at each inflection point if any.\nReturn local x extrema or None if this curve is monotonic.\nReturn local y extrema or None if this curve is monotonic.\nInvokes a callback for each monotonic part of the segment.\nInvokes a callback for each monotonic part of the segment.\nInvokes a callback for each monotonic part of the segment.\nInvokes a callback for each monotonic part of the segment.\nApproximate the arc with a sequence of quadratic bézier …\nApproximates the arc with a sequence of quadratic bézier …\nApproximates the cubic bézier curve with sequence of …\nApproximate the arc with a sequence of quadratic bézier …\nApproximates the arc with a sequence of quadratic bézier …\nApproximates the cubic bézier curve with sequence of …\nInvokes a callback for each x-monotonic part of the …\nInvokes a callback for each x-monotonic part of the …\nInvokes a callback for each x-monotonic part of the …\nInvokes a callback for each x-monotonic part of the …\nInvokes a callback for each y-monotonic part of the …\nInvokes a callback for each y-monotonic part of the …\nInvokes a callback for each y-monotonic part of the …\nInvokes a callback for each y-monotonic part of the …\nStart of the curve.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nConvert from the SVG arc notation.\nSample the curve’s angle at t (expecting t between 0 and …\nThe extent of the element in the U units along the y axis …\nComputes the intersection (if any) between this segment …\nTest for triangle-triangle intersection.\nTest for triangle-segment intersection.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns whether the curve can be approximated with a …\nReturns true if the angle is a finite number.\nReturns true if the curve can be approximated with a …\nReturns true if the curve can be approximated with a …\nReturns whether this segment is fully monotonic.\nReturns whether this segment is fully monotonic.\nReturns true if the curve can be safely approximated with …\nPer SVG spec, this arc should be rendered as a line_to …\nReturns whether this segment is monotonic on the x axis.\nReturns whether this segment is monotonic on the x axis.\nReturns whether this segment is monotonic on the y axis.\nReturns whether this segment is monotonic on the y axis.\nOf the four candidate arc sweeps, two will represent an …\nComputes the length of this segment.\nComputes the length of this segment.\nLinear interpolation between two angles, using the …\nComputes the intersection points (if any) between this …\nComputes the intersection points (if any) between this …\nComputes the intersections (if any) between this segment …\nComputes the intersections (if any) between this segment a …\nComputes the intersection points (if any) between this …\nComputes the intersections (if any) between this segment …\nComputes the intersections (if any) between this segment …\nReturn the x inflection point or None if this curve is …\nReturn the y inflection point or None if this curve is …\nComputes third mid-point of this segment.\nComputes the number of quadratic bézier segments required …\nShorthand for Point::new(x, y).\nReturns this angle in the [0..2*PI[ range.\nComputes the intersection points (if any) between this …\nComputes the intersections (if any) between this segment a …\nSample the curve at t (expecting t between 0 and 1).\nSample the curve at t (expecting t between 0 and 1).\nSample the curve at t (expecting t between 0 and 1).\nSample the segment at t (expecting t between 0 and 1).\nSample the curve at t (expecting t between 0 and 1).\nSample the curve’s tangent at t (expecting t between 0 …\nChanges the segment’s length, moving destination point.\nReturns this angle in the ]-PI..PI] range.\nReturns (sin(self), cos(self)).\nShorthand for Size::new(x, y).\nReturn the parameter values corresponding to a given x …\nReturn the parameter values corresponding to a given y …\nSplit this curve into two sub-curves.\nSplit this curve into two sub-curves.\nSplit this curve into two sub-curves.\nSplit this curve into two sub-segments.\nSplit this curve into two sub-curves.\nReturn the curve inside a given range of t.\nReturn the sub-curve inside a given range of t.\nReturn the sub-curve inside a given range of t.\nReturn the sub-segment inside a given range of t.\nReturn the sub-curve inside a given range of t.\nComputes the squared distance between this segment and a …\nReturned the squared distance to a point.\nReturns the shortest squared distance between this segment …\nComputes the squared length of this segment.\nIf sweep is true, then the arc will be drawn in a “…\nEnd of the curve.\nConverts this arc from endpoints to center notation.\nElevate this curve to a third order bézier.\nCast angle to f32.\nCast angle f64.\nReturns the line containing this segment.\nApproximate the curve with a single quadratic bézier …\nEvaluates an upper bound on the maximum distance between …\nConvert to the SVG arc notation.\nReturns the vector between this segment’s from and to …\n[Not implemented] Applies the transform to this triangle …\nApplies the transform to this curve and returns the …\nApplies the transform to this segment and returns the …\nApplies the transform to this curve and returns the …\nFallible cast from one numeric representation to another.\nShorthand for Vector::new(x, y).\nThe extent of the element in the U units along the x axis …\nSample x at t (expecting t between 0 and 1).\nSample the x coordinate of the curve at t (expecting t …\nSample the x coordinate of the segment at t (expecting t …\nSample the x coordinate of the curve at t (expecting t …\nThe x (traditionally, horizontal) coordinate.\nFind the advancement of the x-most position in the curve.\nFind the advancement of the x-most position in the curve.\nFind the x-least position in the curve.\nFind the advancement of the x-least position in the curve.\nSample y at t (expecting t between 0 and 1).\nSample the y coordinate of the curve at t (expecting t …\nSample the y coordinate of the segment at t (expecting t …\nSample the y coordinate of the curve at t (expecting t …\nThe y (traditionally, vertical) coordinate.\nFind the advancement of the y-most position in the curve.\nFind the advancement of the y-most position in the curve.\nFind the advancement of the y-least position in the curve.\nFind the advancement of the y-least position in the curve.\nAn elliptic arc curve segment.\nFlag parameters for arcs as described by the SVG …\nFlattening iterator for arcs.\nAn elliptic arc curve segment using the SVG’s end-point …\nReturns the argument unchanged.\nCalls U::from(self).\nOf the four candidate arc sweeps, two will represent an …\nIf sweep is true, then the arc will be drawn in a “…\nA string with a fixed capacity.\nA vector with a fixed capacity.\nError value indicating insufficient capacity\nA draining iterator for ArrayVec.\nBy-value iterator for ArrayVec.\nReturn a raw mutable pointer to the vector’s buffer.\nReturn a raw mutable pointer to the string’s buffer.\nReturn a mutable slice containing all elements of the …\nReturns the remaining items of this iterator as a mutable …\nReturn a mutable string slice of the whole ArrayString.\nReturn a raw pointer to the vector’s buffer.\nReturn a raw pointer to the string’s buffer.\nReturn a slice containing all elements of the vector.\nReturns the remaining items of this iterator as a slice.\nReturn a string slice of the whole ArrayString.\nReturn the capacity of the ArrayVec.\nReturn the capacity of the ArrayString.\nRemove all elements in the vector.\nMake the string empty.\nReturn an empty array\nReturn an empty ArrayString\nCreate a draining iterator that removes the specified …\nExtract the overflowing element\nExtend the ArrayVec with an iterator.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCreate a new ArrayString from a str.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCreate a new ArrayString from a byte string literal.\nCreate an ArrayVec from an iterator.\nInsert element at position index.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturn the inner fixed size array, if it is full to its …\nReturn the inner fixed size array.\nReturns whether the ArrayVec is empty.\nReturns whether the string is empty.\nReturn true if the ArrayVec is completely filled to its …\nReturn if the ArrayString is completely filled.\nReturn the number of elements in the ArrayVec.\nReturn the length of the string.\nCreate a new empty ArrayVec.\nCreate a new empty ArrayString.\nCreate a new CapacityError from element.\nCreate a new empty ArrayVec (const fn).\nCreate a new empty ArrayString (const fn).\nRemove the last element in the vector and return it.\nRemoves the last character from the string and returns it.\nRemove the element at index and shift down the following …\nPush element to the end of the vector.\nAdds the given char to the end of the string.\nAdds the given string slice to the end of the string.\nPush element to the end of the vector without checking the …\nReturns the capacity left in the ArrayVec.\nReturns the capacity left in the ArrayString.\nRemove the element at index and shift down the following …\nRemoves a char from this ArrayString at a byte position …\nRetains only the elements specified by the predicate.\nSet the vector’s length without dropping or moving out …\nSet the strings’s length.\nConvert into a CapacityError that does not carry an …\nRemove the element at index and swap the last element into …\nRemove the element at index and swap the last element into …\nReturns the ArrayVec, replacing the original with a new …\nShortens the vector, keeping the first len elements and …\nShortens this ArrayString to the specified length.\nCopy all elements from the slice and append to the ArrayVec…\nInsert element at position index.\nPush element to the end of the vector.\nAdds the given char to the end of the string.\nAdds the given string slice to the end of the string.\nCreate a new ArrayString value fully filled with ASCII …\nA 2d curve segment defined by four points: the beginning …\nReturns the argument unchanged.\nCalls U::from(self).\nAn angle in radians\nA 2d vector of booleans, useful for component-wise logic …\nA 3d vector of booleans, useful for component-wise logic …\nA 2d axis aligned rectangle represented by its minimum and …\nAn axis aligned 3D box represented by its minimum and …\nHomogeneous vector in 3D space.\nA one-dimensional distance, with value represented by T …\nA 2d Point tagged with a unit.\nA 3d Point tagged with a unit.\nA 2d Rectangle optionally tagged with a unit.\nA rigid transformation. All lengths are preserved under …\nA transform that can represent rotations in 2d, …\nA transform that can represent rotations in 3d, …\nA scaling factor between two different units of …\nA group of 2D side offsets, which correspond to …\nA 2d size tagged with a unit.\nA 3d size tagged with a unit.\nA 2d transform represented by a column-major 3 by 3 …\nA 3d transform stored as a column-major 4 by 4 matrix.\nA 2d transformation from a space to another that can only …\nA 3d transformation from a space to another that can only …\nTrait for basic trigonometry functions, so they can be …\nThe default unit.\nA 2d Vector tagged with a unit.\nA 3d Vector tagged with a unit.\nComputes the absolute value of each component.\nComputes the absolute value of each component.\nComputes the vector with absolute values of each component.\nComputes the vector with absolute values of each component.\nReturns true if all components are true and false …\nReturns true if all components are true and false …\nReturns new vector with by-component AND operation applied.\nReturns new vector with by-component AND operation applied.\nAngle in radians\nReturns the signed angle between this vector and the x …\nReturns the signed angle between this vector and another …\nReturns the positive angle between this vector and another …\nReturns true if any component are true and false otherwise.\nReturns true if any component are true and false otherwise.\nReturns true if this transform is approximately equal to …\nReturns true if this transform is approximately equal to …\nReturns true if this transform is approximately equal to …\nReturns true if this transform is approximately equal to …\nReturns true if this transform is approximately equal to …\nUtilities for testing approximate ordering - especially …\nReturns result of multiplication of both components\nCreates a rotation around a given axis.\nCreates a rotation around the x axis.\nCreates a rotation around the y axis.\nCreates a rotation around the z axis.\nShorthand for …\nShorthand for BoolVector2D { x, y }.\nShorthand for BoolVector3D { x, y, z }.\nCast from one numeric representation to another, …\nCast from one numeric representation to another, …\nCast from one numeric representation to another, …\nCast from one numeric representation to another, …\nCast from one numeric representation to another, …\nCast from one numeric representation to another, …\nCast from one numeric representation to another, …\nCast from one numeric representation to another, …\nCast from one numeric representation to another, …\nCast from one numeric representation to another, …\nCast from one numeric representation to another, …\nCast from one numeric representation to another, …\nCast from one numeric representation to another, …\nCast from one numeric representation to another, …\nCast from one numeric representation to another, …\nCast the unit\nCast the unit\nCast the unit\nCast the unit, preserving the numeric value.\nCast the unit, preserving the numeric value.\nCast the unit\nCast the unit, preserving the numeric value.\nCast the unit, preserving the numeric value.\nCast the unit\nCast the unit\nCast the unit.\nCast the unit.\nSee Point2D::ceil.\nRounds each component to the smallest integer equal or …\nSee Point3D::ceil.\nRounds each component to the smallest integer equal or …\nSee Size2D::ceil.\nRounds each component to the smallest integer equal or …\nSee Size3D::ceil.\nRounds each component to the smallest integer equal or …\nRounds each component to the smallest integer equal or …\nSee Vector2D::ceil.\nRounds each component to the smallest integer equal or …\nSee Vector3D::ceil.\nReturns the point each component of which clamped by …\nReturns the point each component of which clamped by …\nReturns the point each component of which clamped by …\nReturns the size each component of which clamped by …\nReturns the size each component of which clamped by …\nReturns the vector each component of which is clamped by …\nReturns the vector each component of which is clamped by …\nReturn this vector with minimum and maximum lengths …\nReturn this vector with minimum and maximum lengths …\nReturns the component-wise division of the two vectors.\nReturns the component-wise division of the two vectors.\nReturns the component-wise multiplication of the two …\nReturns the component-wise multiplication of the two …\nReturns true if this box2d contains the point p. A point …\nReturns true if this box3d contains the point p. A point …\nReturns true if this rectangle contains the point. Points …\nReturns true if this box contains the interior of the …\nReturns true if this box3d contains the interior of the …\nReturns true if this box contains the point p. A point is …\nReturns true if this box3d contains the point p. A point …\nReturns true if this rectangle contains the interior of …\nReturns the norm of the cross product [self.x, self.y, 0] …\nCross product.\nDecompose this into a translation and an rotation to be …\nA set of aliases for all types, tagged with the default …\nReturns the identity transform.\nReturns the identity transform.\nThe extent of the element in the U units along the z axis.\nComputes and returns the determinant of this transform.\nCompute the determinant of the transform.\nCalculates Euclidean division, the matching method for …\nCalculates Euclidean division, the matching method for …\nDot product.\nDot product.\nReturns vector with results of “equal” operation on …\nReturns vector with results of “equal” operation on …\nReturns vector with results of “equal” operation on …\nReturns vector with results of “equal” operation on …\nCreates a rotation from Euler angles.\nCreate a 3d point from this one, using the specified z …\nCreate a 3d vector from this one, using the specified z …\nSee Point2D::floor.\nRounds each component to the biggest integer equal or …\nRounds each component to the biggest integer equal or …\nSee Point3D::floor.\nRounds each component to the biggest integer equal or …\nSee Size2D::floor.\nRounds each component to the biggest integer equal or …\nSee Size3D::floor.\nSee Vector2D::floor.\nRounds each component to the biggest integer equal or …\nSee Vector3D::floor.\nRounds each component to the biggest integer equal or …\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nConstructor taking angle and length\nCreate a transform providing its components via an array …\nCreate a transform providing its components via an array …\nEquivalent to from_array with elements packed two at a time\nEquivalent to from_array with elements packed four at a …\nConstructor setting the same value to all sides, taking a …\nConstructor taking properly Lengths instead of scalar …\nConstructor taking properly Lengths instead of scalar …\nConstructor taking a typed Length for each side.\nConstructor taking scalar strongly typed lengths.\nConstructor taking scalar strongly typed lengths.\nConstructor taking properly Lengths instead of scalar …\nConstructor taking properly Lengths instead of scalar …\nConstructor.\nConstructor.\nReturns the smallest box containing all of the provided …\nReturns the smallest box containing all of the provided …\nReturns the smallest rectangle defined by the …\nConvenience function to create a scale transform from a …\nCreates a Box2D of the given size, at offset zero.\nCreates a Box3D of the given size, at offset zero.\nCreates a rect of the given size, at offset zero.\nTag a unitless value with units.\nTag a unitless value with units.\nTag a unitless value with units.\nTag a unitless value with units.\nTag a unitless value with units.\nTag a unitless value with units.\nTag a unitless value with units.\nTag a unitless value with units.\nTag a unitless value with units.\nTag a unitless value with units.\nTag a unitless value with units.\nTag a unitless value with units.\nTag a unit-less value with units.\nTag a unitless value with units.\nTag a unitless value with units.\nTag a unitless value with units.\nConstruct side offsets from min and a max vector offsets.\nConstruct side offsets from min and a max vector offsets.\nUnpack the underlying value from the wrapper.\nReturns the underlying scalar scale factor.\nReturns self.angle as a strongly typed Angle<T>.\nReturns vector with results of “greater then” …\nReturns vector with results of “greater than” …\nReturns vector with results of “greater than” …\nReturns vector with results of “greater than” …\nThe extent of the element in the U units along the y axis …\nThe extent of the element in the U units along the y axis.\nComponent multiplied by the imaginary number i.\nConstruct an identity transform\nCreates the identity rotation.\nCreates the identity rotation.\nCreates an identity scale (1.0).\nCreates no-op translation (both x and y is zero()).\nCreates no-op translation (x, y and z is zero()).\nCreate an identity matrix:\nCreates an identity matrix:\nInflates the box by the specified sizes on each side …\nInflates the box by the specified sizes on each side …\nCalculate the size and position of an inner box.\nCalculate the size and position of an inner rectangle.\nComputes the intersection of two boxes, returning None if …\nComputes the intersection of two boxes without check …\nReturns true if the two boxes intersect.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nInverts the transformation\nReturns the inverse of this rotation.\nReturns the inverse of this rotation.\nThe inverse Scale (1.0 / self).\nReturn the inverse transformation.\nReturn the inverse transformation.\nReturns the inverse transform if possible.\nReturns the inverse transform if possible.\nReturns true if this transform can be represented with a …\nCheck whether shapes on the XY plane with Z pointing …\nReturns true if the size is zero, negative or NaN.\nReturns true if the size is zero, negative or NaN.\nReturns true if any component of size is zero, negative, …\nReturns true if any component of size is zero, negative or …\nReturns true if all members are finite.\nReturns true if all members are finite.\nReturns true if all members are finite.\nReturns true if all members are finite.\nReturns true if all members are finite.\nReturns true if all members are finite.\nReturns true if all members are finite.\nReturns true if all members are finite.\nReturns true if all members are finite.\nReturns true if this scale has no effect.\nCheck if translation does nothing (both x and y is zero()).\nCheck if translation does nothing (x, y and z is zero()).\nReturns whether it is possible to compute the inverse …\nReturns whether it is possible to compute the inverse …\nReturns true if the box has a negative area.\nReturns true if the box has a negative volume.\nReturns true if norm of this quaternion is (approximately) …\nReturns true if both components is positive and false any …\nReturns true if all components is positive and false any …\nReturns true if all side offsets are zero.\nComponent multiplied by the imaginary number j.\nComponent multiplied by the imaginary number k.\nReturns the vector length.\nReturns the vector length.\nLinearly interpolate between this box and another box.\nLinearly interpolate between this box3d and another box3d.\nLinearly interpolate between this length and another …\nLinearly interpolate between this point and another point.\nLinearly interpolate between this point and another point.\nLinearly interpolate between this rectangle and another …\nBasic Linear interpolation between this rotation and …\nLinearly interpolate each component between this size and …\nLinearly interpolate between this size and another size.\nLinearly interpolate each component between this vector …\nLinearly interpolate each component between this vector …\nReturns vector with results of “lower then” operation …\nReturns vector with results of “lower than” operation …\nReturns vector with results of “lower than” operation …\nReturns vector with results of “lower than” operation …\nApply the function f to each component of this point.\nApply the function f to each component of this point.\nApply the function f to each component of this vector.\nApply the function f to each component of this vector.\nReturns maximum between this length and another length.\nReturns the size each component of which are maximum of …\nReturns the size each component of which are maximum of …\nReturns the vector each component of which are maximum of …\nReturns the vector each component of which are maximum of …\nReturns minimum between this length and another length.\nReturns the size each component of which are minimum of …\nReturns the size each component of which are minimum of …\nReturns the vector each component of which are minimum of …\nReturns the vector each component of which are minimum of …\nMultiplies all of the transform’s component by a scalar …\nConstructor.\nConstructor.\nConstructor taking scalar values directly.\nAssociate a value with a unit of measure.\nConstructor taking scalar values directly.\nConstructor taking scalar values directly.\nConstructor.\nConstruct a new rigid transformation, where the rotation …\nCreates a rotation from an angle in radians.\nConstructor taking a scalar for each side.\nConstructor taking scalar values.\nConstructor taking scalar values.\nConstructor taking scalar values directly.\nConstructor taking scalar values directly.\nCreate a transform specifying its components in using the …\nCreate a transform specifying all of it’s component as a …\nCreate a transform representing a 2d transformation from …\nConstructor setting the same value to all sides, taking a …\nConstruct a new rigid transformation, where the translation…\nReturns true if all components are false and false …\nReturns true if all components are false and false …\nComputes the norm of this quaternion.\nReturns a unit quaternion from this one.\nReturns the vector with length of one unit.\nReturns the vector with length of one unit\nReturns new vector with results of negation operation on …\nReturns new vector with results of negation operation on …\nReturns vector with results of “not equal” operation …\nReturns vector with results of “not equal” operation …\nReturns vector with results of “not equal” operation …\nReturns vector with results of “not equal” operation …\nA one-dimensional length, tagged with its units.\nConstructor, setting all components to one.\nConstructor, setting all components to one.\nReturns new vector with by-component OR operation applied.\nReturns new vector with by-component OR operation applied.\nConstructor, setting all components to zero.\nConstructor, setting all components to zero.\nCreate an orthogonal projection transform.\nCalculate the b and position of an outer box.\nCalculate the size and position of an outer rectangle.\nReturns a box that encompasses the result of transforming …\nReturns a 2d box that encompasses the result of …\nReturns a 3d box that encompasses the result of …\nReturns a rectangle that encompasses the result of …\nReturns a rectangle that encompasses the result of …\nCreate a simple perspective transform, projecting to the …\nShorthand for Point2D::new(x, y).\nShorthand for Point3D::new(x, y).\nApplies a rotation before self’s transformation and …\nReturns a transform with a rotation applied before self’…\nApplies a scale before self’s transformation and returns …\nReturns a transform with a scale applied before self’s …\nApplies a translation before self’s transformation and …\nReturns a transform with a translation applied before self…\nReturns this vector projected onto another one.\nReturns this vector projected onto another one.\nReturns a projection of this transform in 2d space.\nCreates a rotation around from a quaternion representation.\nThe real part.\nCreates a rotation from an angle in radians.\nShorthand for …\nReturns a reflection vector using an incident ray and a …\nReturns a reflection vector using an incident ray and a …\nCalculates the least nonnegative remainder of …\nCalculates the least nonnegative remainder of …\nReturn the normalized vector even if the length is larger …\nReturn the normalized vector even if the length is larger …\nReturns a rotation transform.\nCreate a 3d rotation transform from an angle / axis. The …\nReturn a box with edges rounded to integer coordinates, …\nReturn a box3d with edges rounded to integer coordinates, …\nSee Point2D::round.\nRounds each component to the nearest integer value.\nRounds each component to the nearest integer value.\nSee Point3D::round.\nReturn a rectangle with edges rounded to integer …\nSee Size2D::round.\nRounds each component to the nearest integer value.\nSee Size3D::round.\nRounds each component to the nearest integer value.\nRounds each component to the nearest integer value.\nSee Vector2D::round.\nRounds each component to the nearest integer value.\nSee Vector3D::round.\nReturn a box with faces/edges rounded to integer …\nReturn a box3d with faces/edges rounded to integer …\nReturn a rectangle with edges rounded to integer …\nReturn a box with faces/edges rounded to integer …\nReturn a box3d with faces/edges rounded to integer …\nReturn a rectangle with edges rounded to integer …\nCreate a 2d scale transform:\nCreate a 3d scale transform:\nReturns point, each component of which or from a, or from b…\nReturns point, each component of which or from a, or from b…\nReturns size, each component of which or from a, or from b …\nReturns size, each component of which or from a, or from b …\nReturns vector, each component of which or from a, or from …\nReturns vector, each component of which or from a, or from …\nChange the size of the box by adjusting the max endpoint …\nShorthand for Size2D::new(w, h).\nShorthand for Size3D::new(w, h, d).\nCreate a 2d skew transform.\nSpherical linear interpolation between this rotation and …\nConstructor setting all components to the same value.\nConstructor setting all components to the same value.\nConstructor setting all components to the same value.\nConstructor setting all components to the same value.\nConstructor setting all components to the same value.\nConstructor setting all components to the same value.\nReturns the vector’s length squared.\nReturns the vector’s length squared.\nComputes the squared norm of this quaternion.\nReturns the multiplication of the two transforms such that …\nReturns a rotation representing the other rotation …\nReturns a rotation representing this rotation followed by …\nReturns the multiplication of the two matrices such that …\nReturns the multiplication of the two matrices such that …\nApplies a rotation after self’s transformation and …\nReturns a transform with a rotation applied after self’s …\nApplies a scale after self’s transformation and returns …\nReturns a transform with a scale applied after self’s …\nApplies a translation after self’s transformation and …\nReturns a transform with a translation applied after self…\nConvert into a 2d point.\nConvert into a 2d vector.\nCreate a 2D transform picking the relevant terms from this …\nConvert into a 3d point with z-coordinate equals to zero.\nCreates a 3d rotation (around the z axis) from this 2d …\nConvert into a 3d vector with z coordinate equals to …\nCreate a 3D transform from the current transform\nCast into an array with x and y.\nCast into an array with x, y and z.\nReturn this size as an array of two elements (width, then …\nReturn this size as an array of three elements (width, …\nCast into an array with x and y.\nCast into an array with x, y and z.\nCast into an array with x and y.\nCast into an array with x, y and z.\nReturns an array containing this transform’s terms.\nReturns an array containing this transform’s terms.\nCast into an array with x, y, z and 0.\nReturns an array containing this transform’s terms …\nReturns an array containing this transform’s terms …\nEquivalent to to_array with elements packed two at a time …\nEquivalent to to_array with elements packed four at a time …\nEquivalent to to_array_transposed with elements packed …\nCast into an f32 box.\nCast into an f32 box3d.\nCast into an f32 point.\nCast into an f32 point.\nCast into an f32 rectangle.\nCast into an f32 size.\nCast into an f32 size.\nCast into an f32 vector.\nCast into an f32 vector.\nCast into an f32 vector.\nCast into an f32 vector.\nCast into an f64 box.\nCast into an f64 box3d.\nCast into an f64 point.\nCast into an f64 point.\nCast into an f64 rectangle.\nCast into an f64 size.\nCast into an f64 size.\nCast into an f64 vector.\nCast into an f64 vector.\nCast into an f64 vector.\nCast into an f64 vector.\nCast into an i32 box, truncating decimals if any.\nCast into an i32 box3d, truncating decimals if any.\nCast into an i32 point, truncating decimals if any.\nCast into an i32 point, truncating decimals if any.\nCast into an i32 rectangle, truncating decimals if any.\nCast into an i32 size, truncating decimals if any.\nCast into an i32 size, truncating decimals if any.\nCast into an i32 vector, truncating decimals if any.\nCast into an i32 vector, truncating decimals if any.\nCast into an i32 vector, truncating decimals if any.\nCast into an i32 vector, truncating decimals if any.\nCast into an i64 box, truncating decimals if any.\nCast into an i64 box3d, truncating decimals if any.\nCast into an i64 point, truncating decimals if any.\nCast into an i64 point, truncating decimals if any.\nCast into an i64 rectangle, truncating decimals if any.\nCast into an i64 size, truncating decimals if any.\nCast into an i64 size, truncating decimals if any.\nCast into an i64 vector, truncating decimals if any.\nCast into an i64 vector, truncating decimals if any.\nCast into an i64 vector, truncating decimals if any.\nCast into an i64 vector, truncating decimals if any.\nCast this vector into a point.\nCast this vector into a point.\nConvert into Cartesian 2D point.\nConvert into Cartesian 3D point.\nCast this vector into a size.\nReturns the matrix representation of this rotation.\nReturns the matrix representation of this rotation.\nReturns the matrix representation of this translation.\nReturns the matrix representation of this translation.\nCreates translation by this vector in vector units.\nCreates translation by this vector in vector units\nCast into a tuple with x and y.\nCast into a tuple with x, y and z.\nReturn this size as a tuple of two elements (width, then …\nReturn this size as an array of three elements (width, …\nCast into a tuple with x and y.\nCast into a tuple with x, y and z.\nCast into a tuple with x and y.\nCast into a tuple with x, y and z.\nCast into a tuple with x, y, z and 0.\nCast into an u32 box, truncating decimals if any.\nCast into an u32 box3d, truncating decimals if any.\nCast into an u32 point, truncating decimals if any.\nCast into an u32 point, truncating decimals if any.\nCast into an u32 rectangle, truncating decimals if any.\nCast into an u32 size, truncating decimals if any.\nCast into an u32 size, truncating decimals if any.\nCast into an u32 vector, truncating decimals if any.\nCast into an u32 vector, truncating decimals if any.\nCast into an u32 vector, truncating decimals if any.\nCast into an u32 vector, truncating decimals if any.\nCast into an u64 rectangle, truncating decimals if any.\nCast into an u64 size, truncating decimals if any.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nDrop the units, preserving only the numeric value.\nCast into an usize box, truncating decimals if any.\nCast into an usize box3d, truncating decimals if any.\nCast into an usize point, truncating decimals if any.\nCast into an usize point, truncating decimals if any.\nCast into an usize rectangle, truncating decimals if any.\nCast into an uint size, truncating decimals if any.\nCast into an uint size, truncating decimals if any.\nCast into an usize vector, truncating decimals if any.\nCast into an usize vector, truncating decimals if any.\nCast into an usize vector, truncating decimals if any.\nCast into an usize vector, truncating decimals if any.\nCast this point into a vector.\nCast this point into a vector.\nReturn this size as a vector with width and height.\nReturn this size as a vector with width, height and depth.\nCast into a 2D vector.\nCast into a 3D vector.\nTranslate a 2D box and cast its unit.\nReturns the given box transformed by this scale.\nTranslate a 2D box and cast its unit.\nReturns the given box transformed by this scale.\nTranslate a 3D box and cast its unit.\nReturns the given 2d point transformed by this rotation.\nReturns the given point transformed by this scale.\nTranslate a point and cast its unit.\nReturns the given point transformed by this transform.\nReturns the given 2d point transformed by this rotation …\nTranslate a point and cast its unit.\nReturns the given 2d point transformed by this transform, …\nReturns the homogeneous vector corresponding to the …\nReturns the given 3d point transformed by this rotation.\nReturns the given point transformed by this scale.\nTranslate a point and cast its unit.\nReturns the given 3d point transformed by this transform, …\nReturns the homogeneous vector corresponding to the …\nReturns the given rect transformed by this scale.\nTranslate a rectangle and cast its unit.\nTranslate a rectangle and cast its unit.\nReturns the given size transformed by this scale.\nNo-op, just cast the unit.\nNo-op, just cast the unit.\nReturns the given 2d vector transformed by this rotation.\nReturns the given vector transformed by this scale.\nReturns the given vector transformed by this matrix.\nReturns the given 2d vector transformed by this rotation …\nReturns the given 2d vector transformed by this matrix.\nReturns the given 3d vector transformed by this rotation.\nReturns the given 3d vector transformed by this matrix.\nReturns the same box, translated by a vector.\nReturns the same box3d, translated by a vector.\nReturns the same rectangle, translated by a vector.\nCreate a 2d translation transform:\nCreate a 3d translation transform:\nFallible cast from one numeric representation to another, …\nFallible cast from one numeric representation to another, …\nFallible cast from one numeric representation to another, …\nFallible cast from one numeric representation to another, …\nFallible cast from one numeric representation to another, …\nFallible cast from one numeric representation to another, …\nFallible cast from one numeric representation to another, …\nFallible cast from one numeric representation to another, …\nFallible cast from one numeric representation to another, …\nFallible cast from one numeric representation to another, …\nFallible cast from one numeric representation to another, …\nFallible cast from one numeric representation to another, …\nFallible cast from one numeric representation to another, …\nFallible cast from one numeric representation to another, …\nFallible cast from one numeric representation to another, …\nReturns the vector with length of one unit.\nReturns the vector with length of one unit.\nComputes the union of two boxes.\nComputes the union of two boxes.\nCreates a rotation around from a quaternion representation …\nConvenience constructor.\nConvenience constructor.\nReturns the vector part (i, j, k) of this quaternion.\nReturns result of multiplication of all components\nThe extent of the element in the U units along the x axis …\nThe extent of the element in the U units along the x axis.\nReturns the same transform with a different destination …\nReturns the same transform with a different destination …\nReturn this vector scaled to fit the provided length.\nReturn this vector capped to a maximum length.\nReturn this vector capped to a maximum length.\nReturn this vector with a minimum length applied.\nReturn this vector with a minimum length applied.\nReturns the same transform with a different source unit.\nReturns the same transform with a different source unit.\nThe x (traditionally, horizontal) coordinate.\nThe x (traditionally, horizontal) coordinate.\nReturns a 2d point using this point’s x and y coordinates\nReturns a 2d vector using this vector’s x and y …\nReturns a 2d vector using this vector’s x and y …\nReturns a 2d point using this point’s x and z coordinates\nReturns a 2d vector using this vector’s x and z …\nReturns a 2d vector using this vector’s x and z …\nThe y (traditionally, vertical) coordinate.\nThe y (traditionally, vertical) coordinate.\nSwap x and y.\nSwap x and y.\nReturns a 2d point using this point’s x and z coordinates\nReturns a 2d vector using this vector’s x and z …\nReturns a 2d vector using this vector’s y and z …\nThe z (traditionally, depth) coordinate.\nConstructor, setting all sides to zero.\nConstructor, setting all sides to zero.\nThe same as Point2D::origin.\nThe same as Point3D::origin.\nConstructor, setting all sides to zero.\nConstructor, setting all sides to zero.\nThe same as Zero::zero but available without importing …\nThe same as Zero::zero but available without importing …\nConstructor, setting all components to zero.\nConstructor, setting all components to zero.\nConstructor, setting all components to zero.\nConstructor, setting all components to zero.\nApply the function f to each pair of components of this …\nApply the function f to each pair of components of this …\nApply the function f to each pair of components of this …\nApply the function f to each pair of components of this …\nTrait for testing approximate equality\nDefault epsilon value\nReturns true if this object is approximately equal to the …\nReturns true if this object is approximately equal to the …\nAngle in radians\nThe extent of the element in the U units along the z axis.\nThe extent of the element in the U units along the y axis …\nThe extent of the element in the U units along the y axis.\nComponent multiplied by the imaginary number i.\nComponent multiplied by the imaginary number j.\nComponent multiplied by the imaginary number k.\nThe real part.\nThe extent of the element in the U units along the x axis …\nThe extent of the element in the U units along the x axis.\nThe x (traditionally, horizontal) coordinate.\nThe x (traditionally, horizontal) coordinate.\nThe y (traditionally, vertical) coordinate.\nThe y (traditionally, vertical) coordinate.\nThe z (traditionally, depth) coordinate.\nDefines the smallest integer equal or greater than the …\nDefines the biggest integer equal or lower than the …\nDefines the nearest integer value to the original value.\nRounds to the smallest integer equal or greater than the …\nRounds to the biggest integer equal or lower than the …\nRounds to the nearest integer value.\nA flattening iterator for quadratic bézier segments.\nA flattening iterator for quadratic bézier segments.\nA 2d curve segment defined by three points: the beginning …\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCommon APIs to segment types.\nReturn the curve after the split point.\nCompute the length of the segment using a flattened …\nReturn the curve before the split point.\nSample the derivative at t (expecting t between 0 and 1).\nSample x derivative at t (expecting t between 0 and 1).\nSample y derivative at t (expecting t between 0 and 1).\nSwap the direction of the segment.\nApproximates the curve with sequence of line segments.\nStart of the curve.\nSample the curve at t (expecting t between 0 and 1).\nSplit this curve into two sub-curves.\nReturn the curve inside a given range of t.\nEnd of the curve.\nSample x at t (expecting t between 0 and 1).\nSample y at t (expecting t between 0 and 1).\nAngle between vectors v1 and v2 (oriented clockwise …\nAn iterator that consumes Event iterator and yields …\nAn iterator that consumes an iterator of Points and …\nAn extension trait for PathEvent iterators.\nApplies a 2D transform to a path iterator and yields the …\nReturns an iterator that turns curves into line segments.\nReturns an iterator that turns curves into line segments.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCreate the iterator.\nCreates a new transformed path iterator from a path …\nReturns an iterator applying a 2D transform to all of its …\nReturns an iterator applying a 2D transform to all of its …\nAn angle in radians (f32).\nAlias for euclid::default::Box2D<f32>\nAlias for euclid::default::Point2D<f32>.\nAlias for euclid::default::Rotation2D<f32>\nAlias for euclid::default::Scale<f32>\nAlias for euclid::default::Size2D<f32>.\nAlias for euclid::default::Transform2D<f32>\nAlias for euclid::default::Translation2D<f32>\nAlias for euclid::default::Point2D<f32>.\nAngle in radians\nThe extent of the element in the U units along the y axis …\nShorthand for Point::new(x, y).\nShorthand for Size::new(x, y).\nShorthand for Vector::new(x, y).\nThe extent of the element in the U units along the x axis …\nThe x (traditionally, horizontal) coordinate.\nThe y (traditionally, vertical) coordinate.\nThe default builder for Path.\nA builder for Path with custom attributes.\nAn iterator of endpoint and control point ids for Path and …\nAn iterator for Path and PathSlice.\nAn iterator for Path and PathSlice.\nA simple path data structure.\nA view on a Path.\nAn iterator of over a Path traversing the path in reverse.\nA Builder that appends a path to an existing PathBuffer.\nA Builder that appends a path to an existing PathBuffer, …\nIterator over the paths in a PathBufferSlice.\nAn object that stores multiple paths contiguously.\nA view on a PathBuffer.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nA view over a sequence of endpoint IDs forming a polygon.\nAn iterator of Event<EndpointId, ()>.\nAn iterator of PathEvent.\nA view over a sequence of endpoints forming a polygon.\nAn iterator of IdEvent for Polygon.\nAn iterator of Event<&Endpoint, ()>.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nBuilds a path.\nThe base path building interface.\nAn extension trait for PathEvent iterators.\nThe type of object that is created by this builder.\nA path building interface that tries to stay close to SVG…\nAdds an elliptical arc.\nStarts a new sub-path at a given position.\nBuilds a path object, consuming the builder.\nEnds the current sub-path by connecting it back to its …\nAdds a cubic bézier curve to the current sub-path.\nAdds a cubic bézier segment to the current sub-path.\nEnds the current sub path.\nAdds an horizontal line segment.\nAdds a line segment to the current sub-path.\nAdds a line segment to the current sub-path.\nStart a new sub-path at the given position.\nAdds a quadratic bézier curve to the current sub-path.\nAdds a quadratic bézier segment to the current sub-path.\nEquivalent to arc_to in relative coordinates.\nEquivalent to cubic_bezier_to in relative coordinates.\nAdds an horizontal line segment in relative coordinates.\nEquivalent to line_to in relative coordinates.\nEquivalent to move_to in relative coordinates.\nEquivalent to quadratic_bezier_to in relative coordinates.\nAdds a vertical line segment in relative coordinates.\nEquivalent to cubic_bezier_to with implicit first control …\nEquivalent to quadratic_bezier_to with implicit control …\nEquivalent to smooth_cubic_bezier_to in relative …\nEquivalent to smooth_quadratic_bezier_to in relative …\nAdds a vertical line segment.\nA bevelled corner.\nThe stroke for each sub-path does not extend beyond its …\nA Gradient color.\nThe shape used at the end of open subpaths when they are …\nThe dash pattern used when stroking the line.\nThe shape used at the corners of paths or basic shapes …\nA sharp corner.\nAt the end of each sub-path, the shape representing the …\nA round corner.\nA solid Color.\nAt the end of each sub-path, the shape representing the …\nThe style of a stroke.\nThe coloring style of some drawing.\nThe shape to be used at the end of open subpaths when they …\nThe dash pattern used when stroking the line.\nThe shape to be used at the corners of paths or basic …\nThe offset of LineDash::segments to start the pattern.\nThe alternating lengths of lines and gaps which describe …\nThe color or gradient of the stroke.\nThe distance between the two edges of the stroke.\nThe Checkbox can be interacted with.\nThe theme catalog of a Checkbox.\nA box that can be checked.\nThe item class of the Catalog.\nThe Checkbox cannot be interacted with.\nThe Checkbox can be interacted with and it is being …\nThe icon in a Checkbox.\nThe possible status of a Checkbox.\nThe style of a checkbox.\nA styling function for a Checkbox.\nThe Background of the checkbox.\nThe Border of the checkbox.\nThe unicode code point that will be used as the icon.\nA danger checkbox; denoting a negative toggle.\nThe default class produced by the Catalog.\nFont that will be used to display the code_point,\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nThe icon Color of the checkbox.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nThe line height of the icon.\nA primary checkbox; denoting a main toggle.\nA secondary checkbox; denoting a complementary toggle.\nThe shaping strategy of the icon.\nFont size of the content.\nThe Style of a class with the given status.\nA success checkbox; denoting a positive toggle.\nThe text Color of the checkbox.\nIndicates if the Checkbox is currently checked.\nIndicates if the Checkbox is currently checked.\nIndicates if the Checkbox is currently checked.\nThe theme catalog of a ComboBox.\nA widget for searching and selecting a single value from a …\nThe local state of a ComboBox.\nThe default class for the text input of the ComboBox.\nThe default class for the menu of the ComboBox.\nReturns the argument unchanged.\nCalls U::from(self).\nCreates a new State for a ComboBox with the given list of …\nReturns the options of the State.\nCreates a new State for a ComboBox with the given list of …\nThe theme catalog of a Container.\nThe item class of the Catalog.\nA widget that aligns its contents inside of its boundaries.\nThe identifier of a Container.\nThe appearance of a container.\nA styling function for a Container.\nA Container with the given Background.\nUpdates the background of the Style.\nThe Background of the container.\nUpdates the border of the Style.\nThe Border of the container.\nA bordered Container with a background.\nUpdates the text color of the Style.\nA Container with a danger background color.\nA Container with a dark background and white text.\nThe default class produced by the Catalog.\nDraws the background of a Container given its Style and …\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nComputes the layout of a Container.\nCreates a custom Id.\nA Container with a primary background color.\nA rounded Container with a background.\nA Container with a secondary background color.\nUpdates the shadow of the Style.\nThe Shadow of the container.\nThe Style of a class with the given status.\nA Container with a success background color.\nThe text Color of the container.\nA transparent Container.\nCreates a unique Id.\nProduces a Task that queries the visible screen bounds of …\nA handle pointing to some encoded image bytes in-memory.\nImage filtering strategy.\nA handle of some image data.\nA frame that displays an image while keeping aspect ratio.\nBilinear interpolation.\nNearest neighbor.\nA file handle. The image data will be read from the file …\nA handle pointing to decoded image pixels in RGBA format.\nA frame that displays an image with the ability to zoom …\nSets the ContentFit of the Viewer.\nDraws an Image\nSets the FilterMethod of the Viewer.\nReturns the argument unchanged.\nSets the height of the Viewer.\nCalls U::from(self).\nComputes the layout of an Image.\nSets the max scale applied to the image of the Viewer.\nSets the min scale applied to the image of the Viewer.\nCreates a new Viewer with the given State.\nSets the padding of the Viewer.\nSets the percentage the image of the Viewer will be scaled …\nZoom and pan on an image.\nCreates a new Viewer with the given image Handle.\nSets the width of the Viewer.\nThe height of the image.\nThe id of this handle.\nThe pixels.\nThe width of the image.\nThe local state of a Viewer.\nA frame that displays an image with the ability to zoom …\nReturns the argument unchanged.\nCalls U::from(self).\nReturns if the cursor is currently grabbed by the Viewer.\nCreates a new State.\nReturns the bounds of the underlying image, given the …\nA container that distributes its contents vertically while …\nSets the horizontal alignment of the contents of the Column…\nKeyed columns distribute content vertically while keeping …\nExtends the Column with the given children.\nReturns the argument unchanged.\nCreates a Column from already allocated Vecs.\nSets the height of the Column.\nCalls U::from(self).\nSets the maximum width of the Column.\nCreates an empty Column.\nSets the Padding of the Column.\nAdds an element to the Column.\nAdds an element to the Column, if Some.\nSets the vertical spacing between elements.\nSets the width of the Column.\nCreates a Column with the given capacity.\nCreates a Column with the given elements.\nA container that distributes its contents vertically while …\nThe theme catalog of Markdown items.\nA code block.\nA bunch of Markdown that has been parsed.\nA heading.\nA text highlight.\nAn image.\nA Markdown item.\nA list.\nA paragraph.\nConfiguration controlling Markdown rendering in view.\nThe text styling of some Markdown rendering in view.\nA bunch of parsed Markdown text.\nA parsed URL record.\nA view strategy to display a Markdown Item.j\nReturn the serialization of this URL.\nReturn the authority of this URL as an ASCII string.\nThe Background of the highlight.\nThe Border of the highlight.\nReturn whether this URL is a cannot-be-a-base URL, meaning …\nDisplays a code block using the default look.\nThe styling class of a Markdown code block.\nDisplays a code block.\nThe text size used in code blocks.\nSerialize with Serde using the internal representation of …\nIf this URL has a host and it is a domain name (not an IP …\nReturn this URL’s fragment identifier, if any.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nConvert a directory name as std::path::Path into an URL in …\nConvert a file name as std::path::Path into an URL in the …\nCreates a new Style from the given theme::Palette.\nThe text size of level 1 heading.\nThe text size of level 2 heading.\nThe text size of level 3 heading.\nThe text size of level 4 heading.\nThe text size of level 5 heading.\nThe text size of level 6 heading.\nReturn whether the URL has an ‘authority’, which can …\nEquivalent to url.host().is_some().\nDisplays a heading using the default look.\nDisplays a heading.\nReturn the parsed representation of the host for this URL. …\nReturn the string representation of the host (domain or IP …\nDisplays an image.\nReturns the URLs of the Markdown images present in the …\nThe Color to be applied to inline code.\nThe Highlight to be applied to the background of inline …\nThe Padding to be applied to the background of inline code.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturn the serialization of this URL.\nReturn whether the URL is special (has a special scheme)\nDisplays an Item using the given Viewer.\nReturns the Markdown items, ready to be rendered.\nParse a string as an URL, with this URL as the base URL.\nThe Color to be applied to links.\nCreates a relative URL if possible, with this URL as the …\nCreates a new empty Content.\nProduces a message when a link is clicked with the given …\nReturn a default ParseOptions that can fully configure the …\nDisplays an ordered list using the default look and …\nDisplays an ordered list.\nReturn the origin of this URL (…\nDisplays a paragraph using the default look.\nDisplays a paragraph.\nParse the given Markdown content.\nParse an absolute URL from a string.\nCreates some new Content by parsing the given Markdown.\nParse an absolute URL from a string and add params to its …\nReturn the password for this URL, if any, as a …\nReturn the path for this URL, as a percent-encoded ASCII …\nUnless this URL is cannot-be-a-base, return an iterator of …\nReturn an object with methods to manipulate this URL’s …\nReturn the port number for this URL, if any.\nReturn the port number for this URL, or the default port …\nPushes more Markdown into the Content; parsing …\nReturn this URL’s query string, if any, as a …\nParse the URL’s query string, if any, as …\nManipulate this URL’s query string, viewed as a sequence …\nReturn the scheme of this URL, lower-cased, as an ASCII …\nSerialize with Serde using the internal representation of …\nChange this URL’s fragment identifier.\nChange this URL’s host.\nChange this URL’s host to the given IP address.\nChange this URL’s password.\nChange this URL’s path.\nChange this URL’s port number.\nChange this URL’s query string. If query is None, this …\nChange this URL’s scheme.\nChange this URL’s username.\nResolve a URL’s host and port number to SocketAddr.\nThe spacing to be used between elements.\nReturns the rich_text() spans ready to be used for the …\nThe styling of the Markdown.\nThe base text size.\nAssuming the URL is in the file scheme or similar, convert …\nDisplays an unordered list using the default look and …\nDisplays an unordered list.\nReturn the username for this URL (typically the empty …\nDisplay a bunch of Markdown items.\nRuns view but with a custom Viewer to turn an Item into an …\nCreates new Settings with default text size and the given …\nCreates new Settings with the given base text size in …\nThe alternative text of the image.\nThe raw code of the code block.\nThe items of the list.\nThe language of the code block, if any.\nThe styled lines of text in the code block.\nThe first number of the list, if it is ordered.\nThe title of the image.\nThe destination URL of the image.\nBuild and show dropdown menus.\nThe theme catalog of a Menu.\nThe item class of the Catalog.\nA list of selectable options.\nThe local state of a Menu.\nThe appearance of a Menu.\nA styling function for a Menu.\nThe Background of the menu.\nThe Border of the menu.\nThe default style of the list of a Menu.\nThe default class produced by the Catalog.\nThe background Color of a selected option in the menu.\nThe text Color of a selected option in the menu.\nThe Style of a class with the given status.\nThe text Color of the menu.\nA fixed reference line for the measurement of coordinates.\nBottom edge.\nA Pane was picked and then dropped outside of other Pane …\nThe theme catalog of a PaneGrid.\nCenter region.\nThe item class of this Catalog.\nThe arrangement of a PaneGrid.\nThe content of a Pane.\nThe controls of a Pane.\nA four cardinal direction.\n↓\nAn event produced during a drag and drop interaction of a …\nA pane that can be dragged.\nA Pane was dropped on top of another Pane.\nThe edges of an area.\nAn Edge of the full PaneGrid.\nEdge region.\nThe appearance of a highlight of the PaneGrid.\nThe horizontal axis: —\n←\nLeft edge.\nA line.\nA layout node of a PaneGrid.\nA rectangular region in a PaneGrid used to display widgets.\nA Pane.\nThe region of this Node is taken by a Pane.\nA single Pane of the PaneGrid.\nA collection of panes distributed using either vertical or …\nA Pane was picked for dragging.\nThe region of a Pane.\nAn event produced during a resize interaction of a PaneGrid…\n→\nRight edge.\nA divider that splits a region in a PaneGrid into two …\nA split of the available space.\nThe region of this Node is split into two.\nThe state of a PaneGrid.\nThe appearance of a PaneGrid.\nA styling function for a PaneGrid.\nThe Target area a pane can be dropped on.\nThe title bar of a Pane.\nTop edge.\n↑\nThe vertical axis: |\nReturns the adjacent Pane of another Pane in the given …\nSets whether or not the controls attached to this TitleBar …\nThe Background of the pane region.\nThe Border of the pane region.\nReturns whether the Draggable with the given Layout can be …\nSets the style class of the Content.\nSets the style class of the TitleBar.\nCloses the given Pane and returns its internal state and …\nThe Color of the Line.\nSets the controls of the TitleBar.\nThe default style of a PaneGrid.\nThe default class produced by this Catalog.\nDraws the Content with the provided Renderer and Layout.\nDraws the TitleBar with the provided Renderer and Layout.\nDrops the given Pane into the provided Target.\nCreates a new Controls with a full and compact variant. If …\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the internal state of the given Pane, if it exists.\nReturns the internal state of the given Pane with …\nThe appearance of a hovered region highlight.\nThe appearance of a hovered split.\nThe internal state of the PaneGrid.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns true if the amount of panes in the State is 0.\nReturns whether the mouse cursor is over the pick area of …\nReturns an iterator over all the panes of the State, …\nReturns a mutable iterator over all the panes of the State,\nReturns the layout of the State.\nReturns the total amount of panes in the State.\nMaximize the given Pane. Only this pane will be rendered …\nReturns the maximized Pane of the PaneGrid.\nMove Pane to an Edge of the PaneGrid.\nCreates a new Content with the provided body.\nCreates a new Controls with the given content.\nCreates a new TitleBar with the given content.\nCreates a new State, initializing the first pane with the …\nSets the Padding of the TitleBar.\nReturns the rectangular region for each Pane in the Node …\nThe panes of the PaneGrid.\nThe appearance of a picked split.\nThe new ratio of the Split.\nResizes two panes by setting the position of the provided …\nRestore the currently maximized Pane to it’s normal …\nSplits the provided Rectangle on the current Axis with the …\nSplits the given Pane into two in the given Axis and …\nThe Split that is being dragged for resizing.\nCalculates the bounds of the split line in a Rectangle …\nReturns the axis, rectangular region, and ratio for each …\nSplit a target Pane with a given Pane on a given Region.\nReturns an iterator over each Split in this Node.\nThe state of a PaneGrid.\nThe Style of a class with the given status.\nSets the style of the Content.\nSets the style of the TitleBar.\nSwaps the position of the provided panes in the State.\nSets the TitleBar of the Content.\nThe width of the Line.\nCreates a new State with the given Configuration.\nThe left/top Configuration of the split.\nThe direction of the split.\nThe right/bottom Configuration of the split.\nThe ratio of the split in [0.0, 1.0].\nThe picked Pane.\nThe picked Pane.\nThe picked Pane.\nThe Target where the picked Pane was dropped on.\nThe left/top Node of the split.\nThe direction of the split.\nThe right/bottom Node of the split.\nThe Split of this Node.\nThe ratio of the split in [0.0, 1.0].\nThe current action of a PaneGrid.\nA Pane in the PaneGrid is being dragged.\nThe PaneGrid is idle.\nThe internal state of a PaneGrid.\nA Split in the PaneGrid is being dragged.\nThe state of a PaneGrid.\nReturns the argument unchanged.\nReturns the argument unchanged.\nInitializes the Internal state of a PaneGrid from a …\nThe internal state of the PaneGrid.\nCalls U::from(self).\nCalls U::from(self).\nThe panes of the PaneGrid.\nReturns the current Pane that is being dragged, if any.\nReturns the current Split that is being dragged, if any.\nThe Axis of the Split.\nThe starting Point of the drag interaction.\nThe Pane being dragged.\nThe Split being dragged.\nThe PickList can be interacted with.\nDisplays an arrow icon (▼).\nThe theme catalog of a PickList.\nThe item class of the Catalog.\nA custom dynamic handle.\nThe handle to the right side of the PickList.\nThe PickList is being hovered.\nThe icon of a Handle.\nNo handle will be shown.\nThe PickList is open.\nA widget for selecting a single value from a list of …\nA custom static handle.\nThe possible status of a PickList.\nThe appearance of a pick list.\nA styling function for a PickList.\nThe Background of the pick list.\nThe Border of the pick list.\nThe unicode code point that will be used as the icon.\nThe default style of the field of a PickList.\nThe default class produced by the Catalog.\nThe default class for the menu of the PickList.\nFont that will be used to display the code_point,\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nThe handle Color of the pick list.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nLine height of the content.\nThe placeholder Color of the pick list.\nThe shaping strategy of the icon.\nFont size of the content.\nThe Style of a class with the given status.\nThe text Color of the pick list.\nThe Icon used when PickList is closed.\nThe Icon used when PickList is open.\nFont size of the content.\nWhether the PickList is hovered, while open.\nA widget that can generate messages when its content pops …\nThe theme catalog of a ProgressBar.\nThe item class of the Catalog.\nA bar that displays progress.\nThe appearance of a progress bar.\nA styling function for a ProgressBar.\nThe Background of the progress bar.\nThe Background of the bar of the progress bar.\nThe Border of the progress bar.\nThe danger style of a ProgressBar.\nThe default class produced by the Catalog.\nReturns the argument unchanged.\nCalls U::from(self).\nThe primary style of a ProgressBar.\nThe secondary style of a ProgressBar.\nThe Style of a class with the given status.\nThe success style of a ProgressBar.\nThe warning style of a ProgressBar.\nThe theme catalog of a QRCode.\nThe item class of the Catalog.\nThe data of a QRCode.\nThe data is too long to encode in a QR code for the chosen …\nAn error that occurred when building a Data for a QRCode.\nThe error correction level.\nHigh error correction. 30% of the data can be restored.\nA character that does not belong to the character set was …\nThe chosen ECI designator is invalid. A valid designator …\nThe chosen Version and ErrorCorrection combination is …\nLow error correction. 7% of the data can be restored.\nMedium error correction. 15% of the data can be restored.\nA micro QR code version. It should be between 1 and 4.\nA normal QR code version. It should be between 1 and 40.\nA type of matrix barcode consisting of squares arranged in …\nQuartile error correction. 25% of the data can be restored.\nThe appearance of a QR code.\nA styling function for a QRCode.\nOne or more characters in the provided data are not …\nThe size of a QRCode.\nThe color of the QR code background\nThe color of the QR code data cells\nThe default style of a QRCode.\nThe default class produced by the Catalog.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCreates a new Data with the provided data.\nThe Style of a class with the given status.\nCreates a new Data with the provided ErrorCorrection.\nCreates a new Data with the provided Version and …\nThe Radio button can be interacted with.\nThe theme catalog of a Radio.\nThe item class of the Catalog.\nThe Radio button is being hovered.\nA circular button representing a choice.\nThe possible status of a Radio button.\nThe appearance of a radio button.\nA styling function for a Radio.\nThe Background of the radio button.\nThe border Color of the radio button.\nThe border width of the radio button.\nThe default style of a Radio button.\nThe default class produced by the Catalog.\nThe Color of the dot of the radio button.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nThe Style of a class with the given status.\nThe text Color of the radio button.\nIndicates whether the Radio button is currently selected.\nIndicates whether the Radio button is currently selected.\nDifferent offset on each end of the rule, length units. …\nThe theme catalog of a Rule.\nThe item class of the Catalog.\nThe fill mode of a rule.\nFill the whole length of the container.\nUniform offset from each end, length units.\nFill a percent of the length of the container. The rule …\nDisplay a horizontal or vertical rule for dividing content.\nThe appearance of a rule.\nA styling function for a Rule.\nThe color of the rule.\nThe default styling of a Rule.\nThe default class produced by the Catalog.\nReturn the starting offset and length of the rule.\nThe FillMode of the rule.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nThe radius of the line corners.\nThe Style of a class with the given status.\nThe width (thickness) of the rule line.\nThe amount of absolute offset in each direction of a …\nThe Scrollable can be interacted with.\nThe anchor of the scroller of the Scrollable relative to …\nBoth vertical and horizontal scrolling\nThe theme catalog of a Scrollable.\nThe item class of the Catalog.\nThe direction of Scrollable.\nThe Scrollable is being dragged.\nA relative offset that points to the bottom-right of a …\nContent is aligned to the end of the Viewport.\nHorizontal scrolling\nThe Scrollable is being hovered.\nThe identifier of a Scrollable.\nThe appearance of the scrollbar of a scrollable.\nThe amount of relative offset in each direction of a …\nA relative offset that points to the top-left of a …\nA widget that can vertically display an infinite amount of …\nA scrollbar within a Scrollable.\nThe appearance of the scroller of a scrollable.\nScroller is anchoer to the start of the Viewport.\nThe possible status of a Scrollable.\nThe appearance of a scrollable.\nA styling function for a Scrollable.\nVertical scrolling\nThe current Viewport of the Scrollable.\nReturns the AbsoluteOffset of the current Viewport.\nReturns the AbsoluteOffset of the current Viewport, but …\nSets the Anchor of the Scrollbar .\nThe Background of a scrollbar.\nThe Border of a scrollbar.\nThe Border of the scroller.\nReturns the bounds of the current Viewport.\nThe Color of the scroller.\nThe container::Style of a scrollable.\nReturns the content bounds of the current Viewport.\nThe default style of a Scrollable.\nThe default class produced by the Catalog.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nThe Background of the gap between a horizontal and …\nReturns the horizontal Scrollbar, if any.\nThe horizontal Rail appearance.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nSets the scrollbar margin of the Scrollbar .\nCreates new Scrollbar for use in a Scrollable.\nCreates a custom Id.\nReturns the RelativeOffset of the current Viewport.\nProduces a Task that scrolls the Scrollable with the given …\nProduces a Task that scrolls the Scrollable with the given …\nThe appearance of the Scroller of a scrollbar.\nSets the scroller width of the Scrollbar .\nProduces a Task that snaps the Scrollable with the given Id\nSets whether the Scrollbar should be embedded in the …\nThe Style of a class with the given status.\nCreates a unique Id.\nReturns the vertical Scrollbar, if any.\nThe vertical Rail appearance.\nSets the scrollbar width of the Scrollbar .\nThe amount of horizontal offset\nThe amount of horizontal offset\nThe amount of vertical offset\nThe amount of vertical offset\nThe properties of the horizontal scrollbar.\nThe properties of the vertical scrollbar.\nWhether or not the horizontal scrollbar is disabled …\nWhether or not the horizontal scrollbar is disabled …\nWhether or not the horizontal scrollbar is disabled …\nIndicates if the horizontal scrollbar is being dragged.\nIndicates if the horizontal scrollbar is being hovered.\nWhether or not the vertical scrollbar is disabled meaning …\nWhether or not the vertical scrollbar is disabled meaning …\nWhether or not the vertical scrollbar is disabled meaning …\nIndicates if the vertical scrollbar is being dragged.\nIndicates if the vertical scrollbar is being hovered.\nA runtime action that can be performed by some widgets.\nA set of methods which allows a Primitive to be rendered.\nThe type of primitive this Program can draw.\nThe state and logic of a Shader widget.\nA widget which can render custom shaders with Iced’s wgpu…\nThe internal state of the Program.\nStores custom, user-provided types.\nA viewing region for displaying computer graphics.\nDraws the Primitive.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns a reference to the data with type T if it exists …\nReturns a mutable reference to the data with type T if it …\nReturns true if Storage contains a type T.\nCalls U::from(self).\nCalls U::from(self).\nReturns the logical size of the Viewport.\nReturns the current mouse interaction of the Program.\nReturns the physical height of the Viewport.\nReturns the physical size of the Viewport.\nReturns the physical width of the Viewport.\nProcesses the Primitive, allowing for GPU buffer …\nReturns the projection transformation of the Viewport.\nRenders the Primitive.\nReturns the scale factor of the Viewport.\nInserts the data T in to Storage.\nUpdate the internal State of the Program. This can be used …\nCreates a new Viewport with the given physical dimensions …\nThe Slider can be interacted with.\nThe theme catalog of a Slider.\nA circular handle.\nThe item class of the Catalog.\nThe Slider is being dragged.\nThe appearance of the handle of a slider.\nThe shape of the handle of a slider.\nThe Slider is being hovered.\nThe appearance of a slider rail\nA rectangular shape.\nAn horizontal bar and a handle that selects a single value …\nThe possible status of a Slider.\nThe appearance of a slider.\nA styling function for a Slider.\nThe Background of the handle.\nThe backgrounds of the rail of the slider.\nThe border of the rail.\nThe border Color of the handle.\nThe border width of the handle.\nThe default style of a Slider.\nThe default class produced by the Catalog.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nThe appearance of the Handle of the slider.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nThe colors of the rail of the slider.\nThe shape of the handle.\nThe Style of a class with the given status.\nThe width of the stroke of a slider rail.\nChanges the HandleShape of the Style to a circle with the …\nThe border radius of the corners of the rectangle.\nThe radius of the circle.\nThe width of the rectangle.\nThe theme catalog of an Svg.\nThe item class of the Catalog.\nA handle of Svg data.\nThe Svg is being hovered.\nThe Svg is idle.\nThe possible status of an Svg.\nThe appearance of an Svg.\nA styling function for an Svg.\nA vector graphics image.\nThe Color filter of an Svg.\nThe default class produced by the Catalog.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nThe Style of a class with the given status.\nAn absolute height in logical pixels.\nAdvanced text shaping and font fallback.\nNo shaping and no font fallback.\nBorrowed data.\nThe theme catalog of a Text.\nThe item class of this Catalog.\nA fragment of Text.\nWraps at the glyph level.\nThe output of the Highlighter.\nA type capable of highlighting text.\nA trait for converting a value to some text Fragment.\nThe highlight iterator type.\nThe height of a line of text in a paragraph.\nNo wrapping.\nOwned data.\nA factor of the size of the text.\nA bunch of Rich text.\nThe settings to configure the Highlighter.\nThe shaping strategy of some text.\nA span of text.\nThe internal state of a Text widget.\nThe appearance of some text.\nA styling function for a Text.\nA bunch of text.\nWraps at the word level.\nWraps at the word level, or fallback to glyph level if a …\nThe wrapping strategy of some text.\nSets the alignment::Horizontal of the Rich text.\nSets the alignment::Vertical of the Rich text.\nText with the default base color.\nCenters the Rich text, both horizontally and vertically.\nNotifies the Highlighter that the line at the given index …\nSets the default style class of the Rich text.\nSets the default Color of the Rich text.\nThe Color of the Span.\nThe Color of the text.\nSets the default Color of the Rich text, if Some.\nReturns the current line of the Highlighter.\nText conveying some negative information, like an error.\nThe default text styling; color is inherited.\nThe default class produced by this Catalog.\nDraws text using the same logic as the Text widget.\nSets the default font of the Rich text.\nThe font of the Span.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nSets the height of the Rich text boundaries.\nThe Highlight of the Span.\nHighlights the given line.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nConverts the value to some text Fragment.\nProduces the layout::Node of a Text widget.\nSets the default LineHeight of the Rich text.\nThe LineHeight of the Span.\nThe link of the Span.\nCreates a new Highlighter from its Self::Settings.\nCreates a new empty Rich text.\nSets the message that will be produced when a link of the …\nThe Padding of the Span.\nText conveying some important information, like an action.\nText conveying some secondary information, like a footnote.\nSets the default size of the Rich text.\nThe size of the Span in Pixels.\nWhether the Span should be struck through or not.\nThe Style of a class with the given status.\nSets the default style of the Rich text.\nText conveying some positive information, like a …\nThe Fragment of text.\nWhether the Span should be underlined or not.\nUpdates the Highlighter with some new Self::Settings.\nSets the width of the Rich text boundaries.\nCreates a new Rich text with the given text spans.\nSets the Wrapping strategy of the Rich text.\nAn interaction with an Editor.\nThe TextEditor can be interacted with.\nDelete the previous character.\nDelete the previous character.\nA binding to an action in the TextEditor.\nThe theme catalog of a TextEditor.\nThe item class of the Catalog.\nClick the Editor at the given Point.\nThe content of a TextEditor.\nCopy the selection of the TextEditor.\nUse \\r for line ending (many legacy systems)\nUse \\r\\n for line ending (Windows-style)\nProduce the given message.\nCut the selection of the TextEditor.\nDelete the next character.\nDelete the next character.\nThe TextEditor cannot be interacted with.\nMove to the end of the text.\nMove to the start of the text.\nMove down.\nDrag the mouse on the Editor to the given Point.\nAn action that edits text.\nPerform an Edit.\nMove to the end of the line.\nBreak the current line.\nBreak the current line.\nThe TextEditor is focused.\nMove to the start of the line.\nThe TextEditor is being hovered.\nInsert the given character.\nInsert the given character.\nA key press.\nMove left.\nUse \\n for line ending (POSIX-style)\nUse \\n\\r for line ending (some legacy systems)\nA line of an Editor.\nThe line ending of a Line.\nA cursor movement.\nApply a Motion.\nApply a Motion.\nNo line ending\nMove to the start of the next window.\nMove to the start of the previous window.\nPaste the given text.\nPaste the clipboard contents in the TextEditor.\nMove right.\nScroll the Editor a certain amount of lines.\nSelect text with a given Motion.\nSelect text with a given Motion.\nSelect the entire buffer.\nSelect the entire buffer.\nSelect the line at the current cursor.\nSelect the line at the current cursor.\nSelect the word at the current cursor.\nSelect the word at the current cursor.\nA sequence of bindings to execute.\nThe state of a TextEditor.\nThe possible status of a TextEditor.\nThe appearance of a text input.\nA styling function for a TextEditor.\nA multi-line text input.\nUnfocus the TextEditor.\nMove up.\nMove to the left boundary of a word.\nMove to the right boundary of a word.\nGets the string representation of the LineEnding.\nThe Background of the text input.\nThe Border of the text input.\nReturns the current cursor position of the Content.\nThe default style of a TextEditor.\nThe default class produced by the Catalog.\nReturns the Direction of the Motion.\nThe line ending of the Line.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the default Binding for the given key press.\nThe Color of the icon of the text input.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns whether the Action is an editing action.\nReturns whether the TextEditor is currently focused or not.\nThe key pressed.\nReturns the text of the line at the given index, if it …\nReturns the amount of lines of the Content.\nReturns the kind of LineEnding used for separating lines …\nReturns an iterator of the text of the lines in the Content…\nThe state of the keyboard modifiers.\nCreates an empty Content.\nPerforms an Action on the Content.\nThe Color of the placeholder of the text input.\nReturns the selected text of the Content.\nThe Color of the selection of the text input.\nThe current Status of the TextEditor.\nThe Style of a class with the given status.\nReturns the text of the Content.\nThe raw text of the Line.\nThe text produced by the key press.\nThe Color of the value of the text input.\nWidens the Motion, if possible.\nCreates a Content with the given text.\nThe amount of lines to scroll.\nWhether the TextEditor is hovered, while focused.\nThe TextInput can be interacted with.\nThe theme catalog of a TextInput.\nThe item class of the Catalog.\nThe cursor of a text input.\nThe default Padding of a TextInput.\nThe TextInput cannot be interacted with.\nThe TextInput is focused.\nThe TextInput is being hovered.\nThe content of the Icon.\nThe identifier of a TextInput.\nThe left side of a TextInput.\nThe right side of a TextInput.\nThe side of a TextInput.\nThe state of a TextInput.\nThe possible status of a TextInput.\nThe appearance of a text input.\nA styling function for a TextInput.\nA field that can be filled with text.\nThe value of a TextInput.\nThe Background of the text input.\nThe Border of the text input.\nThe unicode code point that will be used as the icon.\nTrack the cursor of a text input.\nReturns the Cursor of the TextInput.\nThe default style of a TextInput.\nThe default class produced by the Catalog.\nProduces a Task that focuses the TextInput with the given …\nFocuses the TextInput.\nThe font that will be used to display the code_point.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nThe Color of the icon of the text input.\nInserts a new char at the given grapheme index.\nInserts a bunch of graphemes at the given grapheme index.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns whether the Value is empty or not.\nReturns whether the TextInput is currently focused or not.\nReturns the total amount of graphemes in the Value.\nProduces a Task that moves the cursor of the TextInput …\nMoves the Cursor of the TextInput to an arbitrary location.\nProduces a Task that moves the cursor of the TextInput …\nMoves the Cursor of the TextInput to the end of the input …\nProduces a Task that moves the cursor of the TextInput …\nMoves the Cursor of the TextInput to the front of the …\nCreates a new Value from a string slice.\nCreates a custom Id.\nCreates a new State, representing an unfocused TextInput.\nReturns the position of the next end of a word from the …\nThe Color of the placeholder of the text input.\nReturns the position of the previous start of a word from …\nRemoves the grapheme at the given index.\nRemoves the graphemes from start to end.\nReturns a new Value with all its graphemes replaced with …\nReturns a new Value containing the graphemes from start …\nProduces a Task that selects all the content of the …\nSelects all the content of the TextInput.\nReturns the current selection of the Cursor for the given …\nThe Color of the selection of the text input.\nThe side of a TextInput where to display the Icon.\nThe font size of the content.\nThe spacing between the Icon and the text in a TextInput.\nReturns the State of the Cursor.\nThe Style of a class with the given status.\nUnfocuses the TextInput.\nCreates a unique Id.\nReturns a new Value containing the graphemes until the …\nThe Color of the value of the text input.\nWhether the TextInput is hovered, while focused.\nThe cursor of a text input.\nCursor without a selection\nCursor selecting a range of text\nThe state of a Cursor.\nReturns the argument unchanged.\nCalls U::from(self).\nThe end of the selection\nThe start of the selection\nThe default blank style of a Theme.\nThe built-in Catppuccin Frappé variant.\nThe built-in Catppuccin Latte variant.\nThe built-in Catppuccin Macchiato variant.\nThe built-in Catppuccin Mocha variant.\nA Theme with a customized Palette.\nA Theme that uses a Custom palette.\nThe built-in dark variant.\nThe built-in Dracula variant.\nThe built-in Ferra variant:\nThe built-in Gruvbox Dark variant.\nThe built-in Gruvbox Light variant.\nThe built-in Kanagawa Dragon variant.\nThe built-in Kanagawa Lotus variant.\nThe built-in Kanagawa Wave variant.\nThe built-in light variant.\nThe built-in Moonfly variant.\nThe built-in Nightfly variant.\nThe built-in Nord variant.\nThe built-in Oxocarbon variant.\nA color palette.\nThe built-in Solarized Dark variant.\nThe built-in Solarized Light variant.\nThe base style of a Theme.\nA built-in theme.\nThe built-in Tokyo Night variant.\nThe built-in Tokyo Night Light variant.\nThe built-in Tokyo Night Storm variant.\nThe background Color of the Palette.\nThe background Color of the application.\nReturns the default base Style of a Theme.\nThe danger Color of the Palette.\nThe default Style of a built-in Theme.\nDefine the colors of a theme.\nThe primary Color of the Palette.\nThe success Color of the Palette.\nThe text Color of the Palette.\nThe default text Color of the application.\nThe warning Color of the Palette.\nA set of background colors.\nA set of danger colors.\nThe built-in Catppuccin Frappé variant of an Extended …") \ No newline at end of file diff --git a/search.desc/iced/iced-desc-2-.js b/search.desc/iced/iced-desc-2-.js index 4127090db97..7b9ac0d9455 100644 --- a/search.desc/iced/iced-desc-2-.js +++ b/search.desc/iced/iced-desc-2-.js @@ -1 +1 @@ -searchState.loadedDescShard("iced", 2, "The built-in Catppuccin Macchiato variant of an Extended …\nThe built-in Catppuccin Mocha variant of an Extended …\nThe built-in dark variant of an Extended palette.\nThe built-in Dracula variant of an Extended palette.\nThe built-in Ferra variant of an Extended palette.\nThe built-in Gruvbox Dark variant of an Extended palette.\nThe built-in Gruvbox Light variant of an Extended palette.\nThe built-in Kanagawa Dragon variant of an Extended …\nThe built-in Kanagawa Lotus variant of an Extended palette.\nThe built-in Kanagawa Wave variant of an Extended palette.\nThe built-in light variant of an Extended palette.\nThe built-in Moonfly variant of an Extended palette.\nThe built-in Nightfly variant of an Extended palette.\nThe built-in Nord variant of an Extended palette.\nThe built-in Oxocarbon variant of an Extended palette.\nThe built-in Solarized Dark variant of an Extended palette.\nThe built-in Solarized Light variant of an Extended …\nThe built-in Tokyo Night variant of an Extended palette.\nThe built-in Tokyo Night variant of an Extended palette.\nThe built-in Tokyo Night Storm variant of an Extended …\nAn extended set of colors generated from a Palette.\nA pair of background and text colors.\nA color palette.\nA set of primary colors.\nA set of secondary colors.\nA set of success colors.\nA set of warning colors.\nThe background Color of the Palette.\nThe set of background colors.\nThe base background color.\nThe base primary color.\nThe base secondary color.\nThe base success color.\nThe base warning color.\nThe base danger color.\nThe background color.\nThe danger Color of the Palette.\nThe set of danger colors.\nWhether the palette is dark or not.\nThe primary Color of the Palette.\nThe set of primary colors.\nThe set of secondary colors.\nA stronger version of the base background color.\nA stronger version of the base primary color.\nA stronger version of the base secondary color.\nA stronger version of the base success color.\nA stronger version of the base warning color.\nA stronger version of the base danger color.\nThe success Color of the Palette.\nThe set of success colors.\nThe text Color of the Palette.\nThe text color.\nThe warning Color of the Palette.\nThe set of warning colors.\nA weaker version of the base background color.\nA weaker version of the base primary color.\nA weaker version of the base secondary color.\nA weaker version of the base success color.\nA weaker version of the base warning color.\nA weaker version of the base danger color.\nThe Toggler can be interacted with.\nThe theme catalog of a Toggler.\nThe item class of the Catalog.\nThe Toggler is disabled.\nThe Toggler is being hovered.\nThe possible status of a Toggler.\nThe appearance of a toggler.\nA styling function for a Toggler.\nA toggler widget.\nThe background Color of the toggler.\nThe Color of the background border of the toggler.\nThe width of the background border of the toggler.\nThe default style of a Toggler.\nThe default class produced by the Catalog.\nThe foreground Color of the toggler.\nThe Color of the foreground border of the toggler.\nThe width of the foreground border of the toggler.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nThe Style of a class with the given status.\nIndicates whether the Toggler is toggled.\nIndicates whether the Toggler is toggled.\nThe tooltip will appear on the bottom of the widget.\nThe tooltip will follow the cursor.\nThe tooltip will appear on the left of the widget.\nThe position of the tooltip. Defaults to following the …\nThe tooltip will appear on the right of the widget.\nAn element to display a widget over another.\nThe tooltip will appear on the top of the widget.\nReturns the argument unchanged.\nCalls U::from(self).\nThe Slider can be interacted with.\nThe theme catalog of a Slider.\nA circular handle.\nThe item class of the Catalog.\nThe Slider is being dragged.\nThe appearance of the handle of a slider.\nThe shape of the handle of a slider.\nThe Slider is being hovered.\nA rectangular shape.\nThe possible status of a Slider.\nThe appearance of a slider.\nA styling function for a Slider.\nAn vertical bar and a handle that selects a single value …\nThe Background of the handle.\nThe border Color of the handle.\nThe border width of the handle.\nThe default style of a Slider.\nThe default class produced by the Catalog.\nThe appearance of the Handle of the slider.\nThe colors of the rail of the slider.\nThe shape of the handle.\nThe Style of a class with the given status.\nThe border radius of the corners of the rectangle.\nThe radius of the circle.\nThe width of the rectangle.\nAn operation to be performed on some window.\nThe window will always be below normal windows.\nThe window will always be on top of normal windows.\nRedraw at the given time.\nThe window is completely centered on the screen.\nClose the window and exits the application.\nThe user has requested for the window to close.\nA window was closed.\nPlatform-specific\nThe platform-specific default position for a new window.\nThe cardinal directions relative to the center of a window.\nDisable mouse passthrough for the given window.\nMove the window with the left mouse button until the …\nResize the window with the left mouse button until the …\nPoints to the right edge of a window.\nEnables mouse passthrough for the given window.\nA window-related event.\nA file has been dropped into the window.\nA file is being hovered over the window.\nA file was hovered, but has exited the window.\nA window was focused.\nThe application takes the whole screen of its current …\nBring the window to the front and sets input focus. Has no …\nGets the Id of the latest window.\nGet if the current window is maximized or not.\nGet if the current window is minimized or not.\nGet the current Mode of the window.\nGets the Id of the oldest window.\nGet the current logical coordinates of the window.\nGet the raw identifier unique to the window.\nGet the current scale factor (DPI) of the window.\nGet the current logical dimensions of the window.\nThe application is hidden\nAn window icon normally used for the titlebar or taskbar.\nAn window icon normally used for the titlebar or taskbar.\nThe id of the window.\nPlatform-specific\nA window level groups windows with respect to their …\nSet the window to maximized or back\nSet the window to minimized or back\nThe mode of a window-based application.\nMove the window to the given logical coordinates.\nA window was moved.\nRedraw the next frame.\nThe default behavior.\nPoints to the top edge of a window.\nPoints to the top-right corner of a window.\nPoints to the top-left corner of a window.\nOpens a new window with some Settings.\nA window was opened.\nThe position of a window in a given screen.\nA request to redraw a window.\nA window redraw was requested.\nRequest user attention to the window, this has no effect …\nResize the window to the given logical dimensions.\nA window was resized.\nRuns the closure with the native window handle of the …\nData of a screenshot, captured with window::screenshot().\nScreenshot the viewport of the window.\nChange the window Icon.\nChange the window Level.\nSet the maximum inner window size.\nSet the minimum inner window size.\nChange the Mode of the window.\nSet the window to be resizable or not.\nSet the window size increment.\nThe window settings of an application.\nShow the system menu at cursor position.\nPoints to the bottom edge of a window.\nPoints to the bottom-right corner of a window.\nPoints to the bottom-left corner of a window.\nThe window is positioned with specific coordinates: (X, Y).\nLike Specific, but the window is positioned with the …\nToggle whether window has decorations.\nToggle the window to maximized or back\nA window was unfocused.\nThe type of user attention to request.\nNo redraw is needed.\nPoints to the left edge of a window.\nThe application appears in its own window.\nThe bytes of the Screenshot.\nCloses the window with id.\nSubscribes to all Event::Closed occurrences in the running …\nSubscribes to all Event::CloseRequested occurrences in the …\nCrops a Screenshot to the provided region. This will …\nWhether the window should have a border, a title bar, etc. …\nDisable mouse passthrough for the given window.\nBegins dragging the window while the left mouse button is …\nBegins resizing the window while the left mouse button is …\nEnables mouse passthrough for the given window.\nSubscribes to all window events of the running application.\nWhether the window will close when the user requests it, …\nSubscribes to the frames of the window of the running …\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nWhether the window should start fullscreen.\nBrings the window to the front and sets input focus. Has …\nGets the window Id of the latest window.\nGets the maximized state of the window with the given Id.\nGets the minimized state of the window with the given Id.\nGets the current Mode of the window.\nGets the window Id of the oldest window.\nGets the position in logical coordinates of the window …\nGets an identifier unique to the window, provided by the …\nGets the scale factor of the window with the given Id.\nGet the window’s size in logical dimensions.\nAttach an icon to the window of your application.\nThe icon of the window.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns the raw data of the Icon.\nThe window Level.\nThe maximum size of the window.\nMaximizes the window.\nWhether the window should start maximized.\nThe minimum size of the window.\nMinimizes the window.\nMoves the window to the given logical coordinates.\nCreates a new Screenshot.\nOpens a new window with the given Settings; producing the …\nSubscribes to all Event::Opened occurrences in the running …\nPlatform specific settings.\nThe initial position of the window.\nRequest user attention to the window. This has no effect …\nWhether the window should be resizable or not.\nResizes the window to the given logical dimensions.\nSubscribes to all Event::Resized occurrences in the …\nRuns the given callback with the native window handle for …\nThe scale factor of the Screenshot. This can be useful …\nTake screenshots of a window.\nCaptures a Screenshot from the window.\nChanges the Icon of the window.\nChanges the window Level.\nSet the inner maximum size of the window.\nSet the inner minimum size of the window.\nChanges the Mode of the window.\nSet the window to be resizable or not.\nSet the window size increment.\nConfigure your windows.\nShow the system menu at cursor position.\nThe size of the Screenshot in physical pixels.\nThe initial logical dimensions of the window.\nToggles the window decorations.\nToggles the window to maximized or back.\nWhether the window should be transparent.\nCreates a new unique window Id.\nWhether the window should be visible or not.\nThe position of the opened window. This is relative to the …\nThe size of the created window. This is its “inner” …\nAn error produced when creating an Icon.\nAn window icon normally used for the titlebar or taskbar.\nThe image crate reported an error.\nThe Icon is not valid.\nThe underlying OS failed to create the icon.\nReturns the argument unchanged.\nCreates an icon from an image file.\nCreates an icon from the content of an image file.\nBuilds an Icon from its RGBA pixels in the sRGB color …\nCalls U::from(self).\nA raw display handle for Android NDK.\nRaw display handle for Android.\nA raw window handle for Android NDK.\nRaw window handle for Android NDK.\nA raw window handle for AppKit.\nA raw display handle for AppKit.\nRaw display handle for AppKit.\nRaw window handle for AppKit.\nThe handle to the display controller of the windowing …\nA raw window handle for the Linux Kernel Mode Set/Direct …\nA raw display handle for the Linux Kernel Mode Set/Direct …\nRaw display handle for the Linux Kernel Mode Set/Direct …\nRaw window handle for the Linux Kernel Mode Set/Direct …\nA raw window handle for the Linux Generic Buffer Manager.\nA raw display handle for the Linux Generic Buffer Manager.\nRaw display handle for the Linux Generic Buffer Manager.\nRaw window handle for the Linux Generic Buffer Manager.\nA raw window handle for Haiku.\nA raw display handle for Haiku.\nRaw display handle for Haiku.\nRaw window handle for Haiku.\nAn error that can occur while fetching a display or window …\nA display that acts as a wrapper around a display handle.\nDisplay that wraps around a raw display handle.\nWindow that wraps around a raw window handle.\nA handle to a window.\nThe underlying handle cannot be represented using the …\nA raw display handle for OpenHarmony OS NDK\nRaw display handle for OpenHarmony.\nA raw window handle for the OpenHarmony OS NDK\nRaw window handle for Ohos NDK.\nA raw window handle for the Redox operating system.\nA raw display handle for the Redox operating system.\nRaw display handle for the Redox operating system.\nRaw window handle for the Redox operating system.\nA display server handle for a particular windowing system.\nA window handle for a particular windowing system.\nA raw window handle for UIKit (Apple’s non-macOS …\nA raw display handle for UIKit (Apple’s non-macOS …\nRaw display handle for UIKit.\nRaw window handle for UIKit.\nThe underlying handle is not available.\nA raw window handle for Wayland.\nA raw display handle for Wayland.\nRaw display handle for Wayland.\nRaw window handle for Wayland.\nA raw window handle for the Web.\nA raw display handle for the Web.\nA raw window handle for a Web canvas registered via …\nRaw window handle for a Web canvas registered via …\nRaw display handle for the Web.\nA raw window handle for a Web offscreen canvas registered …\nRaw window handle for a Web offscreen canvas registered via\nRaw window handle for the Web.\nA raw window handle for Win32.\nRaw window handle for Win32.\nA raw window handle for WinRT.\nRaw window handle for WinRT.\nThe handle to a window.\nA raw display handle for Win32.\nRaw display handle for Windows.\nA raw window handle for Xcb.\nA raw display handle for Xcb.\nRaw display handle for Xcb.\nRaw window handle for Xcb.\nA raw window handle for Xlib.\nA raw display handle for Xlib.\nRaw display handle for Xlib.\nRaw window handle for Xlib.\nA pointer to an ANativeWindow.\nCreate an Android-based display handle.\nCreate an AppKit-based display handle.\nGet the underlying raw display handle.\nGet the underlying raw window handle.\nA pointer to a BDirectWindow object that might be null\nA pointer to a BWindow object\nCreate a DisplayHandle from a RawDisplayHandle.\nBorrow a WindowHandle from a RawWindowHandle.\nA pointer to an X server xcb_connection_t.\nA WinRT CoreWindow handle.\nA pointer to an Xlib Display.\nA pointer to a wl_display.\nGet a handle to the display controller of the windowing …\nThe drm file descriptor.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nThe gbm device.\nThe gbm surface.\nCreate an Haiku-based display handle.\nThe GWLP_HINSTANCE associated with this type’s HWND.\nA Win32 HWND handle.\nAn ID value inserted into the data attributes of the …\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCreate a new empty display handle.\nCreate a new handle to an ANativeWindow.\nCreate a new empty display handle.\nCreate a new handle to a view.\nCreate a new empty display handle.\nCreate a new handle to a window.\nCreate a new empty display handle.\nCreate a new handle to an OHNativeWindow on OpenHarmony.\nCreate a new empty display handle.\nCreate a new handle to a window.\nCreate a new empty display handle.\nCreate a new handle to a view.\nCreate a new handle to a display.\nCreate a new handle to a window.\nCreate a new handle to a connection and screen.\nCreate a new handle to a window.\nCreate a new display handle.\nCreate a new handle to a surface.\nCreate a new handle to a file descriptor.\nCreate a new handle to a plane.\nCreate a new handle to a device.\nCreate a new handle to a surface.\nCreate a new empty display handle.\nCreate a new handle to a canvas element.\nCreate a new handle from a pointer to HtmlCanvasElement.\nCreate a new handle from a pointer to an OffscreenCanvas.\nCreate a new empty display handle.\nCreate a new handle to a window.\nCreate a new handle to a window.\nA pointer to an NSView object.\nA pointer to the JsValue of an HtmlCanvasElement.\nA pointer to the JsValue of an OffscreenCanvas.\nCreate an OpenHarmony-based display handle.\nCreate an Orbital-based display handle.\nThe primary drm plane handle.\nAn X11 screen to use with this display handle.\nAn X11 screen to use with this display handle.\nA pointer to a wl_surface.\nA pointer to an UIView object.\nA pointer to an UIViewController object, if the view has …\nCreate a UiKit-based display handle.\nAn Xlib visual ID, or 0 if unknown.\nAn X11 xcb_visualid_t.\nCreate a Web-based display handle.\nA pointer to an orbclient window.\nAn Xlib Window.\nAn X11 xcb_window_t.\nGet a handle to the window.\nCreate a Windows-based display handle.\nErrors that can occur when cropping a Screenshot.\nThe cropped region’s size is out of bounds.\nData of a screenshot, captured with window::screenshot().\nThe cropped region’s size is zero.\nThe bytes of the Screenshot.\nReturns the argument unchanged.\nCalls U::from(self).\nThe scale factor of the Screenshot. This can be useful …\nThe size of the Screenshot in physical pixels.\nThe platform specific window settings of an application.\nThe window settings of an application.\nSets the application id of the window.\nWhether the window should have a border, a title bar, etc. …\nWhether the window will close when the user requests it, …\nReturns the argument unchanged.\nWhether the window should start fullscreen.\nThe icon of the window.\nCalls U::from(self).\nThe window Level.\nThe maximum size of the window.\nWhether the window should start maximized.\nThe minimum size of the window.\nWhether bypass the window manager mapping for x11 windows\nPlatform specific settings.\nThe initial position of the window.\nWhether the window should be resizable or not.\nThe initial logical dimensions of the window.\nWhether the window should be transparent.\nWhether the window should be visible or not.") \ No newline at end of file +searchState.loadedDescShard("iced", 2, "The built-in Catppuccin Latte variant of an Extended …\nThe built-in Catppuccin Macchiato variant of an Extended …\nThe built-in Catppuccin Mocha variant of an Extended …\nThe built-in dark variant of an Extended palette.\nThe built-in Dracula variant of an Extended palette.\nThe built-in Ferra variant of an Extended palette.\nThe built-in Gruvbox Dark variant of an Extended palette.\nThe built-in Gruvbox Light variant of an Extended palette.\nThe built-in Kanagawa Dragon variant of an Extended …\nThe built-in Kanagawa Lotus variant of an Extended palette.\nThe built-in Kanagawa Wave variant of an Extended palette.\nThe built-in light variant of an Extended palette.\nThe built-in Moonfly variant of an Extended palette.\nThe built-in Nightfly variant of an Extended palette.\nThe built-in Nord variant of an Extended palette.\nThe built-in Oxocarbon variant of an Extended palette.\nThe built-in Solarized Dark variant of an Extended palette.\nThe built-in Solarized Light variant of an Extended …\nThe built-in Tokyo Night variant of an Extended palette.\nThe built-in Tokyo Night variant of an Extended palette.\nThe built-in Tokyo Night Storm variant of an Extended …\nAn extended set of colors generated from a Palette.\nA pair of background and text colors.\nA color palette.\nA set of primary colors.\nA set of secondary colors.\nA set of success colors.\nA set of warning colors.\nThe background Color of the Palette.\nThe set of background colors.\nThe base background color.\nThe base primary color.\nThe base secondary color.\nThe base success color.\nThe base warning color.\nThe base danger color.\nThe background color.\nThe danger Color of the Palette.\nThe set of danger colors.\nWhether the palette is dark or not.\nThe primary Color of the Palette.\nThe set of primary colors.\nThe set of secondary colors.\nA stronger version of the base background color.\nA stronger version of the base primary color.\nA stronger version of the base secondary color.\nA stronger version of the base success color.\nA stronger version of the base warning color.\nA stronger version of the base danger color.\nThe success Color of the Palette.\nThe set of success colors.\nThe text Color of the Palette.\nThe text color.\nThe warning Color of the Palette.\nThe set of warning colors.\nA weaker version of the base background color.\nA weaker version of the base primary color.\nA weaker version of the base secondary color.\nA weaker version of the base success color.\nA weaker version of the base warning color.\nA weaker version of the base danger color.\nThe Toggler can be interacted with.\nThe theme catalog of a Toggler.\nThe item class of the Catalog.\nThe Toggler is disabled.\nThe Toggler is being hovered.\nThe possible status of a Toggler.\nThe appearance of a toggler.\nA styling function for a Toggler.\nA toggler widget.\nThe background Color of the toggler.\nThe Color of the background border of the toggler.\nThe width of the background border of the toggler.\nThe default style of a Toggler.\nThe default class produced by the Catalog.\nThe foreground Color of the toggler.\nThe Color of the foreground border of the toggler.\nThe width of the foreground border of the toggler.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nThe Style of a class with the given status.\nIndicates whether the Toggler is toggled.\nIndicates whether the Toggler is toggled.\nThe tooltip will appear on the bottom of the widget.\nThe tooltip will follow the cursor.\nThe tooltip will appear on the left of the widget.\nThe position of the tooltip. Defaults to following the …\nThe tooltip will appear on the right of the widget.\nAn element to display a widget over another.\nThe tooltip will appear on the top of the widget.\nReturns the argument unchanged.\nCalls U::from(self).\nThe Slider can be interacted with.\nThe theme catalog of a Slider.\nA circular handle.\nThe item class of the Catalog.\nThe Slider is being dragged.\nThe appearance of the handle of a slider.\nThe shape of the handle of a slider.\nThe Slider is being hovered.\nA rectangular shape.\nThe possible status of a Slider.\nThe appearance of a slider.\nA styling function for a Slider.\nAn vertical bar and a handle that selects a single value …\nThe Background of the handle.\nThe border Color of the handle.\nThe border width of the handle.\nThe default style of a Slider.\nThe default class produced by the Catalog.\nThe appearance of the Handle of the slider.\nThe colors of the rail of the slider.\nThe shape of the handle.\nThe Style of a class with the given status.\nThe border radius of the corners of the rectangle.\nThe radius of the circle.\nThe width of the rectangle.\nAn operation to be performed on some window.\nThe window will always be below normal windows.\nThe window will always be on top of normal windows.\nRedraw at the given time.\nThe window is completely centered on the screen.\nClose the window and exits the application.\nThe user has requested for the window to close.\nA window was closed.\nPlatform-specific\nThe platform-specific default position for a new window.\nThe cardinal directions relative to the center of a window.\nDisable mouse passthrough for the given window.\nMove the window with the left mouse button until the …\nResize the window with the left mouse button until the …\nPoints to the right edge of a window.\nEnables mouse passthrough for the given window.\nA window-related event.\nA file has been dropped into the window.\nA file is being hovered over the window.\nA file was hovered, but has exited the window.\nA window was focused.\nThe application takes the whole screen of its current …\nBring the window to the front and sets input focus. Has no …\nGets the Id of the latest window.\nGet if the current window is maximized or not.\nGet if the current window is minimized or not.\nGet the current Mode of the window.\nGets the Id of the oldest window.\nGet the current logical coordinates of the window.\nGet the raw identifier unique to the window.\nGet the current scale factor (DPI) of the window.\nGet the current logical dimensions of the window.\nThe application is hidden\nAn window icon normally used for the titlebar or taskbar.\nAn window icon normally used for the titlebar or taskbar.\nThe id of the window.\nPlatform-specific\nA window level groups windows with respect to their …\nSet the window to maximized or back\nSet the window to minimized or back\nThe mode of a window-based application.\nMove the window to the given logical coordinates.\nA window was moved.\nRedraw the next frame.\nThe default behavior.\nPoints to the top edge of a window.\nPoints to the top-right corner of a window.\nPoints to the top-left corner of a window.\nOpens a new window with some Settings.\nA window was opened.\nThe position of a window in a given screen.\nA request to redraw a window.\nA window redraw was requested.\nRequest user attention to the window, this has no effect …\nResize the window to the given logical dimensions.\nA window was resized.\nRuns the closure with the native window handle of the …\nData of a screenshot, captured with window::screenshot().\nScreenshot the viewport of the window.\nChange the window Icon.\nChange the window Level.\nSet the maximum inner window size.\nSet the minimum inner window size.\nChange the Mode of the window.\nSet the window to be resizable or not.\nSet the window size increment.\nThe window settings of an application.\nShow the system menu at cursor position.\nPoints to the bottom edge of a window.\nPoints to the bottom-right corner of a window.\nPoints to the bottom-left corner of a window.\nThe window is positioned with specific coordinates: (X, Y).\nLike Specific, but the window is positioned with the …\nToggle whether window has decorations.\nToggle the window to maximized or back\nA window was unfocused.\nThe type of user attention to request.\nNo redraw is needed.\nPoints to the left edge of a window.\nThe application appears in its own window.\nThe bytes of the Screenshot.\nCloses the window with id.\nSubscribes to all Event::Closed occurrences in the running …\nSubscribes to all Event::CloseRequested occurrences in the …\nCrops a Screenshot to the provided region. This will …\nWhether the window should have a border, a title bar, etc. …\nDisable mouse passthrough for the given window.\nBegins dragging the window while the left mouse button is …\nBegins resizing the window while the left mouse button is …\nEnables mouse passthrough for the given window.\nSubscribes to all window events of the running application.\nWhether the window will close when the user requests it, …\nSubscribes to the frames of the window of the running …\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nWhether the window should start fullscreen.\nBrings the window to the front and sets input focus. Has …\nGets the window Id of the latest window.\nGets the maximized state of the window with the given Id.\nGets the minimized state of the window with the given Id.\nGets the current Mode of the window.\nGets the window Id of the oldest window.\nGets the position in logical coordinates of the window …\nGets an identifier unique to the window, provided by the …\nGets the scale factor of the window with the given Id.\nGet the window’s size in logical dimensions.\nAttach an icon to the window of your application.\nThe icon of the window.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns the raw data of the Icon.\nThe window Level.\nThe maximum size of the window.\nMaximizes the window.\nWhether the window should start maximized.\nThe minimum size of the window.\nMinimizes the window.\nMoves the window to the given logical coordinates.\nCreates a new Screenshot.\nOpens a new window with the given Settings; producing the …\nSubscribes to all Event::Opened occurrences in the running …\nPlatform specific settings.\nThe initial position of the window.\nRequest user attention to the window. This has no effect …\nWhether the window should be resizable or not.\nResizes the window to the given logical dimensions.\nSubscribes to all Event::Resized occurrences in the …\nRuns the given callback with the native window handle for …\nThe scale factor of the Screenshot. This can be useful …\nTake screenshots of a window.\nCaptures a Screenshot from the window.\nChanges the Icon of the window.\nChanges the window Level.\nSet the inner maximum size of the window.\nSet the inner minimum size of the window.\nChanges the Mode of the window.\nSet the window to be resizable or not.\nSet the window size increment.\nConfigure your windows.\nShow the system menu at cursor position.\nThe size of the Screenshot in physical pixels.\nThe initial logical dimensions of the window.\nToggles the window decorations.\nToggles the window to maximized or back.\nWhether the window should be transparent.\nCreates a new unique window Id.\nWhether the window should be visible or not.\nThe position of the opened window. This is relative to the …\nThe size of the created window. This is its “inner” …\nAn error produced when creating an Icon.\nAn window icon normally used for the titlebar or taskbar.\nThe image crate reported an error.\nThe Icon is not valid.\nThe underlying OS failed to create the icon.\nReturns the argument unchanged.\nCreates an icon from an image file.\nCreates an icon from the content of an image file.\nBuilds an Icon from its RGBA pixels in the sRGB color …\nCalls U::from(self).\nA raw display handle for Android NDK.\nRaw display handle for Android.\nA raw window handle for Android NDK.\nRaw window handle for Android NDK.\nA raw window handle for AppKit.\nA raw display handle for AppKit.\nRaw display handle for AppKit.\nRaw window handle for AppKit.\nThe handle to the display controller of the windowing …\nA raw window handle for the Linux Kernel Mode Set/Direct …\nA raw display handle for the Linux Kernel Mode Set/Direct …\nRaw display handle for the Linux Kernel Mode Set/Direct …\nRaw window handle for the Linux Kernel Mode Set/Direct …\nA raw window handle for the Linux Generic Buffer Manager.\nA raw display handle for the Linux Generic Buffer Manager.\nRaw display handle for the Linux Generic Buffer Manager.\nRaw window handle for the Linux Generic Buffer Manager.\nA raw window handle for Haiku.\nA raw display handle for Haiku.\nRaw display handle for Haiku.\nRaw window handle for Haiku.\nAn error that can occur while fetching a display or window …\nA display that acts as a wrapper around a display handle.\nDisplay that wraps around a raw display handle.\nWindow that wraps around a raw window handle.\nA handle to a window.\nThe underlying handle cannot be represented using the …\nA raw display handle for OpenHarmony OS NDK\nRaw display handle for OpenHarmony.\nA raw window handle for the OpenHarmony OS NDK\nRaw window handle for Ohos NDK.\nA raw window handle for the Redox operating system.\nA raw display handle for the Redox operating system.\nRaw display handle for the Redox operating system.\nRaw window handle for the Redox operating system.\nA display server handle for a particular windowing system.\nA window handle for a particular windowing system.\nA raw window handle for UIKit (Apple’s non-macOS …\nA raw display handle for UIKit (Apple’s non-macOS …\nRaw display handle for UIKit.\nRaw window handle for UIKit.\nThe underlying handle is not available.\nA raw window handle for Wayland.\nA raw display handle for Wayland.\nRaw display handle for Wayland.\nRaw window handle for Wayland.\nA raw window handle for the Web.\nA raw display handle for the Web.\nA raw window handle for a Web canvas registered via …\nRaw window handle for a Web canvas registered via …\nRaw display handle for the Web.\nA raw window handle for a Web offscreen canvas registered …\nRaw window handle for a Web offscreen canvas registered via\nRaw window handle for the Web.\nA raw window handle for Win32.\nRaw window handle for Win32.\nA raw window handle for WinRT.\nRaw window handle for WinRT.\nThe handle to a window.\nA raw display handle for Win32.\nRaw display handle for Windows.\nA raw window handle for Xcb.\nA raw display handle for Xcb.\nRaw display handle for Xcb.\nRaw window handle for Xcb.\nA raw window handle for Xlib.\nA raw display handle for Xlib.\nRaw display handle for Xlib.\nRaw window handle for Xlib.\nA pointer to an ANativeWindow.\nCreate an Android-based display handle.\nCreate an AppKit-based display handle.\nGet the underlying raw display handle.\nGet the underlying raw window handle.\nA pointer to a BDirectWindow object that might be null\nA pointer to a BWindow object\nCreate a DisplayHandle from a RawDisplayHandle.\nBorrow a WindowHandle from a RawWindowHandle.\nA pointer to an X server xcb_connection_t.\nA WinRT CoreWindow handle.\nA pointer to an Xlib Display.\nA pointer to a wl_display.\nGet a handle to the display controller of the windowing …\nThe drm file descriptor.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nThe gbm device.\nThe gbm surface.\nCreate an Haiku-based display handle.\nThe GWLP_HINSTANCE associated with this type’s HWND.\nA Win32 HWND handle.\nAn ID value inserted into the data attributes of the …\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCreate a new empty display handle.\nCreate a new handle to an ANativeWindow.\nCreate a new empty display handle.\nCreate a new handle to a view.\nCreate a new empty display handle.\nCreate a new handle to a window.\nCreate a new empty display handle.\nCreate a new handle to an OHNativeWindow on OpenHarmony.\nCreate a new empty display handle.\nCreate a new handle to a window.\nCreate a new empty display handle.\nCreate a new handle to a view.\nCreate a new handle to a display.\nCreate a new handle to a window.\nCreate a new handle to a connection and screen.\nCreate a new handle to a window.\nCreate a new display handle.\nCreate a new handle to a surface.\nCreate a new handle to a file descriptor.\nCreate a new handle to a plane.\nCreate a new handle to a device.\nCreate a new handle to a surface.\nCreate a new empty display handle.\nCreate a new handle to a canvas element.\nCreate a new handle from a pointer to HtmlCanvasElement.\nCreate a new handle from a pointer to an OffscreenCanvas.\nCreate a new empty display handle.\nCreate a new handle to a window.\nCreate a new handle to a window.\nA pointer to an NSView object.\nA pointer to the JsValue of an HtmlCanvasElement.\nA pointer to the JsValue of an OffscreenCanvas.\nCreate an OpenHarmony-based display handle.\nCreate an Orbital-based display handle.\nThe primary drm plane handle.\nAn X11 screen to use with this display handle.\nAn X11 screen to use with this display handle.\nA pointer to a wl_surface.\nA pointer to an UIView object.\nA pointer to an UIViewController object, if the view has …\nCreate a UiKit-based display handle.\nAn Xlib visual ID, or 0 if unknown.\nAn X11 xcb_visualid_t.\nCreate a Web-based display handle.\nA pointer to an orbclient window.\nAn Xlib Window.\nAn X11 xcb_window_t.\nGet a handle to the window.\nCreate a Windows-based display handle.\nErrors that can occur when cropping a Screenshot.\nThe cropped region’s size is out of bounds.\nData of a screenshot, captured with window::screenshot().\nThe cropped region’s size is zero.\nThe bytes of the Screenshot.\nReturns the argument unchanged.\nCalls U::from(self).\nThe scale factor of the Screenshot. This can be useful …\nThe size of the Screenshot in physical pixels.\nThe platform specific window settings of an application.\nThe window settings of an application.\nSets the application id of the window.\nWhether the window should have a border, a title bar, etc. …\nWhether the window will close when the user requests it, …\nReturns the argument unchanged.\nWhether the window should start fullscreen.\nThe icon of the window.\nCalls U::from(self).\nThe window Level.\nThe maximum size of the window.\nWhether the window should start maximized.\nThe minimum size of the window.\nWhether bypass the window manager mapping for x11 windows\nPlatform specific settings.\nThe initial position of the window.\nWhether the window should be resizable or not.\nThe initial logical dimensions of the window.\nWhether the window should be transparent.\nWhether the window should be visible or not.") \ No newline at end of file diff --git a/search.desc/iced_core/iced_core-desc-0-.js b/search.desc/iced_core/iced_core-desc-0-.js index f830b2573f5..f1e53e8022a 100644 --- a/search.desc/iced_core/iced_core-desc-0-.js +++ b/search.desc/iced_core/iced_core-desc-0-.js @@ -1 +1 @@ -searchState.loadedDescShard("iced_core", 0, "The core library of Iced.\nThe black color.\nThe background of some element.\nA color in the sRGB color space.\nA solid color.\nScale as big as it can be without needing to crop or hide …\nThe strategy used to fit the contents of a widget to its …\nScale the image to cover all of the bounding box, cropping …\nDegrees\nA generic Widget.\nDistort the image so the widget is 100% covered without …\nFill all the remaining space\nFill a portion of the remaining space relative to other …\nFill a fixed amount of space\nThe element will float while rotating. The layout will be …\nLinearly interpolate between several colors.\nA Transformation that preserves whatever is transformed.\nA rectangle starting at Point::ORIGIN with infinite width …\nA Size with infinite width and height.\nThe strategy used to fill space in a specific dimension.\nDon’t resize or scale the image at all.\nThe origin (i.e. a Point at (0, 0)).\nThe amount of radians in half a circle.\nAn amount of logical pixels.\nA 2D point.\nThe range of degrees of a circle.\nThe range of radians of a circle.\nRadians\nAn axis-aligned rectangle.\nThe strategy used to rotate the content.\nScale the image down if it’s too big for the space, but …\nThe settings of an iced program.\nA shadow.\nA connection to the state of a shell.\nFill the least amount of space\nAn amount of space in 2 dimensions.\nA SmolStr is a string type that has the following …\nThe element will be solid while rotating. The layout will …\nA color with no opacity.\nA 2D transformation matrix.\nA Size with a width and height of 1 unit.\nA 2D vector.\nThe white color.\nZero pixels.\nA Size with zero width and height.\nThe zero Vector.\nTransparency, 0.0 - 1.0\nAlign and position widgets.\nAnimate your applications.\nIf set to true, the renderer will try to perform …\nApplies the Rotation to the given Size, returning the …\nReturns whether the widgets of the current application …\nReturns the area of the Rectangle.\nReturns a reference to the Widget of the Element,\nReturns a mutable reference to the Widget of the Element,\nBlue component, 0.0 - 1.0\nThe blur radius of the shadow.\nDraw lines around containers.\nMarks the current event as captured. Prevents “event …\nReturns the Point at the center of the Rectangle.\nReturns the X coordinate of the Point at the center of the …\nReturns the Y coordinate of the Point at the center of the …\nAccess the clipboard.\nThe color of the shadow.\nCreates a Color with shorter and cleaner syntax.\nReturns true if the given Point is contained in the …\nThe default Font to be used.\nThe text size that will be used by default.\nReturns the angle of the Rotation in Degrees.\nComputes the distance to another Point.\nReturns the minimum distance from the given Point to any …\nAdapts the Length so it can contain the other Length and …\nHandle events of a user interface.\nReturns the current event::Status of the Shell.\nExpands the Rectangle a given amount.\nExpands this Size by the given amount.\nMarks the Element as to-be-explained.\nReturns the fill factor of the Length.\nAttempt to apply the given fit for a content size within …\nReturns the “fluid” variant of the Length.\nLoad and use fonts.\nThe fonts to load on boot.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCreates a Color from its linear RGBA components.\nCreates a Color from its RGB components.\nCreates a Color from its RGB8 components.\nCreates a Color from its RGBA components.\nCreates a Color from its RGB8 components and an alpha …\nGreen component, 0.0 - 1.0\nColors that transition progressively.\nHeight of the rectangle.\nThe height.\nThe identifier of the application.\nLoad and draw raster graphics.\nListen to input method events.\nReturns the current InputMethod strategy.\nReturns the current InputMethod strategy.\nComputes the intersection with the given Rectangle.\nReturns whether the Rectangle intersects with the given …\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nConverts the Color into its linear values.\nConverts the Color into its RGBA8 equivalent.\nInvalidates the current application layout.\nInvalidates the current application widgets.\nReturns the inverted Color.\nInverts the Color in-place.\nReturns true if the Shell contains no published messages\nReturns whether the current event has been captured.\nReturns true iff the Length is either Length::Fill or\nReturns whether the current layout is invalid or not.\nReturns true if the current Rectangle is completely within …\nListen to keyboard events.\nPosition your widgets properly.\nApplies a transformation to the produced message of the …\nReturns the maximum of each component of this size and …\nMerges the current Shell with another one by applying the …\nReturns the minimum of each component of this size and …\nHandle mouse events.\nA function that can never be called.\nCreates a new Element containing the given Widget.\nCreates a new Point with the given coordinates.\nCreates a new Rectangle with its top-left corner in the …\nCreates a new Shell with the provided buffer of messages.\nCreates a new Size with the given width and height.\nCreates a new Vector with the given components.\nConstructs inline variant of SmolStr.\nConstructs a SmolStr from a statically allocated string.\nThe offset of the shadow.\nCreates an orthographic projection.\nDisplay interactive elements on top of other widgets.\nSpace stuff around the perimeter.\nParses a Color from a hex string.\nReturns the position of the top left corner of the …\nPublish the given Message for an application to process it.\nRed component, 0.0 - 1.0\nReturns the angle of the Rotation in Radians.\nReturns a mutable reference to the angle of the Rotation …\nReturns the request a redraw should happen, if any.\nWrite your own renderer.\nReplaces the redraw request of the Shell; without conflict …\nRequests the current InputMethod strategy.\nRequests a new frame to be drawn as soon as possible.\nRequests a new frame to be drawn at the given …\nTriggers the given function if the layout is invalid, …\nRotates the Rectangle and returns the smallest Rectangle …\nRotates the given Size and returns the minimum Size …\nCreates a uniform scaling transformation.\nScales the alpha channel of the Background by the given …\nScales the alpha channel of the Color by the given factor.\nReturns the scale factor of the Transformation.\nShrinks the Rectangle a given amount.\nReturns the Size of the Rectangle.\nSnaps the Rectangle to unsigned integer coordinates.\nLoad and draw vector graphics.\nDraw and interact with text.\nUse the built-in theme and styles.\nKeep track of time, both in native and web platforms!\nCalculates the line in which the angle intercepts the …\nBuild touch events.\nCreates a translate transformation.\nReturns the translation of the Transformation.\nComputes the union with the given Rectangle.\nCreate custom widgets and operate on them.\nWidth of the rectangle.\nThe width.\nBuild window-based GUI applications.\nCreates a new square Rectangle with the center at the …\nCreates a new Rectangle with its top-left corner at the …\nCreates a new axis-aligned Rectangle from the given …\nThe X coordinate.\nX coordinate of the top-left corner.\nThe X component of the Vector\nThe Y coordinate.\nY coordinate of the top-left corner.\nThe Y component of the Vector\nAlignment on the axis of a container.\nAlign bottom\nAlign at the center of the axis.\nHorizontally centered\nVertically centered\nAlign at the end of the axis.\nThe horizontal Alignment of some resource.\nAlign left\nAlign right\nAlign at the start of the axis.\nAlign top\nThe vertical Alignment of some resource.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nThe animation of some particular state.\nDefines a float representation for arbitrary types\nA type implementing Interpolable can be used with …\nMakes the Animation automatically reverse when repeating.\nSets a delay for the Animation.\nSets the duration of the Animation to the given value.\nSets the Easing function of the Animation.\nReturns the argument unchanged.\nReturns the argument unchanged.\nTransitions the Animation from its current state to the …\nTransitions the Animation from its current state to the …\nProjects the Animation into an interpolated value at the …\nProjects the Animation into an interpolated value at the …\nCalls U::from(self).\nCalls U::from(self).\nReturns true if the Animation is currently in progress.\nCreates a new Animation with the given initial state.\nSets the duration of the Animation to 200ms.\nMakes the Animation repeat a given amount of times.\nMakes the Animation repeat forever.\nSets the duration of the Animation to 400ms.\nRetuns the current state of the Animation.\nSets the duration of the Animation to 100ms.\nSets the duration of the Animation to 500ms.\nA border.\nThe border radii for the corners of a graphics primitive …\nCreates a new Radius with the given value as bottom left …\nSets the bottom left and bottom right values of the Radius.\nCreates a new Radius with the given bottom left value.\nSets the bottom left value of the Radius.\nBottom left radius\nCreates a new Radius with the given bottom right value.\nSets the bottom right value of the Radius.\nBottom right radius\nCreates a new Border with the given Color.\nSets the Color of the Border.\nThe color of the border.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCreates a new Radius with the given value as top left and …\nSets the top left and bottom left values of the Radius.\nCreates a new Radius with the same value for each corner.\nCreates a new Radius with the same value for each corner.\nThe Radius of the border.\nCreates a new Radius with the given value as top right and …\nSets the top right and bottom right values of the Radius.\nCreates a new Border with the given Radius.\nSets the Radius of the Border.\nCreates a new Radius with the given value as top left and …\nSets the top left and top right values of the Radius.\nCreates a new Radius with the given top left value.\nSets the top left value of the Radius.\nTop left radius\nCreates a new Radius with the given top right value.\nSets the top right value of the Radius.\nTop right radius\nCreates a new Border with the given width.\nSets the width of the Border.\nThe width of the border.\nA buffer for short-term storage and transfer within and …\nThe kind of Clipboard.\nA null implementation of the Clipboard trait.\nThe primary clipboard.\nThe standard clipboard.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nReads the current content of the Clipboard as text.\nWrites the given text contents to the Clipboard.\nThe Event was handled and processed by a widget.\nA user interface event.\nThe Event was NOT handled by any widget.\nAn input method event\nA keyboard event\nA mouse event\nThe status of an Event after being processed.\nA touch event\nA window event\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nMerges two Status into one.\nGlyphs in cursive fonts generally use a more informal …\nA non-monospaced sans-serif font with normal Weight.\nA font family.\nFantasy fonts are primarily decorative or expressive fonts …\nA font.\nA monospaced font with normal Weight.\nThe sole criterion of a monospace font is that all glyphs …\nThe name of a font family of choice.\nGlyphs in sans-serif fonts, as the term is used in CSS, …\nSerif fonts represent the formal text style for a script.\nThe width of some text.\nThe style of some text.\nThe weight of some text.\nThe Family of the Font.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nThe Stretch of the Font.\nThe Style of the Font.\nThe Weight of the Font.\nCreates a non-monospaced Font with the given Family::Name …\nA point along the gradient vector where the specified color…\nA fill which transitions colors progressively along a …\nA linear gradient.\nA linear gradient interpolates colors along a direction at …\nAdds a new ColorStop, defined by an offset and a color, to …\nAdds multiple ColorStops to the gradient.\nHow the Gradient is angled within its bounds.\nThe color of the gradient at the specified offset.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCreates a new Linear gradient with the given angle in …\nOffset along the gradient vector.\nScales the alpha channel of the Gradient by the given …\nScales the alpha channel of the Linear gradient by the …\nColorStops along the linear gradient path.\nA cheaply cloneable and sliceable chunk of contiguous …\nA handle pointing to some encoded image bytes in-memory.\nImage filtering strategy.\nA handle of some image data.\nThe image Handle to be displayed. Iced exposes its own …\nThe unique identifier of some Handle data.\nA raster image that can be drawn.\nBilinear interpolation.\nNearest neighbor.\nA file handle. The image data will be read from the file …\nA Renderer that can render raster graphics.\nA handle pointing to decoded image pixels in RGBA format.\nClears the buffer, removing all data.\nCreates Bytes instance from slice, by copying it.\nDraws an Image inside the provided bounds.\nSets the filter method of the Image.\nThe filter method of the image.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCreates an image Handle containing the encoded image data …\nCreate Bytes with a buffer whose lifetime is controlled …\nCreates an image Handle pointing to the image of the given …\nCreates an image Handle containing the decoded image …\nCreates a new Bytes from a static slice.\nThe handle of the image.\nReturns the unique identifier of the Handle.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns true if the Bytes has a length of 0.\nReturns true if this is the only reference to the data and …\nReturns the number of bytes contained in this Bytes.\nReturns the dimensions of an image for the given Handle.\nCreates a new empty Bytes.\nCreates a new Image with the given handle.\nSets the opacity of the Image.\nThe opacity of the image.\nSets the rotation of the Image.\nThe rotation to be applied to the image; on its center.\nReturns a slice of self for the provided range.\nReturns a slice of self that is equivalent to the given …\nSets whether the Image should be snapped to the pixel grid.\nIf set to true, the image will be snapped to the pixel …\nSplits the bytes into two at the given index.\nSplits the bytes into two at the given index.\nShortens the buffer, keeping the first len bytes and …\nTry to convert self into BytesMut.\nThe height of the image.\nThe id of this handle.\nThe pixels.\nThe width of the image.\nInput methods are allowed, but not open yet.\nNotifies when the IME was disabled.\nNotifies when text should be inserted into the editor …\nNo input method is allowed.\nDescribes input method events.\nThe input method strategy of a widget.\nNo input method strategy has been specified.\nNo special hints for the IME (default).\nInput method is open.\nNotifies when the IME was opened.\nThe pre-edit of an InputMethod.\nNotifies when a new composing text should be set at the …\nThe purpose of an InputMethod.\nThe IME is used for secure input (e.g. passwords).\nThe IME is used to input into a terminal.\nBorrows the contents of a Preedit.\nThe current content.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns true if the InputMethod is open.\nMerges two InputMethod strategies, prioritizing the first …\nCreates a new empty Preedit.\nThe selected range of the content.\nTurns an InputMethod into its owned version.\nTurns a Preedit into its owned version.\nThe position at which the input method dialog should be …\nThe preedit to overlay on top of the input method dialog, …\nThe Purpose of the input method.\nThe “alt” key.\nThe “command” key.\nThe “control” key.\nA keyboard event.\nA keyboard key was pressed.\nA keyboard key was released.\nThe “windows” key on Windows, “command” key on …\nThe left side of the keyboard.\nThe location of a key on the keyboard.\nThe current state of the keyboard modifiers.\nThe keyboard modifiers have changed.\nThe numpad of the keyboard.\nThe right side of the keyboard.\nThe “shift” key.\nThe standard group of keys on the keyboard.\nGet a flags value with all known bits set.\nReturns true if the ALT key is pressed in the Modifiers.\nThe bitwise and (&) of the bits in two flags values.\nThe bitwise and (&) of the bits in two flags values.\nThe bitwise or (|) of the bits in two flags values.\nThe bitwise or (|) of the bits in two flags values.\nGet the underlying bits value.\nThe bitwise exclusive-or (^) of the bits in two flags …\nThe bitwise exclusive-or (^) of the bits in two flags …\nReturns true if a “command key” is pressed in the …\nThe bitwise negation (!) of the bits in a flags value, …\nWhether all set bits in a source flags value are also set …\nReturns true if the CTRL key is pressed in the Modifiers.\nThe intersection of a source flags value with the …\nGet a flags value with all bits unset.\nThe bitwise or (|) of the bits in each flags value.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nConvert from a bits value.\nConvert from a bits value exactly.\nConvert from a bits value, unsetting any unknown bits.\nThe bitwise or (|) of the bits in each flags value.\nGet a flags value with the bits of a flag with the given …\nThe bitwise or (|) of the bits in two flags values.\nThe bitwise and (&) of the bits in two flags values.\nWhether any set bits in a source flags value are also set …\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nWhether all known bits in this flags value are set.\nWhether all bits in this flags value are unset.\nYield a set of contained flags values.\nYield a set of contained named flags values.\nReturns true if the “jump key” is pressed in the …\nIdentify keyboard keys.\nReturns true if the LOGO key is pressed in the Modifiers.\nReturns true if the “command key” is pressed on a …\nThe bitwise negation (!) of the bits in a flags value, …\nThe intersection of a source flags value with the …\nCall insert when value is true or remove when value is …\nReturns true if the SHIFT key is pressed in the Modifiers.\nThe intersection of a source flags value with the …\nThe intersection of a source flags value with the …\nThe bitwise exclusive-or (^) of the bits in two flags …\nThe bitwise exclusive-or (^) of the bits in two flags …\nThe bitwise or (|) of the bits in two flags values.\nThe key pressed.\nThe key released.\nThe location of the key.\nThe location of the key.\nThe key pressed with all keyboard modifiers applied, …\nThe key released with all keyboard modifiers applied, …\nThe state of the modifier keys.\nThe state of the modifier keys.\nThe physical key pressed.\nThe physical key released.\nThe text produced by the key press, if any.\nSwitch the input mode on an external AVR (audio/video …\nToggle the power on an external AVR (audio/video …\nThe Accept (Commit, OK) key. Accept current option or …\nRedo or repeat an action.\nFound on Sun’s USB keyboard.\nInitiate the multi-candidate mode.\nThe Alt (Alternative) key.\nThe Alternate Graphics (AltGr or AltGraph) key.\nAlt, Option, or ⌥.\nAlt, Option, or ⌥. This is labeled AltGr on many …\nAn Android “scancode”.\nThe Application switch key, which provides a list of …\nNavigate or traverse downward. (KEYCODE_DPAD_DOWN)\n↓\nNavigate or traverse leftward. (KEYCODE_DPAD_LEFT)\n←\nNavigate or traverse rightward. (KEYCODE_DPAD_RIGHT)\n→\nNavigate or traverse upward. (KEYCODE_DPAD_UP)\n↑\nThe Attention (Attn) key.\nAdjust audio balance leftward. (VK_AUDIO_BALANCE_LEFT)\nAdjust audio balance rightward. (VK_AUDIO_BALANCE_RIGHT)\nDecrease audio bass boost or cycle down through bass boost …\nToggle bass boost on/off. (APPCOMMAND_BASS_BOOST)\nIncrease audio bass boost or cycle up through bass boost …\nAdjust audio fader towards front. (VK_FADER_FRONT)\nAdjust audio fader towards rear. (VK_FADER_REAR)\nAdvance surround audio mode to next available mode. (…\nDecrease treble. (APPCOMMAND_TREBLE_DOWN)\nIncrease treble. (APPCOMMAND_TREBLE_UP)\nDecrease audio volume. (APPCOMMAND_VOLUME_DOWN, …\nToggle between muted state and prior volume level. (…\nIncrease audio volume. (APPCOMMAND_VOLUME_UP, …\n` on a US keyboard. This is also called a backtick or …\nUsed for both the US \\ (on the 101-key layout) and also …\nUsed to remove the character to the left of the cursor. …\nBackspace or ⌫. Labeled Delete on Apple keyboards.\n[ on a US keyboard.\n] on a US keyboard.\nThe Brightness Down key. Typically controls the display …\nThe Brightness Up key. Typically controls the display …\nNavigate to previous content or page in current history. (…\nSome laptops place this key to the left of the ↑ key.\nOpen the list of browser favorites. (…\nNavigate to next content or page in current history. (…\nSome laptops place this key to the right of the ↑ key.\nGo to the user’s preferred home page. (…\nThe “home” button on Android.\nRefresh the current page or content. (…\nCall up the user’s preferred search page. (…\nStop loading the current page or content. (…\nThe Call key. (KEYCODE_CALL)\nThe Camera key. (KEYCODE_CAMERA)\nThe Camera focus key. (KEYCODE_FOCUS)\nThe Caps Lock (Capital) key.\nCapsLock or ⇪\nSelect next (numerically or logically) lower channel. (…\nSelect next (numerically or logically) higher channel. (…\nA key string that corresponds to the character typed by …\nRemove the currently selected input.\nClose the current document or message (Note: This …\nToggle the display of Closed Captions. (VK_CC, …\nCode representing the location of a physical key.\nA known key code\nInitiate the Code Input mode to allow characters to be …\nGeneral purpose color-coded media function key, as index 0 …\nGeneral purpose color-coded media function key, as index 1 …\nGeneral purpose color-coded media function key, as index 2 …\nGeneral purpose color-coded media function key, as index 3 …\nGeneral purpose color-coded media function key, as index 4 …\nGeneral purpose color-coded media function key, as index 5 …\n, on a US keyboard.\nThe Compose key, also known as “Multi_key” on the X …\nShow the application’s context menu. This key is …\nThe application context menu key, which is typically found …\nThe Control or Ctrl key.\nControl or ⌃\nControl or ⌃\nConvert the current input method sequence.\nJapanese: 変 (henkan)\nCopy the current selection. (APPCOMMAND_COPY)\nFound on Sun’s USB keyboard.\nThe Cursor Select key.\nCut the current selection. (APPCOMMAND_CUT)\nFound on Sun’s USB keyboard.\nSelect Digital Video Rrecorder. (KEYCODE_DVR)\nUsed to delete the character to the right of the cursor. …\n⌦. The forward delete key. Note that on Apple keyboards, …\n0 on a US keyboard.\n1 on a US keyboard.\n2 on a US keyboard.\n3 on a US keyboard.\n4 on a US keyboard.\n5 on a US keyboard.\n6 on a US keyboard.\n7 on a US keyboard.\n8 on a US keyboard.\n9 on a US keyboard.\nAdjust brightness of device, by toggling between or …\nSwap video sources. (VK_DISPLAY_SWAP)\nThe Eisu key. This key may close the IME, but its purpose …\nToggle removable media to eject (open) and insert (close) …\nEject or ⏏. This key is placed in the function section …\nThe End key, used with keyboard entry to go to the end of …\nPage Down, End, or ↘\nThe End Call key. (KEYCODE_ENDCALL)\nThe Enter or key. Used to activate current selection …\nEnter or ↵. Labeled Return on Apple keyboards.\n= on a US keyboard.\nThe Erase to End of Field key. This key deletes all …\nThe Esc key. This key was originally used to initiate an …\nEsc or ⎋\nThe Extend Selection (Exsel) key.\nExit the current application. (VK_EXIT)\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nClear program or content stored as favorite 0. (…\nClear program or content stored as favorite 1. (…\nClear program or content stored as favorite 2. (…\nClear program or content stored as favorite 3. (…\nSelect (recall) program or content stored as favorite 0. (…\nSelect (recall) program or content stored as favorite 1. (…\nSelect (recall) program or content stored as favorite 2. (…\nSelect (recall) program or content stored as favorite 3. (…\nStore current program or content as favorite 0. (…\nStore current program or content as favorite 1. (…\nStore current program or content as favorite 2. (…\nStore current program or content as favorite 3. (…\nThe Final Mode Final key used on some Asian keyboards, to …\nOpen the Find dialog. (APPCOMMAND_FIND)\nFound on Sun’s USB keyboard.\nThe Function switch Fn key. Activating this key …\nFn This is typically a hardware key that does not generate …\nThe Function-Lock (FnLock or F-Lock) key. Activating this …\nFLock or FnLock. Function Lock key. Found on the Microsoft …\nThe Back key. (KEYCODE_BACK)\nThe Home key, which goes to the phone’s main screen. (…\nSwitch to the first character group. (ISO/IEC 9995)\nSwitch to the last character group. (ISO/IEC 9995)\nSwitch to the next character group. (ISO/IEC 9995)\nSwitch to the previous character group. (ISO/IEC 9995)\nToggle display of program or content guide. (VK_GUIDE, …\nIf guide is active and displayed, then display next …\nIf guide is active and displayed, then display previous …\nToggle between Hangul and English modes.\nThe (Half-Width) Characters key.\nThe Headset Hook key. (KEYCODE_HEADSETHOOK)\nOpen a help dialog or toggle display of help information. (…\nHelp. Not present on standard PC keyboards.\nThe Hibernate key. This key saves the current state of the …\nThe Hiragana (Japanese Kana characters) key.\nUse for dedicated ひらがな key found on some Japanese …\nThe Hiragana/Katakana toggle key. (…\nThe Home key, used with keyboard entry, to go to start of …\nHome or ↖\nToggle display of information about currently selected …\nToggle between text modes for insertion or overtyping. (…\nInsert or Ins. Not present on Apple keyboards.\nToggle instant replay. (VK_INSTANT_REPLAY)\nLocated between the left Shift and Z keys. Labeled \\ on a …\nLocated between the / and right Shift keys. Labeled \\ (ro) …\nLocated between the = and Backspace keys. Labeled ¥ (yen) …\nThe Kana Mode (Kana Lock) key. This key is used to enter …\nJapanese: カタカナ/ひらがな/ローマ字 …\nThe Kanji (Japanese name for ideographic characters of …\nThe Katakana (Japanese Kana characters) key.\nUse for dedicated カタカナ key found on some Japanese …\nA key on the keyboard.\nThe 11 key found on media numpads that have buttons from 1 …\nThe 12 key found on media numpads that have buttons from 1 …\na on a US keyboard. Labeled q on an AZERTY (e.g., French) …\nb on a US keyboard.\nc on a US keyboard.\nd on a US keyboard.\ne on a US keyboard.\nf on a US keyboard.\ng on a US keyboard.\nh on a US keyboard.\ni on a US keyboard.\nj on a US keyboard.\nk on a US keyboard.\nl on a US keyboard.\nm on a US keyboard.\nn on a US keyboard.\no on a US keyboard.\np on a US keyboard.\nq on a US keyboard. Labeled a on an AZERTY (e.g., French) …\nr on a US keyboard.\ns on a US keyboard.\nt on a US keyboard.\nu on a US keyboard.\nv on a US keyboard.\nw on a US keyboard. Labeled z on an AZERTY (e.g., French) …\nx on a US keyboard.\ny on a US keyboard. Labeled z on a QWERTZ (e.g., German) …\nz on a US keyboard. Labeled w on an AZERTY (e.g., French) …\nKorean: HangulMode 한/영 (han/yeong)\nKorean: Hanja 한 (hanja)\nJapanese (word-processing keyboard): Katakana\nJapanese (word-processing keyboard): Hiragana\nJapanese (word-processing keyboard): Zenkaku/Hankaku\nSometimes labelled My Computer on the keyboard\nSometimes labelled Calculator on the keyboard\nThe first generic “LaunchApplication” key. This is …\nThe second generic “LaunchApplication” key. This is …\nThe “Calendar” key. (KEYCODE_CALENDAR)\nThe “Contacts” key. (KEYCODE_CONTACTS)\nThe “Mail” key. (APPCOMMAND_LAUNCH_MAIL)\nThe “Media Player” key. (APPCOMMAND_LAUNCH_MEDIA_SELECT…\nLaunch linked content, if available and appropriate. (…\nList the current program. (VK_LIST)\nToggle display listing of currently available live content …\nLock or unlock current content or program. (VK_LOCK)\nA macOS “scancode”.\nOpen an editor to forward the current message. (…\nOpen an editor to reply to the current message. (…\nSend the current message. (APPCOMMAND_SEND_MAIL)\nToggle between manner mode state: silent, vibrate, ring, …\nShow a list of media applications: audio/video players and …\nAudio track key. (KEYCODE_MEDIA_AUDIO_TRACK)\nClose the current media, for example to close a CD or DVD …\nInitiate or continue forward playback at faster than …\nSelect previously selected channel or media. (VK_LAST, …\nPause the currently playing media. (APPCOMMAND_MEDIA_PAUSE…\nInitiate or continue media playback at normal speed, if …\nToggle media between play and pause states. (…\nInitiate or resume recording of currently selected media. (…\nInitiate or continue reverse playback at faster than …\nSkip backward to next content or program. (…\nSkip forward to next content or program. (VK_SKIP, …\nStep backward to next content or program. (…\nStep forward to next content or program. (…\nStop media playing, pausing, forwarding, rewinding, or …\nMedia top menu. (KEYCODE_MEDIA_TOP_MENU)\nSeek to next media or program track. (…\nSeek to previous media or program track. (…\nToggle the microphone on/off. (APPCOMMAND_MIC_ON_OFF_TOGGLE…\nDecrease microphone volume. (…\nMute the microphone. (APPCOMMAND_MICROPHONE_VOLUME_MUTE, …\nIncrease microphone volume. (…\n- on a US keyboard.\nToggle between or cycle through input modes of IMEs.\nA named key.\nA key with an established name.\nContains the platform-native physical key identifier.\nNavigate in. (KEYCODE_NAVIGATE_IN)\nNavigate to next key. (KEYCODE_NAVIGATE_NEXT)\nNavigate out. (KEYCODE_NAVIGATE_OUT)\nNavigate to previous key. (KEYCODE_NAVIGATE_PREVIOUS)\nOpen a new document or message. (APPCOMMAND_NEW)\nCycle to next favorite channel (in favorites list). (…\nCycle to next user profile (if there are multiple user …\nAccept current input method sequence without conversion in …\nJapanese: 無変換 (muhenkan)\nThe Notification key. (KEYCODE_NOTIFICATION)\nThe NumLock or Number Lock key. Used to toggle numpad mode …\nOn the Mac, this is used for the numpad Clear key.\n0 Ins on a keyboard. 0 on a phone or remote control\n1 End on a keyboard. 1 or 1 QZ on a phone or remote control\n2 ↓ on a keyboard. 2 ABC on a phone or remote control\n3 PgDn on a keyboard. 3 DEF on a phone or remote control\n4 ← on a keyboard. 4 GHI on a phone or remote control\n5 on a keyboard. 5 JKL on a phone or remote control\n6 → on a keyboard. 6 MNO on a phone or remote control\n7 Home on a keyboard. 7 PQRS or 7 PRS on a phone or remote …\n8 ↑ on a keyboard. 8 TUV on a phone or remote control\n9 PgUp on a keyboard. 9 WXYZ or 9 WXY on a phone or remote …\n+\nFound on the Microsoft Natural Keyboard.\nC or A (All Clear). Also for use with numpads that have a …\nC (Clear Entry)\n, (thousands separator). For locales where the thousands …\n. Del. For locales where the decimal separator is “,” …\n/\n=\n# on a phone or remote control device. This key is …\nM Add current entry to the value stored in memory.\nM Clear the value stored in memory.\nM Replace the current entry with the value stored in …\nM Replace the value stored in memory with the current …\nM Subtract current entry from the value stored in memory.\n on a keyboard. For use with numpads that provide …\n( Found on the Microsoft Natural Keyboard.\n) Found on the Microsoft Natural Keyboard.\n* on a phone or remote control device.\n-\nAccess on-demand content or programs. (VK_ON_DEMAND)\nOpen an existing document or message. (APPCOMMAND_OPEN)\nFound on Sun’s USB keyboard.\nScroll down or display next page of content.\nPage Down, PgDn, or ⇟\nScroll up or display previous page of content.\nPage Up, PgUp, or ⇞\nPairing key to pair devices. (KEYCODE_PAIRING)\nThe Paste key. (APPCOMMAND_PASTE)\nFound on Sun’s USB keyboard.\nPause the current state or application (as appropriate).\nPause Break\n. on a US keyboard.\nRepresents the location of a physical key.\nMove picture-in-picture window down. (VK_PINP_DOWN)\nMove picture-in-picture window. (VK_PINP_MOVE)\nToggle display of picture-in-picture window. (…\nMove picture-in-picture window up. (VK_PINP_UP)\nPlay or resume the current state or application (as …\nDecrease media playback speed. (VK_PLAY_SPEED_DOWN)\nReset playback to normal speed. (VK_PLAY_SPEED_RESET)\nIncrease media playback speed. (VK_PLAY_SPEED_UP)\nToggle power state. (KEYCODE_POWER) Note: Note: Some …\nThis key is placed in the function section on some Apple …\nThe PowerOff key. Sometime called PowerDown.\nPrint the current document or message. (APPCOMMAND_PRINT)\nInitiate print-screen function.\nPrtScr SysRq or Print Screen\nThe properties (Props) key.\nFound on Sun’s USB keyboard.\n’ on a US keyboard.\nToggle random media or content shuffle mode. (…\nNot a physical key, but this key code is sent when the …\nToggle or cycle between media recording speeds. (…\nRedo the last action. (APPCOMMAND_REDO)\nToggle RF (radio frequency) input bypass mode (pass RF …\nThe Roman characters function key.\nSwitch the input mode on an external STB (set top box). (…\nToggle the power on an external STB (set top box). (…\nSave the current document or message. (APPCOMMAND_SAVE)\nToggle scan channels mode. (VK_SCAN_CHANNELS_TOGGLE)\nAdvance display screen mode to next available mode. (…\nToggle between scrolling and cursor movement modes.\nScroll Lock\nFound on Sun’s USB keyboard.\n; on a US keyboard.\nToggle display of device settings screen. (VK_SETTINGS, …\nUsed to enable shift modifier function for interpreting …\nShift or ⇧\nShift or ⇧\n/ on a US keyboard.\nGeneral purpose virtual function key, as index 1.\nGeneral purpose virtual function key, as index 2.\nGeneral purpose virtual function key, as index 3.\nGeneral purpose virtual function key, as index 4.\nUsed in text to insert a space between words. Usually …\n (space)\nShow correction list when a word is incorrectly …\nToggle between dictation mode and command/control mode. (…\nSpellcheck the current document or selection. (…\nToggle split screen mode. (VK_SPLIT_SCREEN_TOGGLE)\nThe Standby key. This key turns off the display and places …\nToggle display of subtitles, if available. (VK_SUBTITLE)\nUsed to enable “super” modifier function for …\nThe Windows, ⌘, Command, or other OS symbol key.\nThe Windows, ⌘, Command, or other OS symbol key.\nThe Symbol modifier key (used on some virtual keyboards).\nSwitch to viewing TV. (KEYCODE_TV)\nTV 3D Mode. (KEYCODE_3D_MODE)\nToggle between antenna and cable input. (…\nAudio description. (KEYCODE_TV_AUDIO_DESCRIPTION)\nAudio description mixing volume down. (…\nAudio description mixing volume up. (…\nContents menu. (KEYCODE_TV_CONTENTS_MENU)\nContents menu. (KEYCODE_TV_DATA_SERVICE)\nSwitch the input mode on an external TV. (KEYCODE_TV_INPUT)\nSwitch to component input #1. (KEYCODE_TV_INPUT_COMPONENT_1…\nSwitch to component input #2. (KEYCODE_TV_INPUT_COMPONENT_2…\nSwitch to composite input #1. (KEYCODE_TV_INPUT_COMPOSITE_1…\nSwitch to composite input #2. (KEYCODE_TV_INPUT_COMPOSITE_2…\nSwitch to HDMI input #1. (KEYCODE_TV_INPUT_HDMI_1)\nSwitch to HDMI input #2. (KEYCODE_TV_INPUT_HDMI_2)\nSwitch to HDMI input #3. (KEYCODE_TV_INPUT_HDMI_3)\nSwitch to HDMI input #4. (KEYCODE_TV_INPUT_HDMI_4)\nSwitch to VGA input #1. (KEYCODE_TV_INPUT_VGA_1)\nMedia context menu. (KEYCODE_TV_MEDIA_CONTEXT_MENU)\nToggle network. (KEYCODE_TV_NETWORK)\nNumber entry. (KEYCODE_TV_NUMBER_ENTRY)\nToggle the power on an external TV. (KEYCODE_TV_POWER)\nRadio. (KEYCODE_TV_RADIO_SERVICE)\nSatellite. (KEYCODE_TV_SATELLITE)\nBroadcast Satellite. (KEYCODE_TV_SATELLITE_BS)\nCommunication Satellite. (KEYCODE_TV_SATELLITE_CS)\nToggle between available satellites. (…\nAnalog Terrestrial. (KEYCODE_TV_TERRESTRIAL_ANALOG)\nDigital Terrestrial. (KEYCODE_TV_TERRESTRIAL_DIGITAL)\nTimer programming. (KEYCODE_TV_TIMER_PROGRAMMING)\nThe Horizontal Tabulation Tab key.\nTab or ⇥\nToggle display of teletext, if available (VK_TELETEXT, …\nUndo the last action. (APPCOMMAND_UNDO)\nFound on Sun’s USB keyboard.\nAn unidentified key.\nAn unidentified code.\nThis variant is used when the key cannot be translated to …\nAdvance video mode to next available mode. (…\nThe WakeUp key. (KEYCODE_WAKEUP)\nA Windows “scancode”.\nCause device to identify itself in some manner, e.g., …\nAn XKB “keycode”.\nThe Zenkaku (Full-Width) Characters key.\nThe Zenkaku/Hankaku (full-width/half-width) toggle key. (…\nThe ZoomIn key. (KEYCODE_ZOOM_IN)\nThe ZoomOut key. (KEYCODE_ZOOM_OUT)\nToggle between full-screen and scaled content, or alter …\nConvert Key::Character(SmolStr) to Key::Character(&str) so …\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nThe bounds of a Node and its children, using absolute …\nA set of size constraints for layouting.\nNo limits\nThe bounds of an element and its children.\nAligns the Node in the given space.\nMutable reference version of Self::align.\nComputes the resulting Node that fits the Limits given …\nReturns the bounds of the Node.\nReturns the bounds of the Layout.\nReturns the children of the Node.\nReturns an iterator over the Layout of the children of a …\nComputes the resulting Node that fits the Limits given …\nCreates a new Node that wraps a single child with some …\nDistribute elements using a flex-based layout.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nApplies a height constraint to the current Limits.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nRemoves the minimum width constraint for the current Limits…\nReturns the maximum Size of the Limits.\nApplies a maximum height constraint to the current Limits.\nApplies a maximum width constraint to the current Limits.\nReturns the minimum Size of the Limits.\nApplies a minimum height constraint to the current Limits.\nApplies a minimum width constraint to the current Limits.\nMoves the Node to the given position.\nMutable reference version of Self::move_to.\nCreates new Limits with the given minimum and maximum Size.\nCreates a new Node with the given Size.\nCreates a new Layout for the given Node at the origin.\nProduces a Node with two children nodes one right next to …\nComputes the Node that fits the Limits given some width, …\nReturns the position of the Layout.\nComputes a padded Node with a positioning step.\nComputes the resulting Size that fits the Limits given …\nShrinks the current Limits by the given Size.\nReturns the Size of the Node.\nComputes the resulting Node that fits the Limits given …\nTranslates the Node by the given translation.\nTranslates the Node by the given translation.\nApplies a width constraint to the current Limits.\nCreates a new Node with the given Size and children.\nCreates a new Layout for the given Node with the provided …\nThe main axis of a flex layout.\nThe horizontal axis\nThe vertical axis\nReturns the argument unchanged.\nCalls U::from(self).\nComputes the flex layout with the given axis and limits, …\nThe cursor has a defined position.\nThe back mouse button.\nThe button of a mouse.\nA mouse button was pressed.\nA mouse button was released.\nThe mouse cursor state.\nThe mouse cursor entered the window.\nThe mouse cursor left the window.\nThe mouse cursor was moved\nA mouse event.\nThe forward mouse button.\nThe interaction of a mouse cursor.\nThe left mouse button.\nThe cursor has a defined position, but it’s levitating …\nA line-based scroll movement\nThe middle (wheel) button.\nSome other button.\nA pixel-based scroll movement\nThe right mouse button.\nA scroll movement.\nThe cursor is currently unavailable (i.e. out of bounds or …\nThe mouse wheel was scrolled.\nTrack mouse clicks.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns true if the Cursor is levitating over a layer …\nReturns true if the Cursor is over the given bounds.\nBrings the Cursor back to the current layer.\nMakes the Cursor levitate over a layer above.\nReturns the absolute position of the Cursor, if available.\nReturns the relative position of the Cursor from the given …\nReturns the relative position of the Cursor inside the …\nReturns the absolute position of the Cursor, if available …\nThe scroll movement.\nThe new position of the mouse cursor\nThe number of horizontal lines scrolled\nThe number of horizontal pixels scrolled\nThe number of vertical lines scrolled\nThe number of vertical pixels scrolled\nA mouse click.\nA double click\nThe kind of mouse click.\nA single click\nA triple click\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nReturns the Kind of Click.\nCreates a new Click with the given position and previous …\nReturns the position of the Click.\nA generic Overlay.\nAn Overlay container that displays multiple overlay …\nAn interactive component that can be displayed on top of …\nDraws the Overlay using the associated Renderer.\nDraws the Element and its children using the given Layout.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns a Group of overlay Element children.\nCalls U::from(self).\nCalls U::from(self).\nReturns true if the cursor is over the Element.\nReturns true if the cursor is over the Overlay.\nReturns the layout Node of the Overlay.\nComputes the layout of the Element in the given bounds.\nApplies a transformation to the produced message of the …\nReturns the current mouse::Interaction of the Element.\nReturns the current mouse::Interaction of the Overlay.\nCreates a new Element containing the given Overlay.\nCreates an empty Group.\nApplies a widget::Operation to the Element.\nApplies a widget::Operation to the Overlay.\nReturns the nested overlay of the Element, if there is any.\nTurns the Group into an overlay overlay::Element.\nReturns the nested overlay of the Overlay, if there is any.\nAdds an overlay::Element to the Group.\nProcesses a runtime Event.\nProcesses a runtime Event.\nCreates a Group with the given elements.\nAn amount of space to pad for each side of a box\nPadding of zero\nCreate a Padding that is equal on all sides.\nCreate some bottom Padding.\nSets the bottom of the Padding.\nBottom padding\nFits the Padding between the provided inner and outer Size.\nReturns the argument unchanged.\nReturns the total amount of horizontal Padding.\nCalls U::from(self).\nCreate some left Padding.\nSets the left of the Padding.\nLeft padding\nCreate a Padding that is equal on all sides.\nCreate some right Padding.\nSets the right of the Padding.\nRight padding\nCreate some top Padding.\nSets the top of the Padding.\nTop padding\nReturns the total amount of vertical Padding.\nA headless renderer is a renderer that can render …\nA polygon with four sides.\nA component that can be used by widgets to draw themselves …\nThe styling attributes of a Renderer.\nThe Border of the Quad. The border is drawn on the inside …\nThe bounds of the Quad.\nClears all of the recorded primitives in the Renderer.\nEnds recording a new layer.\nEnds recording a new layer.\nFills a Quad with the provided Background.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCreates a new Headless renderer;\nDraws offscreen into a screenshot, returning a collection …\nThe Shadow of the Quad.\nStarts recording a new layer.\nStarts recording with a new Transformation.\nThe text color\nDraws the primitives recorded in the given closure in a …\nApplies a Transformation to the primitives recorded in the …\nApplies a translation to the primitives recorded in the …\nIn-memory data\nThe data of a vectorial image.\nA handle of Svg data.\nFile data\nA Renderer that can render vector graphics.\nA raster image that can be drawn.\nSets the Color filter of the Svg.\nThe Color filter to be applied to the Svg.\nReturns a reference to the SVG Data.\nDraws an SVG with the given Handle, an optional Color …\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCreates an SVG Handle from raw bytes containing either an …\nCreates an SVG Handle pointing to the vector image of the …\nThe handle of the Svg.\nReturns the unique identifier of the Handle.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns the default dimensions of an SVG for the given …\nCreates a new Svg with the given handle.\nSets the opacity of the Svg.\nThe opacity of the Svg.\nSets the rotation of the Svg.\nThe rotation to be applied to the image; on its center.\nThe char representing a ▼ icon in the built-in ICON_FONT.\nAn absolute height in logical pixels.\nAdvanced text shaping and font fallback.\nNo shaping and no font fallback.\nBorrowed data.\nA bounds difference.\nThe char representing a ✔ icon in the ICON_FONT.\nThe point was within the bounds of the returned character …\nThe difference detected in some text.\nThe Editor of this Renderer.\nThe font type used.\nA fragment of Text.\nWraps at the glyph level.\nA text highlight.\nThe result of hit testing on text.\nThe icon font of the backend.\nA trait for converting a value to some text Fragment.\nThe height of a line of text in a paragraph.\nNo wrapping.\nNo difference.\nOwned data.\nThe Paragraph of this Renderer.\nA factor of the size of the text.\nA renderer capable of measuring and drawing Text.\nA shape difference.\nThe shaping strategy of some text.\nA span of text.\nA paragraph.\nWraps at the word level.\nWraps at the word level, or fallback to glyph level if a …\nThe wrapping strategy of some text.\nSets the Background of the Span.\nThe Background of the highlight.\nSets the Background of the Span, if any.\nSets the Border of the Span.\nThe Border of the highlight.\nSets the Border of the Span, if any.\nThe bounds of the paragraph.\nSets the Color of the Span.\nThe Color of the Span.\nSets the Color of the Span, if any.\nThe content of the paragraph.\nComputes the cursor position of the Hit .\nReturns the default Self::Font.\nReturns the default size of Text.\nEdit text.\nDraws the given Editor at the given position and with the …\nDraws the given Paragraph at the given position and with …\nDraws the given Text at the given position and with the …\nSets the font of the Span.\nThe font of the Text.\nThe font of the Span.\nSets the font of the Span, if any.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nThe Highlight of the Span.\nHighlight text.\nThe horizontal alignment of the Text.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nConverts the value to some text Fragment.\nSets the LineHeight of the Span.\nThe line height of the Text.\nThe LineHeight of the Span.\nSets the link of the Span.\nThe link of the Span.\nSets the link of the Span, if any.\nCreates a new Span of text with the given text fragment.\nSets the Padding of the Span.\nThe Padding of the Span.\nDraw paragraphs.\nThe Shaping strategy of the Text.\nSets the size of the Span.\nThe size of the Text in logical pixels.\nThe size of the Span in Pixels.\nSets whether the Span should be struck through or not.\nWhether the Span should be struck through or not.\nThe Fragment of text.\nReturns the LineHeight in absolute logical pixels.\nTurns the Span into a static one.\nSets whether the Span should be underlined or not.\nWhether the Span should be underlined or not.\nThe vertical alignment of the Text.\nThe Wrapping strategy of the Text.\nAn interaction with an Editor.\nDelete the previous character.\nCursor without a selection\nClick the Editor at the given Point.\nUse \\r for line ending (many legacy systems)\nUse \\r\\n for line ending (Windows-style)\nThe cursor of an Editor.\nDelete the next character.\nA direction in some text.\nMove to the end of the text.\nMove to the start of the text.\nMove down.\nDrag the mouse on the Editor to the given Point.\nAn action that edits text.\nPerform an Edit.\nA component that can be used by widgets to edit multi-line …\nMove to the end of the line.\nBreak the current line.\nThe font of the Editor.\nMove to the start of the line.\nInsert the given character.\nMove left.\n<-\nUse \\n for line ending (POSIX-style)\nUse \\n\\r for line ending (some legacy systems)\nA line of an Editor.\nThe line ending of a Line.\nA cursor movement.\nApply a Motion.\nNo line ending\nMove to the start of the next window.\nMove to the start of the previous window.\nPaste the given text.\nMove right.\n->\nScroll the Editor a certain amount of lines.\nSelect text with a given Motion.\nSelect the entire buffer.\nSelect the line at the current cursor.\nSelect the word at the current cursor.\nCursor selecting a range of text\nMove up.\nMove to the left boundary of a word.\nMove to the right boundary of a word.\nGets the string representation of the LineEnding.\nReturns the current boundaries of the Editor.\nReturns the current Cursor of the Editor.\nReturns the current cursor position of the Editor.\nReturns the Direction of the Motion.\nThe line ending of the Line.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nRuns a text Highlighter in the Editor.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns whether the Action is an editing action.\nReturns true if the Editor has no contents.\nReturns the text of the given line in the Editor, if it …\nReturns the amount of lines in the Editor.\nReturns the minimum boundaries to fit the current contents …\nPerforms an Action on the Editor.\nReturns the current selected text of the Editor.\nThe raw text of the Line.\nUpdates the Editor with some new attributes.\nWidens the Motion, if possible.\nCreates a new Editor laid out with the given text.\nThe amount of lines to scroll.\nThe format of some text.\nThe output of the Highlighter.\nA type capable of highlighting text.\nThe highlight iterator type.\nA highlighter that highlights nothing.\nThe settings to configure the Highlighter.\nNotifies the Highlighter that the line at the given index …\nThe Color of the text.\nReturns the current line of the Highlighter.\nThe Font of the text.\nReturns the argument unchanged.\nReturns the argument unchanged.\nHighlights the given line.\nCalls U::from(self).\nCalls U::from(self).\nCreates a new Highlighter from its Self::Settings.\nUpdates the Highlighter with some new Self::Settings.\nThe font of this Paragraph.\nA text paragraph.\nA Paragraph of plain text.\nCompares the Paragraph with some desired Text and returns …\nReturns the argument unchanged.\nReturns the distance to the given grapheme index in the …\nTests whether the provided point is within the boundaries …\nTests whether the provided point is within the boundaries …\nReturns the horizontal alignment of the Paragraph.\nReturns the horizontal alignment of the Paragraph.\nCalls U::from(self).\nReturns the minimum boundaries that can fit the contents …\nReturns the minimum boundaries that can fit the contents …\nReturns the minimum height that can fit the contents of …\nReturns the minimum height that can fit the contents of the\nReturns the minimum width that can fit the contents of the …\nReturns the minimum width that can fit the contents of the …\nCreates a new Plain paragraph.\nReturns the cached Paragraph.\nLays out the Paragraph with some new boundaries.\nReturns all bounds for the provided Span index of the …\nUpdates the plain Paragraph to match the given Text, if …\nReturns the vertical alignment of the Paragraph.\nReturns the vertical alignment of the Paragraph.\nCreates a new Paragraph laid out with the given Text.\nCreates a new Paragraph laid out with the given Text.\nA list with all the defined themes.\nThe default blank style of a Theme.\nThe built-in Catppuccin Frappé variant.\nThe built-in Catppuccin Latte variant.\nThe built-in Catppuccin Macchiato variant.\nThe built-in Catppuccin Mocha variant.\nA Theme with a customized Palette.\nA Theme that uses a Custom palette.\nThe built-in dark variant.\nThe built-in Dracula variant.\nThe built-in Ferra variant:\nThe built-in Gruvbox Dark variant.\nThe built-in Gruvbox Light variant.\nThe built-in Kanagawa Dragon variant.\nThe built-in Kanagawa Lotus variant.\nThe built-in Kanagawa Wave variant.\nThe built-in light variant.\nThe built-in Moonfly variant.\nThe built-in Nightfly variant.\nThe built-in Nord variant.\nThe built-in Oxocarbon variant.\nThe built-in Solarized Dark variant.\nThe built-in Solarized Light variant.\nThe base style of a Theme.\nA built-in theme.\nThe built-in Tokyo Night variant.\nThe built-in Tokyo Night Light variant.\nThe built-in Tokyo Night Storm variant.\nThe background Color of the application.\nReturns the default base Style of a Theme.\nCreates a new custom Theme from the given Palette.\nCreates a new custom Theme from the given Palette, with a …\nThe default Style of a built-in Theme.\nReturns the palette::Extended of the Theme.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCreates a Custom theme from the given Palette.\nDefine the colors of a theme.\nReturns the Palette of the Theme.\nThe default text Color of the application.\nCreates a Custom theme from the given Palette with a …\nA set of background colors.\nThe built-in Catppuccin Frappé variant of a Palette.\nThe built-in Catppuccin Latte variant of a Palette.\nThe built-in Catppuccin Macchiato variant of a Palette.\nThe built-in Catppuccin Mocha variant of a Palette.\nThe built-in dark variant of a Palette.\nThe built-in Dracula variant of a Palette.\nA set of danger colors.\nThe built-in Catppuccin Frappé variant of an Extended …\nThe built-in Catppuccin Latte variant of an Extended …\nThe built-in Catppuccin Macchiato variant of an Extended …\nThe built-in Catppuccin Mocha variant of an Extended …\nThe built-in dark variant of an Extended palette.\nThe built-in Dracula variant of an Extended palette.\nThe built-in Ferra variant of an Extended palette.\nThe built-in Gruvbox Dark variant of an Extended palette.\nThe built-in Gruvbox Light variant of an Extended palette.\nThe built-in Kanagawa Dragon variant of an Extended …\nThe built-in Kanagawa Lotus variant of an Extended palette.\nThe built-in Kanagawa Wave variant of an Extended palette.\nThe built-in light variant of an Extended palette.\nThe built-in Moonfly variant of an Extended palette.\nThe built-in Nightfly variant of an Extended palette.\nThe built-in Nord variant of an Extended palette.\nThe built-in Oxocarbon variant of an Extended palette.\nThe built-in Solarized Dark variant of an Extended palette.\nThe built-in Solarized Light variant of an Extended …\nThe built-in Tokyo Night variant of an Extended palette.\nThe built-in Tokyo Night variant of an Extended palette.\nThe built-in Tokyo Night Storm variant of an Extended …\nAn extended set of colors generated from a Palette.\nThe built-in Ferra variant of a Palette.\nThe built-in Gruvbox Dark variant of a Palette.\nThe built-in Gruvbox Light variant of a Palette.\nThe built-in Kanagawa Dragon variant of a Palette.\nThe built-in Kanagawa Lotus variant of a Palette.\nThe built-in Kanagawa Wave variant of a Palette.\nThe built-in light variant of a Palette.\nThe built-in Moonfly variant of a Palette.\nThe built-in Nightfly variant of a Palette.\nThe built-in Nord variant of a Palette.\nThe built-in Oxocarbon variant of a Palette.\nA pair of background and text colors.\nA color palette.\nA set of primary colors.\nThe built-in Solarized Dark variant of a Palette.\nThe built-in Solarized Light variant of a Palette.\nA set of secondary colors.\nA set of success colors.\nThe built-in Tokyo Night variant of a Palette.\nThe built-in Tokyo Night Light variant of a Palette.\nThe built-in Tokyo Night Storm variant of a Palette.\nA set of warning colors.\nThe background Color of the Palette.\nThe set of background colors.\nThe base background color.\nThe base primary color.\nThe base secondary color.\nThe base success color.\nThe base warning color.\nThe base danger color.\nThe background color.\nThe danger Color of the Palette.\nThe set of danger colors.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nGenerates an Extended palette from a simple Palette.\nGenerates a set of Primary colors from the base, …\nGenerates a set of Secondary colors from the base and text …\nGenerates a set of Success colors from the base, …\nGenerates a set of Warning colors from the base, …\nGenerates a set of Danger colors from the base, …\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nWhether the palette is dark or not.\nCreates a new Pair from a background Color and some text …\nGenerates a set of Background colors from the base and …\nThe primary Color of the Palette.\nThe set of primary colors.\nThe set of secondary colors.\nA stronger version of the base background color.\nA stronger version of the base primary color.\nA stronger version of the base secondary color.\nA stronger version of the base success color.\nA stronger version of the base warning color.\nA stronger version of the base danger color.\nThe success Color of the Palette.\nThe set of success colors.\nThe text Color of the Palette.\nThe text color.\nThe warning Color of the Palette.\nThe set of warning colors.\nA weaker version of the base background color.\nA weaker version of the base primary color.\nA weaker version of the base secondary color.\nA weaker version of the base success color.\nA weaker version of the base warning color.\nA weaker version of the base danger color.\nA Duration type to represent a span of time, typically …\nA measurement of a monotonically nondecreasing clock. …\nThe maximum duration.\nThe duration of one microsecond.\nThe duration of one millisecond.\nThe duration of one nanosecond.\nThe duration of one second.\nA duration of zero time.\nComputes the absolute difference between self and other.\nPanics\nReturns the total number of whole microseconds contained …\nReturns the total number of whole milliseconds contained …\nReturns the number of milliseconds contained by this …\nReturns the number of milliseconds contained by this …\nReturns the total number of nanoseconds contained by this …\nReturns the number of whole seconds contained by this …\nReturns the number of seconds contained by this Duration …\nReturns the number of seconds contained by this Duration …\nReturns Some(t) where t is the time self + duration if t …\nChecked Duration addition. Computes self + other, …\nChecked Duration division. Computes self / other, …\nReturns the amount of time elapsed from another instant to …\nChecked Duration multiplication. Computes self * other, …\nReturns Some(t) where t is the time self - duration if t …\nChecked Duration subtraction. Computes self - other, …\nCreates a Duration representing the given amount of days.\nDivides Duration by Duration and returns f32.\nDivides Duration by Duration and returns f64.\nDivides Duration by f32.\nDivides Duration by f64.\nReturns the amount of time elapsed from another instant to …\nReturns the amount of time elapsed since this instant.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCreates a new Duration from the specified number of days.\nCreates a new Duration from the specified number of hours.\nCreates a new Duration from the specified number of …\nCreates a new Duration from the specified number of …\nCreates a new Duration from the specified number of …\nCreates a new Duration from the specified number of …\nCreates a new Duration from the specified number of whole …\nCreates a new Duration from the specified number of …\nCreates a new Duration from the specified number of …\nCreates a new Duration from the specified number of weeks.\nCreates a Duration representing the given amount of hours.\nCalls U::from(self).\nCalls U::from(self).\nReturns true if this Duration spans no time.\nCreates a Duration representing the given amount of …\nCreates a Duration representing the given amount of …\nMultiplies Duration by f32.\nMultiplies Duration by f64.\nCreates a new Duration from the specified number of whole …\nReturns an instant corresponding to “now”.\nSaturating Duration addition. Computes self + other, …\nReturns the amount of time elapsed from another instant to …\nSaturating Duration multiplication. Computes self * other, …\nSaturating Duration subtraction. Computes self - other, …\nCreates a Duration representing the given amount of …\nReturns the amount of time elapsed from another instant to …\nReturns the fractional part of this Duration, in whole …\nReturns the fractional part of this Duration, in whole …\nReturns the fractional part of this Duration, in …\nThe checked version of from_secs_f32.\nThe checked version of from_secs_f64.\nA touch interaction.\nA unique identifier representing a finger on a touch …\nA touch interaction was ended.\nA touch interaction was canceled.\nAn on-going touch interaction was moved.\nA touch interaction was started.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nThe identifier of a generic widget.\nA component that displays information and allows …\nReturns the state Tree of the children of the Widget.\nReconciles the Widget with the provided Tree.\nDraws the Widget using the associated Renderer.\nReturns the argument unchanged.\nCalls U::from(self).\nReturns the layout::Node of the Widget.\nReturns the current mouse::Interaction of the Widget.\nCreates a custom Id.\nApplies an Operation to the Widget.\nQuery or update internal widget state.\nReturns the overlay of the Widget, if there is any.\nReturns the Size of the Widget in lengths.\nReturns a Size hint for laying out the Widget.\nReturns the State of the Widget.\nReturns the Tag of the Widget.\nText widgets display information through writing.\nStore internal widget state in a state tree to ensure …\nCreates a unique Id.\nProcesses a runtime Event.\nThe Operation needs to be followed by another Operation.\nThe Operation produced no result.\nA piece of logic that can traverse the widget tree of an …\nThe result of an Operation.\nThe Operation produced some result.\nWraps the Operation in a black box, erasing its returning …\nOperates on a widget that contains other widgets.\nOperates on a custom widget with some state.\nFinishes the Operation and returns its Outcome.\nOperate on widgets that can be focused.\nOperates on a widget that can be focused.\nReturns the argument unchanged.\nCalls U::from(self).\nMaps the output of an Operation using the given function.\nProduces an Operation that applies the given Operation to …\nOperate on widgets that can be scrolled.\nOperates on a widget that can be scrolled.\nOperates on a widget that contains some text.\nOperate on widgets that have text input.\nOperates on a widget that has text input.\nChains the output of an Operation with the provided …\nA summary of the focusable widgets present on a widget …\nThe internal state of a widget that can be focused.\nProduces an Operation that generates a Count and chains it …\nProduces an Operation that searches for the current …\nProduces an Operation that focuses the widget with the …\nFocuses the widget.\nProduces an Operation that searches for the current …\nProduces an Operation that searches for the current …\nThe index of the current focused widget, if any.\nReturns the argument unchanged.\nCalls U::from(self).\nReturns whether the widget is focused or not.\nThe total amount of focusable widgets.\nUnfocuses the widget.\nThe amount of absolute offset in each direction of a …\nA relative offset that points to the bottom-right of a …\nThe amount of relative offset in each direction of a …\nA relative offset that points to the top-left of a …\nThe internal state of a widget that can be scrolled.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nProduces an Operation that scrolls the widget with the …\nScroll the widget by the given AbsoluteOffset along the …\nProduces an Operation that scrolls the widget with the …\nScroll the widget to the given AbsoluteOffset along the …\nProduces an Operation that snaps the widget with the given …\nSnaps the scroll of the widget to the given percentage …\nThe amount of horizontal offset\nThe amount of horizontal offset\nThe amount of vertical offset\nThe amount of vertical offset\nThe internal state of a widget that has text input.\nProduces an Operation that moves the cursor of the widget …\nMoves the cursor of the text input to an arbitrary …\nProduces an Operation that moves the cursor of the widget …\nMoves the cursor of the text input to the end of the input …\nProduces an Operation that moves the cursor of the widget …\nMoves the cursor of the text input to the front of the …\nProduces an Operation that selects all the content of the …\nSelects all the content of the text input.\nThe theme catalog of a Text.\nThe item class of this Catalog.\nThe internal state of a Text widget.\nThe appearance of some text.\nA styling function for a Text.\nA bunch of text.\nSets the alignment::Horizontal of the Text.\nSets the alignment::Vertical of the Text.\nText with the default base color.\nCenters the Text, both horizontally and vertically.\nSets the style class of the Text.\nSets the Color of the Text.\nThe Color of the text.\nSets the Color of the Text, if Some.\nText conveying some negative information, like an error.\nThe default text styling; color is inherited.\nThe default class produced by this Catalog.\nDraws text using the same logic as the Text widget.\nSets the Font of the Text.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nSets the height of the Text boundaries.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nProduces the layout::Node of a Text widget.\nSets the LineHeight of the Text.\nCreate a new fragment of Text with the given contents.\nText conveying some important information, like an action.\nText conveying some secondary information, like a footnote.\nSets the Shaping strategy of the Text.\nSets the size of the Text.\nThe Style of a class with the given status.\nSets the style of the Text.\nText conveying some positive information, like a …\nSets the width of the Text boundaries.\nSets the Wrapping strategy of the Text.\nNo meaningful internal state.\nSome meaningful internal state.\nThe internal State of a widget.\nThe identifier of some widget state.\nA persistent state widget tree.\nThe children of the root widget of the Tree.\nReconciles the current tree with the provided Widget.\nReconciles the children of the tree with the provided list …\nReconciles the children of the tree with the provided list …\nReconciles the current_children with the provided list of …\nDowncasts the State to T and returns a mutable reference …\nDowncasts the State to T and returns a reference to it.\nCreates an empty, stateless Tree with no children.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCreates a new State.\nCreates a new Tree for the provided Widget.\nCreates a Tag for a state of type T.\nThe State of the Tree.\nCreates a Tag for a stateless widget.\nThe tag of the Tree.\nThe window will always be below normal windows.\nThe window will always be on top of normal windows.\nRedraw at the given time.\nThe window is completely centered on the screen.\nThe user has requested for the window to close.\nA window was closed.\nPlatform-specific\nThe platform-specific default position for a new window.\nThe cardinal directions relative to the center of a window.\nPoints to the right edge of a window.\nA window-related event.\nA file has been dropped into the window.\nA file is being hovered over the window.\nA file was hovered, but has exited the window.\nA window was focused.\nThe application takes the whole screen of its current …\nThe application is hidden\nThe id of the window.\nPlatform-specific\nA window level groups windows with respect to their …\nThe mode of a window-based application.\nA window was moved.\nRedraw the next frame.\nThe default behavior.\nPoints to the top edge of a window.\nPoints to the top-right corner of a window.\nPoints to the top-left corner of a window.\nA window was opened.\nThe position of a window in a given screen.\nA request to redraw a window.\nA window redraw was requested.\nA window was resized.\nPoints to the bottom edge of a window.\nPoints to the bottom-right corner of a window.\nPoints to the bottom-left corner of a window.\nThe window is positioned with specific coordinates: (X, Y).\nLike Specific, but the window is positioned with the …\nA window was unfocused.\nThe type of user attention to request.\nNo redraw is needed.\nPoints to the left edge of a window.\nThe application appears in its own window.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nChange the icon of a window.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nTake screenshots of a window.\nConfigure your windows.\nCreates a new unique window Id.\nThe position of the opened window. This is relative to the …\nThe size of the created window. This is its “inner” …\nProduced when the length of the rgba argument isn’t …\nProduced when the number of pixels (rgba.len() / 4) isn’…\nAn error produced when using from_rgba with invalid …\nAn window icon normally used for the titlebar or taskbar.\nReturns the argument unchanged.\nReturns the argument unchanged.\nBuilds an Icon from its RGBA pixels in the sRGB color …\nCalls U::from(self).\nCalls U::from(self).\nReturns the raw data of the Icon.\nThe length of the provided RGBA data.\nThe provided height.\nThe amount of pixels of the provided RGBA data.\nThe provided width.\nThe product of width and height.\nErrors that can occur when cropping a Screenshot.\nThe cropped region’s size is out of bounds.\nData of a screenshot, captured with window::screenshot().\nThe cropped region’s size is zero.\nThe bytes of the Screenshot.\nCrops a Screenshot to the provided region. This will …\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCreates a new Screenshot.\nThe scale factor of the Screenshot. This can be useful …\nThe size of the Screenshot in physical pixels.\nThe platform specific window settings of an application.\nThe window settings of an application.\nSets the application id of the window.\nWhether the window should have a border, a title bar, etc. …\nWhether the window will close when the user requests it, …\nReturns the argument unchanged.\nReturns the argument unchanged.\nWhether the window should start fullscreen.\nThe icon of the window.\nCalls U::from(self).\nCalls U::from(self).\nThe window Level.\nThe maximum size of the window.\nWhether the window should start maximized.\nThe minimum size of the window.\nWhether bypass the window manager mapping for x11 windows\nPlatform specific settings.\nThe initial position of the window.\nWhether the window should be resizable or not.\nThe initial logical dimensions of the window.\nWhether the window should be transparent.\nWhether the window should be visible or not.") \ No newline at end of file +searchState.loadedDescShard("iced_core", 0, "The core library of Iced.\nThe black color.\nThe background of some element.\nA color in the sRGB color space.\nA solid color.\nScale as big as it can be without needing to crop or hide …\nThe strategy used to fit the contents of a widget to its …\nScale the image to cover all of the bounding box, cropping …\nDegrees\nA generic Widget.\nDistort the image so the widget is 100% covered without …\nFill all the remaining space\nFill a portion of the remaining space relative to other …\nFill a fixed amount of space\nThe element will float while rotating. The layout will be …\nLinearly interpolate between several colors.\nA Transformation that preserves whatever is transformed.\nA rectangle starting at Point::ORIGIN with infinite width …\nA Size with infinite width and height.\nThe strategy used to fill space in a specific dimension.\nDon’t resize or scale the image at all.\nThe origin (i.e. a Point at (0, 0)).\nThe amount of radians in half a circle.\nAn amount of logical pixels.\nA 2D point.\nThe range of degrees of a circle.\nThe range of radians of a circle.\nRadians\nAn axis-aligned rectangle.\nThe strategy used to rotate the content.\nScale the image down if it’s too big for the space, but …\nThe settings of an iced program.\nA shadow.\nA connection to the state of a shell.\nFill the least amount of space\nAn amount of space in 2 dimensions.\nA SmolStr is a string type that has the following …\nThe element will be solid while rotating. The layout will …\nA color with no opacity.\nA 2D transformation matrix.\nA Size with a width and height of 1 unit.\nA 2D vector.\nThe white color.\nZero pixels.\nA Size with zero width and height.\nThe zero Vector.\nTransparency, 0.0 - 1.0\nAlign and position widgets.\nAnimate your applications.\nIf set to true, the renderer will try to perform …\nApplies the Rotation to the given Size, returning the …\nReturns whether the widgets of the current application …\nReturns the area of the Rectangle.\nReturns a reference to the Widget of the Element,\nReturns a mutable reference to the Widget of the Element,\nBlue component, 0.0 - 1.0\nThe blur radius of the shadow.\nDraw lines around containers.\nMarks the current event as captured. Prevents “event …\nReturns the Point at the center of the Rectangle.\nReturns the X coordinate of the Point at the center of the …\nReturns the Y coordinate of the Point at the center of the …\nAccess the clipboard.\nThe color of the shadow.\nCreates a Color with shorter and cleaner syntax.\nReturns true if the given Point is contained in the …\nThe default Font to be used.\nThe text size that will be used by default.\nReturns the angle of the Rotation in Degrees.\nComputes the distance to another Point.\nReturns the minimum distance from the given Point to any …\nAdapts the Length so it can contain the other Length and …\nHandle events of a user interface.\nReturns the current event::Status of the Shell.\nExpands the Rectangle a given amount.\nExpands this Size by the given amount.\nMarks the Element as to-be-explained.\nReturns the fill factor of the Length.\nAttempt to apply the given fit for a content size within …\nReturns the “fluid” variant of the Length.\nLoad and use fonts.\nThe fonts to load on boot.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCreates a Color from its linear RGBA components.\nCreates a Color from its RGB components.\nCreates a Color from its RGB8 components.\nCreates a Color from its RGBA components.\nCreates a Color from its RGB8 components and an alpha …\nGreen component, 0.0 - 1.0\nColors that transition progressively.\nHeight of the rectangle.\nThe height.\nThe identifier of the application.\nLoad and draw raster graphics.\nListen to input method events.\nReturns the current InputMethod strategy.\nReturns the current InputMethod strategy.\nComputes the intersection with the given Rectangle.\nReturns whether the Rectangle intersects with the given …\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nConverts the Color into its linear values.\nConverts the Color into its RGBA8 equivalent.\nInvalidates the current application layout.\nInvalidates the current application widgets.\nReturns the inverted Color.\nInverts the Color in-place.\nReturns true if the Shell contains no published messages\nReturns whether the current event has been captured.\nReturns true iff the Length is either Length::Fill or\nReturns whether the current layout is invalid or not.\nReturns true if the current Rectangle is completely within …\nListen to keyboard events.\nPosition your widgets properly.\nApplies a transformation to the produced message of the …\nReturns the maximum of each component of this size and …\nMerges the current Shell with another one by applying the …\nReturns the minimum of each component of this size and …\nHandle mouse events.\nA function that can never be called.\nCreates a new Element containing the given Widget.\nCreates a new Point with the given coordinates.\nCreates a new Rectangle with its top-left corner in the …\nCreates a new Shell with the provided buffer of messages.\nCreates a new Size with the given width and height.\nCreates a new Vector with the given components.\nConstructs inline variant of SmolStr.\nConstructs a SmolStr from a statically allocated string.\nThe offset of the shadow.\nCreates an orthographic projection.\nDisplay interactive elements on top of other widgets.\nSpace stuff around the perimeter.\nParses a Color from a hex string.\nReturns the position of the top left corner of the …\nPublish the given Message for an application to process it.\nRed component, 0.0 - 1.0\nReturns the angle of the Rotation in Radians.\nReturns a mutable reference to the angle of the Rotation …\nReturns the request a redraw should happen, if any.\nWrite your own renderer.\nReplaces the redraw request of the Shell; without conflict …\nRequests the current InputMethod strategy.\nRequests a new frame to be drawn as soon as possible.\nRequests a new frame to be drawn at the given …\nTriggers the given function if the layout is invalid, …\nRotates the Rectangle and returns the smallest Rectangle …\nRotates the given Size and returns the minimum Size …\nCreates a uniform scaling transformation.\nScales the alpha channel of the Background by the given …\nScales the alpha channel of the Color by the given factor.\nReturns the scale factor of the Transformation.\nShrinks the Rectangle a given amount.\nReturns the Size of the Rectangle.\nSnaps the Rectangle to unsigned integer coordinates.\nLoad and draw vector graphics.\nDraw and interact with text.\nUse the built-in theme and styles.\nKeep track of time, both in native and web platforms!\nCalculates the line in which the angle intercepts the …\nBuild touch events.\nCreates a translate transformation.\nReturns the translation of the Transformation.\nComputes the union with the given Rectangle.\nCreate custom widgets and operate on them.\nWidth of the rectangle.\nThe width.\nBuild window-based GUI applications.\nCreates a new square Rectangle with the center at the …\nCreates a new Rectangle with its top-left corner at the …\nCreates a new axis-aligned Rectangle from the given …\nThe X coordinate.\nX coordinate of the top-left corner.\nThe X component of the Vector\nThe Y coordinate.\nY coordinate of the top-left corner.\nThe Y component of the Vector\nAlignment on the axis of a container.\nAlign bottom\nAlign at the center of the axis.\nHorizontally centered\nVertically centered\nAlign at the end of the axis.\nThe horizontal Alignment of some resource.\nAlign left\nAlign right\nAlign at the start of the axis.\nAlign top\nThe vertical Alignment of some resource.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nThe animation of some particular state.\nDefines a float representation for arbitrary types\nA type implementing Interpolable can be used with …\nMakes the Animation automatically reverse when repeating.\nSets a delay for the Animation.\nSets the duration of the Animation to the given value.\nSets the Easing function of the Animation.\nReturns the argument unchanged.\nReturns the argument unchanged.\nTransitions the Animation from its current state to the …\nTransitions the Animation from its current state to the …\nProjects the Animation into an interpolated value at the …\nProjects the Animation into an interpolated value at the …\nCalls U::from(self).\nCalls U::from(self).\nReturns true if the Animation is currently in progress.\nCreates a new Animation with the given initial state.\nSets the duration of the Animation to 200ms.\nReturns the remaining Duration of the Animation.\nMakes the Animation repeat a given amount of times.\nMakes the Animation repeat forever.\nSets the duration of the Animation to 400ms.\nRetuns the current state of the Animation.\nSets the duration of the Animation to 100ms.\nSets the duration of the Animation to 500ms.\nA border.\nThe border radii for the corners of a graphics primitive …\nCreates a new Radius with the given value as bottom left …\nSets the bottom left and bottom right values of the Radius.\nCreates a new Radius with the given bottom left value.\nSets the bottom left value of the Radius.\nBottom left radius\nCreates a new Radius with the given bottom right value.\nSets the bottom right value of the Radius.\nBottom right radius\nCreates a new Border with the given Color.\nSets the Color of the Border.\nThe color of the border.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCreates a new Radius with the given value as top left and …\nSets the top left and bottom left values of the Radius.\nCreates a new Radius with the same value for each corner.\nCreates a new Radius with the same value for each corner.\nThe Radius of the border.\nCreates a new Radius with the given value as top right and …\nSets the top right and bottom right values of the Radius.\nCreates a new Border with the given Radius.\nSets the Radius of the Border.\nCreates a new Radius with the given value as top left and …\nSets the top left and top right values of the Radius.\nCreates a new Radius with the given top left value.\nSets the top left value of the Radius.\nTop left radius\nCreates a new Radius with the given top right value.\nSets the top right value of the Radius.\nTop right radius\nCreates a new Border with the given width.\nSets the width of the Border.\nThe width of the border.\nA buffer for short-term storage and transfer within and …\nThe kind of Clipboard.\nA null implementation of the Clipboard trait.\nThe primary clipboard.\nThe standard clipboard.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nReads the current content of the Clipboard as text.\nWrites the given text contents to the Clipboard.\nThe Event was handled and processed by a widget.\nA user interface event.\nThe Event was NOT handled by any widget.\nAn input method event\nA keyboard event\nA mouse event\nThe status of an Event after being processed.\nA touch event\nA window event\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nMerges two Status into one.\nGlyphs in cursive fonts generally use a more informal …\nA non-monospaced sans-serif font with normal Weight.\nA font family.\nFantasy fonts are primarily decorative or expressive fonts …\nA font.\nA monospaced font with normal Weight.\nThe sole criterion of a monospace font is that all glyphs …\nThe name of a font family of choice.\nGlyphs in sans-serif fonts, as the term is used in CSS, …\nSerif fonts represent the formal text style for a script.\nThe width of some text.\nThe style of some text.\nThe weight of some text.\nThe Family of the Font.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nThe Stretch of the Font.\nThe Style of the Font.\nThe Weight of the Font.\nCreates a non-monospaced Font with the given Family::Name …\nA point along the gradient vector where the specified color…\nA fill which transitions colors progressively along a …\nA linear gradient.\nA linear gradient interpolates colors along a direction at …\nAdds a new ColorStop, defined by an offset and a color, to …\nAdds multiple ColorStops to the gradient.\nHow the Gradient is angled within its bounds.\nThe color of the gradient at the specified offset.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCreates a new Linear gradient with the given angle in …\nOffset along the gradient vector.\nScales the alpha channel of the Gradient by the given …\nScales the alpha channel of the Linear gradient by the …\nColorStops along the linear gradient path.\nA cheaply cloneable and sliceable chunk of contiguous …\nA handle pointing to some encoded image bytes in-memory.\nImage filtering strategy.\nA handle of some image data.\nThe image Handle to be displayed. Iced exposes its own …\nThe unique identifier of some Handle data.\nA raster image that can be drawn.\nBilinear interpolation.\nNearest neighbor.\nA file handle. The image data will be read from the file …\nA Renderer that can render raster graphics.\nA handle pointing to decoded image pixels in RGBA format.\nClears the buffer, removing all data.\nCreates Bytes instance from slice, by copying it.\nDraws an Image inside the provided bounds.\nSets the filter method of the Image.\nThe filter method of the image.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCreates an image Handle containing the encoded image data …\nCreate Bytes with a buffer whose lifetime is controlled …\nCreates an image Handle pointing to the image of the given …\nCreates an image Handle containing the decoded image …\nCreates a new Bytes from a static slice.\nThe handle of the image.\nReturns the unique identifier of the Handle.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns true if the Bytes has a length of 0.\nReturns true if this is the only reference to the data and …\nReturns the number of bytes contained in this Bytes.\nReturns the dimensions of an image for the given Handle.\nCreates a new empty Bytes.\nCreates a new Image with the given handle.\nSets the opacity of the Image.\nThe opacity of the image.\nSets the rotation of the Image.\nThe rotation to be applied to the image; on its center.\nReturns a slice of self for the provided range.\nReturns a slice of self that is equivalent to the given …\nSets whether the Image should be snapped to the pixel grid.\nIf set to true, the image will be snapped to the pixel …\nSplits the bytes into two at the given index.\nSplits the bytes into two at the given index.\nShortens the buffer, keeping the first len bytes and …\nTry to convert self into BytesMut.\nThe height of the image.\nThe id of this handle.\nThe pixels.\nThe width of the image.\nInput methods are allowed, but not open yet.\nNotifies when the IME was disabled.\nNotifies when text should be inserted into the editor …\nNo input method is allowed.\nDescribes input method events.\nThe input method strategy of a widget.\nNo input method strategy has been specified.\nNo special hints for the IME (default).\nInput method is open.\nNotifies when the IME was opened.\nThe pre-edit of an InputMethod.\nNotifies when a new composing text should be set at the …\nThe purpose of an InputMethod.\nThe IME is used for secure input (e.g. passwords).\nThe IME is used to input into a terminal.\nBorrows the contents of a Preedit.\nThe current content.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns true if the InputMethod is open.\nMerges two InputMethod strategies, prioritizing the first …\nCreates a new empty Preedit.\nThe selected range of the content.\nTurns an InputMethod into its owned version.\nTurns a Preedit into its owned version.\nThe position at which the input method dialog should be …\nThe preedit to overlay on top of the input method dialog, …\nThe Purpose of the input method.\nThe “alt” key.\nThe “command” key.\nThe “control” key.\nA keyboard event.\nA keyboard key was pressed.\nA keyboard key was released.\nThe “windows” key on Windows, “command” key on …\nThe left side of the keyboard.\nThe location of a key on the keyboard.\nThe current state of the keyboard modifiers.\nThe keyboard modifiers have changed.\nThe numpad of the keyboard.\nThe right side of the keyboard.\nThe “shift” key.\nThe standard group of keys on the keyboard.\nGet a flags value with all known bits set.\nReturns true if the ALT key is pressed in the Modifiers.\nThe bitwise and (&) of the bits in two flags values.\nThe bitwise and (&) of the bits in two flags values.\nThe bitwise or (|) of the bits in two flags values.\nThe bitwise or (|) of the bits in two flags values.\nGet the underlying bits value.\nThe bitwise exclusive-or (^) of the bits in two flags …\nThe bitwise exclusive-or (^) of the bits in two flags …\nReturns true if a “command key” is pressed in the …\nThe bitwise negation (!) of the bits in a flags value, …\nWhether all set bits in a source flags value are also set …\nReturns true if the CTRL key is pressed in the Modifiers.\nThe intersection of a source flags value with the …\nGet a flags value with all bits unset.\nThe bitwise or (|) of the bits in each flags value.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nConvert from a bits value.\nConvert from a bits value exactly.\nConvert from a bits value, unsetting any unknown bits.\nThe bitwise or (|) of the bits in each flags value.\nGet a flags value with the bits of a flag with the given …\nThe bitwise or (|) of the bits in two flags values.\nThe bitwise and (&) of the bits in two flags values.\nWhether any set bits in a source flags value are also set …\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nWhether all known bits in this flags value are set.\nWhether all bits in this flags value are unset.\nYield a set of contained flags values.\nYield a set of contained named flags values.\nReturns true if the “jump key” is pressed in the …\nIdentify keyboard keys.\nReturns true if the LOGO key is pressed in the Modifiers.\nReturns true if the “command key” is pressed on a …\nThe bitwise negation (!) of the bits in a flags value, …\nThe intersection of a source flags value with the …\nCall insert when value is true or remove when value is …\nReturns true if the SHIFT key is pressed in the Modifiers.\nThe intersection of a source flags value with the …\nThe intersection of a source flags value with the …\nThe bitwise exclusive-or (^) of the bits in two flags …\nThe bitwise exclusive-or (^) of the bits in two flags …\nThe bitwise or (|) of the bits in two flags values.\nThe key pressed.\nThe key released.\nThe location of the key.\nThe location of the key.\nThe key pressed with all keyboard modifiers applied, …\nThe key released with all keyboard modifiers applied, …\nThe state of the modifier keys.\nThe state of the modifier keys.\nThe physical key pressed.\nThe physical key released.\nThe text produced by the key press, if any.\nSwitch the input mode on an external AVR (audio/video …\nToggle the power on an external AVR (audio/video …\nThe Accept (Commit, OK) key. Accept current option or …\nRedo or repeat an action.\nFound on Sun’s USB keyboard.\nInitiate the multi-candidate mode.\nThe Alt (Alternative) key.\nThe Alternate Graphics (AltGr or AltGraph) key.\nAlt, Option, or ⌥.\nAlt, Option, or ⌥. This is labeled AltGr on many …\nAn Android “scancode”.\nThe Application switch key, which provides a list of …\nNavigate or traverse downward. (KEYCODE_DPAD_DOWN)\n↓\nNavigate or traverse leftward. (KEYCODE_DPAD_LEFT)\n←\nNavigate or traverse rightward. (KEYCODE_DPAD_RIGHT)\n→\nNavigate or traverse upward. (KEYCODE_DPAD_UP)\n↑\nThe Attention (Attn) key.\nAdjust audio balance leftward. (VK_AUDIO_BALANCE_LEFT)\nAdjust audio balance rightward. (VK_AUDIO_BALANCE_RIGHT)\nDecrease audio bass boost or cycle down through bass boost …\nToggle bass boost on/off. (APPCOMMAND_BASS_BOOST)\nIncrease audio bass boost or cycle up through bass boost …\nAdjust audio fader towards front. (VK_FADER_FRONT)\nAdjust audio fader towards rear. (VK_FADER_REAR)\nAdvance surround audio mode to next available mode. (…\nDecrease treble. (APPCOMMAND_TREBLE_DOWN)\nIncrease treble. (APPCOMMAND_TREBLE_UP)\nDecrease audio volume. (APPCOMMAND_VOLUME_DOWN, …\nToggle between muted state and prior volume level. (…\nIncrease audio volume. (APPCOMMAND_VOLUME_UP, …\n` on a US keyboard. This is also called a backtick or …\nUsed for both the US \\ (on the 101-key layout) and also …\nUsed to remove the character to the left of the cursor. …\nBackspace or ⌫. Labeled Delete on Apple keyboards.\n[ on a US keyboard.\n] on a US keyboard.\nThe Brightness Down key. Typically controls the display …\nThe Brightness Up key. Typically controls the display …\nNavigate to previous content or page in current history. (…\nSome laptops place this key to the left of the ↑ key.\nOpen the list of browser favorites. (…\nNavigate to next content or page in current history. (…\nSome laptops place this key to the right of the ↑ key.\nGo to the user’s preferred home page. (…\nThe “home” button on Android.\nRefresh the current page or content. (…\nCall up the user’s preferred search page. (…\nStop loading the current page or content. (…\nThe Call key. (KEYCODE_CALL)\nThe Camera key. (KEYCODE_CAMERA)\nThe Camera focus key. (KEYCODE_FOCUS)\nThe Caps Lock (Capital) key.\nCapsLock or ⇪\nSelect next (numerically or logically) lower channel. (…\nSelect next (numerically or logically) higher channel. (…\nA key string that corresponds to the character typed by …\nRemove the currently selected input.\nClose the current document or message (Note: This …\nToggle the display of Closed Captions. (VK_CC, …\nCode representing the location of a physical key.\nA known key code\nInitiate the Code Input mode to allow characters to be …\nGeneral purpose color-coded media function key, as index 0 …\nGeneral purpose color-coded media function key, as index 1 …\nGeneral purpose color-coded media function key, as index 2 …\nGeneral purpose color-coded media function key, as index 3 …\nGeneral purpose color-coded media function key, as index 4 …\nGeneral purpose color-coded media function key, as index 5 …\n, on a US keyboard.\nThe Compose key, also known as “Multi_key” on the X …\nShow the application’s context menu. This key is …\nThe application context menu key, which is typically found …\nThe Control or Ctrl key.\nControl or ⌃\nControl or ⌃\nConvert the current input method sequence.\nJapanese: 変 (henkan)\nCopy the current selection. (APPCOMMAND_COPY)\nFound on Sun’s USB keyboard.\nThe Cursor Select key.\nCut the current selection. (APPCOMMAND_CUT)\nFound on Sun’s USB keyboard.\nSelect Digital Video Rrecorder. (KEYCODE_DVR)\nUsed to delete the character to the right of the cursor. …\n⌦. The forward delete key. Note that on Apple keyboards, …\n0 on a US keyboard.\n1 on a US keyboard.\n2 on a US keyboard.\n3 on a US keyboard.\n4 on a US keyboard.\n5 on a US keyboard.\n6 on a US keyboard.\n7 on a US keyboard.\n8 on a US keyboard.\n9 on a US keyboard.\nAdjust brightness of device, by toggling between or …\nSwap video sources. (VK_DISPLAY_SWAP)\nThe Eisu key. This key may close the IME, but its purpose …\nToggle removable media to eject (open) and insert (close) …\nEject or ⏏. This key is placed in the function section …\nThe End key, used with keyboard entry to go to the end of …\nPage Down, End, or ↘\nThe End Call key. (KEYCODE_ENDCALL)\nThe Enter or key. Used to activate current selection …\nEnter or ↵. Labeled Return on Apple keyboards.\n= on a US keyboard.\nThe Erase to End of Field key. This key deletes all …\nThe Esc key. This key was originally used to initiate an …\nEsc or ⎋\nThe Extend Selection (Exsel) key.\nExit the current application. (VK_EXIT)\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key.\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nGeneral-purpose function key. Usually found at the top of …\nClear program or content stored as favorite 0. (…\nClear program or content stored as favorite 1. (…\nClear program or content stored as favorite 2. (…\nClear program or content stored as favorite 3. (…\nSelect (recall) program or content stored as favorite 0. (…\nSelect (recall) program or content stored as favorite 1. (…\nSelect (recall) program or content stored as favorite 2. (…\nSelect (recall) program or content stored as favorite 3. (…\nStore current program or content as favorite 0. (…\nStore current program or content as favorite 1. (…\nStore current program or content as favorite 2. (…\nStore current program or content as favorite 3. (…\nThe Final Mode Final key used on some Asian keyboards, to …\nOpen the Find dialog. (APPCOMMAND_FIND)\nFound on Sun’s USB keyboard.\nThe Function switch Fn key. Activating this key …\nFn This is typically a hardware key that does not generate …\nThe Function-Lock (FnLock or F-Lock) key. Activating this …\nFLock or FnLock. Function Lock key. Found on the Microsoft …\nThe Back key. (KEYCODE_BACK)\nThe Home key, which goes to the phone’s main screen. (…\nSwitch to the first character group. (ISO/IEC 9995)\nSwitch to the last character group. (ISO/IEC 9995)\nSwitch to the next character group. (ISO/IEC 9995)\nSwitch to the previous character group. (ISO/IEC 9995)\nToggle display of program or content guide. (VK_GUIDE, …\nIf guide is active and displayed, then display next …\nIf guide is active and displayed, then display previous …\nToggle between Hangul and English modes.\nThe (Half-Width) Characters key.\nThe Headset Hook key. (KEYCODE_HEADSETHOOK)\nOpen a help dialog or toggle display of help information. (…\nHelp. Not present on standard PC keyboards.\nThe Hibernate key. This key saves the current state of the …\nThe Hiragana (Japanese Kana characters) key.\nUse for dedicated ひらがな key found on some Japanese …\nThe Hiragana/Katakana toggle key. (…\nThe Home key, used with keyboard entry, to go to start of …\nHome or ↖\nToggle display of information about currently selected …\nToggle between text modes for insertion or overtyping. (…\nInsert or Ins. Not present on Apple keyboards.\nToggle instant replay. (VK_INSTANT_REPLAY)\nLocated between the left Shift and Z keys. Labeled \\ on a …\nLocated between the / and right Shift keys. Labeled \\ (ro) …\nLocated between the = and Backspace keys. Labeled ¥ (yen) …\nThe Kana Mode (Kana Lock) key. This key is used to enter …\nJapanese: カタカナ/ひらがな/ローマ字 …\nThe Kanji (Japanese name for ideographic characters of …\nThe Katakana (Japanese Kana characters) key.\nUse for dedicated カタカナ key found on some Japanese …\nA key on the keyboard.\nThe 11 key found on media numpads that have buttons from 1 …\nThe 12 key found on media numpads that have buttons from 1 …\na on a US keyboard. Labeled q on an AZERTY (e.g., French) …\nb on a US keyboard.\nc on a US keyboard.\nd on a US keyboard.\ne on a US keyboard.\nf on a US keyboard.\ng on a US keyboard.\nh on a US keyboard.\ni on a US keyboard.\nj on a US keyboard.\nk on a US keyboard.\nl on a US keyboard.\nm on a US keyboard.\nn on a US keyboard.\no on a US keyboard.\np on a US keyboard.\nq on a US keyboard. Labeled a on an AZERTY (e.g., French) …\nr on a US keyboard.\ns on a US keyboard.\nt on a US keyboard.\nu on a US keyboard.\nv on a US keyboard.\nw on a US keyboard. Labeled z on an AZERTY (e.g., French) …\nx on a US keyboard.\ny on a US keyboard. Labeled z on a QWERTZ (e.g., German) …\nz on a US keyboard. Labeled w on an AZERTY (e.g., French) …\nKorean: HangulMode 한/영 (han/yeong)\nKorean: Hanja 한 (hanja)\nJapanese (word-processing keyboard): Katakana\nJapanese (word-processing keyboard): Hiragana\nJapanese (word-processing keyboard): Zenkaku/Hankaku\nSometimes labelled My Computer on the keyboard\nSometimes labelled Calculator on the keyboard\nThe first generic “LaunchApplication” key. This is …\nThe second generic “LaunchApplication” key. This is …\nThe “Calendar” key. (KEYCODE_CALENDAR)\nThe “Contacts” key. (KEYCODE_CONTACTS)\nThe “Mail” key. (APPCOMMAND_LAUNCH_MAIL)\nThe “Media Player” key. (APPCOMMAND_LAUNCH_MEDIA_SELECT…\nLaunch linked content, if available and appropriate. (…\nList the current program. (VK_LIST)\nToggle display listing of currently available live content …\nLock or unlock current content or program. (VK_LOCK)\nA macOS “scancode”.\nOpen an editor to forward the current message. (…\nOpen an editor to reply to the current message. (…\nSend the current message. (APPCOMMAND_SEND_MAIL)\nToggle between manner mode state: silent, vibrate, ring, …\nShow a list of media applications: audio/video players and …\nAudio track key. (KEYCODE_MEDIA_AUDIO_TRACK)\nClose the current media, for example to close a CD or DVD …\nInitiate or continue forward playback at faster than …\nSelect previously selected channel or media. (VK_LAST, …\nPause the currently playing media. (APPCOMMAND_MEDIA_PAUSE…\nInitiate or continue media playback at normal speed, if …\nToggle media between play and pause states. (…\nInitiate or resume recording of currently selected media. (…\nInitiate or continue reverse playback at faster than …\nSkip backward to next content or program. (…\nSkip forward to next content or program. (VK_SKIP, …\nStep backward to next content or program. (…\nStep forward to next content or program. (…\nStop media playing, pausing, forwarding, rewinding, or …\nMedia top menu. (KEYCODE_MEDIA_TOP_MENU)\nSeek to next media or program track. (…\nSeek to previous media or program track. (…\nToggle the microphone on/off. (APPCOMMAND_MIC_ON_OFF_TOGGLE…\nDecrease microphone volume. (…\nMute the microphone. (APPCOMMAND_MICROPHONE_VOLUME_MUTE, …\nIncrease microphone volume. (…\n- on a US keyboard.\nToggle between or cycle through input modes of IMEs.\nA named key.\nA key with an established name.\nContains the platform-native physical key identifier.\nNavigate in. (KEYCODE_NAVIGATE_IN)\nNavigate to next key. (KEYCODE_NAVIGATE_NEXT)\nNavigate out. (KEYCODE_NAVIGATE_OUT)\nNavigate to previous key. (KEYCODE_NAVIGATE_PREVIOUS)\nOpen a new document or message. (APPCOMMAND_NEW)\nCycle to next favorite channel (in favorites list). (…\nCycle to next user profile (if there are multiple user …\nAccept current input method sequence without conversion in …\nJapanese: 無変換 (muhenkan)\nThe Notification key. (KEYCODE_NOTIFICATION)\nThe NumLock or Number Lock key. Used to toggle numpad mode …\nOn the Mac, this is used for the numpad Clear key.\n0 Ins on a keyboard. 0 on a phone or remote control\n1 End on a keyboard. 1 or 1 QZ on a phone or remote control\n2 ↓ on a keyboard. 2 ABC on a phone or remote control\n3 PgDn on a keyboard. 3 DEF on a phone or remote control\n4 ← on a keyboard. 4 GHI on a phone or remote control\n5 on a keyboard. 5 JKL on a phone or remote control\n6 → on a keyboard. 6 MNO on a phone or remote control\n7 Home on a keyboard. 7 PQRS or 7 PRS on a phone or remote …\n8 ↑ on a keyboard. 8 TUV on a phone or remote control\n9 PgUp on a keyboard. 9 WXYZ or 9 WXY on a phone or remote …\n+\nFound on the Microsoft Natural Keyboard.\nC or A (All Clear). Also for use with numpads that have a …\nC (Clear Entry)\n, (thousands separator). For locales where the thousands …\n. Del. For locales where the decimal separator is “,” …\n/\n=\n# on a phone or remote control device. This key is …\nM Add current entry to the value stored in memory.\nM Clear the value stored in memory.\nM Replace the current entry with the value stored in …\nM Replace the value stored in memory with the current …\nM Subtract current entry from the value stored in memory.\n on a keyboard. For use with numpads that provide …\n( Found on the Microsoft Natural Keyboard.\n) Found on the Microsoft Natural Keyboard.\n* on a phone or remote control device.\n-\nAccess on-demand content or programs. (VK_ON_DEMAND)\nOpen an existing document or message. (APPCOMMAND_OPEN)\nFound on Sun’s USB keyboard.\nScroll down or display next page of content.\nPage Down, PgDn, or ⇟\nScroll up or display previous page of content.\nPage Up, PgUp, or ⇞\nPairing key to pair devices. (KEYCODE_PAIRING)\nThe Paste key. (APPCOMMAND_PASTE)\nFound on Sun’s USB keyboard.\nPause the current state or application (as appropriate).\nPause Break\n. on a US keyboard.\nRepresents the location of a physical key.\nMove picture-in-picture window down. (VK_PINP_DOWN)\nMove picture-in-picture window. (VK_PINP_MOVE)\nToggle display of picture-in-picture window. (…\nMove picture-in-picture window up. (VK_PINP_UP)\nPlay or resume the current state or application (as …\nDecrease media playback speed. (VK_PLAY_SPEED_DOWN)\nReset playback to normal speed. (VK_PLAY_SPEED_RESET)\nIncrease media playback speed. (VK_PLAY_SPEED_UP)\nToggle power state. (KEYCODE_POWER) Note: Note: Some …\nThis key is placed in the function section on some Apple …\nThe PowerOff key. Sometime called PowerDown.\nPrint the current document or message. (APPCOMMAND_PRINT)\nInitiate print-screen function.\nPrtScr SysRq or Print Screen\nThe properties (Props) key.\nFound on Sun’s USB keyboard.\n’ on a US keyboard.\nToggle random media or content shuffle mode. (…\nNot a physical key, but this key code is sent when the …\nToggle or cycle between media recording speeds. (…\nRedo the last action. (APPCOMMAND_REDO)\nToggle RF (radio frequency) input bypass mode (pass RF …\nThe Roman characters function key.\nSwitch the input mode on an external STB (set top box). (…\nToggle the power on an external STB (set top box). (…\nSave the current document or message. (APPCOMMAND_SAVE)\nToggle scan channels mode. (VK_SCAN_CHANNELS_TOGGLE)\nAdvance display screen mode to next available mode. (…\nToggle between scrolling and cursor movement modes.\nScroll Lock\nFound on Sun’s USB keyboard.\n; on a US keyboard.\nToggle display of device settings screen. (VK_SETTINGS, …\nUsed to enable shift modifier function for interpreting …\nShift or ⇧\nShift or ⇧\n/ on a US keyboard.\nGeneral purpose virtual function key, as index 1.\nGeneral purpose virtual function key, as index 2.\nGeneral purpose virtual function key, as index 3.\nGeneral purpose virtual function key, as index 4.\nUsed in text to insert a space between words. Usually …\n (space)\nShow correction list when a word is incorrectly …\nToggle between dictation mode and command/control mode. (…\nSpellcheck the current document or selection. (…\nToggle split screen mode. (VK_SPLIT_SCREEN_TOGGLE)\nThe Standby key. This key turns off the display and places …\nToggle display of subtitles, if available. (VK_SUBTITLE)\nUsed to enable “super” modifier function for …\nThe Windows, ⌘, Command, or other OS symbol key.\nThe Windows, ⌘, Command, or other OS symbol key.\nThe Symbol modifier key (used on some virtual keyboards).\nSwitch to viewing TV. (KEYCODE_TV)\nTV 3D Mode. (KEYCODE_3D_MODE)\nToggle between antenna and cable input. (…\nAudio description. (KEYCODE_TV_AUDIO_DESCRIPTION)\nAudio description mixing volume down. (…\nAudio description mixing volume up. (…\nContents menu. (KEYCODE_TV_CONTENTS_MENU)\nContents menu. (KEYCODE_TV_DATA_SERVICE)\nSwitch the input mode on an external TV. (KEYCODE_TV_INPUT)\nSwitch to component input #1. (KEYCODE_TV_INPUT_COMPONENT_1…\nSwitch to component input #2. (KEYCODE_TV_INPUT_COMPONENT_2…\nSwitch to composite input #1. (KEYCODE_TV_INPUT_COMPOSITE_1…\nSwitch to composite input #2. (KEYCODE_TV_INPUT_COMPOSITE_2…\nSwitch to HDMI input #1. (KEYCODE_TV_INPUT_HDMI_1)\nSwitch to HDMI input #2. (KEYCODE_TV_INPUT_HDMI_2)\nSwitch to HDMI input #3. (KEYCODE_TV_INPUT_HDMI_3)\nSwitch to HDMI input #4. (KEYCODE_TV_INPUT_HDMI_4)\nSwitch to VGA input #1. (KEYCODE_TV_INPUT_VGA_1)\nMedia context menu. (KEYCODE_TV_MEDIA_CONTEXT_MENU)\nToggle network. (KEYCODE_TV_NETWORK)\nNumber entry. (KEYCODE_TV_NUMBER_ENTRY)\nToggle the power on an external TV. (KEYCODE_TV_POWER)\nRadio. (KEYCODE_TV_RADIO_SERVICE)\nSatellite. (KEYCODE_TV_SATELLITE)\nBroadcast Satellite. (KEYCODE_TV_SATELLITE_BS)\nCommunication Satellite. (KEYCODE_TV_SATELLITE_CS)\nToggle between available satellites. (…\nAnalog Terrestrial. (KEYCODE_TV_TERRESTRIAL_ANALOG)\nDigital Terrestrial. (KEYCODE_TV_TERRESTRIAL_DIGITAL)\nTimer programming. (KEYCODE_TV_TIMER_PROGRAMMING)\nThe Horizontal Tabulation Tab key.\nTab or ⇥\nToggle display of teletext, if available (VK_TELETEXT, …\nUndo the last action. (APPCOMMAND_UNDO)\nFound on Sun’s USB keyboard.\nAn unidentified key.\nAn unidentified code.\nThis variant is used when the key cannot be translated to …\nAdvance video mode to next available mode. (…\nThe WakeUp key. (KEYCODE_WAKEUP)\nA Windows “scancode”.\nCause device to identify itself in some manner, e.g., …\nAn XKB “keycode”.\nThe Zenkaku (Full-Width) Characters key.\nThe Zenkaku/Hankaku (full-width/half-width) toggle key. (…\nThe ZoomIn key. (KEYCODE_ZOOM_IN)\nThe ZoomOut key. (KEYCODE_ZOOM_OUT)\nToggle between full-screen and scaled content, or alter …\nConvert Key::Character(SmolStr) to Key::Character(&str) so …\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nThe bounds of a Node and its children, using absolute …\nA set of size constraints for layouting.\nNo limits\nThe bounds of an element and its children.\nAligns the Node in the given space.\nMutable reference version of Self::align.\nComputes the resulting Node that fits the Limits given …\nReturns the bounds of the Node.\nReturns the bounds of the Layout.\nReturns the children of the Node.\nReturns an iterator over the Layout of the children of a …\nComputes the resulting Node that fits the Limits given …\nCreates a new Node that wraps a single child with some …\nDistribute elements using a flex-based layout.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nApplies a height constraint to the current Limits.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nRemoves the minimum width constraint for the current Limits…\nReturns the maximum Size of the Limits.\nApplies a maximum height constraint to the current Limits.\nApplies a maximum width constraint to the current Limits.\nReturns the minimum Size of the Limits.\nApplies a minimum height constraint to the current Limits.\nApplies a minimum width constraint to the current Limits.\nMoves the Node to the given position.\nMutable reference version of Self::move_to.\nCreates new Limits with the given minimum and maximum Size.\nCreates a new Node with the given Size.\nCreates a new Layout for the given Node at the origin.\nProduces a Node with two children nodes one right next to …\nComputes the Node that fits the Limits given some width, …\nReturns the position of the Layout.\nComputes a padded Node with a positioning step.\nComputes the resulting Size that fits the Limits given …\nShrinks the current Limits by the given Size.\nReturns the Size of the Node.\nComputes the resulting Node that fits the Limits given …\nTranslates the Node by the given translation.\nTranslates the Node by the given translation.\nApplies a width constraint to the current Limits.\nCreates a new Node with the given Size and children.\nCreates a new Layout for the given Node with the provided …\nThe main axis of a flex layout.\nThe horizontal axis\nThe vertical axis\nReturns the argument unchanged.\nCalls U::from(self).\nComputes the flex layout with the given axis and limits, …\nThe cursor has a defined position.\nThe back mouse button.\nThe button of a mouse.\nA mouse button was pressed.\nA mouse button was released.\nThe mouse cursor state.\nThe mouse cursor entered the window.\nThe mouse cursor left the window.\nThe mouse cursor was moved\nA mouse event.\nThe forward mouse button.\nThe interaction of a mouse cursor.\nThe left mouse button.\nThe cursor has a defined position, but it’s levitating …\nA line-based scroll movement\nThe middle (wheel) button.\nSome other button.\nA pixel-based scroll movement\nThe right mouse button.\nA scroll movement.\nThe cursor is currently unavailable (i.e. out of bounds or …\nThe mouse wheel was scrolled.\nTrack mouse clicks.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns true if the Cursor is levitating over a layer …\nReturns true if the Cursor is over the given bounds.\nBrings the Cursor back to the current layer.\nMakes the Cursor levitate over a layer above.\nReturns the absolute position of the Cursor, if available.\nReturns the relative position of the Cursor from the given …\nReturns the relative position of the Cursor inside the …\nReturns the absolute position of the Cursor, if available …\nThe scroll movement.\nThe new position of the mouse cursor\nThe number of horizontal lines scrolled\nThe number of horizontal pixels scrolled\nThe number of vertical lines scrolled\nThe number of vertical pixels scrolled\nA mouse click.\nA double click\nThe kind of mouse click.\nA single click\nA triple click\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nReturns the Kind of Click.\nCreates a new Click with the given position and previous …\nReturns the position of the Click.\nA generic Overlay.\nAn Overlay container that displays multiple overlay …\nAn interactive component that can be displayed on top of …\nDraws the Overlay using the associated Renderer.\nDraws the Element and its children using the given Layout.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns a Group of overlay Element children.\nCalls U::from(self).\nCalls U::from(self).\nReturns true if the cursor is over the Element.\nReturns true if the cursor is over the Overlay.\nReturns the layout Node of the Overlay.\nComputes the layout of the Element in the given bounds.\nApplies a transformation to the produced message of the …\nReturns the current mouse::Interaction of the Element.\nReturns the current mouse::Interaction of the Overlay.\nCreates a new Element containing the given Overlay.\nCreates an empty Group.\nApplies a widget::Operation to the Element.\nApplies a widget::Operation to the Overlay.\nReturns the nested overlay of the Element, if there is any.\nTurns the Group into an overlay overlay::Element.\nReturns the nested overlay of the Overlay, if there is any.\nAdds an overlay::Element to the Group.\nProcesses a runtime Event.\nProcesses a runtime Event.\nCreates a Group with the given elements.\nAn amount of space to pad for each side of a box\nPadding of zero\nCreate a Padding that is equal on all sides.\nCreate some bottom Padding.\nSets the bottom of the Padding.\nBottom padding\nFits the Padding between the provided inner and outer Size.\nReturns the argument unchanged.\nReturns the total amount of horizontal Padding.\nCalls U::from(self).\nCreate some left Padding.\nSets the left of the Padding.\nLeft padding\nCreate a Padding that is equal on all sides.\nCreate some right Padding.\nSets the right of the Padding.\nRight padding\nCreate some top Padding.\nSets the top of the Padding.\nTop padding\nReturns the total amount of vertical Padding.\nA headless renderer is a renderer that can render …\nA polygon with four sides.\nA component that can be used by widgets to draw themselves …\nThe styling attributes of a Renderer.\nThe Border of the Quad. The border is drawn on the inside …\nThe bounds of the Quad.\nClears all of the recorded primitives in the Renderer.\nEnds recording a new layer.\nEnds recording a new layer.\nFills a Quad with the provided Background.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCreates a new Headless renderer;\nDraws offscreen into a screenshot, returning a collection …\nThe Shadow of the Quad.\nStarts recording a new layer.\nStarts recording with a new Transformation.\nThe text color\nDraws the primitives recorded in the given closure in a …\nApplies a Transformation to the primitives recorded in the …\nApplies a translation to the primitives recorded in the …\nIn-memory data\nThe data of a vectorial image.\nA handle of Svg data.\nFile data\nA Renderer that can render vector graphics.\nA raster image that can be drawn.\nSets the Color filter of the Svg.\nThe Color filter to be applied to the Svg.\nReturns a reference to the SVG Data.\nDraws an SVG with the given Handle, an optional Color …\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCreates an SVG Handle from raw bytes containing either an …\nCreates an SVG Handle pointing to the vector image of the …\nThe handle of the Svg.\nReturns the unique identifier of the Handle.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns the default dimensions of an SVG for the given …\nCreates a new Svg with the given handle.\nSets the opacity of the Svg.\nThe opacity of the Svg.\nSets the rotation of the Svg.\nThe rotation to be applied to the image; on its center.\nThe char representing a ▼ icon in the built-in ICON_FONT.\nAn absolute height in logical pixels.\nAdvanced text shaping and font fallback.\nNo shaping and no font fallback.\nBorrowed data.\nA bounds difference.\nThe char representing a ✔ icon in the ICON_FONT.\nThe point was within the bounds of the returned character …\nThe difference detected in some text.\nThe Editor of this Renderer.\nThe font type used.\nA fragment of Text.\nWraps at the glyph level.\nA text highlight.\nThe result of hit testing on text.\nThe icon font of the backend.\nA trait for converting a value to some text Fragment.\nThe height of a line of text in a paragraph.\nNo wrapping.\nNo difference.\nOwned data.\nThe Paragraph of this Renderer.\nA factor of the size of the text.\nA renderer capable of measuring and drawing Text.\nA shape difference.\nThe shaping strategy of some text.\nA span of text.\nA paragraph.\nWraps at the word level.\nWraps at the word level, or fallback to glyph level if a …\nThe wrapping strategy of some text.\nSets the Background of the Span.\nThe Background of the highlight.\nSets the Background of the Span, if any.\nSets the Border of the Span.\nThe Border of the highlight.\nSets the Border of the Span, if any.\nThe bounds of the paragraph.\nSets the Color of the Span.\nThe Color of the Span.\nSets the Color of the Span, if any.\nThe content of the paragraph.\nComputes the cursor position of the Hit .\nReturns the default Self::Font.\nReturns the default size of Text.\nEdit text.\nDraws the given Editor at the given position and with the …\nDraws the given Paragraph at the given position and with …\nDraws the given Text at the given position and with the …\nSets the font of the Span.\nThe font of the Text.\nThe font of the Span.\nSets the font of the Span, if any.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nThe Highlight of the Span.\nHighlight text.\nThe horizontal alignment of the Text.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nConverts the value to some text Fragment.\nSets the LineHeight of the Span.\nThe line height of the Text.\nThe LineHeight of the Span.\nSets the link of the Span.\nThe link of the Span.\nSets the link of the Span, if any.\nCreates a new Span of text with the given text fragment.\nSets the Padding of the Span.\nThe Padding of the Span.\nDraw paragraphs.\nThe Shaping strategy of the Text.\nSets the size of the Span.\nThe size of the Text in logical pixels.\nThe size of the Span in Pixels.\nSets whether the Span should be struck through or not.\nWhether the Span should be struck through or not.\nThe Fragment of text.\nReturns the LineHeight in absolute logical pixels.\nTurns the Span into a static one.\nSets whether the Span should be underlined or not.\nWhether the Span should be underlined or not.\nThe vertical alignment of the Text.\nThe Wrapping strategy of the Text.\nAn interaction with an Editor.\nDelete the previous character.\nCursor without a selection\nClick the Editor at the given Point.\nUse \\r for line ending (many legacy systems)\nUse \\r\\n for line ending (Windows-style)\nThe cursor of an Editor.\nDelete the next character.\nA direction in some text.\nMove to the end of the text.\nMove to the start of the text.\nMove down.\nDrag the mouse on the Editor to the given Point.\nAn action that edits text.\nPerform an Edit.\nA component that can be used by widgets to edit multi-line …\nMove to the end of the line.\nBreak the current line.\nThe font of the Editor.\nMove to the start of the line.\nInsert the given character.\nMove left.\n<-\nUse \\n for line ending (POSIX-style)\nUse \\n\\r for line ending (some legacy systems)\nA line of an Editor.\nThe line ending of a Line.\nA cursor movement.\nApply a Motion.\nNo line ending\nMove to the start of the next window.\nMove to the start of the previous window.\nPaste the given text.\nMove right.\n->\nScroll the Editor a certain amount of lines.\nSelect text with a given Motion.\nSelect the entire buffer.\nSelect the line at the current cursor.\nSelect the word at the current cursor.\nCursor selecting a range of text\nMove up.\nMove to the left boundary of a word.\nMove to the right boundary of a word.\nGets the string representation of the LineEnding.\nReturns the current boundaries of the Editor.\nReturns the current Cursor of the Editor.\nReturns the current cursor position of the Editor.\nReturns the Direction of the Motion.\nThe line ending of the Line.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nRuns a text Highlighter in the Editor.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nReturns whether the Action is an editing action.\nReturns true if the Editor has no contents.\nReturns the text of the given line in the Editor, if it …\nReturns the amount of lines in the Editor.\nReturns the minimum boundaries to fit the current contents …\nPerforms an Action on the Editor.\nReturns the current selected text of the Editor.\nThe raw text of the Line.\nUpdates the Editor with some new attributes.\nWidens the Motion, if possible.\nCreates a new Editor laid out with the given text.\nThe amount of lines to scroll.\nThe format of some text.\nThe output of the Highlighter.\nA type capable of highlighting text.\nThe highlight iterator type.\nA highlighter that highlights nothing.\nThe settings to configure the Highlighter.\nNotifies the Highlighter that the line at the given index …\nThe Color of the text.\nReturns the current line of the Highlighter.\nThe Font of the text.\nReturns the argument unchanged.\nReturns the argument unchanged.\nHighlights the given line.\nCalls U::from(self).\nCalls U::from(self).\nCreates a new Highlighter from its Self::Settings.\nUpdates the Highlighter with some new Self::Settings.\nThe font of this Paragraph.\nA text paragraph.\nA Paragraph of plain text.\nCompares the Paragraph with some desired Text and returns …\nReturns the argument unchanged.\nReturns the distance to the given grapheme index in the …\nTests whether the provided point is within the boundaries …\nTests whether the provided point is within the boundaries …\nReturns the horizontal alignment of the Paragraph.\nReturns the horizontal alignment of the Paragraph.\nCalls U::from(self).\nReturns the minimum boundaries that can fit the contents …\nReturns the minimum boundaries that can fit the contents …\nReturns the minimum height that can fit the contents of …\nReturns the minimum height that can fit the contents of the\nReturns the minimum width that can fit the contents of the …\nReturns the minimum width that can fit the contents of the …\nCreates a new Plain paragraph.\nReturns the cached Paragraph.\nLays out the Paragraph with some new boundaries.\nReturns all bounds for the provided Span index of the …\nUpdates the plain Paragraph to match the given Text, if …\nReturns the vertical alignment of the Paragraph.\nReturns the vertical alignment of the Paragraph.\nCreates a new Paragraph laid out with the given Text.\nCreates a new Paragraph laid out with the given Text.\nA list with all the defined themes.\nThe default blank style of a Theme.\nThe built-in Catppuccin Frappé variant.\nThe built-in Catppuccin Latte variant.\nThe built-in Catppuccin Macchiato variant.\nThe built-in Catppuccin Mocha variant.\nA Theme with a customized Palette.\nA Theme that uses a Custom palette.\nThe built-in dark variant.\nThe built-in Dracula variant.\nThe built-in Ferra variant:\nThe built-in Gruvbox Dark variant.\nThe built-in Gruvbox Light variant.\nThe built-in Kanagawa Dragon variant.\nThe built-in Kanagawa Lotus variant.\nThe built-in Kanagawa Wave variant.\nThe built-in light variant.\nThe built-in Moonfly variant.\nThe built-in Nightfly variant.\nThe built-in Nord variant.\nThe built-in Oxocarbon variant.\nThe built-in Solarized Dark variant.\nThe built-in Solarized Light variant.\nThe base style of a Theme.\nA built-in theme.\nThe built-in Tokyo Night variant.\nThe built-in Tokyo Night Light variant.\nThe built-in Tokyo Night Storm variant.\nThe background Color of the application.\nReturns the default base Style of a Theme.\nCreates a new custom Theme from the given Palette.\nCreates a new custom Theme from the given Palette, with a …\nThe default Style of a built-in Theme.\nReturns the palette::Extended of the Theme.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCreates a Custom theme from the given Palette.\nDefine the colors of a theme.\nReturns the Palette of the Theme.\nThe default text Color of the application.\nCreates a Custom theme from the given Palette with a …\nA set of background colors.\nThe built-in Catppuccin Frappé variant of a Palette.\nThe built-in Catppuccin Latte variant of a Palette.\nThe built-in Catppuccin Macchiato variant of a Palette.\nThe built-in Catppuccin Mocha variant of a Palette.\nThe built-in dark variant of a Palette.\nThe built-in Dracula variant of a Palette.\nA set of danger colors.\nThe built-in Catppuccin Frappé variant of an Extended …\nThe built-in Catppuccin Latte variant of an Extended …\nThe built-in Catppuccin Macchiato variant of an Extended …\nThe built-in Catppuccin Mocha variant of an Extended …\nThe built-in dark variant of an Extended palette.\nThe built-in Dracula variant of an Extended palette.\nThe built-in Ferra variant of an Extended palette.\nThe built-in Gruvbox Dark variant of an Extended palette.\nThe built-in Gruvbox Light variant of an Extended palette.\nThe built-in Kanagawa Dragon variant of an Extended …\nThe built-in Kanagawa Lotus variant of an Extended palette.\nThe built-in Kanagawa Wave variant of an Extended palette.\nThe built-in light variant of an Extended palette.\nThe built-in Moonfly variant of an Extended palette.\nThe built-in Nightfly variant of an Extended palette.\nThe built-in Nord variant of an Extended palette.\nThe built-in Oxocarbon variant of an Extended palette.\nThe built-in Solarized Dark variant of an Extended palette.\nThe built-in Solarized Light variant of an Extended …\nThe built-in Tokyo Night variant of an Extended palette.\nThe built-in Tokyo Night variant of an Extended palette.\nThe built-in Tokyo Night Storm variant of an Extended …\nAn extended set of colors generated from a Palette.\nThe built-in Ferra variant of a Palette.\nThe built-in Gruvbox Dark variant of a Palette.\nThe built-in Gruvbox Light variant of a Palette.\nThe built-in Kanagawa Dragon variant of a Palette.\nThe built-in Kanagawa Lotus variant of a Palette.\nThe built-in Kanagawa Wave variant of a Palette.\nThe built-in light variant of a Palette.\nThe built-in Moonfly variant of a Palette.\nThe built-in Nightfly variant of a Palette.\nThe built-in Nord variant of a Palette.\nThe built-in Oxocarbon variant of a Palette.\nA pair of background and text colors.\nA color palette.\nA set of primary colors.\nThe built-in Solarized Dark variant of a Palette.\nThe built-in Solarized Light variant of a Palette.\nA set of secondary colors.\nA set of success colors.\nThe built-in Tokyo Night variant of a Palette.\nThe built-in Tokyo Night Light variant of a Palette.\nThe built-in Tokyo Night Storm variant of a Palette.\nA set of warning colors.\nThe background Color of the Palette.\nThe set of background colors.\nThe base background color.\nThe base primary color.\nThe base secondary color.\nThe base success color.\nThe base warning color.\nThe base danger color.\nThe background color.\nThe danger Color of the Palette.\nThe set of danger colors.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nGenerates an Extended palette from a simple Palette.\nGenerates a set of Primary colors from the base, …\nGenerates a set of Secondary colors from the base and text …\nGenerates a set of Success colors from the base, …\nGenerates a set of Warning colors from the base, …\nGenerates a set of Danger colors from the base, …\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nWhether the palette is dark or not.\nCreates a new Pair from a background Color and some text …\nGenerates a set of Background colors from the base and …\nThe primary Color of the Palette.\nThe set of primary colors.\nThe set of secondary colors.\nA stronger version of the base background color.\nA stronger version of the base primary color.\nA stronger version of the base secondary color.\nA stronger version of the base success color.\nA stronger version of the base warning color.\nA stronger version of the base danger color.\nThe success Color of the Palette.\nThe set of success colors.\nThe text Color of the Palette.\nThe text color.\nThe warning Color of the Palette.\nThe set of warning colors.\nA weaker version of the base background color.\nA weaker version of the base primary color.\nA weaker version of the base secondary color.\nA weaker version of the base success color.\nA weaker version of the base warning color.\nA weaker version of the base danger color.\nA Duration type to represent a span of time, typically …\nA measurement of a monotonically nondecreasing clock. …\nThe maximum duration.\nThe duration of one microsecond.\nThe duration of one millisecond.\nThe duration of one nanosecond.\nThe duration of one second.\nA duration of zero time.\nComputes the absolute difference between self and other.\nPanics\nReturns the total number of whole microseconds contained …\nReturns the total number of whole milliseconds contained …\nReturns the number of milliseconds contained by this …\nReturns the number of milliseconds contained by this …\nReturns the total number of nanoseconds contained by this …\nReturns the number of whole seconds contained by this …\nReturns the number of seconds contained by this Duration …\nReturns the number of seconds contained by this Duration …\nReturns Some(t) where t is the time self + duration if t …\nChecked Duration addition. Computes self + other, …\nChecked Duration division. Computes self / other, …\nReturns the amount of time elapsed from another instant to …\nChecked Duration multiplication. Computes self * other, …\nReturns Some(t) where t is the time self - duration if t …\nChecked Duration subtraction. Computes self - other, …\nCreates a Duration representing the given amount of days.\nDivides Duration by Duration and returns f32.\nDivides Duration by Duration and returns f64.\nDivides Duration by f32.\nDivides Duration by f64.\nReturns the amount of time elapsed from another instant to …\nReturns the amount of time elapsed since this instant.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCreates a new Duration from the specified number of days.\nCreates a new Duration from the specified number of hours.\nCreates a new Duration from the specified number of …\nCreates a new Duration from the specified number of …\nCreates a new Duration from the specified number of …\nCreates a new Duration from the specified number of …\nCreates a new Duration from the specified number of whole …\nCreates a new Duration from the specified number of …\nCreates a new Duration from the specified number of …\nCreates a new Duration from the specified number of weeks.\nCreates a Duration representing the given amount of hours.\nCalls U::from(self).\nCalls U::from(self).\nReturns true if this Duration spans no time.\nCreates a Duration representing the given amount of …\nCreates a Duration representing the given amount of …\nMultiplies Duration by f32.\nMultiplies Duration by f64.\nCreates a new Duration from the specified number of whole …\nReturns an instant corresponding to “now”.\nSaturating Duration addition. Computes self + other, …\nReturns the amount of time elapsed from another instant to …\nSaturating Duration multiplication. Computes self * other, …\nSaturating Duration subtraction. Computes self - other, …\nCreates a Duration representing the given amount of …\nReturns the amount of time elapsed from another instant to …\nReturns the fractional part of this Duration, in whole …\nReturns the fractional part of this Duration, in whole …\nReturns the fractional part of this Duration, in …\nThe checked version of from_secs_f32.\nThe checked version of from_secs_f64.\nA touch interaction.\nA unique identifier representing a finger on a touch …\nA touch interaction was ended.\nA touch interaction was canceled.\nAn on-going touch interaction was moved.\nA touch interaction was started.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nThe identifier of a generic widget.\nA component that displays information and allows …\nReturns the state Tree of the children of the Widget.\nReconciles the Widget with the provided Tree.\nDraws the Widget using the associated Renderer.\nReturns the argument unchanged.\nCalls U::from(self).\nReturns the layout::Node of the Widget.\nReturns the current mouse::Interaction of the Widget.\nCreates a custom Id.\nApplies an Operation to the Widget.\nQuery or update internal widget state.\nReturns the overlay of the Widget, if there is any.\nReturns the Size of the Widget in lengths.\nReturns a Size hint for laying out the Widget.\nReturns the State of the Widget.\nReturns the Tag of the Widget.\nText widgets display information through writing.\nStore internal widget state in a state tree to ensure …\nCreates a unique Id.\nProcesses a runtime Event.\nThe Operation needs to be followed by another Operation.\nThe Operation produced no result.\nA piece of logic that can traverse the widget tree of an …\nThe result of an Operation.\nThe Operation produced some result.\nWraps the Operation in a black box, erasing its returning …\nOperates on a widget that contains other widgets.\nOperates on a custom widget with some state.\nFinishes the Operation and returns its Outcome.\nOperate on widgets that can be focused.\nOperates on a widget that can be focused.\nReturns the argument unchanged.\nCalls U::from(self).\nMaps the output of an Operation using the given function.\nProduces an Operation that applies the given Operation to …\nOperate on widgets that can be scrolled.\nOperates on a widget that can be scrolled.\nOperates on a widget that contains some text.\nOperate on widgets that have text input.\nOperates on a widget that has text input.\nChains the output of an Operation with the provided …\nA summary of the focusable widgets present on a widget …\nThe internal state of a widget that can be focused.\nProduces an Operation that generates a Count and chains it …\nProduces an Operation that searches for the current …\nProduces an Operation that focuses the widget with the …\nFocuses the widget.\nProduces an Operation that searches for the current …\nProduces an Operation that searches for the current …\nThe index of the current focused widget, if any.\nReturns the argument unchanged.\nCalls U::from(self).\nReturns whether the widget is focused or not.\nThe total amount of focusable widgets.\nUnfocuses the widget.\nThe amount of absolute offset in each direction of a …\nA relative offset that points to the bottom-right of a …\nThe amount of relative offset in each direction of a …\nA relative offset that points to the top-left of a …\nThe internal state of a widget that can be scrolled.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nProduces an Operation that scrolls the widget with the …\nScroll the widget by the given AbsoluteOffset along the …\nProduces an Operation that scrolls the widget with the …\nScroll the widget to the given AbsoluteOffset along the …\nProduces an Operation that snaps the widget with the given …\nSnaps the scroll of the widget to the given percentage …\nThe amount of horizontal offset\nThe amount of horizontal offset\nThe amount of vertical offset\nThe amount of vertical offset\nThe internal state of a widget that has text input.\nProduces an Operation that moves the cursor of the widget …\nMoves the cursor of the text input to an arbitrary …\nProduces an Operation that moves the cursor of the widget …\nMoves the cursor of the text input to the end of the input …\nProduces an Operation that moves the cursor of the widget …\nMoves the cursor of the text input to the front of the …\nProduces an Operation that selects all the content of the …\nSelects all the content of the text input.\nThe theme catalog of a Text.\nThe item class of this Catalog.\nThe internal state of a Text widget.\nThe appearance of some text.\nA styling function for a Text.\nA bunch of text.\nSets the alignment::Horizontal of the Text.\nSets the alignment::Vertical of the Text.\nText with the default base color.\nCenters the Text, both horizontally and vertically.\nSets the style class of the Text.\nSets the Color of the Text.\nThe Color of the text.\nSets the Color of the Text, if Some.\nText conveying some negative information, like an error.\nThe default text styling; color is inherited.\nThe default class produced by this Catalog.\nDraws text using the same logic as the Text widget.\nSets the Font of the Text.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nSets the height of the Text boundaries.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nProduces the layout::Node of a Text widget.\nSets the LineHeight of the Text.\nCreate a new fragment of Text with the given contents.\nText conveying some important information, like an action.\nText conveying some secondary information, like a footnote.\nSets the Shaping strategy of the Text.\nSets the size of the Text.\nThe Style of a class with the given status.\nSets the style of the Text.\nText conveying some positive information, like a …\nSets the width of the Text boundaries.\nSets the Wrapping strategy of the Text.\nNo meaningful internal state.\nSome meaningful internal state.\nThe internal State of a widget.\nThe identifier of some widget state.\nA persistent state widget tree.\nThe children of the root widget of the Tree.\nReconciles the current tree with the provided Widget.\nReconciles the children of the tree with the provided list …\nReconciles the children of the tree with the provided list …\nReconciles the current_children with the provided list of …\nDowncasts the State to T and returns a mutable reference …\nDowncasts the State to T and returns a reference to it.\nCreates an empty, stateless Tree with no children.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCreates a new State.\nCreates a new Tree for the provided Widget.\nCreates a Tag for a state of type T.\nThe State of the Tree.\nCreates a Tag for a stateless widget.\nThe tag of the Tree.\nThe window will always be below normal windows.\nThe window will always be on top of normal windows.\nRedraw at the given time.\nThe window is completely centered on the screen.\nThe user has requested for the window to close.\nA window was closed.\nPlatform-specific\nThe platform-specific default position for a new window.\nThe cardinal directions relative to the center of a window.\nPoints to the right edge of a window.\nA window-related event.\nA file has been dropped into the window.\nA file is being hovered over the window.\nA file was hovered, but has exited the window.\nA window was focused.\nThe application takes the whole screen of its current …\nThe application is hidden\nThe id of the window.\nPlatform-specific\nA window level groups windows with respect to their …\nThe mode of a window-based application.\nA window was moved.\nRedraw the next frame.\nThe default behavior.\nPoints to the top edge of a window.\nPoints to the top-right corner of a window.\nPoints to the top-left corner of a window.\nA window was opened.\nThe position of a window in a given screen.\nA request to redraw a window.\nA window redraw was requested.\nA window was resized.\nPoints to the bottom edge of a window.\nPoints to the bottom-right corner of a window.\nPoints to the bottom-left corner of a window.\nThe window is positioned with specific coordinates: (X, Y).\nLike Specific, but the window is positioned with the …\nA window was unfocused.\nThe type of user attention to request.\nNo redraw is needed.\nPoints to the left edge of a window.\nThe application appears in its own window.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nReturns the argument unchanged.\nChange the icon of a window.\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nCalls U::from(self).\nTake screenshots of a window.\nConfigure your windows.\nCreates a new unique window Id.\nThe position of the opened window. This is relative to the …\nThe size of the created window. This is its “inner” …\nProduced when the length of the rgba argument isn’t …\nProduced when the number of pixels (rgba.len() / 4) isn’…\nAn error produced when using from_rgba with invalid …\nAn window icon normally used for the titlebar or taskbar.\nReturns the argument unchanged.\nReturns the argument unchanged.\nBuilds an Icon from its RGBA pixels in the sRGB color …\nCalls U::from(self).\nCalls U::from(self).\nReturns the raw data of the Icon.\nThe length of the provided RGBA data.\nThe provided height.\nThe amount of pixels of the provided RGBA data.\nThe provided width.\nThe product of width and height.\nErrors that can occur when cropping a Screenshot.\nThe cropped region’s size is out of bounds.\nData of a screenshot, captured with window::screenshot().\nThe cropped region’s size is zero.\nThe bytes of the Screenshot.\nCrops a Screenshot to the provided region. This will …\nReturns the argument unchanged.\nReturns the argument unchanged.\nCalls U::from(self).\nCalls U::from(self).\nCreates a new Screenshot.\nThe scale factor of the Screenshot. This can be useful …\nThe size of the Screenshot in physical pixels.\nThe platform specific window settings of an application.\nThe window settings of an application.\nSets the application id of the window.\nWhether the window should have a border, a title bar, etc. …\nWhether the window will close when the user requests it, …\nReturns the argument unchanged.\nReturns the argument unchanged.\nWhether the window should start fullscreen.\nThe icon of the window.\nCalls U::from(self).\nCalls U::from(self).\nThe window Level.\nThe maximum size of the window.\nWhether the window should start maximized.\nThe minimum size of the window.\nWhether bypass the window manager mapping for x11 windows\nPlatform specific settings.\nThe initial position of the window.\nWhether the window should be resizable or not.\nThe initial logical dimensions of the window.\nWhether the window should be transparent.\nWhether the window should be visible or not.") \ No newline at end of file diff --git a/src/iced_core/animation.rs.html b/src/iced_core/animation.rs.html index 78244bdba0a..80f4819d982 100644 --- a/src/iced_core/animation.rs.html +++ b/src/iced_core/animation.rs.html @@ -134,7 +134,19 @@ 133 134 135 -136
    //! Animate your applications.
    +136
    +137
    +138
    +139
    +140
    +141
    +142
    +143
    +144
    +145
    +146
    +147
    +148
    //! Animate your applications.
     use crate::time::{Duration, Instant};
     
     pub use lilt::{Easing, FloatRepresentable as Float, Interpolable};
    @@ -149,7 +161,8 @@
         T: Clone + Copy + PartialEq + Float,
     {
         raw: lilt::Animated<T, Instant>,
    -}
    +    duration: Duration, // TODO: Expose duration getter in `lilt`
    +}
     
     impl<T> Animation<T>
     where
    @@ -159,6 +172,7 @@
         pub fn new(state: T) -> Self {
             Self {
                 raw: lilt::Animated::new(state),
    +            duration: Duration::from_millis(100),
             }
         }
     
    @@ -194,6 +208,7 @@
         /// Sets the duration of the [`Animation`] to the given value.
         pub fn duration(mut self, duration: Duration) -> Self {
             self.raw = self.raw.duration(duration.as_secs_f32() * 1_000.0);
    +        self.duration = duration;
             self
         }
     
    @@ -269,5 +284,14 @@
         {
             self.raw.animate_bool(start, end, at)
         }
    +
    +    /// Returns the remaining [`Duration`] of the [`Animation`].
    +    pub fn remaining(&self, at: Instant) -> Duration {
    +        Duration::from_secs_f32(self.interpolate(
    +            self.duration.as_secs_f32(),
    +            0.0,
    +            at,
    +        ))
    +    }
     }
     

    \ No newline at end of file diff --git a/src/iced_core/length.rs.html b/src/iced_core/length.rs.html index c05f250af06..d37e6886b31 100644 --- a/src/iced_core/length.rs.html +++ b/src/iced_core/length.rs.html @@ -161,9 +161,9 @@ } } -impl From<u16> for Length { - fn from(units: u16) -> Self { - Length::Fixed(f32::from(units)) +impl From<u32> for Length { + fn from(units: u32) -> Self { + Length::Fixed(units as f32) } } \ No newline at end of file diff --git a/src/iced_core/pixels.rs.html b/src/iced_core/pixels.rs.html index aad2f62c823..1e02c4f2d63 100644 --- a/src/iced_core/pixels.rs.html +++ b/src/iced_core/pixels.rs.html @@ -109,9 +109,9 @@ } } -impl From<u16> for Pixels { - fn from(amount: u16) -> Self { - Self(f32::from(amount)) +impl From<u32> for Pixels { + fn from(amount: u32) -> Self { + Self(amount as f32) } } diff --git a/trait.impl/core/convert/trait.From.js b/trait.impl/core/convert/trait.From.js index a9e1aa505d0..7106cc6d8a0 100644 --- a/trait.impl/core/convert/trait.From.js +++ b/trait.impl/core/convert/trait.From.js @@ -1,5 +1,5 @@ (function() { - var implementors = Object.fromEntries([["iced",[["impl From<Error> for Error"],["impl From<Error> for Error"],["impl From<Error> for Error"],["impl From<ImageError> for Error"]]],["iced_core",[["impl From<&Handle> for Handle"],["impl From<&Handle> for Image"],["impl From<&Handle> for Svg"],["impl From<Alignment> for Horizontal"],["impl From<Alignment> for Vertical"],["impl From<Horizontal> for Alignment"],["impl From<Vertical> for Alignment"],["impl From<Gradient> for Background"],["impl From<Named> for Key"],["impl From<f32> for Length"],["impl From<f32> for Rotation"],["impl From<f32> for LineHeight"],["impl From<f32> for Radius"],["impl From<f32> for Padding"],["impl From<f32> for Degrees"],["impl From<f32> for Pixels"],["impl From<f32> for Radians"],["impl From<i32> for Radius"],["impl From<u16> for Length"],["impl From<u16> for Radius"],["impl From<u16> for Padding"],["impl From<u16> for Pixels"],["impl From<u8> for Radius"],["impl From<u8> for Degrees"],["impl From<u8> for Radians"],["impl From<Alpha<Rgb, f32>> for Color"],["impl From<Rgb> for Color"],["impl From<Radius> for [f32; 4]"],["impl From<Linear> for Background"],["impl From<Linear> for Gradient"],["impl From<Padding> for Size"],["impl From<Color> for Background"],["impl From<Color> for Srgb"],["impl From<Color> for Srgba"],["impl From<Degrees> for f32"],["impl From<Degrees> for f64"],["impl From<Degrees> for Radians"],["impl From<Pixels> for Length"],["impl From<Pixels> for LineHeight"],["impl From<Pixels> for f32"],["impl From<Pixels> for Padding"],["impl From<Radians> for Rotation"],["impl From<Radians> for f32"],["impl From<Radians> for f64"],["impl From<Rectangle<u32>> for Rectangle<f32>"],["impl From<Transformation> for Mat4"],["impl From<Transformation> for [f32; 16]"],["impl From<Instant> for RedrawRequest"],["impl From<Screenshot> for Bytes"],["impl From<[f32; 2]> for Padding"],["impl From<[f32; 3]> for Color"],["impl From<[f32; 4]> for Color"],["impl From<[u16; 2]> for Padding"],["impl<'a, Link, Font> From<&'a str> for Span<'a, Link, Font>"],["impl<'a, Message, Theme, Renderer> From<&'a str> for Element<'a, Message, Theme, Renderer>
    where\n Theme: Catalog + 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, Message, Theme, Renderer> From<Group<'a, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Message: 'a,\n Theme: 'a,\n Renderer: 'a + Renderer,
    "],["impl<'a, Message, Theme, Renderer> From<Text<'a, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Theme: Catalog + 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, Theme, Renderer> From<&'a str> for Text<'a, Theme, Renderer>
    where\n Theme: Catalog + 'a,\n Renderer: Renderer,
    "],["impl<T> From<[T; 2]> for Point<T>
    where\n T: Num,
    "],["impl<T> From<[T; 2]> for Size<T>"],["impl<T> From<[T; 2]> for Vector<T>"],["impl<T> From<(T, T)> for Point<T>
    where\n T: Num,
    "],["impl<T> From<(T, T)> for Size<T>"],["impl<T> From<Point<T>> for [T; 2]"],["impl<T> From<Size<T>> for [T; 2]"],["impl<T> From<Size<T>> for Vector<T>"],["impl<T> From<Vector<T>> for [T; 2]
    where\n T: Copy,
    "],["impl<T> From<Vector<T>> for Size<T>"],["impl<T> From<T> for Handle
    where\n T: Into<PathBuf>,
    "],["impl<T> From<T> for Handle
    where\n T: Into<PathBuf>,
    "]]],["iced_graphics",[["impl From<&str> for Text"],["impl From<Gradient> for Style"],["impl From<Gradient> for Fill"],["impl From<String> for Text"],["impl From<Arc> for Elliptical"],["impl From<Linear> for Gradient"],["impl From<Linear> for Fill"],["impl From<Color> for Style"],["impl From<Color> for Fill"]]],["iced_runtime",[["impl<T> From<()> for Task<T>"]]],["iced_tiny_skia",[["impl From<Settings> for Settings"]]],["iced_wgpu",[["impl From<Error> for Error"],["impl From<Settings> for Settings"],["impl From<CreateSurfaceError> for Error"]]],["iced_widget",[["impl From<&'static str> for Id"],["impl From<&'static str> for Id"],["impl From<&'static str> for Id"],["impl From<&Theme> for Settings"],["impl From<&Theme> for Style"],["impl From<Gradient> for Style"],["impl From<Theme> for Settings"],["impl From<Theme> for Style"],["impl From<ErrorCorrection> for EcLevel"],["impl From<Version> for Version"],["impl From<String> for Id"],["impl From<Color> for Style"],["impl From<Linear> for Style"],["impl From<Id> for Id"],["impl From<Id> for Id"],["impl From<Id> for Id"],["impl From<Palette> for Style"],["impl From<QrError> for Error"],["impl<'a, Highlighter, Message, Theme, Renderer> From<TextEditor<'a, Highlighter, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Highlighter: Highlighter,\n Message: 'a,\n Theme: Catalog + 'a,\n Renderer: Renderer,
    "],["impl<'a, Key, Message, Theme, Renderer> From<Column<'a, Key, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Key: Copy + PartialEq + 'static,\n Message: 'a,\n Theme: 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, Link, Message, Theme, Renderer> From<Rich<'a, Link, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Message: 'a,\n Link: Clone + 'a,\n Theme: Catalog + 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, Message, Theme> From<QRCode<'a, Theme>> for Element<'a, Message, Theme, Renderer>
    where\n Theme: Catalog + 'a,
    "],["impl<'a, Message, Theme, Renderer> From<Element<'a, Message, Theme, Renderer>> for Controls<'a, Message, Theme, Renderer>
    where\n Theme: Catalog,\n Renderer: Renderer,
    "],["impl<'a, Message, Theme, Renderer> From<Button<'a, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Message: Clone + 'a,\n Theme: Catalog + 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, Message, Theme, Renderer> From<Checkbox<'a, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Message: 'a,\n Theme: 'a + Catalog,\n Renderer: 'a + Renderer,
    "],["impl<'a, Message, Theme, Renderer> From<Container<'a, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Message: 'a,\n Theme: Catalog + 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, Message, Theme, Renderer> From<PaneGrid<'a, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Message: 'a,\n Theme: Catalog + 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, Message, Theme, Renderer> From<Pop<'a, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Renderer: Renderer + 'a,\n Theme: 'a,\n Message: Clone + 'a,
    "],["impl<'a, Message, Theme, Renderer> From<ProgressBar<'a, Theme>> for Element<'a, Message, Theme, Renderer>
    where\n Message: 'a,\n Theme: 'a + Catalog,\n Renderer: 'a + Renderer,
    "],["impl<'a, Message, Theme, Renderer> From<Radio<'a, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Message: 'a + Clone,\n Theme: 'a + Catalog,\n Renderer: 'a + Renderer,
    "],["impl<'a, Message, Theme, Renderer> From<Rule<'a, Theme>> for Element<'a, Message, Theme, Renderer>
    where\n Message: 'a,\n Theme: 'a + Catalog,\n Renderer: 'a + Renderer,
    "],["impl<'a, Message, Theme, Renderer> From<Scrollable<'a, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Message: 'a,\n Theme: 'a + Catalog,\n Renderer: 'a + Renderer,
    "],["impl<'a, Message, Theme, Renderer> From<Responsive<'a, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Message: 'a,\n Theme: 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, Message, Theme, Renderer> From<Svg<'a, Theme>> for Element<'a, Message, Theme, Renderer>
    where\n Theme: Catalog + 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, Message, Theme, Renderer> From<TextInput<'a, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Message: Clone + 'a,\n Theme: Catalog + 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, Message, Theme, Renderer> From<Toggler<'a, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Message: 'a,\n Theme: Catalog + 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, Message, Theme, Renderer> From<Tooltip<'a, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Message: 'a,\n Theme: Catalog + 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, Message, Theme, Renderer, Dependency, View> From<Lazy<'a, Message, Theme, Renderer, Dependency, View>> for Element<'a, Message, Theme, Renderer>
    where\n View: Into<Element<'static, Message, Theme, Renderer>> + 'static,\n Renderer: Renderer + 'static,\n Message: 'static,\n Theme: 'static,\n Dependency: Hash + 'a,
    "],["impl<'a, Message, Theme, Renderer, Handle> From<Image<Handle>> for Element<'a, Message, Theme, Renderer>
    where\n Renderer: Renderer<Handle = Handle>,\n Handle: Clone + 'a,
    "],["impl<'a, Message, Theme, Renderer, Handle> From<Viewer<Handle>> for Element<'a, Message, Theme, Renderer>
    where\n Renderer: 'a + Renderer<Handle = Handle>,\n Message: 'a,\n Handle: Clone + 'a,
    "],["impl<'a, Message, Theme, Renderer, P> From<Shader<Message, P>> for Element<'a, Message, Theme, Renderer>
    where\n Message: 'a,\n Renderer: Renderer,\n P: Program<Message> + 'a,
    "],["impl<'a, P, Message, Theme, Renderer> From<Canvas<P, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Message: 'a,\n Theme: 'a,\n Renderer: 'a + Renderer,\n P: 'a + Program<Message, Theme, Renderer>,
    "],["impl<'a, T, L, V, Message, Theme, Renderer> From<PickList<'a, T, L, V, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n T: Clone + ToString + PartialEq + 'a,\n L: Borrow<[T]> + 'a,\n V: Borrow<T> + 'a,\n Message: Clone + 'a,\n Theme: Catalog + 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, T, Message, Theme, Renderer> From<ComboBox<'a, T, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n T: Display + Clone + 'static,\n Message: Clone + 'a,\n Theme: Catalog + 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, T, Message, Theme, Renderer> From<Slider<'a, T, Message, Theme>> for Element<'a, Message, Theme, Renderer>
    where\n T: Copy + Into<f64> + FromPrimitive + 'a,\n Message: Clone + 'a,\n Theme: Catalog + 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, T, Message, Theme, Renderer> From<VerticalSlider<'a, T, Message, Theme>> for Element<'a, Message, Theme, Renderer>
    where\n T: Copy + Into<f64> + FromPrimitive + 'a,\n Message: Clone + 'a,\n Theme: Catalog + 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, T, Message, Theme, Renderer> From<T> for Content<'a, Message, Theme, Renderer>
    where\n T: Into<Element<'a, Message, Theme, Renderer>>,\n Theme: Catalog + 'a,\n Renderer: Renderer,
    "],["impl<Theme> From<Style> for StyleFn<'_, Theme>"],["impl<Theme> From<Style> for StyleFn<'_, Theme>"]]],["iced_winit",[["impl From<Error> for Error"],["impl From<Settings> for Settings"]]]]); + var implementors = Object.fromEntries([["iced",[["impl From<Error> for Error"],["impl From<Error> for Error"],["impl From<Error> for Error"],["impl From<ImageError> for Error"]]],["iced_core",[["impl From<&Handle> for Handle"],["impl From<&Handle> for Image"],["impl From<&Handle> for Svg"],["impl From<Alignment> for Horizontal"],["impl From<Alignment> for Vertical"],["impl From<Horizontal> for Alignment"],["impl From<Vertical> for Alignment"],["impl From<Gradient> for Background"],["impl From<Named> for Key"],["impl From<f32> for Length"],["impl From<f32> for Rotation"],["impl From<f32> for LineHeight"],["impl From<f32> for Radius"],["impl From<f32> for Padding"],["impl From<f32> for Degrees"],["impl From<f32> for Pixels"],["impl From<f32> for Radians"],["impl From<i32> for Radius"],["impl From<u16> for Radius"],["impl From<u16> for Padding"],["impl From<u32> for Length"],["impl From<u32> for Pixels"],["impl From<u8> for Radius"],["impl From<u8> for Degrees"],["impl From<u8> for Radians"],["impl From<Alpha<Rgb, f32>> for Color"],["impl From<Rgb> for Color"],["impl From<Radius> for [f32; 4]"],["impl From<Linear> for Background"],["impl From<Linear> for Gradient"],["impl From<Padding> for Size"],["impl From<Color> for Background"],["impl From<Color> for Srgb"],["impl From<Color> for Srgba"],["impl From<Degrees> for f32"],["impl From<Degrees> for f64"],["impl From<Degrees> for Radians"],["impl From<Pixels> for Length"],["impl From<Pixels> for LineHeight"],["impl From<Pixels> for f32"],["impl From<Pixels> for Padding"],["impl From<Radians> for Rotation"],["impl From<Radians> for f32"],["impl From<Radians> for f64"],["impl From<Rectangle<u32>> for Rectangle<f32>"],["impl From<Transformation> for Mat4"],["impl From<Transformation> for [f32; 16]"],["impl From<Instant> for RedrawRequest"],["impl From<Screenshot> for Bytes"],["impl From<[f32; 2]> for Padding"],["impl From<[f32; 3]> for Color"],["impl From<[f32; 4]> for Color"],["impl From<[u16; 2]> for Padding"],["impl<'a, Link, Font> From<&'a str> for Span<'a, Link, Font>"],["impl<'a, Message, Theme, Renderer> From<&'a str> for Element<'a, Message, Theme, Renderer>
    where\n Theme: Catalog + 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, Message, Theme, Renderer> From<Group<'a, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Message: 'a,\n Theme: 'a,\n Renderer: 'a + Renderer,
    "],["impl<'a, Message, Theme, Renderer> From<Text<'a, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Theme: Catalog + 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, Theme, Renderer> From<&'a str> for Text<'a, Theme, Renderer>
    where\n Theme: Catalog + 'a,\n Renderer: Renderer,
    "],["impl<T> From<[T; 2]> for Point<T>
    where\n T: Num,
    "],["impl<T> From<[T; 2]> for Size<T>"],["impl<T> From<[T; 2]> for Vector<T>"],["impl<T> From<(T, T)> for Point<T>
    where\n T: Num,
    "],["impl<T> From<(T, T)> for Size<T>"],["impl<T> From<Point<T>> for [T; 2]"],["impl<T> From<Size<T>> for [T; 2]"],["impl<T> From<Size<T>> for Vector<T>"],["impl<T> From<Vector<T>> for [T; 2]
    where\n T: Copy,
    "],["impl<T> From<Vector<T>> for Size<T>"],["impl<T> From<T> for Handle
    where\n T: Into<PathBuf>,
    "],["impl<T> From<T> for Handle
    where\n T: Into<PathBuf>,
    "]]],["iced_graphics",[["impl From<&str> for Text"],["impl From<Gradient> for Style"],["impl From<Gradient> for Fill"],["impl From<String> for Text"],["impl From<Arc> for Elliptical"],["impl From<Linear> for Gradient"],["impl From<Linear> for Fill"],["impl From<Color> for Style"],["impl From<Color> for Fill"]]],["iced_runtime",[["impl<T> From<()> for Task<T>"]]],["iced_tiny_skia",[["impl From<Settings> for Settings"]]],["iced_wgpu",[["impl From<Error> for Error"],["impl From<Settings> for Settings"],["impl From<CreateSurfaceError> for Error"]]],["iced_widget",[["impl From<&'static str> for Id"],["impl From<&'static str> for Id"],["impl From<&'static str> for Id"],["impl From<&Theme> for Settings"],["impl From<&Theme> for Style"],["impl From<Gradient> for Style"],["impl From<Theme> for Settings"],["impl From<Theme> for Style"],["impl From<ErrorCorrection> for EcLevel"],["impl From<Version> for Version"],["impl From<String> for Id"],["impl From<Color> for Style"],["impl From<Linear> for Style"],["impl From<Id> for Id"],["impl From<Id> for Id"],["impl From<Id> for Id"],["impl From<Palette> for Style"],["impl From<QrError> for Error"],["impl<'a, Highlighter, Message, Theme, Renderer> From<TextEditor<'a, Highlighter, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Highlighter: Highlighter,\n Message: 'a,\n Theme: Catalog + 'a,\n Renderer: Renderer,
    "],["impl<'a, Key, Message, Theme, Renderer> From<Column<'a, Key, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Key: Copy + PartialEq + 'static,\n Message: 'a,\n Theme: 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, Link, Message, Theme, Renderer> From<Rich<'a, Link, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Message: 'a,\n Link: Clone + 'a,\n Theme: Catalog + 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, Message, Theme> From<QRCode<'a, Theme>> for Element<'a, Message, Theme, Renderer>
    where\n Theme: Catalog + 'a,
    "],["impl<'a, Message, Theme, Renderer> From<Element<'a, Message, Theme, Renderer>> for Controls<'a, Message, Theme, Renderer>
    where\n Theme: Catalog,\n Renderer: Renderer,
    "],["impl<'a, Message, Theme, Renderer> From<Button<'a, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Message: Clone + 'a,\n Theme: Catalog + 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, Message, Theme, Renderer> From<Checkbox<'a, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Message: 'a,\n Theme: 'a + Catalog,\n Renderer: 'a + Renderer,
    "],["impl<'a, Message, Theme, Renderer> From<Container<'a, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Message: 'a,\n Theme: Catalog + 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, Message, Theme, Renderer> From<PaneGrid<'a, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Message: 'a,\n Theme: Catalog + 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, Message, Theme, Renderer> From<Pop<'a, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Renderer: Renderer + 'a,\n Theme: 'a,\n Message: Clone + 'a,
    "],["impl<'a, Message, Theme, Renderer> From<ProgressBar<'a, Theme>> for Element<'a, Message, Theme, Renderer>
    where\n Message: 'a,\n Theme: 'a + Catalog,\n Renderer: 'a + Renderer,
    "],["impl<'a, Message, Theme, Renderer> From<Radio<'a, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Message: 'a + Clone,\n Theme: 'a + Catalog,\n Renderer: 'a + Renderer,
    "],["impl<'a, Message, Theme, Renderer> From<Rule<'a, Theme>> for Element<'a, Message, Theme, Renderer>
    where\n Message: 'a,\n Theme: 'a + Catalog,\n Renderer: 'a + Renderer,
    "],["impl<'a, Message, Theme, Renderer> From<Scrollable<'a, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Message: 'a,\n Theme: 'a + Catalog,\n Renderer: 'a + Renderer,
    "],["impl<'a, Message, Theme, Renderer> From<Responsive<'a, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Message: 'a,\n Theme: 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, Message, Theme, Renderer> From<Svg<'a, Theme>> for Element<'a, Message, Theme, Renderer>
    where\n Theme: Catalog + 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, Message, Theme, Renderer> From<TextInput<'a, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Message: Clone + 'a,\n Theme: Catalog + 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, Message, Theme, Renderer> From<Toggler<'a, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Message: 'a,\n Theme: Catalog + 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, Message, Theme, Renderer> From<Tooltip<'a, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Message: 'a,\n Theme: Catalog + 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, Message, Theme, Renderer, Dependency, View> From<Lazy<'a, Message, Theme, Renderer, Dependency, View>> for Element<'a, Message, Theme, Renderer>
    where\n View: Into<Element<'static, Message, Theme, Renderer>> + 'static,\n Renderer: Renderer + 'static,\n Message: 'static,\n Theme: 'static,\n Dependency: Hash + 'a,
    "],["impl<'a, Message, Theme, Renderer, Handle> From<Image<Handle>> for Element<'a, Message, Theme, Renderer>
    where\n Renderer: Renderer<Handle = Handle>,\n Handle: Clone + 'a,
    "],["impl<'a, Message, Theme, Renderer, Handle> From<Viewer<Handle>> for Element<'a, Message, Theme, Renderer>
    where\n Renderer: 'a + Renderer<Handle = Handle>,\n Message: 'a,\n Handle: Clone + 'a,
    "],["impl<'a, Message, Theme, Renderer, P> From<Shader<Message, P>> for Element<'a, Message, Theme, Renderer>
    where\n Message: 'a,\n Renderer: Renderer,\n P: Program<Message> + 'a,
    "],["impl<'a, P, Message, Theme, Renderer> From<Canvas<P, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n Message: 'a,\n Theme: 'a,\n Renderer: 'a + Renderer,\n P: 'a + Program<Message, Theme, Renderer>,
    "],["impl<'a, T, L, V, Message, Theme, Renderer> From<PickList<'a, T, L, V, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n T: Clone + ToString + PartialEq + 'a,\n L: Borrow<[T]> + 'a,\n V: Borrow<T> + 'a,\n Message: Clone + 'a,\n Theme: Catalog + 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, T, Message, Theme, Renderer> From<ComboBox<'a, T, Message, Theme, Renderer>> for Element<'a, Message, Theme, Renderer>
    where\n T: Display + Clone + 'static,\n Message: Clone + 'a,\n Theme: Catalog + 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, T, Message, Theme, Renderer> From<Slider<'a, T, Message, Theme>> for Element<'a, Message, Theme, Renderer>
    where\n T: Copy + Into<f64> + FromPrimitive + 'a,\n Message: Clone + 'a,\n Theme: Catalog + 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, T, Message, Theme, Renderer> From<VerticalSlider<'a, T, Message, Theme>> for Element<'a, Message, Theme, Renderer>
    where\n T: Copy + Into<f64> + FromPrimitive + 'a,\n Message: Clone + 'a,\n Theme: Catalog + 'a,\n Renderer: Renderer + 'a,
    "],["impl<'a, T, Message, Theme, Renderer> From<T> for Content<'a, Message, Theme, Renderer>
    where\n T: Into<Element<'a, Message, Theme, Renderer>>,\n Theme: Catalog + 'a,\n Renderer: Renderer,
    "],["impl<Theme> From<Style> for StyleFn<'_, Theme>"],["impl<Theme> From<Style> for StyleFn<'_, Theme>"]]],["iced_winit",[["impl From<Error> for Error"],["impl From<Settings> for Settings"]]]]); if (window.register_implementors) { window.register_implementors(implementors); } else { diff --git a/trait.impl/iced_core/image/trait.Renderer.js b/trait.impl/iced_core/image/trait.Renderer.js index c1ba22d037b..421a9030c50 100644 --- a/trait.impl/iced_core/image/trait.Renderer.js +++ b/trait.impl/iced_core/image/trait.Renderer.js @@ -1,9 +1,9 @@ (function() { - var implementors = Object.fromEntries([["iced",[]],["iced_core",[]],["iced_renderer",[["impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer<Handle = A::Handle>,
    "]]],["iced_tiny_skia",[["impl Renderer for Renderer"]]],["iced_wgpu",[["impl Renderer for Renderer"]]]]); + var implementors = Object.fromEntries([["iced",[]],["iced_core",[]],["iced_renderer",[["impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer<Handle = A::Handle>,
    "]]],["iced_tiny_skia",[["impl Renderer for Renderer"]]],["iced_wgpu",[["impl Renderer for Renderer"]]]]); if (window.register_implementors) { window.register_implementors(implementors); } else { window.pending_implementors = implementors; } })() -//{"start":57,"fragment_lengths":[11,17,291,163,148]} \ No newline at end of file +//{"start":57,"fragment_lengths":[11,17,773,163,259]} \ No newline at end of file diff --git a/trait.impl/iced_core/renderer/trait.Headless.js b/trait.impl/iced_core/renderer/trait.Headless.js index 69be67f5fcf..555a4ff7f93 100644 --- a/trait.impl/iced_core/renderer/trait.Headless.js +++ b/trait.impl/iced_core/renderer/trait.Headless.js @@ -1,9 +1,9 @@ (function() { - var implementors = Object.fromEntries([["iced",[]],["iced_renderer",[["impl Headless for Renderer<Renderer, Renderer>"]]],["iced_tiny_skia",[["impl Headless for Renderer"]]]]); + var implementors = Object.fromEntries([["iced",[]],["iced_renderer",[["impl Headless for Renderer<Renderer, Renderer>"]]],["iced_tiny_skia",[["impl Headless for Renderer"]]]]); if (window.register_implementors) { window.register_implementors(implementors); } else { window.pending_implementors = implementors; } })() -//{"start":57,"fragment_lengths":[11,411,163]} \ No newline at end of file +//{"start":57,"fragment_lengths":[11,528,163]} \ No newline at end of file diff --git a/trait.impl/iced_core/renderer/trait.Renderer.js b/trait.impl/iced_core/renderer/trait.Renderer.js index 4c9bcbc68a7..93b281206d6 100644 --- a/trait.impl/iced_core/renderer/trait.Renderer.js +++ b/trait.impl/iced_core/renderer/trait.Renderer.js @@ -1,9 +1,9 @@ (function() { - var implementors = Object.fromEntries([["iced",[]],["iced_core",[]],["iced_renderer",[["impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,
    "]]],["iced_tiny_skia",[["impl Renderer for Renderer"]]],["iced_wgpu",[["impl Renderer for Renderer"]]]]); + var implementors = Object.fromEntries([["iced",[]],["iced_core",[]],["iced_renderer",[["impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,
    "]]],["iced_tiny_skia",[["impl Renderer for Renderer"]]],["iced_wgpu",[["impl Renderer for Renderer"]]]]); if (window.register_implementors) { window.register_implementors(implementors); } else { window.pending_implementors = implementors; } })() -//{"start":57,"fragment_lengths":[11,17,265,163,148]} \ No newline at end of file +//{"start":57,"fragment_lengths":[11,17,616,163,265]} \ No newline at end of file diff --git a/trait.impl/iced_core/svg/trait.Renderer.js b/trait.impl/iced_core/svg/trait.Renderer.js index 4c9bcbc68a7..59ce829ad60 100644 --- a/trait.impl/iced_core/svg/trait.Renderer.js +++ b/trait.impl/iced_core/svg/trait.Renderer.js @@ -1,9 +1,9 @@ (function() { - var implementors = Object.fromEntries([["iced",[]],["iced_core",[]],["iced_renderer",[["impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,
    "]]],["iced_tiny_skia",[["impl Renderer for Renderer"]]],["iced_wgpu",[["impl Renderer for Renderer"]]]]); + var implementors = Object.fromEntries([["iced",[]],["iced_core",[]],["iced_renderer",[["impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,
    "]]],["iced_tiny_skia",[["impl Renderer for Renderer"]]],["iced_wgpu",[["impl Renderer for Renderer"]]]]); if (window.register_implementors) { window.register_implementors(implementors); } else { window.pending_implementors = implementors; } })() -//{"start":57,"fragment_lengths":[11,17,265,163,148]} \ No newline at end of file +//{"start":57,"fragment_lengths":[11,17,586,163,255]} \ No newline at end of file diff --git a/trait.impl/iced_core/text/trait.Renderer.js b/trait.impl/iced_core/text/trait.Renderer.js index df0574c4b1a..570efa267c2 100644 --- a/trait.impl/iced_core/text/trait.Renderer.js +++ b/trait.impl/iced_core/text/trait.Renderer.js @@ -1,9 +1,9 @@ (function() { - var implementors = Object.fromEntries([["iced",[]],["iced_core",[]],["iced_renderer",[["impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer<Font = A::Font, Paragraph = A::Paragraph, Editor = A::Editor>,
    "]]],["iced_tiny_skia",[["impl Renderer for Renderer"]]],["iced_wgpu",[["impl Renderer for Renderer"]]]]); + var implementors = Object.fromEntries([["iced",[]],["iced_core",[]],["iced_renderer",[["impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer<Font = A::Font, Paragraph = A::Paragraph, Editor = A::Editor>,
    "]]],["iced_tiny_skia",[["impl Renderer for Renderer"]]],["iced_wgpu",[["impl Renderer for Renderer"]]]]); if (window.register_implementors) { window.register_implementors(implementors); } else { window.pending_implementors = implementors; } })() -//{"start":57,"fragment_lengths":[11,17,333,163,148]} \ No newline at end of file +//{"start":57,"fragment_lengths":[11,17,1103,163,257]} \ No newline at end of file diff --git a/trait.impl/iced_wgpu/primitive/trait.Renderer.js b/trait.impl/iced_wgpu/primitive/trait.Renderer.js index 2223042e455..ab9f26ed568 100644 --- a/trait.impl/iced_wgpu/primitive/trait.Renderer.js +++ b/trait.impl/iced_wgpu/primitive/trait.Renderer.js @@ -1,9 +1,9 @@ (function() { - var implementors = Object.fromEntries([["iced_renderer",[["impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,
    "]]],["iced_wgpu",[]]]); + var implementors = Object.fromEntries([["iced_renderer",[["impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,
    "]]],["iced_wgpu",[]]]); if (window.register_implementors) { window.register_implementors(implementors); } else { window.pending_implementors = implementors; } })() -//{"start":57,"fragment_lengths":[502,17]} \ No newline at end of file +//{"start":57,"fragment_lengths":[619,17]} \ No newline at end of file diff --git a/type.impl/iced_graphics/layer/struct.Stack.js b/type.impl/iced_graphics/layer/struct.Stack.js index aac0e1e23a9..3b307629f22 100644 --- a/type.impl/iced_graphics/layer/struct.Stack.js +++ b/type.impl/iced_graphics/layer/struct.Stack.js @@ -1,9 +1,9 @@ (function() { - var type_impls = Object.fromEntries([["iced_wgpu",[["
    Source§

    impl<T> Debug for Stack<T>
    where\n T: Debug + Layer,

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Debug","iced_wgpu::layer::Stack"],["
    Source§

    impl<T> Default for Stack<T>
    where\n T: Layer,

    Source§

    fn default() -> Stack<T>

    Returns the “default value” for a type. Read more
    ","Default","iced_wgpu::layer::Stack"],["
    Source§

    impl<T> Stack<T>
    where\n T: Layer,

    Source

    pub fn new() -> Stack<T>

    Creates a new empty Stack.

    \n
    Source

    pub fn current_mut(&mut self) -> (&mut T, Transformation)

    Returns a mutable reference to the current Layer of the Stack, together with\nthe current [Transformation].

    \n
    Source

    pub fn transformation(&self) -> Transformation

    Returns the current [Transformation] of the Stack.

    \n
    Source

    pub fn push_clip(&mut self, bounds: Rectangle)

    Pushes a new clipping region in the Stack; creating a new layer in the\nprocess.

    \n
    Source

    pub fn pop_clip(&mut self)

    Pops the current clipping region from the Stack and restores the previous one.

    \n

    The current layer will be recorded for drawing.

    \n
    Source

    pub fn push_transformation(&mut self, transformation: Transformation)

    Pushes a new [Transformation] in the Stack.

    \n

    Future drawing operations will be affected by this new [Transformation] until\nit is popped using pop_transformation.

    \n
    Source

    pub fn pop_transformation(&mut self)

    Pops the current [Transformation] in the Stack.

    \n
    Source

    pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut T>

    Returns an iterator over mutable references to the layers in the Stack.

    \n
    Source

    pub fn iter(&self) -> impl Iterator<Item = &T>

    Returns an iterator over immutable references to the layers in the Stack.

    \n
    Source

    pub fn as_slice(&self) -> &[T]

    Returns the slice of layers in the Stack.

    \n
    Source

    pub fn flush(&mut self)

    Flushes and settles any primitives in the current layer of the Stack.

    \n
    Source

    pub fn clear(&mut self)

    Clears the layers of the Stack, allowing reuse.

    \n

    This will normally keep layer allocations for future drawing operations.

    \n
    ",0,"iced_wgpu::layer::Stack"]]]]); + var type_impls = Object.fromEntries([["iced_wgpu",[["
    Source§

    impl<T> Debug for Stack<T>
    where\n T: Debug + Layer,

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Debug","iced_wgpu::layer::Stack"],["
    Source§

    impl<T> Default for Stack<T>
    where\n T: Layer,

    Source§

    fn default() -> Stack<T>

    Returns the “default value” for a type. Read more
    ","Default","iced_wgpu::layer::Stack"],["
    Source§

    impl<T> Stack<T>
    where\n T: Layer,

    Source

    pub fn new() -> Stack<T>

    Creates a new empty Stack.

    \n
    Source

    pub fn current_mut(&mut self) -> (&mut T, Transformation)

    Returns a mutable reference to the current Layer of the Stack, together with\nthe current Transformation.

    \n
    Source

    pub fn transformation(&self) -> Transformation

    Returns the current Transformation of the Stack.

    \n
    Source

    pub fn push_clip(&mut self, bounds: Rectangle)

    Pushes a new clipping region in the Stack; creating a new layer in the\nprocess.

    \n
    Source

    pub fn pop_clip(&mut self)

    Pops the current clipping region from the Stack and restores the previous one.

    \n

    The current layer will be recorded for drawing.

    \n
    Source

    pub fn push_transformation(&mut self, transformation: Transformation)

    Pushes a new Transformation in the Stack.

    \n

    Future drawing operations will be affected by this new Transformation until\nit is popped using pop_transformation.

    \n
    Source

    pub fn pop_transformation(&mut self)

    Pops the current Transformation in the Stack.

    \n
    Source

    pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut T>

    Returns an iterator over mutable references to the layers in the Stack.

    \n
    Source

    pub fn iter(&self) -> impl Iterator<Item = &T>

    Returns an iterator over immutable references to the layers in the Stack.

    \n
    Source

    pub fn as_slice(&self) -> &[T]

    Returns the slice of layers in the Stack.

    \n
    Source

    pub fn flush(&mut self)

    Flushes and settles any primitives in the current layer of the Stack.

    \n
    Source

    pub fn clear(&mut self)

    Clears the layers of the Stack, allowing reuse.

    \n

    This will normally keep layer allocations for future drawing operations.

    \n
    ",0,"iced_wgpu::layer::Stack"]]]]); if (window.register_type_impls) { window.register_type_impls(type_impls); } else { window.pending_type_impls = type_impls; } })() -//{"start":55,"fragment_lengths":[12960]} \ No newline at end of file +//{"start":55,"fragment_lengths":[14141]} \ No newline at end of file diff --git a/type.impl/iced_renderer/fallback/enum.Compositor.js b/type.impl/iced_renderer/fallback/enum.Compositor.js index 4f573b688ba..453e60eaa42 100644 --- a/type.impl/iced_renderer/fallback/enum.Compositor.js +++ b/type.impl/iced_renderer/fallback/enum.Compositor.js @@ -1,9 +1,9 @@ (function() { - var type_impls = Object.fromEntries([["iced_renderer",[["
    Source§

    impl<A, B> Compositor for Compositor<A, B>
    where\n A: Compositor,\n B: Compositor,

    Source§

    type Renderer = Renderer<<A as Compositor>::Renderer, <B as Compositor>::Renderer>

    The iced renderer of the backend.
    Source§

    type Surface = Surface<<A as Compositor>::Surface, <B as Compositor>::Surface>

    The surface of the backend.
    Source§

    async fn with_backend<W: Window + Clone>(\n settings: Settings,\n compatible_window: W,\n backend: Option<&str>,\n) -> Result<Self, Error>

    Creates a new Compositor with a backend preference. Read more
    Source§

    fn create_renderer(&self) -> Self::Renderer

    Creates a Self::Renderer for the Compositor.
    Source§

    fn create_surface<W: Window + Clone>(\n &mut self,\n window: W,\n width: u32,\n height: u32,\n) -> Self::Surface

    Crates a new Surface for the given window.
    Source§

    fn configure_surface(\n &mut self,\n surface: &mut Self::Surface,\n width: u32,\n height: u32,\n)

    Configures a new Surface with the given dimensions.
    Source§

    fn load_font(&mut self, font: Cow<'static, [u8]>)

    Loads a font from its bytes.
    Source§

    fn fetch_information(&self) -> Information

    Returns Information used by this Compositor.
    Source§

    fn present<T: AsRef<str>>(\n &mut self,\n renderer: &mut Self::Renderer,\n surface: &mut Self::Surface,\n viewport: &Viewport,\n background_color: Color,\n overlay: &[T],\n) -> Result<(), SurfaceError>

    Presents the Renderer primitives to the next frame of the given Surface.
    Source§

    fn screenshot<T: AsRef<str>>(\n &mut self,\n renderer: &mut Self::Renderer,\n viewport: &Viewport,\n background_color: Color,\n overlay: &[T],\n) -> Vec<u8>

    Screenshots the current Renderer primitives to an offscreen texture, and returns the bytes of\nthe texture ordered as RGBA in the sRGB color space.
    Source§

    fn new<W>(\n settings: Settings,\n compatible_window: W,\n) -> impl Future<Output = Result<Self, Error>>
    where\n W: Window + Clone,

    Creates a new Compositor.
    ","Compositor","iced_renderer::Compositor"],["
    Source§

    impl<A, B> Debug for Compositor<A, B>
    where\n A: Compositor + Debug,\n B: Compositor + Debug,

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result

    Formats the value using the given formatter. Read more
    ","Debug","iced_renderer::Compositor"]]]]); + var type_impls = Object.fromEntries([["iced_renderer",[["
    Source§

    impl<A, B> Compositor for Compositor<A, B>
    where\n A: Compositor,\n B: Compositor,

    Source§

    type Renderer = Renderer<<A as Compositor>::Renderer, <B as Compositor>::Renderer>

    The iced renderer of the backend.
    Source§

    type Surface = Surface<<A as Compositor>::Surface, <B as Compositor>::Surface>

    The surface of the backend.
    Source§

    async fn with_backend<W: Window + Clone>(\n settings: Settings,\n compatible_window: W,\n backend: Option<&str>,\n) -> Result<Self, Error>

    Creates a new Compositor with a backend preference. Read more
    Source§

    fn create_renderer(&self) -> Self::Renderer

    Creates a Self::Renderer for the Compositor.
    Source§

    fn create_surface<W: Window + Clone>(\n &mut self,\n window: W,\n width: u32,\n height: u32,\n) -> Self::Surface

    Crates a new Surface for the given window.
    Source§

    fn configure_surface(\n &mut self,\n surface: &mut Self::Surface,\n width: u32,\n height: u32,\n)

    Configures a new Surface with the given dimensions.
    Source§

    fn load_font(&mut self, font: Cow<'static, [u8]>)

    Loads a font from its bytes.
    Source§

    fn fetch_information(&self) -> Information

    Returns Information used by this Compositor.
    Source§

    fn present<T: AsRef<str>>(\n &mut self,\n renderer: &mut Self::Renderer,\n surface: &mut Self::Surface,\n viewport: &Viewport,\n background_color: Color,\n overlay: &[T],\n) -> Result<(), SurfaceError>

    Presents the Renderer primitives to the next frame of the given Surface.
    Source§

    fn screenshot<T: AsRef<str>>(\n &mut self,\n renderer: &mut Self::Renderer,\n viewport: &Viewport,\n background_color: Color,\n overlay: &[T],\n) -> Vec<u8>

    Screenshots the current Renderer primitives to an offscreen texture, and returns the bytes of\nthe texture ordered as RGBA in the sRGB color space.
    Source§

    fn new<W>(\n settings: Settings,\n compatible_window: W,\n) -> impl Future<Output = Result<Self, Error>>
    where\n W: Window + Clone,

    Creates a new Compositor.
    ","Compositor","iced_renderer::Compositor"],["
    Source§

    impl<A, B> Debug for Compositor<A, B>
    where\n A: Compositor + Debug,\n B: Compositor + Debug,

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result

    Formats the value using the given formatter. Read more
    ","Debug","iced_renderer::Compositor"]]]]); if (window.register_type_impls) { window.register_type_impls(type_impls); } else { window.pending_type_impls = type_impls; } })() -//{"start":55,"fragment_lengths":[18810]} \ No newline at end of file +//{"start":55,"fragment_lengths":[19026]} \ No newline at end of file diff --git a/type.impl/iced_renderer/fallback/enum.Renderer.js b/type.impl/iced_renderer/fallback/enum.Renderer.js index 3e0f6999094..5d6c57e87c8 100644 --- a/type.impl/iced_renderer/fallback/enum.Renderer.js +++ b/type.impl/iced_renderer/fallback/enum.Renderer.js @@ -1,9 +1,9 @@ (function() { - var type_impls = Object.fromEntries([["iced",[["
    Source§

    impl<A, B> Debug for Renderer<A, B>
    where\n A: Debug,\n B: Debug,

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Debug","iced::Renderer"],["
    Source§

    impl<A, B> Default for Renderer<A, B>
    where\n A: Default,\n B: Default,

    Source§

    type Compositor = Compositor<<A as Default>::Compositor, <B as Default>::Compositor>

    The compositor of the renderer.
    ","Default","iced::Renderer"],["
    Source§

    impl Headless for Renderer<Renderer, Renderer>

    Source§

    fn new(\n default_font: Font,\n default_text_size: Pixels,\n) -> Renderer<Renderer, Renderer>

    Creates a new Headless renderer;
    Source§

    fn screenshot(\n &mut self,\n size: Size<u32>,\n scale_factor: f32,\n background_color: Color,\n) -> Vec<u8>

    Draws offscreen into a screenshot, returning a collection of\nbytes representing the rendered pixels in RGBA order.
    ","Headless","iced::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer<Handle = <A as Renderer>::Handle>,

    Source§

    type Handle = <A as Renderer>::Handle

    The image Handle to be displayed. Iced exposes its own default implementation of a Handle
    Source§

    fn measure_image(\n &self,\n handle: &<Renderer<A, B> as Renderer>::Handle,\n) -> Size<u32>

    Returns the dimensions of an image for the given Handle.
    Source§

    fn draw_image(\n &mut self,\n image: Image<<A as Renderer>::Handle>,\n bounds: Rectangle,\n)

    Draws an Image inside the provided bounds.
    ","Renderer","iced::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Source§

    fn measure_svg(&self, handle: &Handle) -> Size<u32>

    Returns the default dimensions of an SVG for the given Handle.
    Source§

    fn draw_svg(&mut self, svg: Svg, bounds: Rectangle)

    Draws an SVG with the given Handle, an optional Color filter, and inside the provided bounds.
    ","Renderer","iced::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Source§

    fn draw_mesh(&mut self, mesh: Mesh)

    Draws the given Mesh.
    ","Renderer","iced::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Source§

    fn fill_quad(&mut self, quad: Quad, background: impl Into<Background>)

    Fills a Quad with the provided Background.
    Source§

    fn clear(&mut self)

    Clears all of the recorded primitives in the Renderer.
    Source§

    fn start_layer(&mut self, bounds: Rectangle)

    Starts recording a new layer.
    Source§

    fn end_layer(&mut self)

    Ends recording a new layer. Read more
    Source§

    fn start_transformation(&mut self, transformation: Transformation)

    Starts recording with a new Transformation.
    Source§

    fn end_transformation(&mut self)

    Ends recording a new layer. Read more
    Source§

    fn with_layer(&mut self, bounds: Rectangle, f: impl FnOnce(&mut Self))

    Draws the primitives recorded in the given closure in a new layer. Read more
    Source§

    fn with_transformation(\n &mut self,\n transformation: Transformation,\n f: impl FnOnce(&mut Self),\n)

    Applies a Transformation to the primitives recorded in the given closure.
    Source§

    fn with_translation(&mut self, translation: Vector, f: impl FnOnce(&mut Self))

    Applies a translation to the primitives recorded in the given closure.
    ","Renderer","iced::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Available on crate feature wgpu only.
    Source§

    fn draw_primitive(&mut self, bounds: Rectangle, primitive: impl Primitive)

    Draws a custom primitive.
    ","Renderer","iced::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Source§

    type Geometry = Geometry<<A as Renderer>::Geometry, <B as Renderer>::Geometry>

    The kind of geometry this renderer can draw.
    Source§

    type Frame = Frame<<A as Renderer>::Frame, <B as Renderer>::Frame>

    The kind of Frame this renderer supports.
    Source§

    fn new_frame(&self, size: Size) -> <Renderer<A, B> as Renderer>::Frame

    Creates a new Self::Frame.
    Source§

    fn draw_geometry(&mut self, geometry: <Renderer<A, B> as Renderer>::Geometry)

    Draws the given Self::Geometry.
    ","Renderer","iced::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n B: Renderer<Font = <A as Renderer>::Font, Paragraph = <A as Renderer>::Paragraph, Editor = <A as Renderer>::Editor>,\n A: Renderer,

    Source§

    const ICON_FONT: <Renderer<A, B> as Renderer>::Font = A::ICON_FONT

    The icon font of the backend.
    Source§

    const CHECKMARK_ICON: char = A::CHECKMARK_ICON

    The char representing a ✔ icon in the ICON_FONT.
    Source§

    const ARROW_DOWN_ICON: char = A::ARROW_DOWN_ICON

    The char representing a ▼ icon in the built-in ICON_FONT.
    Source§

    type Font = <A as Renderer>::Font

    The font type used.
    Source§

    type Paragraph = <A as Renderer>::Paragraph

    The Paragraph of this Renderer.
    Source§

    type Editor = <A as Renderer>::Editor

    The Editor of this Renderer.
    Source§

    fn default_font(&self) -> <Renderer<A, B> as Renderer>::Font

    Returns the default Self::Font.
    Source§

    fn default_size(&self) -> Pixels

    Returns the default size of Text.
    Source§

    fn fill_paragraph(\n &mut self,\n text: &<Renderer<A, B> as Renderer>::Paragraph,\n position: Point,\n color: Color,\n clip_bounds: Rectangle,\n)

    Draws the given Paragraph at the given position and with the given\nColor.
    Source§

    fn fill_editor(\n &mut self,\n editor: &<Renderer<A, B> as Renderer>::Editor,\n position: Point,\n color: Color,\n clip_bounds: Rectangle,\n)

    Draws the given Editor at the given position and with the given\nColor.
    Source§

    fn fill_text(\n &mut self,\n text: Text<String, <Renderer<A, B> as Renderer>::Font>,\n position: Point,\n color: Color,\n clip_bounds: Rectangle,\n)

    Draws the given Text at the given position and with the given\nColor.
    ","Renderer","iced::Renderer"]]],["iced_renderer",[["
    Source§

    impl<A: Debug, B: Debug> Debug for Renderer<A, B>

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result

    Formats the value using the given formatter. Read more
    ","Debug","iced_renderer::Renderer"],["
    Source§

    impl<A, B> Default for Renderer<A, B>
    where\n A: Default,\n B: Default,

    Source§

    type Compositor = Compositor<<A as Default>::Compositor, <B as Default>::Compositor>

    The compositor of the renderer.
    ","Default","iced_renderer::Renderer"],["
    Source§

    impl Headless for Renderer<Renderer, Renderer>

    Available on crate features wgpu and tiny-skia only.
    Source§

    fn new(default_font: Font, default_text_size: Pixels) -> Self

    Creates a new [Headless] renderer;
    Source§

    fn screenshot(\n &mut self,\n size: Size<u32>,\n scale_factor: f32,\n background_color: Color,\n) -> Vec<u8>

    Draws offscreen into a screenshot, returning a collection of\nbytes representing the rendered pixels in RGBA order.
    ","Headless","iced_renderer::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer<Handle = A::Handle>,

    Source§

    type Handle = <A as Renderer>::Handle

    The image Handle to be displayed. Iced exposes its own default implementation of a Handle
    Source§

    fn measure_image(&self, handle: &Self::Handle) -> Size<u32>

    Returns the dimensions of an image for the given [Handle].
    Source§

    fn draw_image(&mut self, image: Image<A::Handle>, bounds: Rectangle)

    Draws an Image inside the provided bounds.
    ","Renderer","iced_renderer::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Source§

    fn measure_svg(&self, handle: &Handle) -> Size<u32>

    Returns the default dimensions of an SVG for the given [Handle].
    Source§

    fn draw_svg(&mut self, svg: Svg, bounds: Rectangle)

    Draws an SVG with the given [Handle], an optional [Color] filter, and inside the provided bounds.
    ","Renderer","iced_renderer::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Source§

    fn draw_mesh(&mut self, mesh: Mesh)

    Draws the given Mesh.
    ","Renderer","iced_renderer::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Source§

    fn fill_quad(&mut self, quad: Quad, background: impl Into<Background>)

    Fills a [Quad] with the provided [Background].
    Source§

    fn clear(&mut self)

    Clears all of the recorded primitives in the [Renderer].
    Source§

    fn start_layer(&mut self, bounds: Rectangle)

    Starts recording a new layer.
    Source§

    fn end_layer(&mut self)

    Ends recording a new layer. Read more
    Source§

    fn start_transformation(&mut self, transformation: Transformation)

    Starts recording with a new [Transformation].
    Source§

    fn end_transformation(&mut self)

    Ends recording a new layer. Read more
    §

    fn with_layer(&mut self, bounds: Rectangle, f: impl FnOnce(&mut Self))

    Draws the primitives recorded in the given closure in a new layer. Read more
    §

    fn with_transformation(\n &mut self,\n transformation: Transformation,\n f: impl FnOnce(&mut Self),\n)

    Applies a [Transformation] to the primitives recorded in the given closure.
    §

    fn with_translation(&mut self, translation: Vector, f: impl FnOnce(&mut Self))

    Applies a translation to the primitives recorded in the given closure.
    ","Renderer","iced_renderer::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Available on crate feature wgpu only.
    Source§

    fn draw_primitive(&mut self, bounds: Rectangle, primitive: impl Primitive)

    Draws a custom primitive.
    ","Renderer","iced_renderer::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Available on crate feature geometry only.
    Source§

    type Geometry = Geometry<<A as Renderer>::Geometry, <B as Renderer>::Geometry>

    The kind of geometry this renderer can draw.
    Source§

    type Frame = Frame<<A as Renderer>::Frame, <B as Renderer>::Frame>

    The kind of Frame this renderer supports.
    Source§

    fn new_frame(&self, size: Size) -> Self::Frame

    Creates a new Self::Frame.
    Source§

    fn draw_geometry(&mut self, geometry: Self::Geometry)

    Draws the given Self::Geometry.
    ","Renderer","iced_renderer::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer<Font = A::Font, Paragraph = A::Paragraph, Editor = A::Editor>,

    Source§

    const ICON_FONT: Self::Font = A::ICON_FONT

    The icon font of the backend.
    Source§

    const CHECKMARK_ICON: char = A::CHECKMARK_ICON

    The char representing a ✔ icon in the ICON_FONT.
    Source§

    const ARROW_DOWN_ICON: char = A::ARROW_DOWN_ICON

    The char representing a ▼ icon in the built-in ICON_FONT.
    Source§

    type Font = <A as Renderer>::Font

    The font type used.
    Source§

    type Paragraph = <A as Renderer>::Paragraph

    The [Paragraph] of this [Renderer].
    Source§

    type Editor = <A as Renderer>::Editor

    The [Editor] of this [Renderer].
    Source§

    fn default_font(&self) -> Self::Font

    Returns the default [Self::Font].
    Source§

    fn default_size(&self) -> Pixels

    Returns the default size of [Text].
    Source§

    fn fill_paragraph(\n &mut self,\n text: &Self::Paragraph,\n position: Point,\n color: Color,\n clip_bounds: Rectangle,\n)

    Draws the given [Paragraph] at the given position and with the given\n[Color].
    Source§

    fn fill_editor(\n &mut self,\n editor: &Self::Editor,\n position: Point,\n color: Color,\n clip_bounds: Rectangle,\n)

    Draws the given [Editor] at the given position and with the given\n[Color].
    Source§

    fn fill_text(\n &mut self,\n text: Text<String, Self::Font>,\n position: Point,\n color: Color,\n clip_bounds: Rectangle,\n)

    Draws the given [Text] at the given position and with the given\n[Color].
    ","Renderer","iced_renderer::Renderer"]]],["iced_widget",[["
    Source§

    impl<A, B> Debug for Renderer<A, B>
    where\n A: Debug,\n B: Debug,

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Debug","iced_widget::Renderer"],["
    Source§

    impl<A, B> Default for Renderer<A, B>
    where\n A: Default,\n B: Default,

    Source§

    type Compositor = Compositor<<A as Default>::Compositor, <B as Default>::Compositor>

    The compositor of the renderer.
    ","Default","iced_widget::Renderer"],["
    Source§

    impl Headless for Renderer<Renderer, Renderer>

    Source§

    fn new(\n default_font: Font,\n default_text_size: Pixels,\n) -> Renderer<Renderer, Renderer>

    Creates a new Headless renderer;
    Source§

    fn screenshot(\n &mut self,\n size: Size<u32>,\n scale_factor: f32,\n background_color: Color,\n) -> Vec<u8>

    Draws offscreen into a screenshot, returning a collection of\nbytes representing the rendered pixels in RGBA order.
    ","Headless","iced_widget::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer<Handle = <A as Renderer>::Handle>,

    Source§

    type Handle = <A as Renderer>::Handle

    The image Handle to be displayed. Iced exposes its own default implementation of a Handle
    Source§

    fn measure_image(\n &self,\n handle: &<Renderer<A, B> as Renderer>::Handle,\n) -> Size<u32>

    Returns the dimensions of an image for the given Handle.
    Source§

    fn draw_image(\n &mut self,\n image: Image<<A as Renderer>::Handle>,\n bounds: Rectangle,\n)

    Draws an Image inside the provided bounds.
    ","Renderer","iced_widget::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Source§

    fn measure_svg(&self, handle: &Handle) -> Size<u32>

    Returns the default dimensions of an SVG for the given Handle.
    Source§

    fn draw_svg(&mut self, svg: Svg, bounds: Rectangle)

    Draws an SVG with the given Handle, an optional Color filter, and inside the provided bounds.
    ","Renderer","iced_widget::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Source§

    fn draw_mesh(&mut self, mesh: Mesh)

    Draws the given Mesh.
    ","Renderer","iced_widget::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Source§

    fn fill_quad(&mut self, quad: Quad, background: impl Into<Background>)

    Fills a Quad with the provided Background.
    Source§

    fn clear(&mut self)

    Clears all of the recorded primitives in the Renderer.
    Source§

    fn start_layer(&mut self, bounds: Rectangle)

    Starts recording a new layer.
    Source§

    fn end_layer(&mut self)

    Ends recording a new layer. Read more
    Source§

    fn start_transformation(&mut self, transformation: Transformation)

    Starts recording with a new Transformation.
    Source§

    fn end_transformation(&mut self)

    Ends recording a new layer. Read more
    Source§

    fn with_layer(&mut self, bounds: Rectangle, f: impl FnOnce(&mut Self))

    Draws the primitives recorded in the given closure in a new layer. Read more
    Source§

    fn with_transformation(\n &mut self,\n transformation: Transformation,\n f: impl FnOnce(&mut Self),\n)

    Applies a Transformation to the primitives recorded in the given closure.
    Source§

    fn with_translation(&mut self, translation: Vector, f: impl FnOnce(&mut Self))

    Applies a translation to the primitives recorded in the given closure.
    ","Renderer","iced_widget::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Available on crate feature wgpu only.
    Source§

    fn draw_primitive(&mut self, bounds: Rectangle, primitive: impl Primitive)

    Draws a custom primitive.
    ","Renderer","iced_widget::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Source§

    type Geometry = Geometry<<A as Renderer>::Geometry, <B as Renderer>::Geometry>

    The kind of geometry this renderer can draw.
    Source§

    type Frame = Frame<<A as Renderer>::Frame, <B as Renderer>::Frame>

    The kind of Frame this renderer supports.
    Source§

    fn new_frame(&self, size: Size) -> <Renderer<A, B> as Renderer>::Frame

    Creates a new Self::Frame.
    Source§

    fn draw_geometry(&mut self, geometry: <Renderer<A, B> as Renderer>::Geometry)

    Draws the given Self::Geometry.
    ","Renderer","iced_widget::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n B: Renderer<Font = <A as Renderer>::Font, Paragraph = <A as Renderer>::Paragraph, Editor = <A as Renderer>::Editor>,\n A: Renderer,

    Source§

    const ICON_FONT: <Renderer<A, B> as Renderer>::Font = A::ICON_FONT

    The icon font of the backend.
    Source§

    const CHECKMARK_ICON: char = A::CHECKMARK_ICON

    The char representing a ✔ icon in the ICON_FONT.
    Source§

    const ARROW_DOWN_ICON: char = A::ARROW_DOWN_ICON

    The char representing a ▼ icon in the built-in ICON_FONT.
    Source§

    type Font = <A as Renderer>::Font

    The font type used.
    Source§

    type Paragraph = <A as Renderer>::Paragraph

    The Paragraph of this Renderer.
    Source§

    type Editor = <A as Renderer>::Editor

    The Editor of this Renderer.
    Source§

    fn default_font(&self) -> <Renderer<A, B> as Renderer>::Font

    Returns the default Self::Font.
    Source§

    fn default_size(&self) -> Pixels

    Returns the default size of Text.
    Source§

    fn fill_paragraph(\n &mut self,\n text: &<Renderer<A, B> as Renderer>::Paragraph,\n position: Point,\n color: Color,\n clip_bounds: Rectangle,\n)

    Draws the given Paragraph at the given position and with the given\nColor.
    Source§

    fn fill_editor(\n &mut self,\n editor: &<Renderer<A, B> as Renderer>::Editor,\n position: Point,\n color: Color,\n clip_bounds: Rectangle,\n)

    Draws the given Editor at the given position and with the given\nColor.
    Source§

    fn fill_text(\n &mut self,\n text: Text<String, <Renderer<A, B> as Renderer>::Font>,\n position: Point,\n color: Color,\n clip_bounds: Rectangle,\n)

    Draws the given Text at the given position and with the given\nColor.
    ","Renderer","iced_widget::Renderer"]]]]); + var type_impls = Object.fromEntries([["iced",[["
    Source§

    impl<A, B> Debug for Renderer<A, B>
    where\n A: Debug,\n B: Debug,

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Debug","iced::Renderer"],["
    Source§

    impl<A, B> Default for Renderer<A, B>
    where\n A: Default,\n B: Default,

    Source§

    type Compositor = Compositor<<A as Default>::Compositor, <B as Default>::Compositor>

    The compositor of the renderer.
    ","Default","iced::Renderer"],["
    Source§

    impl Headless for Renderer<Renderer, Renderer>

    Source§

    fn new(\n default_font: Font,\n default_text_size: Pixels,\n) -> Renderer<Renderer, Renderer>

    Creates a new Headless renderer;
    Source§

    fn screenshot(\n &mut self,\n size: Size<u32>,\n scale_factor: f32,\n background_color: Color,\n) -> Vec<u8>

    Draws offscreen into a screenshot, returning a collection of\nbytes representing the rendered pixels in RGBA order.
    ","Headless","iced::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer<Handle = <A as Renderer>::Handle>,

    Source§

    type Handle = <A as Renderer>::Handle

    The image Handle to be displayed. Iced exposes its own default implementation of a Handle
    Source§

    fn measure_image(\n &self,\n handle: &<Renderer<A, B> as Renderer>::Handle,\n) -> Size<u32>

    Returns the dimensions of an image for the given Handle.
    Source§

    fn draw_image(\n &mut self,\n image: Image<<A as Renderer>::Handle>,\n bounds: Rectangle,\n)

    Draws an Image inside the provided bounds.
    ","Renderer","iced::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Source§

    fn measure_svg(&self, handle: &Handle) -> Size<u32>

    Returns the default dimensions of an SVG for the given Handle.
    Source§

    fn draw_svg(&mut self, svg: Svg, bounds: Rectangle)

    Draws an SVG with the given Handle, an optional Color filter, and inside the provided bounds.
    ","Renderer","iced::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Source§

    fn draw_mesh(&mut self, mesh: Mesh)

    Draws the given Mesh.
    ","Renderer","iced::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Source§

    fn fill_quad(&mut self, quad: Quad, background: impl Into<Background>)

    Fills a Quad with the provided Background.
    Source§

    fn clear(&mut self)

    Clears all of the recorded primitives in the Renderer.
    Source§

    fn start_layer(&mut self, bounds: Rectangle)

    Starts recording a new layer.
    Source§

    fn end_layer(&mut self)

    Ends recording a new layer. Read more
    Source§

    fn start_transformation(&mut self, transformation: Transformation)

    Starts recording with a new Transformation.
    Source§

    fn end_transformation(&mut self)

    Ends recording a new layer. Read more
    Source§

    fn with_layer(&mut self, bounds: Rectangle, f: impl FnOnce(&mut Self))

    Draws the primitives recorded in the given closure in a new layer. Read more
    Source§

    fn with_transformation(\n &mut self,\n transformation: Transformation,\n f: impl FnOnce(&mut Self),\n)

    Applies a Transformation to the primitives recorded in the given closure.
    Source§

    fn with_translation(&mut self, translation: Vector, f: impl FnOnce(&mut Self))

    Applies a translation to the primitives recorded in the given closure.
    ","Renderer","iced::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Available on crate feature wgpu only.
    Source§

    fn draw_primitive(&mut self, bounds: Rectangle, primitive: impl Primitive)

    Draws a custom primitive.
    ","Renderer","iced::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Source§

    type Geometry = Geometry<<A as Renderer>::Geometry, <B as Renderer>::Geometry>

    The kind of geometry this renderer can draw.
    Source§

    type Frame = Frame<<A as Renderer>::Frame, <B as Renderer>::Frame>

    The kind of Frame this renderer supports.
    Source§

    fn new_frame(&self, size: Size) -> <Renderer<A, B> as Renderer>::Frame

    Creates a new Self::Frame.
    Source§

    fn draw_geometry(&mut self, geometry: <Renderer<A, B> as Renderer>::Geometry)

    Draws the given Self::Geometry.
    ","Renderer","iced::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n B: Renderer<Font = <A as Renderer>::Font, Paragraph = <A as Renderer>::Paragraph, Editor = <A as Renderer>::Editor>,\n A: Renderer,

    Source§

    const ICON_FONT: <Renderer<A, B> as Renderer>::Font = A::ICON_FONT

    The icon font of the backend.
    Source§

    const CHECKMARK_ICON: char = A::CHECKMARK_ICON

    The char representing a ✔ icon in the ICON_FONT.
    Source§

    const ARROW_DOWN_ICON: char = A::ARROW_DOWN_ICON

    The char representing a ▼ icon in the built-in ICON_FONT.
    Source§

    type Font = <A as Renderer>::Font

    The font type used.
    Source§

    type Paragraph = <A as Renderer>::Paragraph

    The Paragraph of this Renderer.
    Source§

    type Editor = <A as Renderer>::Editor

    The Editor of this Renderer.
    Source§

    fn default_font(&self) -> <Renderer<A, B> as Renderer>::Font

    Returns the default Self::Font.
    Source§

    fn default_size(&self) -> Pixels

    Returns the default size of Text.
    Source§

    fn fill_paragraph(\n &mut self,\n text: &<Renderer<A, B> as Renderer>::Paragraph,\n position: Point,\n color: Color,\n clip_bounds: Rectangle,\n)

    Draws the given Paragraph at the given position and with the given\nColor.
    Source§

    fn fill_editor(\n &mut self,\n editor: &<Renderer<A, B> as Renderer>::Editor,\n position: Point,\n color: Color,\n clip_bounds: Rectangle,\n)

    Draws the given Editor at the given position and with the given\nColor.
    Source§

    fn fill_text(\n &mut self,\n text: Text<String, <Renderer<A, B> as Renderer>::Font>,\n position: Point,\n color: Color,\n clip_bounds: Rectangle,\n)

    Draws the given Text at the given position and with the given\nColor.
    ","Renderer","iced::Renderer"]]],["iced_renderer",[["
    Source§

    impl<A: Debug, B: Debug> Debug for Renderer<A, B>

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result

    Formats the value using the given formatter. Read more
    ","Debug","iced_renderer::Renderer"],["
    Source§

    impl<A, B> Default for Renderer<A, B>
    where\n A: Default,\n B: Default,

    Source§

    type Compositor = Compositor<<A as Default>::Compositor, <B as Default>::Compositor>

    The compositor of the renderer.
    ","Default","iced_renderer::Renderer"],["
    Source§

    impl Headless for Renderer<Renderer, Renderer>

    Available on crate features wgpu and tiny-skia only.
    Source§

    fn new(default_font: Font, default_text_size: Pixels) -> Self

    Creates a new Headless renderer;
    Source§

    fn screenshot(\n &mut self,\n size: Size<u32>,\n scale_factor: f32,\n background_color: Color,\n) -> Vec<u8>

    Draws offscreen into a screenshot, returning a collection of\nbytes representing the rendered pixels in RGBA order.
    ","Headless","iced_renderer::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer<Handle = A::Handle>,

    Source§

    type Handle = <A as Renderer>::Handle

    The image Handle to be displayed. Iced exposes its own default implementation of a Handle
    Source§

    fn measure_image(&self, handle: &Self::Handle) -> Size<u32>

    Returns the dimensions of an image for the given Handle.
    Source§

    fn draw_image(&mut self, image: Image<A::Handle>, bounds: Rectangle)

    Draws an Image inside the provided bounds.
    ","Renderer","iced_renderer::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Source§

    fn measure_svg(&self, handle: &Handle) -> Size<u32>

    Returns the default dimensions of an SVG for the given Handle.
    Source§

    fn draw_svg(&mut self, svg: Svg, bounds: Rectangle)

    Draws an SVG with the given Handle, an optional Color filter, and inside the provided bounds.
    ","Renderer","iced_renderer::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Source§

    fn draw_mesh(&mut self, mesh: Mesh)

    Draws the given Mesh.
    ","Renderer","iced_renderer::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Source§

    fn fill_quad(&mut self, quad: Quad, background: impl Into<Background>)

    Fills a Quad with the provided Background.
    Source§

    fn clear(&mut self)

    Clears all of the recorded primitives in the Renderer.
    Source§

    fn start_layer(&mut self, bounds: Rectangle)

    Starts recording a new layer.
    Source§

    fn end_layer(&mut self)

    Ends recording a new layer. Read more
    Source§

    fn start_transformation(&mut self, transformation: Transformation)

    Starts recording with a new Transformation.
    Source§

    fn end_transformation(&mut self)

    Ends recording a new layer. Read more
    Source§

    fn with_layer(&mut self, bounds: Rectangle, f: impl FnOnce(&mut Self))

    Draws the primitives recorded in the given closure in a new layer. Read more
    Source§

    fn with_transformation(\n &mut self,\n transformation: Transformation,\n f: impl FnOnce(&mut Self),\n)

    Applies a Transformation to the primitives recorded in the given closure.
    Source§

    fn with_translation(&mut self, translation: Vector, f: impl FnOnce(&mut Self))

    Applies a translation to the primitives recorded in the given closure.
    ","Renderer","iced_renderer::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Available on crate feature wgpu only.
    Source§

    fn draw_primitive(&mut self, bounds: Rectangle, primitive: impl Primitive)

    Draws a custom primitive.
    ","Renderer","iced_renderer::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Available on crate feature geometry only.
    Source§

    type Geometry = Geometry<<A as Renderer>::Geometry, <B as Renderer>::Geometry>

    The kind of geometry this renderer can draw.
    Source§

    type Frame = Frame<<A as Renderer>::Frame, <B as Renderer>::Frame>

    The kind of Frame this renderer supports.
    Source§

    fn new_frame(&self, size: Size) -> Self::Frame

    Creates a new Self::Frame.
    Source§

    fn draw_geometry(&mut self, geometry: Self::Geometry)

    Draws the given Self::Geometry.
    ","Renderer","iced_renderer::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer<Font = A::Font, Paragraph = A::Paragraph, Editor = A::Editor>,

    Source§

    const ICON_FONT: Self::Font = A::ICON_FONT

    The icon font of the backend.
    Source§

    const CHECKMARK_ICON: char = A::CHECKMARK_ICON

    The char representing a ✔ icon in the ICON_FONT.
    Source§

    const ARROW_DOWN_ICON: char = A::ARROW_DOWN_ICON

    The char representing a ▼ icon in the built-in ICON_FONT.
    Source§

    type Font = <A as Renderer>::Font

    The font type used.
    Source§

    type Paragraph = <A as Renderer>::Paragraph

    The Paragraph of this Renderer.
    Source§

    type Editor = <A as Renderer>::Editor

    The Editor of this Renderer.
    Source§

    fn default_font(&self) -> Self::Font

    Returns the default Self::Font.
    Source§

    fn default_size(&self) -> Pixels

    Returns the default size of Text.
    Source§

    fn fill_paragraph(\n &mut self,\n text: &Self::Paragraph,\n position: Point,\n color: Color,\n clip_bounds: Rectangle,\n)

    Draws the given Paragraph at the given position and with the given\nColor.
    Source§

    fn fill_editor(\n &mut self,\n editor: &Self::Editor,\n position: Point,\n color: Color,\n clip_bounds: Rectangle,\n)

    Draws the given Editor at the given position and with the given\nColor.
    Source§

    fn fill_text(\n &mut self,\n text: Text<String, Self::Font>,\n position: Point,\n color: Color,\n clip_bounds: Rectangle,\n)

    Draws the given Text at the given position and with the given\nColor.
    ","Renderer","iced_renderer::Renderer"]]],["iced_widget",[["
    Source§

    impl<A, B> Debug for Renderer<A, B>
    where\n A: Debug,\n B: Debug,

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Debug","iced_widget::Renderer"],["
    Source§

    impl<A, B> Default for Renderer<A, B>
    where\n A: Default,\n B: Default,

    Source§

    type Compositor = Compositor<<A as Default>::Compositor, <B as Default>::Compositor>

    The compositor of the renderer.
    ","Default","iced_widget::Renderer"],["
    Source§

    impl Headless for Renderer<Renderer, Renderer>

    Source§

    fn new(\n default_font: Font,\n default_text_size: Pixels,\n) -> Renderer<Renderer, Renderer>

    Creates a new Headless renderer;
    Source§

    fn screenshot(\n &mut self,\n size: Size<u32>,\n scale_factor: f32,\n background_color: Color,\n) -> Vec<u8>

    Draws offscreen into a screenshot, returning a collection of\nbytes representing the rendered pixels in RGBA order.
    ","Headless","iced_widget::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer<Handle = <A as Renderer>::Handle>,

    Source§

    type Handle = <A as Renderer>::Handle

    The image Handle to be displayed. Iced exposes its own default implementation of a Handle
    Source§

    fn measure_image(\n &self,\n handle: &<Renderer<A, B> as Renderer>::Handle,\n) -> Size<u32>

    Returns the dimensions of an image for the given Handle.
    Source§

    fn draw_image(\n &mut self,\n image: Image<<A as Renderer>::Handle>,\n bounds: Rectangle,\n)

    Draws an Image inside the provided bounds.
    ","Renderer","iced_widget::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Source§

    fn measure_svg(&self, handle: &Handle) -> Size<u32>

    Returns the default dimensions of an SVG for the given Handle.
    Source§

    fn draw_svg(&mut self, svg: Svg, bounds: Rectangle)

    Draws an SVG with the given Handle, an optional Color filter, and inside the provided bounds.
    ","Renderer","iced_widget::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Source§

    fn draw_mesh(&mut self, mesh: Mesh)

    Draws the given Mesh.
    ","Renderer","iced_widget::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Source§

    fn fill_quad(&mut self, quad: Quad, background: impl Into<Background>)

    Fills a Quad with the provided Background.
    Source§

    fn clear(&mut self)

    Clears all of the recorded primitives in the Renderer.
    Source§

    fn start_layer(&mut self, bounds: Rectangle)

    Starts recording a new layer.
    Source§

    fn end_layer(&mut self)

    Ends recording a new layer. Read more
    Source§

    fn start_transformation(&mut self, transformation: Transformation)

    Starts recording with a new Transformation.
    Source§

    fn end_transformation(&mut self)

    Ends recording a new layer. Read more
    Source§

    fn with_layer(&mut self, bounds: Rectangle, f: impl FnOnce(&mut Self))

    Draws the primitives recorded in the given closure in a new layer. Read more
    Source§

    fn with_transformation(\n &mut self,\n transformation: Transformation,\n f: impl FnOnce(&mut Self),\n)

    Applies a Transformation to the primitives recorded in the given closure.
    Source§

    fn with_translation(&mut self, translation: Vector, f: impl FnOnce(&mut Self))

    Applies a translation to the primitives recorded in the given closure.
    ","Renderer","iced_widget::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Available on crate feature wgpu only.
    Source§

    fn draw_primitive(&mut self, bounds: Rectangle, primitive: impl Primitive)

    Draws a custom primitive.
    ","Renderer","iced_widget::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n A: Renderer,\n B: Renderer,

    Source§

    type Geometry = Geometry<<A as Renderer>::Geometry, <B as Renderer>::Geometry>

    The kind of geometry this renderer can draw.
    Source§

    type Frame = Frame<<A as Renderer>::Frame, <B as Renderer>::Frame>

    The kind of Frame this renderer supports.
    Source§

    fn new_frame(&self, size: Size) -> <Renderer<A, B> as Renderer>::Frame

    Creates a new Self::Frame.
    Source§

    fn draw_geometry(&mut self, geometry: <Renderer<A, B> as Renderer>::Geometry)

    Draws the given Self::Geometry.
    ","Renderer","iced_widget::Renderer"],["
    Source§

    impl<A, B> Renderer for Renderer<A, B>
    where\n B: Renderer<Font = <A as Renderer>::Font, Paragraph = <A as Renderer>::Paragraph, Editor = <A as Renderer>::Editor>,\n A: Renderer,

    Source§

    const ICON_FONT: <Renderer<A, B> as Renderer>::Font = A::ICON_FONT

    The icon font of the backend.
    Source§

    const CHECKMARK_ICON: char = A::CHECKMARK_ICON

    The char representing a ✔ icon in the ICON_FONT.
    Source§

    const ARROW_DOWN_ICON: char = A::ARROW_DOWN_ICON

    The char representing a ▼ icon in the built-in ICON_FONT.
    Source§

    type Font = <A as Renderer>::Font

    The font type used.
    Source§

    type Paragraph = <A as Renderer>::Paragraph

    The Paragraph of this Renderer.
    Source§

    type Editor = <A as Renderer>::Editor

    The Editor of this Renderer.
    Source§

    fn default_font(&self) -> <Renderer<A, B> as Renderer>::Font

    Returns the default Self::Font.
    Source§

    fn default_size(&self) -> Pixels

    Returns the default size of Text.
    Source§

    fn fill_paragraph(\n &mut self,\n text: &<Renderer<A, B> as Renderer>::Paragraph,\n position: Point,\n color: Color,\n clip_bounds: Rectangle,\n)

    Draws the given Paragraph at the given position and with the given\nColor.
    Source§

    fn fill_editor(\n &mut self,\n editor: &<Renderer<A, B> as Renderer>::Editor,\n position: Point,\n color: Color,\n clip_bounds: Rectangle,\n)

    Draws the given Editor at the given position and with the given\nColor.
    Source§

    fn fill_text(\n &mut self,\n text: Text<String, <Renderer<A, B> as Renderer>::Font>,\n position: Point,\n color: Color,\n clip_bounds: Rectangle,\n)

    Draws the given Text at the given position and with the given\nColor.
    ","Renderer","iced_widget::Renderer"]]]]); if (window.register_type_impls) { window.register_type_impls(type_impls); } else { window.pending_type_impls = type_impls; } })() -//{"start":55,"fragment_lengths":[47288,32374,47900]} \ No newline at end of file +//{"start":55,"fragment_lengths":[47288,44770,47900]} \ No newline at end of file diff --git a/type.impl/std/primitive.usize.js b/type.impl/std/primitive.usize.js index fab813b7313..4608387c713 100644 --- a/type.impl/std/primitive.usize.js +++ b/type.impl/std/primitive.usize.js @@ -1,9 +1,9 @@ (function() { - var type_impls = Object.fromEntries([["iced",[["
    §

    impl AbsDiffEq for usize

    §

    type Epsilon = usize

    Used for specifying relative comparisons.
    §

    fn default_epsilon() -> usize

    The default tolerance to use when testing values that are close together. Read more
    §

    fn abs_diff_eq(&self, other: &usize, epsilon: usize) -> bool

    A test for equality that uses the absolute difference to compute the approximate\nequality of two numbers.
    §

    fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool

    The inverse of [AbsDiffEq::abs_diff_eq].
    ","AbsDiffEq","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<T> Accumulate<T> for usize

    §

    fn initial(_capacity: Option<usize>) -> usize

    Create a new Extend of the correct type
    §

    fn accumulate(&mut self, _acc: T)

    Accumulate the input into an accumulator
    ","Accumulate","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Add<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: &BigInt) -> BigInt

    Performs the + operation. Read more
    ","Add<&BigInt>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Add<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: &BigUint) -> BigUint

    Performs the + operation. Read more
    ","Add<&BigUint>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Add<&usize> for usize

    Source§

    type Output = <usize as Add>::Output

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: &usize) -> <usize as Add>::Output

    Performs the + operation. Read more
    ","Add<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Add<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: BigInt) -> BigInt

    Performs the + operation. Read more
    ","Add","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Add<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: BigUint) -> BigUint

    Performs the + operation. Read more
    ","Add","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Add for usize

    Source§

    type Output = usize

    The resulting type after applying the + operator.
    Source§

    const fn add(self, other: usize) -> usize

    Performs the + operation. Read more
    ","Add","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl AddAssign<&usize> for usize

    Source§

    fn add_assign(&mut self, other: &usize)

    Performs the += operation. Read more
    ","AddAssign<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl AddAssign for usize

    Source§

    fn add_assign(&mut self, other: usize)

    Performs the += operation. Read more
    ","AddAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl AsBytes for usize

    §

    fn as_bytes(&self) -> &[u8]

    Gets the bytes of this value. Read more
    §

    fn as_bytes_mut(&mut self) -> &mut [u8]
    where\n Self: FromBytes,

    Gets the bytes of this value mutably. Read more
    §

    fn write_to(&self, bytes: &mut [u8]) -> Option<()>

    Writes a copy of self to bytes. Read more
    §

    fn write_to_prefix(&self, bytes: &mut [u8]) -> Option<()>

    Writes a copy of self to the prefix of bytes. Read more
    §

    fn write_to_suffix(&self, bytes: &mut [u8]) -> Option<()>

    Writes a copy of self to the suffix of bytes. Read more
    ","AsBytes","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<f32> for usize

    Source§

    fn as_(self) -> f32

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<f64> for usize

    Source§

    fn as_(self) -> f64

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i128> for usize

    Source§

    fn as_(self) -> i128

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i16> for usize

    Source§

    fn as_(self) -> i16

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i32> for usize

    Source§

    fn as_(self) -> i32

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i64> for usize

    Source§

    fn as_(self) -> i64

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i8> for usize

    Source§

    fn as_(self) -> i8

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<isize> for usize

    Source§

    fn as_(self) -> isize

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u128> for usize

    Source§

    fn as_(self) -> u128

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u16> for usize

    Source§

    fn as_(self) -> u16

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u32> for usize

    Source§

    fn as_(self) -> u32

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u64> for usize

    Source§

    fn as_(self) -> u64

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u8> for usize

    Source§

    fn as_(self) -> u8

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<usize> for usize

    Source§

    fn as_(self) -> usize

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Binary for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Binary","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitAnd<&usize> for usize

    Source§

    type Output = <usize as BitAnd>::Output

    The resulting type after applying the & operator.
    Source§

    fn bitand(self, other: &usize) -> <usize as BitAnd>::Output

    Performs the & operation. Read more
    ","BitAnd<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitAnd for usize

    Source§

    type Output = usize

    The resulting type after applying the & operator.
    Source§

    fn bitand(self, rhs: usize) -> usize

    Performs the & operation. Read more
    ","BitAnd","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl BitAndAssign<&usize> for usize

    Source§

    fn bitand_assign(&mut self, other: &usize)

    Performs the &= operation. Read more
    ","BitAndAssign<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl BitAndAssign for usize

    Source§

    fn bitand_assign(&mut self, other: usize)

    Performs the &= operation. Read more
    ","BitAndAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl BitBlock for usize

    Source§

    fn bits() -> usize

    How many bits it has
    Source§

    fn from_byte(byte: u8) -> usize

    Convert a byte into this type (lowest-order bits set)
    Source§

    fn count_ones(self) -> usize

    Count the number of 1’s in the bitwise repr
    Source§

    fn count_zeros(self) -> usize

    Count the number of 0’s in the bitwise repr
    Source§

    fn one() -> usize

    Get 1
    Source§

    fn zero() -> usize

    Get 0
    Source§

    fn bytes() -> usize

    How many bytes it has
    ","BitBlock","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl BitField for usize

    §

    const BIT_LENGTH: usize = 64usize

    The number of bits in this bit field. Read more
    §

    fn get_bit(&self, bit: usize) -> bool

    Obtains the bit at the index bit; note that index 0 is the least significant bit, while\nindex length() - 1 is the most significant bit. Read more
    §

    fn get_bits<T>(&self, range: T) -> usize
    where\n T: RangeBounds<usize>,

    Obtains the range of bits specified by range; note that index 0 is the least significant\nbit, while index length() - 1 is the most significant bit. Read more
    §

    fn set_bit(&mut self, bit: usize, value: bool) -> &mut usize

    Sets the bit at the index bit to the value value (where true means a value of ‘1’ and\nfalse means a value of ‘0’); note that index 0 is the least significant bit, while index\nlength() - 1 is the most significant bit. Read more
    §

    fn set_bits<T>(&mut self, range: T, value: usize) -> &mut usize
    where\n T: RangeBounds<usize>,

    Sets the range of bits defined by the range range to the lower bits of value; to be\nspecific, if the range is N bits long, the N lower bits of value will be used; if any of\nthe other bits in value are set to 1, this function will panic. Read more
    ","BitField","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitOr<&usize> for usize

    Source§

    type Output = <usize as BitOr>::Output

    The resulting type after applying the | operator.
    Source§

    fn bitor(self, other: &usize) -> <usize as BitOr>::Output

    Performs the | operation. Read more
    ","BitOr<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitOr for usize

    Source§

    type Output = usize

    The resulting type after applying the | operator.
    Source§

    fn bitor(self, rhs: usize) -> usize

    Performs the | operation. Read more
    ","BitOr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl BitOrAssign<&usize> for usize

    Source§

    fn bitor_assign(&mut self, other: &usize)

    Performs the |= operation. Read more
    ","BitOrAssign<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl BitOrAssign for usize

    Source§

    fn bitor_assign(&mut self, other: usize)

    Performs the |= operation. Read more
    ","BitOrAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitXor<&usize> for usize

    Source§

    type Output = <usize as BitXor>::Output

    The resulting type after applying the ^ operator.
    Source§

    fn bitxor(self, other: &usize) -> <usize as BitXor>::Output

    Performs the ^ operation. Read more
    ","BitXor<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitXor for usize

    Source§

    type Output = usize

    The resulting type after applying the ^ operator.
    Source§

    fn bitxor(self, other: usize) -> usize

    Performs the ^ operation. Read more
    ","BitXor","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl BitXorAssign<&usize> for usize

    Source§

    fn bitxor_assign(&mut self, other: &usize)

    Performs the ^= operation. Read more
    ","BitXorAssign<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl BitXorAssign for usize

    Source§

    fn bitxor_assign(&mut self, other: usize)

    Performs the ^= operation. Read more
    ","BitXorAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Bits for usize

    §

    const EMPTY: usize = 0usize

    A value with all bits unset.
    §

    const ALL: usize = 18_446_744_073_709_551_615usize

    A value with all bits set.
    ","Bits","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Bounded for usize

    Source§

    fn min_value() -> usize

    Returns the smallest finite number this type can represent
    Source§

    fn max_value() -> usize

    Returns the largest finite number this type can represent
    ","Bounded","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CarryingMulAdd for usize

    Source§

    type Unsigned = usize

    🔬This is a nightly-only experimental API. (core_intrinsics_fallbacks)
    Source§

    const fn carrying_mul_add(self, a: usize, b: usize, c: usize) -> (usize, usize)

    🔬This is a nightly-only experimental API. (core_intrinsics_fallbacks)
    ","CarryingMulAdd","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl CastSigned for usize

    §

    type Signed = isize

    The signed integer type with the same size as Self.
    §

    fn cast_signed(self) -> <usize as CastSigned>::Signed

    Cast an integer to the signed integer of the same size.
    ","CastSigned","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl CastUnsigned for usize

    §

    type Unsigned = usize

    The unsigned integer type with the same size as Self.
    §

    fn cast_unsigned(self) -> <usize as CastUnsigned>::Unsigned

    Cast an integer to the unsigned integer of the same size.
    ","CastUnsigned","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Ceil for usize

    §

    fn ceil(self) -> usize

    Rounds to the smallest integer equal or greater than the original value. Read more
    ","Ceil","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedAdd for usize

    Source§

    fn checked_add(&self, v: &usize) -> Option<usize>

    Adds two numbers, checking for overflow. If overflow happens, None is\nreturned.
    ","CheckedAdd","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedDiv for usize

    Source§

    fn checked_div(&self, v: &usize) -> Option<usize>

    Divides two numbers, checking for underflow, overflow and division by\nzero. If any of that happens, None is returned.
    ","CheckedDiv","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedEuclid for usize

    Source§

    fn checked_div_euclid(&self, v: &usize) -> Option<usize>

    Performs euclid division that returns None instead of panicking on division by zero\nand instead of wrapping around on underflow and overflow.
    Source§

    fn checked_rem_euclid(&self, v: &usize) -> Option<usize>

    Finds the euclid remainder of dividing two numbers, checking for underflow, overflow and\ndivision by zero. If any of that happens, None is returned.
    Source§

    fn checked_div_rem_euclid(&self, v: &Self) -> Option<(Self, Self)>

    Returns both the quotient and remainder from checked Euclidean division. Read more
    ","CheckedEuclid","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedMul for usize

    Source§

    fn checked_mul(&self, v: &usize) -> Option<usize>

    Multiplies two numbers, checking for underflow or overflow. If underflow\nor overflow happens, None is returned.
    ","CheckedMul","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedNeg for usize

    Source§

    fn checked_neg(&self) -> Option<usize>

    Negates a number, returning None for results that can’t be represented, like signed MIN\nvalues that can’t be positive, or non-zero unsigned values that can’t be negative. Read more
    ","CheckedNeg","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedRem for usize

    Source§

    fn checked_rem(&self, v: &usize) -> Option<usize>

    Finds the remainder of dividing two numbers, checking for underflow, overflow and division\nby zero. If any of that happens, None is returned. Read more
    ","CheckedRem","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedShl for usize

    Source§

    fn checked_shl(&self, rhs: u32) -> Option<usize>

    Checked shift left. Computes self << rhs, returning None\nif rhs is larger than or equal to the number of bits in self. Read more
    ","CheckedShl","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedShr for usize

    Source§

    fn checked_shr(&self, rhs: u32) -> Option<usize>

    Checked shift right. Computes self >> rhs, returning None\nif rhs is larger than or equal to the number of bits in self. Read more
    ","CheckedShr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedSub for usize

    Source§

    fn checked_sub(&self, v: &usize) -> Option<usize>

    Subtracts two numbers, checking for underflow. If underflow happens,\nNone is returned.
    ","CheckedSub","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Clone for usize

    Source§

    fn clone(&self) -> usize

    Returns a copy of the value. Read more
    1.0.0 · Source§

    fn clone_from(&mut self, source: &Self)

    Performs copy-assignment from source. Read more
    ","Clone","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ConstOne for usize

    Source§

    const ONE: usize = 1usize

    The multiplicative identity element of Self, 1.
    ","ConstOne","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ConstZero for usize

    Source§

    const ZERO: usize = 0usize

    The additive identity element of Self, 0.
    ","ConstZero","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Contiguous for usize

    §

    const MAX_VALUE: usize = 18_446_744_073_709_551_615usize

    The upper inclusive bound for valid instances of this type.
    §

    const MIN_VALUE: usize = 0usize

    The lower inclusive bound for valid instances of this type.
    §

    type Int = usize

    The primitive integer type with an identical representation to this\ntype. Read more
    §

    fn from_integer(value: Self::Int) -> Option<Self>

    If value is within the range for valid instances of this type,\nreturns Some(converted_value), otherwise, returns None. Read more
    §

    fn into_integer(self) -> Self::Int

    Perform the conversion from C into the underlying integral type. This\nmostly exists otherwise generic code would need unsafe for the value as integer Read more
    ","Contiguous","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Debug for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Debug","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Default for usize

    Source§

    fn default() -> usize

    Returns the default value of 0

    \n
    ","Default","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'de> Deserialize<'de> for usize

    Source§

    fn deserialize<D>(\n deserializer: D,\n) -> Result<usize, <D as Deserializer<'de>>::Error>
    where\n D: Deserializer<'de>,

    Deserialize this value from the given Serde deserializer. Read more
    ","Deserialize<'de>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl DisjointBitOr for usize

    Source§

    const unsafe fn disjoint_bitor(self, other: usize) -> usize

    🔬This is a nightly-only experimental API. (core_intrinsics_fallbacks)
    See super::disjoint_bitor; we just need the trait indirection to handle\ndifferent types since calling intrinsics with generics doesn’t work.
    ","DisjointBitOr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Display for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Display","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Div<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: &BigInt) -> BigInt

    Performs the / operation. Read more
    ","Div<&BigInt>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Div<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: &BigUint) -> BigUint

    Performs the / operation. Read more
    ","Div<&BigUint>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Div<&usize> for usize

    Source§

    type Output = <usize as Div>::Output

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: &usize) -> <usize as Div>::Output

    Performs the / operation. Read more
    ","Div<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Div<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: BigInt) -> BigInt

    Performs the / operation. Read more
    ","Div","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Div<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: BigUint) -> BigUint

    Performs the / operation. Read more
    ","Div","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.51.0 · Source§

    impl Div<NonZero<usize>> for usize

    Source§

    fn div(self, other: NonZero<usize>) -> usize

    Same as self / other.get(), but because other is a NonZero<_>,\nthere’s never a runtime check for division-by-zero.

    \n

    This operation rounds towards zero, truncating any fractional\npart of the exact result, and cannot panic.

    \n
    Source§

    type Output = usize

    The resulting type after applying the / operator.
    ","Div>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Div for usize

    This operation rounds towards zero, truncating any\nfractional part of the exact result.

    \n

    §Panics

    \n

    This operation will panic if other == 0.

    \n
    Source§

    type Output = usize

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: usize) -> usize

    Performs the / operation. Read more
    ","Div","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl DivAssign<&usize> for usize

    Source§

    fn div_assign(&mut self, other: &usize)

    Performs the /= operation. Read more
    ","DivAssign<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.79.0 · Source§

    impl DivAssign<NonZero<usize>> for usize

    Source§

    fn div_assign(&mut self, other: NonZero<usize>)

    Same as self /= other.get(), but because other is a NonZero<_>,\nthere’s never a runtime check for division-by-zero.

    \n

    This operation rounds towards zero, truncating any fractional\npart of the exact result, and cannot panic.

    \n
    ","DivAssign>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl DivAssign for usize

    Source§

    fn div_assign(&mut self, other: usize)

    Performs the /= operation. Read more
    ","DivAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl ErrnoSentinel for usize

    ","ErrnoSentinel","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Euclid for usize

    Source§

    fn div_euclid(&self, v: &usize) -> usize

    Calculates Euclidean division, the matching method for rem_euclid. Read more
    Source§

    fn rem_euclid(&self, v: &usize) -> usize

    Calculates the least nonnegative remainder of self (mod v). Read more
    Source§

    fn div_rem_euclid(&self, v: &Self) -> (Self, Self)

    Returns both the quotient and remainder from Euclidean division. Read more
    ","Euclid","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Fixed for usize

    §

    fn floor_log2(&self, n: usize) -> usize

    §

    fn ceil_log2(&self, n: usize) -> usize

    §

    fn align_power_of_two(&self, n: usize) -> usize

    §

    fn align_power_of_two_and_shift(&self, n: usize) -> usize

    ","Fixed","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Floor for usize

    §

    fn floor(self) -> usize

    Rounds to the biggest integer equal or lower than the original value. Read more
    ","Floor","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl FmtConst for usize

    Source§

    fn fmt_const(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Print a const expression representing this value.
    ","FmtConst","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl From<Alignment> for usize

    Source§

    fn from(align: Alignment) -> usize

    Converts to this type from the input type.
    ","From","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl From<Pid> for usize

    §

    fn from(v: Pid) -> usize

    Converts to this type from the input type.
    ","From","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<const MIN: usize, const MAX: usize> From<RangedUsize<MIN, MAX>> for usize

    §

    fn from(value: RangedUsize<MIN, MAX>) -> usize

    Converts to this type from the input type.
    ","From>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl From<State> for usize

    §

    fn from(src: State) -> usize

    Converts to this type from the input type.
    ","From","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl From<State> for usize

    §

    fn from(val: State) -> usize

    Converts to this type from the input type.
    ","From","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl From<State> for usize

    §

    fn from(val: State) -> usize

    Converts to this type from the input type.
    ","From","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl From<TokenInner> for usize

    §

    fn from(token: TokenInner) -> usize

    Converts to this type from the input type.
    ","From","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<O> From<U16<O>> for usize
    where\n O: ByteOrder,

    §

    fn from(x: U16<O>) -> usize

    Converts to this type from the input type.
    ","From>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl From<Uint24> for usize

    §

    fn from(src: Uint24) -> usize

    Converts to this type from the input type.
    ","From","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl From<VertexId> for usize

    §

    fn from(v: VertexId) -> usize

    Converts to this type from the input type.
    ","From","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.28.0 · Source§

    impl From<bool> for usize

    Source§

    fn from(small: bool) -> usize

    Converts a bool to usize losslessly.\nThe resulting value is 0 for false and 1 for true values.

    \n
    §Examples
    \n
    assert_eq!(usize::from(true), 1);\nassert_eq!(usize::from(false), 0);
    \n
    ","From","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.26.0 · Source§

    impl From<u16> for usize

    Source§

    fn from(small: u16) -> usize

    Converts u16 to usize losslessly.

    \n
    ","From","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.5.0 · Source§

    impl From<u8> for usize

    Source§

    fn from(small: u8) -> usize

    Converts u8 to usize losslessly.

    \n
    ","From","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl FromBytes for usize

    Source§

    type Bytes = [u8; 8]

    Source§

    fn from_be_bytes(bytes: &<usize as FromBytes>::Bytes) -> usize

    Create a number from its representation as a byte array in big endian. Read more
    Source§

    fn from_le_bytes(bytes: &<usize as FromBytes>::Bytes) -> usize

    Create a number from its representation as a byte array in little endian. Read more
    Source§

    fn from_ne_bytes(bytes: &<usize as FromBytes>::Bytes) -> usize

    Create a number from its memory representation as a byte array in native endianness. Read more
    ","FromBytes","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl FromBytes for usize

    §

    fn ref_from(bytes: &[u8]) -> Option<&Self>
    where\n Self: Sized,

    Interprets the given bytes as a &Self without copying. Read more
    §

    fn ref_from_prefix(bytes: &[u8]) -> Option<&Self>
    where\n Self: Sized,

    Interprets the prefix of the given bytes as a &Self without copying. Read more
    §

    fn ref_from_suffix(bytes: &[u8]) -> Option<&Self>
    where\n Self: Sized,

    Interprets the suffix of the given bytes as a &Self without copying. Read more
    §

    fn mut_from(bytes: &mut [u8]) -> Option<&mut Self>
    where\n Self: Sized + AsBytes,

    Interprets the given bytes as a &mut Self without copying. Read more
    §

    fn mut_from_prefix(bytes: &mut [u8]) -> Option<&mut Self>
    where\n Self: Sized + AsBytes,

    Interprets the prefix of the given bytes as a &mut Self without\ncopying. Read more
    §

    fn mut_from_suffix(bytes: &mut [u8]) -> Option<&mut Self>
    where\n Self: Sized + AsBytes,

    Interprets the suffix of the given bytes as a &mut Self without copying. Read more
    §

    fn slice_from(bytes: &[u8]) -> Option<&[Self]>
    where\n Self: Sized,

    Interprets the given bytes as a &[Self] without copying. Read more
    §

    fn slice_from_prefix(bytes: &[u8], count: usize) -> Option<(&[Self], &[u8])>
    where\n Self: Sized,

    Interprets the prefix of the given bytes as a &[Self] with length\nequal to count without copying. Read more
    §

    fn slice_from_suffix(bytes: &[u8], count: usize) -> Option<(&[u8], &[Self])>
    where\n Self: Sized,

    Interprets the suffix of the given bytes as a &[Self] with length\nequal to count without copying. Read more
    §

    fn mut_slice_from(bytes: &mut [u8]) -> Option<&mut [Self]>
    where\n Self: Sized + AsBytes,

    Interprets the given bytes as a &mut [Self] without copying. Read more
    §

    fn mut_slice_from_prefix(\n bytes: &mut [u8],\n count: usize,\n) -> Option<(&mut [Self], &mut [u8])>
    where\n Self: Sized + AsBytes,

    Interprets the prefix of the given bytes as a &mut [Self] with length\nequal to count without copying. Read more
    §

    fn mut_slice_from_suffix(\n bytes: &mut [u8],\n count: usize,\n) -> Option<(&mut [u8], &mut [Self])>
    where\n Self: Sized + AsBytes,

    Interprets the suffix of the given bytes as a &mut [Self] with length\nequal to count without copying. Read more
    §

    fn read_from(bytes: &[u8]) -> Option<Self>
    where\n Self: Sized,

    Reads a copy of Self from bytes. Read more
    §

    fn read_from_prefix(bytes: &[u8]) -> Option<Self>
    where\n Self: Sized,

    Reads a copy of Self from the prefix of bytes. Read more
    §

    fn read_from_suffix(bytes: &[u8]) -> Option<Self>
    where\n Self: Sized,

    Reads a copy of Self from the suffix of bytes. Read more
    ","FromBytes","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl FromPrimitive for usize

    Source§

    fn from_isize(n: isize) -> Option<usize>

    Converts an isize to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i8(n: i8) -> Option<usize>

    Converts an i8 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i16(n: i16) -> Option<usize>

    Converts an i16 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i32(n: i32) -> Option<usize>

    Converts an i32 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i64(n: i64) -> Option<usize>

    Converts an i64 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i128(n: i128) -> Option<usize>

    Converts an i128 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned. Read more
    Source§

    fn from_usize(n: usize) -> Option<usize>

    Converts a usize to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u8(n: u8) -> Option<usize>

    Converts an u8 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u16(n: u16) -> Option<usize>

    Converts an u16 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u32(n: u32) -> Option<usize>

    Converts an u32 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u64(n: u64) -> Option<usize>

    Converts an u64 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u128(n: u128) -> Option<usize>

    Converts an u128 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned. Read more
    Source§

    fn from_f32(n: f32) -> Option<usize>

    Converts a f32 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_f64(n: f64) -> Option<usize>

    Converts a f64 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned. Read more
    ","FromPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl FromStr for usize

    Source§

    fn from_str(src: &str) -> Result<usize, ParseIntError>

    Parses an integer from a string slice with decimal digits.

    \n

    The characters are expected to be an optional\n+\nsign followed by only digits. Leading and trailing non-digit characters (including\nwhitespace) represent an error. Underscores (which are accepted in Rust literals)\nalso represent an error.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    use std::str::FromStr;\n\nassert_eq!(usize::from_str(\"+10\"), Ok(10));
    \n

    Trailing space returns error:

    \n\n
    assert!(usize::from_str(\"1 \").is_err());
    \n
    Source§

    type Err = ParseIntError

    The associated error which can be returned from parsing.
    ","FromStr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl FromZeroes for usize

    §

    fn zero(&mut self)

    Overwrites self with zeroes. Read more
    §

    fn new_zeroed() -> Self
    where\n Self: Sized,

    Creates an instance of Self from zeroed bytes. Read more
    ","FromZeroes","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl GetManyMutIndex for usize

    Source§

    fn is_in_bounds(&self, len: usize) -> bool

    🔬This is a nightly-only experimental API. (get_many_mut_helpers)
    Returns true if self is in bounds for len slice elements.
    Source§

    fn is_overlapping(&self, other: &usize) -> bool

    🔬This is a nightly-only experimental API. (get_many_mut_helpers)
    Returns true if self overlaps with other. Read more
    ","GetManyMutIndex","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Hash for usize

    Source§

    fn hash<H>(&self, state: &mut H)
    where\n H: Hasher,

    Feeds this value into the given Hasher. Read more
    Source§

    fn hash_slice<H>(data: &[usize], state: &mut H)
    where\n H: Hasher,

    Feeds a slice of this type into the given Hasher. Read more
    ","Hash","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl IdentFragment for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Format this value as an identifier fragment.
    Source§

    fn span(&self) -> Option<Span>

    Span associated with this IdentFragment. Read more
    ","IdentFragment","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Integer for usize

    Available on 64-bit only.
    Source§

    const MAX_STR_LEN: usize = 20usize

    The maximum length of string that formatting an integer of this type can\nproduce on the current target platform.
    ","Integer","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Integer for usize

    Source§

    fn div_floor(&self, other: &usize) -> usize

    Unsigned integer division. Returns the same result as div (/).

    \n
    Source§

    fn mod_floor(&self, other: &usize) -> usize

    Unsigned integer modulo operation. Returns the same result as rem (%).

    \n
    Source§

    fn gcd(&self, other: &usize) -> usize

    Calculates the Greatest Common Divisor (GCD) of the number and other

    \n
    Source§

    fn lcm(&self, other: &usize) -> usize

    Calculates the Lowest Common Multiple (LCM) of the number and other.

    \n
    Source§

    fn gcd_lcm(&self, other: &usize) -> (usize, usize)

    Calculates the Greatest Common Divisor (GCD) and\nLowest Common Multiple (LCM) of the number and other.

    \n
    Source§

    fn is_multiple_of(&self, other: &usize) -> bool

    Returns true if the number is a multiple of other.

    \n
    Source§

    fn is_even(&self) -> bool

    Returns true if the number is divisible by 2.

    \n
    Source§

    fn is_odd(&self) -> bool

    Returns true if the number is not divisible by 2.

    \n
    Source§

    fn div_rem(&self, other: &usize) -> (usize, usize)

    Simultaneous truncated integer division and modulus.

    \n
    Source§

    fn div_ceil(&self, other: &usize) -> usize

    Ceiled integer division. Read more
    Source§

    fn extended_gcd_lcm(&self, other: &usize) -> (ExtendedGcd<usize>, usize)

    Greatest common divisor, least common multiple, and Bézout coefficients.
    Source§

    fn extended_gcd(&self, other: &Self) -> ExtendedGcd<Self>
    where\n Self: Clone,

    Greatest common divisor and Bézout coefficients. Read more
    Source§

    fn divides(&self, other: &Self) -> bool

    👎Deprecated: Please use is_multiple_of instead
    Deprecated, use is_multiple_of instead.
    Source§

    fn div_mod_floor(&self, other: &Self) -> (Self, Self)

    Simultaneous floored integer division and modulus.\nReturns (quotient, remainder). Read more
    Source§

    fn next_multiple_of(&self, other: &Self) -> Self
    where\n Self: Clone,

    Rounds up to nearest multiple of argument. Read more
    Source§

    fn prev_multiple_of(&self, other: &Self) -> Self
    where\n Self: Clone,

    Rounds down to nearest multiple of argument. Read more
    Source§

    fn dec(&mut self)
    where\n Self: Clone,

    Decrements self by one. Read more
    Source§

    fn inc(&mut self)
    where\n Self: Clone,

    Increments self by one. Read more
    ","Integer","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'de, E> IntoDeserializer<'de, E> for usize
    where\n E: Error,

    Source§

    type Deserializer = UsizeDeserializer<E>

    The type of the deserializer being converted into.
    Source§

    fn into_deserializer(self) -> UsizeDeserializer<E>

    Convert this value into a deserializer.
    ","IntoDeserializer<'de, E>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> IntoFragment<'a> for usize

    Source§

    fn into_fragment(self) -> Cow<'a, str>

    Converts the value to some text Fragment.
    ","IntoFragment<'a>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl IntoNotification for usize

    §

    type Tag = ()

    The tag data associated with a notification. Read more
    §

    type Notify = Notify

    The notification type. Read more
    §

    fn into_notification(self) -> <usize as IntoNotification>::Notify

    Convert this value into a notification. Read more
    §

    fn additional(self) -> Additional<Self::Notify>
    where\n Self: Sized,

    Convert this value into an additional notification. Read more
    §

    fn relaxed(self) -> Relaxed<Self::Notify>
    where\n Self: Sized,

    Don’t emit a fence for this notification. Read more
    §

    fn tag<T>(self, tag: T) -> Tag<Self::Notify, T>
    where\n T: Clone,\n Self: Sized + IntoNotification<Tag = ()>,

    Available on crate feature std only.
    Use a tag with this notification. Read more
    §

    fn tag_with<T, F>(self, tag: F) -> TagWith<Self::Notify, F>
    where\n Self: Sized + IntoNotification<Tag = ()>,\n F: FnMut() -> T,

    Available on crate feature std only.
    Use a function to generate a tag with this notification. Read more
    ","IntoNotification","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl IntoNotification for usize

    §

    type Tag = ()

    The tag data associated with a notification. Read more
    §

    type Notify = Notify

    The notification type. Read more
    §

    fn into_notification(self) -> <usize as IntoNotification>::Notify

    Convert this value into a notification. Read more
    §

    fn additional(self) -> Additional<Self::Notify>
    where\n Self: Sized,

    Convert this value into an additional notification. Read more
    §

    fn relaxed(self) -> Relaxed<Self::Notify>
    where\n Self: Sized,

    Don’t emit a fence for this notification. Read more
    §

    fn tag<T>(self, tag: T) -> Tag<Self::Notify, T>
    where\n T: Clone,\n Self: Sized + IntoNotification<Tag = ()>,

    Available on crate feature std only.
    Use a tag with this notification. Read more
    §

    fn tag_with<T, F>(self, tag: F) -> TagWith<Self::Notify, F>
    where\n Self: Sized + IntoNotification<Tag = ()>,\n F: FnMut() -> T,

    Available on crate feature std only.
    Use a function to generate a tag with this notification. Read more
    ","IntoNotification","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.42.0 · Source§

    impl LowerExp for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","LowerExp","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl LowerHex for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","LowerHex","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl MaxIndex for usize

    §

    const MAX: usize = 4_294_967_295usize

    ","MaxIndex","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Mul<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: &BigInt) -> BigInt

    Performs the * operation. Read more
    ","Mul<&BigInt>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Mul<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: &BigUint) -> BigUint

    Performs the * operation. Read more
    ","Mul<&BigUint>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Mul<&usize> for usize

    Source§

    type Output = <usize as Mul>::Output

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: &usize) -> <usize as Mul>::Output

    Performs the * operation. Read more
    ","Mul<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Mul<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: BigInt) -> BigInt

    Performs the * operation. Read more
    ","Mul","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Mul<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: BigUint) -> BigUint

    Performs the * operation. Read more
    ","Mul","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Mul for usize

    Source§

    type Output = usize

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: usize) -> usize

    Performs the * operation. Read more
    ","Mul","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl MulAdd for usize

    Source§

    type Output = usize

    The resulting type after applying the fused multiply-add.
    Source§

    fn mul_add(self, a: usize, b: usize) -> <usize as MulAdd>::Output

    Performs the fused multiply-add operation (self * a) + b
    ","MulAdd","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl MulAddAssign for usize

    Source§

    fn mul_add_assign(&mut self, a: usize, b: usize)

    Performs the fused multiply-add assignment operation *self = (*self * a) + b
    ","MulAddAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl MulAssign<&usize> for usize

    Source§

    fn mul_assign(&mut self, other: &usize)

    Performs the *= operation. Read more
    ","MulAssign<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl MulAssign for usize

    Source§

    fn mul_assign(&mut self, other: usize)

    Performs the *= operation. Read more
    ","MulAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Not for usize

    Source§

    type Output = usize

    The resulting type after applying the ! operator.
    Source§

    fn not(self) -> usize

    Performs the unary ! operation. Read more
    ","Not","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Num for usize

    Source§

    type FromStrRadixErr = ParseIntError

    Source§

    fn from_str_radix(s: &str, radix: u32) -> Result<usize, ParseIntError>

    Convert from a string and radix (typically 2..=36). Read more
    ","Num","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl NumCast for usize

    Source§

    fn from<N>(n: N) -> Option<usize>
    where\n N: ToPrimitive,

    Creates a number from another value that can be converted into\na primitive via the ToPrimitive trait. If the source value cannot be\nrepresented by the target type, then None is returned. Read more
    ","NumCast","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Octal for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Octal","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl One for usize

    Source§

    fn one() -> usize

    Returns the multiplicative identity element of Self, 1. Read more
    Source§

    fn is_one(&self) -> bool

    Returns true if self is equal to the multiplicative identity. Read more
    Source§

    fn set_one(&mut self)

    Sets self to the multiplicative identity element of Self, 1.
    ","One","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Ord for usize

    Source§

    fn cmp(&self, other: &usize) -> Ordering

    This method returns an Ordering between self and other. Read more
    1.21.0 · Source§

    fn max(self, other: Self) -> Self
    where\n Self: Sized,

    Compares and returns the maximum of two values. Read more
    1.21.0 · Source§

    fn min(self, other: Self) -> Self
    where\n Self: Sized,

    Compares and returns the minimum of two values. Read more
    1.50.0 · Source§

    fn clamp(self, min: Self, max: Self) -> Self
    where\n Self: Sized,

    Restrict a value to a certain interval. Read more
    ","Ord","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl OverflowingAdd for usize

    Source§

    fn overflowing_add(&self, v: &usize) -> (usize, bool)

    Returns a tuple of the sum along with a boolean indicating whether an arithmetic overflow would occur.\nIf an overflow would have occurred then the wrapped value is returned.
    ","OverflowingAdd","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl OverflowingMul for usize

    Source§

    fn overflowing_mul(&self, v: &usize) -> (usize, bool)

    Returns a tuple of the product along with a boolean indicating whether an arithmetic overflow would occur.\nIf an overflow would have occurred then the wrapped value is returned.
    ","OverflowingMul","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl OverflowingSub for usize

    Source§

    fn overflowing_sub(&self, v: &usize) -> (usize, bool)

    Returns a tuple of the difference along with a boolean indicating whether an arithmetic overflow would occur.\nIf an overflow would have occurred then the wrapped value is returned.
    ","OverflowingSub","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl ParseHex for usize

    §

    fn parse_hex(input: &str) -> Result<usize, ParseError>

    Parse the value from hex.
    ","ParseHex","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl PartialEq<Value> for usize

    Source§

    fn eq(&self, other: &Value) -> bool

    Tests for self and other values to be equal, and is used by ==.
    1.0.0 · Source§

    fn ne(&self, other: &Rhs) -> bool

    Tests for !=. The default implementation is almost always sufficient,\nand should not be overridden without very good reason.
    ","PartialEq","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl PartialEq for usize

    Source§

    fn eq(&self, other: &usize) -> bool

    Tests for self and other values to be equal, and is used by ==.
    Source§

    fn ne(&self, other: &usize) -> bool

    Tests for !=. The default implementation is almost always sufficient,\nand should not be overridden without very good reason.
    ","PartialEq","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl PartialOrd for usize

    Source§

    fn partial_cmp(&self, other: &usize) -> Option<Ordering>

    This method returns an ordering between self and other values if one exists. Read more
    Source§

    fn lt(&self, other: &usize) -> bool

    Tests less than (for self and other) and is used by the < operator. Read more
    Source§

    fn le(&self, other: &usize) -> bool

    Tests less than or equal to (for self and other) and is used by the\n<= operator. Read more
    Source§

    fn ge(&self, other: &usize) -> bool

    Tests greater than or equal to (for self and other) and is used by\nthe >= operator. Read more
    Source§

    fn gt(&self, other: &usize) -> bool

    Tests greater than (for self and other) and is used by the >\noperator. Read more
    ","PartialOrd","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl PhfBorrow<usize> for usize

    Source§

    fn borrow(&self) -> &usize

    Convert a reference to self to a reference to the borrowed type.
    ","PhfBorrow","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl PhfHash for usize

    Source§

    fn phf_hash<H>(&self, state: &mut H)
    where\n H: Hasher,

    Feeds the value into the state given, updating the hasher as necessary.
    Source§

    fn phf_hash_slice<H>(data: &[Self], state: &mut H)
    where\n H: Hasher,\n Self: Sized,

    Feeds a slice of this type into the state provided.
    ","PhfHash","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> Pow<&'a u16> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: &'a u16) -> usize

    Returns self to the power rhs. Read more
    ","Pow<&'a u16>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> Pow<&'a u32> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: &'a u32) -> usize

    Returns self to the power rhs. Read more
    ","Pow<&'a u32>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> Pow<&'a u8> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: &'a u8) -> usize

    Returns self to the power rhs. Read more
    ","Pow<&'a u8>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> Pow<&'a usize> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: &'a usize) -> usize

    Returns self to the power rhs. Read more
    ","Pow<&'a usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Pow<u16> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: u16) -> usize

    Returns self to the power rhs. Read more
    ","Pow","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Pow<u32> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: u32) -> usize

    Returns self to the power rhs. Read more
    ","Pow","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Pow<u8> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: u8) -> usize

    Returns self to the power rhs. Read more
    ","Pow","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Pow<usize> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: usize) -> usize

    Returns self to the power rhs. Read more
    ","Pow","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl PrimInt for usize

    Source§

    fn count_ones(self) -> u32

    Returns the number of ones in the binary representation of self. Read more
    Source§

    fn count_zeros(self) -> u32

    Returns the number of zeros in the binary representation of self. Read more
    Source§

    fn leading_ones(self) -> u32

    Returns the number of leading ones in the binary representation\nof self. Read more
    Source§

    fn leading_zeros(self) -> u32

    Returns the number of leading zeros in the binary representation\nof self. Read more
    Source§

    fn trailing_ones(self) -> u32

    Returns the number of trailing ones in the binary representation\nof self. Read more
    Source§

    fn trailing_zeros(self) -> u32

    Returns the number of trailing zeros in the binary representation\nof self. Read more
    Source§

    fn rotate_left(self, n: u32) -> usize

    Shifts the bits to the left by a specified amount, n, wrapping\nthe truncated bits to the end of the resulting integer. Read more
    Source§

    fn rotate_right(self, n: u32) -> usize

    Shifts the bits to the right by a specified amount, n, wrapping\nthe truncated bits to the beginning of the resulting integer. Read more
    Source§

    fn signed_shl(self, n: u32) -> usize

    Shifts the bits to the left by a specified amount, n, filling\nzeros in the least significant bits. Read more
    Source§

    fn signed_shr(self, n: u32) -> usize

    Shifts the bits to the right by a specified amount, n, copying\nthe “sign bit” in the most significant bits even for unsigned types. Read more
    Source§

    fn unsigned_shl(self, n: u32) -> usize

    Shifts the bits to the left by a specified amount, n, filling\nzeros in the least significant bits. Read more
    Source§

    fn unsigned_shr(self, n: u32) -> usize

    Shifts the bits to the right by a specified amount, n, filling\nzeros in the most significant bits. Read more
    Source§

    fn swap_bytes(self) -> usize

    Reverses the byte order of the integer. Read more
    Source§

    fn reverse_bits(self) -> usize

    Reverses the order of bits in the integer. Read more
    Source§

    fn from_be(x: usize) -> usize

    Convert an integer from big endian to the target’s endianness. Read more
    Source§

    fn from_le(x: usize) -> usize

    Convert an integer from little endian to the target’s endianness. Read more
    Source§

    fn to_be(self) -> usize

    Convert self to big endian from the target’s endianness. Read more
    Source§

    fn to_le(self) -> usize

    Convert self to little endian from the target’s endianness. Read more
    Source§

    fn pow(self, exp: u32) -> usize

    Raises self to the power of exp, using exponentiation by squaring. Read more
    ","PrimInt","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Primitive for usize

    §

    const DEFAULT_MAX_VALUE: usize = 18_446_744_073_709_551_615usize

    The maximum value for this type of primitive within the context of color.\nFor floats, the maximum is 1.0, whereas the integer types inherit their usual maximum values.
    §

    const DEFAULT_MIN_VALUE: usize = 0usize

    The minimum value for this type of primitive within the context of color.\nFor floats, the minimum is 0.0, whereas the integer types inherit their usual minimum values.
    ","Primitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> Product<&'a usize> for usize

    §

    fn product<'b, S>(stream: S) -> Pin<Box<dyn Future<Output = usize> + 'b>>
    where\n S: Stream<Item = &'a usize> + 'b,

    Method which takes a stream and generates Self from the elements by\nmultiplying the items.
    ","Product<&'a usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.12.0 · Source§

    impl<'a> Product<&'a usize> for usize

    Source§

    fn product<I>(iter: I) -> usize
    where\n I: Iterator<Item = &'a usize>,

    Takes an iterator and generates Self from the elements by multiplying\nthe items.
    ","Product<&'a usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Product for usize

    §

    fn product<'a, S>(stream: S) -> Pin<Box<dyn Future<Output = usize> + 'a>>
    where\n S: Stream<Item = usize> + 'a,

    Method which takes a stream and generates Self from the elements by\nmultiplying the items.
    ","Product","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.12.0 · Source§

    impl Product for usize

    Source§

    fn product<I>(iter: I) -> usize
    where\n I: Iterator<Item = usize>,

    Takes an iterator and generates Self from the elements by multiplying\nthe items.
    ","Product","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Random for usize

    Source§

    fn random(source: &mut (impl RandomSource + ?Sized)) -> usize

    🔬This is a nightly-only experimental API. (random)

    Generates a random value.

    \n

    Warning: Be careful when manipulating the resulting value! This\nmethod samples according to a uniform distribution, so a value of 1 is\njust as likely as MAX. By using modulo operations, some\nvalues can become more likely than others. Use audited crates when in\ndoubt.

    \n
    ","Random","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Rem<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: &BigInt) -> BigInt

    Performs the % operation. Read more
    ","Rem<&BigInt>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Rem<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: &BigUint) -> BigUint

    Performs the % operation. Read more
    ","Rem<&BigUint>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Rem<&usize> for usize

    Source§

    type Output = <usize as Rem>::Output

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: &usize) -> <usize as Rem>::Output

    Performs the % operation. Read more
    ","Rem<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Rem<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: BigInt) -> BigInt

    Performs the % operation. Read more
    ","Rem","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Rem<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: BigUint) -> BigUint

    Performs the % operation. Read more
    ","Rem","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.51.0 · Source§

    impl Rem<NonZero<usize>> for usize

    Source§

    fn rem(self, other: NonZero<usize>) -> usize

    This operation satisfies n % d == n - (n / d) * d, and cannot panic.

    \n
    Source§

    type Output = usize

    The resulting type after applying the % operator.
    ","Rem>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Rem for usize

    This operation satisfies n % d == n - (n / d) * d. The\nresult has the same sign as the left operand.

    \n

    §Panics

    \n

    This operation will panic if other == 0.

    \n
    Source§

    type Output = usize

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: usize) -> usize

    Performs the % operation. Read more
    ","Rem","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl RemAssign<&BigUint> for usize

    Source§

    fn rem_assign(&mut self, other: &BigUint)

    Performs the %= operation. Read more
    ","RemAssign<&BigUint>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl RemAssign<&usize> for usize

    Source§

    fn rem_assign(&mut self, other: &usize)

    Performs the %= operation. Read more
    ","RemAssign<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl RemAssign<BigUint> for usize

    Source§

    fn rem_assign(&mut self, other: BigUint)

    Performs the %= operation. Read more
    ","RemAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.79.0 · Source§

    impl RemAssign<NonZero<usize>> for usize

    Source§

    fn rem_assign(&mut self, other: NonZero<usize>)

    This operation satisfies n % d == n - (n / d) * d, and cannot panic.

    \n
    ","RemAssign>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl RemAssign for usize

    Source§

    fn rem_assign(&mut self, other: usize)

    Performs the %= operation. Read more
    ","RemAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Roots for usize

    Source§

    fn nth_root(&self, n: u32) -> usize

    Returns the truncated principal nth root of an integer\n– if x >= 0 { ⌊ⁿ√x⌋ } else { ⌈ⁿ√x⌉ } Read more
    Source§

    fn sqrt(&self) -> usize

    Returns the truncated principal square root of an integer – ⌊√x⌋ Read more
    Source§

    fn cbrt(&self) -> usize

    Returns the truncated principal cube root of an integer –\nif x >= 0 { ⌊∛x⌋ } else { ⌈∛x⌉ } Read more
    ","Roots","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Round for usize

    §

    fn round(self) -> usize

    Rounds to the nearest integer value. Read more
    ","Round","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl SampleUniform for usize

    Source§

    type Sampler = UniformInt<usize>

    The UniformSampler implementation supporting type X.
    ","SampleUniform","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Saturating for usize

    Source§

    fn saturating_add(self, v: usize) -> usize

    Saturating addition operator.\nReturns a+b, saturating at the numeric bounds instead of overflowing.
    Source§

    fn saturating_sub(self, v: usize) -> usize

    Saturating subtraction operator.\nReturns a-b, saturating at the numeric bounds instead of overflowing.
    ","Saturating","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl SaturatingAdd for usize

    Source§

    fn saturating_add(&self, v: &usize) -> usize

    Saturating addition. Computes self + other, saturating at the relevant high or low boundary of\nthe type.
    ","SaturatingAdd","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl SaturatingMul for usize

    Source§

    fn saturating_mul(&self, v: &usize) -> usize

    Saturating multiplication. Computes self * other, saturating at the relevant high or low boundary of\nthe type.
    ","SaturatingMul","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl SaturatingSub for usize

    Source§

    fn saturating_sub(&self, v: &usize) -> usize

    Saturating subtraction. Computes self - other, saturating at the relevant high or low boundary of\nthe type.
    ","SaturatingSub","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Serialize for usize

    Source§

    fn serialize<S>(\n &self,\n serializer: S,\n) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>
    where\n S: Serializer,

    Serialize this value into the given Serde serializer. Read more
    ","Serialize","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i128> for usize

    Source§

    type Output = <usize as Shl<i128>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i128) -> <usize as Shl<i128>>::Output

    Performs the << operation. Read more
    ","Shl<&i128>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i16> for usize

    Source§

    type Output = <usize as Shl<i16>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i16) -> <usize as Shl<i16>>::Output

    Performs the << operation. Read more
    ","Shl<&i16>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i32> for usize

    Source§

    type Output = <usize as Shl<i32>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i32) -> <usize as Shl<i32>>::Output

    Performs the << operation. Read more
    ","Shl<&i32>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i64> for usize

    Source§

    type Output = <usize as Shl<i64>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i64) -> <usize as Shl<i64>>::Output

    Performs the << operation. Read more
    ","Shl<&i64>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i8> for usize

    Source§

    type Output = <usize as Shl<i8>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i8) -> <usize as Shl<i8>>::Output

    Performs the << operation. Read more
    ","Shl<&i8>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&isize> for usize

    Source§

    type Output = <usize as Shl<isize>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &isize) -> <usize as Shl<isize>>::Output

    Performs the << operation. Read more
    ","Shl<&isize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u128> for usize

    Source§

    type Output = <usize as Shl<u128>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u128) -> <usize as Shl<u128>>::Output

    Performs the << operation. Read more
    ","Shl<&u128>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u16> for usize

    Source§

    type Output = <usize as Shl<u16>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u16) -> <usize as Shl<u16>>::Output

    Performs the << operation. Read more
    ","Shl<&u16>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u32> for usize

    Source§

    type Output = <usize as Shl<u32>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u32) -> <usize as Shl<u32>>::Output

    Performs the << operation. Read more
    ","Shl<&u32>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u64> for usize

    Source§

    type Output = <usize as Shl<u64>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u64) -> <usize as Shl<u64>>::Output

    Performs the << operation. Read more
    ","Shl<&u64>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u8> for usize

    Source§

    type Output = <usize as Shl<u8>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u8) -> <usize as Shl<u8>>::Output

    Performs the << operation. Read more
    ","Shl<&u8>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&usize> for usize

    Source§

    type Output = <usize as Shl>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &usize) -> <usize as Shl>::Output

    Performs the << operation. Read more
    ","Shl<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i128> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i128) -> usize

    Performs the << operation. Read more
    ","Shl","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i16> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i16) -> usize

    Performs the << operation. Read more
    ","Shl","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i32> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i32) -> usize

    Performs the << operation. Read more
    ","Shl","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i64> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i64) -> usize

    Performs the << operation. Read more
    ","Shl","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i8> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i8) -> usize

    Performs the << operation. Read more
    ","Shl","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<isize> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: isize) -> usize

    Performs the << operation. Read more
    ","Shl","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u128> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u128) -> usize

    Performs the << operation. Read more
    ","Shl","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u16> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u16) -> usize

    Performs the << operation. Read more
    ","Shl","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u32> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u32) -> usize

    Performs the << operation. Read more
    ","Shl","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u64> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u64) -> usize

    Performs the << operation. Read more
    ","Shl","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u8> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u8) -> usize

    Performs the << operation. Read more
    ","Shl","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: usize) -> usize

    Performs the << operation. Read more
    ","Shl","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i128> for usize

    Source§

    fn shl_assign(&mut self, other: &i128)

    Performs the <<= operation. Read more
    ","ShlAssign<&i128>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i16> for usize

    Source§

    fn shl_assign(&mut self, other: &i16)

    Performs the <<= operation. Read more
    ","ShlAssign<&i16>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i32> for usize

    Source§

    fn shl_assign(&mut self, other: &i32)

    Performs the <<= operation. Read more
    ","ShlAssign<&i32>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i64> for usize

    Source§

    fn shl_assign(&mut self, other: &i64)

    Performs the <<= operation. Read more
    ","ShlAssign<&i64>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i8> for usize

    Source§

    fn shl_assign(&mut self, other: &i8)

    Performs the <<= operation. Read more
    ","ShlAssign<&i8>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&isize> for usize

    Source§

    fn shl_assign(&mut self, other: &isize)

    Performs the <<= operation. Read more
    ","ShlAssign<&isize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u128> for usize

    Source§

    fn shl_assign(&mut self, other: &u128)

    Performs the <<= operation. Read more
    ","ShlAssign<&u128>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u16> for usize

    Source§

    fn shl_assign(&mut self, other: &u16)

    Performs the <<= operation. Read more
    ","ShlAssign<&u16>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u32> for usize

    Source§

    fn shl_assign(&mut self, other: &u32)

    Performs the <<= operation. Read more
    ","ShlAssign<&u32>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u64> for usize

    Source§

    fn shl_assign(&mut self, other: &u64)

    Performs the <<= operation. Read more
    ","ShlAssign<&u64>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u8> for usize

    Source§

    fn shl_assign(&mut self, other: &u8)

    Performs the <<= operation. Read more
    ","ShlAssign<&u8>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&usize> for usize

    Source§

    fn shl_assign(&mut self, other: &usize)

    Performs the <<= operation. Read more
    ","ShlAssign<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i128> for usize

    Source§

    fn shl_assign(&mut self, other: i128)

    Performs the <<= operation. Read more
    ","ShlAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i16> for usize

    Source§

    fn shl_assign(&mut self, other: i16)

    Performs the <<= operation. Read more
    ","ShlAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i32> for usize

    Source§

    fn shl_assign(&mut self, other: i32)

    Performs the <<= operation. Read more
    ","ShlAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i64> for usize

    Source§

    fn shl_assign(&mut self, other: i64)

    Performs the <<= operation. Read more
    ","ShlAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i8> for usize

    Source§

    fn shl_assign(&mut self, other: i8)

    Performs the <<= operation. Read more
    ","ShlAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<isize> for usize

    Source§

    fn shl_assign(&mut self, other: isize)

    Performs the <<= operation. Read more
    ","ShlAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u128> for usize

    Source§

    fn shl_assign(&mut self, other: u128)

    Performs the <<= operation. Read more
    ","ShlAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u16> for usize

    Source§

    fn shl_assign(&mut self, other: u16)

    Performs the <<= operation. Read more
    ","ShlAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u32> for usize

    Source§

    fn shl_assign(&mut self, other: u32)

    Performs the <<= operation. Read more
    ","ShlAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u64> for usize

    Source§

    fn shl_assign(&mut self, other: u64)

    Performs the <<= operation. Read more
    ","ShlAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u8> for usize

    Source§

    fn shl_assign(&mut self, other: u8)

    Performs the <<= operation. Read more
    ","ShlAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign for usize

    Source§

    fn shl_assign(&mut self, other: usize)

    Performs the <<= operation. Read more
    ","ShlAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i128> for usize

    Source§

    type Output = <usize as Shr<i128>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i128) -> <usize as Shr<i128>>::Output

    Performs the >> operation. Read more
    ","Shr<&i128>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i16> for usize

    Source§

    type Output = <usize as Shr<i16>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i16) -> <usize as Shr<i16>>::Output

    Performs the >> operation. Read more
    ","Shr<&i16>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i32> for usize

    Source§

    type Output = <usize as Shr<i32>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i32) -> <usize as Shr<i32>>::Output

    Performs the >> operation. Read more
    ","Shr<&i32>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i64> for usize

    Source§

    type Output = <usize as Shr<i64>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i64) -> <usize as Shr<i64>>::Output

    Performs the >> operation. Read more
    ","Shr<&i64>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i8> for usize

    Source§

    type Output = <usize as Shr<i8>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i8) -> <usize as Shr<i8>>::Output

    Performs the >> operation. Read more
    ","Shr<&i8>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&isize> for usize

    Source§

    type Output = <usize as Shr<isize>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &isize) -> <usize as Shr<isize>>::Output

    Performs the >> operation. Read more
    ","Shr<&isize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u128> for usize

    Source§

    type Output = <usize as Shr<u128>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u128) -> <usize as Shr<u128>>::Output

    Performs the >> operation. Read more
    ","Shr<&u128>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u16> for usize

    Source§

    type Output = <usize as Shr<u16>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u16) -> <usize as Shr<u16>>::Output

    Performs the >> operation. Read more
    ","Shr<&u16>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u32> for usize

    Source§

    type Output = <usize as Shr<u32>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u32) -> <usize as Shr<u32>>::Output

    Performs the >> operation. Read more
    ","Shr<&u32>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u64> for usize

    Source§

    type Output = <usize as Shr<u64>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u64) -> <usize as Shr<u64>>::Output

    Performs the >> operation. Read more
    ","Shr<&u64>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u8> for usize

    Source§

    type Output = <usize as Shr<u8>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u8) -> <usize as Shr<u8>>::Output

    Performs the >> operation. Read more
    ","Shr<&u8>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&usize> for usize

    Source§

    type Output = <usize as Shr>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &usize) -> <usize as Shr>::Output

    Performs the >> operation. Read more
    ","Shr<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i128> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i128) -> usize

    Performs the >> operation. Read more
    ","Shr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i16> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i16) -> usize

    Performs the >> operation. Read more
    ","Shr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i32> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i32) -> usize

    Performs the >> operation. Read more
    ","Shr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i64> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i64) -> usize

    Performs the >> operation. Read more
    ","Shr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i8> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i8) -> usize

    Performs the >> operation. Read more
    ","Shr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<isize> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: isize) -> usize

    Performs the >> operation. Read more
    ","Shr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u128> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u128) -> usize

    Performs the >> operation. Read more
    ","Shr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u16> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u16) -> usize

    Performs the >> operation. Read more
    ","Shr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u32> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u32) -> usize

    Performs the >> operation. Read more
    ","Shr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u64> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u64) -> usize

    Performs the >> operation. Read more
    ","Shr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u8> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u8) -> usize

    Performs the >> operation. Read more
    ","Shr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: usize) -> usize

    Performs the >> operation. Read more
    ","Shr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i128> for usize

    Source§

    fn shr_assign(&mut self, other: &i128)

    Performs the >>= operation. Read more
    ","ShrAssign<&i128>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i16> for usize

    Source§

    fn shr_assign(&mut self, other: &i16)

    Performs the >>= operation. Read more
    ","ShrAssign<&i16>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i32> for usize

    Source§

    fn shr_assign(&mut self, other: &i32)

    Performs the >>= operation. Read more
    ","ShrAssign<&i32>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i64> for usize

    Source§

    fn shr_assign(&mut self, other: &i64)

    Performs the >>= operation. Read more
    ","ShrAssign<&i64>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i8> for usize

    Source§

    fn shr_assign(&mut self, other: &i8)

    Performs the >>= operation. Read more
    ","ShrAssign<&i8>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&isize> for usize

    Source§

    fn shr_assign(&mut self, other: &isize)

    Performs the >>= operation. Read more
    ","ShrAssign<&isize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u128> for usize

    Source§

    fn shr_assign(&mut self, other: &u128)

    Performs the >>= operation. Read more
    ","ShrAssign<&u128>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u16> for usize

    Source§

    fn shr_assign(&mut self, other: &u16)

    Performs the >>= operation. Read more
    ","ShrAssign<&u16>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u32> for usize

    Source§

    fn shr_assign(&mut self, other: &u32)

    Performs the >>= operation. Read more
    ","ShrAssign<&u32>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u64> for usize

    Source§

    fn shr_assign(&mut self, other: &u64)

    Performs the >>= operation. Read more
    ","ShrAssign<&u64>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u8> for usize

    Source§

    fn shr_assign(&mut self, other: &u8)

    Performs the >>= operation. Read more
    ","ShrAssign<&u8>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&usize> for usize

    Source§

    fn shr_assign(&mut self, other: &usize)

    Performs the >>= operation. Read more
    ","ShrAssign<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i128> for usize

    Source§

    fn shr_assign(&mut self, other: i128)

    Performs the >>= operation. Read more
    ","ShrAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i16> for usize

    Source§

    fn shr_assign(&mut self, other: i16)

    Performs the >>= operation. Read more
    ","ShrAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i32> for usize

    Source§

    fn shr_assign(&mut self, other: i32)

    Performs the >>= operation. Read more
    ","ShrAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i64> for usize

    Source§

    fn shr_assign(&mut self, other: i64)

    Performs the >>= operation. Read more
    ","ShrAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i8> for usize

    Source§

    fn shr_assign(&mut self, other: i8)

    Performs the >>= operation. Read more
    ","ShrAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<isize> for usize

    Source§

    fn shr_assign(&mut self, other: isize)

    Performs the >>= operation. Read more
    ","ShrAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u128> for usize

    Source§

    fn shr_assign(&mut self, other: u128)

    Performs the >>= operation. Read more
    ","ShrAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u16> for usize

    Source§

    fn shr_assign(&mut self, other: u16)

    Performs the >>= operation. Read more
    ","ShrAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u32> for usize

    Source§

    fn shr_assign(&mut self, other: u32)

    Performs the >>= operation. Read more
    ","ShrAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u64> for usize

    Source§

    fn shr_assign(&mut self, other: u64)

    Performs the >>= operation. Read more
    ","ShrAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u8> for usize

    Source§

    fn shr_assign(&mut self, other: u8)

    Performs the >>= operation. Read more
    ","ShrAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign for usize

    Source§

    fn shr_assign(&mut self, other: usize)

    Performs the >>= operation. Read more
    ","ShrAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl SimdElement for usize

    Source§

    type Mask = isize

    🔬This is a nightly-only experimental API. (portable_simd)
    The mask element type corresponding to this element type.
    ","SimdElement","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.15.0 · Source§

    impl<T> SliceIndex<[T]> for usize

    The methods index and index_mut panic if the index is out of bounds.

    \n
    Source§

    type Output = T

    The output type returned by methods.
    Source§

    fn get(self, slice: &[T]) -> Option<&T>

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a shared reference to the output at this location, if in\nbounds.
    Source§

    fn get_mut(self, slice: &mut [T]) -> Option<&mut T>

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a mutable reference to the output at this location, if in\nbounds.
    Source§

    unsafe fn get_unchecked(self, slice: *const [T]) -> *const T

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a pointer to the output at this location, without\nperforming any bounds checking. Read more
    Source§

    unsafe fn get_unchecked_mut(self, slice: *mut [T]) -> *mut T

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a mutable pointer to the output at this location, without\nperforming any bounds checking. Read more
    Source§

    fn index(self, slice: &[T]) -> &T

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a shared reference to the output at this location, panicking\nif out of bounds.
    Source§

    fn index_mut(self, slice: &mut [T]) -> &mut T

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a mutable reference to the output at this location, panicking\nif out of bounds.
    ","SliceIndex<[T]>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl SmartDisplay for usize

    §

    type Metadata = ()

    User-provided metadata type.
    §

    fn metadata(&self, f: FormatterOptions) -> Metadata<'_, usize>

    Compute any information needed to format the value. This must, at a minimum, determine the\nwidth of the value before any padding is added by the formatter. Read more
    §

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Format the value using the given formatter. This is the same as Display::fmt. Read more
    §

    fn fmt_with_metadata(\n &self,\n f: &mut Formatter<'_>,\n _metadata: Metadata<'_, Self>,\n) -> Result<(), Error>

    Format the value using the given formatter and metadata. The formatted output should have\nthe width indicated by the metadata. This is before any padding is added by the\nformatter. Read more
    ","SmartDisplay","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Step for usize

    Source§

    fn forward(start: usize, n: usize) -> usize

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the successor\nof self count times. Read more
    Source§

    fn backward(start: usize, n: usize) -> usize

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the predecessor\nof self count times. Read more
    Source§

    unsafe fn forward_unchecked(start: usize, n: usize) -> usize

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the successor\nof self count times. Read more
    Source§

    unsafe fn backward_unchecked(start: usize, n: usize) -> usize

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the predecessor\nof self count times. Read more
    Source§

    fn steps_between(start: &usize, end: &usize) -> (usize, Option<usize>)

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the bounds on the number of successor steps required to get from start to end\nlike Iterator::size_hint(). Read more
    Source§

    fn forward_checked(start: usize, n: usize) -> Option<usize>

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the successor\nof self count times. Read more
    Source§

    fn backward_checked(start: usize, n: usize) -> Option<usize>

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the predecessor\nof self count times. Read more
    ","Step","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl StepLite for usize

    §

    fn add_one(&self) -> usize

    Returns the successor of self. Read more
    §

    fn sub_one(&self) -> usize

    Returns the predecessor of self. Read more
    ","StepLite","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Sub<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: &BigInt) -> BigInt

    Performs the - operation. Read more
    ","Sub<&BigInt>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Sub<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: &BigUint) -> BigUint

    Performs the - operation. Read more
    ","Sub<&BigUint>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Sub<&usize> for usize

    Source§

    type Output = <usize as Sub>::Output

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: &usize) -> <usize as Sub>::Output

    Performs the - operation. Read more
    ","Sub<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Sub<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: BigInt) -> BigInt

    Performs the - operation. Read more
    ","Sub","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Sub<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: BigUint) -> BigUint

    Performs the - operation. Read more
    ","Sub","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Sub for usize

    Source§

    type Output = usize

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: usize) -> usize

    Performs the - operation. Read more
    ","Sub","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl SubAssign<&usize> for usize

    Source§

    fn sub_assign(&mut self, other: &usize)

    Performs the -= operation. Read more
    ","SubAssign<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl SubAssign for usize

    Source§

    fn sub_assign(&mut self, other: usize)

    Performs the -= operation. Read more
    ","SubAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> Sum<&'a usize> for usize

    §

    fn sum<'b, S>(stream: S) -> Pin<Box<dyn Future<Output = usize> + 'b>>
    where\n S: Stream<Item = &'a usize> + 'b,

    Method which takes a stream and generates Self from the elements by\n“summing up” the items.
    ","Sum<&'a usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.12.0 · Source§

    impl<'a> Sum<&'a usize> for usize

    Source§

    fn sum<I>(iter: I) -> usize
    where\n I: Iterator<Item = &'a usize>,

    Takes an iterator and generates Self from the elements by “summing up”\nthe items.
    ","Sum<&'a usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Sum for usize

    §

    fn sum<'a, S>(stream: S) -> Pin<Box<dyn Future<Output = usize> + 'a>>
    where\n S: Stream<Item = usize> + 'a,

    Method which takes a stream and generates Self from the elements by\n“summing up” the items.
    ","Sum","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.12.0 · Source§

    impl Sum for usize

    Source§

    fn sum<I>(iter: I) -> usize
    where\n I: Iterator<Item = usize>,

    Takes an iterator and generates Self from the elements by “summing up”\nthe items.
    ","Sum","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToBigInt for usize

    Source§

    fn to_bigint(&self) -> Option<BigInt>

    Converts the value of self to a BigInt.
    ","ToBigInt","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToBigUint for usize

    Source§

    fn to_biguint(&self) -> Option<BigUint>

    Converts the value of self to a BigUint.
    ","ToBigUint","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToBytes for usize

    Source§

    type Bytes = [u8; 8]

    Source§

    fn to_be_bytes(&self) -> <usize as ToBytes>::Bytes

    Return the memory representation of this number as a byte array in big-endian byte order. Read more
    Source§

    fn to_le_bytes(&self) -> <usize as ToBytes>::Bytes

    Return the memory representation of this number as a byte array in little-endian byte order. Read more
    Source§

    fn to_ne_bytes(&self) -> <usize as ToBytes>::Bytes

    Return the memory representation of this number as a byte array in native byte order. Read more
    ","ToBytes","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToPrimitive for usize

    Source§

    fn to_isize(&self) -> Option<isize>

    Converts the value of self to an isize. If the value cannot be\nrepresented by an isize, then None is returned.
    Source§

    fn to_i8(&self) -> Option<i8>

    Converts the value of self to an i8. If the value cannot be\nrepresented by an i8, then None is returned.
    Source§

    fn to_i16(&self) -> Option<i16>

    Converts the value of self to an i16. If the value cannot be\nrepresented by an i16, then None is returned.
    Source§

    fn to_i32(&self) -> Option<i32>

    Converts the value of self to an i32. If the value cannot be\nrepresented by an i32, then None is returned.
    Source§

    fn to_i64(&self) -> Option<i64>

    Converts the value of self to an i64. If the value cannot be\nrepresented by an i64, then None is returned.
    Source§

    fn to_i128(&self) -> Option<i128>

    Converts the value of self to an i128. If the value cannot be\nrepresented by an i128 (i64 under the default implementation), then\nNone is returned. Read more
    Source§

    fn to_usize(&self) -> Option<usize>

    Converts the value of self to a usize. If the value cannot be\nrepresented by a usize, then None is returned.
    Source§

    fn to_u8(&self) -> Option<u8>

    Converts the value of self to a u8. If the value cannot be\nrepresented by a u8, then None is returned.
    Source§

    fn to_u16(&self) -> Option<u16>

    Converts the value of self to a u16. If the value cannot be\nrepresented by a u16, then None is returned.
    Source§

    fn to_u32(&self) -> Option<u32>

    Converts the value of self to a u32. If the value cannot be\nrepresented by a u32, then None is returned.
    Source§

    fn to_u64(&self) -> Option<u64>

    Converts the value of self to a u64. If the value cannot be\nrepresented by a u64, then None is returned.
    Source§

    fn to_u128(&self) -> Option<u128>

    Converts the value of self to a u128. If the value cannot be\nrepresented by a u128 (u64 under the default implementation), then\nNone is returned. Read more
    Source§

    fn to_f32(&self) -> Option<f32>

    Converts the value of self to an f32. Overflows may map to positive\nor negative inifinity, otherwise None is returned if the value cannot\nbe represented by an f32.
    Source§

    fn to_f64(&self) -> Option<f64>

    Converts the value of self to an f64. Overflows may map to positive\nor negative inifinity, otherwise None is returned if the value cannot\nbe represented by an f64. Read more
    ","ToPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToTokens for usize

    Source§

    fn to_tokens(&self, tokens: &mut TokenStream)

    🔬This is a nightly-only experimental API. (proc_macro_totokens)
    Write self to the given TokenStream. Read more
    Source§

    fn to_token_stream(&self) -> TokenStream

    🔬This is a nightly-only experimental API. (proc_macro_totokens)
    Convert self directly into a TokenStream object. Read more
    Source§

    fn into_token_stream(self) -> TokenStream
    where\n Self: Sized,

    🔬This is a nightly-only experimental API. (proc_macro_totokens)
    Convert self directly into a TokenStream object. Read more
    ","ToTokens","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToTokens for usize

    Source§

    fn to_tokens(&self, tokens: &mut TokenStream)

    Write self to the given TokenStream. Read more
    Source§

    fn to_token_stream(&self) -> TokenStream

    Convert self directly into a TokenStream object. Read more
    Source§

    fn into_token_stream(self) -> TokenStream
    where\n Self: Sized,

    Convert self directly into a TokenStream object. Read more
    ","ToTokens","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl ToUsize for usize

    §

    fn to_usize(&self) -> usize

    converts self to usize
    ","ToUsize","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl ToUsize for usize

    §

    fn to_usize(&self) -> usize

    converts self to usize
    ","ToUsize","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToValue for usize

    Source§

    fn to_value(&self) -> Value<'_>

    Perform the conversion.
    ","ToValue","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl TryFrom<&BigInt> for usize

    Source§

    type Error = TryFromBigIntError<()>

    The type returned in the event of a conversion error.
    Source§

    fn try_from(value: &BigInt) -> Result<usize, TryFromBigIntError<()>>

    Performs the conversion.
    ","TryFrom<&BigInt>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl TryFrom<&BigUint> for usize

    Source§

    type Error = TryFromBigIntError<()>

    The type returned in the event of a conversion error.
    Source§

    fn try_from(value: &BigUint) -> Result<usize, TryFromBigIntError<()>>

    Performs the conversion.
    ","TryFrom<&BigUint>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl TryFrom<BigInt> for usize

    Source§

    type Error = TryFromBigIntError<BigInt>

    The type returned in the event of a conversion error.
    Source§

    fn try_from(value: BigInt) -> Result<usize, TryFromBigIntError<BigInt>>

    Performs the conversion.
    ","TryFrom","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl TryFrom<BigUint> for usize

    Source§

    type Error = TryFromBigIntError<BigUint>

    The type returned in the event of a conversion error.
    Source§

    fn try_from(value: BigUint) -> Result<usize, TryFromBigIntError<BigUint>>

    Performs the conversion.
    ","TryFrom","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'v> TryFrom<ValueBag<'v>> for usize

    Source§

    type Error = Error

    The type returned in the event of a conversion error.
    Source§

    fn try_from(v: ValueBag<'v>) -> Result<usize, Error>

    Performs the conversion.
    ","TryFrom>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i128> for usize

    Source§

    fn try_from(u: i128) -> Result<usize, <usize as TryFrom<i128>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i16> for usize

    Source§

    fn try_from(u: i16) -> Result<usize, <usize as TryFrom<i16>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i32> for usize

    Source§

    fn try_from(u: i32) -> Result<usize, <usize as TryFrom<i32>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i64> for usize

    Source§

    fn try_from(u: i64) -> Result<usize, <usize as TryFrom<i64>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i8> for usize

    Source§

    fn try_from(u: i8) -> Result<usize, <usize as TryFrom<i8>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<isize> for usize

    Source§

    fn try_from(u: isize) -> Result<usize, <usize as TryFrom<isize>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<u128> for usize

    Source§

    fn try_from(u: u128) -> Result<usize, <usize as TryFrom<u128>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<u32> for usize

    Source§

    fn try_from(value: u32) -> Result<usize, <usize as TryFrom<u32>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<u64> for usize

    Source§

    fn try_from(value: u64) -> Result<usize, <usize as TryFrom<u64>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Type for usize

    §

    const SIGNATURE: &'static Signature = u64::SIGNATURE

    The signature for the implementing type, in parsed format. Read more
    ","Type","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.42.0 · Source§

    impl UpperExp for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","UpperExp","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl UpperHex for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","UpperHex","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Value for usize

    §

    fn record(&self, key: &Field, visitor: &mut dyn Visit)

    Visits this value with the given Visitor.
    ","Value","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingAdd for usize

    Source§

    fn wrapping_add(&self, v: &usize) -> usize

    Wrapping (modular) addition. Computes self + other, wrapping around at the boundary of\nthe type.
    ","WrappingAdd","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingMul for usize

    Source§

    fn wrapping_mul(&self, v: &usize) -> usize

    Wrapping (modular) multiplication. Computes self * other, wrapping around at the boundary\nof the type.
    ","WrappingMul","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingNeg for usize

    Source§

    fn wrapping_neg(&self) -> usize

    Wrapping (modular) negation. Computes -self,\nwrapping around at the boundary of the type. Read more
    ","WrappingNeg","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingShl for usize

    Source§

    fn wrapping_shl(&self, rhs: u32) -> usize

    Panic-free bitwise shift-left; yields self << mask(rhs),\nwhere mask removes any high order bits of rhs that would\ncause the shift to exceed the bitwidth of the type. Read more
    ","WrappingShl","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingShr for usize

    Source§

    fn wrapping_shr(&self, rhs: u32) -> usize

    Panic-free bitwise shift-right; yields self >> mask(rhs),\nwhere mask removes any high order bits of rhs that would\ncause the shift to exceed the bitwidth of the type. Read more
    ","WrappingShr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingSub for usize

    Source§

    fn wrapping_sub(&self, v: &usize) -> usize

    Wrapping (modular) subtraction. Computes self - other, wrapping around at the boundary\nof the type.
    ","WrappingSub","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl WriteHex for usize

    §

    fn write_hex<W>(&self, writer: W) -> Result<(), Error>
    where\n W: Write,

    Write the value as hex.
    ","WriteHex","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Writeable for usize

    §

    fn write_to<W>(&self, sink: &mut W) -> Result<(), Error>
    where\n W: Write + ?Sized,

    Writes a string to the given sink. Errors from the sink are bubbled up.\nThe default implementation delegates to write_to_parts, and discards any\nPart annotations.
    §

    fn writeable_length_hint(&self) -> LengthHint

    Returns a hint for the number of UTF-8 bytes that will be written to the sink. Read more
    §

    fn write_to_parts<S>(&self, sink: &mut S) -> Result<(), Error>
    where\n S: PartsWrite + ?Sized,

    Write bytes and Part annotations to the given sink. Errors from the\nsink are bubbled up. The default implementation delegates to write_to,\nand doesn’t produce any Part annotations.
    §

    fn write_to_string(&self) -> Cow<'_, str>

    Creates a new String with the data from this Writeable. Like ToString,\nbut smaller and faster. Read more
    §

    fn writeable_cmp_bytes(&self, other: &[u8]) -> Ordering

    Compares the contents of this Writeable to the given bytes\nwithout allocating a String to hold the Writeable contents. Read more
    ","Writeable","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> Yokeable<'a> for usize

    §

    type Output = usize

    This type MUST be Self with the 'static replaced with 'a, i.e. Self<'a>
    §

    fn transform(&self) -> &<usize as Yokeable<'a>>::Output

    This method must cast self between &'a Self<'static> and &'a Self<'a>. Read more
    §

    fn transform_owned(self) -> <usize as Yokeable<'a>>::Output

    This method must cast self between Self<'static> and Self<'a>. Read more
    §

    unsafe fn make(this: <usize as Yokeable<'a>>::Output) -> usize

    This method can be used to cast away Self<'a>’s lifetime. Read more
    §

    fn transform_mut<F>(&'a mut self, f: F)
    where\n F: 'static + for<'b> FnOnce(&'b mut <usize as Yokeable<'a>>::Output),

    This method must cast self between &'a mut Self<'static> and &'a mut Self<'a>,\nand pass it to f. Read more
    ","Yokeable<'a>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Zero for usize

    Source§

    fn zero() -> usize

    Returns the additive identity element of Self, 0. Read more
    Source§

    fn is_zero(&self) -> bool

    Returns true if self is equal to the additive identity.
    Source§

    fn set_zero(&mut self)

    Sets self to the additive identity element of Self, 0.
    ","Zero","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> ZeroFrom<'a, usize> for usize

    §

    fn zero_from(this: &'a usize) -> usize

    Clone the other C into a struct that may retain references into C.
    ","ZeroFrom<'a, usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> ZeroMapKV<'a> for usize

    §

    type Container = FlexZeroVec<'a>

    The container that can be used with this type: [ZeroVec] or [VarZeroVec].
    §

    type Slice = FlexZeroSlice

    §

    type GetType = [u8]

    The type produced by Container::get() Read more
    §

    type OwnedType = usize

    The type produced by Container::replace() and Container::remove(),\nalso used during deserialization. If Self is human readable serialized,\ndeserializing to Self::OwnedType should produce the same value once\npassed through Self::owned_as_self() Read more
    ","ZeroMapKV<'a>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Zeroable for usize

    §

    fn zeroed() -> Self

    ","Zeroable","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl usize

    1.43.0 · Source

    pub const MIN: usize = 0usize

    Available on 64-bit only.

    The smallest value that can be represented by this integer type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(usize::MIN, 0);
    \n
    1.43.0 · Source

    pub const MAX: usize = 18_446_744_073_709_551_615usize

    Available on 64-bit only.

    The largest value that can be represented by this integer type\n(264 − 1 on 64-bit targets).

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(usize::MAX, 18446744073709551615);
    \n
    1.53.0 · Source

    pub const BITS: u32 = 64u32

    Available on 64-bit only.

    The size of this integer type in bits.

    \n
    §Examples
    \n
    assert_eq!(usize::BITS, 64);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn count_ones(self) -> u32

    Available on 64-bit only.

    Returns the number of ones in the binary representation of self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0b01001100usize;\nassert_eq!(n.count_ones(), 3);\n\nlet max = usize::MAX;\nassert_eq!(max.count_ones(), 64);\n\nlet zero = 0usize;\nassert_eq!(zero.count_ones(), 0);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn count_zeros(self) -> u32

    Available on 64-bit only.

    Returns the number of zeros in the binary representation of self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let zero = 0usize;\nassert_eq!(zero.count_zeros(), 64);\n\nlet max = usize::MAX;\nassert_eq!(max.count_zeros(), 0);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn leading_zeros(self) -> u32

    Available on 64-bit only.

    Returns the number of leading zeros in the binary representation of self.

    \n

    Depending on what you’re doing with the value, you might also be interested in the\nilog2 function which returns a consistent number, even if the type widens.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = usize::MAX >> 2;\nassert_eq!(n.leading_zeros(), 2);\n\nlet zero = 0usize;\nassert_eq!(zero.leading_zeros(), 64);\n\nlet max = usize::MAX;\nassert_eq!(max.leading_zeros(), 0);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn trailing_zeros(self) -> u32

    Available on 64-bit only.

    Returns the number of trailing zeros in the binary representation\nof self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0b0101000usize;\nassert_eq!(n.trailing_zeros(), 3);\n\nlet zero = 0usize;\nassert_eq!(zero.trailing_zeros(), 64);\n\nlet max = usize::MAX;\nassert_eq!(max.trailing_zeros(), 0);
    \n
    1.46.0 (const: 1.46.0) · Source

    pub const fn leading_ones(self) -> u32

    Available on 64-bit only.

    Returns the number of leading ones in the binary representation of self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = !(usize::MAX >> 2);\nassert_eq!(n.leading_ones(), 2);\n\nlet zero = 0usize;\nassert_eq!(zero.leading_ones(), 0);\n\nlet max = usize::MAX;\nassert_eq!(max.leading_ones(), 64);
    \n
    1.46.0 (const: 1.46.0) · Source

    pub const fn trailing_ones(self) -> u32

    Available on 64-bit only.

    Returns the number of trailing ones in the binary representation\nof self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0b1010111usize;\nassert_eq!(n.trailing_ones(), 3);\n\nlet zero = 0usize;\nassert_eq!(zero.trailing_ones(), 0);\n\nlet max = usize::MAX;\nassert_eq!(max.trailing_ones(), 64);
    \n
    Source

    pub const fn cast_signed(self) -> isize

    🔬This is a nightly-only experimental API. (integer_sign_cast)
    Available on 64-bit only.

    Returns the bit pattern of self reinterpreted as a signed integer of the same size.

    \n

    This produces the same result as an as cast, but ensures that the bit-width remains\nthe same.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(integer_sign_cast)]\n\nlet n = usize::MAX;\n\nassert_eq!(n.cast_signed(), -1isize);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn rotate_left(self, n: u32) -> usize

    Available on 64-bit only.

    Shifts the bits to the left by a specified amount, n,\nwrapping the truncated bits to the end of the resulting integer.

    \n

    Please note this isn’t the same operation as the << shifting operator!

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0xaa00000000006e1usize;\nlet m = 0x6e10aa;\n\nassert_eq!(n.rotate_left(12), m);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn rotate_right(self, n: u32) -> usize

    Available on 64-bit only.

    Shifts the bits to the right by a specified amount, n,\nwrapping the truncated bits to the beginning of the resulting\ninteger.

    \n

    Please note this isn’t the same operation as the >> shifting operator!

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x6e10aausize;\nlet m = 0xaa00000000006e1;\n\nassert_eq!(n.rotate_right(12), m);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn swap_bytes(self) -> usize

    Available on 64-bit only.

    Reverses the byte order of the integer.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1234567890123456usize;\nlet m = n.swap_bytes();\n\nassert_eq!(m, 0x5634129078563412);
    \n
    1.37.0 (const: 1.37.0) · Source

    pub const fn reverse_bits(self) -> usize

    Available on 64-bit only.

    Reverses the order of bits in the integer. The least significant bit becomes the most significant bit,\nsecond least-significant bit becomes second most-significant bit, etc.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1234567890123456usize;\nlet m = n.reverse_bits();\n\nassert_eq!(m, 0x6a2c48091e6a2c48);\nassert_eq!(0, 0usize.reverse_bits());
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn from_be(x: usize) -> usize

    Available on 64-bit only.

    Converts an integer from big endian to the target’s endianness.

    \n

    On big endian this is a no-op. On little endian the bytes are\nswapped.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1Ausize;\n\nif cfg!(target_endian = \"big\") {\n    assert_eq!(usize::from_be(n), n)\n} else {\n    assert_eq!(usize::from_be(n), n.swap_bytes())\n}
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn from_le(x: usize) -> usize

    Available on 64-bit only.

    Converts an integer from little endian to the target’s endianness.

    \n

    On little endian this is a no-op. On big endian the bytes are\nswapped.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1Ausize;\n\nif cfg!(target_endian = \"little\") {\n    assert_eq!(usize::from_le(n), n)\n} else {\n    assert_eq!(usize::from_le(n), n.swap_bytes())\n}
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn to_be(self) -> usize

    Available on 64-bit only.

    Converts self to big endian from the target’s endianness.

    \n

    On big endian this is a no-op. On little endian the bytes are\nswapped.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1Ausize;\n\nif cfg!(target_endian = \"big\") {\n    assert_eq!(n.to_be(), n)\n} else {\n    assert_eq!(n.to_be(), n.swap_bytes())\n}
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn to_le(self) -> usize

    Available on 64-bit only.

    Converts self to little endian from the target’s endianness.

    \n

    On little endian this is a no-op. On big endian the bytes are\nswapped.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1Ausize;\n\nif cfg!(target_endian = \"little\") {\n    assert_eq!(n.to_le(), n)\n} else {\n    assert_eq!(n.to_le(), n.swap_bytes())\n}
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn checked_add(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer addition. Computes self + rhs, returning None\nif overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!((usize::MAX - 2).checked_add(1), Some(usize::MAX - 1));\nassert_eq!((usize::MAX - 2).checked_add(3), None);
    \n
    Source

    pub const fn strict_add(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer addition. Computes self + rhs, panicking\nif overflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!((usize::MAX - 2).strict_add(1), usize::MAX - 1);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = (usize::MAX - 2).strict_add(3);
    \n
    1.79.0 (const: 1.79.0) · Source

    pub const unsafe fn unchecked_add(self, rhs: usize) -> usize

    Available on 64-bit only.

    Unchecked integer addition. Computes self + rhs, assuming overflow\ncannot occur.

    \n

    Calling x.unchecked_add(y) is semantically equivalent to calling\nx.checked_add(y).unwrap_unchecked().

    \n

    If you’re just trying to avoid the panic in debug mode, then do not\nuse this. Instead, you’re looking for wrapping_add.

    \n
    §Safety
    \n

    This results in undefined behavior when\nself + rhs > usize::MAX or self + rhs < usize::MIN,\ni.e. when checked_add would return None.

    \n
    1.66.0 (const: 1.66.0) · Source

    pub const fn checked_add_signed(self, rhs: isize) -> Option<usize>

    Available on 64-bit only.

    Checked addition with a signed integer. Computes self + rhs,\nreturning None if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.checked_add_signed(2), Some(3));\nassert_eq!(1usize.checked_add_signed(-2), None);\nassert_eq!((usize::MAX - 2).checked_add_signed(3), None);
    \n
    Source

    pub const fn strict_add_signed(self, rhs: isize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict addition with a signed integer. Computes self + rhs,\npanicking if overflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(1usize.strict_add_signed(2), 3);
    \n

    The following panic because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 1usize.strict_add_signed(-2);
    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = (usize::MAX - 2).strict_add_signed(3);
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn checked_sub(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer subtraction. Computes self - rhs, returning\nNone if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.checked_sub(1), Some(0));\nassert_eq!(0usize.checked_sub(1), None);
    \n
    Source

    pub const fn strict_sub(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer subtraction. Computes self - rhs, panicking if\noverflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(1usize.strict_sub(1), 0);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 0usize.strict_sub(1);
    \n
    1.79.0 (const: 1.79.0) · Source

    pub const unsafe fn unchecked_sub(self, rhs: usize) -> usize

    Available on 64-bit only.

    Unchecked integer subtraction. Computes self - rhs, assuming overflow\ncannot occur.

    \n

    Calling x.unchecked_sub(y) is semantically equivalent to calling\nx.checked_sub(y).unwrap_unchecked().

    \n

    If you’re just trying to avoid the panic in debug mode, then do not\nuse this. Instead, you’re looking for wrapping_sub.

    \n

    If you find yourself writing code like this:

    \n\n
    if foo >= bar {\n    // SAFETY: just checked it will not overflow\n    let diff = unsafe { foo.unchecked_sub(bar) };\n    // ... use diff ...\n}
    \n

    Consider changing it to

    \n\n
    if let Some(diff) = foo.checked_sub(bar) {\n    // ... use diff ...\n}
    \n

    As that does exactly the same thing – including telling the optimizer\nthat the subtraction cannot overflow – but avoids needing unsafe.

    \n
    §Safety
    \n

    This results in undefined behavior when\nself - rhs > usize::MAX or self - rhs < usize::MIN,\ni.e. when checked_sub would return None.

    \n
    Source

    pub const fn checked_sub_signed(self, rhs: isize) -> Option<usize>

    🔬This is a nightly-only experimental API. (mixed_integer_ops_unsigned_sub)
    Available on 64-bit only.

    Checked subtraction with a signed integer. Computes self - rhs,\nreturning None if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(mixed_integer_ops_unsigned_sub)]\nassert_eq!(1usize.checked_sub_signed(2), None);\nassert_eq!(1usize.checked_sub_signed(-2), Some(3));\nassert_eq!((usize::MAX - 2).checked_sub_signed(-4), None);
    \n
    Source

    pub const fn checked_signed_diff(self, rhs: usize) -> Option<isize>

    🔬This is a nightly-only experimental API. (unsigned_signed_diff)
    Available on 64-bit only.

    Checked integer subtraction. Computes self - rhs and checks if the result fits into an isize, returning None if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(unsigned_signed_diff)]\nassert_eq!(10usize.checked_signed_diff(2), Some(8));\nassert_eq!(2usize.checked_signed_diff(10), Some(-8));\nassert_eq!(usize::MAX.checked_signed_diff(isize::MAX as usize), None);\nassert_eq!((isize::MAX as usize).checked_signed_diff(usize::MAX), Some(isize::MIN));\nassert_eq!((isize::MAX as usize + 1).checked_signed_diff(0), None);\nassert_eq!(usize::MAX.checked_signed_diff(usize::MAX), Some(0));
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn checked_mul(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer multiplication. Computes self * rhs, returning\nNone if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.checked_mul(1), Some(5));\nassert_eq!(usize::MAX.checked_mul(2), None);
    \n
    Source

    pub const fn strict_mul(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer multiplication. Computes self * rhs, panicking if\noverflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(5usize.strict_mul(1), 5);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = usize::MAX.strict_mul(2);
    \n
    1.79.0 (const: 1.79.0) · Source

    pub const unsafe fn unchecked_mul(self, rhs: usize) -> usize

    Available on 64-bit only.

    Unchecked integer multiplication. Computes self * rhs, assuming overflow\ncannot occur.

    \n

    Calling x.unchecked_mul(y) is semantically equivalent to calling\nx.checked_mul(y).unwrap_unchecked().

    \n

    If you’re just trying to avoid the panic in debug mode, then do not\nuse this. Instead, you’re looking for wrapping_mul.

    \n
    §Safety
    \n

    This results in undefined behavior when\nself * rhs > usize::MAX or self * rhs < usize::MIN,\ni.e. when checked_mul would return None.

    \n
    1.0.0 (const: 1.52.0) · Source

    pub const fn checked_div(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer division. Computes self / rhs, returning None\nif rhs == 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(128usize.checked_div(2), Some(64));\nassert_eq!(1usize.checked_div(0), None);
    \n
    Source

    pub const fn strict_div(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer division. Computes self / rhs.

    \n

    Strict division on unsigned types is just normal division. There’s no\nway overflow could ever happen. This function exists so that all\noperations are accounted for in the strict operations.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(100usize.strict_div(10), 10);
    \n

    The following panics because of division by zero:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = (1usize).strict_div(0);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn checked_div_euclid(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked Euclidean division. Computes self.div_euclid(rhs), returning None\nif rhs == 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(128usize.checked_div_euclid(2), Some(64));\nassert_eq!(1usize.checked_div_euclid(0), None);
    \n
    Source

    pub const fn strict_div_euclid(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict Euclidean division. Computes self.div_euclid(rhs).

    \n

    Strict division on unsigned types is just normal division. There’s no\nway overflow could ever happen. This function exists so that all\noperations are accounted for in the strict operations. Since, for the\npositive integers, all common definitions of division are equal, this\nis exactly equal to self.strict_div(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(100usize.strict_div_euclid(10), 10);
    \n

    The following panics because of division by zero:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = (1usize).strict_div_euclid(0);
    \n
    1.7.0 (const: 1.52.0) · Source

    pub const fn checked_rem(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer remainder. Computes self % rhs, returning None\nif rhs == 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.checked_rem(2), Some(1));\nassert_eq!(5usize.checked_rem(0), None);
    \n
    Source

    pub const fn strict_rem(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer remainder. Computes self % rhs.

    \n

    Strict remainder calculation on unsigned types is just the regular\nremainder calculation. There’s no way overflow could ever happen.\nThis function exists so that all operations are accounted for in the\nstrict operations.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(100usize.strict_rem(10), 0);
    \n

    The following panics because of division by zero:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 5usize.strict_rem(0);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn checked_rem_euclid(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked Euclidean modulo. Computes self.rem_euclid(rhs), returning None\nif rhs == 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.checked_rem_euclid(2), Some(1));\nassert_eq!(5usize.checked_rem_euclid(0), None);
    \n
    Source

    pub const fn strict_rem_euclid(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict Euclidean modulo. Computes self.rem_euclid(rhs).

    \n

    Strict modulo calculation on unsigned types is just the regular\nremainder calculation. There’s no way overflow could ever happen.\nThis function exists so that all operations are accounted for in the\nstrict operations. Since, for the positive integers, all common\ndefinitions of division are equal, this is exactly equal to\nself.strict_rem(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(100usize.strict_rem_euclid(10), 0);
    \n

    The following panics because of division by zero:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 5usize.strict_rem_euclid(0);
    \n
    Source

    pub const unsafe fn unchecked_disjoint_bitor(self, other: usize) -> usize

    🔬This is a nightly-only experimental API. (disjoint_bitor)
    Available on 64-bit only.

    Same value as self | other, but UB if any bit position is set in both inputs.

    \n

    This is a situational micro-optimization for places where you’d rather\nuse addition on some platforms and bitwise or on other platforms, based\non exactly which instructions combine better with whatever else you’re\ndoing. Note that there’s no reason to bother using this for places\nwhere it’s clear from the operations involved that they can’t overlap.\nFor example, if you’re combining u16s into a u32 with\n((a as u32) << 16) | (b as u32), that’s fine, as the backend will\nknow those sides of the | are disjoint without needing help.

    \n
    §Examples
    \n
    #![feature(disjoint_bitor)]\n\n// SAFETY: `1` and `4` have no bits in common.\nunsafe {\n    assert_eq!(1_usize.unchecked_disjoint_bitor(4), 5);\n}
    \n
    §Safety
    \n

    Requires that (self & other) == 0, otherwise it’s immediate UB.

    \n

    Equivalently, requires that (self | other) == (self + other).

    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn ilog(self, base: usize) -> u32

    Available on 64-bit only.

    Returns the logarithm of the number with respect to an arbitrary base,\nrounded down.

    \n

    This method might not be optimized owing to implementation details;\nilog2 can produce results more efficiently for base 2, and ilog10\ncan produce results more efficiently for base 10.

    \n
    §Panics
    \n

    This function will panic if self is zero, or if base is less than 2.

    \n
    §Examples
    \n
    assert_eq!(5usize.ilog(5), 1);
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn ilog2(self) -> u32

    Available on 64-bit only.

    Returns the base 2 logarithm of the number, rounded down.

    \n
    §Panics
    \n

    This function will panic if self is zero.

    \n
    §Examples
    \n
    assert_eq!(2usize.ilog2(), 1);
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn ilog10(self) -> u32

    Available on 64-bit only.

    Returns the base 10 logarithm of the number, rounded down.

    \n
    §Panics
    \n

    This function will panic if self is zero.

    \n
    §Example
    \n
    assert_eq!(10usize.ilog10(), 1);
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn checked_ilog(self, base: usize) -> Option<u32>

    Available on 64-bit only.

    Returns the logarithm of the number with respect to an arbitrary base,\nrounded down.

    \n

    Returns None if the number is zero, or if the base is not at least 2.

    \n

    This method might not be optimized owing to implementation details;\nchecked_ilog2 can produce results more efficiently for base 2, and\nchecked_ilog10 can produce results more efficiently for base 10.

    \n
    §Examples
    \n
    assert_eq!(5usize.checked_ilog(5), Some(1));
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn checked_ilog2(self) -> Option<u32>

    Available on 64-bit only.

    Returns the base 2 logarithm of the number, rounded down.

    \n

    Returns None if the number is zero.

    \n
    §Examples
    \n
    assert_eq!(2usize.checked_ilog2(), Some(1));
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn checked_ilog10(self) -> Option<u32>

    Available on 64-bit only.

    Returns the base 10 logarithm of the number, rounded down.

    \n

    Returns None if the number is zero.

    \n
    §Examples
    \n
    assert_eq!(10usize.checked_ilog10(), Some(1));
    \n
    1.7.0 (const: 1.47.0) · Source

    pub const fn checked_neg(self) -> Option<usize>

    Available on 64-bit only.

    Checked negation. Computes -self, returning None unless self == 0.

    \n

    Note that negating any positive integer will overflow.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0usize.checked_neg(), Some(0));\nassert_eq!(1usize.checked_neg(), None);
    \n
    Source

    pub const fn strict_neg(self) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict negation. Computes -self, panicking unless self == 0.

    \n

    Note that negating any positive integer will overflow.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(0usize.strict_neg(), 0);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 1usize.strict_neg();
    \n
    1.7.0 (const: 1.47.0) · Source

    pub const fn checked_shl(self, rhs: u32) -> Option<usize>

    Available on 64-bit only.

    Checked shift left. Computes self << rhs, returning None\nif rhs is larger than or equal to the number of bits in self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0x1usize.checked_shl(4), Some(0x10));\nassert_eq!(0x10usize.checked_shl(129), None);\nassert_eq!(0x10usize.checked_shl(63), Some(0));
    \n
    Source

    pub const fn strict_shl(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict shift left. Computes self << rhs, panicking if rhs is larger\nthan or equal to the number of bits in self.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(0x1usize.strict_shl(4), 0x10);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 0x10usize.strict_shl(129);
    \n
    Source

    pub const unsafe fn unchecked_shl(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (unchecked_shifts)
    Available on 64-bit only.

    Unchecked shift left. Computes self << rhs, assuming that\nrhs is less than the number of bits in self.

    \n
    §Safety
    \n

    This results in undefined behavior if rhs is larger than\nor equal to the number of bits in self,\ni.e. when checked_shl would return None.

    \n
    Source

    pub const fn unbounded_shl(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (unbounded_shifts)
    Available on 64-bit only.

    Unbounded shift left. Computes self << rhs, without bounding the value of rhs.

    \n

    If rhs is larger or equal to the number of bits in self,\nthe entire value is shifted out, and 0 is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(unbounded_shifts)]\nassert_eq!(0x1usize.unbounded_shl(4), 0x10);\nassert_eq!(0x1usize.unbounded_shl(129), 0);
    \n
    1.7.0 (const: 1.47.0) · Source

    pub const fn checked_shr(self, rhs: u32) -> Option<usize>

    Available on 64-bit only.

    Checked shift right. Computes self >> rhs, returning None\nif rhs is larger than or equal to the number of bits in self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0x10usize.checked_shr(4), Some(0x1));\nassert_eq!(0x10usize.checked_shr(129), None);
    \n
    Source

    pub const fn strict_shr(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict shift right. Computes self >> rhs, panicking rhs is\nlarger than or equal to the number of bits in self.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(0x10usize.strict_shr(4), 0x1);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 0x10usize.strict_shr(129);
    \n
    Source

    pub const unsafe fn unchecked_shr(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (unchecked_shifts)
    Available on 64-bit only.

    Unchecked shift right. Computes self >> rhs, assuming that\nrhs is less than the number of bits in self.

    \n
    §Safety
    \n

    This results in undefined behavior if rhs is larger than\nor equal to the number of bits in self,\ni.e. when checked_shr would return None.

    \n
    Source

    pub const fn unbounded_shr(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (unbounded_shifts)
    Available on 64-bit only.

    Unbounded shift right. Computes self >> rhs, without bounding the value of rhs.

    \n

    If rhs is larger or equal to the number of bits in self,\nthe entire value is shifted out, and 0 is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(unbounded_shifts)]\nassert_eq!(0x10usize.unbounded_shr(4), 0x1);\nassert_eq!(0x10usize.unbounded_shr(129), 0);
    \n
    1.34.0 (const: 1.50.0) · Source

    pub const fn checked_pow(self, exp: u32) -> Option<usize>

    Available on 64-bit only.

    Checked exponentiation. Computes self.pow(exp), returning None if\noverflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.checked_pow(5), Some(32));\nassert_eq!(usize::MAX.checked_pow(2), None);
    \n
    Source

    pub const fn strict_pow(self, exp: u32) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict exponentiation. Computes self.pow(exp), panicking if\noverflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(2usize.strict_pow(5), 32);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = usize::MAX.strict_pow(2);
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn saturating_add(self, rhs: usize) -> usize

    Available on 64-bit only.

    Saturating integer addition. Computes self + rhs, saturating at\nthe numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.saturating_add(1), 101);\nassert_eq!(usize::MAX.saturating_add(127), usize::MAX);
    \n
    1.66.0 (const: 1.66.0) · Source

    pub const fn saturating_add_signed(self, rhs: isize) -> usize

    Available on 64-bit only.

    Saturating addition with a signed integer. Computes self + rhs,\nsaturating at the numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.saturating_add_signed(2), 3);\nassert_eq!(1usize.saturating_add_signed(-2), 0);\nassert_eq!((usize::MAX - 2).saturating_add_signed(4), usize::MAX);
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn saturating_sub(self, rhs: usize) -> usize

    Available on 64-bit only.

    Saturating integer subtraction. Computes self - rhs, saturating\nat the numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.saturating_sub(27), 73);\nassert_eq!(13usize.saturating_sub(127), 0);
    \n
    Source

    pub const fn saturating_sub_signed(self, rhs: isize) -> usize

    🔬This is a nightly-only experimental API. (mixed_integer_ops_unsigned_sub)
    Available on 64-bit only.

    Saturating integer subtraction. Computes self - rhs, saturating at\nthe numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(mixed_integer_ops_unsigned_sub)]\nassert_eq!(1usize.saturating_sub_signed(2), 0);\nassert_eq!(1usize.saturating_sub_signed(-2), 3);\nassert_eq!((usize::MAX - 2).saturating_sub_signed(-4), usize::MAX);
    \n
    1.7.0 (const: 1.47.0) · Source

    pub const fn saturating_mul(self, rhs: usize) -> usize

    Available on 64-bit only.

    Saturating integer multiplication. Computes self * rhs,\nsaturating at the numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.saturating_mul(10), 20);\nassert_eq!((usize::MAX).saturating_mul(10), usize::MAX);
    \n
    1.58.0 (const: 1.58.0) · Source

    pub const fn saturating_div(self, rhs: usize) -> usize

    Available on 64-bit only.

    Saturating integer division. Computes self / rhs, saturating at the\nnumeric bounds instead of overflowing.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.saturating_div(2), 2);\n
    \n
    1.34.0 (const: 1.50.0) · Source

    pub const fn saturating_pow(self, exp: u32) -> usize

    Available on 64-bit only.

    Saturating integer exponentiation. Computes self.pow(exp),\nsaturating at the numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(4usize.saturating_pow(3), 64);\nassert_eq!(usize::MAX.saturating_pow(2), usize::MAX);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn wrapping_add(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) addition. Computes self + rhs,\nwrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(200usize.wrapping_add(55), 255);\nassert_eq!(200usize.wrapping_add(usize::MAX), 199);
    \n
    1.66.0 (const: 1.66.0) · Source

    pub const fn wrapping_add_signed(self, rhs: isize) -> usize

    Available on 64-bit only.

    Wrapping (modular) addition with a signed integer. Computes\nself + rhs, wrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.wrapping_add_signed(2), 3);\nassert_eq!(1usize.wrapping_add_signed(-2), usize::MAX);\nassert_eq!((usize::MAX - 2).wrapping_add_signed(4), 1);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn wrapping_sub(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) subtraction. Computes self - rhs,\nwrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_sub(100), 0);\nassert_eq!(100usize.wrapping_sub(usize::MAX), 101);
    \n
    Source

    pub const fn wrapping_sub_signed(self, rhs: isize) -> usize

    🔬This is a nightly-only experimental API. (mixed_integer_ops_unsigned_sub)
    Available on 64-bit only.

    Wrapping (modular) subtraction with a signed integer. Computes\nself - rhs, wrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(mixed_integer_ops_unsigned_sub)]\nassert_eq!(1usize.wrapping_sub_signed(2), usize::MAX);\nassert_eq!(1usize.wrapping_sub_signed(-2), 3);\nassert_eq!((usize::MAX - 2).wrapping_sub_signed(-4), 1);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn wrapping_mul(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) multiplication. Computes self * rhs, wrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types.\nWhich explains why u8 is used here.

    \n\n
    assert_eq!(10u8.wrapping_mul(12), 120);\nassert_eq!(25u8.wrapping_mul(12), 44);
    \n
    1.2.0 (const: 1.52.0) · Source

    pub const fn wrapping_div(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) division. Computes self / rhs.

    \n

    Wrapped division on unsigned types is just normal division. There’s\nno way wrapping could ever happen. This function exists so that all\noperations are accounted for in the wrapping operations.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_div(10), 10);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn wrapping_div_euclid(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping Euclidean division. Computes self.div_euclid(rhs).

    \n

    Wrapped division on unsigned types is just normal division. There’s\nno way wrapping could ever happen. This function exists so that all\noperations are accounted for in the wrapping operations. Since, for\nthe positive integers, all common definitions of division are equal,\nthis is exactly equal to self.wrapping_div(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_div_euclid(10), 10);
    \n
    1.2.0 (const: 1.52.0) · Source

    pub const fn wrapping_rem(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) remainder. Computes self % rhs.

    \n

    Wrapped remainder calculation on unsigned types is just the regular\nremainder calculation. There’s no way wrapping could ever happen.\nThis function exists so that all operations are accounted for in the\nwrapping operations.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_rem(10), 0);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn wrapping_rem_euclid(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping Euclidean modulo. Computes self.rem_euclid(rhs).

    \n

    Wrapped modulo calculation on unsigned types is just the regular\nremainder calculation. There’s no way wrapping could ever happen.\nThis function exists so that all operations are accounted for in the\nwrapping operations. Since, for the positive integers, all common\ndefinitions of division are equal, this is exactly equal to\nself.wrapping_rem(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_rem_euclid(10), 0);
    \n
    1.2.0 (const: 1.32.0) · Source

    pub const fn wrapping_neg(self) -> usize

    Available on 64-bit only.

    Wrapping (modular) negation. Computes -self,\nwrapping around at the boundary of the type.

    \n

    Since unsigned types do not have negative equivalents\nall applications of this function will wrap (except for -0).\nFor values smaller than the corresponding signed type’s maximum\nthe result is the same as casting the corresponding signed value.\nAny larger values are equivalent to MAX + 1 - (val - MAX - 1) where\nMAX is the corresponding signed type’s maximum.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0_usize.wrapping_neg(), 0);\nassert_eq!(usize::MAX.wrapping_neg(), 1);\nassert_eq!(13_usize.wrapping_neg(), (!13) + 1);\nassert_eq!(42_usize.wrapping_neg(), !(42 - 1));
    \n
    1.2.0 (const: 1.32.0) · Source

    pub const fn wrapping_shl(self, rhs: u32) -> usize

    Available on 64-bit only.

    Panic-free bitwise shift-left; yields self << mask(rhs),\nwhere mask removes any high-order bits of rhs that\nwould cause the shift to exceed the bitwidth of the type.

    \n

    Note that this is not the same as a rotate-left; the\nRHS of a wrapping shift-left is restricted to the range\nof the type, rather than the bits shifted out of the LHS\nbeing returned to the other end. The primitive integer\ntypes all implement a rotate_left function,\nwhich may be what you want instead.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.wrapping_shl(7), 128);\nassert_eq!(1usize.wrapping_shl(128), 1);
    \n
    1.2.0 (const: 1.32.0) · Source

    pub const fn wrapping_shr(self, rhs: u32) -> usize

    Available on 64-bit only.

    Panic-free bitwise shift-right; yields self >> mask(rhs),\nwhere mask removes any high-order bits of rhs that\nwould cause the shift to exceed the bitwidth of the type.

    \n

    Note that this is not the same as a rotate-right; the\nRHS of a wrapping shift-right is restricted to the range\nof the type, rather than the bits shifted out of the LHS\nbeing returned to the other end. The primitive integer\ntypes all implement a rotate_right function,\nwhich may be what you want instead.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(128usize.wrapping_shr(7), 1);\nassert_eq!(128usize.wrapping_shr(128), 128);
    \n
    1.34.0 (const: 1.50.0) · Source

    pub const fn wrapping_pow(self, exp: u32) -> usize

    Available on 64-bit only.

    Wrapping (modular) exponentiation. Computes self.pow(exp),\nwrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(3usize.wrapping_pow(5), 243);\nassert_eq!(3u8.wrapping_pow(6), 217);
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_add(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates self + rhs.

    \n

    Returns a tuple of the addition along with a boolean indicating\nwhether an arithmetic overflow would occur. If an overflow would\nhave occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_add(2), (7, false));\nassert_eq!(usize::MAX.overflowing_add(1), (0, true));
    \n
    Source

    pub const fn carrying_add(self, rhs: usize, carry: bool) -> (usize, bool)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates self + rhs + carry and returns a tuple containing\nthe sum and the output carry.

    \n

    Performs “ternary addition” of two integer operands and a carry-in\nbit, and returns an output integer and a carry-out bit. This allows\nchaining together multiple additions to create a wider addition, and\ncan be useful for bignum addition.

    \n

    This can be thought of as a 64-bit “full adder”, in the electronics sense.

    \n

    If the input carry is false, this method is equivalent to\noverflowing_add, and the output carry is\nequal to the overflow flag. Note that although carry and overflow\nflags are similar for unsigned integers, they are different for\nsigned integers.

    \n
    §Examples
    \n
    #![feature(bigint_helper_methods)]\n\n//    3  MAX    (a = 3 × 2^64 + 2^64 - 1)\n// +  5    7    (b = 5 × 2^64 + 7)\n// ---------\n//    9    6    (sum = 9 × 2^64 + 6)\n\nlet (a1, a0): (usize, usize) = (3, usize::MAX);\nlet (b1, b0): (usize, usize) = (5, 7);\nlet carry0 = false;\n\nlet (sum0, carry1) = a0.carrying_add(b0, carry0);\nassert_eq!(carry1, true);\nlet (sum1, carry2) = a1.carrying_add(b1, carry1);\nassert_eq!(carry2, false);\n\nassert_eq!((sum1, sum0), (9, 6));
    \n
    1.66.0 (const: 1.66.0) · Source

    pub const fn overflowing_add_signed(self, rhs: isize) -> (usize, bool)

    Available on 64-bit only.

    Calculates self + rhs with a signed rhs.

    \n

    Returns a tuple of the addition along with a boolean indicating\nwhether an arithmetic overflow would occur. If an overflow would\nhave occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.overflowing_add_signed(2), (3, false));\nassert_eq!(1usize.overflowing_add_signed(-2), (usize::MAX, true));\nassert_eq!((usize::MAX - 2).overflowing_add_signed(4), (1, true));
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_sub(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates self - rhs.

    \n

    Returns a tuple of the subtraction along with a boolean indicating\nwhether an arithmetic overflow would occur. If an overflow would\nhave occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_sub(2), (3, false));\nassert_eq!(0usize.overflowing_sub(1), (usize::MAX, true));
    \n
    Source

    pub const fn borrowing_sub(self, rhs: usize, borrow: bool) -> (usize, bool)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates selfrhsborrow and returns a tuple\ncontaining the difference and the output borrow.

    \n

    Performs “ternary subtraction” by subtracting both an integer\noperand and a borrow-in bit from self, and returns an output\ninteger and a borrow-out bit. This allows chaining together multiple\nsubtractions to create a wider subtraction, and can be useful for\nbignum subtraction.

    \n
    §Examples
    \n
    #![feature(bigint_helper_methods)]\n\n//    9    6    (a = 9 × 2^64 + 6)\n// -  5    7    (b = 5 × 2^64 + 7)\n// ---------\n//    3  MAX    (diff = 3 × 2^64 + 2^64 - 1)\n\nlet (a1, a0): (usize, usize) = (9, 6);\nlet (b1, b0): (usize, usize) = (5, 7);\nlet borrow0 = false;\n\nlet (diff0, borrow1) = a0.borrowing_sub(b0, borrow0);\nassert_eq!(borrow1, true);\nlet (diff1, borrow2) = a1.borrowing_sub(b1, borrow1);\nassert_eq!(borrow2, false);\n\nassert_eq!((diff1, diff0), (3, usize::MAX));
    \n
    Source

    pub const fn overflowing_sub_signed(self, rhs: isize) -> (usize, bool)

    🔬This is a nightly-only experimental API. (mixed_integer_ops_unsigned_sub)
    Available on 64-bit only.

    Calculates self - rhs with a signed rhs

    \n

    Returns a tuple of the subtraction along with a boolean indicating\nwhether an arithmetic overflow would occur. If an overflow would\nhave occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(mixed_integer_ops_unsigned_sub)]\nassert_eq!(1usize.overflowing_sub_signed(2), (usize::MAX, true));\nassert_eq!(1usize.overflowing_sub_signed(-2), (3, false));\nassert_eq!((usize::MAX - 2).overflowing_sub_signed(-4), (1, true));
    \n
    1.60.0 (const: 1.60.0) · Source

    pub const fn abs_diff(self, other: usize) -> usize

    Available on 64-bit only.

    Computes the absolute difference between self and other.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.abs_diff(80), 20usize);\nassert_eq!(100usize.abs_diff(110), 10usize);
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_mul(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the multiplication of self and rhs.

    \n

    Returns a tuple of the multiplication along with a boolean\nindicating whether an arithmetic overflow would occur. If an\noverflow would have occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types.\nWhich explains why u32 is used here.

    \n\n
    assert_eq!(5u32.overflowing_mul(2), (10, false));\nassert_eq!(1_000_000_000u32.overflowing_mul(10), (1410065408, true));
    \n
    Source

    pub const fn widening_mul(self, rhs: usize) -> (usize, usize)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates the complete product self * rhs without the possibility to overflow.

    \n

    This returns the low-order (wrapping) bits and the high-order (overflow) bits\nof the result as two separate values, in that order.

    \n

    If you also need to add a carry to the wide result, then you want\nSelf::carrying_mul instead.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types.\nWhich explains why u32 is used here.

    \n\n
    #![feature(bigint_helper_methods)]\nassert_eq!(5u32.widening_mul(2), (10, 0));\nassert_eq!(1_000_000_000u32.widening_mul(10), (1410065408, 2));
    \n
    Source

    pub const fn carrying_mul(self, rhs: usize, carry: usize) -> (usize, usize)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates the “full multiplication” self * rhs + carry\nwithout the possibility to overflow.

    \n

    This returns the low-order (wrapping) bits and the high-order (overflow) bits\nof the result as two separate values, in that order.

    \n

    Performs “long multiplication” which takes in an extra amount to add, and may return an\nadditional amount of overflow. This allows for chaining together multiple\nmultiplications to create “big integers” which represent larger values.

    \n

    If you don’t need the carry, then you can use Self::widening_mul instead.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types.\nWhich explains why u32 is used here.

    \n\n
    #![feature(bigint_helper_methods)]\nassert_eq!(5u32.carrying_mul(2, 0), (10, 0));\nassert_eq!(5u32.carrying_mul(2, 10), (20, 0));\nassert_eq!(1_000_000_000u32.carrying_mul(10, 0), (1410065408, 2));\nassert_eq!(1_000_000_000u32.carrying_mul(10, 10), (1410065418, 2));\nassert_eq!(usize::MAX.carrying_mul(usize::MAX, usize::MAX), (0, usize::MAX));
    \n

    This is the core operation needed for scalar multiplication when\nimplementing it for wider-than-native types.

    \n\n
    #![feature(bigint_helper_methods)]\nfn scalar_mul_eq(little_endian_digits: &mut Vec<u16>, multiplicand: u16) {\n    let mut carry = 0;\n    for d in little_endian_digits.iter_mut() {\n        (*d, carry) = d.carrying_mul(multiplicand, carry);\n    }\n    if carry != 0 {\n        little_endian_digits.push(carry);\n    }\n}\n\nlet mut v = vec![10, 20];\nscalar_mul_eq(&mut v, 3);\nassert_eq!(v, [30, 60]);\n\nassert_eq!(0x87654321_u64 * 0xFEED, 0x86D3D159E38D);\nlet mut v = vec![0x4321, 0x8765];\nscalar_mul_eq(&mut v, 0xFEED);\nassert_eq!(v, [0xE38D, 0xD159, 0x86D3]);
    \n

    If carry is zero, this is similar to overflowing_mul,\nexcept that it gives the value of the overflow instead of just whether one happened:

    \n\n
    #![feature(bigint_helper_methods)]\nlet r = u8::carrying_mul(7, 13, 0);\nassert_eq!((r.0, r.1 != 0), u8::overflowing_mul(7, 13));\nlet r = u8::carrying_mul(13, 42, 0);\nassert_eq!((r.0, r.1 != 0), u8::overflowing_mul(13, 42));
    \n

    The value of the first field in the returned tuple matches what you’d get\nby combining the wrapping_mul and\nwrapping_add methods:

    \n\n
    #![feature(bigint_helper_methods)]\nassert_eq!(\n    789_u16.carrying_mul(456, 123).0,\n    789_u16.wrapping_mul(456).wrapping_add(123),\n);
    \n
    Source

    pub const fn carrying_mul_add(\n self,\n rhs: usize,\n carry: usize,\n add: usize,\n) -> (usize, usize)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates the “full multiplication” self * rhs + carry1 + carry2\nwithout the possibility to overflow.

    \n

    This returns the low-order (wrapping) bits and the high-order (overflow) bits\nof the result as two separate values, in that order.

    \n

    Performs “long multiplication” which takes in an extra amount to add, and may return an\nadditional amount of overflow. This allows for chaining together multiple\nmultiplications to create “big integers” which represent larger values.

    \n

    If you don’t need either carry, then you can use Self::widening_mul instead,\nand if you only need one carry, then you can use Self::carrying_mul instead.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types,\nwhich explains why u32 is used here.

    \n\n
    #![feature(bigint_helper_methods)]\nassert_eq!(5u32.carrying_mul_add(2, 0, 0), (10, 0));\nassert_eq!(5u32.carrying_mul_add(2, 10, 10), (30, 0));\nassert_eq!(1_000_000_000u32.carrying_mul_add(10, 0, 0), (1410065408, 2));\nassert_eq!(1_000_000_000u32.carrying_mul_add(10, 10, 10), (1410065428, 2));\nassert_eq!(usize::MAX.carrying_mul_add(usize::MAX, usize::MAX, usize::MAX), (usize::MAX, usize::MAX));
    \n

    This is the core per-digit operation for “grade school” O(n²) multiplication.

    \n

    Please note that this example is shared between integer types,\nusing u8 for simplicity of the demonstration.

    \n\n
    #![feature(bigint_helper_methods)]\n\nfn quadratic_mul<const N: usize>(a: [u8; N], b: [u8; N]) -> [u8; N] {\n    let mut out = [0; N];\n    for j in 0..N {\n        let mut carry = 0;\n        for i in 0..(N - j) {\n            (out[j + i], carry) = u8::carrying_mul_add(a[i], b[j], out[j + i], carry);\n        }\n    }\n    out\n}\n\n// -1 * -1 == 1\nassert_eq!(quadratic_mul([0xFF; 3], [0xFF; 3]), [1, 0, 0]);\n\nassert_eq!(u32::wrapping_mul(0x9e3779b9, 0x7f4a7c15), 0xCFFC982D);\nassert_eq!(\n    quadratic_mul(u32::to_le_bytes(0x9e3779b9), u32::to_le_bytes(0x7f4a7c15)),\n    u32::to_le_bytes(0xCFFC982D)\n);
    \n
    1.7.0 (const: 1.52.0) · Source

    pub const fn overflowing_div(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the divisor when self is divided by rhs.

    \n

    Returns a tuple of the divisor along with a boolean indicating\nwhether an arithmetic overflow would occur. Note that for unsigned\nintegers overflow never occurs, so the second value is always\nfalse.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_div(2), (2, false));
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn overflowing_div_euclid(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the quotient of Euclidean division self.div_euclid(rhs).

    \n

    Returns a tuple of the divisor along with a boolean indicating\nwhether an arithmetic overflow would occur. Note that for unsigned\nintegers overflow never occurs, so the second value is always\nfalse.\nSince, for the positive integers, all common\ndefinitions of division are equal, this\nis exactly equal to self.overflowing_div(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_div_euclid(2), (2, false));
    \n
    1.7.0 (const: 1.52.0) · Source

    pub const fn overflowing_rem(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the remainder when self is divided by rhs.

    \n

    Returns a tuple of the remainder after dividing along with a boolean\nindicating whether an arithmetic overflow would occur. Note that for\nunsigned integers overflow never occurs, so the second value is\nalways false.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_rem(2), (1, false));
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn overflowing_rem_euclid(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the remainder self.rem_euclid(rhs) as if by Euclidean division.

    \n

    Returns a tuple of the modulo after dividing along with a boolean\nindicating whether an arithmetic overflow would occur. Note that for\nunsigned integers overflow never occurs, so the second value is\nalways false.\nSince, for the positive integers, all common\ndefinitions of division are equal, this operation\nis exactly equal to self.overflowing_rem(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_rem_euclid(2), (1, false));
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_neg(self) -> (usize, bool)

    Available on 64-bit only.

    Negates self in an overflowing fashion.

    \n

    Returns !self + 1 using wrapping operations to return the value\nthat represents the negation of this unsigned value. Note that for\npositive unsigned values overflow always occurs, but negating 0 does\nnot overflow.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0usize.overflowing_neg(), (0, false));\nassert_eq!(2usize.overflowing_neg(), (-2i32 as usize, true));
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_shl(self, rhs: u32) -> (usize, bool)

    Available on 64-bit only.

    Shifts self left by rhs bits.

    \n

    Returns a tuple of the shifted version of self along with a boolean\nindicating whether the shift value was larger than or equal to the\nnumber of bits. If the shift value is too large, then value is\nmasked (N-1) where N is the number of bits, and this value is then\nused to perform the shift.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0x1usize.overflowing_shl(4), (0x10, false));\nassert_eq!(0x1usize.overflowing_shl(132), (0x10, true));\nassert_eq!(0x10usize.overflowing_shl(63), (0, false));
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_shr(self, rhs: u32) -> (usize, bool)

    Available on 64-bit only.

    Shifts self right by rhs bits.

    \n

    Returns a tuple of the shifted version of self along with a boolean\nindicating whether the shift value was larger than or equal to the\nnumber of bits. If the shift value is too large, then value is\nmasked (N-1) where N is the number of bits, and this value is then\nused to perform the shift.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0x10usize.overflowing_shr(4), (0x1, false));\nassert_eq!(0x10usize.overflowing_shr(132), (0x1, true));
    \n
    1.34.0 (const: 1.50.0) · Source

    pub const fn overflowing_pow(self, exp: u32) -> (usize, bool)

    Available on 64-bit only.

    Raises self to the power of exp, using exponentiation by squaring.

    \n

    Returns a tuple of the exponentiation along with a bool indicating\nwhether an overflow happened.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(3usize.overflowing_pow(5), (243, false));\nassert_eq!(3u8.overflowing_pow(6), (217, true));
    \n
    1.0.0 (const: 1.50.0) · Source

    pub const fn pow(self, exp: u32) -> usize

    Available on 64-bit only.

    Raises self to the power of exp, using exponentiation by squaring.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.pow(5), 32);
    \n
    1.84.0 (const: 1.84.0) · Source

    pub const fn isqrt(self) -> usize

    Available on 64-bit only.

    Returns the square root of the number, rounded down.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(10usize.isqrt(), 3);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn div_euclid(self, rhs: usize) -> usize

    Available on 64-bit only.

    Performs Euclidean division.

    \n

    Since, for the positive integers, all common\ndefinitions of division are equal, this\nis exactly equal to self / rhs.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(7usize.div_euclid(4), 1); // or any other integer type
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn rem_euclid(self, rhs: usize) -> usize

    Available on 64-bit only.

    Calculates the least remainder of self (mod rhs).

    \n

    Since, for the positive integers, all common\ndefinitions of division are equal, this\nis exactly equal to self % rhs.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(7usize.rem_euclid(4), 3); // or any other integer type
    \n
    Source

    pub const fn div_floor(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (int_roundings)
    Available on 64-bit only.

    Calculates the quotient of self and rhs, rounding the result towards negative infinity.

    \n

    This is the same as performing self / rhs for all unsigned integers.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(int_roundings)]\nassert_eq!(7_usize.div_floor(4), 1);
    \n
    1.73.0 (const: 1.73.0) · Source

    pub const fn div_ceil(self, rhs: usize) -> usize

    Available on 64-bit only.

    Calculates the quotient of self and rhs, rounding the result towards positive infinity.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(7_usize.div_ceil(4), 2);
    \n
    1.73.0 (const: 1.73.0) · Source

    pub const fn next_multiple_of(self, rhs: usize) -> usize

    Available on 64-bit only.

    Calculates the smallest value greater than or equal to self that\nis a multiple of rhs.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Overflow behavior
    \n

    On overflow, this function will panic if overflow checks are enabled (default in debug\nmode) and wrap if overflow checks are disabled (default in release mode).

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(16_usize.next_multiple_of(8), 16);\nassert_eq!(23_usize.next_multiple_of(8), 24);
    \n
    1.73.0 (const: 1.73.0) · Source

    pub const fn checked_next_multiple_of(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Calculates the smallest value greater than or equal to self that\nis a multiple of rhs. Returns None if rhs is zero or the\noperation would result in overflow.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(16_usize.checked_next_multiple_of(8), Some(16));\nassert_eq!(23_usize.checked_next_multiple_of(8), Some(24));\nassert_eq!(1_usize.checked_next_multiple_of(0), None);\nassert_eq!(usize::MAX.checked_next_multiple_of(2), None);
    \n
    Source

    pub const fn is_multiple_of(self, rhs: usize) -> bool

    🔬This is a nightly-only experimental API. (unsigned_is_multiple_of)
    Available on 64-bit only.

    Returns true if self is an integer multiple of rhs, and false otherwise.

    \n

    This function is equivalent to self % rhs == 0, except that it will not panic\nfor rhs == 0. Instead, 0.is_multiple_of(0) == true, and for any non-zero n,\nn.is_multiple_of(0) == false.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(unsigned_is_multiple_of)]\nassert!(6_usize.is_multiple_of(2));\nassert!(!5_usize.is_multiple_of(2));\n\nassert!(0_usize.is_multiple_of(0));\nassert!(!6_usize.is_multiple_of(0));
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn is_power_of_two(self) -> bool

    Available on 64-bit only.

    Returns true if and only if self == 2^k for some k.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert!(16usize.is_power_of_two());\nassert!(!10usize.is_power_of_two());
    \n
    1.0.0 (const: 1.50.0) · Source

    pub const fn next_power_of_two(self) -> usize

    Available on 64-bit only.

    Returns the smallest power of two greater than or equal to self.

    \n

    When return value overflows (i.e., self > (1 << (N-1)) for type\nuN), it panics in debug mode and the return value is wrapped to 0 in\nrelease mode (the only situation in which this method can return 0).

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.next_power_of_two(), 2);\nassert_eq!(3usize.next_power_of_two(), 4);\nassert_eq!(0usize.next_power_of_two(), 1);
    \n
    1.0.0 (const: 1.50.0) · Source

    pub const fn checked_next_power_of_two(self) -> Option<usize>

    Available on 64-bit only.

    Returns the smallest power of two greater than or equal to self. If\nthe next power of two is greater than the type’s maximum value,\nNone is returned, otherwise the power of two is wrapped in Some.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.checked_next_power_of_two(), Some(2));\nassert_eq!(3usize.checked_next_power_of_two(), Some(4));\nassert_eq!(usize::MAX.checked_next_power_of_two(), None);
    \n
    Source

    pub const fn wrapping_next_power_of_two(self) -> usize

    🔬This is a nightly-only experimental API. (wrapping_next_power_of_two)
    Available on 64-bit only.

    Returns the smallest power of two greater than or equal to n. If\nthe next power of two is greater than the type’s maximum value,\nthe return value is wrapped to 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(wrapping_next_power_of_two)]\n\nassert_eq!(2usize.wrapping_next_power_of_two(), 2);\nassert_eq!(3usize.wrapping_next_power_of_two(), 4);\nassert_eq!(usize::MAX.wrapping_next_power_of_two(), 0);
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn to_be_bytes(self) -> [u8; 8]

    Available on 64-bit only.

    Returns the memory representation of this integer as a byte array in\nbig-endian (network) byte order.

    \n

    Note: This function returns an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let bytes = 0x1234567890123456usize.to_be_bytes();\nassert_eq!(bytes, [0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]);
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn to_le_bytes(self) -> [u8; 8]

    Available on 64-bit only.

    Returns the memory representation of this integer as a byte array in\nlittle-endian byte order.

    \n

    Note: This function returns an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let bytes = 0x1234567890123456usize.to_le_bytes();\nassert_eq!(bytes, [0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]);
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn to_ne_bytes(self) -> [u8; 8]

    Available on 64-bit only.

    Returns the memory representation of this integer as a byte array in\nnative byte order.

    \n

    As the target platform’s native endianness is used, portable code\nshould use to_be_bytes or to_le_bytes, as appropriate,\ninstead.

    \n

    Note: This function returns an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let bytes = 0x1234567890123456usize.to_ne_bytes();\nassert_eq!(\n    bytes,\n    if cfg!(target_endian = \"big\") {\n        [0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]\n    } else {\n        [0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]\n    }\n);
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn from_be_bytes(bytes: [u8; 8]) -> usize

    Available on 64-bit only.

    Creates a native endian integer value from its representation\nas a byte array in big endian.

    \n

    Note: This function takes an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let value = usize::from_be_bytes([0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]);\nassert_eq!(value, 0x1234567890123456);
    \n

    When starting from a slice rather than an array, fallible conversion APIs can be used:

    \n\n
    fn read_be_usize(input: &mut &[u8]) -> usize {\n    let (int_bytes, rest) = input.split_at(std::mem::size_of::<usize>());\n    *input = rest;\n    usize::from_be_bytes(int_bytes.try_into().unwrap())\n}
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn from_le_bytes(bytes: [u8; 8]) -> usize

    Available on 64-bit only.

    Creates a native endian integer value from its representation\nas a byte array in little endian.

    \n

    Note: This function takes an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let value = usize::from_le_bytes([0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]);\nassert_eq!(value, 0x1234567890123456);
    \n

    When starting from a slice rather than an array, fallible conversion APIs can be used:

    \n\n
    fn read_le_usize(input: &mut &[u8]) -> usize {\n    let (int_bytes, rest) = input.split_at(std::mem::size_of::<usize>());\n    *input = rest;\n    usize::from_le_bytes(int_bytes.try_into().unwrap())\n}
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn from_ne_bytes(bytes: [u8; 8]) -> usize

    Available on 64-bit only.

    Creates a native endian integer value from its memory representation\nas a byte array in native endianness.

    \n

    As the target platform’s native endianness is used, portable code\nlikely wants to use from_be_bytes or from_le_bytes, as\nappropriate instead.

    \n

    Note: This function takes an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let value = usize::from_ne_bytes(if cfg!(target_endian = \"big\") {\n    [0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]\n} else {\n    [0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]\n});\nassert_eq!(value, 0x1234567890123456);
    \n

    When starting from a slice rather than an array, fallible conversion APIs can be used:

    \n\n
    fn read_ne_usize(input: &mut &[u8]) -> usize {\n    let (int_bytes, rest) = input.split_at(std::mem::size_of::<usize>());\n    *input = rest;\n    usize::from_ne_bytes(int_bytes.try_into().unwrap())\n}
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn min_value() -> usize

    👎Deprecating in a future version: replaced by the MIN associated constant on this type
    Available on 64-bit only.

    New code should prefer to use\nusize::MIN instead.

    \n

    Returns the smallest value that can be represented by this integer type.

    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn max_value() -> usize

    👎Deprecating in a future version: replaced by the MAX associated constant on this type
    Available on 64-bit only.

    New code should prefer to use\nusize::MAX instead.

    \n

    Returns the largest value that can be represented by this integer type.

    \n
    1.85.0 (const: 1.85.0) · Source

    pub const fn midpoint(self, rhs: usize) -> usize

    Available on 64-bit only.

    Calculates the middle point of self and rhs.

    \n

    midpoint(a, b) is (a + b) / 2 as if it were performed in a\nsufficiently-large unsigned integral type. This implies that the result is\nalways rounded towards zero and that no overflow will ever occur.

    \n
    §Examples
    \n
    assert_eq!(0usize.midpoint(4), 2);\nassert_eq!(1usize.midpoint(4), 2);
    \n
    ",0,"iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl usize

    1.0.0 (const: 1.82.0) · Source

    pub const fn from_str_radix(\n src: &str,\n radix: u32,\n) -> Result<usize, ParseIntError>

    Parses an integer from a string slice with digits in a given base.

    \n

    The string is expected to be an optional\n+\nsign followed by only digits. Leading and trailing non-digit characters (including\nwhitespace) represent an error. Underscores (which are accepted in Rust literals)\nalso represent an error.

    \n

    Digits are a subset of these characters, depending on radix:

    \n
      \n
    • 0-9
    • \n
    • a-z
    • \n
    • A-Z
    • \n
    \n
    §Panics
    \n

    This function panics if radix is not in the range from 2 to 36.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(usize::from_str_radix(\"A\", 16), Ok(10));
    \n

    Trailing space returns error:

    \n\n
    assert!(usize::from_str_radix(\"1 \", 10).is_err());
    \n
    Source

    pub const fn from_ascii(src: &[u8]) -> Result<usize, ParseIntError>

    🔬This is a nightly-only experimental API. (int_from_ascii)

    Parses an integer from an ASCII-byte slice with decimal digits.

    \n

    The characters are expected to be an optional\n+\nsign followed by only digits. Leading and trailing non-digit characters (including\nwhitespace) represent an error. Underscores (which are accepted in Rust literals)\nalso represent an error.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(int_from_ascii)]\n\nassert_eq!(usize::from_ascii(b\"+10\"), Ok(10));
    \n

    Trailing space returns error:

    \n\n
    assert!(usize::from_ascii(b\"1 \").is_err());
    \n
    Source

    pub const fn from_ascii_radix(\n src: &[u8],\n radix: u32,\n) -> Result<usize, ParseIntError>

    🔬This is a nightly-only experimental API. (int_from_ascii)

    Parses an integer from an ASCII-byte slice with digits in a given base.

    \n

    The characters are expected to be an optional\n+\nsign followed by only digits. Leading and trailing non-digit characters (including\nwhitespace) represent an error. Underscores (which are accepted in Rust literals)\nalso represent an error.

    \n

    Digits are a subset of these characters, depending on radix:

    \n
      \n
    • 0-9
    • \n
    • a-z
    • \n
    • A-Z
    • \n
    \n
    §Panics
    \n

    This function panics if radix is not in the range from 2 to 36.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(int_from_ascii)]\n\nassert_eq!(usize::from_ascii_radix(b\"A\", 16), Ok(10));
    \n

    Trailing space returns error:

    \n\n
    assert!(usize::from_ascii_radix(b\"1 \", 10).is_err());
    \n
    ",0,"iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ConstParamTy_ for usize

    ","ConstParamTy_","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Copy for usize

    ","Copy","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Eq for usize

    ","Eq","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl ExtendTarget<usize> for usize

    ","ExtendTarget","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Index for usize

    ","Index","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Pod for usize

    ","Pod","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl PointerLike for usize

    ","PointerLike","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl SimdCast for usize

    ","SimdCast","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl StructuralPartialEq for usize

    ","StructuralPartialEq","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl TruncateTarget<u16> for usize

    ","TruncateTarget","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl TruncateTarget<u8> for usize

    ","TruncateTarget","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl TruncateTarget<usize> for usize

    ","TruncateTarget","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl TrustedStep for usize

    ","TrustedStep","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Uint for usize

    ","Uint","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Unsigned for usize

    ","Unsigned","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl UnsizedConstParamTy for usize

    ","UnsizedConstParamTy","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Weight for usize

    ","Weight","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ZeroablePrimitive for usize

    ","ZeroablePrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"]]],["iced_renderer",[["
    §

    impl AbsDiffEq for usize

    §

    type Epsilon = usize

    Used for specifying relative comparisons.
    §

    fn default_epsilon() -> usize

    The default tolerance to use when testing values that are close together. Read more
    §

    fn abs_diff_eq(&self, other: &usize, epsilon: usize) -> bool

    A test for equality that uses the absolute difference to compute the approximate\nequality of two numbers.
    §

    fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool

    The inverse of [AbsDiffEq::abs_diff_eq].
    ","AbsDiffEq","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl<T> Accumulate<T> for usize

    §

    fn initial(_capacity: Option<usize>) -> usize

    Create a new Extend of the correct type
    §

    fn accumulate(&mut self, _acc: T)

    Accumulate the input into an accumulator
    ","Accumulate","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Add<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: &BigInt) -> BigInt

    Performs the + operation. Read more
    ","Add<&BigInt>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Add<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: &BigUint) -> BigUint

    Performs the + operation. Read more
    ","Add<&BigUint>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Add<&usize> for usize

    Source§

    type Output = <usize as Add>::Output

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: &usize) -> <usize as Add>::Output

    Performs the + operation. Read more
    ","Add<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Add<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: BigInt) -> BigInt

    Performs the + operation. Read more
    ","Add","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Add<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: BigUint) -> BigUint

    Performs the + operation. Read more
    ","Add","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Add for usize

    Source§

    type Output = usize

    The resulting type after applying the + operator.
    Source§

    const fn add(self, other: usize) -> usize

    Performs the + operation. Read more
    ","Add","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl AddAssign<&usize> for usize

    Source§

    fn add_assign(&mut self, other: &usize)

    Performs the += operation. Read more
    ","AddAssign<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl AddAssign for usize

    Source§

    fn add_assign(&mut self, other: usize)

    Performs the += operation. Read more
    ","AddAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl AsBytes for usize

    §

    fn as_bytes(&self) -> &[u8]

    Gets the bytes of this value. Read more
    §

    fn as_bytes_mut(&mut self) -> &mut [u8]
    where\n Self: FromBytes,

    Gets the bytes of this value mutably. Read more
    §

    fn write_to(&self, bytes: &mut [u8]) -> Option<()>

    Writes a copy of self to bytes. Read more
    §

    fn write_to_prefix(&self, bytes: &mut [u8]) -> Option<()>

    Writes a copy of self to the prefix of bytes. Read more
    §

    fn write_to_suffix(&self, bytes: &mut [u8]) -> Option<()>

    Writes a copy of self to the suffix of bytes. Read more
    ","AsBytes","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<f32> for usize

    Source§

    fn as_(self) -> f32

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<f64> for usize

    Source§

    fn as_(self) -> f64

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i128> for usize

    Source§

    fn as_(self) -> i128

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i16> for usize

    Source§

    fn as_(self) -> i16

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i32> for usize

    Source§

    fn as_(self) -> i32

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i64> for usize

    Source§

    fn as_(self) -> i64

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i8> for usize

    Source§

    fn as_(self) -> i8

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<isize> for usize

    Source§

    fn as_(self) -> isize

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u128> for usize

    Source§

    fn as_(self) -> u128

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u16> for usize

    Source§

    fn as_(self) -> u16

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u32> for usize

    Source§

    fn as_(self) -> u32

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u64> for usize

    Source§

    fn as_(self) -> u64

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u8> for usize

    Source§

    fn as_(self) -> u8

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<usize> for usize

    Source§

    fn as_(self) -> usize

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Binary for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Binary","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitAnd<&usize> for usize

    Source§

    type Output = <usize as BitAnd>::Output

    The resulting type after applying the & operator.
    Source§

    fn bitand(self, other: &usize) -> <usize as BitAnd>::Output

    Performs the & operation. Read more
    ","BitAnd<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitAnd for usize

    Source§

    type Output = usize

    The resulting type after applying the & operator.
    Source§

    fn bitand(self, rhs: usize) -> usize

    Performs the & operation. Read more
    ","BitAnd","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl BitAndAssign<&usize> for usize

    Source§

    fn bitand_assign(&mut self, other: &usize)

    Performs the &= operation. Read more
    ","BitAndAssign<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl BitAndAssign for usize

    Source§

    fn bitand_assign(&mut self, other: usize)

    Performs the &= operation. Read more
    ","BitAndAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl BitBlock for usize

    Source§

    fn bits() -> usize

    How many bits it has
    Source§

    fn from_byte(byte: u8) -> usize

    Convert a byte into this type (lowest-order bits set)
    Source§

    fn count_ones(self) -> usize

    Count the number of 1’s in the bitwise repr
    Source§

    fn count_zeros(self) -> usize

    Count the number of 0’s in the bitwise repr
    Source§

    fn one() -> usize

    Get 1
    Source§

    fn zero() -> usize

    Get 0
    Source§

    fn bytes() -> usize

    How many bytes it has
    ","BitBlock","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl BitField for usize

    §

    const BIT_LENGTH: usize = 64usize

    The number of bits in this bit field. Read more
    §

    fn get_bit(&self, bit: usize) -> bool

    Obtains the bit at the index bit; note that index 0 is the least significant bit, while\nindex length() - 1 is the most significant bit. Read more
    §

    fn get_bits<T>(&self, range: T) -> usize
    where\n T: RangeBounds<usize>,

    Obtains the range of bits specified by range; note that index 0 is the least significant\nbit, while index length() - 1 is the most significant bit. Read more
    §

    fn set_bit(&mut self, bit: usize, value: bool) -> &mut usize

    Sets the bit at the index bit to the value value (where true means a value of ‘1’ and\nfalse means a value of ‘0’); note that index 0 is the least significant bit, while index\nlength() - 1 is the most significant bit. Read more
    §

    fn set_bits<T>(&mut self, range: T, value: usize) -> &mut usize
    where\n T: RangeBounds<usize>,

    Sets the range of bits defined by the range range to the lower bits of value; to be\nspecific, if the range is N bits long, the N lower bits of value will be used; if any of\nthe other bits in value are set to 1, this function will panic. Read more
    ","BitField","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitOr<&usize> for usize

    Source§

    type Output = <usize as BitOr>::Output

    The resulting type after applying the | operator.
    Source§

    fn bitor(self, other: &usize) -> <usize as BitOr>::Output

    Performs the | operation. Read more
    ","BitOr<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitOr for usize

    Source§

    type Output = usize

    The resulting type after applying the | operator.
    Source§

    fn bitor(self, rhs: usize) -> usize

    Performs the | operation. Read more
    ","BitOr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl BitOrAssign<&usize> for usize

    Source§

    fn bitor_assign(&mut self, other: &usize)

    Performs the |= operation. Read more
    ","BitOrAssign<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl BitOrAssign for usize

    Source§

    fn bitor_assign(&mut self, other: usize)

    Performs the |= operation. Read more
    ","BitOrAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitXor<&usize> for usize

    Source§

    type Output = <usize as BitXor>::Output

    The resulting type after applying the ^ operator.
    Source§

    fn bitxor(self, other: &usize) -> <usize as BitXor>::Output

    Performs the ^ operation. Read more
    ","BitXor<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitXor for usize

    Source§

    type Output = usize

    The resulting type after applying the ^ operator.
    Source§

    fn bitxor(self, other: usize) -> usize

    Performs the ^ operation. Read more
    ","BitXor","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl BitXorAssign<&usize> for usize

    Source§

    fn bitxor_assign(&mut self, other: &usize)

    Performs the ^= operation. Read more
    ","BitXorAssign<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl BitXorAssign for usize

    Source§

    fn bitxor_assign(&mut self, other: usize)

    Performs the ^= operation. Read more
    ","BitXorAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Bits for usize

    §

    const EMPTY: usize = 0usize

    A value with all bits unset.
    §

    const ALL: usize = 18_446_744_073_709_551_615usize

    A value with all bits set.
    ","Bits","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Bounded for usize

    Source§

    fn min_value() -> usize

    Returns the smallest finite number this type can represent
    Source§

    fn max_value() -> usize

    Returns the largest finite number this type can represent
    ","Bounded","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl CarryingMulAdd for usize

    Source§

    type Unsigned = usize

    🔬This is a nightly-only experimental API. (core_intrinsics_fallbacks)
    Source§

    const fn carrying_mul_add(self, a: usize, b: usize, c: usize) -> (usize, usize)

    🔬This is a nightly-only experimental API. (core_intrinsics_fallbacks)
    ","CarryingMulAdd","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Ceil for usize

    §

    fn ceil(self) -> usize

    Rounds to the smallest integer equal or greater than the original value. Read more
    ","Ceil","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedAdd for usize

    Source§

    fn checked_add(&self, v: &usize) -> Option<usize>

    Adds two numbers, checking for overflow. If overflow happens, None is\nreturned.
    ","CheckedAdd","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedDiv for usize

    Source§

    fn checked_div(&self, v: &usize) -> Option<usize>

    Divides two numbers, checking for underflow, overflow and division by\nzero. If any of that happens, None is returned.
    ","CheckedDiv","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedEuclid for usize

    Source§

    fn checked_div_euclid(&self, v: &usize) -> Option<usize>

    Performs euclid division that returns None instead of panicking on division by zero\nand instead of wrapping around on underflow and overflow.
    Source§

    fn checked_rem_euclid(&self, v: &usize) -> Option<usize>

    Finds the euclid remainder of dividing two numbers, checking for underflow, overflow and\ndivision by zero. If any of that happens, None is returned.
    Source§

    fn checked_div_rem_euclid(&self, v: &Self) -> Option<(Self, Self)>

    Returns both the quotient and remainder from checked Euclidean division. Read more
    ","CheckedEuclid","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedMul for usize

    Source§

    fn checked_mul(&self, v: &usize) -> Option<usize>

    Multiplies two numbers, checking for underflow or overflow. If underflow\nor overflow happens, None is returned.
    ","CheckedMul","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedNeg for usize

    Source§

    fn checked_neg(&self) -> Option<usize>

    Negates a number, returning None for results that can’t be represented, like signed MIN\nvalues that can’t be positive, or non-zero unsigned values that can’t be negative. Read more
    ","CheckedNeg","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedRem for usize

    Source§

    fn checked_rem(&self, v: &usize) -> Option<usize>

    Finds the remainder of dividing two numbers, checking for underflow, overflow and division\nby zero. If any of that happens, None is returned. Read more
    ","CheckedRem","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedShl for usize

    Source§

    fn checked_shl(&self, rhs: u32) -> Option<usize>

    Checked shift left. Computes self << rhs, returning None\nif rhs is larger than or equal to the number of bits in self. Read more
    ","CheckedShl","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedShr for usize

    Source§

    fn checked_shr(&self, rhs: u32) -> Option<usize>

    Checked shift right. Computes self >> rhs, returning None\nif rhs is larger than or equal to the number of bits in self. Read more
    ","CheckedShr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedSub for usize

    Source§

    fn checked_sub(&self, v: &usize) -> Option<usize>

    Subtracts two numbers, checking for underflow. If underflow happens,\nNone is returned.
    ","CheckedSub","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Clone for usize

    Source§

    fn clone(&self) -> usize

    Returns a copy of the value. Read more
    1.0.0 · Source§

    fn clone_from(&mut self, source: &Self)

    Performs copy-assignment from source. Read more
    ","Clone","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl ConstOne for usize

    Source§

    const ONE: usize = 1usize

    The multiplicative identity element of Self, 1.
    ","ConstOne","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl ConstZero for usize

    Source§

    const ZERO: usize = 0usize

    The additive identity element of Self, 0.
    ","ConstZero","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Contiguous for usize

    §

    const MAX_VALUE: usize = 18_446_744_073_709_551_615usize

    The upper inclusive bound for valid instances of this type.
    §

    const MIN_VALUE: usize = 0usize

    The lower inclusive bound for valid instances of this type.
    §

    type Int = usize

    The primitive integer type with an identical representation to this\ntype. Read more
    §

    fn from_integer(value: Self::Int) -> Option<Self>

    If value is within the range for valid instances of this type,\nreturns Some(converted_value), otherwise, returns None. Read more
    §

    fn into_integer(self) -> Self::Int

    Perform the conversion from C into the underlying integral type. This\nmostly exists otherwise generic code would need unsafe for the value as integer Read more
    ","Contiguous","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Debug for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Debug","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Default for usize

    Source§

    fn default() -> usize

    Returns the default value of 0

    \n
    ","Default","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'de> Deserialize<'de> for usize

    Source§

    fn deserialize<D>(\n deserializer: D,\n) -> Result<usize, <D as Deserializer<'de>>::Error>
    where\n D: Deserializer<'de>,

    Deserialize this value from the given Serde deserializer. Read more
    ","Deserialize<'de>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl DisjointBitOr for usize

    Source§

    const unsafe fn disjoint_bitor(self, other: usize) -> usize

    🔬This is a nightly-only experimental API. (core_intrinsics_fallbacks)
    See super::disjoint_bitor; we just need the trait indirection to handle\ndifferent types since calling intrinsics with generics doesn’t work.
    ","DisjointBitOr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Display for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Display","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Div<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: &BigInt) -> BigInt

    Performs the / operation. Read more
    ","Div<&BigInt>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Div<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: &BigUint) -> BigUint

    Performs the / operation. Read more
    ","Div<&BigUint>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Div<&usize> for usize

    Source§

    type Output = <usize as Div>::Output

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: &usize) -> <usize as Div>::Output

    Performs the / operation. Read more
    ","Div<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Div<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: BigInt) -> BigInt

    Performs the / operation. Read more
    ","Div","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Div<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: BigUint) -> BigUint

    Performs the / operation. Read more
    ","Div","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.51.0 · Source§

    impl Div<NonZero<usize>> for usize

    Source§

    fn div(self, other: NonZero<usize>) -> usize

    Same as self / other.get(), but because other is a NonZero<_>,\nthere’s never a runtime check for division-by-zero.

    \n

    This operation rounds towards zero, truncating any fractional\npart of the exact result, and cannot panic.

    \n
    Source§

    type Output = usize

    The resulting type after applying the / operator.
    ","Div>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Div for usize

    This operation rounds towards zero, truncating any\nfractional part of the exact result.

    \n

    §Panics

    \n

    This operation will panic if other == 0.

    \n
    Source§

    type Output = usize

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: usize) -> usize

    Performs the / operation. Read more
    ","Div","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl DivAssign<&usize> for usize

    Source§

    fn div_assign(&mut self, other: &usize)

    Performs the /= operation. Read more
    ","DivAssign<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.79.0 · Source§

    impl DivAssign<NonZero<usize>> for usize

    Source§

    fn div_assign(&mut self, other: NonZero<usize>)

    Same as self /= other.get(), but because other is a NonZero<_>,\nthere’s never a runtime check for division-by-zero.

    \n

    This operation rounds towards zero, truncating any fractional\npart of the exact result, and cannot panic.

    \n
    ","DivAssign>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl DivAssign for usize

    Source§

    fn div_assign(&mut self, other: usize)

    Performs the /= operation. Read more
    ","DivAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl ErrnoSentinel for usize

    ","ErrnoSentinel","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Euclid for usize

    Source§

    fn div_euclid(&self, v: &usize) -> usize

    Calculates Euclidean division, the matching method for rem_euclid. Read more
    Source§

    fn rem_euclid(&self, v: &usize) -> usize

    Calculates the least nonnegative remainder of self (mod v). Read more
    Source§

    fn div_rem_euclid(&self, v: &Self) -> (Self, Self)

    Returns both the quotient and remainder from Euclidean division. Read more
    ","Euclid","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Fixed for usize

    §

    fn floor_log2(&self, n: usize) -> usize

    §

    fn ceil_log2(&self, n: usize) -> usize

    §

    fn align_power_of_two(&self, n: usize) -> usize

    §

    fn align_power_of_two_and_shift(&self, n: usize) -> usize

    ","Fixed","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Floor for usize

    §

    fn floor(self) -> usize

    Rounds to the biggest integer equal or lower than the original value. Read more
    ","Floor","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl FmtConst for usize

    Source§

    fn fmt_const(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Print a const expression representing this value.
    ","FmtConst","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl From<Alignment> for usize

    Source§

    fn from(align: Alignment) -> usize

    Converts to this type from the input type.
    ","From","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl From<State> for usize

    §

    fn from(src: State) -> usize

    Converts to this type from the input type.
    ","From","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl From<State> for usize

    §

    fn from(val: State) -> usize

    Converts to this type from the input type.
    ","From","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl From<State> for usize

    §

    fn from(val: State) -> usize

    Converts to this type from the input type.
    ","From","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl<O> From<U16<O>> for usize
    where\n O: ByteOrder,

    §

    fn from(x: U16<O>) -> usize

    Converts to this type from the input type.
    ","From>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl From<Uint24> for usize

    §

    fn from(src: Uint24) -> usize

    Converts to this type from the input type.
    ","From","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl From<VertexId> for usize

    §

    fn from(v: VertexId) -> usize

    Converts to this type from the input type.
    ","From","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.28.0 · Source§

    impl From<bool> for usize

    Source§

    fn from(small: bool) -> usize

    Converts a bool to usize losslessly.\nThe resulting value is 0 for false and 1 for true values.

    \n
    §Examples
    \n
    assert_eq!(usize::from(true), 1);\nassert_eq!(usize::from(false), 0);
    \n
    ","From","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.26.0 · Source§

    impl From<u16> for usize

    Source§

    fn from(small: u16) -> usize

    Converts u16 to usize losslessly.

    \n
    ","From","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.5.0 · Source§

    impl From<u8> for usize

    Source§

    fn from(small: u8) -> usize

    Converts u8 to usize losslessly.

    \n
    ","From","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl FromBytes for usize

    Source§

    type Bytes = [u8; 8]

    Source§

    fn from_be_bytes(bytes: &<usize as FromBytes>::Bytes) -> usize

    Create a number from its representation as a byte array in big endian. Read more
    Source§

    fn from_le_bytes(bytes: &<usize as FromBytes>::Bytes) -> usize

    Create a number from its representation as a byte array in little endian. Read more
    Source§

    fn from_ne_bytes(bytes: &<usize as FromBytes>::Bytes) -> usize

    Create a number from its memory representation as a byte array in native endianness. Read more
    ","FromBytes","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl FromBytes for usize

    §

    fn ref_from(bytes: &[u8]) -> Option<&Self>
    where\n Self: Sized,

    Interprets the given bytes as a &Self without copying. Read more
    §

    fn ref_from_prefix(bytes: &[u8]) -> Option<&Self>
    where\n Self: Sized,

    Interprets the prefix of the given bytes as a &Self without copying. Read more
    §

    fn ref_from_suffix(bytes: &[u8]) -> Option<&Self>
    where\n Self: Sized,

    Interprets the suffix of the given bytes as a &Self without copying. Read more
    §

    fn mut_from(bytes: &mut [u8]) -> Option<&mut Self>
    where\n Self: Sized + AsBytes,

    Interprets the given bytes as a &mut Self without copying. Read more
    §

    fn mut_from_prefix(bytes: &mut [u8]) -> Option<&mut Self>
    where\n Self: Sized + AsBytes,

    Interprets the prefix of the given bytes as a &mut Self without\ncopying. Read more
    §

    fn mut_from_suffix(bytes: &mut [u8]) -> Option<&mut Self>
    where\n Self: Sized + AsBytes,

    Interprets the suffix of the given bytes as a &mut Self without copying. Read more
    §

    fn slice_from(bytes: &[u8]) -> Option<&[Self]>
    where\n Self: Sized,

    Interprets the given bytes as a &[Self] without copying. Read more
    §

    fn slice_from_prefix(bytes: &[u8], count: usize) -> Option<(&[Self], &[u8])>
    where\n Self: Sized,

    Interprets the prefix of the given bytes as a &[Self] with length\nequal to count without copying. Read more
    §

    fn slice_from_suffix(bytes: &[u8], count: usize) -> Option<(&[u8], &[Self])>
    where\n Self: Sized,

    Interprets the suffix of the given bytes as a &[Self] with length\nequal to count without copying. Read more
    §

    fn mut_slice_from(bytes: &mut [u8]) -> Option<&mut [Self]>
    where\n Self: Sized + AsBytes,

    Interprets the given bytes as a &mut [Self] without copying. Read more
    §

    fn mut_slice_from_prefix(\n bytes: &mut [u8],\n count: usize,\n) -> Option<(&mut [Self], &mut [u8])>
    where\n Self: Sized + AsBytes,

    Interprets the prefix of the given bytes as a &mut [Self] with length\nequal to count without copying. Read more
    §

    fn mut_slice_from_suffix(\n bytes: &mut [u8],\n count: usize,\n) -> Option<(&mut [u8], &mut [Self])>
    where\n Self: Sized + AsBytes,

    Interprets the suffix of the given bytes as a &mut [Self] with length\nequal to count without copying. Read more
    §

    fn read_from(bytes: &[u8]) -> Option<Self>
    where\n Self: Sized,

    Reads a copy of Self from bytes. Read more
    §

    fn read_from_prefix(bytes: &[u8]) -> Option<Self>
    where\n Self: Sized,

    Reads a copy of Self from the prefix of bytes. Read more
    §

    fn read_from_suffix(bytes: &[u8]) -> Option<Self>
    where\n Self: Sized,

    Reads a copy of Self from the suffix of bytes. Read more
    ","FromBytes","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl FromPrimitive for usize

    Source§

    fn from_isize(n: isize) -> Option<usize>

    Converts an isize to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i8(n: i8) -> Option<usize>

    Converts an i8 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i16(n: i16) -> Option<usize>

    Converts an i16 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i32(n: i32) -> Option<usize>

    Converts an i32 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i64(n: i64) -> Option<usize>

    Converts an i64 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i128(n: i128) -> Option<usize>

    Converts an i128 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned. Read more
    Source§

    fn from_usize(n: usize) -> Option<usize>

    Converts a usize to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u8(n: u8) -> Option<usize>

    Converts an u8 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u16(n: u16) -> Option<usize>

    Converts an u16 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u32(n: u32) -> Option<usize>

    Converts an u32 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u64(n: u64) -> Option<usize>

    Converts an u64 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u128(n: u128) -> Option<usize>

    Converts an u128 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned. Read more
    Source§

    fn from_f32(n: f32) -> Option<usize>

    Converts a f32 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_f64(n: f64) -> Option<usize>

    Converts a f64 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned. Read more
    ","FromPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl FromStr for usize

    Source§

    fn from_str(src: &str) -> Result<usize, ParseIntError>

    Parses an integer from a string slice with decimal digits.

    \n

    The characters are expected to be an optional\n+\nsign followed by only digits. Leading and trailing non-digit characters (including\nwhitespace) represent an error. Underscores (which are accepted in Rust literals)\nalso represent an error.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    use std::str::FromStr;\n\nassert_eq!(usize::from_str(\"+10\"), Ok(10));
    \n

    Trailing space returns error:

    \n\n
    assert!(usize::from_str(\"1 \").is_err());
    \n
    Source§

    type Err = ParseIntError

    The associated error which can be returned from parsing.
    ","FromStr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl FromZeroes for usize

    §

    fn zero(&mut self)

    Overwrites self with zeroes. Read more
    §

    fn new_zeroed() -> Self
    where\n Self: Sized,

    Creates an instance of Self from zeroed bytes. Read more
    ","FromZeroes","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl GetManyMutIndex for usize

    Source§

    fn is_in_bounds(&self, len: usize) -> bool

    🔬This is a nightly-only experimental API. (get_many_mut_helpers)
    Returns true if self is in bounds for len slice elements.
    Source§

    fn is_overlapping(&self, other: &usize) -> bool

    🔬This is a nightly-only experimental API. (get_many_mut_helpers)
    Returns true if self overlaps with other. Read more
    ","GetManyMutIndex","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Hash for usize

    Source§

    fn hash<H>(&self, state: &mut H)
    where\n H: Hasher,

    Feeds this value into the given Hasher. Read more
    Source§

    fn hash_slice<H>(data: &[usize], state: &mut H)
    where\n H: Hasher,

    Feeds a slice of this type into the given Hasher. Read more
    ","Hash","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl IdentFragment for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Format this value as an identifier fragment.
    Source§

    fn span(&self) -> Option<Span>

    Span associated with this IdentFragment. Read more
    ","IdentFragment","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Integer for usize

    Source§

    fn div_floor(&self, other: &usize) -> usize

    Unsigned integer division. Returns the same result as div (/).

    \n
    Source§

    fn mod_floor(&self, other: &usize) -> usize

    Unsigned integer modulo operation. Returns the same result as rem (%).

    \n
    Source§

    fn gcd(&self, other: &usize) -> usize

    Calculates the Greatest Common Divisor (GCD) of the number and other

    \n
    Source§

    fn lcm(&self, other: &usize) -> usize

    Calculates the Lowest Common Multiple (LCM) of the number and other.

    \n
    Source§

    fn gcd_lcm(&self, other: &usize) -> (usize, usize)

    Calculates the Greatest Common Divisor (GCD) and\nLowest Common Multiple (LCM) of the number and other.

    \n
    Source§

    fn is_multiple_of(&self, other: &usize) -> bool

    Returns true if the number is a multiple of other.

    \n
    Source§

    fn is_even(&self) -> bool

    Returns true if the number is divisible by 2.

    \n
    Source§

    fn is_odd(&self) -> bool

    Returns true if the number is not divisible by 2.

    \n
    Source§

    fn div_rem(&self, other: &usize) -> (usize, usize)

    Simultaneous truncated integer division and modulus.

    \n
    Source§

    fn div_ceil(&self, other: &usize) -> usize

    Ceiled integer division. Read more
    Source§

    fn extended_gcd_lcm(&self, other: &usize) -> (ExtendedGcd<usize>, usize)

    Greatest common divisor, least common multiple, and Bézout coefficients.
    Source§

    fn extended_gcd(&self, other: &Self) -> ExtendedGcd<Self>
    where\n Self: Clone,

    Greatest common divisor and Bézout coefficients. Read more
    Source§

    fn divides(&self, other: &Self) -> bool

    👎Deprecated: Please use is_multiple_of instead
    Deprecated, use is_multiple_of instead.
    Source§

    fn div_mod_floor(&self, other: &Self) -> (Self, Self)

    Simultaneous floored integer division and modulus.\nReturns (quotient, remainder). Read more
    Source§

    fn next_multiple_of(&self, other: &Self) -> Self
    where\n Self: Clone,

    Rounds up to nearest multiple of argument. Read more
    Source§

    fn prev_multiple_of(&self, other: &Self) -> Self
    where\n Self: Clone,

    Rounds down to nearest multiple of argument. Read more
    Source§

    fn dec(&mut self)
    where\n Self: Clone,

    Decrements self by one. Read more
    Source§

    fn inc(&mut self)
    where\n Self: Clone,

    Increments self by one. Read more
    ","Integer","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'de, E> IntoDeserializer<'de, E> for usize
    where\n E: Error,

    Source§

    type Deserializer = UsizeDeserializer<E>

    The type of the deserializer being converted into.
    Source§

    fn into_deserializer(self) -> UsizeDeserializer<E>

    Convert this value into a deserializer.
    ","IntoDeserializer<'de, E>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> IntoFragment<'a> for usize

    §

    fn into_fragment(self) -> Cow<'a, str>

    Converts the value to some text [Fragment].
    ","IntoFragment<'a>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl IntoNotification for usize

    §

    type Tag = ()

    The tag data associated with a notification. Read more
    §

    type Notify = Notify

    The notification type. Read more
    §

    fn into_notification(self) -> <usize as IntoNotification>::Notify

    Convert this value into a notification. Read more
    §

    fn additional(self) -> Additional<Self::Notify>
    where\n Self: Sized,

    Convert this value into an additional notification. Read more
    §

    fn relaxed(self) -> Relaxed<Self::Notify>
    where\n Self: Sized,

    Don’t emit a fence for this notification. Read more
    §

    fn tag<T>(self, tag: T) -> Tag<Self::Notify, T>
    where\n T: Clone,\n Self: Sized + IntoNotification<Tag = ()>,

    Available on crate feature std only.
    Use a tag with this notification. Read more
    §

    fn tag_with<T, F>(self, tag: F) -> TagWith<Self::Notify, F>
    where\n Self: Sized + IntoNotification<Tag = ()>,\n F: FnMut() -> T,

    Available on crate feature std only.
    Use a function to generate a tag with this notification. Read more
    ","IntoNotification","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl IntoNotification for usize

    §

    type Tag = ()

    The tag data associated with a notification. Read more
    §

    type Notify = Notify

    The notification type. Read more
    §

    fn into_notification(self) -> <usize as IntoNotification>::Notify

    Convert this value into a notification. Read more
    §

    fn additional(self) -> Additional<Self::Notify>
    where\n Self: Sized,

    Convert this value into an additional notification. Read more
    §

    fn relaxed(self) -> Relaxed<Self::Notify>
    where\n Self: Sized,

    Don’t emit a fence for this notification. Read more
    §

    fn tag<T>(self, tag: T) -> Tag<Self::Notify, T>
    where\n T: Clone,\n Self: Sized + IntoNotification<Tag = ()>,

    Available on crate feature std only.
    Use a tag with this notification. Read more
    §

    fn tag_with<T, F>(self, tag: F) -> TagWith<Self::Notify, F>
    where\n Self: Sized + IntoNotification<Tag = ()>,\n F: FnMut() -> T,

    Available on crate feature std only.
    Use a function to generate a tag with this notification. Read more
    ","IntoNotification","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.42.0 · Source§

    impl LowerExp for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","LowerExp","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl LowerHex for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","LowerHex","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl MaxIndex for usize

    §

    const MAX: usize = 4_294_967_295usize

    ","MaxIndex","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Mul<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: &BigInt) -> BigInt

    Performs the * operation. Read more
    ","Mul<&BigInt>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Mul<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: &BigUint) -> BigUint

    Performs the * operation. Read more
    ","Mul<&BigUint>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Mul<&usize> for usize

    Source§

    type Output = <usize as Mul>::Output

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: &usize) -> <usize as Mul>::Output

    Performs the * operation. Read more
    ","Mul<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Mul<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: BigInt) -> BigInt

    Performs the * operation. Read more
    ","Mul","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Mul<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: BigUint) -> BigUint

    Performs the * operation. Read more
    ","Mul","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Mul for usize

    Source§

    type Output = usize

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: usize) -> usize

    Performs the * operation. Read more
    ","Mul","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl MulAdd for usize

    Source§

    type Output = usize

    The resulting type after applying the fused multiply-add.
    Source§

    fn mul_add(self, a: usize, b: usize) -> <usize as MulAdd>::Output

    Performs the fused multiply-add operation (self * a) + b
    ","MulAdd","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl MulAddAssign for usize

    Source§

    fn mul_add_assign(&mut self, a: usize, b: usize)

    Performs the fused multiply-add assignment operation *self = (*self * a) + b
    ","MulAddAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl MulAssign<&usize> for usize

    Source§

    fn mul_assign(&mut self, other: &usize)

    Performs the *= operation. Read more
    ","MulAssign<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl MulAssign for usize

    Source§

    fn mul_assign(&mut self, other: usize)

    Performs the *= operation. Read more
    ","MulAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Not for usize

    Source§

    type Output = usize

    The resulting type after applying the ! operator.
    Source§

    fn not(self) -> usize

    Performs the unary ! operation. Read more
    ","Not","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Num for usize

    Source§

    type FromStrRadixErr = ParseIntError

    Source§

    fn from_str_radix(s: &str, radix: u32) -> Result<usize, ParseIntError>

    Convert from a string and radix (typically 2..=36). Read more
    ","Num","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl NumCast for usize

    Source§

    fn from<N>(n: N) -> Option<usize>
    where\n N: ToPrimitive,

    Creates a number from another value that can be converted into\na primitive via the ToPrimitive trait. If the source value cannot be\nrepresented by the target type, then None is returned. Read more
    ","NumCast","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Octal for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Octal","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl One for usize

    Source§

    fn one() -> usize

    Returns the multiplicative identity element of Self, 1. Read more
    Source§

    fn is_one(&self) -> bool

    Returns true if self is equal to the multiplicative identity. Read more
    Source§

    fn set_one(&mut self)

    Sets self to the multiplicative identity element of Self, 1.
    ","One","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Ord for usize

    Source§

    fn cmp(&self, other: &usize) -> Ordering

    This method returns an Ordering between self and other. Read more
    1.21.0 · Source§

    fn max(self, other: Self) -> Self
    where\n Self: Sized,

    Compares and returns the maximum of two values. Read more
    1.21.0 · Source§

    fn min(self, other: Self) -> Self
    where\n Self: Sized,

    Compares and returns the minimum of two values. Read more
    1.50.0 · Source§

    fn clamp(self, min: Self, max: Self) -> Self
    where\n Self: Sized,

    Restrict a value to a certain interval. Read more
    ","Ord","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl OverflowingAdd for usize

    Source§

    fn overflowing_add(&self, v: &usize) -> (usize, bool)

    Returns a tuple of the sum along with a boolean indicating whether an arithmetic overflow would occur.\nIf an overflow would have occurred then the wrapped value is returned.
    ","OverflowingAdd","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl OverflowingMul for usize

    Source§

    fn overflowing_mul(&self, v: &usize) -> (usize, bool)

    Returns a tuple of the product along with a boolean indicating whether an arithmetic overflow would occur.\nIf an overflow would have occurred then the wrapped value is returned.
    ","OverflowingMul","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl OverflowingSub for usize

    Source§

    fn overflowing_sub(&self, v: &usize) -> (usize, bool)

    Returns a tuple of the difference along with a boolean indicating whether an arithmetic overflow would occur.\nIf an overflow would have occurred then the wrapped value is returned.
    ","OverflowingSub","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl ParseHex for usize

    §

    fn parse_hex(input: &str) -> Result<usize, ParseError>

    Parse the value from hex.
    ","ParseHex","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl PartialEq for usize

    Source§

    fn eq(&self, other: &usize) -> bool

    Tests for self and other values to be equal, and is used by ==.
    Source§

    fn ne(&self, other: &usize) -> bool

    Tests for !=. The default implementation is almost always sufficient,\nand should not be overridden without very good reason.
    ","PartialEq","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl PartialOrd for usize

    Source§

    fn partial_cmp(&self, other: &usize) -> Option<Ordering>

    This method returns an ordering between self and other values if one exists. Read more
    Source§

    fn lt(&self, other: &usize) -> bool

    Tests less than (for self and other) and is used by the < operator. Read more
    Source§

    fn le(&self, other: &usize) -> bool

    Tests less than or equal to (for self and other) and is used by the\n<= operator. Read more
    Source§

    fn ge(&self, other: &usize) -> bool

    Tests greater than or equal to (for self and other) and is used by\nthe >= operator. Read more
    Source§

    fn gt(&self, other: &usize) -> bool

    Tests greater than (for self and other) and is used by the >\noperator. Read more
    ","PartialOrd","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl PhfBorrow<usize> for usize

    Source§

    fn borrow(&self) -> &usize

    Convert a reference to self to a reference to the borrowed type.
    ","PhfBorrow","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl PhfHash for usize

    Source§

    fn phf_hash<H>(&self, state: &mut H)
    where\n H: Hasher,

    Feeds the value into the state given, updating the hasher as necessary.
    Source§

    fn phf_hash_slice<H>(data: &[Self], state: &mut H)
    where\n H: Hasher,\n Self: Sized,

    Feeds a slice of this type into the state provided.
    ","PhfHash","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> Pow<&'a u16> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: &'a u16) -> usize

    Returns self to the power rhs. Read more
    ","Pow<&'a u16>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> Pow<&'a u32> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: &'a u32) -> usize

    Returns self to the power rhs. Read more
    ","Pow<&'a u32>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> Pow<&'a u8> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: &'a u8) -> usize

    Returns self to the power rhs. Read more
    ","Pow<&'a u8>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> Pow<&'a usize> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: &'a usize) -> usize

    Returns self to the power rhs. Read more
    ","Pow<&'a usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Pow<u16> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: u16) -> usize

    Returns self to the power rhs. Read more
    ","Pow","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Pow<u32> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: u32) -> usize

    Returns self to the power rhs. Read more
    ","Pow","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Pow<u8> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: u8) -> usize

    Returns self to the power rhs. Read more
    ","Pow","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Pow<usize> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: usize) -> usize

    Returns self to the power rhs. Read more
    ","Pow","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl PrimInt for usize

    Source§

    fn count_ones(self) -> u32

    Returns the number of ones in the binary representation of self. Read more
    Source§

    fn count_zeros(self) -> u32

    Returns the number of zeros in the binary representation of self. Read more
    Source§

    fn leading_ones(self) -> u32

    Returns the number of leading ones in the binary representation\nof self. Read more
    Source§

    fn leading_zeros(self) -> u32

    Returns the number of leading zeros in the binary representation\nof self. Read more
    Source§

    fn trailing_ones(self) -> u32

    Returns the number of trailing ones in the binary representation\nof self. Read more
    Source§

    fn trailing_zeros(self) -> u32

    Returns the number of trailing zeros in the binary representation\nof self. Read more
    Source§

    fn rotate_left(self, n: u32) -> usize

    Shifts the bits to the left by a specified amount, n, wrapping\nthe truncated bits to the end of the resulting integer. Read more
    Source§

    fn rotate_right(self, n: u32) -> usize

    Shifts the bits to the right by a specified amount, n, wrapping\nthe truncated bits to the beginning of the resulting integer. Read more
    Source§

    fn signed_shl(self, n: u32) -> usize

    Shifts the bits to the left by a specified amount, n, filling\nzeros in the least significant bits. Read more
    Source§

    fn signed_shr(self, n: u32) -> usize

    Shifts the bits to the right by a specified amount, n, copying\nthe “sign bit” in the most significant bits even for unsigned types. Read more
    Source§

    fn unsigned_shl(self, n: u32) -> usize

    Shifts the bits to the left by a specified amount, n, filling\nzeros in the least significant bits. Read more
    Source§

    fn unsigned_shr(self, n: u32) -> usize

    Shifts the bits to the right by a specified amount, n, filling\nzeros in the most significant bits. Read more
    Source§

    fn swap_bytes(self) -> usize

    Reverses the byte order of the integer. Read more
    Source§

    fn reverse_bits(self) -> usize

    Reverses the order of bits in the integer. Read more
    Source§

    fn from_be(x: usize) -> usize

    Convert an integer from big endian to the target’s endianness. Read more
    Source§

    fn from_le(x: usize) -> usize

    Convert an integer from little endian to the target’s endianness. Read more
    Source§

    fn to_be(self) -> usize

    Convert self to big endian from the target’s endianness. Read more
    Source§

    fn to_le(self) -> usize

    Convert self to little endian from the target’s endianness. Read more
    Source§

    fn pow(self, exp: u32) -> usize

    Raises self to the power of exp, using exponentiation by squaring. Read more
    ","PrimInt","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Primitive for usize

    §

    const DEFAULT_MAX_VALUE: usize = 18_446_744_073_709_551_615usize

    The maximum value for this type of primitive within the context of color.\nFor floats, the maximum is 1.0, whereas the integer types inherit their usual maximum values.
    §

    const DEFAULT_MIN_VALUE: usize = 0usize

    The minimum value for this type of primitive within the context of color.\nFor floats, the minimum is 0.0, whereas the integer types inherit their usual minimum values.
    ","Primitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> Product<&'a usize> for usize

    §

    fn product<'b, S>(stream: S) -> Pin<Box<dyn Future<Output = usize> + 'b>>
    where\n S: Stream<Item = &'a usize> + 'b,

    Method which takes a stream and generates Self from the elements by\nmultiplying the items.
    ","Product<&'a usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.12.0 · Source§

    impl<'a> Product<&'a usize> for usize

    Source§

    fn product<I>(iter: I) -> usize
    where\n I: Iterator<Item = &'a usize>,

    Takes an iterator and generates Self from the elements by multiplying\nthe items.
    ","Product<&'a usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Product for usize

    §

    fn product<'a, S>(stream: S) -> Pin<Box<dyn Future<Output = usize> + 'a>>
    where\n S: Stream<Item = usize> + 'a,

    Method which takes a stream and generates Self from the elements by\nmultiplying the items.
    ","Product","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.12.0 · Source§

    impl Product for usize

    Source§

    fn product<I>(iter: I) -> usize
    where\n I: Iterator<Item = usize>,

    Takes an iterator and generates Self from the elements by multiplying\nthe items.
    ","Product","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Random for usize

    Source§

    fn random(source: &mut (impl RandomSource + ?Sized)) -> usize

    🔬This is a nightly-only experimental API. (random)

    Generates a random value.

    \n

    Warning: Be careful when manipulating the resulting value! This\nmethod samples according to a uniform distribution, so a value of 1 is\njust as likely as MAX. By using modulo operations, some\nvalues can become more likely than others. Use audited crates when in\ndoubt.

    \n
    ","Random","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Rem<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: &BigInt) -> BigInt

    Performs the % operation. Read more
    ","Rem<&BigInt>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Rem<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: &BigUint) -> BigUint

    Performs the % operation. Read more
    ","Rem<&BigUint>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Rem<&usize> for usize

    Source§

    type Output = <usize as Rem>::Output

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: &usize) -> <usize as Rem>::Output

    Performs the % operation. Read more
    ","Rem<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Rem<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: BigInt) -> BigInt

    Performs the % operation. Read more
    ","Rem","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Rem<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: BigUint) -> BigUint

    Performs the % operation. Read more
    ","Rem","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.51.0 · Source§

    impl Rem<NonZero<usize>> for usize

    Source§

    fn rem(self, other: NonZero<usize>) -> usize

    This operation satisfies n % d == n - (n / d) * d, and cannot panic.

    \n
    Source§

    type Output = usize

    The resulting type after applying the % operator.
    ","Rem>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Rem for usize

    This operation satisfies n % d == n - (n / d) * d. The\nresult has the same sign as the left operand.

    \n

    §Panics

    \n

    This operation will panic if other == 0.

    \n
    Source§

    type Output = usize

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: usize) -> usize

    Performs the % operation. Read more
    ","Rem","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl RemAssign<&BigUint> for usize

    Source§

    fn rem_assign(&mut self, other: &BigUint)

    Performs the %= operation. Read more
    ","RemAssign<&BigUint>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl RemAssign<&usize> for usize

    Source§

    fn rem_assign(&mut self, other: &usize)

    Performs the %= operation. Read more
    ","RemAssign<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl RemAssign<BigUint> for usize

    Source§

    fn rem_assign(&mut self, other: BigUint)

    Performs the %= operation. Read more
    ","RemAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.79.0 · Source§

    impl RemAssign<NonZero<usize>> for usize

    Source§

    fn rem_assign(&mut self, other: NonZero<usize>)

    This operation satisfies n % d == n - (n / d) * d, and cannot panic.

    \n
    ","RemAssign>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl RemAssign for usize

    Source§

    fn rem_assign(&mut self, other: usize)

    Performs the %= operation. Read more
    ","RemAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Roots for usize

    Source§

    fn nth_root(&self, n: u32) -> usize

    Returns the truncated principal nth root of an integer\n– if x >= 0 { ⌊ⁿ√x⌋ } else { ⌈ⁿ√x⌉ } Read more
    Source§

    fn sqrt(&self) -> usize

    Returns the truncated principal square root of an integer – ⌊√x⌋ Read more
    Source§

    fn cbrt(&self) -> usize

    Returns the truncated principal cube root of an integer –\nif x >= 0 { ⌊∛x⌋ } else { ⌈∛x⌉ } Read more
    ","Roots","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Round for usize

    §

    fn round(self) -> usize

    Rounds to the nearest integer value. Read more
    ","Round","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl SampleUniform for usize

    Source§

    type Sampler = UniformInt<usize>

    The UniformSampler implementation supporting type X.
    ","SampleUniform","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Saturating for usize

    Source§

    fn saturating_add(self, v: usize) -> usize

    Saturating addition operator.\nReturns a+b, saturating at the numeric bounds instead of overflowing.
    Source§

    fn saturating_sub(self, v: usize) -> usize

    Saturating subtraction operator.\nReturns a-b, saturating at the numeric bounds instead of overflowing.
    ","Saturating","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl SaturatingAdd for usize

    Source§

    fn saturating_add(&self, v: &usize) -> usize

    Saturating addition. Computes self + other, saturating at the relevant high or low boundary of\nthe type.
    ","SaturatingAdd","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl SaturatingMul for usize

    Source§

    fn saturating_mul(&self, v: &usize) -> usize

    Saturating multiplication. Computes self * other, saturating at the relevant high or low boundary of\nthe type.
    ","SaturatingMul","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl SaturatingSub for usize

    Source§

    fn saturating_sub(&self, v: &usize) -> usize

    Saturating subtraction. Computes self - other, saturating at the relevant high or low boundary of\nthe type.
    ","SaturatingSub","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Serialize for usize

    Source§

    fn serialize<S>(\n &self,\n serializer: S,\n) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>
    where\n S: Serializer,

    Serialize this value into the given Serde serializer. Read more
    ","Serialize","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i128> for usize

    Source§

    type Output = <usize as Shl<i128>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i128) -> <usize as Shl<i128>>::Output

    Performs the << operation. Read more
    ","Shl<&i128>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i16> for usize

    Source§

    type Output = <usize as Shl<i16>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i16) -> <usize as Shl<i16>>::Output

    Performs the << operation. Read more
    ","Shl<&i16>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i32> for usize

    Source§

    type Output = <usize as Shl<i32>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i32) -> <usize as Shl<i32>>::Output

    Performs the << operation. Read more
    ","Shl<&i32>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i64> for usize

    Source§

    type Output = <usize as Shl<i64>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i64) -> <usize as Shl<i64>>::Output

    Performs the << operation. Read more
    ","Shl<&i64>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i8> for usize

    Source§

    type Output = <usize as Shl<i8>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i8) -> <usize as Shl<i8>>::Output

    Performs the << operation. Read more
    ","Shl<&i8>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&isize> for usize

    Source§

    type Output = <usize as Shl<isize>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &isize) -> <usize as Shl<isize>>::Output

    Performs the << operation. Read more
    ","Shl<&isize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u128> for usize

    Source§

    type Output = <usize as Shl<u128>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u128) -> <usize as Shl<u128>>::Output

    Performs the << operation. Read more
    ","Shl<&u128>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u16> for usize

    Source§

    type Output = <usize as Shl<u16>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u16) -> <usize as Shl<u16>>::Output

    Performs the << operation. Read more
    ","Shl<&u16>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u32> for usize

    Source§

    type Output = <usize as Shl<u32>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u32) -> <usize as Shl<u32>>::Output

    Performs the << operation. Read more
    ","Shl<&u32>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u64> for usize

    Source§

    type Output = <usize as Shl<u64>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u64) -> <usize as Shl<u64>>::Output

    Performs the << operation. Read more
    ","Shl<&u64>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u8> for usize

    Source§

    type Output = <usize as Shl<u8>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u8) -> <usize as Shl<u8>>::Output

    Performs the << operation. Read more
    ","Shl<&u8>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&usize> for usize

    Source§

    type Output = <usize as Shl>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &usize) -> <usize as Shl>::Output

    Performs the << operation. Read more
    ","Shl<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i128> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i128) -> usize

    Performs the << operation. Read more
    ","Shl","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i16> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i16) -> usize

    Performs the << operation. Read more
    ","Shl","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i32> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i32) -> usize

    Performs the << operation. Read more
    ","Shl","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i64> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i64) -> usize

    Performs the << operation. Read more
    ","Shl","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i8> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i8) -> usize

    Performs the << operation. Read more
    ","Shl","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<isize> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: isize) -> usize

    Performs the << operation. Read more
    ","Shl","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u128> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u128) -> usize

    Performs the << operation. Read more
    ","Shl","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u16> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u16) -> usize

    Performs the << operation. Read more
    ","Shl","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u32> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u32) -> usize

    Performs the << operation. Read more
    ","Shl","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u64> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u64) -> usize

    Performs the << operation. Read more
    ","Shl","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u8> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u8) -> usize

    Performs the << operation. Read more
    ","Shl","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: usize) -> usize

    Performs the << operation. Read more
    ","Shl","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i128> for usize

    Source§

    fn shl_assign(&mut self, other: &i128)

    Performs the <<= operation. Read more
    ","ShlAssign<&i128>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i16> for usize

    Source§

    fn shl_assign(&mut self, other: &i16)

    Performs the <<= operation. Read more
    ","ShlAssign<&i16>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i32> for usize

    Source§

    fn shl_assign(&mut self, other: &i32)

    Performs the <<= operation. Read more
    ","ShlAssign<&i32>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i64> for usize

    Source§

    fn shl_assign(&mut self, other: &i64)

    Performs the <<= operation. Read more
    ","ShlAssign<&i64>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i8> for usize

    Source§

    fn shl_assign(&mut self, other: &i8)

    Performs the <<= operation. Read more
    ","ShlAssign<&i8>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&isize> for usize

    Source§

    fn shl_assign(&mut self, other: &isize)

    Performs the <<= operation. Read more
    ","ShlAssign<&isize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u128> for usize

    Source§

    fn shl_assign(&mut self, other: &u128)

    Performs the <<= operation. Read more
    ","ShlAssign<&u128>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u16> for usize

    Source§

    fn shl_assign(&mut self, other: &u16)

    Performs the <<= operation. Read more
    ","ShlAssign<&u16>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u32> for usize

    Source§

    fn shl_assign(&mut self, other: &u32)

    Performs the <<= operation. Read more
    ","ShlAssign<&u32>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u64> for usize

    Source§

    fn shl_assign(&mut self, other: &u64)

    Performs the <<= operation. Read more
    ","ShlAssign<&u64>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u8> for usize

    Source§

    fn shl_assign(&mut self, other: &u8)

    Performs the <<= operation. Read more
    ","ShlAssign<&u8>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&usize> for usize

    Source§

    fn shl_assign(&mut self, other: &usize)

    Performs the <<= operation. Read more
    ","ShlAssign<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i128> for usize

    Source§

    fn shl_assign(&mut self, other: i128)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i16> for usize

    Source§

    fn shl_assign(&mut self, other: i16)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i32> for usize

    Source§

    fn shl_assign(&mut self, other: i32)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i64> for usize

    Source§

    fn shl_assign(&mut self, other: i64)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i8> for usize

    Source§

    fn shl_assign(&mut self, other: i8)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<isize> for usize

    Source§

    fn shl_assign(&mut self, other: isize)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u128> for usize

    Source§

    fn shl_assign(&mut self, other: u128)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u16> for usize

    Source§

    fn shl_assign(&mut self, other: u16)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u32> for usize

    Source§

    fn shl_assign(&mut self, other: u32)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u64> for usize

    Source§

    fn shl_assign(&mut self, other: u64)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u8> for usize

    Source§

    fn shl_assign(&mut self, other: u8)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign for usize

    Source§

    fn shl_assign(&mut self, other: usize)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i128> for usize

    Source§

    type Output = <usize as Shr<i128>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i128) -> <usize as Shr<i128>>::Output

    Performs the >> operation. Read more
    ","Shr<&i128>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i16> for usize

    Source§

    type Output = <usize as Shr<i16>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i16) -> <usize as Shr<i16>>::Output

    Performs the >> operation. Read more
    ","Shr<&i16>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i32> for usize

    Source§

    type Output = <usize as Shr<i32>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i32) -> <usize as Shr<i32>>::Output

    Performs the >> operation. Read more
    ","Shr<&i32>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i64> for usize

    Source§

    type Output = <usize as Shr<i64>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i64) -> <usize as Shr<i64>>::Output

    Performs the >> operation. Read more
    ","Shr<&i64>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i8> for usize

    Source§

    type Output = <usize as Shr<i8>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i8) -> <usize as Shr<i8>>::Output

    Performs the >> operation. Read more
    ","Shr<&i8>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&isize> for usize

    Source§

    type Output = <usize as Shr<isize>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &isize) -> <usize as Shr<isize>>::Output

    Performs the >> operation. Read more
    ","Shr<&isize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u128> for usize

    Source§

    type Output = <usize as Shr<u128>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u128) -> <usize as Shr<u128>>::Output

    Performs the >> operation. Read more
    ","Shr<&u128>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u16> for usize

    Source§

    type Output = <usize as Shr<u16>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u16) -> <usize as Shr<u16>>::Output

    Performs the >> operation. Read more
    ","Shr<&u16>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u32> for usize

    Source§

    type Output = <usize as Shr<u32>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u32) -> <usize as Shr<u32>>::Output

    Performs the >> operation. Read more
    ","Shr<&u32>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u64> for usize

    Source§

    type Output = <usize as Shr<u64>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u64) -> <usize as Shr<u64>>::Output

    Performs the >> operation. Read more
    ","Shr<&u64>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u8> for usize

    Source§

    type Output = <usize as Shr<u8>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u8) -> <usize as Shr<u8>>::Output

    Performs the >> operation. Read more
    ","Shr<&u8>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&usize> for usize

    Source§

    type Output = <usize as Shr>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &usize) -> <usize as Shr>::Output

    Performs the >> operation. Read more
    ","Shr<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i128> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i128) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i16> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i16) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i32> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i32) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i64> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i64) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i8> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i8) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<isize> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: isize) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u128> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u128) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u16> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u16) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u32> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u32) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u64> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u64) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u8> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u8) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: usize) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i128> for usize

    Source§

    fn shr_assign(&mut self, other: &i128)

    Performs the >>= operation. Read more
    ","ShrAssign<&i128>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i16> for usize

    Source§

    fn shr_assign(&mut self, other: &i16)

    Performs the >>= operation. Read more
    ","ShrAssign<&i16>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i32> for usize

    Source§

    fn shr_assign(&mut self, other: &i32)

    Performs the >>= operation. Read more
    ","ShrAssign<&i32>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i64> for usize

    Source§

    fn shr_assign(&mut self, other: &i64)

    Performs the >>= operation. Read more
    ","ShrAssign<&i64>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i8> for usize

    Source§

    fn shr_assign(&mut self, other: &i8)

    Performs the >>= operation. Read more
    ","ShrAssign<&i8>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&isize> for usize

    Source§

    fn shr_assign(&mut self, other: &isize)

    Performs the >>= operation. Read more
    ","ShrAssign<&isize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u128> for usize

    Source§

    fn shr_assign(&mut self, other: &u128)

    Performs the >>= operation. Read more
    ","ShrAssign<&u128>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u16> for usize

    Source§

    fn shr_assign(&mut self, other: &u16)

    Performs the >>= operation. Read more
    ","ShrAssign<&u16>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u32> for usize

    Source§

    fn shr_assign(&mut self, other: &u32)

    Performs the >>= operation. Read more
    ","ShrAssign<&u32>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u64> for usize

    Source§

    fn shr_assign(&mut self, other: &u64)

    Performs the >>= operation. Read more
    ","ShrAssign<&u64>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u8> for usize

    Source§

    fn shr_assign(&mut self, other: &u8)

    Performs the >>= operation. Read more
    ","ShrAssign<&u8>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&usize> for usize

    Source§

    fn shr_assign(&mut self, other: &usize)

    Performs the >>= operation. Read more
    ","ShrAssign<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i128> for usize

    Source§

    fn shr_assign(&mut self, other: i128)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i16> for usize

    Source§

    fn shr_assign(&mut self, other: i16)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i32> for usize

    Source§

    fn shr_assign(&mut self, other: i32)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i64> for usize

    Source§

    fn shr_assign(&mut self, other: i64)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i8> for usize

    Source§

    fn shr_assign(&mut self, other: i8)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<isize> for usize

    Source§

    fn shr_assign(&mut self, other: isize)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u128> for usize

    Source§

    fn shr_assign(&mut self, other: u128)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u16> for usize

    Source§

    fn shr_assign(&mut self, other: u16)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u32> for usize

    Source§

    fn shr_assign(&mut self, other: u32)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u64> for usize

    Source§

    fn shr_assign(&mut self, other: u64)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u8> for usize

    Source§

    fn shr_assign(&mut self, other: u8)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign for usize

    Source§

    fn shr_assign(&mut self, other: usize)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl SimdElement for usize

    Source§

    type Mask = isize

    🔬This is a nightly-only experimental API. (portable_simd)
    The mask element type corresponding to this element type.
    ","SimdElement","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.15.0 · Source§

    impl<T> SliceIndex<[T]> for usize

    The methods index and index_mut panic if the index is out of bounds.

    \n
    Source§

    type Output = T

    The output type returned by methods.
    Source§

    fn get(self, slice: &[T]) -> Option<&T>

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a shared reference to the output at this location, if in\nbounds.
    Source§

    fn get_mut(self, slice: &mut [T]) -> Option<&mut T>

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a mutable reference to the output at this location, if in\nbounds.
    Source§

    unsafe fn get_unchecked(self, slice: *const [T]) -> *const T

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a pointer to the output at this location, without\nperforming any bounds checking. Read more
    Source§

    unsafe fn get_unchecked_mut(self, slice: *mut [T]) -> *mut T

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a mutable pointer to the output at this location, without\nperforming any bounds checking. Read more
    Source§

    fn index(self, slice: &[T]) -> &T

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a shared reference to the output at this location, panicking\nif out of bounds.
    Source§

    fn index_mut(self, slice: &mut [T]) -> &mut T

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a mutable reference to the output at this location, panicking\nif out of bounds.
    ","SliceIndex<[T]>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Step for usize

    Source§

    fn forward(start: usize, n: usize) -> usize

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the successor\nof self count times. Read more
    Source§

    fn backward(start: usize, n: usize) -> usize

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the predecessor\nof self count times. Read more
    Source§

    unsafe fn forward_unchecked(start: usize, n: usize) -> usize

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the successor\nof self count times. Read more
    Source§

    unsafe fn backward_unchecked(start: usize, n: usize) -> usize

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the predecessor\nof self count times. Read more
    Source§

    fn steps_between(start: &usize, end: &usize) -> (usize, Option<usize>)

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the bounds on the number of successor steps required to get from start to end\nlike Iterator::size_hint(). Read more
    Source§

    fn forward_checked(start: usize, n: usize) -> Option<usize>

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the successor\nof self count times. Read more
    Source§

    fn backward_checked(start: usize, n: usize) -> Option<usize>

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the predecessor\nof self count times. Read more
    ","Step","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl StepLite for usize

    §

    fn add_one(&self) -> usize

    Returns the successor of self. Read more
    §

    fn sub_one(&self) -> usize

    Returns the predecessor of self. Read more
    ","StepLite","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Sub<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: &BigInt) -> BigInt

    Performs the - operation. Read more
    ","Sub<&BigInt>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Sub<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: &BigUint) -> BigUint

    Performs the - operation. Read more
    ","Sub<&BigUint>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Sub<&usize> for usize

    Source§

    type Output = <usize as Sub>::Output

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: &usize) -> <usize as Sub>::Output

    Performs the - operation. Read more
    ","Sub<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Sub<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: BigInt) -> BigInt

    Performs the - operation. Read more
    ","Sub","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Sub<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: BigUint) -> BigUint

    Performs the - operation. Read more
    ","Sub","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Sub for usize

    Source§

    type Output = usize

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: usize) -> usize

    Performs the - operation. Read more
    ","Sub","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl SubAssign<&usize> for usize

    Source§

    fn sub_assign(&mut self, other: &usize)

    Performs the -= operation. Read more
    ","SubAssign<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl SubAssign for usize

    Source§

    fn sub_assign(&mut self, other: usize)

    Performs the -= operation. Read more
    ","SubAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> Sum<&'a usize> for usize

    §

    fn sum<'b, S>(stream: S) -> Pin<Box<dyn Future<Output = usize> + 'b>>
    where\n S: Stream<Item = &'a usize> + 'b,

    Method which takes a stream and generates Self from the elements by\n“summing up” the items.
    ","Sum<&'a usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.12.0 · Source§

    impl<'a> Sum<&'a usize> for usize

    Source§

    fn sum<I>(iter: I) -> usize
    where\n I: Iterator<Item = &'a usize>,

    Takes an iterator and generates Self from the elements by “summing up”\nthe items.
    ","Sum<&'a usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Sum for usize

    §

    fn sum<'a, S>(stream: S) -> Pin<Box<dyn Future<Output = usize> + 'a>>
    where\n S: Stream<Item = usize> + 'a,

    Method which takes a stream and generates Self from the elements by\n“summing up” the items.
    ","Sum","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.12.0 · Source§

    impl Sum for usize

    Source§

    fn sum<I>(iter: I) -> usize
    where\n I: Iterator<Item = usize>,

    Takes an iterator and generates Self from the elements by “summing up”\nthe items.
    ","Sum","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToBigInt for usize

    Source§

    fn to_bigint(&self) -> Option<BigInt>

    Converts the value of self to a BigInt.
    ","ToBigInt","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToBigUint for usize

    Source§

    fn to_biguint(&self) -> Option<BigUint>

    Converts the value of self to a BigUint.
    ","ToBigUint","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToBytes for usize

    Source§

    type Bytes = [u8; 8]

    Source§

    fn to_be_bytes(&self) -> <usize as ToBytes>::Bytes

    Return the memory representation of this number as a byte array in big-endian byte order. Read more
    Source§

    fn to_le_bytes(&self) -> <usize as ToBytes>::Bytes

    Return the memory representation of this number as a byte array in little-endian byte order. Read more
    Source§

    fn to_ne_bytes(&self) -> <usize as ToBytes>::Bytes

    Return the memory representation of this number as a byte array in native byte order. Read more
    ","ToBytes","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToPrimitive for usize

    Source§

    fn to_isize(&self) -> Option<isize>

    Converts the value of self to an isize. If the value cannot be\nrepresented by an isize, then None is returned.
    Source§

    fn to_i8(&self) -> Option<i8>

    Converts the value of self to an i8. If the value cannot be\nrepresented by an i8, then None is returned.
    Source§

    fn to_i16(&self) -> Option<i16>

    Converts the value of self to an i16. If the value cannot be\nrepresented by an i16, then None is returned.
    Source§

    fn to_i32(&self) -> Option<i32>

    Converts the value of self to an i32. If the value cannot be\nrepresented by an i32, then None is returned.
    Source§

    fn to_i64(&self) -> Option<i64>

    Converts the value of self to an i64. If the value cannot be\nrepresented by an i64, then None is returned.
    Source§

    fn to_i128(&self) -> Option<i128>

    Converts the value of self to an i128. If the value cannot be\nrepresented by an i128 (i64 under the default implementation), then\nNone is returned. Read more
    Source§

    fn to_usize(&self) -> Option<usize>

    Converts the value of self to a usize. If the value cannot be\nrepresented by a usize, then None is returned.
    Source§

    fn to_u8(&self) -> Option<u8>

    Converts the value of self to a u8. If the value cannot be\nrepresented by a u8, then None is returned.
    Source§

    fn to_u16(&self) -> Option<u16>

    Converts the value of self to a u16. If the value cannot be\nrepresented by a u16, then None is returned.
    Source§

    fn to_u32(&self) -> Option<u32>

    Converts the value of self to a u32. If the value cannot be\nrepresented by a u32, then None is returned.
    Source§

    fn to_u64(&self) -> Option<u64>

    Converts the value of self to a u64. If the value cannot be\nrepresented by a u64, then None is returned.
    Source§

    fn to_u128(&self) -> Option<u128>

    Converts the value of self to a u128. If the value cannot be\nrepresented by a u128 (u64 under the default implementation), then\nNone is returned. Read more
    Source§

    fn to_f32(&self) -> Option<f32>

    Converts the value of self to an f32. Overflows may map to positive\nor negative inifinity, otherwise None is returned if the value cannot\nbe represented by an f32.
    Source§

    fn to_f64(&self) -> Option<f64>

    Converts the value of self to an f64. Overflows may map to positive\nor negative inifinity, otherwise None is returned if the value cannot\nbe represented by an f64. Read more
    ","ToPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToTokens for usize

    Source§

    fn to_tokens(&self, tokens: &mut TokenStream)

    🔬This is a nightly-only experimental API. (proc_macro_totokens)
    Write self to the given TokenStream. Read more
    Source§

    fn to_token_stream(&self) -> TokenStream

    🔬This is a nightly-only experimental API. (proc_macro_totokens)
    Convert self directly into a TokenStream object. Read more
    Source§

    fn into_token_stream(self) -> TokenStream
    where\n Self: Sized,

    🔬This is a nightly-only experimental API. (proc_macro_totokens)
    Convert self directly into a TokenStream object. Read more
    ","ToTokens","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToTokens for usize

    Source§

    fn to_tokens(&self, tokens: &mut TokenStream)

    Write self to the given TokenStream. Read more
    Source§

    fn to_token_stream(&self) -> TokenStream

    Convert self directly into a TokenStream object. Read more
    Source§

    fn into_token_stream(self) -> TokenStream
    where\n Self: Sized,

    Convert self directly into a TokenStream object. Read more
    ","ToTokens","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl ToUsize for usize

    §

    fn to_usize(&self) -> usize

    converts self to usize
    ","ToUsize","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl ToUsize for usize

    §

    fn to_usize(&self) -> usize

    converts self to usize
    ","ToUsize","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToValue for usize

    Source§

    fn to_value(&self) -> Value<'_>

    Perform the conversion.
    ","ToValue","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl TryFrom<&BigInt> for usize

    Source§

    type Error = TryFromBigIntError<()>

    The type returned in the event of a conversion error.
    Source§

    fn try_from(value: &BigInt) -> Result<usize, TryFromBigIntError<()>>

    Performs the conversion.
    ","TryFrom<&BigInt>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl TryFrom<&BigUint> for usize

    Source§

    type Error = TryFromBigIntError<()>

    The type returned in the event of a conversion error.
    Source§

    fn try_from(value: &BigUint) -> Result<usize, TryFromBigIntError<()>>

    Performs the conversion.
    ","TryFrom<&BigUint>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl TryFrom<BigInt> for usize

    Source§

    type Error = TryFromBigIntError<BigInt>

    The type returned in the event of a conversion error.
    Source§

    fn try_from(value: BigInt) -> Result<usize, TryFromBigIntError<BigInt>>

    Performs the conversion.
    ","TryFrom","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl TryFrom<BigUint> for usize

    Source§

    type Error = TryFromBigIntError<BigUint>

    The type returned in the event of a conversion error.
    Source§

    fn try_from(value: BigUint) -> Result<usize, TryFromBigIntError<BigUint>>

    Performs the conversion.
    ","TryFrom","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'v> TryFrom<ValueBag<'v>> for usize

    Source§

    type Error = Error

    The type returned in the event of a conversion error.
    Source§

    fn try_from(v: ValueBag<'v>) -> Result<usize, Error>

    Performs the conversion.
    ","TryFrom>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i128> for usize

    Source§

    fn try_from(u: i128) -> Result<usize, <usize as TryFrom<i128>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i16> for usize

    Source§

    fn try_from(u: i16) -> Result<usize, <usize as TryFrom<i16>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i32> for usize

    Source§

    fn try_from(u: i32) -> Result<usize, <usize as TryFrom<i32>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i64> for usize

    Source§

    fn try_from(u: i64) -> Result<usize, <usize as TryFrom<i64>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i8> for usize

    Source§

    fn try_from(u: i8) -> Result<usize, <usize as TryFrom<i8>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<isize> for usize

    Source§

    fn try_from(u: isize) -> Result<usize, <usize as TryFrom<isize>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<u128> for usize

    Source§

    fn try_from(u: u128) -> Result<usize, <usize as TryFrom<u128>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<u32> for usize

    Source§

    fn try_from(value: u32) -> Result<usize, <usize as TryFrom<u32>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<u64> for usize

    Source§

    fn try_from(value: u64) -> Result<usize, <usize as TryFrom<u64>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Type for usize

    §

    const SIGNATURE: &'static Signature = u64::SIGNATURE

    The signature for the implementing type, in parsed format. Read more
    ","Type","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.42.0 · Source§

    impl UpperExp for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","UpperExp","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl UpperHex for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","UpperHex","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Value for usize

    §

    fn record(&self, key: &Field, visitor: &mut dyn Visit)

    Visits this value with the given Visitor.
    ","Value","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingAdd for usize

    Source§

    fn wrapping_add(&self, v: &usize) -> usize

    Wrapping (modular) addition. Computes self + other, wrapping around at the boundary of\nthe type.
    ","WrappingAdd","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingMul for usize

    Source§

    fn wrapping_mul(&self, v: &usize) -> usize

    Wrapping (modular) multiplication. Computes self * other, wrapping around at the boundary\nof the type.
    ","WrappingMul","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingNeg for usize

    Source§

    fn wrapping_neg(&self) -> usize

    Wrapping (modular) negation. Computes -self,\nwrapping around at the boundary of the type. Read more
    ","WrappingNeg","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingShl for usize

    Source§

    fn wrapping_shl(&self, rhs: u32) -> usize

    Panic-free bitwise shift-left; yields self << mask(rhs),\nwhere mask removes any high order bits of rhs that would\ncause the shift to exceed the bitwidth of the type. Read more
    ","WrappingShl","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingShr for usize

    Source§

    fn wrapping_shr(&self, rhs: u32) -> usize

    Panic-free bitwise shift-right; yields self >> mask(rhs),\nwhere mask removes any high order bits of rhs that would\ncause the shift to exceed the bitwidth of the type. Read more
    ","WrappingShr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingSub for usize

    Source§

    fn wrapping_sub(&self, v: &usize) -> usize

    Wrapping (modular) subtraction. Computes self - other, wrapping around at the boundary\nof the type.
    ","WrappingSub","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl WriteHex for usize

    §

    fn write_hex<W>(&self, writer: W) -> Result<(), Error>
    where\n W: Write,

    Write the value as hex.
    ","WriteHex","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Writeable for usize

    §

    fn write_to<W>(&self, sink: &mut W) -> Result<(), Error>
    where\n W: Write + ?Sized,

    Writes a string to the given sink. Errors from the sink are bubbled up.\nThe default implementation delegates to write_to_parts, and discards any\nPart annotations.
    §

    fn writeable_length_hint(&self) -> LengthHint

    Returns a hint for the number of UTF-8 bytes that will be written to the sink. Read more
    §

    fn write_to_parts<S>(&self, sink: &mut S) -> Result<(), Error>
    where\n S: PartsWrite + ?Sized,

    Write bytes and Part annotations to the given sink. Errors from the\nsink are bubbled up. The default implementation delegates to write_to,\nand doesn’t produce any Part annotations.
    §

    fn write_to_string(&self) -> Cow<'_, str>

    Creates a new String with the data from this Writeable. Like ToString,\nbut smaller and faster. Read more
    §

    fn writeable_cmp_bytes(&self, other: &[u8]) -> Ordering

    Compares the contents of this Writeable to the given bytes\nwithout allocating a String to hold the Writeable contents. Read more
    ","Writeable","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> Yokeable<'a> for usize

    §

    type Output = usize

    This type MUST be Self with the 'static replaced with 'a, i.e. Self<'a>
    §

    fn transform(&self) -> &<usize as Yokeable<'a>>::Output

    This method must cast self between &'a Self<'static> and &'a Self<'a>. Read more
    §

    fn transform_owned(self) -> <usize as Yokeable<'a>>::Output

    This method must cast self between Self<'static> and Self<'a>. Read more
    §

    unsafe fn make(this: <usize as Yokeable<'a>>::Output) -> usize

    This method can be used to cast away Self<'a>’s lifetime. Read more
    §

    fn transform_mut<F>(&'a mut self, f: F)
    where\n F: 'static + for<'b> FnOnce(&'b mut <usize as Yokeable<'a>>::Output),

    This method must cast self between &'a mut Self<'static> and &'a mut Self<'a>,\nand pass it to f. Read more
    ","Yokeable<'a>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Zero for usize

    Source§

    fn zero() -> usize

    Returns the additive identity element of Self, 0. Read more
    Source§

    fn is_zero(&self) -> bool

    Returns true if self is equal to the additive identity.
    Source§

    fn set_zero(&mut self)

    Sets self to the additive identity element of Self, 0.
    ","Zero","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> ZeroFrom<'a, usize> for usize

    §

    fn zero_from(this: &'a usize) -> usize

    Clone the other C into a struct that may retain references into C.
    ","ZeroFrom<'a, usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> ZeroMapKV<'a> for usize

    §

    type Container = FlexZeroVec<'a>

    The container that can be used with this type: [ZeroVec] or [VarZeroVec].
    §

    type Slice = FlexZeroSlice

    §

    type GetType = [u8]

    The type produced by Container::get() Read more
    §

    type OwnedType = usize

    The type produced by Container::replace() and Container::remove(),\nalso used during deserialization. If Self is human readable serialized,\ndeserializing to Self::OwnedType should produce the same value once\npassed through Self::owned_as_self() Read more
    ","ZeroMapKV<'a>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Zeroable for usize

    §

    fn zeroed() -> Self

    ","Zeroable","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl usize

    1.43.0 · Source

    pub const MIN: usize = 0usize

    Available on 64-bit only.

    The smallest value that can be represented by this integer type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(usize::MIN, 0);
    \n
    1.43.0 · Source

    pub const MAX: usize = 18_446_744_073_709_551_615usize

    Available on 64-bit only.

    The largest value that can be represented by this integer type\n(264 − 1 on 64-bit targets).

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(usize::MAX, 18446744073709551615);
    \n
    1.53.0 · Source

    pub const BITS: u32 = 64u32

    Available on 64-bit only.

    The size of this integer type in bits.

    \n
    §Examples
    \n
    assert_eq!(usize::BITS, 64);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn count_ones(self) -> u32

    Available on 64-bit only.

    Returns the number of ones in the binary representation of self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0b01001100usize;\nassert_eq!(n.count_ones(), 3);\n\nlet max = usize::MAX;\nassert_eq!(max.count_ones(), 64);\n\nlet zero = 0usize;\nassert_eq!(zero.count_ones(), 0);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn count_zeros(self) -> u32

    Available on 64-bit only.

    Returns the number of zeros in the binary representation of self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let zero = 0usize;\nassert_eq!(zero.count_zeros(), 64);\n\nlet max = usize::MAX;\nassert_eq!(max.count_zeros(), 0);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn leading_zeros(self) -> u32

    Available on 64-bit only.

    Returns the number of leading zeros in the binary representation of self.

    \n

    Depending on what you’re doing with the value, you might also be interested in the\nilog2 function which returns a consistent number, even if the type widens.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = usize::MAX >> 2;\nassert_eq!(n.leading_zeros(), 2);\n\nlet zero = 0usize;\nassert_eq!(zero.leading_zeros(), 64);\n\nlet max = usize::MAX;\nassert_eq!(max.leading_zeros(), 0);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn trailing_zeros(self) -> u32

    Available on 64-bit only.

    Returns the number of trailing zeros in the binary representation\nof self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0b0101000usize;\nassert_eq!(n.trailing_zeros(), 3);\n\nlet zero = 0usize;\nassert_eq!(zero.trailing_zeros(), 64);\n\nlet max = usize::MAX;\nassert_eq!(max.trailing_zeros(), 0);
    \n
    1.46.0 (const: 1.46.0) · Source

    pub const fn leading_ones(self) -> u32

    Available on 64-bit only.

    Returns the number of leading ones in the binary representation of self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = !(usize::MAX >> 2);\nassert_eq!(n.leading_ones(), 2);\n\nlet zero = 0usize;\nassert_eq!(zero.leading_ones(), 0);\n\nlet max = usize::MAX;\nassert_eq!(max.leading_ones(), 64);
    \n
    1.46.0 (const: 1.46.0) · Source

    pub const fn trailing_ones(self) -> u32

    Available on 64-bit only.

    Returns the number of trailing ones in the binary representation\nof self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0b1010111usize;\nassert_eq!(n.trailing_ones(), 3);\n\nlet zero = 0usize;\nassert_eq!(zero.trailing_ones(), 0);\n\nlet max = usize::MAX;\nassert_eq!(max.trailing_ones(), 64);
    \n
    Source

    pub const fn cast_signed(self) -> isize

    🔬This is a nightly-only experimental API. (integer_sign_cast)
    Available on 64-bit only.

    Returns the bit pattern of self reinterpreted as a signed integer of the same size.

    \n

    This produces the same result as an as cast, but ensures that the bit-width remains\nthe same.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(integer_sign_cast)]\n\nlet n = usize::MAX;\n\nassert_eq!(n.cast_signed(), -1isize);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn rotate_left(self, n: u32) -> usize

    Available on 64-bit only.

    Shifts the bits to the left by a specified amount, n,\nwrapping the truncated bits to the end of the resulting integer.

    \n

    Please note this isn’t the same operation as the << shifting operator!

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0xaa00000000006e1usize;\nlet m = 0x6e10aa;\n\nassert_eq!(n.rotate_left(12), m);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn rotate_right(self, n: u32) -> usize

    Available on 64-bit only.

    Shifts the bits to the right by a specified amount, n,\nwrapping the truncated bits to the beginning of the resulting\ninteger.

    \n

    Please note this isn’t the same operation as the >> shifting operator!

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x6e10aausize;\nlet m = 0xaa00000000006e1;\n\nassert_eq!(n.rotate_right(12), m);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn swap_bytes(self) -> usize

    Available on 64-bit only.

    Reverses the byte order of the integer.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1234567890123456usize;\nlet m = n.swap_bytes();\n\nassert_eq!(m, 0x5634129078563412);
    \n
    1.37.0 (const: 1.37.0) · Source

    pub const fn reverse_bits(self) -> usize

    Available on 64-bit only.

    Reverses the order of bits in the integer. The least significant bit becomes the most significant bit,\nsecond least-significant bit becomes second most-significant bit, etc.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1234567890123456usize;\nlet m = n.reverse_bits();\n\nassert_eq!(m, 0x6a2c48091e6a2c48);\nassert_eq!(0, 0usize.reverse_bits());
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn from_be(x: usize) -> usize

    Available on 64-bit only.

    Converts an integer from big endian to the target’s endianness.

    \n

    On big endian this is a no-op. On little endian the bytes are\nswapped.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1Ausize;\n\nif cfg!(target_endian = \"big\") {\n    assert_eq!(usize::from_be(n), n)\n} else {\n    assert_eq!(usize::from_be(n), n.swap_bytes())\n}
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn from_le(x: usize) -> usize

    Available on 64-bit only.

    Converts an integer from little endian to the target’s endianness.

    \n

    On little endian this is a no-op. On big endian the bytes are\nswapped.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1Ausize;\n\nif cfg!(target_endian = \"little\") {\n    assert_eq!(usize::from_le(n), n)\n} else {\n    assert_eq!(usize::from_le(n), n.swap_bytes())\n}
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn to_be(self) -> usize

    Available on 64-bit only.

    Converts self to big endian from the target’s endianness.

    \n

    On big endian this is a no-op. On little endian the bytes are\nswapped.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1Ausize;\n\nif cfg!(target_endian = \"big\") {\n    assert_eq!(n.to_be(), n)\n} else {\n    assert_eq!(n.to_be(), n.swap_bytes())\n}
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn to_le(self) -> usize

    Available on 64-bit only.

    Converts self to little endian from the target’s endianness.

    \n

    On little endian this is a no-op. On big endian the bytes are\nswapped.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1Ausize;\n\nif cfg!(target_endian = \"little\") {\n    assert_eq!(n.to_le(), n)\n} else {\n    assert_eq!(n.to_le(), n.swap_bytes())\n}
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn checked_add(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer addition. Computes self + rhs, returning None\nif overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!((usize::MAX - 2).checked_add(1), Some(usize::MAX - 1));\nassert_eq!((usize::MAX - 2).checked_add(3), None);
    \n
    Source

    pub const fn strict_add(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer addition. Computes self + rhs, panicking\nif overflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!((usize::MAX - 2).strict_add(1), usize::MAX - 1);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = (usize::MAX - 2).strict_add(3);
    \n
    1.79.0 (const: 1.79.0) · Source

    pub const unsafe fn unchecked_add(self, rhs: usize) -> usize

    Available on 64-bit only.

    Unchecked integer addition. Computes self + rhs, assuming overflow\ncannot occur.

    \n

    Calling x.unchecked_add(y) is semantically equivalent to calling\nx.checked_add(y).unwrap_unchecked().

    \n

    If you’re just trying to avoid the panic in debug mode, then do not\nuse this. Instead, you’re looking for wrapping_add.

    \n
    §Safety
    \n

    This results in undefined behavior when\nself + rhs > usize::MAX or self + rhs < usize::MIN,\ni.e. when checked_add would return None.

    \n
    1.66.0 (const: 1.66.0) · Source

    pub const fn checked_add_signed(self, rhs: isize) -> Option<usize>

    Available on 64-bit only.

    Checked addition with a signed integer. Computes self + rhs,\nreturning None if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.checked_add_signed(2), Some(3));\nassert_eq!(1usize.checked_add_signed(-2), None);\nassert_eq!((usize::MAX - 2).checked_add_signed(3), None);
    \n
    Source

    pub const fn strict_add_signed(self, rhs: isize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict addition with a signed integer. Computes self + rhs,\npanicking if overflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(1usize.strict_add_signed(2), 3);
    \n

    The following panic because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 1usize.strict_add_signed(-2);
    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = (usize::MAX - 2).strict_add_signed(3);
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn checked_sub(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer subtraction. Computes self - rhs, returning\nNone if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.checked_sub(1), Some(0));\nassert_eq!(0usize.checked_sub(1), None);
    \n
    Source

    pub const fn strict_sub(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer subtraction. Computes self - rhs, panicking if\noverflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(1usize.strict_sub(1), 0);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 0usize.strict_sub(1);
    \n
    1.79.0 (const: 1.79.0) · Source

    pub const unsafe fn unchecked_sub(self, rhs: usize) -> usize

    Available on 64-bit only.

    Unchecked integer subtraction. Computes self - rhs, assuming overflow\ncannot occur.

    \n

    Calling x.unchecked_sub(y) is semantically equivalent to calling\nx.checked_sub(y).unwrap_unchecked().

    \n

    If you’re just trying to avoid the panic in debug mode, then do not\nuse this. Instead, you’re looking for wrapping_sub.

    \n

    If you find yourself writing code like this:

    \n\n
    if foo >= bar {\n    // SAFETY: just checked it will not overflow\n    let diff = unsafe { foo.unchecked_sub(bar) };\n    // ... use diff ...\n}
    \n

    Consider changing it to

    \n\n
    if let Some(diff) = foo.checked_sub(bar) {\n    // ... use diff ...\n}
    \n

    As that does exactly the same thing – including telling the optimizer\nthat the subtraction cannot overflow – but avoids needing unsafe.

    \n
    §Safety
    \n

    This results in undefined behavior when\nself - rhs > usize::MAX or self - rhs < usize::MIN,\ni.e. when checked_sub would return None.

    \n
    Source

    pub const fn checked_sub_signed(self, rhs: isize) -> Option<usize>

    🔬This is a nightly-only experimental API. (mixed_integer_ops_unsigned_sub)
    Available on 64-bit only.

    Checked subtraction with a signed integer. Computes self - rhs,\nreturning None if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(mixed_integer_ops_unsigned_sub)]\nassert_eq!(1usize.checked_sub_signed(2), None);\nassert_eq!(1usize.checked_sub_signed(-2), Some(3));\nassert_eq!((usize::MAX - 2).checked_sub_signed(-4), None);
    \n
    Source

    pub const fn checked_signed_diff(self, rhs: usize) -> Option<isize>

    🔬This is a nightly-only experimental API. (unsigned_signed_diff)
    Available on 64-bit only.

    Checked integer subtraction. Computes self - rhs and checks if the result fits into an isize, returning None if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(unsigned_signed_diff)]\nassert_eq!(10usize.checked_signed_diff(2), Some(8));\nassert_eq!(2usize.checked_signed_diff(10), Some(-8));\nassert_eq!(usize::MAX.checked_signed_diff(isize::MAX as usize), None);\nassert_eq!((isize::MAX as usize).checked_signed_diff(usize::MAX), Some(isize::MIN));\nassert_eq!((isize::MAX as usize + 1).checked_signed_diff(0), None);\nassert_eq!(usize::MAX.checked_signed_diff(usize::MAX), Some(0));
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn checked_mul(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer multiplication. Computes self * rhs, returning\nNone if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.checked_mul(1), Some(5));\nassert_eq!(usize::MAX.checked_mul(2), None);
    \n
    Source

    pub const fn strict_mul(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer multiplication. Computes self * rhs, panicking if\noverflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(5usize.strict_mul(1), 5);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = usize::MAX.strict_mul(2);
    \n
    1.79.0 (const: 1.79.0) · Source

    pub const unsafe fn unchecked_mul(self, rhs: usize) -> usize

    Available on 64-bit only.

    Unchecked integer multiplication. Computes self * rhs, assuming overflow\ncannot occur.

    \n

    Calling x.unchecked_mul(y) is semantically equivalent to calling\nx.checked_mul(y).unwrap_unchecked().

    \n

    If you’re just trying to avoid the panic in debug mode, then do not\nuse this. Instead, you’re looking for wrapping_mul.

    \n
    §Safety
    \n

    This results in undefined behavior when\nself * rhs > usize::MAX or self * rhs < usize::MIN,\ni.e. when checked_mul would return None.

    \n
    1.0.0 (const: 1.52.0) · Source

    pub const fn checked_div(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer division. Computes self / rhs, returning None\nif rhs == 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(128usize.checked_div(2), Some(64));\nassert_eq!(1usize.checked_div(0), None);
    \n
    Source

    pub const fn strict_div(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer division. Computes self / rhs.

    \n

    Strict division on unsigned types is just normal division. There’s no\nway overflow could ever happen. This function exists so that all\noperations are accounted for in the strict operations.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(100usize.strict_div(10), 10);
    \n

    The following panics because of division by zero:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = (1usize).strict_div(0);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn checked_div_euclid(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked Euclidean division. Computes self.div_euclid(rhs), returning None\nif rhs == 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(128usize.checked_div_euclid(2), Some(64));\nassert_eq!(1usize.checked_div_euclid(0), None);
    \n
    Source

    pub const fn strict_div_euclid(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict Euclidean division. Computes self.div_euclid(rhs).

    \n

    Strict division on unsigned types is just normal division. There’s no\nway overflow could ever happen. This function exists so that all\noperations are accounted for in the strict operations. Since, for the\npositive integers, all common definitions of division are equal, this\nis exactly equal to self.strict_div(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(100usize.strict_div_euclid(10), 10);
    \n

    The following panics because of division by zero:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = (1usize).strict_div_euclid(0);
    \n
    1.7.0 (const: 1.52.0) · Source

    pub const fn checked_rem(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer remainder. Computes self % rhs, returning None\nif rhs == 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.checked_rem(2), Some(1));\nassert_eq!(5usize.checked_rem(0), None);
    \n
    Source

    pub const fn strict_rem(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer remainder. Computes self % rhs.

    \n

    Strict remainder calculation on unsigned types is just the regular\nremainder calculation. There’s no way overflow could ever happen.\nThis function exists so that all operations are accounted for in the\nstrict operations.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(100usize.strict_rem(10), 0);
    \n

    The following panics because of division by zero:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 5usize.strict_rem(0);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn checked_rem_euclid(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked Euclidean modulo. Computes self.rem_euclid(rhs), returning None\nif rhs == 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.checked_rem_euclid(2), Some(1));\nassert_eq!(5usize.checked_rem_euclid(0), None);
    \n
    Source

    pub const fn strict_rem_euclid(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict Euclidean modulo. Computes self.rem_euclid(rhs).

    \n

    Strict modulo calculation on unsigned types is just the regular\nremainder calculation. There’s no way overflow could ever happen.\nThis function exists so that all operations are accounted for in the\nstrict operations. Since, for the positive integers, all common\ndefinitions of division are equal, this is exactly equal to\nself.strict_rem(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(100usize.strict_rem_euclid(10), 0);
    \n

    The following panics because of division by zero:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 5usize.strict_rem_euclid(0);
    \n
    Source

    pub const unsafe fn unchecked_disjoint_bitor(self, other: usize) -> usize

    🔬This is a nightly-only experimental API. (disjoint_bitor)
    Available on 64-bit only.

    Same value as self | other, but UB if any bit position is set in both inputs.

    \n

    This is a situational micro-optimization for places where you’d rather\nuse addition on some platforms and bitwise or on other platforms, based\non exactly which instructions combine better with whatever else you’re\ndoing. Note that there’s no reason to bother using this for places\nwhere it’s clear from the operations involved that they can’t overlap.\nFor example, if you’re combining u16s into a u32 with\n((a as u32) << 16) | (b as u32), that’s fine, as the backend will\nknow those sides of the | are disjoint without needing help.

    \n
    §Examples
    \n
    #![feature(disjoint_bitor)]\n\n// SAFETY: `1` and `4` have no bits in common.\nunsafe {\n    assert_eq!(1_usize.unchecked_disjoint_bitor(4), 5);\n}
    \n
    §Safety
    \n

    Requires that (self & other) == 0, otherwise it’s immediate UB.

    \n

    Equivalently, requires that (self | other) == (self + other).

    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn ilog(self, base: usize) -> u32

    Available on 64-bit only.

    Returns the logarithm of the number with respect to an arbitrary base,\nrounded down.

    \n

    This method might not be optimized owing to implementation details;\nilog2 can produce results more efficiently for base 2, and ilog10\ncan produce results more efficiently for base 10.

    \n
    §Panics
    \n

    This function will panic if self is zero, or if base is less than 2.

    \n
    §Examples
    \n
    assert_eq!(5usize.ilog(5), 1);
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn ilog2(self) -> u32

    Available on 64-bit only.

    Returns the base 2 logarithm of the number, rounded down.

    \n
    §Panics
    \n

    This function will panic if self is zero.

    \n
    §Examples
    \n
    assert_eq!(2usize.ilog2(), 1);
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn ilog10(self) -> u32

    Available on 64-bit only.

    Returns the base 10 logarithm of the number, rounded down.

    \n
    §Panics
    \n

    This function will panic if self is zero.

    \n
    §Example
    \n
    assert_eq!(10usize.ilog10(), 1);
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn checked_ilog(self, base: usize) -> Option<u32>

    Available on 64-bit only.

    Returns the logarithm of the number with respect to an arbitrary base,\nrounded down.

    \n

    Returns None if the number is zero, or if the base is not at least 2.

    \n

    This method might not be optimized owing to implementation details;\nchecked_ilog2 can produce results more efficiently for base 2, and\nchecked_ilog10 can produce results more efficiently for base 10.

    \n
    §Examples
    \n
    assert_eq!(5usize.checked_ilog(5), Some(1));
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn checked_ilog2(self) -> Option<u32>

    Available on 64-bit only.

    Returns the base 2 logarithm of the number, rounded down.

    \n

    Returns None if the number is zero.

    \n
    §Examples
    \n
    assert_eq!(2usize.checked_ilog2(), Some(1));
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn checked_ilog10(self) -> Option<u32>

    Available on 64-bit only.

    Returns the base 10 logarithm of the number, rounded down.

    \n

    Returns None if the number is zero.

    \n
    §Examples
    \n
    assert_eq!(10usize.checked_ilog10(), Some(1));
    \n
    1.7.0 (const: 1.47.0) · Source

    pub const fn checked_neg(self) -> Option<usize>

    Available on 64-bit only.

    Checked negation. Computes -self, returning None unless self == 0.

    \n

    Note that negating any positive integer will overflow.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0usize.checked_neg(), Some(0));\nassert_eq!(1usize.checked_neg(), None);
    \n
    Source

    pub const fn strict_neg(self) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict negation. Computes -self, panicking unless self == 0.

    \n

    Note that negating any positive integer will overflow.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(0usize.strict_neg(), 0);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 1usize.strict_neg();
    \n
    1.7.0 (const: 1.47.0) · Source

    pub const fn checked_shl(self, rhs: u32) -> Option<usize>

    Available on 64-bit only.

    Checked shift left. Computes self << rhs, returning None\nif rhs is larger than or equal to the number of bits in self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0x1usize.checked_shl(4), Some(0x10));\nassert_eq!(0x10usize.checked_shl(129), None);\nassert_eq!(0x10usize.checked_shl(63), Some(0));
    \n
    Source

    pub const fn strict_shl(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict shift left. Computes self << rhs, panicking if rhs is larger\nthan or equal to the number of bits in self.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(0x1usize.strict_shl(4), 0x10);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 0x10usize.strict_shl(129);
    \n
    Source

    pub const unsafe fn unchecked_shl(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (unchecked_shifts)
    Available on 64-bit only.

    Unchecked shift left. Computes self << rhs, assuming that\nrhs is less than the number of bits in self.

    \n
    §Safety
    \n

    This results in undefined behavior if rhs is larger than\nor equal to the number of bits in self,\ni.e. when checked_shl would return None.

    \n
    Source

    pub const fn unbounded_shl(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (unbounded_shifts)
    Available on 64-bit only.

    Unbounded shift left. Computes self << rhs, without bounding the value of rhs.

    \n

    If rhs is larger or equal to the number of bits in self,\nthe entire value is shifted out, and 0 is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(unbounded_shifts)]\nassert_eq!(0x1usize.unbounded_shl(4), 0x10);\nassert_eq!(0x1usize.unbounded_shl(129), 0);
    \n
    1.7.0 (const: 1.47.0) · Source

    pub const fn checked_shr(self, rhs: u32) -> Option<usize>

    Available on 64-bit only.

    Checked shift right. Computes self >> rhs, returning None\nif rhs is larger than or equal to the number of bits in self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0x10usize.checked_shr(4), Some(0x1));\nassert_eq!(0x10usize.checked_shr(129), None);
    \n
    Source

    pub const fn strict_shr(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict shift right. Computes self >> rhs, panicking rhs is\nlarger than or equal to the number of bits in self.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(0x10usize.strict_shr(4), 0x1);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 0x10usize.strict_shr(129);
    \n
    Source

    pub const unsafe fn unchecked_shr(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (unchecked_shifts)
    Available on 64-bit only.

    Unchecked shift right. Computes self >> rhs, assuming that\nrhs is less than the number of bits in self.

    \n
    §Safety
    \n

    This results in undefined behavior if rhs is larger than\nor equal to the number of bits in self,\ni.e. when checked_shr would return None.

    \n
    Source

    pub const fn unbounded_shr(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (unbounded_shifts)
    Available on 64-bit only.

    Unbounded shift right. Computes self >> rhs, without bounding the value of rhs.

    \n

    If rhs is larger or equal to the number of bits in self,\nthe entire value is shifted out, and 0 is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(unbounded_shifts)]\nassert_eq!(0x10usize.unbounded_shr(4), 0x1);\nassert_eq!(0x10usize.unbounded_shr(129), 0);
    \n
    1.34.0 (const: 1.50.0) · Source

    pub const fn checked_pow(self, exp: u32) -> Option<usize>

    Available on 64-bit only.

    Checked exponentiation. Computes self.pow(exp), returning None if\noverflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.checked_pow(5), Some(32));\nassert_eq!(usize::MAX.checked_pow(2), None);
    \n
    Source

    pub const fn strict_pow(self, exp: u32) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict exponentiation. Computes self.pow(exp), panicking if\noverflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(2usize.strict_pow(5), 32);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = usize::MAX.strict_pow(2);
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn saturating_add(self, rhs: usize) -> usize

    Available on 64-bit only.

    Saturating integer addition. Computes self + rhs, saturating at\nthe numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.saturating_add(1), 101);\nassert_eq!(usize::MAX.saturating_add(127), usize::MAX);
    \n
    1.66.0 (const: 1.66.0) · Source

    pub const fn saturating_add_signed(self, rhs: isize) -> usize

    Available on 64-bit only.

    Saturating addition with a signed integer. Computes self + rhs,\nsaturating at the numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.saturating_add_signed(2), 3);\nassert_eq!(1usize.saturating_add_signed(-2), 0);\nassert_eq!((usize::MAX - 2).saturating_add_signed(4), usize::MAX);
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn saturating_sub(self, rhs: usize) -> usize

    Available on 64-bit only.

    Saturating integer subtraction. Computes self - rhs, saturating\nat the numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.saturating_sub(27), 73);\nassert_eq!(13usize.saturating_sub(127), 0);
    \n
    Source

    pub const fn saturating_sub_signed(self, rhs: isize) -> usize

    🔬This is a nightly-only experimental API. (mixed_integer_ops_unsigned_sub)
    Available on 64-bit only.

    Saturating integer subtraction. Computes self - rhs, saturating at\nthe numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(mixed_integer_ops_unsigned_sub)]\nassert_eq!(1usize.saturating_sub_signed(2), 0);\nassert_eq!(1usize.saturating_sub_signed(-2), 3);\nassert_eq!((usize::MAX - 2).saturating_sub_signed(-4), usize::MAX);
    \n
    1.7.0 (const: 1.47.0) · Source

    pub const fn saturating_mul(self, rhs: usize) -> usize

    Available on 64-bit only.

    Saturating integer multiplication. Computes self * rhs,\nsaturating at the numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.saturating_mul(10), 20);\nassert_eq!((usize::MAX).saturating_mul(10), usize::MAX);
    \n
    1.58.0 (const: 1.58.0) · Source

    pub const fn saturating_div(self, rhs: usize) -> usize

    Available on 64-bit only.

    Saturating integer division. Computes self / rhs, saturating at the\nnumeric bounds instead of overflowing.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.saturating_div(2), 2);\n
    \n
    1.34.0 (const: 1.50.0) · Source

    pub const fn saturating_pow(self, exp: u32) -> usize

    Available on 64-bit only.

    Saturating integer exponentiation. Computes self.pow(exp),\nsaturating at the numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(4usize.saturating_pow(3), 64);\nassert_eq!(usize::MAX.saturating_pow(2), usize::MAX);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn wrapping_add(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) addition. Computes self + rhs,\nwrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(200usize.wrapping_add(55), 255);\nassert_eq!(200usize.wrapping_add(usize::MAX), 199);
    \n
    1.66.0 (const: 1.66.0) · Source

    pub const fn wrapping_add_signed(self, rhs: isize) -> usize

    Available on 64-bit only.

    Wrapping (modular) addition with a signed integer. Computes\nself + rhs, wrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.wrapping_add_signed(2), 3);\nassert_eq!(1usize.wrapping_add_signed(-2), usize::MAX);\nassert_eq!((usize::MAX - 2).wrapping_add_signed(4), 1);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn wrapping_sub(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) subtraction. Computes self - rhs,\nwrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_sub(100), 0);\nassert_eq!(100usize.wrapping_sub(usize::MAX), 101);
    \n
    Source

    pub const fn wrapping_sub_signed(self, rhs: isize) -> usize

    🔬This is a nightly-only experimental API. (mixed_integer_ops_unsigned_sub)
    Available on 64-bit only.

    Wrapping (modular) subtraction with a signed integer. Computes\nself - rhs, wrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(mixed_integer_ops_unsigned_sub)]\nassert_eq!(1usize.wrapping_sub_signed(2), usize::MAX);\nassert_eq!(1usize.wrapping_sub_signed(-2), 3);\nassert_eq!((usize::MAX - 2).wrapping_sub_signed(-4), 1);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn wrapping_mul(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) multiplication. Computes self * rhs, wrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types.\nWhich explains why u8 is used here.

    \n\n
    assert_eq!(10u8.wrapping_mul(12), 120);\nassert_eq!(25u8.wrapping_mul(12), 44);
    \n
    1.2.0 (const: 1.52.0) · Source

    pub const fn wrapping_div(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) division. Computes self / rhs.

    \n

    Wrapped division on unsigned types is just normal division. There’s\nno way wrapping could ever happen. This function exists so that all\noperations are accounted for in the wrapping operations.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_div(10), 10);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn wrapping_div_euclid(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping Euclidean division. Computes self.div_euclid(rhs).

    \n

    Wrapped division on unsigned types is just normal division. There’s\nno way wrapping could ever happen. This function exists so that all\noperations are accounted for in the wrapping operations. Since, for\nthe positive integers, all common definitions of division are equal,\nthis is exactly equal to self.wrapping_div(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_div_euclid(10), 10);
    \n
    1.2.0 (const: 1.52.0) · Source

    pub const fn wrapping_rem(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) remainder. Computes self % rhs.

    \n

    Wrapped remainder calculation on unsigned types is just the regular\nremainder calculation. There’s no way wrapping could ever happen.\nThis function exists so that all operations are accounted for in the\nwrapping operations.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_rem(10), 0);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn wrapping_rem_euclid(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping Euclidean modulo. Computes self.rem_euclid(rhs).

    \n

    Wrapped modulo calculation on unsigned types is just the regular\nremainder calculation. There’s no way wrapping could ever happen.\nThis function exists so that all operations are accounted for in the\nwrapping operations. Since, for the positive integers, all common\ndefinitions of division are equal, this is exactly equal to\nself.wrapping_rem(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_rem_euclid(10), 0);
    \n
    1.2.0 (const: 1.32.0) · Source

    pub const fn wrapping_neg(self) -> usize

    Available on 64-bit only.

    Wrapping (modular) negation. Computes -self,\nwrapping around at the boundary of the type.

    \n

    Since unsigned types do not have negative equivalents\nall applications of this function will wrap (except for -0).\nFor values smaller than the corresponding signed type’s maximum\nthe result is the same as casting the corresponding signed value.\nAny larger values are equivalent to MAX + 1 - (val - MAX - 1) where\nMAX is the corresponding signed type’s maximum.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0_usize.wrapping_neg(), 0);\nassert_eq!(usize::MAX.wrapping_neg(), 1);\nassert_eq!(13_usize.wrapping_neg(), (!13) + 1);\nassert_eq!(42_usize.wrapping_neg(), !(42 - 1));
    \n
    1.2.0 (const: 1.32.0) · Source

    pub const fn wrapping_shl(self, rhs: u32) -> usize

    Available on 64-bit only.

    Panic-free bitwise shift-left; yields self << mask(rhs),\nwhere mask removes any high-order bits of rhs that\nwould cause the shift to exceed the bitwidth of the type.

    \n

    Note that this is not the same as a rotate-left; the\nRHS of a wrapping shift-left is restricted to the range\nof the type, rather than the bits shifted out of the LHS\nbeing returned to the other end. The primitive integer\ntypes all implement a rotate_left function,\nwhich may be what you want instead.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.wrapping_shl(7), 128);\nassert_eq!(1usize.wrapping_shl(128), 1);
    \n
    1.2.0 (const: 1.32.0) · Source

    pub const fn wrapping_shr(self, rhs: u32) -> usize

    Available on 64-bit only.

    Panic-free bitwise shift-right; yields self >> mask(rhs),\nwhere mask removes any high-order bits of rhs that\nwould cause the shift to exceed the bitwidth of the type.

    \n

    Note that this is not the same as a rotate-right; the\nRHS of a wrapping shift-right is restricted to the range\nof the type, rather than the bits shifted out of the LHS\nbeing returned to the other end. The primitive integer\ntypes all implement a rotate_right function,\nwhich may be what you want instead.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(128usize.wrapping_shr(7), 1);\nassert_eq!(128usize.wrapping_shr(128), 128);
    \n
    1.34.0 (const: 1.50.0) · Source

    pub const fn wrapping_pow(self, exp: u32) -> usize

    Available on 64-bit only.

    Wrapping (modular) exponentiation. Computes self.pow(exp),\nwrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(3usize.wrapping_pow(5), 243);\nassert_eq!(3u8.wrapping_pow(6), 217);
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_add(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates self + rhs.

    \n

    Returns a tuple of the addition along with a boolean indicating\nwhether an arithmetic overflow would occur. If an overflow would\nhave occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_add(2), (7, false));\nassert_eq!(usize::MAX.overflowing_add(1), (0, true));
    \n
    Source

    pub const fn carrying_add(self, rhs: usize, carry: bool) -> (usize, bool)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates self + rhs + carry and returns a tuple containing\nthe sum and the output carry.

    \n

    Performs “ternary addition” of two integer operands and a carry-in\nbit, and returns an output integer and a carry-out bit. This allows\nchaining together multiple additions to create a wider addition, and\ncan be useful for bignum addition.

    \n

    This can be thought of as a 64-bit “full adder”, in the electronics sense.

    \n

    If the input carry is false, this method is equivalent to\noverflowing_add, and the output carry is\nequal to the overflow flag. Note that although carry and overflow\nflags are similar for unsigned integers, they are different for\nsigned integers.

    \n
    §Examples
    \n
    #![feature(bigint_helper_methods)]\n\n//    3  MAX    (a = 3 × 2^64 + 2^64 - 1)\n// +  5    7    (b = 5 × 2^64 + 7)\n// ---------\n//    9    6    (sum = 9 × 2^64 + 6)\n\nlet (a1, a0): (usize, usize) = (3, usize::MAX);\nlet (b1, b0): (usize, usize) = (5, 7);\nlet carry0 = false;\n\nlet (sum0, carry1) = a0.carrying_add(b0, carry0);\nassert_eq!(carry1, true);\nlet (sum1, carry2) = a1.carrying_add(b1, carry1);\nassert_eq!(carry2, false);\n\nassert_eq!((sum1, sum0), (9, 6));
    \n
    1.66.0 (const: 1.66.0) · Source

    pub const fn overflowing_add_signed(self, rhs: isize) -> (usize, bool)

    Available on 64-bit only.

    Calculates self + rhs with a signed rhs.

    \n

    Returns a tuple of the addition along with a boolean indicating\nwhether an arithmetic overflow would occur. If an overflow would\nhave occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.overflowing_add_signed(2), (3, false));\nassert_eq!(1usize.overflowing_add_signed(-2), (usize::MAX, true));\nassert_eq!((usize::MAX - 2).overflowing_add_signed(4), (1, true));
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_sub(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates self - rhs.

    \n

    Returns a tuple of the subtraction along with a boolean indicating\nwhether an arithmetic overflow would occur. If an overflow would\nhave occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_sub(2), (3, false));\nassert_eq!(0usize.overflowing_sub(1), (usize::MAX, true));
    \n
    Source

    pub const fn borrowing_sub(self, rhs: usize, borrow: bool) -> (usize, bool)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates selfrhsborrow and returns a tuple\ncontaining the difference and the output borrow.

    \n

    Performs “ternary subtraction” by subtracting both an integer\noperand and a borrow-in bit from self, and returns an output\ninteger and a borrow-out bit. This allows chaining together multiple\nsubtractions to create a wider subtraction, and can be useful for\nbignum subtraction.

    \n
    §Examples
    \n
    #![feature(bigint_helper_methods)]\n\n//    9    6    (a = 9 × 2^64 + 6)\n// -  5    7    (b = 5 × 2^64 + 7)\n// ---------\n//    3  MAX    (diff = 3 × 2^64 + 2^64 - 1)\n\nlet (a1, a0): (usize, usize) = (9, 6);\nlet (b1, b0): (usize, usize) = (5, 7);\nlet borrow0 = false;\n\nlet (diff0, borrow1) = a0.borrowing_sub(b0, borrow0);\nassert_eq!(borrow1, true);\nlet (diff1, borrow2) = a1.borrowing_sub(b1, borrow1);\nassert_eq!(borrow2, false);\n\nassert_eq!((diff1, diff0), (3, usize::MAX));
    \n
    Source

    pub const fn overflowing_sub_signed(self, rhs: isize) -> (usize, bool)

    🔬This is a nightly-only experimental API. (mixed_integer_ops_unsigned_sub)
    Available on 64-bit only.

    Calculates self - rhs with a signed rhs

    \n

    Returns a tuple of the subtraction along with a boolean indicating\nwhether an arithmetic overflow would occur. If an overflow would\nhave occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(mixed_integer_ops_unsigned_sub)]\nassert_eq!(1usize.overflowing_sub_signed(2), (usize::MAX, true));\nassert_eq!(1usize.overflowing_sub_signed(-2), (3, false));\nassert_eq!((usize::MAX - 2).overflowing_sub_signed(-4), (1, true));
    \n
    1.60.0 (const: 1.60.0) · Source

    pub const fn abs_diff(self, other: usize) -> usize

    Available on 64-bit only.

    Computes the absolute difference between self and other.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.abs_diff(80), 20usize);\nassert_eq!(100usize.abs_diff(110), 10usize);
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_mul(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the multiplication of self and rhs.

    \n

    Returns a tuple of the multiplication along with a boolean\nindicating whether an arithmetic overflow would occur. If an\noverflow would have occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types.\nWhich explains why u32 is used here.

    \n\n
    assert_eq!(5u32.overflowing_mul(2), (10, false));\nassert_eq!(1_000_000_000u32.overflowing_mul(10), (1410065408, true));
    \n
    Source

    pub const fn widening_mul(self, rhs: usize) -> (usize, usize)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates the complete product self * rhs without the possibility to overflow.

    \n

    This returns the low-order (wrapping) bits and the high-order (overflow) bits\nof the result as two separate values, in that order.

    \n

    If you also need to add a carry to the wide result, then you want\nSelf::carrying_mul instead.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types.\nWhich explains why u32 is used here.

    \n\n
    #![feature(bigint_helper_methods)]\nassert_eq!(5u32.widening_mul(2), (10, 0));\nassert_eq!(1_000_000_000u32.widening_mul(10), (1410065408, 2));
    \n
    Source

    pub const fn carrying_mul(self, rhs: usize, carry: usize) -> (usize, usize)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates the “full multiplication” self * rhs + carry\nwithout the possibility to overflow.

    \n

    This returns the low-order (wrapping) bits and the high-order (overflow) bits\nof the result as two separate values, in that order.

    \n

    Performs “long multiplication” which takes in an extra amount to add, and may return an\nadditional amount of overflow. This allows for chaining together multiple\nmultiplications to create “big integers” which represent larger values.

    \n

    If you don’t need the carry, then you can use Self::widening_mul instead.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types.\nWhich explains why u32 is used here.

    \n\n
    #![feature(bigint_helper_methods)]\nassert_eq!(5u32.carrying_mul(2, 0), (10, 0));\nassert_eq!(5u32.carrying_mul(2, 10), (20, 0));\nassert_eq!(1_000_000_000u32.carrying_mul(10, 0), (1410065408, 2));\nassert_eq!(1_000_000_000u32.carrying_mul(10, 10), (1410065418, 2));\nassert_eq!(usize::MAX.carrying_mul(usize::MAX, usize::MAX), (0, usize::MAX));
    \n

    This is the core operation needed for scalar multiplication when\nimplementing it for wider-than-native types.

    \n\n
    #![feature(bigint_helper_methods)]\nfn scalar_mul_eq(little_endian_digits: &mut Vec<u16>, multiplicand: u16) {\n    let mut carry = 0;\n    for d in little_endian_digits.iter_mut() {\n        (*d, carry) = d.carrying_mul(multiplicand, carry);\n    }\n    if carry != 0 {\n        little_endian_digits.push(carry);\n    }\n}\n\nlet mut v = vec![10, 20];\nscalar_mul_eq(&mut v, 3);\nassert_eq!(v, [30, 60]);\n\nassert_eq!(0x87654321_u64 * 0xFEED, 0x86D3D159E38D);\nlet mut v = vec![0x4321, 0x8765];\nscalar_mul_eq(&mut v, 0xFEED);\nassert_eq!(v, [0xE38D, 0xD159, 0x86D3]);
    \n

    If carry is zero, this is similar to overflowing_mul,\nexcept that it gives the value of the overflow instead of just whether one happened:

    \n\n
    #![feature(bigint_helper_methods)]\nlet r = u8::carrying_mul(7, 13, 0);\nassert_eq!((r.0, r.1 != 0), u8::overflowing_mul(7, 13));\nlet r = u8::carrying_mul(13, 42, 0);\nassert_eq!((r.0, r.1 != 0), u8::overflowing_mul(13, 42));
    \n

    The value of the first field in the returned tuple matches what you’d get\nby combining the wrapping_mul and\nwrapping_add methods:

    \n\n
    #![feature(bigint_helper_methods)]\nassert_eq!(\n    789_u16.carrying_mul(456, 123).0,\n    789_u16.wrapping_mul(456).wrapping_add(123),\n);
    \n
    Source

    pub const fn carrying_mul_add(\n self,\n rhs: usize,\n carry: usize,\n add: usize,\n) -> (usize, usize)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates the “full multiplication” self * rhs + carry1 + carry2\nwithout the possibility to overflow.

    \n

    This returns the low-order (wrapping) bits and the high-order (overflow) bits\nof the result as two separate values, in that order.

    \n

    Performs “long multiplication” which takes in an extra amount to add, and may return an\nadditional amount of overflow. This allows for chaining together multiple\nmultiplications to create “big integers” which represent larger values.

    \n

    If you don’t need either carry, then you can use Self::widening_mul instead,\nand if you only need one carry, then you can use Self::carrying_mul instead.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types,\nwhich explains why u32 is used here.

    \n\n
    #![feature(bigint_helper_methods)]\nassert_eq!(5u32.carrying_mul_add(2, 0, 0), (10, 0));\nassert_eq!(5u32.carrying_mul_add(2, 10, 10), (30, 0));\nassert_eq!(1_000_000_000u32.carrying_mul_add(10, 0, 0), (1410065408, 2));\nassert_eq!(1_000_000_000u32.carrying_mul_add(10, 10, 10), (1410065428, 2));\nassert_eq!(usize::MAX.carrying_mul_add(usize::MAX, usize::MAX, usize::MAX), (usize::MAX, usize::MAX));
    \n

    This is the core per-digit operation for “grade school” O(n²) multiplication.

    \n

    Please note that this example is shared between integer types,\nusing u8 for simplicity of the demonstration.

    \n\n
    #![feature(bigint_helper_methods)]\n\nfn quadratic_mul<const N: usize>(a: [u8; N], b: [u8; N]) -> [u8; N] {\n    let mut out = [0; N];\n    for j in 0..N {\n        let mut carry = 0;\n        for i in 0..(N - j) {\n            (out[j + i], carry) = u8::carrying_mul_add(a[i], b[j], out[j + i], carry);\n        }\n    }\n    out\n}\n\n// -1 * -1 == 1\nassert_eq!(quadratic_mul([0xFF; 3], [0xFF; 3]), [1, 0, 0]);\n\nassert_eq!(u32::wrapping_mul(0x9e3779b9, 0x7f4a7c15), 0xCFFC982D);\nassert_eq!(\n    quadratic_mul(u32::to_le_bytes(0x9e3779b9), u32::to_le_bytes(0x7f4a7c15)),\n    u32::to_le_bytes(0xCFFC982D)\n);
    \n
    1.7.0 (const: 1.52.0) · Source

    pub const fn overflowing_div(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the divisor when self is divided by rhs.

    \n

    Returns a tuple of the divisor along with a boolean indicating\nwhether an arithmetic overflow would occur. Note that for unsigned\nintegers overflow never occurs, so the second value is always\nfalse.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_div(2), (2, false));
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn overflowing_div_euclid(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the quotient of Euclidean division self.div_euclid(rhs).

    \n

    Returns a tuple of the divisor along with a boolean indicating\nwhether an arithmetic overflow would occur. Note that for unsigned\nintegers overflow never occurs, so the second value is always\nfalse.\nSince, for the positive integers, all common\ndefinitions of division are equal, this\nis exactly equal to self.overflowing_div(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_div_euclid(2), (2, false));
    \n
    1.7.0 (const: 1.52.0) · Source

    pub const fn overflowing_rem(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the remainder when self is divided by rhs.

    \n

    Returns a tuple of the remainder after dividing along with a boolean\nindicating whether an arithmetic overflow would occur. Note that for\nunsigned integers overflow never occurs, so the second value is\nalways false.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_rem(2), (1, false));
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn overflowing_rem_euclid(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the remainder self.rem_euclid(rhs) as if by Euclidean division.

    \n

    Returns a tuple of the modulo after dividing along with a boolean\nindicating whether an arithmetic overflow would occur. Note that for\nunsigned integers overflow never occurs, so the second value is\nalways false.\nSince, for the positive integers, all common\ndefinitions of division are equal, this operation\nis exactly equal to self.overflowing_rem(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_rem_euclid(2), (1, false));
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_neg(self) -> (usize, bool)

    Available on 64-bit only.

    Negates self in an overflowing fashion.

    \n

    Returns !self + 1 using wrapping operations to return the value\nthat represents the negation of this unsigned value. Note that for\npositive unsigned values overflow always occurs, but negating 0 does\nnot overflow.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0usize.overflowing_neg(), (0, false));\nassert_eq!(2usize.overflowing_neg(), (-2i32 as usize, true));
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_shl(self, rhs: u32) -> (usize, bool)

    Available on 64-bit only.

    Shifts self left by rhs bits.

    \n

    Returns a tuple of the shifted version of self along with a boolean\nindicating whether the shift value was larger than or equal to the\nnumber of bits. If the shift value is too large, then value is\nmasked (N-1) where N is the number of bits, and this value is then\nused to perform the shift.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0x1usize.overflowing_shl(4), (0x10, false));\nassert_eq!(0x1usize.overflowing_shl(132), (0x10, true));\nassert_eq!(0x10usize.overflowing_shl(63), (0, false));
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_shr(self, rhs: u32) -> (usize, bool)

    Available on 64-bit only.

    Shifts self right by rhs bits.

    \n

    Returns a tuple of the shifted version of self along with a boolean\nindicating whether the shift value was larger than or equal to the\nnumber of bits. If the shift value is too large, then value is\nmasked (N-1) where N is the number of bits, and this value is then\nused to perform the shift.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0x10usize.overflowing_shr(4), (0x1, false));\nassert_eq!(0x10usize.overflowing_shr(132), (0x1, true));
    \n
    1.34.0 (const: 1.50.0) · Source

    pub const fn overflowing_pow(self, exp: u32) -> (usize, bool)

    Available on 64-bit only.

    Raises self to the power of exp, using exponentiation by squaring.

    \n

    Returns a tuple of the exponentiation along with a bool indicating\nwhether an overflow happened.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(3usize.overflowing_pow(5), (243, false));\nassert_eq!(3u8.overflowing_pow(6), (217, true));
    \n
    1.0.0 (const: 1.50.0) · Source

    pub const fn pow(self, exp: u32) -> usize

    Available on 64-bit only.

    Raises self to the power of exp, using exponentiation by squaring.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.pow(5), 32);
    \n
    1.84.0 (const: 1.84.0) · Source

    pub const fn isqrt(self) -> usize

    Available on 64-bit only.

    Returns the square root of the number, rounded down.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(10usize.isqrt(), 3);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn div_euclid(self, rhs: usize) -> usize

    Available on 64-bit only.

    Performs Euclidean division.

    \n

    Since, for the positive integers, all common\ndefinitions of division are equal, this\nis exactly equal to self / rhs.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(7usize.div_euclid(4), 1); // or any other integer type
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn rem_euclid(self, rhs: usize) -> usize

    Available on 64-bit only.

    Calculates the least remainder of self (mod rhs).

    \n

    Since, for the positive integers, all common\ndefinitions of division are equal, this\nis exactly equal to self % rhs.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(7usize.rem_euclid(4), 3); // or any other integer type
    \n
    Source

    pub const fn div_floor(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (int_roundings)
    Available on 64-bit only.

    Calculates the quotient of self and rhs, rounding the result towards negative infinity.

    \n

    This is the same as performing self / rhs for all unsigned integers.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(int_roundings)]\nassert_eq!(7_usize.div_floor(4), 1);
    \n
    1.73.0 (const: 1.73.0) · Source

    pub const fn div_ceil(self, rhs: usize) -> usize

    Available on 64-bit only.

    Calculates the quotient of self and rhs, rounding the result towards positive infinity.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(7_usize.div_ceil(4), 2);
    \n
    1.73.0 (const: 1.73.0) · Source

    pub const fn next_multiple_of(self, rhs: usize) -> usize

    Available on 64-bit only.

    Calculates the smallest value greater than or equal to self that\nis a multiple of rhs.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Overflow behavior
    \n

    On overflow, this function will panic if overflow checks are enabled (default in debug\nmode) and wrap if overflow checks are disabled (default in release mode).

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(16_usize.next_multiple_of(8), 16);\nassert_eq!(23_usize.next_multiple_of(8), 24);
    \n
    1.73.0 (const: 1.73.0) · Source

    pub const fn checked_next_multiple_of(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Calculates the smallest value greater than or equal to self that\nis a multiple of rhs. Returns None if rhs is zero or the\noperation would result in overflow.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(16_usize.checked_next_multiple_of(8), Some(16));\nassert_eq!(23_usize.checked_next_multiple_of(8), Some(24));\nassert_eq!(1_usize.checked_next_multiple_of(0), None);\nassert_eq!(usize::MAX.checked_next_multiple_of(2), None);
    \n
    Source

    pub const fn is_multiple_of(self, rhs: usize) -> bool

    🔬This is a nightly-only experimental API. (unsigned_is_multiple_of)
    Available on 64-bit only.

    Returns true if self is an integer multiple of rhs, and false otherwise.

    \n

    This function is equivalent to self % rhs == 0, except that it will not panic\nfor rhs == 0. Instead, 0.is_multiple_of(0) == true, and for any non-zero n,\nn.is_multiple_of(0) == false.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(unsigned_is_multiple_of)]\nassert!(6_usize.is_multiple_of(2));\nassert!(!5_usize.is_multiple_of(2));\n\nassert!(0_usize.is_multiple_of(0));\nassert!(!6_usize.is_multiple_of(0));
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn is_power_of_two(self) -> bool

    Available on 64-bit only.

    Returns true if and only if self == 2^k for some k.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert!(16usize.is_power_of_two());\nassert!(!10usize.is_power_of_two());
    \n
    1.0.0 (const: 1.50.0) · Source

    pub const fn next_power_of_two(self) -> usize

    Available on 64-bit only.

    Returns the smallest power of two greater than or equal to self.

    \n

    When return value overflows (i.e., self > (1 << (N-1)) for type\nuN), it panics in debug mode and the return value is wrapped to 0 in\nrelease mode (the only situation in which this method can return 0).

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.next_power_of_two(), 2);\nassert_eq!(3usize.next_power_of_two(), 4);\nassert_eq!(0usize.next_power_of_two(), 1);
    \n
    1.0.0 (const: 1.50.0) · Source

    pub const fn checked_next_power_of_two(self) -> Option<usize>

    Available on 64-bit only.

    Returns the smallest power of two greater than or equal to self. If\nthe next power of two is greater than the type’s maximum value,\nNone is returned, otherwise the power of two is wrapped in Some.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.checked_next_power_of_two(), Some(2));\nassert_eq!(3usize.checked_next_power_of_two(), Some(4));\nassert_eq!(usize::MAX.checked_next_power_of_two(), None);
    \n
    Source

    pub const fn wrapping_next_power_of_two(self) -> usize

    🔬This is a nightly-only experimental API. (wrapping_next_power_of_two)
    Available on 64-bit only.

    Returns the smallest power of two greater than or equal to n. If\nthe next power of two is greater than the type’s maximum value,\nthe return value is wrapped to 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(wrapping_next_power_of_two)]\n\nassert_eq!(2usize.wrapping_next_power_of_two(), 2);\nassert_eq!(3usize.wrapping_next_power_of_two(), 4);\nassert_eq!(usize::MAX.wrapping_next_power_of_two(), 0);
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn to_be_bytes(self) -> [u8; 8]

    Available on 64-bit only.

    Returns the memory representation of this integer as a byte array in\nbig-endian (network) byte order.

    \n

    Note: This function returns an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let bytes = 0x1234567890123456usize.to_be_bytes();\nassert_eq!(bytes, [0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]);
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn to_le_bytes(self) -> [u8; 8]

    Available on 64-bit only.

    Returns the memory representation of this integer as a byte array in\nlittle-endian byte order.

    \n

    Note: This function returns an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let bytes = 0x1234567890123456usize.to_le_bytes();\nassert_eq!(bytes, [0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]);
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn to_ne_bytes(self) -> [u8; 8]

    Available on 64-bit only.

    Returns the memory representation of this integer as a byte array in\nnative byte order.

    \n

    As the target platform’s native endianness is used, portable code\nshould use to_be_bytes or to_le_bytes, as appropriate,\ninstead.

    \n

    Note: This function returns an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let bytes = 0x1234567890123456usize.to_ne_bytes();\nassert_eq!(\n    bytes,\n    if cfg!(target_endian = \"big\") {\n        [0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]\n    } else {\n        [0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]\n    }\n);
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn from_be_bytes(bytes: [u8; 8]) -> usize

    Available on 64-bit only.

    Creates a native endian integer value from its representation\nas a byte array in big endian.

    \n

    Note: This function takes an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let value = usize::from_be_bytes([0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]);\nassert_eq!(value, 0x1234567890123456);
    \n

    When starting from a slice rather than an array, fallible conversion APIs can be used:

    \n\n
    fn read_be_usize(input: &mut &[u8]) -> usize {\n    let (int_bytes, rest) = input.split_at(std::mem::size_of::<usize>());\n    *input = rest;\n    usize::from_be_bytes(int_bytes.try_into().unwrap())\n}
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn from_le_bytes(bytes: [u8; 8]) -> usize

    Available on 64-bit only.

    Creates a native endian integer value from its representation\nas a byte array in little endian.

    \n

    Note: This function takes an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let value = usize::from_le_bytes([0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]);\nassert_eq!(value, 0x1234567890123456);
    \n

    When starting from a slice rather than an array, fallible conversion APIs can be used:

    \n\n
    fn read_le_usize(input: &mut &[u8]) -> usize {\n    let (int_bytes, rest) = input.split_at(std::mem::size_of::<usize>());\n    *input = rest;\n    usize::from_le_bytes(int_bytes.try_into().unwrap())\n}
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn from_ne_bytes(bytes: [u8; 8]) -> usize

    Available on 64-bit only.

    Creates a native endian integer value from its memory representation\nas a byte array in native endianness.

    \n

    As the target platform’s native endianness is used, portable code\nlikely wants to use from_be_bytes or from_le_bytes, as\nappropriate instead.

    \n

    Note: This function takes an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let value = usize::from_ne_bytes(if cfg!(target_endian = \"big\") {\n    [0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]\n} else {\n    [0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]\n});\nassert_eq!(value, 0x1234567890123456);
    \n

    When starting from a slice rather than an array, fallible conversion APIs can be used:

    \n\n
    fn read_ne_usize(input: &mut &[u8]) -> usize {\n    let (int_bytes, rest) = input.split_at(std::mem::size_of::<usize>());\n    *input = rest;\n    usize::from_ne_bytes(int_bytes.try_into().unwrap())\n}
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn min_value() -> usize

    👎Deprecating in a future version: replaced by the MIN associated constant on this type
    Available on 64-bit only.

    New code should prefer to use\nusize::MIN instead.

    \n

    Returns the smallest value that can be represented by this integer type.

    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn max_value() -> usize

    👎Deprecating in a future version: replaced by the MAX associated constant on this type
    Available on 64-bit only.

    New code should prefer to use\nusize::MAX instead.

    \n

    Returns the largest value that can be represented by this integer type.

    \n
    1.85.0 (const: 1.85.0) · Source

    pub const fn midpoint(self, rhs: usize) -> usize

    Available on 64-bit only.

    Calculates the middle point of self and rhs.

    \n

    midpoint(a, b) is (a + b) / 2 as if it were performed in a\nsufficiently-large unsigned integral type. This implies that the result is\nalways rounded towards zero and that no overflow will ever occur.

    \n
    §Examples
    \n
    assert_eq!(0usize.midpoint(4), 2);\nassert_eq!(1usize.midpoint(4), 2);
    \n
    ",0,"iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl usize

    1.0.0 (const: 1.82.0) · Source

    pub const fn from_str_radix(\n src: &str,\n radix: u32,\n) -> Result<usize, ParseIntError>

    Parses an integer from a string slice with digits in a given base.

    \n

    The string is expected to be an optional\n+\nsign followed by only digits. Leading and trailing non-digit characters (including\nwhitespace) represent an error. Underscores (which are accepted in Rust literals)\nalso represent an error.

    \n

    Digits are a subset of these characters, depending on radix:

    \n
      \n
    • 0-9
    • \n
    • a-z
    • \n
    • A-Z
    • \n
    \n
    §Panics
    \n

    This function panics if radix is not in the range from 2 to 36.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(usize::from_str_radix(\"A\", 16), Ok(10));
    \n

    Trailing space returns error:

    \n\n
    assert!(usize::from_str_radix(\"1 \", 10).is_err());
    \n
    Source

    pub const fn from_ascii(src: &[u8]) -> Result<usize, ParseIntError>

    🔬This is a nightly-only experimental API. (int_from_ascii)

    Parses an integer from an ASCII-byte slice with decimal digits.

    \n

    The characters are expected to be an optional\n+\nsign followed by only digits. Leading and trailing non-digit characters (including\nwhitespace) represent an error. Underscores (which are accepted in Rust literals)\nalso represent an error.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(int_from_ascii)]\n\nassert_eq!(usize::from_ascii(b\"+10\"), Ok(10));
    \n

    Trailing space returns error:

    \n\n
    assert!(usize::from_ascii(b\"1 \").is_err());
    \n
    Source

    pub const fn from_ascii_radix(\n src: &[u8],\n radix: u32,\n) -> Result<usize, ParseIntError>

    🔬This is a nightly-only experimental API. (int_from_ascii)

    Parses an integer from an ASCII-byte slice with digits in a given base.

    \n

    The characters are expected to be an optional\n+\nsign followed by only digits. Leading and trailing non-digit characters (including\nwhitespace) represent an error. Underscores (which are accepted in Rust literals)\nalso represent an error.

    \n

    Digits are a subset of these characters, depending on radix:

    \n
      \n
    • 0-9
    • \n
    • a-z
    • \n
    • A-Z
    • \n
    \n
    §Panics
    \n

    This function panics if radix is not in the range from 2 to 36.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(int_from_ascii)]\n\nassert_eq!(usize::from_ascii_radix(b\"A\", 16), Ok(10));
    \n

    Trailing space returns error:

    \n\n
    assert!(usize::from_ascii_radix(b\"1 \", 10).is_err());
    \n
    ",0,"iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl ConstParamTy_ for usize

    ","ConstParamTy_","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Copy for usize

    ","Copy","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Eq for usize

    ","Eq","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Pod for usize

    ","Pod","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl PointerLike for usize

    ","PointerLike","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl SimdCast for usize

    ","SimdCast","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl StructuralPartialEq for usize

    ","StructuralPartialEq","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl TrustedStep for usize

    ","TrustedStep","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Uint for usize

    ","Uint","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Unsigned for usize

    ","Unsigned","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl UnsizedConstParamTy for usize

    ","UnsizedConstParamTy","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Weight for usize

    ","Weight","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl ZeroablePrimitive for usize

    ","ZeroablePrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"]]],["iced_widget",[["
    §

    impl AbsDiffEq for usize

    §

    type Epsilon = usize

    Used for specifying relative comparisons.
    §

    fn default_epsilon() -> usize

    The default tolerance to use when testing values that are close together. Read more
    §

    fn abs_diff_eq(&self, other: &usize, epsilon: usize) -> bool

    A test for equality that uses the absolute difference to compute the approximate\nequality of two numbers.
    §

    fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool

    The inverse of [AbsDiffEq::abs_diff_eq].
    ","AbsDiffEq","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<T> Accumulate<T> for usize

    §

    fn initial(_capacity: Option<usize>) -> usize

    Create a new Extend of the correct type
    §

    fn accumulate(&mut self, _acc: T)

    Accumulate the input into an accumulator
    ","Accumulate","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Add<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: &BigInt) -> BigInt

    Performs the + operation. Read more
    ","Add<&BigInt>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Add<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: &BigUint) -> BigUint

    Performs the + operation. Read more
    ","Add<&BigUint>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Add<&usize> for usize

    Source§

    type Output = <usize as Add>::Output

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: &usize) -> <usize as Add>::Output

    Performs the + operation. Read more
    ","Add<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Add<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: BigInt) -> BigInt

    Performs the + operation. Read more
    ","Add","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Add<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: BigUint) -> BigUint

    Performs the + operation. Read more
    ","Add","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Add for usize

    Source§

    type Output = usize

    The resulting type after applying the + operator.
    Source§

    const fn add(self, other: usize) -> usize

    Performs the + operation. Read more
    ","Add","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl AddAssign<&usize> for usize

    Source§

    fn add_assign(&mut self, other: &usize)

    Performs the += operation. Read more
    ","AddAssign<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl AddAssign for usize

    Source§

    fn add_assign(&mut self, other: usize)

    Performs the += operation. Read more
    ","AddAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl AsBytes for usize

    §

    fn as_bytes(&self) -> &[u8]

    Gets the bytes of this value. Read more
    §

    fn as_bytes_mut(&mut self) -> &mut [u8]
    where\n Self: FromBytes,

    Gets the bytes of this value mutably. Read more
    §

    fn write_to(&self, bytes: &mut [u8]) -> Option<()>

    Writes a copy of self to bytes. Read more
    §

    fn write_to_prefix(&self, bytes: &mut [u8]) -> Option<()>

    Writes a copy of self to the prefix of bytes. Read more
    §

    fn write_to_suffix(&self, bytes: &mut [u8]) -> Option<()>

    Writes a copy of self to the suffix of bytes. Read more
    ","AsBytes","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<f32> for usize

    Source§

    fn as_(self) -> f32

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<f64> for usize

    Source§

    fn as_(self) -> f64

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i128> for usize

    Source§

    fn as_(self) -> i128

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i16> for usize

    Source§

    fn as_(self) -> i16

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i32> for usize

    Source§

    fn as_(self) -> i32

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i64> for usize

    Source§

    fn as_(self) -> i64

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i8> for usize

    Source§

    fn as_(self) -> i8

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<isize> for usize

    Source§

    fn as_(self) -> isize

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u128> for usize

    Source§

    fn as_(self) -> u128

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u16> for usize

    Source§

    fn as_(self) -> u16

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u32> for usize

    Source§

    fn as_(self) -> u32

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u64> for usize

    Source§

    fn as_(self) -> u64

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u8> for usize

    Source§

    fn as_(self) -> u8

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<usize> for usize

    Source§

    fn as_(self) -> usize

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Binary for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Binary","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitAnd<&usize> for usize

    Source§

    type Output = <usize as BitAnd>::Output

    The resulting type after applying the & operator.
    Source§

    fn bitand(self, other: &usize) -> <usize as BitAnd>::Output

    Performs the & operation. Read more
    ","BitAnd<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitAnd for usize

    Source§

    type Output = usize

    The resulting type after applying the & operator.
    Source§

    fn bitand(self, rhs: usize) -> usize

    Performs the & operation. Read more
    ","BitAnd","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl BitAndAssign<&usize> for usize

    Source§

    fn bitand_assign(&mut self, other: &usize)

    Performs the &= operation. Read more
    ","BitAndAssign<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl BitAndAssign for usize

    Source§

    fn bitand_assign(&mut self, other: usize)

    Performs the &= operation. Read more
    ","BitAndAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl BitBlock for usize

    Source§

    fn bits() -> usize

    How many bits it has
    Source§

    fn from_byte(byte: u8) -> usize

    Convert a byte into this type (lowest-order bits set)
    Source§

    fn count_ones(self) -> usize

    Count the number of 1’s in the bitwise repr
    Source§

    fn count_zeros(self) -> usize

    Count the number of 0’s in the bitwise repr
    Source§

    fn one() -> usize

    Get 1
    Source§

    fn zero() -> usize

    Get 0
    Source§

    fn bytes() -> usize

    How many bytes it has
    ","BitBlock","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl BitField for usize

    §

    const BIT_LENGTH: usize = 64usize

    The number of bits in this bit field. Read more
    §

    fn get_bit(&self, bit: usize) -> bool

    Obtains the bit at the index bit; note that index 0 is the least significant bit, while\nindex length() - 1 is the most significant bit. Read more
    §

    fn get_bits<T>(&self, range: T) -> usize
    where\n T: RangeBounds<usize>,

    Obtains the range of bits specified by range; note that index 0 is the least significant\nbit, while index length() - 1 is the most significant bit. Read more
    §

    fn set_bit(&mut self, bit: usize, value: bool) -> &mut usize

    Sets the bit at the index bit to the value value (where true means a value of ‘1’ and\nfalse means a value of ‘0’); note that index 0 is the least significant bit, while index\nlength() - 1 is the most significant bit. Read more
    §

    fn set_bits<T>(&mut self, range: T, value: usize) -> &mut usize
    where\n T: RangeBounds<usize>,

    Sets the range of bits defined by the range range to the lower bits of value; to be\nspecific, if the range is N bits long, the N lower bits of value will be used; if any of\nthe other bits in value are set to 1, this function will panic. Read more
    ","BitField","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitOr<&usize> for usize

    Source§

    type Output = <usize as BitOr>::Output

    The resulting type after applying the | operator.
    Source§

    fn bitor(self, other: &usize) -> <usize as BitOr>::Output

    Performs the | operation. Read more
    ","BitOr<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitOr for usize

    Source§

    type Output = usize

    The resulting type after applying the | operator.
    Source§

    fn bitor(self, rhs: usize) -> usize

    Performs the | operation. Read more
    ","BitOr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl BitOrAssign<&usize> for usize

    Source§

    fn bitor_assign(&mut self, other: &usize)

    Performs the |= operation. Read more
    ","BitOrAssign<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl BitOrAssign for usize

    Source§

    fn bitor_assign(&mut self, other: usize)

    Performs the |= operation. Read more
    ","BitOrAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitXor<&usize> for usize

    Source§

    type Output = <usize as BitXor>::Output

    The resulting type after applying the ^ operator.
    Source§

    fn bitxor(self, other: &usize) -> <usize as BitXor>::Output

    Performs the ^ operation. Read more
    ","BitXor<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitXor for usize

    Source§

    type Output = usize

    The resulting type after applying the ^ operator.
    Source§

    fn bitxor(self, other: usize) -> usize

    Performs the ^ operation. Read more
    ","BitXor","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl BitXorAssign<&usize> for usize

    Source§

    fn bitxor_assign(&mut self, other: &usize)

    Performs the ^= operation. Read more
    ","BitXorAssign<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl BitXorAssign for usize

    Source§

    fn bitxor_assign(&mut self, other: usize)

    Performs the ^= operation. Read more
    ","BitXorAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Bits for usize

    §

    const EMPTY: usize = 0usize

    A value with all bits unset.
    §

    const ALL: usize = 18_446_744_073_709_551_615usize

    A value with all bits set.
    ","Bits","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Bounded for usize

    Source§

    fn min_value() -> usize

    Returns the smallest finite number this type can represent
    Source§

    fn max_value() -> usize

    Returns the largest finite number this type can represent
    ","Bounded","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CarryingMulAdd for usize

    Source§

    type Unsigned = usize

    🔬This is a nightly-only experimental API. (core_intrinsics_fallbacks)
    Source§

    const fn carrying_mul_add(self, a: usize, b: usize, c: usize) -> (usize, usize)

    🔬This is a nightly-only experimental API. (core_intrinsics_fallbacks)
    ","CarryingMulAdd","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl CastSigned for usize

    §

    type Signed = isize

    The signed integer type with the same size as Self.
    §

    fn cast_signed(self) -> <usize as CastSigned>::Signed

    Cast an integer to the signed integer of the same size.
    ","CastSigned","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl CastUnsigned for usize

    §

    type Unsigned = usize

    The unsigned integer type with the same size as Self.
    §

    fn cast_unsigned(self) -> <usize as CastUnsigned>::Unsigned

    Cast an integer to the unsigned integer of the same size.
    ","CastUnsigned","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Ceil for usize

    §

    fn ceil(self) -> usize

    Rounds to the smallest integer equal or greater than the original value. Read more
    ","Ceil","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedAdd for usize

    Source§

    fn checked_add(&self, v: &usize) -> Option<usize>

    Adds two numbers, checking for overflow. If overflow happens, None is\nreturned.
    ","CheckedAdd","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedDiv for usize

    Source§

    fn checked_div(&self, v: &usize) -> Option<usize>

    Divides two numbers, checking for underflow, overflow and division by\nzero. If any of that happens, None is returned.
    ","CheckedDiv","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedEuclid for usize

    Source§

    fn checked_div_euclid(&self, v: &usize) -> Option<usize>

    Performs euclid division that returns None instead of panicking on division by zero\nand instead of wrapping around on underflow and overflow.
    Source§

    fn checked_rem_euclid(&self, v: &usize) -> Option<usize>

    Finds the euclid remainder of dividing two numbers, checking for underflow, overflow and\ndivision by zero. If any of that happens, None is returned.
    Source§

    fn checked_div_rem_euclid(&self, v: &Self) -> Option<(Self, Self)>

    Returns both the quotient and remainder from checked Euclidean division. Read more
    ","CheckedEuclid","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedMul for usize

    Source§

    fn checked_mul(&self, v: &usize) -> Option<usize>

    Multiplies two numbers, checking for underflow or overflow. If underflow\nor overflow happens, None is returned.
    ","CheckedMul","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedNeg for usize

    Source§

    fn checked_neg(&self) -> Option<usize>

    Negates a number, returning None for results that can’t be represented, like signed MIN\nvalues that can’t be positive, or non-zero unsigned values that can’t be negative. Read more
    ","CheckedNeg","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedRem for usize

    Source§

    fn checked_rem(&self, v: &usize) -> Option<usize>

    Finds the remainder of dividing two numbers, checking for underflow, overflow and division\nby zero. If any of that happens, None is returned. Read more
    ","CheckedRem","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedShl for usize

    Source§

    fn checked_shl(&self, rhs: u32) -> Option<usize>

    Checked shift left. Computes self << rhs, returning None\nif rhs is larger than or equal to the number of bits in self. Read more
    ","CheckedShl","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedShr for usize

    Source§

    fn checked_shr(&self, rhs: u32) -> Option<usize>

    Checked shift right. Computes self >> rhs, returning None\nif rhs is larger than or equal to the number of bits in self. Read more
    ","CheckedShr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedSub for usize

    Source§

    fn checked_sub(&self, v: &usize) -> Option<usize>

    Subtracts two numbers, checking for underflow. If underflow happens,\nNone is returned.
    ","CheckedSub","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Clone for usize

    Source§

    fn clone(&self) -> usize

    Returns a copy of the value. Read more
    1.0.0 · Source§

    fn clone_from(&mut self, source: &Self)

    Performs copy-assignment from source. Read more
    ","Clone","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ConstOne for usize

    Source§

    const ONE: usize = 1usize

    The multiplicative identity element of Self, 1.
    ","ConstOne","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ConstZero for usize

    Source§

    const ZERO: usize = 0usize

    The additive identity element of Self, 0.
    ","ConstZero","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Contiguous for usize

    §

    const MAX_VALUE: usize = 18_446_744_073_709_551_615usize

    The upper inclusive bound for valid instances of this type.
    §

    const MIN_VALUE: usize = 0usize

    The lower inclusive bound for valid instances of this type.
    §

    type Int = usize

    The primitive integer type with an identical representation to this\ntype. Read more
    §

    fn from_integer(value: Self::Int) -> Option<Self>

    If value is within the range for valid instances of this type,\nreturns Some(converted_value), otherwise, returns None. Read more
    §

    fn into_integer(self) -> Self::Int

    Perform the conversion from C into the underlying integral type. This\nmostly exists otherwise generic code would need unsafe for the value as integer Read more
    ","Contiguous","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Debug for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Debug","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Default for usize

    Source§

    fn default() -> usize

    Returns the default value of 0

    \n
    ","Default","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'de> Deserialize<'de> for usize

    Source§

    fn deserialize<D>(\n deserializer: D,\n) -> Result<usize, <D as Deserializer<'de>>::Error>
    where\n D: Deserializer<'de>,

    Deserialize this value from the given Serde deserializer. Read more
    ","Deserialize<'de>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl DisjointBitOr for usize

    Source§

    const unsafe fn disjoint_bitor(self, other: usize) -> usize

    🔬This is a nightly-only experimental API. (core_intrinsics_fallbacks)
    See super::disjoint_bitor; we just need the trait indirection to handle\ndifferent types since calling intrinsics with generics doesn’t work.
    ","DisjointBitOr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Display for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Display","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Div<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: &BigInt) -> BigInt

    Performs the / operation. Read more
    ","Div<&BigInt>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Div<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: &BigUint) -> BigUint

    Performs the / operation. Read more
    ","Div<&BigUint>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Div<&usize> for usize

    Source§

    type Output = <usize as Div>::Output

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: &usize) -> <usize as Div>::Output

    Performs the / operation. Read more
    ","Div<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Div<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: BigInt) -> BigInt

    Performs the / operation. Read more
    ","Div","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Div<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: BigUint) -> BigUint

    Performs the / operation. Read more
    ","Div","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.51.0 · Source§

    impl Div<NonZero<usize>> for usize

    Source§

    fn div(self, other: NonZero<usize>) -> usize

    Same as self / other.get(), but because other is a NonZero<_>,\nthere’s never a runtime check for division-by-zero.

    \n

    This operation rounds towards zero, truncating any fractional\npart of the exact result, and cannot panic.

    \n
    Source§

    type Output = usize

    The resulting type after applying the / operator.
    ","Div>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Div for usize

    This operation rounds towards zero, truncating any\nfractional part of the exact result.

    \n

    §Panics

    \n

    This operation will panic if other == 0.

    \n
    Source§

    type Output = usize

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: usize) -> usize

    Performs the / operation. Read more
    ","Div","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl DivAssign<&usize> for usize

    Source§

    fn div_assign(&mut self, other: &usize)

    Performs the /= operation. Read more
    ","DivAssign<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.79.0 · Source§

    impl DivAssign<NonZero<usize>> for usize

    Source§

    fn div_assign(&mut self, other: NonZero<usize>)

    Same as self /= other.get(), but because other is a NonZero<_>,\nthere’s never a runtime check for division-by-zero.

    \n

    This operation rounds towards zero, truncating any fractional\npart of the exact result, and cannot panic.

    \n
    ","DivAssign>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl DivAssign for usize

    Source§

    fn div_assign(&mut self, other: usize)

    Performs the /= operation. Read more
    ","DivAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl ErrnoSentinel for usize

    ","ErrnoSentinel","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Euclid for usize

    Source§

    fn div_euclid(&self, v: &usize) -> usize

    Calculates Euclidean division, the matching method for rem_euclid. Read more
    Source§

    fn rem_euclid(&self, v: &usize) -> usize

    Calculates the least nonnegative remainder of self (mod v). Read more
    Source§

    fn div_rem_euclid(&self, v: &Self) -> (Self, Self)

    Returns both the quotient and remainder from Euclidean division. Read more
    ","Euclid","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Fixed for usize

    §

    fn floor_log2(&self, n: usize) -> usize

    §

    fn ceil_log2(&self, n: usize) -> usize

    §

    fn align_power_of_two(&self, n: usize) -> usize

    §

    fn align_power_of_two_and_shift(&self, n: usize) -> usize

    ","Fixed","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Floor for usize

    §

    fn floor(self) -> usize

    Rounds to the biggest integer equal or lower than the original value. Read more
    ","Floor","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl FmtConst for usize

    Source§

    fn fmt_const(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Print a const expression representing this value.
    ","FmtConst","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl From<Alignment> for usize

    Source§

    fn from(align: Alignment) -> usize

    Converts to this type from the input type.
    ","From","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<const MIN: usize, const MAX: usize> From<RangedUsize<MIN, MAX>> for usize

    §

    fn from(value: RangedUsize<MIN, MAX>) -> usize

    Converts to this type from the input type.
    ","From>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl From<State> for usize

    §

    fn from(src: State) -> usize

    Converts to this type from the input type.
    ","From","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl From<State> for usize

    §

    fn from(val: State) -> usize

    Converts to this type from the input type.
    ","From","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl From<State> for usize

    §

    fn from(val: State) -> usize

    Converts to this type from the input type.
    ","From","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<O> From<U16<O>> for usize
    where\n O: ByteOrder,

    §

    fn from(x: U16<O>) -> usize

    Converts to this type from the input type.
    ","From>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl From<Uint24> for usize

    §

    fn from(src: Uint24) -> usize

    Converts to this type from the input type.
    ","From","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl From<VertexId> for usize

    §

    fn from(v: VertexId) -> usize

    Converts to this type from the input type.
    ","From","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.28.0 · Source§

    impl From<bool> for usize

    Source§

    fn from(small: bool) -> usize

    Converts a bool to usize losslessly.\nThe resulting value is 0 for false and 1 for true values.

    \n
    §Examples
    \n
    assert_eq!(usize::from(true), 1);\nassert_eq!(usize::from(false), 0);
    \n
    ","From","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.26.0 · Source§

    impl From<u16> for usize

    Source§

    fn from(small: u16) -> usize

    Converts u16 to usize losslessly.

    \n
    ","From","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.5.0 · Source§

    impl From<u8> for usize

    Source§

    fn from(small: u8) -> usize

    Converts u8 to usize losslessly.

    \n
    ","From","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl FromBytes for usize

    Source§

    type Bytes = [u8; 8]

    Source§

    fn from_be_bytes(bytes: &<usize as FromBytes>::Bytes) -> usize

    Create a number from its representation as a byte array in big endian. Read more
    Source§

    fn from_le_bytes(bytes: &<usize as FromBytes>::Bytes) -> usize

    Create a number from its representation as a byte array in little endian. Read more
    Source§

    fn from_ne_bytes(bytes: &<usize as FromBytes>::Bytes) -> usize

    Create a number from its memory representation as a byte array in native endianness. Read more
    ","FromBytes","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl FromBytes for usize

    §

    fn ref_from(bytes: &[u8]) -> Option<&Self>
    where\n Self: Sized,

    Interprets the given bytes as a &Self without copying. Read more
    §

    fn ref_from_prefix(bytes: &[u8]) -> Option<&Self>
    where\n Self: Sized,

    Interprets the prefix of the given bytes as a &Self without copying. Read more
    §

    fn ref_from_suffix(bytes: &[u8]) -> Option<&Self>
    where\n Self: Sized,

    Interprets the suffix of the given bytes as a &Self without copying. Read more
    §

    fn mut_from(bytes: &mut [u8]) -> Option<&mut Self>
    where\n Self: Sized + AsBytes,

    Interprets the given bytes as a &mut Self without copying. Read more
    §

    fn mut_from_prefix(bytes: &mut [u8]) -> Option<&mut Self>
    where\n Self: Sized + AsBytes,

    Interprets the prefix of the given bytes as a &mut Self without\ncopying. Read more
    §

    fn mut_from_suffix(bytes: &mut [u8]) -> Option<&mut Self>
    where\n Self: Sized + AsBytes,

    Interprets the suffix of the given bytes as a &mut Self without copying. Read more
    §

    fn slice_from(bytes: &[u8]) -> Option<&[Self]>
    where\n Self: Sized,

    Interprets the given bytes as a &[Self] without copying. Read more
    §

    fn slice_from_prefix(bytes: &[u8], count: usize) -> Option<(&[Self], &[u8])>
    where\n Self: Sized,

    Interprets the prefix of the given bytes as a &[Self] with length\nequal to count without copying. Read more
    §

    fn slice_from_suffix(bytes: &[u8], count: usize) -> Option<(&[u8], &[Self])>
    where\n Self: Sized,

    Interprets the suffix of the given bytes as a &[Self] with length\nequal to count without copying. Read more
    §

    fn mut_slice_from(bytes: &mut [u8]) -> Option<&mut [Self]>
    where\n Self: Sized + AsBytes,

    Interprets the given bytes as a &mut [Self] without copying. Read more
    §

    fn mut_slice_from_prefix(\n bytes: &mut [u8],\n count: usize,\n) -> Option<(&mut [Self], &mut [u8])>
    where\n Self: Sized + AsBytes,

    Interprets the prefix of the given bytes as a &mut [Self] with length\nequal to count without copying. Read more
    §

    fn mut_slice_from_suffix(\n bytes: &mut [u8],\n count: usize,\n) -> Option<(&mut [u8], &mut [Self])>
    where\n Self: Sized + AsBytes,

    Interprets the suffix of the given bytes as a &mut [Self] with length\nequal to count without copying. Read more
    §

    fn read_from(bytes: &[u8]) -> Option<Self>
    where\n Self: Sized,

    Reads a copy of Self from bytes. Read more
    §

    fn read_from_prefix(bytes: &[u8]) -> Option<Self>
    where\n Self: Sized,

    Reads a copy of Self from the prefix of bytes. Read more
    §

    fn read_from_suffix(bytes: &[u8]) -> Option<Self>
    where\n Self: Sized,

    Reads a copy of Self from the suffix of bytes. Read more
    ","FromBytes","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl FromPrimitive for usize

    Source§

    fn from_isize(n: isize) -> Option<usize>

    Converts an isize to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i8(n: i8) -> Option<usize>

    Converts an i8 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i16(n: i16) -> Option<usize>

    Converts an i16 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i32(n: i32) -> Option<usize>

    Converts an i32 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i64(n: i64) -> Option<usize>

    Converts an i64 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i128(n: i128) -> Option<usize>

    Converts an i128 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned. Read more
    Source§

    fn from_usize(n: usize) -> Option<usize>

    Converts a usize to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u8(n: u8) -> Option<usize>

    Converts an u8 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u16(n: u16) -> Option<usize>

    Converts an u16 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u32(n: u32) -> Option<usize>

    Converts an u32 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u64(n: u64) -> Option<usize>

    Converts an u64 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u128(n: u128) -> Option<usize>

    Converts an u128 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned. Read more
    Source§

    fn from_f32(n: f32) -> Option<usize>

    Converts a f32 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_f64(n: f64) -> Option<usize>

    Converts a f64 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned. Read more
    ","FromPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl FromStr for usize

    Source§

    fn from_str(src: &str) -> Result<usize, ParseIntError>

    Parses an integer from a string slice with decimal digits.

    \n

    The characters are expected to be an optional\n+\nsign followed by only digits. Leading and trailing non-digit characters (including\nwhitespace) represent an error. Underscores (which are accepted in Rust literals)\nalso represent an error.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    use std::str::FromStr;\n\nassert_eq!(usize::from_str(\"+10\"), Ok(10));
    \n

    Trailing space returns error:

    \n\n
    assert!(usize::from_str(\"1 \").is_err());
    \n
    Source§

    type Err = ParseIntError

    The associated error which can be returned from parsing.
    ","FromStr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl FromZeroes for usize

    §

    fn zero(&mut self)

    Overwrites self with zeroes. Read more
    §

    fn new_zeroed() -> Self
    where\n Self: Sized,

    Creates an instance of Self from zeroed bytes. Read more
    ","FromZeroes","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl GetManyMutIndex for usize

    Source§

    fn is_in_bounds(&self, len: usize) -> bool

    🔬This is a nightly-only experimental API. (get_many_mut_helpers)
    Returns true if self is in bounds for len slice elements.
    Source§

    fn is_overlapping(&self, other: &usize) -> bool

    🔬This is a nightly-only experimental API. (get_many_mut_helpers)
    Returns true if self overlaps with other. Read more
    ","GetManyMutIndex","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Hash for usize

    Source§

    fn hash<H>(&self, state: &mut H)
    where\n H: Hasher,

    Feeds this value into the given Hasher. Read more
    Source§

    fn hash_slice<H>(data: &[usize], state: &mut H)
    where\n H: Hasher,

    Feeds a slice of this type into the given Hasher. Read more
    ","Hash","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl IdentFragment for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Format this value as an identifier fragment.
    Source§

    fn span(&self) -> Option<Span>

    Span associated with this IdentFragment. Read more
    ","IdentFragment","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Integer for usize

    Available on 64-bit only.
    Source§

    const MAX_STR_LEN: usize = 20usize

    The maximum length of string that formatting an integer of this type can\nproduce on the current target platform.
    ","Integer","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Integer for usize

    Source§

    fn div_floor(&self, other: &usize) -> usize

    Unsigned integer division. Returns the same result as div (/).

    \n
    Source§

    fn mod_floor(&self, other: &usize) -> usize

    Unsigned integer modulo operation. Returns the same result as rem (%).

    \n
    Source§

    fn gcd(&self, other: &usize) -> usize

    Calculates the Greatest Common Divisor (GCD) of the number and other

    \n
    Source§

    fn lcm(&self, other: &usize) -> usize

    Calculates the Lowest Common Multiple (LCM) of the number and other.

    \n
    Source§

    fn gcd_lcm(&self, other: &usize) -> (usize, usize)

    Calculates the Greatest Common Divisor (GCD) and\nLowest Common Multiple (LCM) of the number and other.

    \n
    Source§

    fn is_multiple_of(&self, other: &usize) -> bool

    Returns true if the number is a multiple of other.

    \n
    Source§

    fn is_even(&self) -> bool

    Returns true if the number is divisible by 2.

    \n
    Source§

    fn is_odd(&self) -> bool

    Returns true if the number is not divisible by 2.

    \n
    Source§

    fn div_rem(&self, other: &usize) -> (usize, usize)

    Simultaneous truncated integer division and modulus.

    \n
    Source§

    fn div_ceil(&self, other: &usize) -> usize

    Ceiled integer division. Read more
    Source§

    fn extended_gcd_lcm(&self, other: &usize) -> (ExtendedGcd<usize>, usize)

    Greatest common divisor, least common multiple, and Bézout coefficients.
    Source§

    fn extended_gcd(&self, other: &Self) -> ExtendedGcd<Self>
    where\n Self: Clone,

    Greatest common divisor and Bézout coefficients. Read more
    Source§

    fn divides(&self, other: &Self) -> bool

    👎Deprecated: Please use is_multiple_of instead
    Deprecated, use is_multiple_of instead.
    Source§

    fn div_mod_floor(&self, other: &Self) -> (Self, Self)

    Simultaneous floored integer division and modulus.\nReturns (quotient, remainder). Read more
    Source§

    fn next_multiple_of(&self, other: &Self) -> Self
    where\n Self: Clone,

    Rounds up to nearest multiple of argument. Read more
    Source§

    fn prev_multiple_of(&self, other: &Self) -> Self
    where\n Self: Clone,

    Rounds down to nearest multiple of argument. Read more
    Source§

    fn dec(&mut self)
    where\n Self: Clone,

    Decrements self by one. Read more
    Source§

    fn inc(&mut self)
    where\n Self: Clone,

    Increments self by one. Read more
    ","Integer","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'de, E> IntoDeserializer<'de, E> for usize
    where\n E: Error,

    Source§

    type Deserializer = UsizeDeserializer<E>

    The type of the deserializer being converted into.
    Source§

    fn into_deserializer(self) -> UsizeDeserializer<E>

    Convert this value into a deserializer.
    ","IntoDeserializer<'de, E>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> IntoFragment<'a> for usize

    Source§

    fn into_fragment(self) -> Cow<'a, str>

    Converts the value to some text Fragment.
    ","IntoFragment<'a>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl IntoNotification for usize

    §

    type Tag = ()

    The tag data associated with a notification. Read more
    §

    type Notify = Notify

    The notification type. Read more
    §

    fn into_notification(self) -> <usize as IntoNotification>::Notify

    Convert this value into a notification. Read more
    §

    fn additional(self) -> Additional<Self::Notify>
    where\n Self: Sized,

    Convert this value into an additional notification. Read more
    §

    fn relaxed(self) -> Relaxed<Self::Notify>
    where\n Self: Sized,

    Don’t emit a fence for this notification. Read more
    §

    fn tag<T>(self, tag: T) -> Tag<Self::Notify, T>
    where\n T: Clone,\n Self: Sized + IntoNotification<Tag = ()>,

    Available on crate feature std only.
    Use a tag with this notification. Read more
    §

    fn tag_with<T, F>(self, tag: F) -> TagWith<Self::Notify, F>
    where\n Self: Sized + IntoNotification<Tag = ()>,\n F: FnMut() -> T,

    Available on crate feature std only.
    Use a function to generate a tag with this notification. Read more
    ","IntoNotification","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl IntoNotification for usize

    §

    type Tag = ()

    The tag data associated with a notification. Read more
    §

    type Notify = Notify

    The notification type. Read more
    §

    fn into_notification(self) -> <usize as IntoNotification>::Notify

    Convert this value into a notification. Read more
    §

    fn additional(self) -> Additional<Self::Notify>
    where\n Self: Sized,

    Convert this value into an additional notification. Read more
    §

    fn relaxed(self) -> Relaxed<Self::Notify>
    where\n Self: Sized,

    Don’t emit a fence for this notification. Read more
    §

    fn tag<T>(self, tag: T) -> Tag<Self::Notify, T>
    where\n T: Clone,\n Self: Sized + IntoNotification<Tag = ()>,

    Available on crate feature std only.
    Use a tag with this notification. Read more
    §

    fn tag_with<T, F>(self, tag: F) -> TagWith<Self::Notify, F>
    where\n Self: Sized + IntoNotification<Tag = ()>,\n F: FnMut() -> T,

    Available on crate feature std only.
    Use a function to generate a tag with this notification. Read more
    ","IntoNotification","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.42.0 · Source§

    impl LowerExp for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","LowerExp","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl LowerHex for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","LowerHex","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl MaxIndex for usize

    §

    const MAX: usize = 4_294_967_295usize

    ","MaxIndex","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Mul<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: &BigInt) -> BigInt

    Performs the * operation. Read more
    ","Mul<&BigInt>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Mul<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: &BigUint) -> BigUint

    Performs the * operation. Read more
    ","Mul<&BigUint>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Mul<&usize> for usize

    Source§

    type Output = <usize as Mul>::Output

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: &usize) -> <usize as Mul>::Output

    Performs the * operation. Read more
    ","Mul<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Mul<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: BigInt) -> BigInt

    Performs the * operation. Read more
    ","Mul","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Mul<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: BigUint) -> BigUint

    Performs the * operation. Read more
    ","Mul","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Mul for usize

    Source§

    type Output = usize

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: usize) -> usize

    Performs the * operation. Read more
    ","Mul","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl MulAdd for usize

    Source§

    type Output = usize

    The resulting type after applying the fused multiply-add.
    Source§

    fn mul_add(self, a: usize, b: usize) -> <usize as MulAdd>::Output

    Performs the fused multiply-add operation (self * a) + b
    ","MulAdd","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl MulAddAssign for usize

    Source§

    fn mul_add_assign(&mut self, a: usize, b: usize)

    Performs the fused multiply-add assignment operation *self = (*self * a) + b
    ","MulAddAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl MulAssign<&usize> for usize

    Source§

    fn mul_assign(&mut self, other: &usize)

    Performs the *= operation. Read more
    ","MulAssign<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl MulAssign for usize

    Source§

    fn mul_assign(&mut self, other: usize)

    Performs the *= operation. Read more
    ","MulAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Not for usize

    Source§

    type Output = usize

    The resulting type after applying the ! operator.
    Source§

    fn not(self) -> usize

    Performs the unary ! operation. Read more
    ","Not","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Num for usize

    Source§

    type FromStrRadixErr = ParseIntError

    Source§

    fn from_str_radix(s: &str, radix: u32) -> Result<usize, ParseIntError>

    Convert from a string and radix (typically 2..=36). Read more
    ","Num","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl NumCast for usize

    Source§

    fn from<N>(n: N) -> Option<usize>
    where\n N: ToPrimitive,

    Creates a number from another value that can be converted into\na primitive via the ToPrimitive trait. If the source value cannot be\nrepresented by the target type, then None is returned. Read more
    ","NumCast","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Octal for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Octal","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl One for usize

    Source§

    fn one() -> usize

    Returns the multiplicative identity element of Self, 1. Read more
    Source§

    fn is_one(&self) -> bool

    Returns true if self is equal to the multiplicative identity. Read more
    Source§

    fn set_one(&mut self)

    Sets self to the multiplicative identity element of Self, 1.
    ","One","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Ord for usize

    Source§

    fn cmp(&self, other: &usize) -> Ordering

    This method returns an Ordering between self and other. Read more
    1.21.0 · Source§

    fn max(self, other: Self) -> Self
    where\n Self: Sized,

    Compares and returns the maximum of two values. Read more
    1.21.0 · Source§

    fn min(self, other: Self) -> Self
    where\n Self: Sized,

    Compares and returns the minimum of two values. Read more
    1.50.0 · Source§

    fn clamp(self, min: Self, max: Self) -> Self
    where\n Self: Sized,

    Restrict a value to a certain interval. Read more
    ","Ord","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl OverflowingAdd for usize

    Source§

    fn overflowing_add(&self, v: &usize) -> (usize, bool)

    Returns a tuple of the sum along with a boolean indicating whether an arithmetic overflow would occur.\nIf an overflow would have occurred then the wrapped value is returned.
    ","OverflowingAdd","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl OverflowingMul for usize

    Source§

    fn overflowing_mul(&self, v: &usize) -> (usize, bool)

    Returns a tuple of the product along with a boolean indicating whether an arithmetic overflow would occur.\nIf an overflow would have occurred then the wrapped value is returned.
    ","OverflowingMul","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl OverflowingSub for usize

    Source§

    fn overflowing_sub(&self, v: &usize) -> (usize, bool)

    Returns a tuple of the difference along with a boolean indicating whether an arithmetic overflow would occur.\nIf an overflow would have occurred then the wrapped value is returned.
    ","OverflowingSub","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl ParseHex for usize

    §

    fn parse_hex(input: &str) -> Result<usize, ParseError>

    Parse the value from hex.
    ","ParseHex","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl PartialEq<Value> for usize

    Source§

    fn eq(&self, other: &Value) -> bool

    Tests for self and other values to be equal, and is used by ==.
    1.0.0 · Source§

    fn ne(&self, other: &Rhs) -> bool

    Tests for !=. The default implementation is almost always sufficient,\nand should not be overridden without very good reason.
    ","PartialEq","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl PartialEq for usize

    Source§

    fn eq(&self, other: &usize) -> bool

    Tests for self and other values to be equal, and is used by ==.
    Source§

    fn ne(&self, other: &usize) -> bool

    Tests for !=. The default implementation is almost always sufficient,\nand should not be overridden without very good reason.
    ","PartialEq","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl PartialOrd for usize

    Source§

    fn partial_cmp(&self, other: &usize) -> Option<Ordering>

    This method returns an ordering between self and other values if one exists. Read more
    Source§

    fn lt(&self, other: &usize) -> bool

    Tests less than (for self and other) and is used by the < operator. Read more
    Source§

    fn le(&self, other: &usize) -> bool

    Tests less than or equal to (for self and other) and is used by the\n<= operator. Read more
    Source§

    fn ge(&self, other: &usize) -> bool

    Tests greater than or equal to (for self and other) and is used by\nthe >= operator. Read more
    Source§

    fn gt(&self, other: &usize) -> bool

    Tests greater than (for self and other) and is used by the >\noperator. Read more
    ","PartialOrd","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl PhfBorrow<usize> for usize

    Source§

    fn borrow(&self) -> &usize

    Convert a reference to self to a reference to the borrowed type.
    ","PhfBorrow","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl PhfHash for usize

    Source§

    fn phf_hash<H>(&self, state: &mut H)
    where\n H: Hasher,

    Feeds the value into the state given, updating the hasher as necessary.
    Source§

    fn phf_hash_slice<H>(data: &[Self], state: &mut H)
    where\n H: Hasher,\n Self: Sized,

    Feeds a slice of this type into the state provided.
    ","PhfHash","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> Pow<&'a u16> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: &'a u16) -> usize

    Returns self to the power rhs. Read more
    ","Pow<&'a u16>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> Pow<&'a u32> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: &'a u32) -> usize

    Returns self to the power rhs. Read more
    ","Pow<&'a u32>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> Pow<&'a u8> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: &'a u8) -> usize

    Returns self to the power rhs. Read more
    ","Pow<&'a u8>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> Pow<&'a usize> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: &'a usize) -> usize

    Returns self to the power rhs. Read more
    ","Pow<&'a usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Pow<u16> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: u16) -> usize

    Returns self to the power rhs. Read more
    ","Pow","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Pow<u32> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: u32) -> usize

    Returns self to the power rhs. Read more
    ","Pow","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Pow<u8> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: u8) -> usize

    Returns self to the power rhs. Read more
    ","Pow","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Pow<usize> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: usize) -> usize

    Returns self to the power rhs. Read more
    ","Pow","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl PrimInt for usize

    Source§

    fn count_ones(self) -> u32

    Returns the number of ones in the binary representation of self. Read more
    Source§

    fn count_zeros(self) -> u32

    Returns the number of zeros in the binary representation of self. Read more
    Source§

    fn leading_ones(self) -> u32

    Returns the number of leading ones in the binary representation\nof self. Read more
    Source§

    fn leading_zeros(self) -> u32

    Returns the number of leading zeros in the binary representation\nof self. Read more
    Source§

    fn trailing_ones(self) -> u32

    Returns the number of trailing ones in the binary representation\nof self. Read more
    Source§

    fn trailing_zeros(self) -> u32

    Returns the number of trailing zeros in the binary representation\nof self. Read more
    Source§

    fn rotate_left(self, n: u32) -> usize

    Shifts the bits to the left by a specified amount, n, wrapping\nthe truncated bits to the end of the resulting integer. Read more
    Source§

    fn rotate_right(self, n: u32) -> usize

    Shifts the bits to the right by a specified amount, n, wrapping\nthe truncated bits to the beginning of the resulting integer. Read more
    Source§

    fn signed_shl(self, n: u32) -> usize

    Shifts the bits to the left by a specified amount, n, filling\nzeros in the least significant bits. Read more
    Source§

    fn signed_shr(self, n: u32) -> usize

    Shifts the bits to the right by a specified amount, n, copying\nthe “sign bit” in the most significant bits even for unsigned types. Read more
    Source§

    fn unsigned_shl(self, n: u32) -> usize

    Shifts the bits to the left by a specified amount, n, filling\nzeros in the least significant bits. Read more
    Source§

    fn unsigned_shr(self, n: u32) -> usize

    Shifts the bits to the right by a specified amount, n, filling\nzeros in the most significant bits. Read more
    Source§

    fn swap_bytes(self) -> usize

    Reverses the byte order of the integer. Read more
    Source§

    fn reverse_bits(self) -> usize

    Reverses the order of bits in the integer. Read more
    Source§

    fn from_be(x: usize) -> usize

    Convert an integer from big endian to the target’s endianness. Read more
    Source§

    fn from_le(x: usize) -> usize

    Convert an integer from little endian to the target’s endianness. Read more
    Source§

    fn to_be(self) -> usize

    Convert self to big endian from the target’s endianness. Read more
    Source§

    fn to_le(self) -> usize

    Convert self to little endian from the target’s endianness. Read more
    Source§

    fn pow(self, exp: u32) -> usize

    Raises self to the power of exp, using exponentiation by squaring. Read more
    ","PrimInt","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Primitive for usize

    §

    const DEFAULT_MAX_VALUE: usize = 18_446_744_073_709_551_615usize

    The maximum value for this type of primitive within the context of color.\nFor floats, the maximum is 1.0, whereas the integer types inherit their usual maximum values.
    §

    const DEFAULT_MIN_VALUE: usize = 0usize

    The minimum value for this type of primitive within the context of color.\nFor floats, the minimum is 0.0, whereas the integer types inherit their usual minimum values.
    ","Primitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> Product<&'a usize> for usize

    §

    fn product<'b, S>(stream: S) -> Pin<Box<dyn Future<Output = usize> + 'b>>
    where\n S: Stream<Item = &'a usize> + 'b,

    Method which takes a stream and generates Self from the elements by\nmultiplying the items.
    ","Product<&'a usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.12.0 · Source§

    impl<'a> Product<&'a usize> for usize

    Source§

    fn product<I>(iter: I) -> usize
    where\n I: Iterator<Item = &'a usize>,

    Takes an iterator and generates Self from the elements by multiplying\nthe items.
    ","Product<&'a usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Product for usize

    §

    fn product<'a, S>(stream: S) -> Pin<Box<dyn Future<Output = usize> + 'a>>
    where\n S: Stream<Item = usize> + 'a,

    Method which takes a stream and generates Self from the elements by\nmultiplying the items.
    ","Product","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.12.0 · Source§

    impl Product for usize

    Source§

    fn product<I>(iter: I) -> usize
    where\n I: Iterator<Item = usize>,

    Takes an iterator and generates Self from the elements by multiplying\nthe items.
    ","Product","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Random for usize

    Source§

    fn random(source: &mut (impl RandomSource + ?Sized)) -> usize

    🔬This is a nightly-only experimental API. (random)

    Generates a random value.

    \n

    Warning: Be careful when manipulating the resulting value! This\nmethod samples according to a uniform distribution, so a value of 1 is\njust as likely as MAX. By using modulo operations, some\nvalues can become more likely than others. Use audited crates when in\ndoubt.

    \n
    ","Random","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Rem<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: &BigInt) -> BigInt

    Performs the % operation. Read more
    ","Rem<&BigInt>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Rem<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: &BigUint) -> BigUint

    Performs the % operation. Read more
    ","Rem<&BigUint>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Rem<&usize> for usize

    Source§

    type Output = <usize as Rem>::Output

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: &usize) -> <usize as Rem>::Output

    Performs the % operation. Read more
    ","Rem<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Rem<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: BigInt) -> BigInt

    Performs the % operation. Read more
    ","Rem","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Rem<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: BigUint) -> BigUint

    Performs the % operation. Read more
    ","Rem","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.51.0 · Source§

    impl Rem<NonZero<usize>> for usize

    Source§

    fn rem(self, other: NonZero<usize>) -> usize

    This operation satisfies n % d == n - (n / d) * d, and cannot panic.

    \n
    Source§

    type Output = usize

    The resulting type after applying the % operator.
    ","Rem>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Rem for usize

    This operation satisfies n % d == n - (n / d) * d. The\nresult has the same sign as the left operand.

    \n

    §Panics

    \n

    This operation will panic if other == 0.

    \n
    Source§

    type Output = usize

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: usize) -> usize

    Performs the % operation. Read more
    ","Rem","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl RemAssign<&BigUint> for usize

    Source§

    fn rem_assign(&mut self, other: &BigUint)

    Performs the %= operation. Read more
    ","RemAssign<&BigUint>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl RemAssign<&usize> for usize

    Source§

    fn rem_assign(&mut self, other: &usize)

    Performs the %= operation. Read more
    ","RemAssign<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl RemAssign<BigUint> for usize

    Source§

    fn rem_assign(&mut self, other: BigUint)

    Performs the %= operation. Read more
    ","RemAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.79.0 · Source§

    impl RemAssign<NonZero<usize>> for usize

    Source§

    fn rem_assign(&mut self, other: NonZero<usize>)

    This operation satisfies n % d == n - (n / d) * d, and cannot panic.

    \n
    ","RemAssign>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl RemAssign for usize

    Source§

    fn rem_assign(&mut self, other: usize)

    Performs the %= operation. Read more
    ","RemAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Roots for usize

    Source§

    fn nth_root(&self, n: u32) -> usize

    Returns the truncated principal nth root of an integer\n– if x >= 0 { ⌊ⁿ√x⌋ } else { ⌈ⁿ√x⌉ } Read more
    Source§

    fn sqrt(&self) -> usize

    Returns the truncated principal square root of an integer – ⌊√x⌋ Read more
    Source§

    fn cbrt(&self) -> usize

    Returns the truncated principal cube root of an integer –\nif x >= 0 { ⌊∛x⌋ } else { ⌈∛x⌉ } Read more
    ","Roots","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Round for usize

    §

    fn round(self) -> usize

    Rounds to the nearest integer value. Read more
    ","Round","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl SampleUniform for usize

    Source§

    type Sampler = UniformInt<usize>

    The UniformSampler implementation supporting type X.
    ","SampleUniform","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Saturating for usize

    Source§

    fn saturating_add(self, v: usize) -> usize

    Saturating addition operator.\nReturns a+b, saturating at the numeric bounds instead of overflowing.
    Source§

    fn saturating_sub(self, v: usize) -> usize

    Saturating subtraction operator.\nReturns a-b, saturating at the numeric bounds instead of overflowing.
    ","Saturating","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl SaturatingAdd for usize

    Source§

    fn saturating_add(&self, v: &usize) -> usize

    Saturating addition. Computes self + other, saturating at the relevant high or low boundary of\nthe type.
    ","SaturatingAdd","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl SaturatingMul for usize

    Source§

    fn saturating_mul(&self, v: &usize) -> usize

    Saturating multiplication. Computes self * other, saturating at the relevant high or low boundary of\nthe type.
    ","SaturatingMul","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl SaturatingSub for usize

    Source§

    fn saturating_sub(&self, v: &usize) -> usize

    Saturating subtraction. Computes self - other, saturating at the relevant high or low boundary of\nthe type.
    ","SaturatingSub","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Serialize for usize

    Source§

    fn serialize<S>(\n &self,\n serializer: S,\n) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>
    where\n S: Serializer,

    Serialize this value into the given Serde serializer. Read more
    ","Serialize","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i128> for usize

    Source§

    type Output = <usize as Shl<i128>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i128) -> <usize as Shl<i128>>::Output

    Performs the << operation. Read more
    ","Shl<&i128>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i16> for usize

    Source§

    type Output = <usize as Shl<i16>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i16) -> <usize as Shl<i16>>::Output

    Performs the << operation. Read more
    ","Shl<&i16>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i32> for usize

    Source§

    type Output = <usize as Shl<i32>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i32) -> <usize as Shl<i32>>::Output

    Performs the << operation. Read more
    ","Shl<&i32>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i64> for usize

    Source§

    type Output = <usize as Shl<i64>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i64) -> <usize as Shl<i64>>::Output

    Performs the << operation. Read more
    ","Shl<&i64>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i8> for usize

    Source§

    type Output = <usize as Shl<i8>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i8) -> <usize as Shl<i8>>::Output

    Performs the << operation. Read more
    ","Shl<&i8>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&isize> for usize

    Source§

    type Output = <usize as Shl<isize>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &isize) -> <usize as Shl<isize>>::Output

    Performs the << operation. Read more
    ","Shl<&isize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u128> for usize

    Source§

    type Output = <usize as Shl<u128>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u128) -> <usize as Shl<u128>>::Output

    Performs the << operation. Read more
    ","Shl<&u128>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u16> for usize

    Source§

    type Output = <usize as Shl<u16>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u16) -> <usize as Shl<u16>>::Output

    Performs the << operation. Read more
    ","Shl<&u16>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u32> for usize

    Source§

    type Output = <usize as Shl<u32>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u32) -> <usize as Shl<u32>>::Output

    Performs the << operation. Read more
    ","Shl<&u32>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u64> for usize

    Source§

    type Output = <usize as Shl<u64>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u64) -> <usize as Shl<u64>>::Output

    Performs the << operation. Read more
    ","Shl<&u64>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u8> for usize

    Source§

    type Output = <usize as Shl<u8>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u8) -> <usize as Shl<u8>>::Output

    Performs the << operation. Read more
    ","Shl<&u8>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&usize> for usize

    Source§

    type Output = <usize as Shl>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &usize) -> <usize as Shl>::Output

    Performs the << operation. Read more
    ","Shl<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i128> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i128) -> usize

    Performs the << operation. Read more
    ","Shl","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i16> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i16) -> usize

    Performs the << operation. Read more
    ","Shl","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i32> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i32) -> usize

    Performs the << operation. Read more
    ","Shl","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i64> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i64) -> usize

    Performs the << operation. Read more
    ","Shl","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i8> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i8) -> usize

    Performs the << operation. Read more
    ","Shl","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<isize> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: isize) -> usize

    Performs the << operation. Read more
    ","Shl","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u128> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u128) -> usize

    Performs the << operation. Read more
    ","Shl","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u16> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u16) -> usize

    Performs the << operation. Read more
    ","Shl","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u32> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u32) -> usize

    Performs the << operation. Read more
    ","Shl","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u64> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u64) -> usize

    Performs the << operation. Read more
    ","Shl","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u8> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u8) -> usize

    Performs the << operation. Read more
    ","Shl","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: usize) -> usize

    Performs the << operation. Read more
    ","Shl","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i128> for usize

    Source§

    fn shl_assign(&mut self, other: &i128)

    Performs the <<= operation. Read more
    ","ShlAssign<&i128>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i16> for usize

    Source§

    fn shl_assign(&mut self, other: &i16)

    Performs the <<= operation. Read more
    ","ShlAssign<&i16>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i32> for usize

    Source§

    fn shl_assign(&mut self, other: &i32)

    Performs the <<= operation. Read more
    ","ShlAssign<&i32>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i64> for usize

    Source§

    fn shl_assign(&mut self, other: &i64)

    Performs the <<= operation. Read more
    ","ShlAssign<&i64>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i8> for usize

    Source§

    fn shl_assign(&mut self, other: &i8)

    Performs the <<= operation. Read more
    ","ShlAssign<&i8>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&isize> for usize

    Source§

    fn shl_assign(&mut self, other: &isize)

    Performs the <<= operation. Read more
    ","ShlAssign<&isize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u128> for usize

    Source§

    fn shl_assign(&mut self, other: &u128)

    Performs the <<= operation. Read more
    ","ShlAssign<&u128>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u16> for usize

    Source§

    fn shl_assign(&mut self, other: &u16)

    Performs the <<= operation. Read more
    ","ShlAssign<&u16>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u32> for usize

    Source§

    fn shl_assign(&mut self, other: &u32)

    Performs the <<= operation. Read more
    ","ShlAssign<&u32>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u64> for usize

    Source§

    fn shl_assign(&mut self, other: &u64)

    Performs the <<= operation. Read more
    ","ShlAssign<&u64>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u8> for usize

    Source§

    fn shl_assign(&mut self, other: &u8)

    Performs the <<= operation. Read more
    ","ShlAssign<&u8>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&usize> for usize

    Source§

    fn shl_assign(&mut self, other: &usize)

    Performs the <<= operation. Read more
    ","ShlAssign<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i128> for usize

    Source§

    fn shl_assign(&mut self, other: i128)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i16> for usize

    Source§

    fn shl_assign(&mut self, other: i16)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i32> for usize

    Source§

    fn shl_assign(&mut self, other: i32)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i64> for usize

    Source§

    fn shl_assign(&mut self, other: i64)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i8> for usize

    Source§

    fn shl_assign(&mut self, other: i8)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<isize> for usize

    Source§

    fn shl_assign(&mut self, other: isize)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u128> for usize

    Source§

    fn shl_assign(&mut self, other: u128)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u16> for usize

    Source§

    fn shl_assign(&mut self, other: u16)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u32> for usize

    Source§

    fn shl_assign(&mut self, other: u32)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u64> for usize

    Source§

    fn shl_assign(&mut self, other: u64)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u8> for usize

    Source§

    fn shl_assign(&mut self, other: u8)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign for usize

    Source§

    fn shl_assign(&mut self, other: usize)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i128> for usize

    Source§

    type Output = <usize as Shr<i128>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i128) -> <usize as Shr<i128>>::Output

    Performs the >> operation. Read more
    ","Shr<&i128>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i16> for usize

    Source§

    type Output = <usize as Shr<i16>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i16) -> <usize as Shr<i16>>::Output

    Performs the >> operation. Read more
    ","Shr<&i16>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i32> for usize

    Source§

    type Output = <usize as Shr<i32>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i32) -> <usize as Shr<i32>>::Output

    Performs the >> operation. Read more
    ","Shr<&i32>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i64> for usize

    Source§

    type Output = <usize as Shr<i64>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i64) -> <usize as Shr<i64>>::Output

    Performs the >> operation. Read more
    ","Shr<&i64>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i8> for usize

    Source§

    type Output = <usize as Shr<i8>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i8) -> <usize as Shr<i8>>::Output

    Performs the >> operation. Read more
    ","Shr<&i8>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&isize> for usize

    Source§

    type Output = <usize as Shr<isize>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &isize) -> <usize as Shr<isize>>::Output

    Performs the >> operation. Read more
    ","Shr<&isize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u128> for usize

    Source§

    type Output = <usize as Shr<u128>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u128) -> <usize as Shr<u128>>::Output

    Performs the >> operation. Read more
    ","Shr<&u128>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u16> for usize

    Source§

    type Output = <usize as Shr<u16>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u16) -> <usize as Shr<u16>>::Output

    Performs the >> operation. Read more
    ","Shr<&u16>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u32> for usize

    Source§

    type Output = <usize as Shr<u32>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u32) -> <usize as Shr<u32>>::Output

    Performs the >> operation. Read more
    ","Shr<&u32>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u64> for usize

    Source§

    type Output = <usize as Shr<u64>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u64) -> <usize as Shr<u64>>::Output

    Performs the >> operation. Read more
    ","Shr<&u64>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u8> for usize

    Source§

    type Output = <usize as Shr<u8>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u8) -> <usize as Shr<u8>>::Output

    Performs the >> operation. Read more
    ","Shr<&u8>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&usize> for usize

    Source§

    type Output = <usize as Shr>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &usize) -> <usize as Shr>::Output

    Performs the >> operation. Read more
    ","Shr<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i128> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i128) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i16> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i16) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i32> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i32) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i64> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i64) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i8> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i8) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<isize> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: isize) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u128> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u128) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u16> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u16) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u32> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u32) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u64> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u64) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u8> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u8) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: usize) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i128> for usize

    Source§

    fn shr_assign(&mut self, other: &i128)

    Performs the >>= operation. Read more
    ","ShrAssign<&i128>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i16> for usize

    Source§

    fn shr_assign(&mut self, other: &i16)

    Performs the >>= operation. Read more
    ","ShrAssign<&i16>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i32> for usize

    Source§

    fn shr_assign(&mut self, other: &i32)

    Performs the >>= operation. Read more
    ","ShrAssign<&i32>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i64> for usize

    Source§

    fn shr_assign(&mut self, other: &i64)

    Performs the >>= operation. Read more
    ","ShrAssign<&i64>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i8> for usize

    Source§

    fn shr_assign(&mut self, other: &i8)

    Performs the >>= operation. Read more
    ","ShrAssign<&i8>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&isize> for usize

    Source§

    fn shr_assign(&mut self, other: &isize)

    Performs the >>= operation. Read more
    ","ShrAssign<&isize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u128> for usize

    Source§

    fn shr_assign(&mut self, other: &u128)

    Performs the >>= operation. Read more
    ","ShrAssign<&u128>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u16> for usize

    Source§

    fn shr_assign(&mut self, other: &u16)

    Performs the >>= operation. Read more
    ","ShrAssign<&u16>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u32> for usize

    Source§

    fn shr_assign(&mut self, other: &u32)

    Performs the >>= operation. Read more
    ","ShrAssign<&u32>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u64> for usize

    Source§

    fn shr_assign(&mut self, other: &u64)

    Performs the >>= operation. Read more
    ","ShrAssign<&u64>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u8> for usize

    Source§

    fn shr_assign(&mut self, other: &u8)

    Performs the >>= operation. Read more
    ","ShrAssign<&u8>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&usize> for usize

    Source§

    fn shr_assign(&mut self, other: &usize)

    Performs the >>= operation. Read more
    ","ShrAssign<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i128> for usize

    Source§

    fn shr_assign(&mut self, other: i128)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i16> for usize

    Source§

    fn shr_assign(&mut self, other: i16)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i32> for usize

    Source§

    fn shr_assign(&mut self, other: i32)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i64> for usize

    Source§

    fn shr_assign(&mut self, other: i64)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i8> for usize

    Source§

    fn shr_assign(&mut self, other: i8)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<isize> for usize

    Source§

    fn shr_assign(&mut self, other: isize)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u128> for usize

    Source§

    fn shr_assign(&mut self, other: u128)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u16> for usize

    Source§

    fn shr_assign(&mut self, other: u16)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u32> for usize

    Source§

    fn shr_assign(&mut self, other: u32)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u64> for usize

    Source§

    fn shr_assign(&mut self, other: u64)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u8> for usize

    Source§

    fn shr_assign(&mut self, other: u8)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign for usize

    Source§

    fn shr_assign(&mut self, other: usize)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl SimdElement for usize

    Source§

    type Mask = isize

    🔬This is a nightly-only experimental API. (portable_simd)
    The mask element type corresponding to this element type.
    ","SimdElement","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.15.0 · Source§

    impl<T> SliceIndex<[T]> for usize

    The methods index and index_mut panic if the index is out of bounds.

    \n
    Source§

    type Output = T

    The output type returned by methods.
    Source§

    fn get(self, slice: &[T]) -> Option<&T>

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a shared reference to the output at this location, if in\nbounds.
    Source§

    fn get_mut(self, slice: &mut [T]) -> Option<&mut T>

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a mutable reference to the output at this location, if in\nbounds.
    Source§

    unsafe fn get_unchecked(self, slice: *const [T]) -> *const T

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a pointer to the output at this location, without\nperforming any bounds checking. Read more
    Source§

    unsafe fn get_unchecked_mut(self, slice: *mut [T]) -> *mut T

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a mutable pointer to the output at this location, without\nperforming any bounds checking. Read more
    Source§

    fn index(self, slice: &[T]) -> &T

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a shared reference to the output at this location, panicking\nif out of bounds.
    Source§

    fn index_mut(self, slice: &mut [T]) -> &mut T

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a mutable reference to the output at this location, panicking\nif out of bounds.
    ","SliceIndex<[T]>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl SmartDisplay for usize

    §

    type Metadata = ()

    User-provided metadata type.
    §

    fn metadata(&self, f: FormatterOptions) -> Metadata<'_, usize>

    Compute any information needed to format the value. This must, at a minimum, determine the\nwidth of the value before any padding is added by the formatter. Read more
    §

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Format the value using the given formatter. This is the same as Display::fmt. Read more
    §

    fn fmt_with_metadata(\n &self,\n f: &mut Formatter<'_>,\n _metadata: Metadata<'_, Self>,\n) -> Result<(), Error>

    Format the value using the given formatter and metadata. The formatted output should have\nthe width indicated by the metadata. This is before any padding is added by the\nformatter. Read more
    ","SmartDisplay","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Step for usize

    Source§

    fn forward(start: usize, n: usize) -> usize

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the successor\nof self count times. Read more
    Source§

    fn backward(start: usize, n: usize) -> usize

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the predecessor\nof self count times. Read more
    Source§

    unsafe fn forward_unchecked(start: usize, n: usize) -> usize

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the successor\nof self count times. Read more
    Source§

    unsafe fn backward_unchecked(start: usize, n: usize) -> usize

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the predecessor\nof self count times. Read more
    Source§

    fn steps_between(start: &usize, end: &usize) -> (usize, Option<usize>)

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the bounds on the number of successor steps required to get from start to end\nlike Iterator::size_hint(). Read more
    Source§

    fn forward_checked(start: usize, n: usize) -> Option<usize>

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the successor\nof self count times. Read more
    Source§

    fn backward_checked(start: usize, n: usize) -> Option<usize>

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the predecessor\nof self count times. Read more
    ","Step","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl StepLite for usize

    §

    fn add_one(&self) -> usize

    Returns the successor of self. Read more
    §

    fn sub_one(&self) -> usize

    Returns the predecessor of self. Read more
    ","StepLite","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Sub<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: &BigInt) -> BigInt

    Performs the - operation. Read more
    ","Sub<&BigInt>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Sub<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: &BigUint) -> BigUint

    Performs the - operation. Read more
    ","Sub<&BigUint>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Sub<&usize> for usize

    Source§

    type Output = <usize as Sub>::Output

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: &usize) -> <usize as Sub>::Output

    Performs the - operation. Read more
    ","Sub<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Sub<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: BigInt) -> BigInt

    Performs the - operation. Read more
    ","Sub","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Sub<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: BigUint) -> BigUint

    Performs the - operation. Read more
    ","Sub","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Sub for usize

    Source§

    type Output = usize

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: usize) -> usize

    Performs the - operation. Read more
    ","Sub","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl SubAssign<&usize> for usize

    Source§

    fn sub_assign(&mut self, other: &usize)

    Performs the -= operation. Read more
    ","SubAssign<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl SubAssign for usize

    Source§

    fn sub_assign(&mut self, other: usize)

    Performs the -= operation. Read more
    ","SubAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> Sum<&'a usize> for usize

    §

    fn sum<'b, S>(stream: S) -> Pin<Box<dyn Future<Output = usize> + 'b>>
    where\n S: Stream<Item = &'a usize> + 'b,

    Method which takes a stream and generates Self from the elements by\n“summing up” the items.
    ","Sum<&'a usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.12.0 · Source§

    impl<'a> Sum<&'a usize> for usize

    Source§

    fn sum<I>(iter: I) -> usize
    where\n I: Iterator<Item = &'a usize>,

    Takes an iterator and generates Self from the elements by “summing up”\nthe items.
    ","Sum<&'a usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Sum for usize

    §

    fn sum<'a, S>(stream: S) -> Pin<Box<dyn Future<Output = usize> + 'a>>
    where\n S: Stream<Item = usize> + 'a,

    Method which takes a stream and generates Self from the elements by\n“summing up” the items.
    ","Sum","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.12.0 · Source§

    impl Sum for usize

    Source§

    fn sum<I>(iter: I) -> usize
    where\n I: Iterator<Item = usize>,

    Takes an iterator and generates Self from the elements by “summing up”\nthe items.
    ","Sum","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToBigInt for usize

    Source§

    fn to_bigint(&self) -> Option<BigInt>

    Converts the value of self to a BigInt.
    ","ToBigInt","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToBigUint for usize

    Source§

    fn to_biguint(&self) -> Option<BigUint>

    Converts the value of self to a BigUint.
    ","ToBigUint","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToBytes for usize

    Source§

    type Bytes = [u8; 8]

    Source§

    fn to_be_bytes(&self) -> <usize as ToBytes>::Bytes

    Return the memory representation of this number as a byte array in big-endian byte order. Read more
    Source§

    fn to_le_bytes(&self) -> <usize as ToBytes>::Bytes

    Return the memory representation of this number as a byte array in little-endian byte order. Read more
    Source§

    fn to_ne_bytes(&self) -> <usize as ToBytes>::Bytes

    Return the memory representation of this number as a byte array in native byte order. Read more
    ","ToBytes","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToPrimitive for usize

    Source§

    fn to_isize(&self) -> Option<isize>

    Converts the value of self to an isize. If the value cannot be\nrepresented by an isize, then None is returned.
    Source§

    fn to_i8(&self) -> Option<i8>

    Converts the value of self to an i8. If the value cannot be\nrepresented by an i8, then None is returned.
    Source§

    fn to_i16(&self) -> Option<i16>

    Converts the value of self to an i16. If the value cannot be\nrepresented by an i16, then None is returned.
    Source§

    fn to_i32(&self) -> Option<i32>

    Converts the value of self to an i32. If the value cannot be\nrepresented by an i32, then None is returned.
    Source§

    fn to_i64(&self) -> Option<i64>

    Converts the value of self to an i64. If the value cannot be\nrepresented by an i64, then None is returned.
    Source§

    fn to_i128(&self) -> Option<i128>

    Converts the value of self to an i128. If the value cannot be\nrepresented by an i128 (i64 under the default implementation), then\nNone is returned. Read more
    Source§

    fn to_usize(&self) -> Option<usize>

    Converts the value of self to a usize. If the value cannot be\nrepresented by a usize, then None is returned.
    Source§

    fn to_u8(&self) -> Option<u8>

    Converts the value of self to a u8. If the value cannot be\nrepresented by a u8, then None is returned.
    Source§

    fn to_u16(&self) -> Option<u16>

    Converts the value of self to a u16. If the value cannot be\nrepresented by a u16, then None is returned.
    Source§

    fn to_u32(&self) -> Option<u32>

    Converts the value of self to a u32. If the value cannot be\nrepresented by a u32, then None is returned.
    Source§

    fn to_u64(&self) -> Option<u64>

    Converts the value of self to a u64. If the value cannot be\nrepresented by a u64, then None is returned.
    Source§

    fn to_u128(&self) -> Option<u128>

    Converts the value of self to a u128. If the value cannot be\nrepresented by a u128 (u64 under the default implementation), then\nNone is returned. Read more
    Source§

    fn to_f32(&self) -> Option<f32>

    Converts the value of self to an f32. Overflows may map to positive\nor negative inifinity, otherwise None is returned if the value cannot\nbe represented by an f32.
    Source§

    fn to_f64(&self) -> Option<f64>

    Converts the value of self to an f64. Overflows may map to positive\nor negative inifinity, otherwise None is returned if the value cannot\nbe represented by an f64. Read more
    ","ToPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToTokens for usize

    Source§

    fn to_tokens(&self, tokens: &mut TokenStream)

    🔬This is a nightly-only experimental API. (proc_macro_totokens)
    Write self to the given TokenStream. Read more
    Source§

    fn to_token_stream(&self) -> TokenStream

    🔬This is a nightly-only experimental API. (proc_macro_totokens)
    Convert self directly into a TokenStream object. Read more
    Source§

    fn into_token_stream(self) -> TokenStream
    where\n Self: Sized,

    🔬This is a nightly-only experimental API. (proc_macro_totokens)
    Convert self directly into a TokenStream object. Read more
    ","ToTokens","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToTokens for usize

    Source§

    fn to_tokens(&self, tokens: &mut TokenStream)

    Write self to the given TokenStream. Read more
    Source§

    fn to_token_stream(&self) -> TokenStream

    Convert self directly into a TokenStream object. Read more
    Source§

    fn into_token_stream(self) -> TokenStream
    where\n Self: Sized,

    Convert self directly into a TokenStream object. Read more
    ","ToTokens","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl ToUsize for usize

    §

    fn to_usize(&self) -> usize

    converts self to usize
    ","ToUsize","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl ToUsize for usize

    §

    fn to_usize(&self) -> usize

    converts self to usize
    ","ToUsize","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToValue for usize

    Source§

    fn to_value(&self) -> Value<'_>

    Perform the conversion.
    ","ToValue","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl TryFrom<&BigInt> for usize

    Source§

    type Error = TryFromBigIntError<()>

    The type returned in the event of a conversion error.
    Source§

    fn try_from(value: &BigInt) -> Result<usize, TryFromBigIntError<()>>

    Performs the conversion.
    ","TryFrom<&BigInt>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl TryFrom<&BigUint> for usize

    Source§

    type Error = TryFromBigIntError<()>

    The type returned in the event of a conversion error.
    Source§

    fn try_from(value: &BigUint) -> Result<usize, TryFromBigIntError<()>>

    Performs the conversion.
    ","TryFrom<&BigUint>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl TryFrom<BigInt> for usize

    Source§

    type Error = TryFromBigIntError<BigInt>

    The type returned in the event of a conversion error.
    Source§

    fn try_from(value: BigInt) -> Result<usize, TryFromBigIntError<BigInt>>

    Performs the conversion.
    ","TryFrom","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl TryFrom<BigUint> for usize

    Source§

    type Error = TryFromBigIntError<BigUint>

    The type returned in the event of a conversion error.
    Source§

    fn try_from(value: BigUint) -> Result<usize, TryFromBigIntError<BigUint>>

    Performs the conversion.
    ","TryFrom","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'v> TryFrom<ValueBag<'v>> for usize

    Source§

    type Error = Error

    The type returned in the event of a conversion error.
    Source§

    fn try_from(v: ValueBag<'v>) -> Result<usize, Error>

    Performs the conversion.
    ","TryFrom>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i128> for usize

    Source§

    fn try_from(u: i128) -> Result<usize, <usize as TryFrom<i128>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i16> for usize

    Source§

    fn try_from(u: i16) -> Result<usize, <usize as TryFrom<i16>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i32> for usize

    Source§

    fn try_from(u: i32) -> Result<usize, <usize as TryFrom<i32>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i64> for usize

    Source§

    fn try_from(u: i64) -> Result<usize, <usize as TryFrom<i64>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i8> for usize

    Source§

    fn try_from(u: i8) -> Result<usize, <usize as TryFrom<i8>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<isize> for usize

    Source§

    fn try_from(u: isize) -> Result<usize, <usize as TryFrom<isize>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<u128> for usize

    Source§

    fn try_from(u: u128) -> Result<usize, <usize as TryFrom<u128>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<u32> for usize

    Source§

    fn try_from(value: u32) -> Result<usize, <usize as TryFrom<u32>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<u64> for usize

    Source§

    fn try_from(value: u64) -> Result<usize, <usize as TryFrom<u64>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Type for usize

    §

    const SIGNATURE: &'static Signature = u64::SIGNATURE

    The signature for the implementing type, in parsed format. Read more
    ","Type","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.42.0 · Source§

    impl UpperExp for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","UpperExp","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl UpperHex for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","UpperHex","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Value for usize

    §

    fn record(&self, key: &Field, visitor: &mut dyn Visit)

    Visits this value with the given Visitor.
    ","Value","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingAdd for usize

    Source§

    fn wrapping_add(&self, v: &usize) -> usize

    Wrapping (modular) addition. Computes self + other, wrapping around at the boundary of\nthe type.
    ","WrappingAdd","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingMul for usize

    Source§

    fn wrapping_mul(&self, v: &usize) -> usize

    Wrapping (modular) multiplication. Computes self * other, wrapping around at the boundary\nof the type.
    ","WrappingMul","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingNeg for usize

    Source§

    fn wrapping_neg(&self) -> usize

    Wrapping (modular) negation. Computes -self,\nwrapping around at the boundary of the type. Read more
    ","WrappingNeg","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingShl for usize

    Source§

    fn wrapping_shl(&self, rhs: u32) -> usize

    Panic-free bitwise shift-left; yields self << mask(rhs),\nwhere mask removes any high order bits of rhs that would\ncause the shift to exceed the bitwidth of the type. Read more
    ","WrappingShl","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingShr for usize

    Source§

    fn wrapping_shr(&self, rhs: u32) -> usize

    Panic-free bitwise shift-right; yields self >> mask(rhs),\nwhere mask removes any high order bits of rhs that would\ncause the shift to exceed the bitwidth of the type. Read more
    ","WrappingShr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingSub for usize

    Source§

    fn wrapping_sub(&self, v: &usize) -> usize

    Wrapping (modular) subtraction. Computes self - other, wrapping around at the boundary\nof the type.
    ","WrappingSub","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl WriteHex for usize

    §

    fn write_hex<W>(&self, writer: W) -> Result<(), Error>
    where\n W: Write,

    Write the value as hex.
    ","WriteHex","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Writeable for usize

    §

    fn write_to<W>(&self, sink: &mut W) -> Result<(), Error>
    where\n W: Write + ?Sized,

    Writes a string to the given sink. Errors from the sink are bubbled up.\nThe default implementation delegates to write_to_parts, and discards any\nPart annotations.
    §

    fn writeable_length_hint(&self) -> LengthHint

    Returns a hint for the number of UTF-8 bytes that will be written to the sink. Read more
    §

    fn write_to_parts<S>(&self, sink: &mut S) -> Result<(), Error>
    where\n S: PartsWrite + ?Sized,

    Write bytes and Part annotations to the given sink. Errors from the\nsink are bubbled up. The default implementation delegates to write_to,\nand doesn’t produce any Part annotations.
    §

    fn write_to_string(&self) -> Cow<'_, str>

    Creates a new String with the data from this Writeable. Like ToString,\nbut smaller and faster. Read more
    §

    fn writeable_cmp_bytes(&self, other: &[u8]) -> Ordering

    Compares the contents of this Writeable to the given bytes\nwithout allocating a String to hold the Writeable contents. Read more
    ","Writeable","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> Yokeable<'a> for usize

    §

    type Output = usize

    This type MUST be Self with the 'static replaced with 'a, i.e. Self<'a>
    §

    fn transform(&self) -> &<usize as Yokeable<'a>>::Output

    This method must cast self between &'a Self<'static> and &'a Self<'a>. Read more
    §

    fn transform_owned(self) -> <usize as Yokeable<'a>>::Output

    This method must cast self between Self<'static> and Self<'a>. Read more
    §

    unsafe fn make(this: <usize as Yokeable<'a>>::Output) -> usize

    This method can be used to cast away Self<'a>’s lifetime. Read more
    §

    fn transform_mut<F>(&'a mut self, f: F)
    where\n F: 'static + for<'b> FnOnce(&'b mut <usize as Yokeable<'a>>::Output),

    This method must cast self between &'a mut Self<'static> and &'a mut Self<'a>,\nand pass it to f. Read more
    ","Yokeable<'a>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Zero for usize

    Source§

    fn zero() -> usize

    Returns the additive identity element of Self, 0. Read more
    Source§

    fn is_zero(&self) -> bool

    Returns true if self is equal to the additive identity.
    Source§

    fn set_zero(&mut self)

    Sets self to the additive identity element of Self, 0.
    ","Zero","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> ZeroFrom<'a, usize> for usize

    §

    fn zero_from(this: &'a usize) -> usize

    Clone the other C into a struct that may retain references into C.
    ","ZeroFrom<'a, usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> ZeroMapKV<'a> for usize

    §

    type Container = FlexZeroVec<'a>

    The container that can be used with this type: [ZeroVec] or [VarZeroVec].
    §

    type Slice = FlexZeroSlice

    §

    type GetType = [u8]

    The type produced by Container::get() Read more
    §

    type OwnedType = usize

    The type produced by Container::replace() and Container::remove(),\nalso used during deserialization. If Self is human readable serialized,\ndeserializing to Self::OwnedType should produce the same value once\npassed through Self::owned_as_self() Read more
    ","ZeroMapKV<'a>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Zeroable for usize

    §

    fn zeroed() -> Self

    ","Zeroable","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl usize

    1.43.0 · Source

    pub const MIN: usize = 0usize

    Available on 64-bit only.

    The smallest value that can be represented by this integer type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(usize::MIN, 0);
    \n
    1.43.0 · Source

    pub const MAX: usize = 18_446_744_073_709_551_615usize

    Available on 64-bit only.

    The largest value that can be represented by this integer type\n(264 − 1 on 64-bit targets).

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(usize::MAX, 18446744073709551615);
    \n
    1.53.0 · Source

    pub const BITS: u32 = 64u32

    Available on 64-bit only.

    The size of this integer type in bits.

    \n
    §Examples
    \n
    assert_eq!(usize::BITS, 64);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn count_ones(self) -> u32

    Available on 64-bit only.

    Returns the number of ones in the binary representation of self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0b01001100usize;\nassert_eq!(n.count_ones(), 3);\n\nlet max = usize::MAX;\nassert_eq!(max.count_ones(), 64);\n\nlet zero = 0usize;\nassert_eq!(zero.count_ones(), 0);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn count_zeros(self) -> u32

    Available on 64-bit only.

    Returns the number of zeros in the binary representation of self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let zero = 0usize;\nassert_eq!(zero.count_zeros(), 64);\n\nlet max = usize::MAX;\nassert_eq!(max.count_zeros(), 0);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn leading_zeros(self) -> u32

    Available on 64-bit only.

    Returns the number of leading zeros in the binary representation of self.

    \n

    Depending on what you’re doing with the value, you might also be interested in the\nilog2 function which returns a consistent number, even if the type widens.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = usize::MAX >> 2;\nassert_eq!(n.leading_zeros(), 2);\n\nlet zero = 0usize;\nassert_eq!(zero.leading_zeros(), 64);\n\nlet max = usize::MAX;\nassert_eq!(max.leading_zeros(), 0);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn trailing_zeros(self) -> u32

    Available on 64-bit only.

    Returns the number of trailing zeros in the binary representation\nof self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0b0101000usize;\nassert_eq!(n.trailing_zeros(), 3);\n\nlet zero = 0usize;\nassert_eq!(zero.trailing_zeros(), 64);\n\nlet max = usize::MAX;\nassert_eq!(max.trailing_zeros(), 0);
    \n
    1.46.0 (const: 1.46.0) · Source

    pub const fn leading_ones(self) -> u32

    Available on 64-bit only.

    Returns the number of leading ones in the binary representation of self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = !(usize::MAX >> 2);\nassert_eq!(n.leading_ones(), 2);\n\nlet zero = 0usize;\nassert_eq!(zero.leading_ones(), 0);\n\nlet max = usize::MAX;\nassert_eq!(max.leading_ones(), 64);
    \n
    1.46.0 (const: 1.46.0) · Source

    pub const fn trailing_ones(self) -> u32

    Available on 64-bit only.

    Returns the number of trailing ones in the binary representation\nof self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0b1010111usize;\nassert_eq!(n.trailing_ones(), 3);\n\nlet zero = 0usize;\nassert_eq!(zero.trailing_ones(), 0);\n\nlet max = usize::MAX;\nassert_eq!(max.trailing_ones(), 64);
    \n
    Source

    pub const fn cast_signed(self) -> isize

    🔬This is a nightly-only experimental API. (integer_sign_cast)
    Available on 64-bit only.

    Returns the bit pattern of self reinterpreted as a signed integer of the same size.

    \n

    This produces the same result as an as cast, but ensures that the bit-width remains\nthe same.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(integer_sign_cast)]\n\nlet n = usize::MAX;\n\nassert_eq!(n.cast_signed(), -1isize);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn rotate_left(self, n: u32) -> usize

    Available on 64-bit only.

    Shifts the bits to the left by a specified amount, n,\nwrapping the truncated bits to the end of the resulting integer.

    \n

    Please note this isn’t the same operation as the << shifting operator!

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0xaa00000000006e1usize;\nlet m = 0x6e10aa;\n\nassert_eq!(n.rotate_left(12), m);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn rotate_right(self, n: u32) -> usize

    Available on 64-bit only.

    Shifts the bits to the right by a specified amount, n,\nwrapping the truncated bits to the beginning of the resulting\ninteger.

    \n

    Please note this isn’t the same operation as the >> shifting operator!

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x6e10aausize;\nlet m = 0xaa00000000006e1;\n\nassert_eq!(n.rotate_right(12), m);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn swap_bytes(self) -> usize

    Available on 64-bit only.

    Reverses the byte order of the integer.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1234567890123456usize;\nlet m = n.swap_bytes();\n\nassert_eq!(m, 0x5634129078563412);
    \n
    1.37.0 (const: 1.37.0) · Source

    pub const fn reverse_bits(self) -> usize

    Available on 64-bit only.

    Reverses the order of bits in the integer. The least significant bit becomes the most significant bit,\nsecond least-significant bit becomes second most-significant bit, etc.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1234567890123456usize;\nlet m = n.reverse_bits();\n\nassert_eq!(m, 0x6a2c48091e6a2c48);\nassert_eq!(0, 0usize.reverse_bits());
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn from_be(x: usize) -> usize

    Available on 64-bit only.

    Converts an integer from big endian to the target’s endianness.

    \n

    On big endian this is a no-op. On little endian the bytes are\nswapped.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1Ausize;\n\nif cfg!(target_endian = \"big\") {\n    assert_eq!(usize::from_be(n), n)\n} else {\n    assert_eq!(usize::from_be(n), n.swap_bytes())\n}
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn from_le(x: usize) -> usize

    Available on 64-bit only.

    Converts an integer from little endian to the target’s endianness.

    \n

    On little endian this is a no-op. On big endian the bytes are\nswapped.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1Ausize;\n\nif cfg!(target_endian = \"little\") {\n    assert_eq!(usize::from_le(n), n)\n} else {\n    assert_eq!(usize::from_le(n), n.swap_bytes())\n}
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn to_be(self) -> usize

    Available on 64-bit only.

    Converts self to big endian from the target’s endianness.

    \n

    On big endian this is a no-op. On little endian the bytes are\nswapped.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1Ausize;\n\nif cfg!(target_endian = \"big\") {\n    assert_eq!(n.to_be(), n)\n} else {\n    assert_eq!(n.to_be(), n.swap_bytes())\n}
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn to_le(self) -> usize

    Available on 64-bit only.

    Converts self to little endian from the target’s endianness.

    \n

    On little endian this is a no-op. On big endian the bytes are\nswapped.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1Ausize;\n\nif cfg!(target_endian = \"little\") {\n    assert_eq!(n.to_le(), n)\n} else {\n    assert_eq!(n.to_le(), n.swap_bytes())\n}
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn checked_add(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer addition. Computes self + rhs, returning None\nif overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!((usize::MAX - 2).checked_add(1), Some(usize::MAX - 1));\nassert_eq!((usize::MAX - 2).checked_add(3), None);
    \n
    Source

    pub const fn strict_add(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer addition. Computes self + rhs, panicking\nif overflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!((usize::MAX - 2).strict_add(1), usize::MAX - 1);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = (usize::MAX - 2).strict_add(3);
    \n
    1.79.0 (const: 1.79.0) · Source

    pub const unsafe fn unchecked_add(self, rhs: usize) -> usize

    Available on 64-bit only.

    Unchecked integer addition. Computes self + rhs, assuming overflow\ncannot occur.

    \n

    Calling x.unchecked_add(y) is semantically equivalent to calling\nx.checked_add(y).unwrap_unchecked().

    \n

    If you’re just trying to avoid the panic in debug mode, then do not\nuse this. Instead, you’re looking for wrapping_add.

    \n
    §Safety
    \n

    This results in undefined behavior when\nself + rhs > usize::MAX or self + rhs < usize::MIN,\ni.e. when checked_add would return None.

    \n
    1.66.0 (const: 1.66.0) · Source

    pub const fn checked_add_signed(self, rhs: isize) -> Option<usize>

    Available on 64-bit only.

    Checked addition with a signed integer. Computes self + rhs,\nreturning None if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.checked_add_signed(2), Some(3));\nassert_eq!(1usize.checked_add_signed(-2), None);\nassert_eq!((usize::MAX - 2).checked_add_signed(3), None);
    \n
    Source

    pub const fn strict_add_signed(self, rhs: isize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict addition with a signed integer. Computes self + rhs,\npanicking if overflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(1usize.strict_add_signed(2), 3);
    \n

    The following panic because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 1usize.strict_add_signed(-2);
    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = (usize::MAX - 2).strict_add_signed(3);
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn checked_sub(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer subtraction. Computes self - rhs, returning\nNone if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.checked_sub(1), Some(0));\nassert_eq!(0usize.checked_sub(1), None);
    \n
    Source

    pub const fn strict_sub(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer subtraction. Computes self - rhs, panicking if\noverflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(1usize.strict_sub(1), 0);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 0usize.strict_sub(1);
    \n
    1.79.0 (const: 1.79.0) · Source

    pub const unsafe fn unchecked_sub(self, rhs: usize) -> usize

    Available on 64-bit only.

    Unchecked integer subtraction. Computes self - rhs, assuming overflow\ncannot occur.

    \n

    Calling x.unchecked_sub(y) is semantically equivalent to calling\nx.checked_sub(y).unwrap_unchecked().

    \n

    If you’re just trying to avoid the panic in debug mode, then do not\nuse this. Instead, you’re looking for wrapping_sub.

    \n

    If you find yourself writing code like this:

    \n\n
    if foo >= bar {\n    // SAFETY: just checked it will not overflow\n    let diff = unsafe { foo.unchecked_sub(bar) };\n    // ... use diff ...\n}
    \n

    Consider changing it to

    \n\n
    if let Some(diff) = foo.checked_sub(bar) {\n    // ... use diff ...\n}
    \n

    As that does exactly the same thing – including telling the optimizer\nthat the subtraction cannot overflow – but avoids needing unsafe.

    \n
    §Safety
    \n

    This results in undefined behavior when\nself - rhs > usize::MAX or self - rhs < usize::MIN,\ni.e. when checked_sub would return None.

    \n
    Source

    pub const fn checked_sub_signed(self, rhs: isize) -> Option<usize>

    🔬This is a nightly-only experimental API. (mixed_integer_ops_unsigned_sub)
    Available on 64-bit only.

    Checked subtraction with a signed integer. Computes self - rhs,\nreturning None if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(mixed_integer_ops_unsigned_sub)]\nassert_eq!(1usize.checked_sub_signed(2), None);\nassert_eq!(1usize.checked_sub_signed(-2), Some(3));\nassert_eq!((usize::MAX - 2).checked_sub_signed(-4), None);
    \n
    Source

    pub const fn checked_signed_diff(self, rhs: usize) -> Option<isize>

    🔬This is a nightly-only experimental API. (unsigned_signed_diff)
    Available on 64-bit only.

    Checked integer subtraction. Computes self - rhs and checks if the result fits into an isize, returning None if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(unsigned_signed_diff)]\nassert_eq!(10usize.checked_signed_diff(2), Some(8));\nassert_eq!(2usize.checked_signed_diff(10), Some(-8));\nassert_eq!(usize::MAX.checked_signed_diff(isize::MAX as usize), None);\nassert_eq!((isize::MAX as usize).checked_signed_diff(usize::MAX), Some(isize::MIN));\nassert_eq!((isize::MAX as usize + 1).checked_signed_diff(0), None);\nassert_eq!(usize::MAX.checked_signed_diff(usize::MAX), Some(0));
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn checked_mul(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer multiplication. Computes self * rhs, returning\nNone if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.checked_mul(1), Some(5));\nassert_eq!(usize::MAX.checked_mul(2), None);
    \n
    Source

    pub const fn strict_mul(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer multiplication. Computes self * rhs, panicking if\noverflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(5usize.strict_mul(1), 5);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = usize::MAX.strict_mul(2);
    \n
    1.79.0 (const: 1.79.0) · Source

    pub const unsafe fn unchecked_mul(self, rhs: usize) -> usize

    Available on 64-bit only.

    Unchecked integer multiplication. Computes self * rhs, assuming overflow\ncannot occur.

    \n

    Calling x.unchecked_mul(y) is semantically equivalent to calling\nx.checked_mul(y).unwrap_unchecked().

    \n

    If you’re just trying to avoid the panic in debug mode, then do not\nuse this. Instead, you’re looking for wrapping_mul.

    \n
    §Safety
    \n

    This results in undefined behavior when\nself * rhs > usize::MAX or self * rhs < usize::MIN,\ni.e. when checked_mul would return None.

    \n
    1.0.0 (const: 1.52.0) · Source

    pub const fn checked_div(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer division. Computes self / rhs, returning None\nif rhs == 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(128usize.checked_div(2), Some(64));\nassert_eq!(1usize.checked_div(0), None);
    \n
    Source

    pub const fn strict_div(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer division. Computes self / rhs.

    \n

    Strict division on unsigned types is just normal division. There’s no\nway overflow could ever happen. This function exists so that all\noperations are accounted for in the strict operations.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(100usize.strict_div(10), 10);
    \n

    The following panics because of division by zero:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = (1usize).strict_div(0);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn checked_div_euclid(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked Euclidean division. Computes self.div_euclid(rhs), returning None\nif rhs == 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(128usize.checked_div_euclid(2), Some(64));\nassert_eq!(1usize.checked_div_euclid(0), None);
    \n
    Source

    pub const fn strict_div_euclid(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict Euclidean division. Computes self.div_euclid(rhs).

    \n

    Strict division on unsigned types is just normal division. There’s no\nway overflow could ever happen. This function exists so that all\noperations are accounted for in the strict operations. Since, for the\npositive integers, all common definitions of division are equal, this\nis exactly equal to self.strict_div(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(100usize.strict_div_euclid(10), 10);
    \n

    The following panics because of division by zero:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = (1usize).strict_div_euclid(0);
    \n
    1.7.0 (const: 1.52.0) · Source

    pub const fn checked_rem(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer remainder. Computes self % rhs, returning None\nif rhs == 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.checked_rem(2), Some(1));\nassert_eq!(5usize.checked_rem(0), None);
    \n
    Source

    pub const fn strict_rem(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer remainder. Computes self % rhs.

    \n

    Strict remainder calculation on unsigned types is just the regular\nremainder calculation. There’s no way overflow could ever happen.\nThis function exists so that all operations are accounted for in the\nstrict operations.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(100usize.strict_rem(10), 0);
    \n

    The following panics because of division by zero:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 5usize.strict_rem(0);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn checked_rem_euclid(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked Euclidean modulo. Computes self.rem_euclid(rhs), returning None\nif rhs == 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.checked_rem_euclid(2), Some(1));\nassert_eq!(5usize.checked_rem_euclid(0), None);
    \n
    Source

    pub const fn strict_rem_euclid(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict Euclidean modulo. Computes self.rem_euclid(rhs).

    \n

    Strict modulo calculation on unsigned types is just the regular\nremainder calculation. There’s no way overflow could ever happen.\nThis function exists so that all operations are accounted for in the\nstrict operations. Since, for the positive integers, all common\ndefinitions of division are equal, this is exactly equal to\nself.strict_rem(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(100usize.strict_rem_euclid(10), 0);
    \n

    The following panics because of division by zero:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 5usize.strict_rem_euclid(0);
    \n
    Source

    pub const unsafe fn unchecked_disjoint_bitor(self, other: usize) -> usize

    🔬This is a nightly-only experimental API. (disjoint_bitor)
    Available on 64-bit only.

    Same value as self | other, but UB if any bit position is set in both inputs.

    \n

    This is a situational micro-optimization for places where you’d rather\nuse addition on some platforms and bitwise or on other platforms, based\non exactly which instructions combine better with whatever else you’re\ndoing. Note that there’s no reason to bother using this for places\nwhere it’s clear from the operations involved that they can’t overlap.\nFor example, if you’re combining u16s into a u32 with\n((a as u32) << 16) | (b as u32), that’s fine, as the backend will\nknow those sides of the | are disjoint without needing help.

    \n
    §Examples
    \n
    #![feature(disjoint_bitor)]\n\n// SAFETY: `1` and `4` have no bits in common.\nunsafe {\n    assert_eq!(1_usize.unchecked_disjoint_bitor(4), 5);\n}
    \n
    §Safety
    \n

    Requires that (self & other) == 0, otherwise it’s immediate UB.

    \n

    Equivalently, requires that (self | other) == (self + other).

    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn ilog(self, base: usize) -> u32

    Available on 64-bit only.

    Returns the logarithm of the number with respect to an arbitrary base,\nrounded down.

    \n

    This method might not be optimized owing to implementation details;\nilog2 can produce results more efficiently for base 2, and ilog10\ncan produce results more efficiently for base 10.

    \n
    §Panics
    \n

    This function will panic if self is zero, or if base is less than 2.

    \n
    §Examples
    \n
    assert_eq!(5usize.ilog(5), 1);
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn ilog2(self) -> u32

    Available on 64-bit only.

    Returns the base 2 logarithm of the number, rounded down.

    \n
    §Panics
    \n

    This function will panic if self is zero.

    \n
    §Examples
    \n
    assert_eq!(2usize.ilog2(), 1);
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn ilog10(self) -> u32

    Available on 64-bit only.

    Returns the base 10 logarithm of the number, rounded down.

    \n
    §Panics
    \n

    This function will panic if self is zero.

    \n
    §Example
    \n
    assert_eq!(10usize.ilog10(), 1);
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn checked_ilog(self, base: usize) -> Option<u32>

    Available on 64-bit only.

    Returns the logarithm of the number with respect to an arbitrary base,\nrounded down.

    \n

    Returns None if the number is zero, or if the base is not at least 2.

    \n

    This method might not be optimized owing to implementation details;\nchecked_ilog2 can produce results more efficiently for base 2, and\nchecked_ilog10 can produce results more efficiently for base 10.

    \n
    §Examples
    \n
    assert_eq!(5usize.checked_ilog(5), Some(1));
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn checked_ilog2(self) -> Option<u32>

    Available on 64-bit only.

    Returns the base 2 logarithm of the number, rounded down.

    \n

    Returns None if the number is zero.

    \n
    §Examples
    \n
    assert_eq!(2usize.checked_ilog2(), Some(1));
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn checked_ilog10(self) -> Option<u32>

    Available on 64-bit only.

    Returns the base 10 logarithm of the number, rounded down.

    \n

    Returns None if the number is zero.

    \n
    §Examples
    \n
    assert_eq!(10usize.checked_ilog10(), Some(1));
    \n
    1.7.0 (const: 1.47.0) · Source

    pub const fn checked_neg(self) -> Option<usize>

    Available on 64-bit only.

    Checked negation. Computes -self, returning None unless self == 0.

    \n

    Note that negating any positive integer will overflow.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0usize.checked_neg(), Some(0));\nassert_eq!(1usize.checked_neg(), None);
    \n
    Source

    pub const fn strict_neg(self) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict negation. Computes -self, panicking unless self == 0.

    \n

    Note that negating any positive integer will overflow.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(0usize.strict_neg(), 0);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 1usize.strict_neg();
    \n
    1.7.0 (const: 1.47.0) · Source

    pub const fn checked_shl(self, rhs: u32) -> Option<usize>

    Available on 64-bit only.

    Checked shift left. Computes self << rhs, returning None\nif rhs is larger than or equal to the number of bits in self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0x1usize.checked_shl(4), Some(0x10));\nassert_eq!(0x10usize.checked_shl(129), None);\nassert_eq!(0x10usize.checked_shl(63), Some(0));
    \n
    Source

    pub const fn strict_shl(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict shift left. Computes self << rhs, panicking if rhs is larger\nthan or equal to the number of bits in self.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(0x1usize.strict_shl(4), 0x10);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 0x10usize.strict_shl(129);
    \n
    Source

    pub const unsafe fn unchecked_shl(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (unchecked_shifts)
    Available on 64-bit only.

    Unchecked shift left. Computes self << rhs, assuming that\nrhs is less than the number of bits in self.

    \n
    §Safety
    \n

    This results in undefined behavior if rhs is larger than\nor equal to the number of bits in self,\ni.e. when checked_shl would return None.

    \n
    Source

    pub const fn unbounded_shl(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (unbounded_shifts)
    Available on 64-bit only.

    Unbounded shift left. Computes self << rhs, without bounding the value of rhs.

    \n

    If rhs is larger or equal to the number of bits in self,\nthe entire value is shifted out, and 0 is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(unbounded_shifts)]\nassert_eq!(0x1usize.unbounded_shl(4), 0x10);\nassert_eq!(0x1usize.unbounded_shl(129), 0);
    \n
    1.7.0 (const: 1.47.0) · Source

    pub const fn checked_shr(self, rhs: u32) -> Option<usize>

    Available on 64-bit only.

    Checked shift right. Computes self >> rhs, returning None\nif rhs is larger than or equal to the number of bits in self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0x10usize.checked_shr(4), Some(0x1));\nassert_eq!(0x10usize.checked_shr(129), None);
    \n
    Source

    pub const fn strict_shr(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict shift right. Computes self >> rhs, panicking rhs is\nlarger than or equal to the number of bits in self.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(0x10usize.strict_shr(4), 0x1);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 0x10usize.strict_shr(129);
    \n
    Source

    pub const unsafe fn unchecked_shr(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (unchecked_shifts)
    Available on 64-bit only.

    Unchecked shift right. Computes self >> rhs, assuming that\nrhs is less than the number of bits in self.

    \n
    §Safety
    \n

    This results in undefined behavior if rhs is larger than\nor equal to the number of bits in self,\ni.e. when checked_shr would return None.

    \n
    Source

    pub const fn unbounded_shr(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (unbounded_shifts)
    Available on 64-bit only.

    Unbounded shift right. Computes self >> rhs, without bounding the value of rhs.

    \n

    If rhs is larger or equal to the number of bits in self,\nthe entire value is shifted out, and 0 is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(unbounded_shifts)]\nassert_eq!(0x10usize.unbounded_shr(4), 0x1);\nassert_eq!(0x10usize.unbounded_shr(129), 0);
    \n
    1.34.0 (const: 1.50.0) · Source

    pub const fn checked_pow(self, exp: u32) -> Option<usize>

    Available on 64-bit only.

    Checked exponentiation. Computes self.pow(exp), returning None if\noverflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.checked_pow(5), Some(32));\nassert_eq!(usize::MAX.checked_pow(2), None);
    \n
    Source

    pub const fn strict_pow(self, exp: u32) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict exponentiation. Computes self.pow(exp), panicking if\noverflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(2usize.strict_pow(5), 32);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = usize::MAX.strict_pow(2);
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn saturating_add(self, rhs: usize) -> usize

    Available on 64-bit only.

    Saturating integer addition. Computes self + rhs, saturating at\nthe numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.saturating_add(1), 101);\nassert_eq!(usize::MAX.saturating_add(127), usize::MAX);
    \n
    1.66.0 (const: 1.66.0) · Source

    pub const fn saturating_add_signed(self, rhs: isize) -> usize

    Available on 64-bit only.

    Saturating addition with a signed integer. Computes self + rhs,\nsaturating at the numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.saturating_add_signed(2), 3);\nassert_eq!(1usize.saturating_add_signed(-2), 0);\nassert_eq!((usize::MAX - 2).saturating_add_signed(4), usize::MAX);
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn saturating_sub(self, rhs: usize) -> usize

    Available on 64-bit only.

    Saturating integer subtraction. Computes self - rhs, saturating\nat the numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.saturating_sub(27), 73);\nassert_eq!(13usize.saturating_sub(127), 0);
    \n
    Source

    pub const fn saturating_sub_signed(self, rhs: isize) -> usize

    🔬This is a nightly-only experimental API. (mixed_integer_ops_unsigned_sub)
    Available on 64-bit only.

    Saturating integer subtraction. Computes self - rhs, saturating at\nthe numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(mixed_integer_ops_unsigned_sub)]\nassert_eq!(1usize.saturating_sub_signed(2), 0);\nassert_eq!(1usize.saturating_sub_signed(-2), 3);\nassert_eq!((usize::MAX - 2).saturating_sub_signed(-4), usize::MAX);
    \n
    1.7.0 (const: 1.47.0) · Source

    pub const fn saturating_mul(self, rhs: usize) -> usize

    Available on 64-bit only.

    Saturating integer multiplication. Computes self * rhs,\nsaturating at the numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.saturating_mul(10), 20);\nassert_eq!((usize::MAX).saturating_mul(10), usize::MAX);
    \n
    1.58.0 (const: 1.58.0) · Source

    pub const fn saturating_div(self, rhs: usize) -> usize

    Available on 64-bit only.

    Saturating integer division. Computes self / rhs, saturating at the\nnumeric bounds instead of overflowing.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.saturating_div(2), 2);\n
    \n
    1.34.0 (const: 1.50.0) · Source

    pub const fn saturating_pow(self, exp: u32) -> usize

    Available on 64-bit only.

    Saturating integer exponentiation. Computes self.pow(exp),\nsaturating at the numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(4usize.saturating_pow(3), 64);\nassert_eq!(usize::MAX.saturating_pow(2), usize::MAX);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn wrapping_add(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) addition. Computes self + rhs,\nwrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(200usize.wrapping_add(55), 255);\nassert_eq!(200usize.wrapping_add(usize::MAX), 199);
    \n
    1.66.0 (const: 1.66.0) · Source

    pub const fn wrapping_add_signed(self, rhs: isize) -> usize

    Available on 64-bit only.

    Wrapping (modular) addition with a signed integer. Computes\nself + rhs, wrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.wrapping_add_signed(2), 3);\nassert_eq!(1usize.wrapping_add_signed(-2), usize::MAX);\nassert_eq!((usize::MAX - 2).wrapping_add_signed(4), 1);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn wrapping_sub(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) subtraction. Computes self - rhs,\nwrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_sub(100), 0);\nassert_eq!(100usize.wrapping_sub(usize::MAX), 101);
    \n
    Source

    pub const fn wrapping_sub_signed(self, rhs: isize) -> usize

    🔬This is a nightly-only experimental API. (mixed_integer_ops_unsigned_sub)
    Available on 64-bit only.

    Wrapping (modular) subtraction with a signed integer. Computes\nself - rhs, wrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(mixed_integer_ops_unsigned_sub)]\nassert_eq!(1usize.wrapping_sub_signed(2), usize::MAX);\nassert_eq!(1usize.wrapping_sub_signed(-2), 3);\nassert_eq!((usize::MAX - 2).wrapping_sub_signed(-4), 1);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn wrapping_mul(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) multiplication. Computes self * rhs, wrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types.\nWhich explains why u8 is used here.

    \n\n
    assert_eq!(10u8.wrapping_mul(12), 120);\nassert_eq!(25u8.wrapping_mul(12), 44);
    \n
    1.2.0 (const: 1.52.0) · Source

    pub const fn wrapping_div(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) division. Computes self / rhs.

    \n

    Wrapped division on unsigned types is just normal division. There’s\nno way wrapping could ever happen. This function exists so that all\noperations are accounted for in the wrapping operations.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_div(10), 10);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn wrapping_div_euclid(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping Euclidean division. Computes self.div_euclid(rhs).

    \n

    Wrapped division on unsigned types is just normal division. There’s\nno way wrapping could ever happen. This function exists so that all\noperations are accounted for in the wrapping operations. Since, for\nthe positive integers, all common definitions of division are equal,\nthis is exactly equal to self.wrapping_div(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_div_euclid(10), 10);
    \n
    1.2.0 (const: 1.52.0) · Source

    pub const fn wrapping_rem(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) remainder. Computes self % rhs.

    \n

    Wrapped remainder calculation on unsigned types is just the regular\nremainder calculation. There’s no way wrapping could ever happen.\nThis function exists so that all operations are accounted for in the\nwrapping operations.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_rem(10), 0);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn wrapping_rem_euclid(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping Euclidean modulo. Computes self.rem_euclid(rhs).

    \n

    Wrapped modulo calculation on unsigned types is just the regular\nremainder calculation. There’s no way wrapping could ever happen.\nThis function exists so that all operations are accounted for in the\nwrapping operations. Since, for the positive integers, all common\ndefinitions of division are equal, this is exactly equal to\nself.wrapping_rem(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_rem_euclid(10), 0);
    \n
    1.2.0 (const: 1.32.0) · Source

    pub const fn wrapping_neg(self) -> usize

    Available on 64-bit only.

    Wrapping (modular) negation. Computes -self,\nwrapping around at the boundary of the type.

    \n

    Since unsigned types do not have negative equivalents\nall applications of this function will wrap (except for -0).\nFor values smaller than the corresponding signed type’s maximum\nthe result is the same as casting the corresponding signed value.\nAny larger values are equivalent to MAX + 1 - (val - MAX - 1) where\nMAX is the corresponding signed type’s maximum.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0_usize.wrapping_neg(), 0);\nassert_eq!(usize::MAX.wrapping_neg(), 1);\nassert_eq!(13_usize.wrapping_neg(), (!13) + 1);\nassert_eq!(42_usize.wrapping_neg(), !(42 - 1));
    \n
    1.2.0 (const: 1.32.0) · Source

    pub const fn wrapping_shl(self, rhs: u32) -> usize

    Available on 64-bit only.

    Panic-free bitwise shift-left; yields self << mask(rhs),\nwhere mask removes any high-order bits of rhs that\nwould cause the shift to exceed the bitwidth of the type.

    \n

    Note that this is not the same as a rotate-left; the\nRHS of a wrapping shift-left is restricted to the range\nof the type, rather than the bits shifted out of the LHS\nbeing returned to the other end. The primitive integer\ntypes all implement a rotate_left function,\nwhich may be what you want instead.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.wrapping_shl(7), 128);\nassert_eq!(1usize.wrapping_shl(128), 1);
    \n
    1.2.0 (const: 1.32.0) · Source

    pub const fn wrapping_shr(self, rhs: u32) -> usize

    Available on 64-bit only.

    Panic-free bitwise shift-right; yields self >> mask(rhs),\nwhere mask removes any high-order bits of rhs that\nwould cause the shift to exceed the bitwidth of the type.

    \n

    Note that this is not the same as a rotate-right; the\nRHS of a wrapping shift-right is restricted to the range\nof the type, rather than the bits shifted out of the LHS\nbeing returned to the other end. The primitive integer\ntypes all implement a rotate_right function,\nwhich may be what you want instead.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(128usize.wrapping_shr(7), 1);\nassert_eq!(128usize.wrapping_shr(128), 128);
    \n
    1.34.0 (const: 1.50.0) · Source

    pub const fn wrapping_pow(self, exp: u32) -> usize

    Available on 64-bit only.

    Wrapping (modular) exponentiation. Computes self.pow(exp),\nwrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(3usize.wrapping_pow(5), 243);\nassert_eq!(3u8.wrapping_pow(6), 217);
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_add(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates self + rhs.

    \n

    Returns a tuple of the addition along with a boolean indicating\nwhether an arithmetic overflow would occur. If an overflow would\nhave occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_add(2), (7, false));\nassert_eq!(usize::MAX.overflowing_add(1), (0, true));
    \n
    Source

    pub const fn carrying_add(self, rhs: usize, carry: bool) -> (usize, bool)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates self + rhs + carry and returns a tuple containing\nthe sum and the output carry.

    \n

    Performs “ternary addition” of two integer operands and a carry-in\nbit, and returns an output integer and a carry-out bit. This allows\nchaining together multiple additions to create a wider addition, and\ncan be useful for bignum addition.

    \n

    This can be thought of as a 64-bit “full adder”, in the electronics sense.

    \n

    If the input carry is false, this method is equivalent to\noverflowing_add, and the output carry is\nequal to the overflow flag. Note that although carry and overflow\nflags are similar for unsigned integers, they are different for\nsigned integers.

    \n
    §Examples
    \n
    #![feature(bigint_helper_methods)]\n\n//    3  MAX    (a = 3 × 2^64 + 2^64 - 1)\n// +  5    7    (b = 5 × 2^64 + 7)\n// ---------\n//    9    6    (sum = 9 × 2^64 + 6)\n\nlet (a1, a0): (usize, usize) = (3, usize::MAX);\nlet (b1, b0): (usize, usize) = (5, 7);\nlet carry0 = false;\n\nlet (sum0, carry1) = a0.carrying_add(b0, carry0);\nassert_eq!(carry1, true);\nlet (sum1, carry2) = a1.carrying_add(b1, carry1);\nassert_eq!(carry2, false);\n\nassert_eq!((sum1, sum0), (9, 6));
    \n
    1.66.0 (const: 1.66.0) · Source

    pub const fn overflowing_add_signed(self, rhs: isize) -> (usize, bool)

    Available on 64-bit only.

    Calculates self + rhs with a signed rhs.

    \n

    Returns a tuple of the addition along with a boolean indicating\nwhether an arithmetic overflow would occur. If an overflow would\nhave occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.overflowing_add_signed(2), (3, false));\nassert_eq!(1usize.overflowing_add_signed(-2), (usize::MAX, true));\nassert_eq!((usize::MAX - 2).overflowing_add_signed(4), (1, true));
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_sub(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates self - rhs.

    \n

    Returns a tuple of the subtraction along with a boolean indicating\nwhether an arithmetic overflow would occur. If an overflow would\nhave occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_sub(2), (3, false));\nassert_eq!(0usize.overflowing_sub(1), (usize::MAX, true));
    \n
    Source

    pub const fn borrowing_sub(self, rhs: usize, borrow: bool) -> (usize, bool)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates selfrhsborrow and returns a tuple\ncontaining the difference and the output borrow.

    \n

    Performs “ternary subtraction” by subtracting both an integer\noperand and a borrow-in bit from self, and returns an output\ninteger and a borrow-out bit. This allows chaining together multiple\nsubtractions to create a wider subtraction, and can be useful for\nbignum subtraction.

    \n
    §Examples
    \n
    #![feature(bigint_helper_methods)]\n\n//    9    6    (a = 9 × 2^64 + 6)\n// -  5    7    (b = 5 × 2^64 + 7)\n// ---------\n//    3  MAX    (diff = 3 × 2^64 + 2^64 - 1)\n\nlet (a1, a0): (usize, usize) = (9, 6);\nlet (b1, b0): (usize, usize) = (5, 7);\nlet borrow0 = false;\n\nlet (diff0, borrow1) = a0.borrowing_sub(b0, borrow0);\nassert_eq!(borrow1, true);\nlet (diff1, borrow2) = a1.borrowing_sub(b1, borrow1);\nassert_eq!(borrow2, false);\n\nassert_eq!((diff1, diff0), (3, usize::MAX));
    \n
    Source

    pub const fn overflowing_sub_signed(self, rhs: isize) -> (usize, bool)

    🔬This is a nightly-only experimental API. (mixed_integer_ops_unsigned_sub)
    Available on 64-bit only.

    Calculates self - rhs with a signed rhs

    \n

    Returns a tuple of the subtraction along with a boolean indicating\nwhether an arithmetic overflow would occur. If an overflow would\nhave occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(mixed_integer_ops_unsigned_sub)]\nassert_eq!(1usize.overflowing_sub_signed(2), (usize::MAX, true));\nassert_eq!(1usize.overflowing_sub_signed(-2), (3, false));\nassert_eq!((usize::MAX - 2).overflowing_sub_signed(-4), (1, true));
    \n
    1.60.0 (const: 1.60.0) · Source

    pub const fn abs_diff(self, other: usize) -> usize

    Available on 64-bit only.

    Computes the absolute difference between self and other.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.abs_diff(80), 20usize);\nassert_eq!(100usize.abs_diff(110), 10usize);
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_mul(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the multiplication of self and rhs.

    \n

    Returns a tuple of the multiplication along with a boolean\nindicating whether an arithmetic overflow would occur. If an\noverflow would have occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types.\nWhich explains why u32 is used here.

    \n\n
    assert_eq!(5u32.overflowing_mul(2), (10, false));\nassert_eq!(1_000_000_000u32.overflowing_mul(10), (1410065408, true));
    \n
    Source

    pub const fn widening_mul(self, rhs: usize) -> (usize, usize)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates the complete product self * rhs without the possibility to overflow.

    \n

    This returns the low-order (wrapping) bits and the high-order (overflow) bits\nof the result as two separate values, in that order.

    \n

    If you also need to add a carry to the wide result, then you want\nSelf::carrying_mul instead.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types.\nWhich explains why u32 is used here.

    \n\n
    #![feature(bigint_helper_methods)]\nassert_eq!(5u32.widening_mul(2), (10, 0));\nassert_eq!(1_000_000_000u32.widening_mul(10), (1410065408, 2));
    \n
    Source

    pub const fn carrying_mul(self, rhs: usize, carry: usize) -> (usize, usize)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates the “full multiplication” self * rhs + carry\nwithout the possibility to overflow.

    \n

    This returns the low-order (wrapping) bits and the high-order (overflow) bits\nof the result as two separate values, in that order.

    \n

    Performs “long multiplication” which takes in an extra amount to add, and may return an\nadditional amount of overflow. This allows for chaining together multiple\nmultiplications to create “big integers” which represent larger values.

    \n

    If you don’t need the carry, then you can use Self::widening_mul instead.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types.\nWhich explains why u32 is used here.

    \n\n
    #![feature(bigint_helper_methods)]\nassert_eq!(5u32.carrying_mul(2, 0), (10, 0));\nassert_eq!(5u32.carrying_mul(2, 10), (20, 0));\nassert_eq!(1_000_000_000u32.carrying_mul(10, 0), (1410065408, 2));\nassert_eq!(1_000_000_000u32.carrying_mul(10, 10), (1410065418, 2));\nassert_eq!(usize::MAX.carrying_mul(usize::MAX, usize::MAX), (0, usize::MAX));
    \n

    This is the core operation needed for scalar multiplication when\nimplementing it for wider-than-native types.

    \n\n
    #![feature(bigint_helper_methods)]\nfn scalar_mul_eq(little_endian_digits: &mut Vec<u16>, multiplicand: u16) {\n    let mut carry = 0;\n    for d in little_endian_digits.iter_mut() {\n        (*d, carry) = d.carrying_mul(multiplicand, carry);\n    }\n    if carry != 0 {\n        little_endian_digits.push(carry);\n    }\n}\n\nlet mut v = vec![10, 20];\nscalar_mul_eq(&mut v, 3);\nassert_eq!(v, [30, 60]);\n\nassert_eq!(0x87654321_u64 * 0xFEED, 0x86D3D159E38D);\nlet mut v = vec![0x4321, 0x8765];\nscalar_mul_eq(&mut v, 0xFEED);\nassert_eq!(v, [0xE38D, 0xD159, 0x86D3]);
    \n

    If carry is zero, this is similar to overflowing_mul,\nexcept that it gives the value of the overflow instead of just whether one happened:

    \n\n
    #![feature(bigint_helper_methods)]\nlet r = u8::carrying_mul(7, 13, 0);\nassert_eq!((r.0, r.1 != 0), u8::overflowing_mul(7, 13));\nlet r = u8::carrying_mul(13, 42, 0);\nassert_eq!((r.0, r.1 != 0), u8::overflowing_mul(13, 42));
    \n

    The value of the first field in the returned tuple matches what you’d get\nby combining the wrapping_mul and\nwrapping_add methods:

    \n\n
    #![feature(bigint_helper_methods)]\nassert_eq!(\n    789_u16.carrying_mul(456, 123).0,\n    789_u16.wrapping_mul(456).wrapping_add(123),\n);
    \n
    Source

    pub const fn carrying_mul_add(\n self,\n rhs: usize,\n carry: usize,\n add: usize,\n) -> (usize, usize)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates the “full multiplication” self * rhs + carry1 + carry2\nwithout the possibility to overflow.

    \n

    This returns the low-order (wrapping) bits and the high-order (overflow) bits\nof the result as two separate values, in that order.

    \n

    Performs “long multiplication” which takes in an extra amount to add, and may return an\nadditional amount of overflow. This allows for chaining together multiple\nmultiplications to create “big integers” which represent larger values.

    \n

    If you don’t need either carry, then you can use Self::widening_mul instead,\nand if you only need one carry, then you can use Self::carrying_mul instead.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types,\nwhich explains why u32 is used here.

    \n\n
    #![feature(bigint_helper_methods)]\nassert_eq!(5u32.carrying_mul_add(2, 0, 0), (10, 0));\nassert_eq!(5u32.carrying_mul_add(2, 10, 10), (30, 0));\nassert_eq!(1_000_000_000u32.carrying_mul_add(10, 0, 0), (1410065408, 2));\nassert_eq!(1_000_000_000u32.carrying_mul_add(10, 10, 10), (1410065428, 2));\nassert_eq!(usize::MAX.carrying_mul_add(usize::MAX, usize::MAX, usize::MAX), (usize::MAX, usize::MAX));
    \n

    This is the core per-digit operation for “grade school” O(n²) multiplication.

    \n

    Please note that this example is shared between integer types,\nusing u8 for simplicity of the demonstration.

    \n\n
    #![feature(bigint_helper_methods)]\n\nfn quadratic_mul<const N: usize>(a: [u8; N], b: [u8; N]) -> [u8; N] {\n    let mut out = [0; N];\n    for j in 0..N {\n        let mut carry = 0;\n        for i in 0..(N - j) {\n            (out[j + i], carry) = u8::carrying_mul_add(a[i], b[j], out[j + i], carry);\n        }\n    }\n    out\n}\n\n// -1 * -1 == 1\nassert_eq!(quadratic_mul([0xFF; 3], [0xFF; 3]), [1, 0, 0]);\n\nassert_eq!(u32::wrapping_mul(0x9e3779b9, 0x7f4a7c15), 0xCFFC982D);\nassert_eq!(\n    quadratic_mul(u32::to_le_bytes(0x9e3779b9), u32::to_le_bytes(0x7f4a7c15)),\n    u32::to_le_bytes(0xCFFC982D)\n);
    \n
    1.7.0 (const: 1.52.0) · Source

    pub const fn overflowing_div(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the divisor when self is divided by rhs.

    \n

    Returns a tuple of the divisor along with a boolean indicating\nwhether an arithmetic overflow would occur. Note that for unsigned\nintegers overflow never occurs, so the second value is always\nfalse.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_div(2), (2, false));
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn overflowing_div_euclid(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the quotient of Euclidean division self.div_euclid(rhs).

    \n

    Returns a tuple of the divisor along with a boolean indicating\nwhether an arithmetic overflow would occur. Note that for unsigned\nintegers overflow never occurs, so the second value is always\nfalse.\nSince, for the positive integers, all common\ndefinitions of division are equal, this\nis exactly equal to self.overflowing_div(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_div_euclid(2), (2, false));
    \n
    1.7.0 (const: 1.52.0) · Source

    pub const fn overflowing_rem(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the remainder when self is divided by rhs.

    \n

    Returns a tuple of the remainder after dividing along with a boolean\nindicating whether an arithmetic overflow would occur. Note that for\nunsigned integers overflow never occurs, so the second value is\nalways false.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_rem(2), (1, false));
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn overflowing_rem_euclid(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the remainder self.rem_euclid(rhs) as if by Euclidean division.

    \n

    Returns a tuple of the modulo after dividing along with a boolean\nindicating whether an arithmetic overflow would occur. Note that for\nunsigned integers overflow never occurs, so the second value is\nalways false.\nSince, for the positive integers, all common\ndefinitions of division are equal, this operation\nis exactly equal to self.overflowing_rem(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_rem_euclid(2), (1, false));
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_neg(self) -> (usize, bool)

    Available on 64-bit only.

    Negates self in an overflowing fashion.

    \n

    Returns !self + 1 using wrapping operations to return the value\nthat represents the negation of this unsigned value. Note that for\npositive unsigned values overflow always occurs, but negating 0 does\nnot overflow.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0usize.overflowing_neg(), (0, false));\nassert_eq!(2usize.overflowing_neg(), (-2i32 as usize, true));
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_shl(self, rhs: u32) -> (usize, bool)

    Available on 64-bit only.

    Shifts self left by rhs bits.

    \n

    Returns a tuple of the shifted version of self along with a boolean\nindicating whether the shift value was larger than or equal to the\nnumber of bits. If the shift value is too large, then value is\nmasked (N-1) where N is the number of bits, and this value is then\nused to perform the shift.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0x1usize.overflowing_shl(4), (0x10, false));\nassert_eq!(0x1usize.overflowing_shl(132), (0x10, true));\nassert_eq!(0x10usize.overflowing_shl(63), (0, false));
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_shr(self, rhs: u32) -> (usize, bool)

    Available on 64-bit only.

    Shifts self right by rhs bits.

    \n

    Returns a tuple of the shifted version of self along with a boolean\nindicating whether the shift value was larger than or equal to the\nnumber of bits. If the shift value is too large, then value is\nmasked (N-1) where N is the number of bits, and this value is then\nused to perform the shift.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0x10usize.overflowing_shr(4), (0x1, false));\nassert_eq!(0x10usize.overflowing_shr(132), (0x1, true));
    \n
    1.34.0 (const: 1.50.0) · Source

    pub const fn overflowing_pow(self, exp: u32) -> (usize, bool)

    Available on 64-bit only.

    Raises self to the power of exp, using exponentiation by squaring.

    \n

    Returns a tuple of the exponentiation along with a bool indicating\nwhether an overflow happened.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(3usize.overflowing_pow(5), (243, false));\nassert_eq!(3u8.overflowing_pow(6), (217, true));
    \n
    1.0.0 (const: 1.50.0) · Source

    pub const fn pow(self, exp: u32) -> usize

    Available on 64-bit only.

    Raises self to the power of exp, using exponentiation by squaring.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.pow(5), 32);
    \n
    1.84.0 (const: 1.84.0) · Source

    pub const fn isqrt(self) -> usize

    Available on 64-bit only.

    Returns the square root of the number, rounded down.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(10usize.isqrt(), 3);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn div_euclid(self, rhs: usize) -> usize

    Available on 64-bit only.

    Performs Euclidean division.

    \n

    Since, for the positive integers, all common\ndefinitions of division are equal, this\nis exactly equal to self / rhs.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(7usize.div_euclid(4), 1); // or any other integer type
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn rem_euclid(self, rhs: usize) -> usize

    Available on 64-bit only.

    Calculates the least remainder of self (mod rhs).

    \n

    Since, for the positive integers, all common\ndefinitions of division are equal, this\nis exactly equal to self % rhs.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(7usize.rem_euclid(4), 3); // or any other integer type
    \n
    Source

    pub const fn div_floor(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (int_roundings)
    Available on 64-bit only.

    Calculates the quotient of self and rhs, rounding the result towards negative infinity.

    \n

    This is the same as performing self / rhs for all unsigned integers.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(int_roundings)]\nassert_eq!(7_usize.div_floor(4), 1);
    \n
    1.73.0 (const: 1.73.0) · Source

    pub const fn div_ceil(self, rhs: usize) -> usize

    Available on 64-bit only.

    Calculates the quotient of self and rhs, rounding the result towards positive infinity.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(7_usize.div_ceil(4), 2);
    \n
    1.73.0 (const: 1.73.0) · Source

    pub const fn next_multiple_of(self, rhs: usize) -> usize

    Available on 64-bit only.

    Calculates the smallest value greater than or equal to self that\nis a multiple of rhs.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Overflow behavior
    \n

    On overflow, this function will panic if overflow checks are enabled (default in debug\nmode) and wrap if overflow checks are disabled (default in release mode).

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(16_usize.next_multiple_of(8), 16);\nassert_eq!(23_usize.next_multiple_of(8), 24);
    \n
    1.73.0 (const: 1.73.0) · Source

    pub const fn checked_next_multiple_of(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Calculates the smallest value greater than or equal to self that\nis a multiple of rhs. Returns None if rhs is zero or the\noperation would result in overflow.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(16_usize.checked_next_multiple_of(8), Some(16));\nassert_eq!(23_usize.checked_next_multiple_of(8), Some(24));\nassert_eq!(1_usize.checked_next_multiple_of(0), None);\nassert_eq!(usize::MAX.checked_next_multiple_of(2), None);
    \n
    Source

    pub const fn is_multiple_of(self, rhs: usize) -> bool

    🔬This is a nightly-only experimental API. (unsigned_is_multiple_of)
    Available on 64-bit only.

    Returns true if self is an integer multiple of rhs, and false otherwise.

    \n

    This function is equivalent to self % rhs == 0, except that it will not panic\nfor rhs == 0. Instead, 0.is_multiple_of(0) == true, and for any non-zero n,\nn.is_multiple_of(0) == false.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(unsigned_is_multiple_of)]\nassert!(6_usize.is_multiple_of(2));\nassert!(!5_usize.is_multiple_of(2));\n\nassert!(0_usize.is_multiple_of(0));\nassert!(!6_usize.is_multiple_of(0));
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn is_power_of_two(self) -> bool

    Available on 64-bit only.

    Returns true if and only if self == 2^k for some k.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert!(16usize.is_power_of_two());\nassert!(!10usize.is_power_of_two());
    \n
    1.0.0 (const: 1.50.0) · Source

    pub const fn next_power_of_two(self) -> usize

    Available on 64-bit only.

    Returns the smallest power of two greater than or equal to self.

    \n

    When return value overflows (i.e., self > (1 << (N-1)) for type\nuN), it panics in debug mode and the return value is wrapped to 0 in\nrelease mode (the only situation in which this method can return 0).

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.next_power_of_two(), 2);\nassert_eq!(3usize.next_power_of_two(), 4);\nassert_eq!(0usize.next_power_of_two(), 1);
    \n
    1.0.0 (const: 1.50.0) · Source

    pub const fn checked_next_power_of_two(self) -> Option<usize>

    Available on 64-bit only.

    Returns the smallest power of two greater than or equal to self. If\nthe next power of two is greater than the type’s maximum value,\nNone is returned, otherwise the power of two is wrapped in Some.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.checked_next_power_of_two(), Some(2));\nassert_eq!(3usize.checked_next_power_of_two(), Some(4));\nassert_eq!(usize::MAX.checked_next_power_of_two(), None);
    \n
    Source

    pub const fn wrapping_next_power_of_two(self) -> usize

    🔬This is a nightly-only experimental API. (wrapping_next_power_of_two)
    Available on 64-bit only.

    Returns the smallest power of two greater than or equal to n. If\nthe next power of two is greater than the type’s maximum value,\nthe return value is wrapped to 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(wrapping_next_power_of_two)]\n\nassert_eq!(2usize.wrapping_next_power_of_two(), 2);\nassert_eq!(3usize.wrapping_next_power_of_two(), 4);\nassert_eq!(usize::MAX.wrapping_next_power_of_two(), 0);
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn to_be_bytes(self) -> [u8; 8]

    Available on 64-bit only.

    Returns the memory representation of this integer as a byte array in\nbig-endian (network) byte order.

    \n

    Note: This function returns an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let bytes = 0x1234567890123456usize.to_be_bytes();\nassert_eq!(bytes, [0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]);
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn to_le_bytes(self) -> [u8; 8]

    Available on 64-bit only.

    Returns the memory representation of this integer as a byte array in\nlittle-endian byte order.

    \n

    Note: This function returns an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let bytes = 0x1234567890123456usize.to_le_bytes();\nassert_eq!(bytes, [0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]);
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn to_ne_bytes(self) -> [u8; 8]

    Available on 64-bit only.

    Returns the memory representation of this integer as a byte array in\nnative byte order.

    \n

    As the target platform’s native endianness is used, portable code\nshould use to_be_bytes or to_le_bytes, as appropriate,\ninstead.

    \n

    Note: This function returns an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let bytes = 0x1234567890123456usize.to_ne_bytes();\nassert_eq!(\n    bytes,\n    if cfg!(target_endian = \"big\") {\n        [0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]\n    } else {\n        [0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]\n    }\n);
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn from_be_bytes(bytes: [u8; 8]) -> usize

    Available on 64-bit only.

    Creates a native endian integer value from its representation\nas a byte array in big endian.

    \n

    Note: This function takes an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let value = usize::from_be_bytes([0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]);\nassert_eq!(value, 0x1234567890123456);
    \n

    When starting from a slice rather than an array, fallible conversion APIs can be used:

    \n\n
    fn read_be_usize(input: &mut &[u8]) -> usize {\n    let (int_bytes, rest) = input.split_at(std::mem::size_of::<usize>());\n    *input = rest;\n    usize::from_be_bytes(int_bytes.try_into().unwrap())\n}
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn from_le_bytes(bytes: [u8; 8]) -> usize

    Available on 64-bit only.

    Creates a native endian integer value from its representation\nas a byte array in little endian.

    \n

    Note: This function takes an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let value = usize::from_le_bytes([0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]);\nassert_eq!(value, 0x1234567890123456);
    \n

    When starting from a slice rather than an array, fallible conversion APIs can be used:

    \n\n
    fn read_le_usize(input: &mut &[u8]) -> usize {\n    let (int_bytes, rest) = input.split_at(std::mem::size_of::<usize>());\n    *input = rest;\n    usize::from_le_bytes(int_bytes.try_into().unwrap())\n}
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn from_ne_bytes(bytes: [u8; 8]) -> usize

    Available on 64-bit only.

    Creates a native endian integer value from its memory representation\nas a byte array in native endianness.

    \n

    As the target platform’s native endianness is used, portable code\nlikely wants to use from_be_bytes or from_le_bytes, as\nappropriate instead.

    \n

    Note: This function takes an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let value = usize::from_ne_bytes(if cfg!(target_endian = \"big\") {\n    [0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]\n} else {\n    [0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]\n});\nassert_eq!(value, 0x1234567890123456);
    \n

    When starting from a slice rather than an array, fallible conversion APIs can be used:

    \n\n
    fn read_ne_usize(input: &mut &[u8]) -> usize {\n    let (int_bytes, rest) = input.split_at(std::mem::size_of::<usize>());\n    *input = rest;\n    usize::from_ne_bytes(int_bytes.try_into().unwrap())\n}
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn min_value() -> usize

    👎Deprecating in a future version: replaced by the MIN associated constant on this type
    Available on 64-bit only.

    New code should prefer to use\nusize::MIN instead.

    \n

    Returns the smallest value that can be represented by this integer type.

    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn max_value() -> usize

    👎Deprecating in a future version: replaced by the MAX associated constant on this type
    Available on 64-bit only.

    New code should prefer to use\nusize::MAX instead.

    \n

    Returns the largest value that can be represented by this integer type.

    \n
    1.85.0 (const: 1.85.0) · Source

    pub const fn midpoint(self, rhs: usize) -> usize

    Available on 64-bit only.

    Calculates the middle point of self and rhs.

    \n

    midpoint(a, b) is (a + b) / 2 as if it were performed in a\nsufficiently-large unsigned integral type. This implies that the result is\nalways rounded towards zero and that no overflow will ever occur.

    \n
    §Examples
    \n
    assert_eq!(0usize.midpoint(4), 2);\nassert_eq!(1usize.midpoint(4), 2);
    \n
    ",0,"iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl usize

    1.0.0 (const: 1.82.0) · Source

    pub const fn from_str_radix(\n src: &str,\n radix: u32,\n) -> Result<usize, ParseIntError>

    Parses an integer from a string slice with digits in a given base.

    \n

    The string is expected to be an optional\n+\nsign followed by only digits. Leading and trailing non-digit characters (including\nwhitespace) represent an error. Underscores (which are accepted in Rust literals)\nalso represent an error.

    \n

    Digits are a subset of these characters, depending on radix:

    \n
      \n
    • 0-9
    • \n
    • a-z
    • \n
    • A-Z
    • \n
    \n
    §Panics
    \n

    This function panics if radix is not in the range from 2 to 36.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(usize::from_str_radix(\"A\", 16), Ok(10));
    \n

    Trailing space returns error:

    \n\n
    assert!(usize::from_str_radix(\"1 \", 10).is_err());
    \n
    Source

    pub const fn from_ascii(src: &[u8]) -> Result<usize, ParseIntError>

    🔬This is a nightly-only experimental API. (int_from_ascii)

    Parses an integer from an ASCII-byte slice with decimal digits.

    \n

    The characters are expected to be an optional\n+\nsign followed by only digits. Leading and trailing non-digit characters (including\nwhitespace) represent an error. Underscores (which are accepted in Rust literals)\nalso represent an error.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(int_from_ascii)]\n\nassert_eq!(usize::from_ascii(b\"+10\"), Ok(10));
    \n

    Trailing space returns error:

    \n\n
    assert!(usize::from_ascii(b\"1 \").is_err());
    \n
    Source

    pub const fn from_ascii_radix(\n src: &[u8],\n radix: u32,\n) -> Result<usize, ParseIntError>

    🔬This is a nightly-only experimental API. (int_from_ascii)

    Parses an integer from an ASCII-byte slice with digits in a given base.

    \n

    The characters are expected to be an optional\n+\nsign followed by only digits. Leading and trailing non-digit characters (including\nwhitespace) represent an error. Underscores (which are accepted in Rust literals)\nalso represent an error.

    \n

    Digits are a subset of these characters, depending on radix:

    \n
      \n
    • 0-9
    • \n
    • a-z
    • \n
    • A-Z
    • \n
    \n
    §Panics
    \n

    This function panics if radix is not in the range from 2 to 36.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(int_from_ascii)]\n\nassert_eq!(usize::from_ascii_radix(b\"A\", 16), Ok(10));
    \n

    Trailing space returns error:

    \n\n
    assert!(usize::from_ascii_radix(b\"1 \", 10).is_err());
    \n
    ",0,"iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ConstParamTy_ for usize

    ","ConstParamTy_","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Copy for usize

    ","Copy","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Eq for usize

    ","Eq","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl ExtendTarget<usize> for usize

    ","ExtendTarget","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Index for usize

    ","Index","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Pod for usize

    ","Pod","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl PointerLike for usize

    ","PointerLike","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl SimdCast for usize

    ","SimdCast","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl StructuralPartialEq for usize

    ","StructuralPartialEq","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl TruncateTarget<u16> for usize

    ","TruncateTarget","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl TruncateTarget<u8> for usize

    ","TruncateTarget","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl TruncateTarget<usize> for usize

    ","TruncateTarget","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl TrustedStep for usize

    ","TrustedStep","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Uint for usize

    ","Uint","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Unsigned for usize

    ","Unsigned","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl UnsizedConstParamTy for usize

    ","UnsizedConstParamTy","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Weight for usize

    ","Weight","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ZeroablePrimitive for usize

    ","ZeroablePrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"]]]]); + var type_impls = Object.fromEntries([["iced",[["
    §

    impl AbsDiffEq for usize

    §

    type Epsilon = usize

    Used for specifying relative comparisons.
    §

    fn default_epsilon() -> usize

    The default tolerance to use when testing values that are close together. Read more
    §

    fn abs_diff_eq(&self, other: &usize, epsilon: usize) -> bool

    A test for equality that uses the absolute difference to compute the approximate\nequality of two numbers.
    §

    fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool

    The inverse of [AbsDiffEq::abs_diff_eq].
    ","AbsDiffEq","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<T> Accumulate<T> for usize

    §

    fn initial(_capacity: Option<usize>) -> usize

    Create a new Extend of the correct type
    §

    fn accumulate(&mut self, _acc: T)

    Accumulate the input into an accumulator
    ","Accumulate","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Add<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: &BigInt) -> BigInt

    Performs the + operation. Read more
    ","Add<&BigInt>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Add<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: &BigUint) -> BigUint

    Performs the + operation. Read more
    ","Add<&BigUint>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Add<&usize> for usize

    Source§

    type Output = <usize as Add>::Output

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: &usize) -> <usize as Add>::Output

    Performs the + operation. Read more
    ","Add<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Add<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: BigInt) -> BigInt

    Performs the + operation. Read more
    ","Add","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Add<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: BigUint) -> BigUint

    Performs the + operation. Read more
    ","Add","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Add for usize

    Source§

    type Output = usize

    The resulting type after applying the + operator.
    Source§

    const fn add(self, other: usize) -> usize

    Performs the + operation. Read more
    ","Add","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl AddAssign<&usize> for usize

    Source§

    fn add_assign(&mut self, other: &usize)

    Performs the += operation. Read more
    ","AddAssign<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl AddAssign for usize

    Source§

    fn add_assign(&mut self, other: usize)

    Performs the += operation. Read more
    ","AddAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl AsBytes for usize

    §

    fn as_bytes(&self) -> &[u8]

    Gets the bytes of this value. Read more
    §

    fn as_bytes_mut(&mut self) -> &mut [u8]
    where\n Self: FromBytes,

    Gets the bytes of this value mutably. Read more
    §

    fn write_to(&self, bytes: &mut [u8]) -> Option<()>

    Writes a copy of self to bytes. Read more
    §

    fn write_to_prefix(&self, bytes: &mut [u8]) -> Option<()>

    Writes a copy of self to the prefix of bytes. Read more
    §

    fn write_to_suffix(&self, bytes: &mut [u8]) -> Option<()>

    Writes a copy of self to the suffix of bytes. Read more
    ","AsBytes","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<f32> for usize

    Source§

    fn as_(self) -> f32

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<f64> for usize

    Source§

    fn as_(self) -> f64

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i128> for usize

    Source§

    fn as_(self) -> i128

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i16> for usize

    Source§

    fn as_(self) -> i16

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i32> for usize

    Source§

    fn as_(self) -> i32

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i64> for usize

    Source§

    fn as_(self) -> i64

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i8> for usize

    Source§

    fn as_(self) -> i8

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<isize> for usize

    Source§

    fn as_(self) -> isize

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u128> for usize

    Source§

    fn as_(self) -> u128

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u16> for usize

    Source§

    fn as_(self) -> u16

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u32> for usize

    Source§

    fn as_(self) -> u32

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u64> for usize

    Source§

    fn as_(self) -> u64

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u8> for usize

    Source§

    fn as_(self) -> u8

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<usize> for usize

    Source§

    fn as_(self) -> usize

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Binary for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Binary","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitAnd<&usize> for usize

    Source§

    type Output = <usize as BitAnd>::Output

    The resulting type after applying the & operator.
    Source§

    fn bitand(self, other: &usize) -> <usize as BitAnd>::Output

    Performs the & operation. Read more
    ","BitAnd<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitAnd for usize

    Source§

    type Output = usize

    The resulting type after applying the & operator.
    Source§

    fn bitand(self, rhs: usize) -> usize

    Performs the & operation. Read more
    ","BitAnd","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl BitAndAssign<&usize> for usize

    Source§

    fn bitand_assign(&mut self, other: &usize)

    Performs the &= operation. Read more
    ","BitAndAssign<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl BitAndAssign for usize

    Source§

    fn bitand_assign(&mut self, other: usize)

    Performs the &= operation. Read more
    ","BitAndAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl BitBlock for usize

    Source§

    fn bits() -> usize

    How many bits it has
    Source§

    fn from_byte(byte: u8) -> usize

    Convert a byte into this type (lowest-order bits set)
    Source§

    fn count_ones(self) -> usize

    Count the number of 1’s in the bitwise repr
    Source§

    fn count_zeros(self) -> usize

    Count the number of 0’s in the bitwise repr
    Source§

    fn one() -> usize

    Get 1
    Source§

    fn zero() -> usize

    Get 0
    Source§

    fn bytes() -> usize

    How many bytes it has
    ","BitBlock","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl BitField for usize

    §

    const BIT_LENGTH: usize = 64usize

    The number of bits in this bit field. Read more
    §

    fn get_bit(&self, bit: usize) -> bool

    Obtains the bit at the index bit; note that index 0 is the least significant bit, while\nindex length() - 1 is the most significant bit. Read more
    §

    fn get_bits<T>(&self, range: T) -> usize
    where\n T: RangeBounds<usize>,

    Obtains the range of bits specified by range; note that index 0 is the least significant\nbit, while index length() - 1 is the most significant bit. Read more
    §

    fn set_bit(&mut self, bit: usize, value: bool) -> &mut usize

    Sets the bit at the index bit to the value value (where true means a value of ‘1’ and\nfalse means a value of ‘0’); note that index 0 is the least significant bit, while index\nlength() - 1 is the most significant bit. Read more
    §

    fn set_bits<T>(&mut self, range: T, value: usize) -> &mut usize
    where\n T: RangeBounds<usize>,

    Sets the range of bits defined by the range range to the lower bits of value; to be\nspecific, if the range is N bits long, the N lower bits of value will be used; if any of\nthe other bits in value are set to 1, this function will panic. Read more
    ","BitField","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitOr<&usize> for usize

    Source§

    type Output = <usize as BitOr>::Output

    The resulting type after applying the | operator.
    Source§

    fn bitor(self, other: &usize) -> <usize as BitOr>::Output

    Performs the | operation. Read more
    ","BitOr<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitOr for usize

    Source§

    type Output = usize

    The resulting type after applying the | operator.
    Source§

    fn bitor(self, rhs: usize) -> usize

    Performs the | operation. Read more
    ","BitOr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl BitOrAssign<&usize> for usize

    Source§

    fn bitor_assign(&mut self, other: &usize)

    Performs the |= operation. Read more
    ","BitOrAssign<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl BitOrAssign for usize

    Source§

    fn bitor_assign(&mut self, other: usize)

    Performs the |= operation. Read more
    ","BitOrAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitXor<&usize> for usize

    Source§

    type Output = <usize as BitXor>::Output

    The resulting type after applying the ^ operator.
    Source§

    fn bitxor(self, other: &usize) -> <usize as BitXor>::Output

    Performs the ^ operation. Read more
    ","BitXor<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitXor for usize

    Source§

    type Output = usize

    The resulting type after applying the ^ operator.
    Source§

    fn bitxor(self, other: usize) -> usize

    Performs the ^ operation. Read more
    ","BitXor","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl BitXorAssign<&usize> for usize

    Source§

    fn bitxor_assign(&mut self, other: &usize)

    Performs the ^= operation. Read more
    ","BitXorAssign<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl BitXorAssign for usize

    Source§

    fn bitxor_assign(&mut self, other: usize)

    Performs the ^= operation. Read more
    ","BitXorAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Bits for usize

    §

    const EMPTY: usize = 0usize

    A value with all bits unset.
    §

    const ALL: usize = 18_446_744_073_709_551_615usize

    A value with all bits set.
    ","Bits","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Bounded for usize

    Source§

    fn min_value() -> usize

    Returns the smallest finite number this type can represent
    Source§

    fn max_value() -> usize

    Returns the largest finite number this type can represent
    ","Bounded","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CarryingMulAdd for usize

    Source§

    type Unsigned = usize

    🔬This is a nightly-only experimental API. (core_intrinsics_fallbacks)
    Source§

    const fn carrying_mul_add(self, a: usize, b: usize, c: usize) -> (usize, usize)

    🔬This is a nightly-only experimental API. (core_intrinsics_fallbacks)
    ","CarryingMulAdd","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl CastSigned for usize

    §

    type Signed = isize

    The signed integer type with the same size as Self.
    §

    fn cast_signed(self) -> <usize as CastSigned>::Signed

    Cast an integer to the signed integer of the same size.
    ","CastSigned","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl CastUnsigned for usize

    §

    type Unsigned = usize

    The unsigned integer type with the same size as Self.
    §

    fn cast_unsigned(self) -> <usize as CastUnsigned>::Unsigned

    Cast an integer to the unsigned integer of the same size.
    ","CastUnsigned","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Ceil for usize

    §

    fn ceil(self) -> usize

    Rounds to the smallest integer equal or greater than the original value. Read more
    ","Ceil","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedAdd for usize

    Source§

    fn checked_add(&self, v: &usize) -> Option<usize>

    Adds two numbers, checking for overflow. If overflow happens, None is\nreturned.
    ","CheckedAdd","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedDiv for usize

    Source§

    fn checked_div(&self, v: &usize) -> Option<usize>

    Divides two numbers, checking for underflow, overflow and division by\nzero. If any of that happens, None is returned.
    ","CheckedDiv","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedEuclid for usize

    Source§

    fn checked_div_euclid(&self, v: &usize) -> Option<usize>

    Performs euclid division that returns None instead of panicking on division by zero\nand instead of wrapping around on underflow and overflow.
    Source§

    fn checked_rem_euclid(&self, v: &usize) -> Option<usize>

    Finds the euclid remainder of dividing two numbers, checking for underflow, overflow and\ndivision by zero. If any of that happens, None is returned.
    Source§

    fn checked_div_rem_euclid(&self, v: &Self) -> Option<(Self, Self)>

    Returns both the quotient and remainder from checked Euclidean division. Read more
    ","CheckedEuclid","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedMul for usize

    Source§

    fn checked_mul(&self, v: &usize) -> Option<usize>

    Multiplies two numbers, checking for underflow or overflow. If underflow\nor overflow happens, None is returned.
    ","CheckedMul","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedNeg for usize

    Source§

    fn checked_neg(&self) -> Option<usize>

    Negates a number, returning None for results that can’t be represented, like signed MIN\nvalues that can’t be positive, or non-zero unsigned values that can’t be negative. Read more
    ","CheckedNeg","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedRem for usize

    Source§

    fn checked_rem(&self, v: &usize) -> Option<usize>

    Finds the remainder of dividing two numbers, checking for underflow, overflow and division\nby zero. If any of that happens, None is returned. Read more
    ","CheckedRem","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedShl for usize

    Source§

    fn checked_shl(&self, rhs: u32) -> Option<usize>

    Checked shift left. Computes self << rhs, returning None\nif rhs is larger than or equal to the number of bits in self. Read more
    ","CheckedShl","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedShr for usize

    Source§

    fn checked_shr(&self, rhs: u32) -> Option<usize>

    Checked shift right. Computes self >> rhs, returning None\nif rhs is larger than or equal to the number of bits in self. Read more
    ","CheckedShr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedSub for usize

    Source§

    fn checked_sub(&self, v: &usize) -> Option<usize>

    Subtracts two numbers, checking for underflow. If underflow happens,\nNone is returned.
    ","CheckedSub","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Clone for usize

    Source§

    fn clone(&self) -> usize

    Returns a copy of the value. Read more
    1.0.0 · Source§

    fn clone_from(&mut self, source: &Self)

    Performs copy-assignment from source. Read more
    ","Clone","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ConstOne for usize

    Source§

    const ONE: usize = 1usize

    The multiplicative identity element of Self, 1.
    ","ConstOne","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ConstZero for usize

    Source§

    const ZERO: usize = 0usize

    The additive identity element of Self, 0.
    ","ConstZero","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Contiguous for usize

    §

    const MAX_VALUE: usize = 18_446_744_073_709_551_615usize

    The upper inclusive bound for valid instances of this type.
    §

    const MIN_VALUE: usize = 0usize

    The lower inclusive bound for valid instances of this type.
    §

    type Int = usize

    The primitive integer type with an identical representation to this\ntype. Read more
    §

    fn from_integer(value: Self::Int) -> Option<Self>

    If value is within the range for valid instances of this type,\nreturns Some(converted_value), otherwise, returns None. Read more
    §

    fn into_integer(self) -> Self::Int

    Perform the conversion from C into the underlying integral type. This\nmostly exists otherwise generic code would need unsafe for the value as integer Read more
    ","Contiguous","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Debug for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Debug","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Default for usize

    Source§

    fn default() -> usize

    Returns the default value of 0

    \n
    ","Default","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'de> Deserialize<'de> for usize

    Source§

    fn deserialize<D>(\n deserializer: D,\n) -> Result<usize, <D as Deserializer<'de>>::Error>
    where\n D: Deserializer<'de>,

    Deserialize this value from the given Serde deserializer. Read more
    ","Deserialize<'de>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl DisjointBitOr for usize

    Source§

    const unsafe fn disjoint_bitor(self, other: usize) -> usize

    🔬This is a nightly-only experimental API. (core_intrinsics_fallbacks)
    See super::disjoint_bitor; we just need the trait indirection to handle\ndifferent types since calling intrinsics with generics doesn’t work.
    ","DisjointBitOr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Display for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Display","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Div<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: &BigInt) -> BigInt

    Performs the / operation. Read more
    ","Div<&BigInt>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Div<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: &BigUint) -> BigUint

    Performs the / operation. Read more
    ","Div<&BigUint>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Div<&usize> for usize

    Source§

    type Output = <usize as Div>::Output

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: &usize) -> <usize as Div>::Output

    Performs the / operation. Read more
    ","Div<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Div<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: BigInt) -> BigInt

    Performs the / operation. Read more
    ","Div","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Div<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: BigUint) -> BigUint

    Performs the / operation. Read more
    ","Div","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.51.0 · Source§

    impl Div<NonZero<usize>> for usize

    Source§

    fn div(self, other: NonZero<usize>) -> usize

    Same as self / other.get(), but because other is a NonZero<_>,\nthere’s never a runtime check for division-by-zero.

    \n

    This operation rounds towards zero, truncating any fractional\npart of the exact result, and cannot panic.

    \n
    Source§

    type Output = usize

    The resulting type after applying the / operator.
    ","Div>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Div for usize

    This operation rounds towards zero, truncating any\nfractional part of the exact result.

    \n

    §Panics

    \n

    This operation will panic if other == 0.

    \n
    Source§

    type Output = usize

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: usize) -> usize

    Performs the / operation. Read more
    ","Div","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl DivAssign<&usize> for usize

    Source§

    fn div_assign(&mut self, other: &usize)

    Performs the /= operation. Read more
    ","DivAssign<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.79.0 · Source§

    impl DivAssign<NonZero<usize>> for usize

    Source§

    fn div_assign(&mut self, other: NonZero<usize>)

    Same as self /= other.get(), but because other is a NonZero<_>,\nthere’s never a runtime check for division-by-zero.

    \n

    This operation rounds towards zero, truncating any fractional\npart of the exact result, and cannot panic.

    \n
    ","DivAssign>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl DivAssign for usize

    Source§

    fn div_assign(&mut self, other: usize)

    Performs the /= operation. Read more
    ","DivAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl ErrnoSentinel for usize

    ","ErrnoSentinel","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Euclid for usize

    Source§

    fn div_euclid(&self, v: &usize) -> usize

    Calculates Euclidean division, the matching method for rem_euclid. Read more
    Source§

    fn rem_euclid(&self, v: &usize) -> usize

    Calculates the least nonnegative remainder of self (mod v). Read more
    Source§

    fn div_rem_euclid(&self, v: &Self) -> (Self, Self)

    Returns both the quotient and remainder from Euclidean division. Read more
    ","Euclid","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Fixed for usize

    §

    fn floor_log2(&self, n: usize) -> usize

    §

    fn ceil_log2(&self, n: usize) -> usize

    §

    fn align_power_of_two(&self, n: usize) -> usize

    §

    fn align_power_of_two_and_shift(&self, n: usize) -> usize

    ","Fixed","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Floor for usize

    §

    fn floor(self) -> usize

    Rounds to the biggest integer equal or lower than the original value. Read more
    ","Floor","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl FmtConst for usize

    Source§

    fn fmt_const(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Print a const expression representing this value.
    ","FmtConst","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl From<Alignment> for usize

    Source§

    fn from(align: Alignment) -> usize

    Converts to this type from the input type.
    ","From","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl From<Pid> for usize

    §

    fn from(v: Pid) -> usize

    Converts to this type from the input type.
    ","From","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<const MIN: usize, const MAX: usize> From<RangedUsize<MIN, MAX>> for usize

    §

    fn from(value: RangedUsize<MIN, MAX>) -> usize

    Converts to this type from the input type.
    ","From>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl From<State> for usize

    §

    fn from(src: State) -> usize

    Converts to this type from the input type.
    ","From","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl From<State> for usize

    §

    fn from(val: State) -> usize

    Converts to this type from the input type.
    ","From","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl From<State> for usize

    §

    fn from(val: State) -> usize

    Converts to this type from the input type.
    ","From","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl From<TokenInner> for usize

    §

    fn from(token: TokenInner) -> usize

    Converts to this type from the input type.
    ","From","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<O> From<U16<O>> for usize
    where\n O: ByteOrder,

    §

    fn from(x: U16<O>) -> usize

    Converts to this type from the input type.
    ","From>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl From<Uint24> for usize

    §

    fn from(src: Uint24) -> usize

    Converts to this type from the input type.
    ","From","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl From<VertexId> for usize

    §

    fn from(v: VertexId) -> usize

    Converts to this type from the input type.
    ","From","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.28.0 · Source§

    impl From<bool> for usize

    Source§

    fn from(small: bool) -> usize

    Converts a bool to usize losslessly.\nThe resulting value is 0 for false and 1 for true values.

    \n
    §Examples
    \n
    assert_eq!(usize::from(true), 1);\nassert_eq!(usize::from(false), 0);
    \n
    ","From","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.26.0 · Source§

    impl From<u16> for usize

    Source§

    fn from(small: u16) -> usize

    Converts u16 to usize losslessly.

    \n
    ","From","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.5.0 · Source§

    impl From<u8> for usize

    Source§

    fn from(small: u8) -> usize

    Converts u8 to usize losslessly.

    \n
    ","From","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl FromBytes for usize

    Source§

    type Bytes = [u8; 8]

    Source§

    fn from_be_bytes(bytes: &<usize as FromBytes>::Bytes) -> usize

    Create a number from its representation as a byte array in big endian. Read more
    Source§

    fn from_le_bytes(bytes: &<usize as FromBytes>::Bytes) -> usize

    Create a number from its representation as a byte array in little endian. Read more
    Source§

    fn from_ne_bytes(bytes: &<usize as FromBytes>::Bytes) -> usize

    Create a number from its memory representation as a byte array in native endianness. Read more
    ","FromBytes","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl FromBytes for usize

    §

    fn ref_from(bytes: &[u8]) -> Option<&Self>
    where\n Self: Sized,

    Interprets the given bytes as a &Self without copying. Read more
    §

    fn ref_from_prefix(bytes: &[u8]) -> Option<&Self>
    where\n Self: Sized,

    Interprets the prefix of the given bytes as a &Self without copying. Read more
    §

    fn ref_from_suffix(bytes: &[u8]) -> Option<&Self>
    where\n Self: Sized,

    Interprets the suffix of the given bytes as a &Self without copying. Read more
    §

    fn mut_from(bytes: &mut [u8]) -> Option<&mut Self>
    where\n Self: Sized + AsBytes,

    Interprets the given bytes as a &mut Self without copying. Read more
    §

    fn mut_from_prefix(bytes: &mut [u8]) -> Option<&mut Self>
    where\n Self: Sized + AsBytes,

    Interprets the prefix of the given bytes as a &mut Self without\ncopying. Read more
    §

    fn mut_from_suffix(bytes: &mut [u8]) -> Option<&mut Self>
    where\n Self: Sized + AsBytes,

    Interprets the suffix of the given bytes as a &mut Self without copying. Read more
    §

    fn slice_from(bytes: &[u8]) -> Option<&[Self]>
    where\n Self: Sized,

    Interprets the given bytes as a &[Self] without copying. Read more
    §

    fn slice_from_prefix(bytes: &[u8], count: usize) -> Option<(&[Self], &[u8])>
    where\n Self: Sized,

    Interprets the prefix of the given bytes as a &[Self] with length\nequal to count without copying. Read more
    §

    fn slice_from_suffix(bytes: &[u8], count: usize) -> Option<(&[u8], &[Self])>
    where\n Self: Sized,

    Interprets the suffix of the given bytes as a &[Self] with length\nequal to count without copying. Read more
    §

    fn mut_slice_from(bytes: &mut [u8]) -> Option<&mut [Self]>
    where\n Self: Sized + AsBytes,

    Interprets the given bytes as a &mut [Self] without copying. Read more
    §

    fn mut_slice_from_prefix(\n bytes: &mut [u8],\n count: usize,\n) -> Option<(&mut [Self], &mut [u8])>
    where\n Self: Sized + AsBytes,

    Interprets the prefix of the given bytes as a &mut [Self] with length\nequal to count without copying. Read more
    §

    fn mut_slice_from_suffix(\n bytes: &mut [u8],\n count: usize,\n) -> Option<(&mut [u8], &mut [Self])>
    where\n Self: Sized + AsBytes,

    Interprets the suffix of the given bytes as a &mut [Self] with length\nequal to count without copying. Read more
    §

    fn read_from(bytes: &[u8]) -> Option<Self>
    where\n Self: Sized,

    Reads a copy of Self from bytes. Read more
    §

    fn read_from_prefix(bytes: &[u8]) -> Option<Self>
    where\n Self: Sized,

    Reads a copy of Self from the prefix of bytes. Read more
    §

    fn read_from_suffix(bytes: &[u8]) -> Option<Self>
    where\n Self: Sized,

    Reads a copy of Self from the suffix of bytes. Read more
    ","FromBytes","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl FromPrimitive for usize

    Source§

    fn from_isize(n: isize) -> Option<usize>

    Converts an isize to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i8(n: i8) -> Option<usize>

    Converts an i8 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i16(n: i16) -> Option<usize>

    Converts an i16 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i32(n: i32) -> Option<usize>

    Converts an i32 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i64(n: i64) -> Option<usize>

    Converts an i64 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i128(n: i128) -> Option<usize>

    Converts an i128 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned. Read more
    Source§

    fn from_usize(n: usize) -> Option<usize>

    Converts a usize to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u8(n: u8) -> Option<usize>

    Converts an u8 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u16(n: u16) -> Option<usize>

    Converts an u16 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u32(n: u32) -> Option<usize>

    Converts an u32 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u64(n: u64) -> Option<usize>

    Converts an u64 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u128(n: u128) -> Option<usize>

    Converts an u128 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned. Read more
    Source§

    fn from_f32(n: f32) -> Option<usize>

    Converts a f32 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_f64(n: f64) -> Option<usize>

    Converts a f64 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned. Read more
    ","FromPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl FromStr for usize

    Source§

    fn from_str(src: &str) -> Result<usize, ParseIntError>

    Parses an integer from a string slice with decimal digits.

    \n

    The characters are expected to be an optional\n+\nsign followed by only digits. Leading and trailing non-digit characters (including\nwhitespace) represent an error. Underscores (which are accepted in Rust literals)\nalso represent an error.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    use std::str::FromStr;\n\nassert_eq!(usize::from_str(\"+10\"), Ok(10));
    \n

    Trailing space returns error:

    \n\n
    assert!(usize::from_str(\"1 \").is_err());
    \n
    Source§

    type Err = ParseIntError

    The associated error which can be returned from parsing.
    ","FromStr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl FromZeroes for usize

    §

    fn zero(&mut self)

    Overwrites self with zeroes. Read more
    §

    fn new_zeroed() -> Self
    where\n Self: Sized,

    Creates an instance of Self from zeroed bytes. Read more
    ","FromZeroes","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl GetManyMutIndex for usize

    Source§

    fn is_in_bounds(&self, len: usize) -> bool

    🔬This is a nightly-only experimental API. (get_many_mut_helpers)
    Returns true if self is in bounds for len slice elements.
    Source§

    fn is_overlapping(&self, other: &usize) -> bool

    🔬This is a nightly-only experimental API. (get_many_mut_helpers)
    Returns true if self overlaps with other. Read more
    ","GetManyMutIndex","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Hash for usize

    Source§

    fn hash<H>(&self, state: &mut H)
    where\n H: Hasher,

    Feeds this value into the given Hasher. Read more
    Source§

    fn hash_slice<H>(data: &[usize], state: &mut H)
    where\n H: Hasher,

    Feeds a slice of this type into the given Hasher. Read more
    ","Hash","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl IdentFragment for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Format this value as an identifier fragment.
    Source§

    fn span(&self) -> Option<Span>

    Span associated with this IdentFragment. Read more
    ","IdentFragment","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Integer for usize

    Available on 64-bit only.
    Source§

    const MAX_STR_LEN: usize = 20usize

    The maximum length of string that formatting an integer of this type can\nproduce on the current target platform.
    ","Integer","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Integer for usize

    Source§

    fn div_floor(&self, other: &usize) -> usize

    Unsigned integer division. Returns the same result as div (/).

    \n
    Source§

    fn mod_floor(&self, other: &usize) -> usize

    Unsigned integer modulo operation. Returns the same result as rem (%).

    \n
    Source§

    fn gcd(&self, other: &usize) -> usize

    Calculates the Greatest Common Divisor (GCD) of the number and other

    \n
    Source§

    fn lcm(&self, other: &usize) -> usize

    Calculates the Lowest Common Multiple (LCM) of the number and other.

    \n
    Source§

    fn gcd_lcm(&self, other: &usize) -> (usize, usize)

    Calculates the Greatest Common Divisor (GCD) and\nLowest Common Multiple (LCM) of the number and other.

    \n
    Source§

    fn is_multiple_of(&self, other: &usize) -> bool

    Returns true if the number is a multiple of other.

    \n
    Source§

    fn is_even(&self) -> bool

    Returns true if the number is divisible by 2.

    \n
    Source§

    fn is_odd(&self) -> bool

    Returns true if the number is not divisible by 2.

    \n
    Source§

    fn div_rem(&self, other: &usize) -> (usize, usize)

    Simultaneous truncated integer division and modulus.

    \n
    Source§

    fn div_ceil(&self, other: &usize) -> usize

    Ceiled integer division. Read more
    Source§

    fn extended_gcd_lcm(&self, other: &usize) -> (ExtendedGcd<usize>, usize)

    Greatest common divisor, least common multiple, and Bézout coefficients.
    Source§

    fn extended_gcd(&self, other: &Self) -> ExtendedGcd<Self>
    where\n Self: Clone,

    Greatest common divisor and Bézout coefficients. Read more
    Source§

    fn divides(&self, other: &Self) -> bool

    👎Deprecated: Please use is_multiple_of instead
    Deprecated, use is_multiple_of instead.
    Source§

    fn div_mod_floor(&self, other: &Self) -> (Self, Self)

    Simultaneous floored integer division and modulus.\nReturns (quotient, remainder). Read more
    Source§

    fn next_multiple_of(&self, other: &Self) -> Self
    where\n Self: Clone,

    Rounds up to nearest multiple of argument. Read more
    Source§

    fn prev_multiple_of(&self, other: &Self) -> Self
    where\n Self: Clone,

    Rounds down to nearest multiple of argument. Read more
    Source§

    fn dec(&mut self)
    where\n Self: Clone,

    Decrements self by one. Read more
    Source§

    fn inc(&mut self)
    where\n Self: Clone,

    Increments self by one. Read more
    ","Integer","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'de, E> IntoDeserializer<'de, E> for usize
    where\n E: Error,

    Source§

    type Deserializer = UsizeDeserializer<E>

    The type of the deserializer being converted into.
    Source§

    fn into_deserializer(self) -> UsizeDeserializer<E>

    Convert this value into a deserializer.
    ","IntoDeserializer<'de, E>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> IntoFragment<'a> for usize

    Source§

    fn into_fragment(self) -> Cow<'a, str>

    Converts the value to some text Fragment.
    ","IntoFragment<'a>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl IntoNotification for usize

    §

    type Tag = ()

    The tag data associated with a notification. Read more
    §

    type Notify = Notify

    The notification type. Read more
    §

    fn into_notification(self) -> <usize as IntoNotification>::Notify

    Convert this value into a notification. Read more
    §

    fn additional(self) -> Additional<Self::Notify>
    where\n Self: Sized,

    Convert this value into an additional notification. Read more
    §

    fn relaxed(self) -> Relaxed<Self::Notify>
    where\n Self: Sized,

    Don’t emit a fence for this notification. Read more
    §

    fn tag<T>(self, tag: T) -> Tag<Self::Notify, T>
    where\n T: Clone,\n Self: Sized + IntoNotification<Tag = ()>,

    Available on crate feature std only.
    Use a tag with this notification. Read more
    §

    fn tag_with<T, F>(self, tag: F) -> TagWith<Self::Notify, F>
    where\n Self: Sized + IntoNotification<Tag = ()>,\n F: FnMut() -> T,

    Available on crate feature std only.
    Use a function to generate a tag with this notification. Read more
    ","IntoNotification","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl IntoNotification for usize

    §

    type Tag = ()

    The tag data associated with a notification. Read more
    §

    type Notify = Notify

    The notification type. Read more
    §

    fn into_notification(self) -> <usize as IntoNotification>::Notify

    Convert this value into a notification. Read more
    §

    fn additional(self) -> Additional<Self::Notify>
    where\n Self: Sized,

    Convert this value into an additional notification. Read more
    §

    fn relaxed(self) -> Relaxed<Self::Notify>
    where\n Self: Sized,

    Don’t emit a fence for this notification. Read more
    §

    fn tag<T>(self, tag: T) -> Tag<Self::Notify, T>
    where\n T: Clone,\n Self: Sized + IntoNotification<Tag = ()>,

    Available on crate feature std only.
    Use a tag with this notification. Read more
    §

    fn tag_with<T, F>(self, tag: F) -> TagWith<Self::Notify, F>
    where\n Self: Sized + IntoNotification<Tag = ()>,\n F: FnMut() -> T,

    Available on crate feature std only.
    Use a function to generate a tag with this notification. Read more
    ","IntoNotification","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.42.0 · Source§

    impl LowerExp for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","LowerExp","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl LowerHex for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","LowerHex","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl MaxIndex for usize

    §

    const MAX: usize = 4_294_967_295usize

    ","MaxIndex","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Mul<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: &BigInt) -> BigInt

    Performs the * operation. Read more
    ","Mul<&BigInt>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Mul<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: &BigUint) -> BigUint

    Performs the * operation. Read more
    ","Mul<&BigUint>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Mul<&usize> for usize

    Source§

    type Output = <usize as Mul>::Output

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: &usize) -> <usize as Mul>::Output

    Performs the * operation. Read more
    ","Mul<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Mul<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: BigInt) -> BigInt

    Performs the * operation. Read more
    ","Mul","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Mul<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: BigUint) -> BigUint

    Performs the * operation. Read more
    ","Mul","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Mul for usize

    Source§

    type Output = usize

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: usize) -> usize

    Performs the * operation. Read more
    ","Mul","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl MulAdd for usize

    Source§

    type Output = usize

    The resulting type after applying the fused multiply-add.
    Source§

    fn mul_add(self, a: usize, b: usize) -> <usize as MulAdd>::Output

    Performs the fused multiply-add operation (self * a) + b
    ","MulAdd","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl MulAddAssign for usize

    Source§

    fn mul_add_assign(&mut self, a: usize, b: usize)

    Performs the fused multiply-add assignment operation *self = (*self * a) + b
    ","MulAddAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl MulAssign<&usize> for usize

    Source§

    fn mul_assign(&mut self, other: &usize)

    Performs the *= operation. Read more
    ","MulAssign<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl MulAssign for usize

    Source§

    fn mul_assign(&mut self, other: usize)

    Performs the *= operation. Read more
    ","MulAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Not for usize

    Source§

    type Output = usize

    The resulting type after applying the ! operator.
    Source§

    fn not(self) -> usize

    Performs the unary ! operation. Read more
    ","Not","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Num for usize

    Source§

    type FromStrRadixErr = ParseIntError

    Source§

    fn from_str_radix(s: &str, radix: u32) -> Result<usize, ParseIntError>

    Convert from a string and radix (typically 2..=36). Read more
    ","Num","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl NumCast for usize

    Source§

    fn from<N>(n: N) -> Option<usize>
    where\n N: ToPrimitive,

    Creates a number from another value that can be converted into\na primitive via the ToPrimitive trait. If the source value cannot be\nrepresented by the target type, then None is returned. Read more
    ","NumCast","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Octal for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Octal","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl One for usize

    Source§

    fn one() -> usize

    Returns the multiplicative identity element of Self, 1. Read more
    Source§

    fn is_one(&self) -> bool

    Returns true if self is equal to the multiplicative identity. Read more
    Source§

    fn set_one(&mut self)

    Sets self to the multiplicative identity element of Self, 1.
    ","One","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Ord for usize

    Source§

    fn cmp(&self, other: &usize) -> Ordering

    This method returns an Ordering between self and other. Read more
    1.21.0 · Source§

    fn max(self, other: Self) -> Self
    where\n Self: Sized,

    Compares and returns the maximum of two values. Read more
    1.21.0 · Source§

    fn min(self, other: Self) -> Self
    where\n Self: Sized,

    Compares and returns the minimum of two values. Read more
    1.50.0 · Source§

    fn clamp(self, min: Self, max: Self) -> Self
    where\n Self: Sized,

    Restrict a value to a certain interval. Read more
    ","Ord","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl OverflowingAdd for usize

    Source§

    fn overflowing_add(&self, v: &usize) -> (usize, bool)

    Returns a tuple of the sum along with a boolean indicating whether an arithmetic overflow would occur.\nIf an overflow would have occurred then the wrapped value is returned.
    ","OverflowingAdd","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl OverflowingMul for usize

    Source§

    fn overflowing_mul(&self, v: &usize) -> (usize, bool)

    Returns a tuple of the product along with a boolean indicating whether an arithmetic overflow would occur.\nIf an overflow would have occurred then the wrapped value is returned.
    ","OverflowingMul","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl OverflowingSub for usize

    Source§

    fn overflowing_sub(&self, v: &usize) -> (usize, bool)

    Returns a tuple of the difference along with a boolean indicating whether an arithmetic overflow would occur.\nIf an overflow would have occurred then the wrapped value is returned.
    ","OverflowingSub","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl ParseHex for usize

    §

    fn parse_hex(input: &str) -> Result<usize, ParseError>

    Parse the value from hex.
    ","ParseHex","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl PartialEq<Value> for usize

    Source§

    fn eq(&self, other: &Value) -> bool

    Tests for self and other values to be equal, and is used by ==.
    1.0.0 · Source§

    fn ne(&self, other: &Rhs) -> bool

    Tests for !=. The default implementation is almost always sufficient,\nand should not be overridden without very good reason.
    ","PartialEq","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl PartialEq for usize

    Source§

    fn eq(&self, other: &usize) -> bool

    Tests for self and other values to be equal, and is used by ==.
    Source§

    fn ne(&self, other: &usize) -> bool

    Tests for !=. The default implementation is almost always sufficient,\nand should not be overridden without very good reason.
    ","PartialEq","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl PartialOrd for usize

    Source§

    fn partial_cmp(&self, other: &usize) -> Option<Ordering>

    This method returns an ordering between self and other values if one exists. Read more
    Source§

    fn lt(&self, other: &usize) -> bool

    Tests less than (for self and other) and is used by the < operator. Read more
    Source§

    fn le(&self, other: &usize) -> bool

    Tests less than or equal to (for self and other) and is used by the\n<= operator. Read more
    Source§

    fn ge(&self, other: &usize) -> bool

    Tests greater than or equal to (for self and other) and is used by\nthe >= operator. Read more
    Source§

    fn gt(&self, other: &usize) -> bool

    Tests greater than (for self and other) and is used by the >\noperator. Read more
    ","PartialOrd","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl PhfBorrow<usize> for usize

    Source§

    fn borrow(&self) -> &usize

    Convert a reference to self to a reference to the borrowed type.
    ","PhfBorrow","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl PhfHash for usize

    Source§

    fn phf_hash<H>(&self, state: &mut H)
    where\n H: Hasher,

    Feeds the value into the state given, updating the hasher as necessary.
    Source§

    fn phf_hash_slice<H>(data: &[Self], state: &mut H)
    where\n H: Hasher,\n Self: Sized,

    Feeds a slice of this type into the state provided.
    ","PhfHash","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> Pow<&'a u16> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: &'a u16) -> usize

    Returns self to the power rhs. Read more
    ","Pow<&'a u16>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> Pow<&'a u32> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: &'a u32) -> usize

    Returns self to the power rhs. Read more
    ","Pow<&'a u32>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> Pow<&'a u8> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: &'a u8) -> usize

    Returns self to the power rhs. Read more
    ","Pow<&'a u8>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> Pow<&'a usize> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: &'a usize) -> usize

    Returns self to the power rhs. Read more
    ","Pow<&'a usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Pow<u16> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: u16) -> usize

    Returns self to the power rhs. Read more
    ","Pow","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Pow<u32> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: u32) -> usize

    Returns self to the power rhs. Read more
    ","Pow","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Pow<u8> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: u8) -> usize

    Returns self to the power rhs. Read more
    ","Pow","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Pow<usize> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: usize) -> usize

    Returns self to the power rhs. Read more
    ","Pow","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl PrimInt for usize

    Source§

    fn count_ones(self) -> u32

    Returns the number of ones in the binary representation of self. Read more
    Source§

    fn count_zeros(self) -> u32

    Returns the number of zeros in the binary representation of self. Read more
    Source§

    fn leading_ones(self) -> u32

    Returns the number of leading ones in the binary representation\nof self. Read more
    Source§

    fn leading_zeros(self) -> u32

    Returns the number of leading zeros in the binary representation\nof self. Read more
    Source§

    fn trailing_ones(self) -> u32

    Returns the number of trailing ones in the binary representation\nof self. Read more
    Source§

    fn trailing_zeros(self) -> u32

    Returns the number of trailing zeros in the binary representation\nof self. Read more
    Source§

    fn rotate_left(self, n: u32) -> usize

    Shifts the bits to the left by a specified amount, n, wrapping\nthe truncated bits to the end of the resulting integer. Read more
    Source§

    fn rotate_right(self, n: u32) -> usize

    Shifts the bits to the right by a specified amount, n, wrapping\nthe truncated bits to the beginning of the resulting integer. Read more
    Source§

    fn signed_shl(self, n: u32) -> usize

    Shifts the bits to the left by a specified amount, n, filling\nzeros in the least significant bits. Read more
    Source§

    fn signed_shr(self, n: u32) -> usize

    Shifts the bits to the right by a specified amount, n, copying\nthe “sign bit” in the most significant bits even for unsigned types. Read more
    Source§

    fn unsigned_shl(self, n: u32) -> usize

    Shifts the bits to the left by a specified amount, n, filling\nzeros in the least significant bits. Read more
    Source§

    fn unsigned_shr(self, n: u32) -> usize

    Shifts the bits to the right by a specified amount, n, filling\nzeros in the most significant bits. Read more
    Source§

    fn swap_bytes(self) -> usize

    Reverses the byte order of the integer. Read more
    Source§

    fn reverse_bits(self) -> usize

    Reverses the order of bits in the integer. Read more
    Source§

    fn from_be(x: usize) -> usize

    Convert an integer from big endian to the target’s endianness. Read more
    Source§

    fn from_le(x: usize) -> usize

    Convert an integer from little endian to the target’s endianness. Read more
    Source§

    fn to_be(self) -> usize

    Convert self to big endian from the target’s endianness. Read more
    Source§

    fn to_le(self) -> usize

    Convert self to little endian from the target’s endianness. Read more
    Source§

    fn pow(self, exp: u32) -> usize

    Raises self to the power of exp, using exponentiation by squaring. Read more
    ","PrimInt","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Primitive for usize

    §

    const DEFAULT_MAX_VALUE: usize = 18_446_744_073_709_551_615usize

    The maximum value for this type of primitive within the context of color.\nFor floats, the maximum is 1.0, whereas the integer types inherit their usual maximum values.
    §

    const DEFAULT_MIN_VALUE: usize = 0usize

    The minimum value for this type of primitive within the context of color.\nFor floats, the minimum is 0.0, whereas the integer types inherit their usual minimum values.
    ","Primitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> Product<&'a usize> for usize

    §

    fn product<'b, S>(stream: S) -> Pin<Box<dyn Future<Output = usize> + 'b>>
    where\n S: Stream<Item = &'a usize> + 'b,

    Method which takes a stream and generates Self from the elements by\nmultiplying the items.
    ","Product<&'a usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.12.0 · Source§

    impl<'a> Product<&'a usize> for usize

    Source§

    fn product<I>(iter: I) -> usize
    where\n I: Iterator<Item = &'a usize>,

    Takes an iterator and generates Self from the elements by multiplying\nthe items.
    ","Product<&'a usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Product for usize

    §

    fn product<'a, S>(stream: S) -> Pin<Box<dyn Future<Output = usize> + 'a>>
    where\n S: Stream<Item = usize> + 'a,

    Method which takes a stream and generates Self from the elements by\nmultiplying the items.
    ","Product","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.12.0 · Source§

    impl Product for usize

    Source§

    fn product<I>(iter: I) -> usize
    where\n I: Iterator<Item = usize>,

    Takes an iterator and generates Self from the elements by multiplying\nthe items.
    ","Product","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Random for usize

    Source§

    fn random(source: &mut (impl RandomSource + ?Sized)) -> usize

    🔬This is a nightly-only experimental API. (random)

    Generates a random value.

    \n

    Warning: Be careful when manipulating the resulting value! This\nmethod samples according to a uniform distribution, so a value of 1 is\njust as likely as MAX. By using modulo operations, some\nvalues can become more likely than others. Use audited crates when in\ndoubt.

    \n
    ","Random","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Rem<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: &BigInt) -> BigInt

    Performs the % operation. Read more
    ","Rem<&BigInt>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Rem<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: &BigUint) -> BigUint

    Performs the % operation. Read more
    ","Rem<&BigUint>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Rem<&usize> for usize

    Source§

    type Output = <usize as Rem>::Output

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: &usize) -> <usize as Rem>::Output

    Performs the % operation. Read more
    ","Rem<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Rem<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: BigInt) -> BigInt

    Performs the % operation. Read more
    ","Rem","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Rem<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: BigUint) -> BigUint

    Performs the % operation. Read more
    ","Rem","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.51.0 · Source§

    impl Rem<NonZero<usize>> for usize

    Source§

    fn rem(self, other: NonZero<usize>) -> usize

    This operation satisfies n % d == n - (n / d) * d, and cannot panic.

    \n
    Source§

    type Output = usize

    The resulting type after applying the % operator.
    ","Rem>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Rem for usize

    This operation satisfies n % d == n - (n / d) * d. The\nresult has the same sign as the left operand.

    \n

    §Panics

    \n

    This operation will panic if other == 0.

    \n
    Source§

    type Output = usize

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: usize) -> usize

    Performs the % operation. Read more
    ","Rem","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl RemAssign<&BigUint> for usize

    Source§

    fn rem_assign(&mut self, other: &BigUint)

    Performs the %= operation. Read more
    ","RemAssign<&BigUint>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl RemAssign<&usize> for usize

    Source§

    fn rem_assign(&mut self, other: &usize)

    Performs the %= operation. Read more
    ","RemAssign<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl RemAssign<BigUint> for usize

    Source§

    fn rem_assign(&mut self, other: BigUint)

    Performs the %= operation. Read more
    ","RemAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.79.0 · Source§

    impl RemAssign<NonZero<usize>> for usize

    Source§

    fn rem_assign(&mut self, other: NonZero<usize>)

    This operation satisfies n % d == n - (n / d) * d, and cannot panic.

    \n
    ","RemAssign>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl RemAssign for usize

    Source§

    fn rem_assign(&mut self, other: usize)

    Performs the %= operation. Read more
    ","RemAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Roots for usize

    Source§

    fn nth_root(&self, n: u32) -> usize

    Returns the truncated principal nth root of an integer\n– if x >= 0 { ⌊ⁿ√x⌋ } else { ⌈ⁿ√x⌉ } Read more
    Source§

    fn sqrt(&self) -> usize

    Returns the truncated principal square root of an integer – ⌊√x⌋ Read more
    Source§

    fn cbrt(&self) -> usize

    Returns the truncated principal cube root of an integer –\nif x >= 0 { ⌊∛x⌋ } else { ⌈∛x⌉ } Read more
    ","Roots","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Round for usize

    §

    fn round(self) -> usize

    Rounds to the nearest integer value. Read more
    ","Round","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl SampleUniform for usize

    Source§

    type Sampler = UniformInt<usize>

    The UniformSampler implementation supporting type X.
    ","SampleUniform","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Saturating for usize

    Source§

    fn saturating_add(self, v: usize) -> usize

    Saturating addition operator.\nReturns a+b, saturating at the numeric bounds instead of overflowing.
    Source§

    fn saturating_sub(self, v: usize) -> usize

    Saturating subtraction operator.\nReturns a-b, saturating at the numeric bounds instead of overflowing.
    ","Saturating","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl SaturatingAdd for usize

    Source§

    fn saturating_add(&self, v: &usize) -> usize

    Saturating addition. Computes self + other, saturating at the relevant high or low boundary of\nthe type.
    ","SaturatingAdd","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl SaturatingMul for usize

    Source§

    fn saturating_mul(&self, v: &usize) -> usize

    Saturating multiplication. Computes self * other, saturating at the relevant high or low boundary of\nthe type.
    ","SaturatingMul","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl SaturatingSub for usize

    Source§

    fn saturating_sub(&self, v: &usize) -> usize

    Saturating subtraction. Computes self - other, saturating at the relevant high or low boundary of\nthe type.
    ","SaturatingSub","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Serialize for usize

    Source§

    fn serialize<S>(\n &self,\n serializer: S,\n) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>
    where\n S: Serializer,

    Serialize this value into the given Serde serializer. Read more
    ","Serialize","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i128> for usize

    Source§

    type Output = <usize as Shl<i128>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i128) -> <usize as Shl<i128>>::Output

    Performs the << operation. Read more
    ","Shl<&i128>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i16> for usize

    Source§

    type Output = <usize as Shl<i16>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i16) -> <usize as Shl<i16>>::Output

    Performs the << operation. Read more
    ","Shl<&i16>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i32> for usize

    Source§

    type Output = <usize as Shl<i32>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i32) -> <usize as Shl<i32>>::Output

    Performs the << operation. Read more
    ","Shl<&i32>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i64> for usize

    Source§

    type Output = <usize as Shl<i64>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i64) -> <usize as Shl<i64>>::Output

    Performs the << operation. Read more
    ","Shl<&i64>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i8> for usize

    Source§

    type Output = <usize as Shl<i8>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i8) -> <usize as Shl<i8>>::Output

    Performs the << operation. Read more
    ","Shl<&i8>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&isize> for usize

    Source§

    type Output = <usize as Shl<isize>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &isize) -> <usize as Shl<isize>>::Output

    Performs the << operation. Read more
    ","Shl<&isize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u128> for usize

    Source§

    type Output = <usize as Shl<u128>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u128) -> <usize as Shl<u128>>::Output

    Performs the << operation. Read more
    ","Shl<&u128>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u16> for usize

    Source§

    type Output = <usize as Shl<u16>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u16) -> <usize as Shl<u16>>::Output

    Performs the << operation. Read more
    ","Shl<&u16>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u32> for usize

    Source§

    type Output = <usize as Shl<u32>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u32) -> <usize as Shl<u32>>::Output

    Performs the << operation. Read more
    ","Shl<&u32>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u64> for usize

    Source§

    type Output = <usize as Shl<u64>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u64) -> <usize as Shl<u64>>::Output

    Performs the << operation. Read more
    ","Shl<&u64>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u8> for usize

    Source§

    type Output = <usize as Shl<u8>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u8) -> <usize as Shl<u8>>::Output

    Performs the << operation. Read more
    ","Shl<&u8>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&usize> for usize

    Source§

    type Output = <usize as Shl>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &usize) -> <usize as Shl>::Output

    Performs the << operation. Read more
    ","Shl<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i128> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i128) -> usize

    Performs the << operation. Read more
    ","Shl","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i16> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i16) -> usize

    Performs the << operation. Read more
    ","Shl","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i32> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i32) -> usize

    Performs the << operation. Read more
    ","Shl","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i64> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i64) -> usize

    Performs the << operation. Read more
    ","Shl","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i8> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i8) -> usize

    Performs the << operation. Read more
    ","Shl","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<isize> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: isize) -> usize

    Performs the << operation. Read more
    ","Shl","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u128> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u128) -> usize

    Performs the << operation. Read more
    ","Shl","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u16> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u16) -> usize

    Performs the << operation. Read more
    ","Shl","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u32> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u32) -> usize

    Performs the << operation. Read more
    ","Shl","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u64> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u64) -> usize

    Performs the << operation. Read more
    ","Shl","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u8> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u8) -> usize

    Performs the << operation. Read more
    ","Shl","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: usize) -> usize

    Performs the << operation. Read more
    ","Shl","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i128> for usize

    Source§

    fn shl_assign(&mut self, other: &i128)

    Performs the <<= operation. Read more
    ","ShlAssign<&i128>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i16> for usize

    Source§

    fn shl_assign(&mut self, other: &i16)

    Performs the <<= operation. Read more
    ","ShlAssign<&i16>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i32> for usize

    Source§

    fn shl_assign(&mut self, other: &i32)

    Performs the <<= operation. Read more
    ","ShlAssign<&i32>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i64> for usize

    Source§

    fn shl_assign(&mut self, other: &i64)

    Performs the <<= operation. Read more
    ","ShlAssign<&i64>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i8> for usize

    Source§

    fn shl_assign(&mut self, other: &i8)

    Performs the <<= operation. Read more
    ","ShlAssign<&i8>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&isize> for usize

    Source§

    fn shl_assign(&mut self, other: &isize)

    Performs the <<= operation. Read more
    ","ShlAssign<&isize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u128> for usize

    Source§

    fn shl_assign(&mut self, other: &u128)

    Performs the <<= operation. Read more
    ","ShlAssign<&u128>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u16> for usize

    Source§

    fn shl_assign(&mut self, other: &u16)

    Performs the <<= operation. Read more
    ","ShlAssign<&u16>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u32> for usize

    Source§

    fn shl_assign(&mut self, other: &u32)

    Performs the <<= operation. Read more
    ","ShlAssign<&u32>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u64> for usize

    Source§

    fn shl_assign(&mut self, other: &u64)

    Performs the <<= operation. Read more
    ","ShlAssign<&u64>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u8> for usize

    Source§

    fn shl_assign(&mut self, other: &u8)

    Performs the <<= operation. Read more
    ","ShlAssign<&u8>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&usize> for usize

    Source§

    fn shl_assign(&mut self, other: &usize)

    Performs the <<= operation. Read more
    ","ShlAssign<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i128> for usize

    Source§

    fn shl_assign(&mut self, other: i128)

    Performs the <<= operation. Read more
    ","ShlAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i16> for usize

    Source§

    fn shl_assign(&mut self, other: i16)

    Performs the <<= operation. Read more
    ","ShlAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i32> for usize

    Source§

    fn shl_assign(&mut self, other: i32)

    Performs the <<= operation. Read more
    ","ShlAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i64> for usize

    Source§

    fn shl_assign(&mut self, other: i64)

    Performs the <<= operation. Read more
    ","ShlAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i8> for usize

    Source§

    fn shl_assign(&mut self, other: i8)

    Performs the <<= operation. Read more
    ","ShlAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<isize> for usize

    Source§

    fn shl_assign(&mut self, other: isize)

    Performs the <<= operation. Read more
    ","ShlAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u128> for usize

    Source§

    fn shl_assign(&mut self, other: u128)

    Performs the <<= operation. Read more
    ","ShlAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u16> for usize

    Source§

    fn shl_assign(&mut self, other: u16)

    Performs the <<= operation. Read more
    ","ShlAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u32> for usize

    Source§

    fn shl_assign(&mut self, other: u32)

    Performs the <<= operation. Read more
    ","ShlAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u64> for usize

    Source§

    fn shl_assign(&mut self, other: u64)

    Performs the <<= operation. Read more
    ","ShlAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u8> for usize

    Source§

    fn shl_assign(&mut self, other: u8)

    Performs the <<= operation. Read more
    ","ShlAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign for usize

    Source§

    fn shl_assign(&mut self, other: usize)

    Performs the <<= operation. Read more
    ","ShlAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i128> for usize

    Source§

    type Output = <usize as Shr<i128>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i128) -> <usize as Shr<i128>>::Output

    Performs the >> operation. Read more
    ","Shr<&i128>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i16> for usize

    Source§

    type Output = <usize as Shr<i16>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i16) -> <usize as Shr<i16>>::Output

    Performs the >> operation. Read more
    ","Shr<&i16>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i32> for usize

    Source§

    type Output = <usize as Shr<i32>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i32) -> <usize as Shr<i32>>::Output

    Performs the >> operation. Read more
    ","Shr<&i32>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i64> for usize

    Source§

    type Output = <usize as Shr<i64>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i64) -> <usize as Shr<i64>>::Output

    Performs the >> operation. Read more
    ","Shr<&i64>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i8> for usize

    Source§

    type Output = <usize as Shr<i8>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i8) -> <usize as Shr<i8>>::Output

    Performs the >> operation. Read more
    ","Shr<&i8>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&isize> for usize

    Source§

    type Output = <usize as Shr<isize>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &isize) -> <usize as Shr<isize>>::Output

    Performs the >> operation. Read more
    ","Shr<&isize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u128> for usize

    Source§

    type Output = <usize as Shr<u128>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u128) -> <usize as Shr<u128>>::Output

    Performs the >> operation. Read more
    ","Shr<&u128>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u16> for usize

    Source§

    type Output = <usize as Shr<u16>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u16) -> <usize as Shr<u16>>::Output

    Performs the >> operation. Read more
    ","Shr<&u16>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u32> for usize

    Source§

    type Output = <usize as Shr<u32>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u32) -> <usize as Shr<u32>>::Output

    Performs the >> operation. Read more
    ","Shr<&u32>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u64> for usize

    Source§

    type Output = <usize as Shr<u64>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u64) -> <usize as Shr<u64>>::Output

    Performs the >> operation. Read more
    ","Shr<&u64>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u8> for usize

    Source§

    type Output = <usize as Shr<u8>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u8) -> <usize as Shr<u8>>::Output

    Performs the >> operation. Read more
    ","Shr<&u8>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&usize> for usize

    Source§

    type Output = <usize as Shr>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &usize) -> <usize as Shr>::Output

    Performs the >> operation. Read more
    ","Shr<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i128> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i128) -> usize

    Performs the >> operation. Read more
    ","Shr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i16> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i16) -> usize

    Performs the >> operation. Read more
    ","Shr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i32> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i32) -> usize

    Performs the >> operation. Read more
    ","Shr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i64> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i64) -> usize

    Performs the >> operation. Read more
    ","Shr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i8> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i8) -> usize

    Performs the >> operation. Read more
    ","Shr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<isize> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: isize) -> usize

    Performs the >> operation. Read more
    ","Shr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u128> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u128) -> usize

    Performs the >> operation. Read more
    ","Shr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u16> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u16) -> usize

    Performs the >> operation. Read more
    ","Shr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u32> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u32) -> usize

    Performs the >> operation. Read more
    ","Shr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u64> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u64) -> usize

    Performs the >> operation. Read more
    ","Shr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u8> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u8) -> usize

    Performs the >> operation. Read more
    ","Shr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: usize) -> usize

    Performs the >> operation. Read more
    ","Shr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i128> for usize

    Source§

    fn shr_assign(&mut self, other: &i128)

    Performs the >>= operation. Read more
    ","ShrAssign<&i128>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i16> for usize

    Source§

    fn shr_assign(&mut self, other: &i16)

    Performs the >>= operation. Read more
    ","ShrAssign<&i16>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i32> for usize

    Source§

    fn shr_assign(&mut self, other: &i32)

    Performs the >>= operation. Read more
    ","ShrAssign<&i32>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i64> for usize

    Source§

    fn shr_assign(&mut self, other: &i64)

    Performs the >>= operation. Read more
    ","ShrAssign<&i64>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i8> for usize

    Source§

    fn shr_assign(&mut self, other: &i8)

    Performs the >>= operation. Read more
    ","ShrAssign<&i8>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&isize> for usize

    Source§

    fn shr_assign(&mut self, other: &isize)

    Performs the >>= operation. Read more
    ","ShrAssign<&isize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u128> for usize

    Source§

    fn shr_assign(&mut self, other: &u128)

    Performs the >>= operation. Read more
    ","ShrAssign<&u128>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u16> for usize

    Source§

    fn shr_assign(&mut self, other: &u16)

    Performs the >>= operation. Read more
    ","ShrAssign<&u16>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u32> for usize

    Source§

    fn shr_assign(&mut self, other: &u32)

    Performs the >>= operation. Read more
    ","ShrAssign<&u32>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u64> for usize

    Source§

    fn shr_assign(&mut self, other: &u64)

    Performs the >>= operation. Read more
    ","ShrAssign<&u64>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u8> for usize

    Source§

    fn shr_assign(&mut self, other: &u8)

    Performs the >>= operation. Read more
    ","ShrAssign<&u8>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&usize> for usize

    Source§

    fn shr_assign(&mut self, other: &usize)

    Performs the >>= operation. Read more
    ","ShrAssign<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i128> for usize

    Source§

    fn shr_assign(&mut self, other: i128)

    Performs the >>= operation. Read more
    ","ShrAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i16> for usize

    Source§

    fn shr_assign(&mut self, other: i16)

    Performs the >>= operation. Read more
    ","ShrAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i32> for usize

    Source§

    fn shr_assign(&mut self, other: i32)

    Performs the >>= operation. Read more
    ","ShrAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i64> for usize

    Source§

    fn shr_assign(&mut self, other: i64)

    Performs the >>= operation. Read more
    ","ShrAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i8> for usize

    Source§

    fn shr_assign(&mut self, other: i8)

    Performs the >>= operation. Read more
    ","ShrAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<isize> for usize

    Source§

    fn shr_assign(&mut self, other: isize)

    Performs the >>= operation. Read more
    ","ShrAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u128> for usize

    Source§

    fn shr_assign(&mut self, other: u128)

    Performs the >>= operation. Read more
    ","ShrAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u16> for usize

    Source§

    fn shr_assign(&mut self, other: u16)

    Performs the >>= operation. Read more
    ","ShrAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u32> for usize

    Source§

    fn shr_assign(&mut self, other: u32)

    Performs the >>= operation. Read more
    ","ShrAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u64> for usize

    Source§

    fn shr_assign(&mut self, other: u64)

    Performs the >>= operation. Read more
    ","ShrAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u8> for usize

    Source§

    fn shr_assign(&mut self, other: u8)

    Performs the >>= operation. Read more
    ","ShrAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign for usize

    Source§

    fn shr_assign(&mut self, other: usize)

    Performs the >>= operation. Read more
    ","ShrAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl SimdElement for usize

    Source§

    type Mask = isize

    🔬This is a nightly-only experimental API. (portable_simd)
    The mask element type corresponding to this element type.
    ","SimdElement","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.15.0 · Source§

    impl<T> SliceIndex<[T]> for usize

    The methods index and index_mut panic if the index is out of bounds.

    \n
    Source§

    type Output = T

    The output type returned by methods.
    Source§

    fn get(self, slice: &[T]) -> Option<&T>

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a shared reference to the output at this location, if in\nbounds.
    Source§

    fn get_mut(self, slice: &mut [T]) -> Option<&mut T>

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a mutable reference to the output at this location, if in\nbounds.
    Source§

    unsafe fn get_unchecked(self, slice: *const [T]) -> *const T

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a pointer to the output at this location, without\nperforming any bounds checking. Read more
    Source§

    unsafe fn get_unchecked_mut(self, slice: *mut [T]) -> *mut T

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a mutable pointer to the output at this location, without\nperforming any bounds checking. Read more
    Source§

    fn index(self, slice: &[T]) -> &T

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a shared reference to the output at this location, panicking\nif out of bounds.
    Source§

    fn index_mut(self, slice: &mut [T]) -> &mut T

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a mutable reference to the output at this location, panicking\nif out of bounds.
    ","SliceIndex<[T]>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl SmartDisplay for usize

    §

    type Metadata = ()

    User-provided metadata type.
    §

    fn metadata(&self, f: FormatterOptions) -> Metadata<'_, usize>

    Compute any information needed to format the value. This must, at a minimum, determine the\nwidth of the value before any padding is added by the formatter. Read more
    §

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Format the value using the given formatter. This is the same as Display::fmt. Read more
    §

    fn fmt_with_metadata(\n &self,\n f: &mut Formatter<'_>,\n _metadata: Metadata<'_, Self>,\n) -> Result<(), Error>

    Format the value using the given formatter and metadata. The formatted output should have\nthe width indicated by the metadata. This is before any padding is added by the\nformatter. Read more
    ","SmartDisplay","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Step for usize

    Source§

    fn forward(start: usize, n: usize) -> usize

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the successor\nof self count times. Read more
    Source§

    fn backward(start: usize, n: usize) -> usize

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the predecessor\nof self count times. Read more
    Source§

    unsafe fn forward_unchecked(start: usize, n: usize) -> usize

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the successor\nof self count times. Read more
    Source§

    unsafe fn backward_unchecked(start: usize, n: usize) -> usize

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the predecessor\nof self count times. Read more
    Source§

    fn steps_between(start: &usize, end: &usize) -> (usize, Option<usize>)

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the bounds on the number of successor steps required to get from start to end\nlike Iterator::size_hint(). Read more
    Source§

    fn forward_checked(start: usize, n: usize) -> Option<usize>

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the successor\nof self count times. Read more
    Source§

    fn backward_checked(start: usize, n: usize) -> Option<usize>

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the predecessor\nof self count times. Read more
    ","Step","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl StepLite for usize

    §

    fn add_one(&self) -> usize

    Returns the successor of self. Read more
    §

    fn sub_one(&self) -> usize

    Returns the predecessor of self. Read more
    ","StepLite","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Sub<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: &BigInt) -> BigInt

    Performs the - operation. Read more
    ","Sub<&BigInt>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Sub<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: &BigUint) -> BigUint

    Performs the - operation. Read more
    ","Sub<&BigUint>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Sub<&usize> for usize

    Source§

    type Output = <usize as Sub>::Output

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: &usize) -> <usize as Sub>::Output

    Performs the - operation. Read more
    ","Sub<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Sub<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: BigInt) -> BigInt

    Performs the - operation. Read more
    ","Sub","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Sub<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: BigUint) -> BigUint

    Performs the - operation. Read more
    ","Sub","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Sub for usize

    Source§

    type Output = usize

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: usize) -> usize

    Performs the - operation. Read more
    ","Sub","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl SubAssign<&usize> for usize

    Source§

    fn sub_assign(&mut self, other: &usize)

    Performs the -= operation. Read more
    ","SubAssign<&usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl SubAssign for usize

    Source§

    fn sub_assign(&mut self, other: usize)

    Performs the -= operation. Read more
    ","SubAssign","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> Sum<&'a usize> for usize

    §

    fn sum<'b, S>(stream: S) -> Pin<Box<dyn Future<Output = usize> + 'b>>
    where\n S: Stream<Item = &'a usize> + 'b,

    Method which takes a stream and generates Self from the elements by\n“summing up” the items.
    ","Sum<&'a usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.12.0 · Source§

    impl<'a> Sum<&'a usize> for usize

    Source§

    fn sum<I>(iter: I) -> usize
    where\n I: Iterator<Item = &'a usize>,

    Takes an iterator and generates Self from the elements by “summing up”\nthe items.
    ","Sum<&'a usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Sum for usize

    §

    fn sum<'a, S>(stream: S) -> Pin<Box<dyn Future<Output = usize> + 'a>>
    where\n S: Stream<Item = usize> + 'a,

    Method which takes a stream and generates Self from the elements by\n“summing up” the items.
    ","Sum","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.12.0 · Source§

    impl Sum for usize

    Source§

    fn sum<I>(iter: I) -> usize
    where\n I: Iterator<Item = usize>,

    Takes an iterator and generates Self from the elements by “summing up”\nthe items.
    ","Sum","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToBigInt for usize

    Source§

    fn to_bigint(&self) -> Option<BigInt>

    Converts the value of self to a BigInt.
    ","ToBigInt","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToBigUint for usize

    Source§

    fn to_biguint(&self) -> Option<BigUint>

    Converts the value of self to a BigUint.
    ","ToBigUint","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToBytes for usize

    Source§

    type Bytes = [u8; 8]

    Source§

    fn to_be_bytes(&self) -> <usize as ToBytes>::Bytes

    Return the memory representation of this number as a byte array in big-endian byte order. Read more
    Source§

    fn to_le_bytes(&self) -> <usize as ToBytes>::Bytes

    Return the memory representation of this number as a byte array in little-endian byte order. Read more
    Source§

    fn to_ne_bytes(&self) -> <usize as ToBytes>::Bytes

    Return the memory representation of this number as a byte array in native byte order. Read more
    ","ToBytes","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToPrimitive for usize

    Source§

    fn to_isize(&self) -> Option<isize>

    Converts the value of self to an isize. If the value cannot be\nrepresented by an isize, then None is returned.
    Source§

    fn to_i8(&self) -> Option<i8>

    Converts the value of self to an i8. If the value cannot be\nrepresented by an i8, then None is returned.
    Source§

    fn to_i16(&self) -> Option<i16>

    Converts the value of self to an i16. If the value cannot be\nrepresented by an i16, then None is returned.
    Source§

    fn to_i32(&self) -> Option<i32>

    Converts the value of self to an i32. If the value cannot be\nrepresented by an i32, then None is returned.
    Source§

    fn to_i64(&self) -> Option<i64>

    Converts the value of self to an i64. If the value cannot be\nrepresented by an i64, then None is returned.
    Source§

    fn to_i128(&self) -> Option<i128>

    Converts the value of self to an i128. If the value cannot be\nrepresented by an i128 (i64 under the default implementation), then\nNone is returned. Read more
    Source§

    fn to_usize(&self) -> Option<usize>

    Converts the value of self to a usize. If the value cannot be\nrepresented by a usize, then None is returned.
    Source§

    fn to_u8(&self) -> Option<u8>

    Converts the value of self to a u8. If the value cannot be\nrepresented by a u8, then None is returned.
    Source§

    fn to_u16(&self) -> Option<u16>

    Converts the value of self to a u16. If the value cannot be\nrepresented by a u16, then None is returned.
    Source§

    fn to_u32(&self) -> Option<u32>

    Converts the value of self to a u32. If the value cannot be\nrepresented by a u32, then None is returned.
    Source§

    fn to_u64(&self) -> Option<u64>

    Converts the value of self to a u64. If the value cannot be\nrepresented by a u64, then None is returned.
    Source§

    fn to_u128(&self) -> Option<u128>

    Converts the value of self to a u128. If the value cannot be\nrepresented by a u128 (u64 under the default implementation), then\nNone is returned. Read more
    Source§

    fn to_f32(&self) -> Option<f32>

    Converts the value of self to an f32. Overflows may map to positive\nor negative inifinity, otherwise None is returned if the value cannot\nbe represented by an f32.
    Source§

    fn to_f64(&self) -> Option<f64>

    Converts the value of self to an f64. Overflows may map to positive\nor negative inifinity, otherwise None is returned if the value cannot\nbe represented by an f64. Read more
    ","ToPrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToTokens for usize

    Source§

    fn to_tokens(&self, tokens: &mut TokenStream)

    🔬This is a nightly-only experimental API. (proc_macro_totokens)
    Write self to the given TokenStream. Read more
    Source§

    fn to_token_stream(&self) -> TokenStream

    🔬This is a nightly-only experimental API. (proc_macro_totokens)
    Convert self directly into a TokenStream object. Read more
    Source§

    fn into_token_stream(self) -> TokenStream
    where\n Self: Sized,

    🔬This is a nightly-only experimental API. (proc_macro_totokens)
    Convert self directly into a TokenStream object. Read more
    ","ToTokens","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToTokens for usize

    Source§

    fn to_tokens(&self, tokens: &mut TokenStream)

    Write self to the given TokenStream. Read more
    Source§

    fn to_token_stream(&self) -> TokenStream

    Convert self directly into a TokenStream object. Read more
    Source§

    fn into_token_stream(self) -> TokenStream
    where\n Self: Sized,

    Convert self directly into a TokenStream object. Read more
    ","ToTokens","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl ToUsize for usize

    §

    fn to_usize(&self) -> usize

    converts self to usize
    ","ToUsize","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl ToUsize for usize

    §

    fn to_usize(&self) -> usize

    converts self to usize
    ","ToUsize","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToValue for usize

    Source§

    fn to_value(&self) -> Value<'_>

    Perform the conversion.
    ","ToValue","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl TryFrom<&BigInt> for usize

    Source§

    type Error = TryFromBigIntError<()>

    The type returned in the event of a conversion error.
    Source§

    fn try_from(value: &BigInt) -> Result<usize, TryFromBigIntError<()>>

    Performs the conversion.
    ","TryFrom<&BigInt>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl TryFrom<&BigUint> for usize

    Source§

    type Error = TryFromBigIntError<()>

    The type returned in the event of a conversion error.
    Source§

    fn try_from(value: &BigUint) -> Result<usize, TryFromBigIntError<()>>

    Performs the conversion.
    ","TryFrom<&BigUint>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl TryFrom<BigInt> for usize

    Source§

    type Error = TryFromBigIntError<BigInt>

    The type returned in the event of a conversion error.
    Source§

    fn try_from(value: BigInt) -> Result<usize, TryFromBigIntError<BigInt>>

    Performs the conversion.
    ","TryFrom","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl TryFrom<BigUint> for usize

    Source§

    type Error = TryFromBigIntError<BigUint>

    The type returned in the event of a conversion error.
    Source§

    fn try_from(value: BigUint) -> Result<usize, TryFromBigIntError<BigUint>>

    Performs the conversion.
    ","TryFrom","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'v> TryFrom<ValueBag<'v>> for usize

    Source§

    type Error = Error

    The type returned in the event of a conversion error.
    Source§

    fn try_from(v: ValueBag<'v>) -> Result<usize, Error>

    Performs the conversion.
    ","TryFrom>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i128> for usize

    Source§

    fn try_from(u: i128) -> Result<usize, <usize as TryFrom<i128>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i16> for usize

    Source§

    fn try_from(u: i16) -> Result<usize, <usize as TryFrom<i16>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i32> for usize

    Source§

    fn try_from(u: i32) -> Result<usize, <usize as TryFrom<i32>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i64> for usize

    Source§

    fn try_from(u: i64) -> Result<usize, <usize as TryFrom<i64>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i8> for usize

    Source§

    fn try_from(u: i8) -> Result<usize, <usize as TryFrom<i8>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<isize> for usize

    Source§

    fn try_from(u: isize) -> Result<usize, <usize as TryFrom<isize>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<u128> for usize

    Source§

    fn try_from(u: u128) -> Result<usize, <usize as TryFrom<u128>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<u32> for usize

    Source§

    fn try_from(value: u32) -> Result<usize, <usize as TryFrom<u32>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<u64> for usize

    Source§

    fn try_from(value: u64) -> Result<usize, <usize as TryFrom<u64>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Type for usize

    §

    const SIGNATURE: &'static Signature = u64::SIGNATURE

    The signature for the implementing type, in parsed format. Read more
    ","Type","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.42.0 · Source§

    impl UpperExp for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","UpperExp","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl UpperHex for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","UpperHex","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Value for usize

    §

    fn record(&self, key: &Field, visitor: &mut dyn Visit)

    Visits this value with the given Visitor.
    ","Value","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingAdd for usize

    Source§

    fn wrapping_add(&self, v: &usize) -> usize

    Wrapping (modular) addition. Computes self + other, wrapping around at the boundary of\nthe type.
    ","WrappingAdd","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingMul for usize

    Source§

    fn wrapping_mul(&self, v: &usize) -> usize

    Wrapping (modular) multiplication. Computes self * other, wrapping around at the boundary\nof the type.
    ","WrappingMul","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingNeg for usize

    Source§

    fn wrapping_neg(&self) -> usize

    Wrapping (modular) negation. Computes -self,\nwrapping around at the boundary of the type. Read more
    ","WrappingNeg","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingShl for usize

    Source§

    fn wrapping_shl(&self, rhs: u32) -> usize

    Panic-free bitwise shift-left; yields self << mask(rhs),\nwhere mask removes any high order bits of rhs that would\ncause the shift to exceed the bitwidth of the type. Read more
    ","WrappingShl","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingShr for usize

    Source§

    fn wrapping_shr(&self, rhs: u32) -> usize

    Panic-free bitwise shift-right; yields self >> mask(rhs),\nwhere mask removes any high order bits of rhs that would\ncause the shift to exceed the bitwidth of the type. Read more
    ","WrappingShr","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingSub for usize

    Source§

    fn wrapping_sub(&self, v: &usize) -> usize

    Wrapping (modular) subtraction. Computes self - other, wrapping around at the boundary\nof the type.
    ","WrappingSub","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl WriteHex for usize

    §

    fn write_hex<W>(&self, writer: W) -> Result<(), Error>
    where\n W: Write,

    Write the value as hex.
    ","WriteHex","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Writeable for usize

    §

    fn write_to<W>(&self, sink: &mut W) -> Result<(), Error>
    where\n W: Write + ?Sized,

    Writes a string to the given sink. Errors from the sink are bubbled up.\nThe default implementation delegates to write_to_parts, and discards any\nPart annotations.
    §

    fn writeable_length_hint(&self) -> LengthHint

    Returns a hint for the number of UTF-8 bytes that will be written to the sink. Read more
    §

    fn write_to_parts<S>(&self, sink: &mut S) -> Result<(), Error>
    where\n S: PartsWrite + ?Sized,

    Write bytes and Part annotations to the given sink. Errors from the\nsink are bubbled up. The default implementation delegates to write_to,\nand doesn’t produce any Part annotations.
    §

    fn write_to_string(&self) -> Cow<'_, str>

    Creates a new String with the data from this Writeable. Like ToString,\nbut smaller and faster. Read more
    §

    fn writeable_cmp_bytes(&self, other: &[u8]) -> Ordering

    Compares the contents of this Writeable to the given bytes\nwithout allocating a String to hold the Writeable contents. Read more
    ","Writeable","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> Yokeable<'a> for usize

    §

    type Output = usize

    This type MUST be Self with the 'static replaced with 'a, i.e. Self<'a>
    §

    fn transform(&self) -> &<usize as Yokeable<'a>>::Output

    This method must cast self between &'a Self<'static> and &'a Self<'a>. Read more
    §

    fn transform_owned(self) -> <usize as Yokeable<'a>>::Output

    This method must cast self between Self<'static> and Self<'a>. Read more
    §

    unsafe fn make(this: <usize as Yokeable<'a>>::Output) -> usize

    This method can be used to cast away Self<'a>’s lifetime. Read more
    §

    fn transform_mut<F>(&'a mut self, f: F)
    where\n F: 'static + for<'b> FnOnce(&'b mut <usize as Yokeable<'a>>::Output),

    This method must cast self between &'a mut Self<'static> and &'a mut Self<'a>,\nand pass it to f. Read more
    ","Yokeable<'a>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Zero for usize

    Source§

    fn zero() -> usize

    Returns the additive identity element of Self, 0. Read more
    Source§

    fn is_zero(&self) -> bool

    Returns true if self is equal to the additive identity.
    Source§

    fn set_zero(&mut self)

    Sets self to the additive identity element of Self, 0.
    ","Zero","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> ZeroFrom<'a, usize> for usize

    §

    fn zero_from(this: &'a usize) -> usize

    Clone the other C into a struct that may retain references into C.
    ","ZeroFrom<'a, usize>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> ZeroMapKV<'a> for usize

    §

    type Container = FlexZeroVec<'a>

    The container that can be used with this type: [ZeroVec] or [VarZeroVec].
    §

    type Slice = FlexZeroSlice

    §

    type GetType = [u8]

    The type produced by Container::get() Read more
    §

    type OwnedType = usize

    The type produced by Container::replace() and Container::remove(),\nalso used during deserialization. If Self is human readable serialized,\ndeserializing to Self::OwnedType should produce the same value once\npassed through Self::owned_as_self() Read more
    ","ZeroMapKV<'a>","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Zeroable for usize

    §

    fn zeroed() -> Self

    ","Zeroable","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl usize

    1.43.0 · Source

    pub const MIN: usize = 0usize

    Available on 64-bit only.

    The smallest value that can be represented by this integer type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(usize::MIN, 0);
    \n
    1.43.0 · Source

    pub const MAX: usize = 18_446_744_073_709_551_615usize

    Available on 64-bit only.

    The largest value that can be represented by this integer type\n(264 − 1 on 64-bit targets).

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(usize::MAX, 18446744073709551615);
    \n
    1.53.0 · Source

    pub const BITS: u32 = 64u32

    Available on 64-bit only.

    The size of this integer type in bits.

    \n
    §Examples
    \n
    assert_eq!(usize::BITS, 64);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn count_ones(self) -> u32

    Available on 64-bit only.

    Returns the number of ones in the binary representation of self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0b01001100usize;\nassert_eq!(n.count_ones(), 3);\n\nlet max = usize::MAX;\nassert_eq!(max.count_ones(), 64);\n\nlet zero = 0usize;\nassert_eq!(zero.count_ones(), 0);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn count_zeros(self) -> u32

    Available on 64-bit only.

    Returns the number of zeros in the binary representation of self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let zero = 0usize;\nassert_eq!(zero.count_zeros(), 64);\n\nlet max = usize::MAX;\nassert_eq!(max.count_zeros(), 0);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn leading_zeros(self) -> u32

    Available on 64-bit only.

    Returns the number of leading zeros in the binary representation of self.

    \n

    Depending on what you’re doing with the value, you might also be interested in the\nilog2 function which returns a consistent number, even if the type widens.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = usize::MAX >> 2;\nassert_eq!(n.leading_zeros(), 2);\n\nlet zero = 0usize;\nassert_eq!(zero.leading_zeros(), 64);\n\nlet max = usize::MAX;\nassert_eq!(max.leading_zeros(), 0);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn trailing_zeros(self) -> u32

    Available on 64-bit only.

    Returns the number of trailing zeros in the binary representation\nof self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0b0101000usize;\nassert_eq!(n.trailing_zeros(), 3);\n\nlet zero = 0usize;\nassert_eq!(zero.trailing_zeros(), 64);\n\nlet max = usize::MAX;\nassert_eq!(max.trailing_zeros(), 0);
    \n
    1.46.0 (const: 1.46.0) · Source

    pub const fn leading_ones(self) -> u32

    Available on 64-bit only.

    Returns the number of leading ones in the binary representation of self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = !(usize::MAX >> 2);\nassert_eq!(n.leading_ones(), 2);\n\nlet zero = 0usize;\nassert_eq!(zero.leading_ones(), 0);\n\nlet max = usize::MAX;\nassert_eq!(max.leading_ones(), 64);
    \n
    1.46.0 (const: 1.46.0) · Source

    pub const fn trailing_ones(self) -> u32

    Available on 64-bit only.

    Returns the number of trailing ones in the binary representation\nof self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0b1010111usize;\nassert_eq!(n.trailing_ones(), 3);\n\nlet zero = 0usize;\nassert_eq!(zero.trailing_ones(), 0);\n\nlet max = usize::MAX;\nassert_eq!(max.trailing_ones(), 64);
    \n
    Source

    pub const fn cast_signed(self) -> isize

    🔬This is a nightly-only experimental API. (integer_sign_cast)
    Available on 64-bit only.

    Returns the bit pattern of self reinterpreted as a signed integer of the same size.

    \n

    This produces the same result as an as cast, but ensures that the bit-width remains\nthe same.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(integer_sign_cast)]\n\nlet n = usize::MAX;\n\nassert_eq!(n.cast_signed(), -1isize);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn rotate_left(self, n: u32) -> usize

    Available on 64-bit only.

    Shifts the bits to the left by a specified amount, n,\nwrapping the truncated bits to the end of the resulting integer.

    \n

    Please note this isn’t the same operation as the << shifting operator!

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0xaa00000000006e1usize;\nlet m = 0x6e10aa;\n\nassert_eq!(n.rotate_left(12), m);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn rotate_right(self, n: u32) -> usize

    Available on 64-bit only.

    Shifts the bits to the right by a specified amount, n,\nwrapping the truncated bits to the beginning of the resulting\ninteger.

    \n

    Please note this isn’t the same operation as the >> shifting operator!

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x6e10aausize;\nlet m = 0xaa00000000006e1;\n\nassert_eq!(n.rotate_right(12), m);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn swap_bytes(self) -> usize

    Available on 64-bit only.

    Reverses the byte order of the integer.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1234567890123456usize;\nlet m = n.swap_bytes();\n\nassert_eq!(m, 0x5634129078563412);
    \n
    1.37.0 (const: 1.37.0) · Source

    pub const fn reverse_bits(self) -> usize

    Available on 64-bit only.

    Reverses the order of bits in the integer. The least significant bit becomes the most significant bit,\nsecond least-significant bit becomes second most-significant bit, etc.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1234567890123456usize;\nlet m = n.reverse_bits();\n\nassert_eq!(m, 0x6a2c48091e6a2c48);\nassert_eq!(0, 0usize.reverse_bits());
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn from_be(x: usize) -> usize

    Available on 64-bit only.

    Converts an integer from big endian to the target’s endianness.

    \n

    On big endian this is a no-op. On little endian the bytes are\nswapped.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1Ausize;\n\nif cfg!(target_endian = \"big\") {\n    assert_eq!(usize::from_be(n), n)\n} else {\n    assert_eq!(usize::from_be(n), n.swap_bytes())\n}
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn from_le(x: usize) -> usize

    Available on 64-bit only.

    Converts an integer from little endian to the target’s endianness.

    \n

    On little endian this is a no-op. On big endian the bytes are\nswapped.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1Ausize;\n\nif cfg!(target_endian = \"little\") {\n    assert_eq!(usize::from_le(n), n)\n} else {\n    assert_eq!(usize::from_le(n), n.swap_bytes())\n}
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn to_be(self) -> usize

    Available on 64-bit only.

    Converts self to big endian from the target’s endianness.

    \n

    On big endian this is a no-op. On little endian the bytes are\nswapped.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1Ausize;\n\nif cfg!(target_endian = \"big\") {\n    assert_eq!(n.to_be(), n)\n} else {\n    assert_eq!(n.to_be(), n.swap_bytes())\n}
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn to_le(self) -> usize

    Available on 64-bit only.

    Converts self to little endian from the target’s endianness.

    \n

    On little endian this is a no-op. On big endian the bytes are\nswapped.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1Ausize;\n\nif cfg!(target_endian = \"little\") {\n    assert_eq!(n.to_le(), n)\n} else {\n    assert_eq!(n.to_le(), n.swap_bytes())\n}
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn checked_add(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer addition. Computes self + rhs, returning None\nif overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!((usize::MAX - 2).checked_add(1), Some(usize::MAX - 1));\nassert_eq!((usize::MAX - 2).checked_add(3), None);
    \n
    Source

    pub const fn strict_add(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer addition. Computes self + rhs, panicking\nif overflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!((usize::MAX - 2).strict_add(1), usize::MAX - 1);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = (usize::MAX - 2).strict_add(3);
    \n
    1.79.0 (const: 1.79.0) · Source

    pub const unsafe fn unchecked_add(self, rhs: usize) -> usize

    Available on 64-bit only.

    Unchecked integer addition. Computes self + rhs, assuming overflow\ncannot occur.

    \n

    Calling x.unchecked_add(y) is semantically equivalent to calling\nx.checked_add(y).unwrap_unchecked().

    \n

    If you’re just trying to avoid the panic in debug mode, then do not\nuse this. Instead, you’re looking for wrapping_add.

    \n
    §Safety
    \n

    This results in undefined behavior when\nself + rhs > usize::MAX or self + rhs < usize::MIN,\ni.e. when checked_add would return None.

    \n
    1.66.0 (const: 1.66.0) · Source

    pub const fn checked_add_signed(self, rhs: isize) -> Option<usize>

    Available on 64-bit only.

    Checked addition with a signed integer. Computes self + rhs,\nreturning None if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.checked_add_signed(2), Some(3));\nassert_eq!(1usize.checked_add_signed(-2), None);\nassert_eq!((usize::MAX - 2).checked_add_signed(3), None);
    \n
    Source

    pub const fn strict_add_signed(self, rhs: isize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict addition with a signed integer. Computes self + rhs,\npanicking if overflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(1usize.strict_add_signed(2), 3);
    \n

    The following panic because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 1usize.strict_add_signed(-2);
    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = (usize::MAX - 2).strict_add_signed(3);
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn checked_sub(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer subtraction. Computes self - rhs, returning\nNone if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.checked_sub(1), Some(0));\nassert_eq!(0usize.checked_sub(1), None);
    \n
    Source

    pub const fn strict_sub(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer subtraction. Computes self - rhs, panicking if\noverflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(1usize.strict_sub(1), 0);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 0usize.strict_sub(1);
    \n
    1.79.0 (const: 1.79.0) · Source

    pub const unsafe fn unchecked_sub(self, rhs: usize) -> usize

    Available on 64-bit only.

    Unchecked integer subtraction. Computes self - rhs, assuming overflow\ncannot occur.

    \n

    Calling x.unchecked_sub(y) is semantically equivalent to calling\nx.checked_sub(y).unwrap_unchecked().

    \n

    If you’re just trying to avoid the panic in debug mode, then do not\nuse this. Instead, you’re looking for wrapping_sub.

    \n

    If you find yourself writing code like this:

    \n\n
    if foo >= bar {\n    // SAFETY: just checked it will not overflow\n    let diff = unsafe { foo.unchecked_sub(bar) };\n    // ... use diff ...\n}
    \n

    Consider changing it to

    \n\n
    if let Some(diff) = foo.checked_sub(bar) {\n    // ... use diff ...\n}
    \n

    As that does exactly the same thing – including telling the optimizer\nthat the subtraction cannot overflow – but avoids needing unsafe.

    \n
    §Safety
    \n

    This results in undefined behavior when\nself - rhs > usize::MAX or self - rhs < usize::MIN,\ni.e. when checked_sub would return None.

    \n
    Source

    pub const fn checked_sub_signed(self, rhs: isize) -> Option<usize>

    🔬This is a nightly-only experimental API. (mixed_integer_ops_unsigned_sub)
    Available on 64-bit only.

    Checked subtraction with a signed integer. Computes self - rhs,\nreturning None if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(mixed_integer_ops_unsigned_sub)]\nassert_eq!(1usize.checked_sub_signed(2), None);\nassert_eq!(1usize.checked_sub_signed(-2), Some(3));\nassert_eq!((usize::MAX - 2).checked_sub_signed(-4), None);
    \n
    Source

    pub const fn checked_signed_diff(self, rhs: usize) -> Option<isize>

    🔬This is a nightly-only experimental API. (unsigned_signed_diff)
    Available on 64-bit only.

    Checked integer subtraction. Computes self - rhs and checks if the result fits into an isize, returning None if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(unsigned_signed_diff)]\nassert_eq!(10usize.checked_signed_diff(2), Some(8));\nassert_eq!(2usize.checked_signed_diff(10), Some(-8));\nassert_eq!(usize::MAX.checked_signed_diff(isize::MAX as usize), None);\nassert_eq!((isize::MAX as usize).checked_signed_diff(usize::MAX), Some(isize::MIN));\nassert_eq!((isize::MAX as usize + 1).checked_signed_diff(0), None);\nassert_eq!(usize::MAX.checked_signed_diff(usize::MAX), Some(0));
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn checked_mul(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer multiplication. Computes self * rhs, returning\nNone if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.checked_mul(1), Some(5));\nassert_eq!(usize::MAX.checked_mul(2), None);
    \n
    Source

    pub const fn strict_mul(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer multiplication. Computes self * rhs, panicking if\noverflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(5usize.strict_mul(1), 5);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = usize::MAX.strict_mul(2);
    \n
    1.79.0 (const: 1.79.0) · Source

    pub const unsafe fn unchecked_mul(self, rhs: usize) -> usize

    Available on 64-bit only.

    Unchecked integer multiplication. Computes self * rhs, assuming overflow\ncannot occur.

    \n

    Calling x.unchecked_mul(y) is semantically equivalent to calling\nx.checked_mul(y).unwrap_unchecked().

    \n

    If you’re just trying to avoid the panic in debug mode, then do not\nuse this. Instead, you’re looking for wrapping_mul.

    \n
    §Safety
    \n

    This results in undefined behavior when\nself * rhs > usize::MAX or self * rhs < usize::MIN,\ni.e. when checked_mul would return None.

    \n
    1.0.0 (const: 1.52.0) · Source

    pub const fn checked_div(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer division. Computes self / rhs, returning None\nif rhs == 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(128usize.checked_div(2), Some(64));\nassert_eq!(1usize.checked_div(0), None);
    \n
    Source

    pub const fn strict_div(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer division. Computes self / rhs.

    \n

    Strict division on unsigned types is just normal division. There’s no\nway overflow could ever happen. This function exists so that all\noperations are accounted for in the strict operations.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(100usize.strict_div(10), 10);
    \n

    The following panics because of division by zero:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = (1usize).strict_div(0);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn checked_div_euclid(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked Euclidean division. Computes self.div_euclid(rhs), returning None\nif rhs == 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(128usize.checked_div_euclid(2), Some(64));\nassert_eq!(1usize.checked_div_euclid(0), None);
    \n
    Source

    pub const fn strict_div_euclid(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict Euclidean division. Computes self.div_euclid(rhs).

    \n

    Strict division on unsigned types is just normal division. There’s no\nway overflow could ever happen. This function exists so that all\noperations are accounted for in the strict operations. Since, for the\npositive integers, all common definitions of division are equal, this\nis exactly equal to self.strict_div(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(100usize.strict_div_euclid(10), 10);
    \n

    The following panics because of division by zero:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = (1usize).strict_div_euclid(0);
    \n
    1.7.0 (const: 1.52.0) · Source

    pub const fn checked_rem(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer remainder. Computes self % rhs, returning None\nif rhs == 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.checked_rem(2), Some(1));\nassert_eq!(5usize.checked_rem(0), None);
    \n
    Source

    pub const fn strict_rem(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer remainder. Computes self % rhs.

    \n

    Strict remainder calculation on unsigned types is just the regular\nremainder calculation. There’s no way overflow could ever happen.\nThis function exists so that all operations are accounted for in the\nstrict operations.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(100usize.strict_rem(10), 0);
    \n

    The following panics because of division by zero:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 5usize.strict_rem(0);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn checked_rem_euclid(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked Euclidean modulo. Computes self.rem_euclid(rhs), returning None\nif rhs == 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.checked_rem_euclid(2), Some(1));\nassert_eq!(5usize.checked_rem_euclid(0), None);
    \n
    Source

    pub const fn strict_rem_euclid(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict Euclidean modulo. Computes self.rem_euclid(rhs).

    \n

    Strict modulo calculation on unsigned types is just the regular\nremainder calculation. There’s no way overflow could ever happen.\nThis function exists so that all operations are accounted for in the\nstrict operations. Since, for the positive integers, all common\ndefinitions of division are equal, this is exactly equal to\nself.strict_rem(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(100usize.strict_rem_euclid(10), 0);
    \n

    The following panics because of division by zero:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 5usize.strict_rem_euclid(0);
    \n
    Source

    pub const unsafe fn unchecked_disjoint_bitor(self, other: usize) -> usize

    🔬This is a nightly-only experimental API. (disjoint_bitor)
    Available on 64-bit only.

    Same value as self | other, but UB if any bit position is set in both inputs.

    \n

    This is a situational micro-optimization for places where you’d rather\nuse addition on some platforms and bitwise or on other platforms, based\non exactly which instructions combine better with whatever else you’re\ndoing. Note that there’s no reason to bother using this for places\nwhere it’s clear from the operations involved that they can’t overlap.\nFor example, if you’re combining u16s into a u32 with\n((a as u32) << 16) | (b as u32), that’s fine, as the backend will\nknow those sides of the | are disjoint without needing help.

    \n
    §Examples
    \n
    #![feature(disjoint_bitor)]\n\n// SAFETY: `1` and `4` have no bits in common.\nunsafe {\n    assert_eq!(1_usize.unchecked_disjoint_bitor(4), 5);\n}
    \n
    §Safety
    \n

    Requires that (self & other) == 0, otherwise it’s immediate UB.

    \n

    Equivalently, requires that (self | other) == (self + other).

    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn ilog(self, base: usize) -> u32

    Available on 64-bit only.

    Returns the logarithm of the number with respect to an arbitrary base,\nrounded down.

    \n

    This method might not be optimized owing to implementation details;\nilog2 can produce results more efficiently for base 2, and ilog10\ncan produce results more efficiently for base 10.

    \n
    §Panics
    \n

    This function will panic if self is zero, or if base is less than 2.

    \n
    §Examples
    \n
    assert_eq!(5usize.ilog(5), 1);
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn ilog2(self) -> u32

    Available on 64-bit only.

    Returns the base 2 logarithm of the number, rounded down.

    \n
    §Panics
    \n

    This function will panic if self is zero.

    \n
    §Examples
    \n
    assert_eq!(2usize.ilog2(), 1);
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn ilog10(self) -> u32

    Available on 64-bit only.

    Returns the base 10 logarithm of the number, rounded down.

    \n
    §Panics
    \n

    This function will panic if self is zero.

    \n
    §Example
    \n
    assert_eq!(10usize.ilog10(), 1);
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn checked_ilog(self, base: usize) -> Option<u32>

    Available on 64-bit only.

    Returns the logarithm of the number with respect to an arbitrary base,\nrounded down.

    \n

    Returns None if the number is zero, or if the base is not at least 2.

    \n

    This method might not be optimized owing to implementation details;\nchecked_ilog2 can produce results more efficiently for base 2, and\nchecked_ilog10 can produce results more efficiently for base 10.

    \n
    §Examples
    \n
    assert_eq!(5usize.checked_ilog(5), Some(1));
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn checked_ilog2(self) -> Option<u32>

    Available on 64-bit only.

    Returns the base 2 logarithm of the number, rounded down.

    \n

    Returns None if the number is zero.

    \n
    §Examples
    \n
    assert_eq!(2usize.checked_ilog2(), Some(1));
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn checked_ilog10(self) -> Option<u32>

    Available on 64-bit only.

    Returns the base 10 logarithm of the number, rounded down.

    \n

    Returns None if the number is zero.

    \n
    §Examples
    \n
    assert_eq!(10usize.checked_ilog10(), Some(1));
    \n
    1.7.0 (const: 1.47.0) · Source

    pub const fn checked_neg(self) -> Option<usize>

    Available on 64-bit only.

    Checked negation. Computes -self, returning None unless self == 0.

    \n

    Note that negating any positive integer will overflow.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0usize.checked_neg(), Some(0));\nassert_eq!(1usize.checked_neg(), None);
    \n
    Source

    pub const fn strict_neg(self) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict negation. Computes -self, panicking unless self == 0.

    \n

    Note that negating any positive integer will overflow.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(0usize.strict_neg(), 0);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 1usize.strict_neg();
    \n
    1.7.0 (const: 1.47.0) · Source

    pub const fn checked_shl(self, rhs: u32) -> Option<usize>

    Available on 64-bit only.

    Checked shift left. Computes self << rhs, returning None\nif rhs is larger than or equal to the number of bits in self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0x1usize.checked_shl(4), Some(0x10));\nassert_eq!(0x10usize.checked_shl(129), None);\nassert_eq!(0x10usize.checked_shl(63), Some(0));
    \n
    Source

    pub const fn strict_shl(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict shift left. Computes self << rhs, panicking if rhs is larger\nthan or equal to the number of bits in self.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(0x1usize.strict_shl(4), 0x10);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 0x10usize.strict_shl(129);
    \n
    Source

    pub const unsafe fn unchecked_shl(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (unchecked_shifts)
    Available on 64-bit only.

    Unchecked shift left. Computes self << rhs, assuming that\nrhs is less than the number of bits in self.

    \n
    §Safety
    \n

    This results in undefined behavior if rhs is larger than\nor equal to the number of bits in self,\ni.e. when checked_shl would return None.

    \n
    Source

    pub const fn unbounded_shl(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (unbounded_shifts)
    Available on 64-bit only.

    Unbounded shift left. Computes self << rhs, without bounding the value of rhs.

    \n

    If rhs is larger or equal to the number of bits in self,\nthe entire value is shifted out, and 0 is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(unbounded_shifts)]\nassert_eq!(0x1usize.unbounded_shl(4), 0x10);\nassert_eq!(0x1usize.unbounded_shl(129), 0);
    \n
    1.7.0 (const: 1.47.0) · Source

    pub const fn checked_shr(self, rhs: u32) -> Option<usize>

    Available on 64-bit only.

    Checked shift right. Computes self >> rhs, returning None\nif rhs is larger than or equal to the number of bits in self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0x10usize.checked_shr(4), Some(0x1));\nassert_eq!(0x10usize.checked_shr(129), None);
    \n
    Source

    pub const fn strict_shr(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict shift right. Computes self >> rhs, panicking rhs is\nlarger than or equal to the number of bits in self.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(0x10usize.strict_shr(4), 0x1);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 0x10usize.strict_shr(129);
    \n
    Source

    pub const unsafe fn unchecked_shr(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (unchecked_shifts)
    Available on 64-bit only.

    Unchecked shift right. Computes self >> rhs, assuming that\nrhs is less than the number of bits in self.

    \n
    §Safety
    \n

    This results in undefined behavior if rhs is larger than\nor equal to the number of bits in self,\ni.e. when checked_shr would return None.

    \n
    Source

    pub const fn unbounded_shr(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (unbounded_shifts)
    Available on 64-bit only.

    Unbounded shift right. Computes self >> rhs, without bounding the value of rhs.

    \n

    If rhs is larger or equal to the number of bits in self,\nthe entire value is shifted out, and 0 is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(unbounded_shifts)]\nassert_eq!(0x10usize.unbounded_shr(4), 0x1);\nassert_eq!(0x10usize.unbounded_shr(129), 0);
    \n
    1.34.0 (const: 1.50.0) · Source

    pub const fn checked_pow(self, exp: u32) -> Option<usize>

    Available on 64-bit only.

    Checked exponentiation. Computes self.pow(exp), returning None if\noverflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.checked_pow(5), Some(32));\nassert_eq!(usize::MAX.checked_pow(2), None);
    \n
    Source

    pub const fn strict_pow(self, exp: u32) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict exponentiation. Computes self.pow(exp), panicking if\noverflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(2usize.strict_pow(5), 32);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = usize::MAX.strict_pow(2);
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn saturating_add(self, rhs: usize) -> usize

    Available on 64-bit only.

    Saturating integer addition. Computes self + rhs, saturating at\nthe numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.saturating_add(1), 101);\nassert_eq!(usize::MAX.saturating_add(127), usize::MAX);
    \n
    1.66.0 (const: 1.66.0) · Source

    pub const fn saturating_add_signed(self, rhs: isize) -> usize

    Available on 64-bit only.

    Saturating addition with a signed integer. Computes self + rhs,\nsaturating at the numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.saturating_add_signed(2), 3);\nassert_eq!(1usize.saturating_add_signed(-2), 0);\nassert_eq!((usize::MAX - 2).saturating_add_signed(4), usize::MAX);
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn saturating_sub(self, rhs: usize) -> usize

    Available on 64-bit only.

    Saturating integer subtraction. Computes self - rhs, saturating\nat the numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.saturating_sub(27), 73);\nassert_eq!(13usize.saturating_sub(127), 0);
    \n
    Source

    pub const fn saturating_sub_signed(self, rhs: isize) -> usize

    🔬This is a nightly-only experimental API. (mixed_integer_ops_unsigned_sub)
    Available on 64-bit only.

    Saturating integer subtraction. Computes self - rhs, saturating at\nthe numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(mixed_integer_ops_unsigned_sub)]\nassert_eq!(1usize.saturating_sub_signed(2), 0);\nassert_eq!(1usize.saturating_sub_signed(-2), 3);\nassert_eq!((usize::MAX - 2).saturating_sub_signed(-4), usize::MAX);
    \n
    1.7.0 (const: 1.47.0) · Source

    pub const fn saturating_mul(self, rhs: usize) -> usize

    Available on 64-bit only.

    Saturating integer multiplication. Computes self * rhs,\nsaturating at the numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.saturating_mul(10), 20);\nassert_eq!((usize::MAX).saturating_mul(10), usize::MAX);
    \n
    1.58.0 (const: 1.58.0) · Source

    pub const fn saturating_div(self, rhs: usize) -> usize

    Available on 64-bit only.

    Saturating integer division. Computes self / rhs, saturating at the\nnumeric bounds instead of overflowing.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.saturating_div(2), 2);\n
    \n
    1.34.0 (const: 1.50.0) · Source

    pub const fn saturating_pow(self, exp: u32) -> usize

    Available on 64-bit only.

    Saturating integer exponentiation. Computes self.pow(exp),\nsaturating at the numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(4usize.saturating_pow(3), 64);\nassert_eq!(usize::MAX.saturating_pow(2), usize::MAX);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn wrapping_add(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) addition. Computes self + rhs,\nwrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(200usize.wrapping_add(55), 255);\nassert_eq!(200usize.wrapping_add(usize::MAX), 199);
    \n
    1.66.0 (const: 1.66.0) · Source

    pub const fn wrapping_add_signed(self, rhs: isize) -> usize

    Available on 64-bit only.

    Wrapping (modular) addition with a signed integer. Computes\nself + rhs, wrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.wrapping_add_signed(2), 3);\nassert_eq!(1usize.wrapping_add_signed(-2), usize::MAX);\nassert_eq!((usize::MAX - 2).wrapping_add_signed(4), 1);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn wrapping_sub(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) subtraction. Computes self - rhs,\nwrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_sub(100), 0);\nassert_eq!(100usize.wrapping_sub(usize::MAX), 101);
    \n
    Source

    pub const fn wrapping_sub_signed(self, rhs: isize) -> usize

    🔬This is a nightly-only experimental API. (mixed_integer_ops_unsigned_sub)
    Available on 64-bit only.

    Wrapping (modular) subtraction with a signed integer. Computes\nself - rhs, wrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(mixed_integer_ops_unsigned_sub)]\nassert_eq!(1usize.wrapping_sub_signed(2), usize::MAX);\nassert_eq!(1usize.wrapping_sub_signed(-2), 3);\nassert_eq!((usize::MAX - 2).wrapping_sub_signed(-4), 1);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn wrapping_mul(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) multiplication. Computes self * rhs, wrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types.\nWhich explains why u8 is used here.

    \n\n
    assert_eq!(10u8.wrapping_mul(12), 120);\nassert_eq!(25u8.wrapping_mul(12), 44);
    \n
    1.2.0 (const: 1.52.0) · Source

    pub const fn wrapping_div(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) division. Computes self / rhs.

    \n

    Wrapped division on unsigned types is just normal division. There’s\nno way wrapping could ever happen. This function exists so that all\noperations are accounted for in the wrapping operations.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_div(10), 10);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn wrapping_div_euclid(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping Euclidean division. Computes self.div_euclid(rhs).

    \n

    Wrapped division on unsigned types is just normal division. There’s\nno way wrapping could ever happen. This function exists so that all\noperations are accounted for in the wrapping operations. Since, for\nthe positive integers, all common definitions of division are equal,\nthis is exactly equal to self.wrapping_div(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_div_euclid(10), 10);
    \n
    1.2.0 (const: 1.52.0) · Source

    pub const fn wrapping_rem(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) remainder. Computes self % rhs.

    \n

    Wrapped remainder calculation on unsigned types is just the regular\nremainder calculation. There’s no way wrapping could ever happen.\nThis function exists so that all operations are accounted for in the\nwrapping operations.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_rem(10), 0);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn wrapping_rem_euclid(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping Euclidean modulo. Computes self.rem_euclid(rhs).

    \n

    Wrapped modulo calculation on unsigned types is just the regular\nremainder calculation. There’s no way wrapping could ever happen.\nThis function exists so that all operations are accounted for in the\nwrapping operations. Since, for the positive integers, all common\ndefinitions of division are equal, this is exactly equal to\nself.wrapping_rem(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_rem_euclid(10), 0);
    \n
    1.2.0 (const: 1.32.0) · Source

    pub const fn wrapping_neg(self) -> usize

    Available on 64-bit only.

    Wrapping (modular) negation. Computes -self,\nwrapping around at the boundary of the type.

    \n

    Since unsigned types do not have negative equivalents\nall applications of this function will wrap (except for -0).\nFor values smaller than the corresponding signed type’s maximum\nthe result is the same as casting the corresponding signed value.\nAny larger values are equivalent to MAX + 1 - (val - MAX - 1) where\nMAX is the corresponding signed type’s maximum.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0_usize.wrapping_neg(), 0);\nassert_eq!(usize::MAX.wrapping_neg(), 1);\nassert_eq!(13_usize.wrapping_neg(), (!13) + 1);\nassert_eq!(42_usize.wrapping_neg(), !(42 - 1));
    \n
    1.2.0 (const: 1.32.0) · Source

    pub const fn wrapping_shl(self, rhs: u32) -> usize

    Available on 64-bit only.

    Panic-free bitwise shift-left; yields self << mask(rhs),\nwhere mask removes any high-order bits of rhs that\nwould cause the shift to exceed the bitwidth of the type.

    \n

    Note that this is not the same as a rotate-left; the\nRHS of a wrapping shift-left is restricted to the range\nof the type, rather than the bits shifted out of the LHS\nbeing returned to the other end. The primitive integer\ntypes all implement a rotate_left function,\nwhich may be what you want instead.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.wrapping_shl(7), 128);\nassert_eq!(1usize.wrapping_shl(128), 1);
    \n
    1.2.0 (const: 1.32.0) · Source

    pub const fn wrapping_shr(self, rhs: u32) -> usize

    Available on 64-bit only.

    Panic-free bitwise shift-right; yields self >> mask(rhs),\nwhere mask removes any high-order bits of rhs that\nwould cause the shift to exceed the bitwidth of the type.

    \n

    Note that this is not the same as a rotate-right; the\nRHS of a wrapping shift-right is restricted to the range\nof the type, rather than the bits shifted out of the LHS\nbeing returned to the other end. The primitive integer\ntypes all implement a rotate_right function,\nwhich may be what you want instead.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(128usize.wrapping_shr(7), 1);\nassert_eq!(128usize.wrapping_shr(128), 128);
    \n
    1.34.0 (const: 1.50.0) · Source

    pub const fn wrapping_pow(self, exp: u32) -> usize

    Available on 64-bit only.

    Wrapping (modular) exponentiation. Computes self.pow(exp),\nwrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(3usize.wrapping_pow(5), 243);\nassert_eq!(3u8.wrapping_pow(6), 217);
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_add(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates self + rhs.

    \n

    Returns a tuple of the addition along with a boolean indicating\nwhether an arithmetic overflow would occur. If an overflow would\nhave occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_add(2), (7, false));\nassert_eq!(usize::MAX.overflowing_add(1), (0, true));
    \n
    Source

    pub const fn carrying_add(self, rhs: usize, carry: bool) -> (usize, bool)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates self + rhs + carry and returns a tuple containing\nthe sum and the output carry.

    \n

    Performs “ternary addition” of two integer operands and a carry-in\nbit, and returns an output integer and a carry-out bit. This allows\nchaining together multiple additions to create a wider addition, and\ncan be useful for bignum addition.

    \n

    This can be thought of as a 64-bit “full adder”, in the electronics sense.

    \n

    If the input carry is false, this method is equivalent to\noverflowing_add, and the output carry is\nequal to the overflow flag. Note that although carry and overflow\nflags are similar for unsigned integers, they are different for\nsigned integers.

    \n
    §Examples
    \n
    #![feature(bigint_helper_methods)]\n\n//    3  MAX    (a = 3 × 2^64 + 2^64 - 1)\n// +  5    7    (b = 5 × 2^64 + 7)\n// ---------\n//    9    6    (sum = 9 × 2^64 + 6)\n\nlet (a1, a0): (usize, usize) = (3, usize::MAX);\nlet (b1, b0): (usize, usize) = (5, 7);\nlet carry0 = false;\n\nlet (sum0, carry1) = a0.carrying_add(b0, carry0);\nassert_eq!(carry1, true);\nlet (sum1, carry2) = a1.carrying_add(b1, carry1);\nassert_eq!(carry2, false);\n\nassert_eq!((sum1, sum0), (9, 6));
    \n
    1.66.0 (const: 1.66.0) · Source

    pub const fn overflowing_add_signed(self, rhs: isize) -> (usize, bool)

    Available on 64-bit only.

    Calculates self + rhs with a signed rhs.

    \n

    Returns a tuple of the addition along with a boolean indicating\nwhether an arithmetic overflow would occur. If an overflow would\nhave occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.overflowing_add_signed(2), (3, false));\nassert_eq!(1usize.overflowing_add_signed(-2), (usize::MAX, true));\nassert_eq!((usize::MAX - 2).overflowing_add_signed(4), (1, true));
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_sub(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates self - rhs.

    \n

    Returns a tuple of the subtraction along with a boolean indicating\nwhether an arithmetic overflow would occur. If an overflow would\nhave occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_sub(2), (3, false));\nassert_eq!(0usize.overflowing_sub(1), (usize::MAX, true));
    \n
    Source

    pub const fn borrowing_sub(self, rhs: usize, borrow: bool) -> (usize, bool)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates selfrhsborrow and returns a tuple\ncontaining the difference and the output borrow.

    \n

    Performs “ternary subtraction” by subtracting both an integer\noperand and a borrow-in bit from self, and returns an output\ninteger and a borrow-out bit. This allows chaining together multiple\nsubtractions to create a wider subtraction, and can be useful for\nbignum subtraction.

    \n
    §Examples
    \n
    #![feature(bigint_helper_methods)]\n\n//    9    6    (a = 9 × 2^64 + 6)\n// -  5    7    (b = 5 × 2^64 + 7)\n// ---------\n//    3  MAX    (diff = 3 × 2^64 + 2^64 - 1)\n\nlet (a1, a0): (usize, usize) = (9, 6);\nlet (b1, b0): (usize, usize) = (5, 7);\nlet borrow0 = false;\n\nlet (diff0, borrow1) = a0.borrowing_sub(b0, borrow0);\nassert_eq!(borrow1, true);\nlet (diff1, borrow2) = a1.borrowing_sub(b1, borrow1);\nassert_eq!(borrow2, false);\n\nassert_eq!((diff1, diff0), (3, usize::MAX));
    \n
    Source

    pub const fn overflowing_sub_signed(self, rhs: isize) -> (usize, bool)

    🔬This is a nightly-only experimental API. (mixed_integer_ops_unsigned_sub)
    Available on 64-bit only.

    Calculates self - rhs with a signed rhs

    \n

    Returns a tuple of the subtraction along with a boolean indicating\nwhether an arithmetic overflow would occur. If an overflow would\nhave occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(mixed_integer_ops_unsigned_sub)]\nassert_eq!(1usize.overflowing_sub_signed(2), (usize::MAX, true));\nassert_eq!(1usize.overflowing_sub_signed(-2), (3, false));\nassert_eq!((usize::MAX - 2).overflowing_sub_signed(-4), (1, true));
    \n
    1.60.0 (const: 1.60.0) · Source

    pub const fn abs_diff(self, other: usize) -> usize

    Available on 64-bit only.

    Computes the absolute difference between self and other.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.abs_diff(80), 20usize);\nassert_eq!(100usize.abs_diff(110), 10usize);
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_mul(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the multiplication of self and rhs.

    \n

    Returns a tuple of the multiplication along with a boolean\nindicating whether an arithmetic overflow would occur. If an\noverflow would have occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types.\nWhich explains why u32 is used here.

    \n\n
    assert_eq!(5u32.overflowing_mul(2), (10, false));\nassert_eq!(1_000_000_000u32.overflowing_mul(10), (1410065408, true));
    \n
    Source

    pub const fn widening_mul(self, rhs: usize) -> (usize, usize)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates the complete product self * rhs without the possibility to overflow.

    \n

    This returns the low-order (wrapping) bits and the high-order (overflow) bits\nof the result as two separate values, in that order.

    \n

    If you also need to add a carry to the wide result, then you want\nSelf::carrying_mul instead.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types.\nWhich explains why u32 is used here.

    \n\n
    #![feature(bigint_helper_methods)]\nassert_eq!(5u32.widening_mul(2), (10, 0));\nassert_eq!(1_000_000_000u32.widening_mul(10), (1410065408, 2));
    \n
    Source

    pub const fn carrying_mul(self, rhs: usize, carry: usize) -> (usize, usize)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates the “full multiplication” self * rhs + carry\nwithout the possibility to overflow.

    \n

    This returns the low-order (wrapping) bits and the high-order (overflow) bits\nof the result as two separate values, in that order.

    \n

    Performs “long multiplication” which takes in an extra amount to add, and may return an\nadditional amount of overflow. This allows for chaining together multiple\nmultiplications to create “big integers” which represent larger values.

    \n

    If you don’t need the carry, then you can use Self::widening_mul instead.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types.\nWhich explains why u32 is used here.

    \n\n
    #![feature(bigint_helper_methods)]\nassert_eq!(5u32.carrying_mul(2, 0), (10, 0));\nassert_eq!(5u32.carrying_mul(2, 10), (20, 0));\nassert_eq!(1_000_000_000u32.carrying_mul(10, 0), (1410065408, 2));\nassert_eq!(1_000_000_000u32.carrying_mul(10, 10), (1410065418, 2));\nassert_eq!(usize::MAX.carrying_mul(usize::MAX, usize::MAX), (0, usize::MAX));
    \n

    This is the core operation needed for scalar multiplication when\nimplementing it for wider-than-native types.

    \n\n
    #![feature(bigint_helper_methods)]\nfn scalar_mul_eq(little_endian_digits: &mut Vec<u16>, multiplicand: u16) {\n    let mut carry = 0;\n    for d in little_endian_digits.iter_mut() {\n        (*d, carry) = d.carrying_mul(multiplicand, carry);\n    }\n    if carry != 0 {\n        little_endian_digits.push(carry);\n    }\n}\n\nlet mut v = vec![10, 20];\nscalar_mul_eq(&mut v, 3);\nassert_eq!(v, [30, 60]);\n\nassert_eq!(0x87654321_u64 * 0xFEED, 0x86D3D159E38D);\nlet mut v = vec![0x4321, 0x8765];\nscalar_mul_eq(&mut v, 0xFEED);\nassert_eq!(v, [0xE38D, 0xD159, 0x86D3]);
    \n

    If carry is zero, this is similar to overflowing_mul,\nexcept that it gives the value of the overflow instead of just whether one happened:

    \n\n
    #![feature(bigint_helper_methods)]\nlet r = u8::carrying_mul(7, 13, 0);\nassert_eq!((r.0, r.1 != 0), u8::overflowing_mul(7, 13));\nlet r = u8::carrying_mul(13, 42, 0);\nassert_eq!((r.0, r.1 != 0), u8::overflowing_mul(13, 42));
    \n

    The value of the first field in the returned tuple matches what you’d get\nby combining the wrapping_mul and\nwrapping_add methods:

    \n\n
    #![feature(bigint_helper_methods)]\nassert_eq!(\n    789_u16.carrying_mul(456, 123).0,\n    789_u16.wrapping_mul(456).wrapping_add(123),\n);
    \n
    Source

    pub const fn carrying_mul_add(\n self,\n rhs: usize,\n carry: usize,\n add: usize,\n) -> (usize, usize)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates the “full multiplication” self * rhs + carry1 + carry2\nwithout the possibility to overflow.

    \n

    This returns the low-order (wrapping) bits and the high-order (overflow) bits\nof the result as two separate values, in that order.

    \n

    Performs “long multiplication” which takes in an extra amount to add, and may return an\nadditional amount of overflow. This allows for chaining together multiple\nmultiplications to create “big integers” which represent larger values.

    \n

    If you don’t need either carry, then you can use Self::widening_mul instead,\nand if you only need one carry, then you can use Self::carrying_mul instead.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types,\nwhich explains why u32 is used here.

    \n\n
    #![feature(bigint_helper_methods)]\nassert_eq!(5u32.carrying_mul_add(2, 0, 0), (10, 0));\nassert_eq!(5u32.carrying_mul_add(2, 10, 10), (30, 0));\nassert_eq!(1_000_000_000u32.carrying_mul_add(10, 0, 0), (1410065408, 2));\nassert_eq!(1_000_000_000u32.carrying_mul_add(10, 10, 10), (1410065428, 2));\nassert_eq!(usize::MAX.carrying_mul_add(usize::MAX, usize::MAX, usize::MAX), (usize::MAX, usize::MAX));
    \n

    This is the core per-digit operation for “grade school” O(n²) multiplication.

    \n

    Please note that this example is shared between integer types,\nusing u8 for simplicity of the demonstration.

    \n\n
    #![feature(bigint_helper_methods)]\n\nfn quadratic_mul<const N: usize>(a: [u8; N], b: [u8; N]) -> [u8; N] {\n    let mut out = [0; N];\n    for j in 0..N {\n        let mut carry = 0;\n        for i in 0..(N - j) {\n            (out[j + i], carry) = u8::carrying_mul_add(a[i], b[j], out[j + i], carry);\n        }\n    }\n    out\n}\n\n// -1 * -1 == 1\nassert_eq!(quadratic_mul([0xFF; 3], [0xFF; 3]), [1, 0, 0]);\n\nassert_eq!(u32::wrapping_mul(0x9e3779b9, 0x7f4a7c15), 0xCFFC982D);\nassert_eq!(\n    quadratic_mul(u32::to_le_bytes(0x9e3779b9), u32::to_le_bytes(0x7f4a7c15)),\n    u32::to_le_bytes(0xCFFC982D)\n);
    \n
    1.7.0 (const: 1.52.0) · Source

    pub const fn overflowing_div(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the divisor when self is divided by rhs.

    \n

    Returns a tuple of the divisor along with a boolean indicating\nwhether an arithmetic overflow would occur. Note that for unsigned\nintegers overflow never occurs, so the second value is always\nfalse.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_div(2), (2, false));
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn overflowing_div_euclid(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the quotient of Euclidean division self.div_euclid(rhs).

    \n

    Returns a tuple of the divisor along with a boolean indicating\nwhether an arithmetic overflow would occur. Note that for unsigned\nintegers overflow never occurs, so the second value is always\nfalse.\nSince, for the positive integers, all common\ndefinitions of division are equal, this\nis exactly equal to self.overflowing_div(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_div_euclid(2), (2, false));
    \n
    1.7.0 (const: 1.52.0) · Source

    pub const fn overflowing_rem(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the remainder when self is divided by rhs.

    \n

    Returns a tuple of the remainder after dividing along with a boolean\nindicating whether an arithmetic overflow would occur. Note that for\nunsigned integers overflow never occurs, so the second value is\nalways false.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_rem(2), (1, false));
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn overflowing_rem_euclid(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the remainder self.rem_euclid(rhs) as if by Euclidean division.

    \n

    Returns a tuple of the modulo after dividing along with a boolean\nindicating whether an arithmetic overflow would occur. Note that for\nunsigned integers overflow never occurs, so the second value is\nalways false.\nSince, for the positive integers, all common\ndefinitions of division are equal, this operation\nis exactly equal to self.overflowing_rem(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_rem_euclid(2), (1, false));
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_neg(self) -> (usize, bool)

    Available on 64-bit only.

    Negates self in an overflowing fashion.

    \n

    Returns !self + 1 using wrapping operations to return the value\nthat represents the negation of this unsigned value. Note that for\npositive unsigned values overflow always occurs, but negating 0 does\nnot overflow.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0usize.overflowing_neg(), (0, false));\nassert_eq!(2usize.overflowing_neg(), (-2i32 as usize, true));
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_shl(self, rhs: u32) -> (usize, bool)

    Available on 64-bit only.

    Shifts self left by rhs bits.

    \n

    Returns a tuple of the shifted version of self along with a boolean\nindicating whether the shift value was larger than or equal to the\nnumber of bits. If the shift value is too large, then value is\nmasked (N-1) where N is the number of bits, and this value is then\nused to perform the shift.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0x1usize.overflowing_shl(4), (0x10, false));\nassert_eq!(0x1usize.overflowing_shl(132), (0x10, true));\nassert_eq!(0x10usize.overflowing_shl(63), (0, false));
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_shr(self, rhs: u32) -> (usize, bool)

    Available on 64-bit only.

    Shifts self right by rhs bits.

    \n

    Returns a tuple of the shifted version of self along with a boolean\nindicating whether the shift value was larger than or equal to the\nnumber of bits. If the shift value is too large, then value is\nmasked (N-1) where N is the number of bits, and this value is then\nused to perform the shift.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0x10usize.overflowing_shr(4), (0x1, false));\nassert_eq!(0x10usize.overflowing_shr(132), (0x1, true));
    \n
    1.34.0 (const: 1.50.0) · Source

    pub const fn overflowing_pow(self, exp: u32) -> (usize, bool)

    Available on 64-bit only.

    Raises self to the power of exp, using exponentiation by squaring.

    \n

    Returns a tuple of the exponentiation along with a bool indicating\nwhether an overflow happened.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(3usize.overflowing_pow(5), (243, false));\nassert_eq!(3u8.overflowing_pow(6), (217, true));
    \n
    1.0.0 (const: 1.50.0) · Source

    pub const fn pow(self, exp: u32) -> usize

    Available on 64-bit only.

    Raises self to the power of exp, using exponentiation by squaring.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.pow(5), 32);
    \n
    1.84.0 (const: 1.84.0) · Source

    pub const fn isqrt(self) -> usize

    Available on 64-bit only.

    Returns the square root of the number, rounded down.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(10usize.isqrt(), 3);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn div_euclid(self, rhs: usize) -> usize

    Available on 64-bit only.

    Performs Euclidean division.

    \n

    Since, for the positive integers, all common\ndefinitions of division are equal, this\nis exactly equal to self / rhs.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(7usize.div_euclid(4), 1); // or any other integer type
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn rem_euclid(self, rhs: usize) -> usize

    Available on 64-bit only.

    Calculates the least remainder of self (mod rhs).

    \n

    Since, for the positive integers, all common\ndefinitions of division are equal, this\nis exactly equal to self % rhs.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(7usize.rem_euclid(4), 3); // or any other integer type
    \n
    Source

    pub const fn div_floor(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (int_roundings)
    Available on 64-bit only.

    Calculates the quotient of self and rhs, rounding the result towards negative infinity.

    \n

    This is the same as performing self / rhs for all unsigned integers.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(int_roundings)]\nassert_eq!(7_usize.div_floor(4), 1);
    \n
    1.73.0 (const: 1.73.0) · Source

    pub const fn div_ceil(self, rhs: usize) -> usize

    Available on 64-bit only.

    Calculates the quotient of self and rhs, rounding the result towards positive infinity.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(7_usize.div_ceil(4), 2);
    \n
    1.73.0 (const: 1.73.0) · Source

    pub const fn next_multiple_of(self, rhs: usize) -> usize

    Available on 64-bit only.

    Calculates the smallest value greater than or equal to self that\nis a multiple of rhs.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Overflow behavior
    \n

    On overflow, this function will panic if overflow checks are enabled (default in debug\nmode) and wrap if overflow checks are disabled (default in release mode).

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(16_usize.next_multiple_of(8), 16);\nassert_eq!(23_usize.next_multiple_of(8), 24);
    \n
    1.73.0 (const: 1.73.0) · Source

    pub const fn checked_next_multiple_of(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Calculates the smallest value greater than or equal to self that\nis a multiple of rhs. Returns None if rhs is zero or the\noperation would result in overflow.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(16_usize.checked_next_multiple_of(8), Some(16));\nassert_eq!(23_usize.checked_next_multiple_of(8), Some(24));\nassert_eq!(1_usize.checked_next_multiple_of(0), None);\nassert_eq!(usize::MAX.checked_next_multiple_of(2), None);
    \n
    Source

    pub const fn is_multiple_of(self, rhs: usize) -> bool

    🔬This is a nightly-only experimental API. (unsigned_is_multiple_of)
    Available on 64-bit only.

    Returns true if self is an integer multiple of rhs, and false otherwise.

    \n

    This function is equivalent to self % rhs == 0, except that it will not panic\nfor rhs == 0. Instead, 0.is_multiple_of(0) == true, and for any non-zero n,\nn.is_multiple_of(0) == false.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(unsigned_is_multiple_of)]\nassert!(6_usize.is_multiple_of(2));\nassert!(!5_usize.is_multiple_of(2));\n\nassert!(0_usize.is_multiple_of(0));\nassert!(!6_usize.is_multiple_of(0));
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn is_power_of_two(self) -> bool

    Available on 64-bit only.

    Returns true if and only if self == 2^k for some k.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert!(16usize.is_power_of_two());\nassert!(!10usize.is_power_of_two());
    \n
    1.0.0 (const: 1.50.0) · Source

    pub const fn next_power_of_two(self) -> usize

    Available on 64-bit only.

    Returns the smallest power of two greater than or equal to self.

    \n

    When return value overflows (i.e., self > (1 << (N-1)) for type\nuN), it panics in debug mode and the return value is wrapped to 0 in\nrelease mode (the only situation in which this method can return 0).

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.next_power_of_two(), 2);\nassert_eq!(3usize.next_power_of_two(), 4);\nassert_eq!(0usize.next_power_of_two(), 1);
    \n
    1.0.0 (const: 1.50.0) · Source

    pub const fn checked_next_power_of_two(self) -> Option<usize>

    Available on 64-bit only.

    Returns the smallest power of two greater than or equal to self. If\nthe next power of two is greater than the type’s maximum value,\nNone is returned, otherwise the power of two is wrapped in Some.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.checked_next_power_of_two(), Some(2));\nassert_eq!(3usize.checked_next_power_of_two(), Some(4));\nassert_eq!(usize::MAX.checked_next_power_of_two(), None);
    \n
    Source

    pub const fn wrapping_next_power_of_two(self) -> usize

    🔬This is a nightly-only experimental API. (wrapping_next_power_of_two)
    Available on 64-bit only.

    Returns the smallest power of two greater than or equal to n. If\nthe next power of two is greater than the type’s maximum value,\nthe return value is wrapped to 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(wrapping_next_power_of_two)]\n\nassert_eq!(2usize.wrapping_next_power_of_two(), 2);\nassert_eq!(3usize.wrapping_next_power_of_two(), 4);\nassert_eq!(usize::MAX.wrapping_next_power_of_two(), 0);
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn to_be_bytes(self) -> [u8; 8]

    Available on 64-bit only.

    Returns the memory representation of this integer as a byte array in\nbig-endian (network) byte order.

    \n

    Note: This function returns an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let bytes = 0x1234567890123456usize.to_be_bytes();\nassert_eq!(bytes, [0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]);
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn to_le_bytes(self) -> [u8; 8]

    Available on 64-bit only.

    Returns the memory representation of this integer as a byte array in\nlittle-endian byte order.

    \n

    Note: This function returns an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let bytes = 0x1234567890123456usize.to_le_bytes();\nassert_eq!(bytes, [0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]);
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn to_ne_bytes(self) -> [u8; 8]

    Available on 64-bit only.

    Returns the memory representation of this integer as a byte array in\nnative byte order.

    \n

    As the target platform’s native endianness is used, portable code\nshould use to_be_bytes or to_le_bytes, as appropriate,\ninstead.

    \n

    Note: This function returns an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let bytes = 0x1234567890123456usize.to_ne_bytes();\nassert_eq!(\n    bytes,\n    if cfg!(target_endian = \"big\") {\n        [0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]\n    } else {\n        [0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]\n    }\n);
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn from_be_bytes(bytes: [u8; 8]) -> usize

    Available on 64-bit only.

    Creates a native endian integer value from its representation\nas a byte array in big endian.

    \n

    Note: This function takes an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let value = usize::from_be_bytes([0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]);\nassert_eq!(value, 0x1234567890123456);
    \n

    When starting from a slice rather than an array, fallible conversion APIs can be used:

    \n\n
    fn read_be_usize(input: &mut &[u8]) -> usize {\n    let (int_bytes, rest) = input.split_at(std::mem::size_of::<usize>());\n    *input = rest;\n    usize::from_be_bytes(int_bytes.try_into().unwrap())\n}
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn from_le_bytes(bytes: [u8; 8]) -> usize

    Available on 64-bit only.

    Creates a native endian integer value from its representation\nas a byte array in little endian.

    \n

    Note: This function takes an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let value = usize::from_le_bytes([0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]);\nassert_eq!(value, 0x1234567890123456);
    \n

    When starting from a slice rather than an array, fallible conversion APIs can be used:

    \n\n
    fn read_le_usize(input: &mut &[u8]) -> usize {\n    let (int_bytes, rest) = input.split_at(std::mem::size_of::<usize>());\n    *input = rest;\n    usize::from_le_bytes(int_bytes.try_into().unwrap())\n}
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn from_ne_bytes(bytes: [u8; 8]) -> usize

    Available on 64-bit only.

    Creates a native endian integer value from its memory representation\nas a byte array in native endianness.

    \n

    As the target platform’s native endianness is used, portable code\nlikely wants to use from_be_bytes or from_le_bytes, as\nappropriate instead.

    \n

    Note: This function takes an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let value = usize::from_ne_bytes(if cfg!(target_endian = \"big\") {\n    [0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]\n} else {\n    [0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]\n});\nassert_eq!(value, 0x1234567890123456);
    \n

    When starting from a slice rather than an array, fallible conversion APIs can be used:

    \n\n
    fn read_ne_usize(input: &mut &[u8]) -> usize {\n    let (int_bytes, rest) = input.split_at(std::mem::size_of::<usize>());\n    *input = rest;\n    usize::from_ne_bytes(int_bytes.try_into().unwrap())\n}
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn min_value() -> usize

    👎Deprecating in a future version: replaced by the MIN associated constant on this type
    Available on 64-bit only.

    New code should prefer to use\nusize::MIN instead.

    \n

    Returns the smallest value that can be represented by this integer type.

    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn max_value() -> usize

    👎Deprecating in a future version: replaced by the MAX associated constant on this type
    Available on 64-bit only.

    New code should prefer to use\nusize::MAX instead.

    \n

    Returns the largest value that can be represented by this integer type.

    \n
    1.85.0 (const: 1.85.0) · Source

    pub const fn midpoint(self, rhs: usize) -> usize

    Available on 64-bit only.

    Calculates the middle point of self and rhs.

    \n

    midpoint(a, b) is (a + b) / 2 as if it were performed in a\nsufficiently-large unsigned integral type. This implies that the result is\nalways rounded towards zero and that no overflow will ever occur.

    \n
    §Examples
    \n
    assert_eq!(0usize.midpoint(4), 2);\nassert_eq!(1usize.midpoint(4), 2);
    \n
    ",0,"iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl usize

    1.0.0 (const: 1.82.0) · Source

    pub const fn from_str_radix(\n src: &str,\n radix: u32,\n) -> Result<usize, ParseIntError>

    Parses an integer from a string slice with digits in a given base.

    \n

    The string is expected to be an optional\n+\nsign followed by only digits. Leading and trailing non-digit characters (including\nwhitespace) represent an error. Underscores (which are accepted in Rust literals)\nalso represent an error.

    \n

    Digits are a subset of these characters, depending on radix:

    \n
      \n
    • 0-9
    • \n
    • a-z
    • \n
    • A-Z
    • \n
    \n
    §Panics
    \n

    This function panics if radix is not in the range from 2 to 36.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(usize::from_str_radix(\"A\", 16), Ok(10));
    \n

    Trailing space returns error:

    \n\n
    assert!(usize::from_str_radix(\"1 \", 10).is_err());
    \n
    Source

    pub const fn from_ascii(src: &[u8]) -> Result<usize, ParseIntError>

    🔬This is a nightly-only experimental API. (int_from_ascii)

    Parses an integer from an ASCII-byte slice with decimal digits.

    \n

    The characters are expected to be an optional\n+\nsign followed by only digits. Leading and trailing non-digit characters (including\nwhitespace) represent an error. Underscores (which are accepted in Rust literals)\nalso represent an error.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(int_from_ascii)]\n\nassert_eq!(usize::from_ascii(b\"+10\"), Ok(10));
    \n

    Trailing space returns error:

    \n\n
    assert!(usize::from_ascii(b\"1 \").is_err());
    \n
    Source

    pub const fn from_ascii_radix(\n src: &[u8],\n radix: u32,\n) -> Result<usize, ParseIntError>

    🔬This is a nightly-only experimental API. (int_from_ascii)

    Parses an integer from an ASCII-byte slice with digits in a given base.

    \n

    The characters are expected to be an optional\n+\nsign followed by only digits. Leading and trailing non-digit characters (including\nwhitespace) represent an error. Underscores (which are accepted in Rust literals)\nalso represent an error.

    \n

    Digits are a subset of these characters, depending on radix:

    \n
      \n
    • 0-9
    • \n
    • a-z
    • \n
    • A-Z
    • \n
    \n
    §Panics
    \n

    This function panics if radix is not in the range from 2 to 36.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(int_from_ascii)]\n\nassert_eq!(usize::from_ascii_radix(b\"A\", 16), Ok(10));
    \n

    Trailing space returns error:

    \n\n
    assert!(usize::from_ascii_radix(b\"1 \", 10).is_err());
    \n
    ",0,"iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ConstParamTy_ for usize

    ","ConstParamTy_","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Copy for usize

    ","Copy","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Eq for usize

    ","Eq","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl ExtendTarget<usize> for usize

    ","ExtendTarget","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Index for usize

    ","Index","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Pod for usize

    ","Pod","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl PointerLike for usize

    ","PointerLike","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl SimdCast for usize

    ","SimdCast","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl StructuralPartialEq for usize

    ","StructuralPartialEq","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl TruncateTarget<u16> for usize

    ","TruncateTarget","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl TruncateTarget<u8> for usize

    ","TruncateTarget","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl TruncateTarget<usize> for usize

    ","TruncateTarget","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl TrustedStep for usize

    ","TrustedStep","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Uint for usize

    ","Uint","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Unsigned for usize

    ","Unsigned","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl UnsizedConstParamTy for usize

    ","UnsizedConstParamTy","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Weight for usize

    ","Weight","iced::widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ZeroablePrimitive for usize

    ","ZeroablePrimitive","iced::widget::canvas::path::lyon_path::AttributeIndex"]]],["iced_renderer",[["
    §

    impl AbsDiffEq for usize

    §

    type Epsilon = usize

    Used for specifying relative comparisons.
    §

    fn default_epsilon() -> usize

    The default tolerance to use when testing values that are close together. Read more
    §

    fn abs_diff_eq(&self, other: &usize, epsilon: usize) -> bool

    A test for equality that uses the absolute difference to compute the approximate\nequality of two numbers.
    §

    fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool

    The inverse of [AbsDiffEq::abs_diff_eq].
    ","AbsDiffEq","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl<T> Accumulate<T> for usize

    §

    fn initial(_capacity: Option<usize>) -> usize

    Create a new Extend of the correct type
    §

    fn accumulate(&mut self, _acc: T)

    Accumulate the input into an accumulator
    ","Accumulate","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Add<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: &BigInt) -> BigInt

    Performs the + operation. Read more
    ","Add<&BigInt>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Add<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: &BigUint) -> BigUint

    Performs the + operation. Read more
    ","Add<&BigUint>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Add<&usize> for usize

    Source§

    type Output = <usize as Add>::Output

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: &usize) -> <usize as Add>::Output

    Performs the + operation. Read more
    ","Add<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Add<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: BigInt) -> BigInt

    Performs the + operation. Read more
    ","Add","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Add<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: BigUint) -> BigUint

    Performs the + operation. Read more
    ","Add","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Add for usize

    Source§

    type Output = usize

    The resulting type after applying the + operator.
    Source§

    const fn add(self, other: usize) -> usize

    Performs the + operation. Read more
    ","Add","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl AddAssign<&usize> for usize

    Source§

    fn add_assign(&mut self, other: &usize)

    Performs the += operation. Read more
    ","AddAssign<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl AddAssign for usize

    Source§

    fn add_assign(&mut self, other: usize)

    Performs the += operation. Read more
    ","AddAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl AsBytes for usize

    §

    fn as_bytes(&self) -> &[u8]

    Gets the bytes of this value. Read more
    §

    fn as_bytes_mut(&mut self) -> &mut [u8]
    where\n Self: FromBytes,

    Gets the bytes of this value mutably. Read more
    §

    fn write_to(&self, bytes: &mut [u8]) -> Option<()>

    Writes a copy of self to bytes. Read more
    §

    fn write_to_prefix(&self, bytes: &mut [u8]) -> Option<()>

    Writes a copy of self to the prefix of bytes. Read more
    §

    fn write_to_suffix(&self, bytes: &mut [u8]) -> Option<()>

    Writes a copy of self to the suffix of bytes. Read more
    ","AsBytes","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<f32> for usize

    Source§

    fn as_(self) -> f32

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<f64> for usize

    Source§

    fn as_(self) -> f64

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i128> for usize

    Source§

    fn as_(self) -> i128

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i16> for usize

    Source§

    fn as_(self) -> i16

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i32> for usize

    Source§

    fn as_(self) -> i32

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i64> for usize

    Source§

    fn as_(self) -> i64

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i8> for usize

    Source§

    fn as_(self) -> i8

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<isize> for usize

    Source§

    fn as_(self) -> isize

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u128> for usize

    Source§

    fn as_(self) -> u128

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u16> for usize

    Source§

    fn as_(self) -> u16

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u32> for usize

    Source§

    fn as_(self) -> u32

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u64> for usize

    Source§

    fn as_(self) -> u64

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u8> for usize

    Source§

    fn as_(self) -> u8

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<usize> for usize

    Source§

    fn as_(self) -> usize

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Binary for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Binary","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitAnd<&usize> for usize

    Source§

    type Output = <usize as BitAnd>::Output

    The resulting type after applying the & operator.
    Source§

    fn bitand(self, other: &usize) -> <usize as BitAnd>::Output

    Performs the & operation. Read more
    ","BitAnd<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitAnd for usize

    Source§

    type Output = usize

    The resulting type after applying the & operator.
    Source§

    fn bitand(self, rhs: usize) -> usize

    Performs the & operation. Read more
    ","BitAnd","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl BitAndAssign<&usize> for usize

    Source§

    fn bitand_assign(&mut self, other: &usize)

    Performs the &= operation. Read more
    ","BitAndAssign<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl BitAndAssign for usize

    Source§

    fn bitand_assign(&mut self, other: usize)

    Performs the &= operation. Read more
    ","BitAndAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl BitBlock for usize

    Source§

    fn bits() -> usize

    How many bits it has
    Source§

    fn from_byte(byte: u8) -> usize

    Convert a byte into this type (lowest-order bits set)
    Source§

    fn count_ones(self) -> usize

    Count the number of 1’s in the bitwise repr
    Source§

    fn count_zeros(self) -> usize

    Count the number of 0’s in the bitwise repr
    Source§

    fn one() -> usize

    Get 1
    Source§

    fn zero() -> usize

    Get 0
    Source§

    fn bytes() -> usize

    How many bytes it has
    ","BitBlock","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl BitField for usize

    §

    const BIT_LENGTH: usize = 64usize

    The number of bits in this bit field. Read more
    §

    fn get_bit(&self, bit: usize) -> bool

    Obtains the bit at the index bit; note that index 0 is the least significant bit, while\nindex length() - 1 is the most significant bit. Read more
    §

    fn get_bits<T>(&self, range: T) -> usize
    where\n T: RangeBounds<usize>,

    Obtains the range of bits specified by range; note that index 0 is the least significant\nbit, while index length() - 1 is the most significant bit. Read more
    §

    fn set_bit(&mut self, bit: usize, value: bool) -> &mut usize

    Sets the bit at the index bit to the value value (where true means a value of ‘1’ and\nfalse means a value of ‘0’); note that index 0 is the least significant bit, while index\nlength() - 1 is the most significant bit. Read more
    §

    fn set_bits<T>(&mut self, range: T, value: usize) -> &mut usize
    where\n T: RangeBounds<usize>,

    Sets the range of bits defined by the range range to the lower bits of value; to be\nspecific, if the range is N bits long, the N lower bits of value will be used; if any of\nthe other bits in value are set to 1, this function will panic. Read more
    ","BitField","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitOr<&usize> for usize

    Source§

    type Output = <usize as BitOr>::Output

    The resulting type after applying the | operator.
    Source§

    fn bitor(self, other: &usize) -> <usize as BitOr>::Output

    Performs the | operation. Read more
    ","BitOr<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitOr for usize

    Source§

    type Output = usize

    The resulting type after applying the | operator.
    Source§

    fn bitor(self, rhs: usize) -> usize

    Performs the | operation. Read more
    ","BitOr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl BitOrAssign<&usize> for usize

    Source§

    fn bitor_assign(&mut self, other: &usize)

    Performs the |= operation. Read more
    ","BitOrAssign<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl BitOrAssign for usize

    Source§

    fn bitor_assign(&mut self, other: usize)

    Performs the |= operation. Read more
    ","BitOrAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitXor<&usize> for usize

    Source§

    type Output = <usize as BitXor>::Output

    The resulting type after applying the ^ operator.
    Source§

    fn bitxor(self, other: &usize) -> <usize as BitXor>::Output

    Performs the ^ operation. Read more
    ","BitXor<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitXor for usize

    Source§

    type Output = usize

    The resulting type after applying the ^ operator.
    Source§

    fn bitxor(self, other: usize) -> usize

    Performs the ^ operation. Read more
    ","BitXor","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl BitXorAssign<&usize> for usize

    Source§

    fn bitxor_assign(&mut self, other: &usize)

    Performs the ^= operation. Read more
    ","BitXorAssign<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl BitXorAssign for usize

    Source§

    fn bitxor_assign(&mut self, other: usize)

    Performs the ^= operation. Read more
    ","BitXorAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Bits for usize

    §

    const EMPTY: usize = 0usize

    A value with all bits unset.
    §

    const ALL: usize = 18_446_744_073_709_551_615usize

    A value with all bits set.
    ","Bits","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Bounded for usize

    Source§

    fn min_value() -> usize

    Returns the smallest finite number this type can represent
    Source§

    fn max_value() -> usize

    Returns the largest finite number this type can represent
    ","Bounded","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl CarryingMulAdd for usize

    Source§

    type Unsigned = usize

    🔬This is a nightly-only experimental API. (core_intrinsics_fallbacks)
    Source§

    const fn carrying_mul_add(self, a: usize, b: usize, c: usize) -> (usize, usize)

    🔬This is a nightly-only experimental API. (core_intrinsics_fallbacks)
    ","CarryingMulAdd","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Ceil for usize

    §

    fn ceil(self) -> usize

    Rounds to the smallest integer equal or greater than the original value. Read more
    ","Ceil","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedAdd for usize

    Source§

    fn checked_add(&self, v: &usize) -> Option<usize>

    Adds two numbers, checking for overflow. If overflow happens, None is\nreturned.
    ","CheckedAdd","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedDiv for usize

    Source§

    fn checked_div(&self, v: &usize) -> Option<usize>

    Divides two numbers, checking for underflow, overflow and division by\nzero. If any of that happens, None is returned.
    ","CheckedDiv","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedEuclid for usize

    Source§

    fn checked_div_euclid(&self, v: &usize) -> Option<usize>

    Performs euclid division that returns None instead of panicking on division by zero\nand instead of wrapping around on underflow and overflow.
    Source§

    fn checked_rem_euclid(&self, v: &usize) -> Option<usize>

    Finds the euclid remainder of dividing two numbers, checking for underflow, overflow and\ndivision by zero. If any of that happens, None is returned.
    Source§

    fn checked_div_rem_euclid(&self, v: &Self) -> Option<(Self, Self)>

    Returns both the quotient and remainder from checked Euclidean division. Read more
    ","CheckedEuclid","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedMul for usize

    Source§

    fn checked_mul(&self, v: &usize) -> Option<usize>

    Multiplies two numbers, checking for underflow or overflow. If underflow\nor overflow happens, None is returned.
    ","CheckedMul","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedNeg for usize

    Source§

    fn checked_neg(&self) -> Option<usize>

    Negates a number, returning None for results that can’t be represented, like signed MIN\nvalues that can’t be positive, or non-zero unsigned values that can’t be negative. Read more
    ","CheckedNeg","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedRem for usize

    Source§

    fn checked_rem(&self, v: &usize) -> Option<usize>

    Finds the remainder of dividing two numbers, checking for underflow, overflow and division\nby zero. If any of that happens, None is returned. Read more
    ","CheckedRem","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedShl for usize

    Source§

    fn checked_shl(&self, rhs: u32) -> Option<usize>

    Checked shift left. Computes self << rhs, returning None\nif rhs is larger than or equal to the number of bits in self. Read more
    ","CheckedShl","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedShr for usize

    Source§

    fn checked_shr(&self, rhs: u32) -> Option<usize>

    Checked shift right. Computes self >> rhs, returning None\nif rhs is larger than or equal to the number of bits in self. Read more
    ","CheckedShr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedSub for usize

    Source§

    fn checked_sub(&self, v: &usize) -> Option<usize>

    Subtracts two numbers, checking for underflow. If underflow happens,\nNone is returned.
    ","CheckedSub","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Clone for usize

    Source§

    fn clone(&self) -> usize

    Returns a copy of the value. Read more
    1.0.0 · Source§

    fn clone_from(&mut self, source: &Self)

    Performs copy-assignment from source. Read more
    ","Clone","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl ConstOne for usize

    Source§

    const ONE: usize = 1usize

    The multiplicative identity element of Self, 1.
    ","ConstOne","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl ConstZero for usize

    Source§

    const ZERO: usize = 0usize

    The additive identity element of Self, 0.
    ","ConstZero","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Contiguous for usize

    §

    const MAX_VALUE: usize = 18_446_744_073_709_551_615usize

    The upper inclusive bound for valid instances of this type.
    §

    const MIN_VALUE: usize = 0usize

    The lower inclusive bound for valid instances of this type.
    §

    type Int = usize

    The primitive integer type with an identical representation to this\ntype. Read more
    §

    fn from_integer(value: Self::Int) -> Option<Self>

    If value is within the range for valid instances of this type,\nreturns Some(converted_value), otherwise, returns None. Read more
    §

    fn into_integer(self) -> Self::Int

    Perform the conversion from C into the underlying integral type. This\nmostly exists otherwise generic code would need unsafe for the value as integer Read more
    ","Contiguous","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Debug for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Debug","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Default for usize

    Source§

    fn default() -> usize

    Returns the default value of 0

    \n
    ","Default","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'de> Deserialize<'de> for usize

    Source§

    fn deserialize<D>(\n deserializer: D,\n) -> Result<usize, <D as Deserializer<'de>>::Error>
    where\n D: Deserializer<'de>,

    Deserialize this value from the given Serde deserializer. Read more
    ","Deserialize<'de>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl DisjointBitOr for usize

    Source§

    const unsafe fn disjoint_bitor(self, other: usize) -> usize

    🔬This is a nightly-only experimental API. (core_intrinsics_fallbacks)
    See super::disjoint_bitor; we just need the trait indirection to handle\ndifferent types since calling intrinsics with generics doesn’t work.
    ","DisjointBitOr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Display for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Display","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Div<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: &BigInt) -> BigInt

    Performs the / operation. Read more
    ","Div<&BigInt>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Div<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: &BigUint) -> BigUint

    Performs the / operation. Read more
    ","Div<&BigUint>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Div<&usize> for usize

    Source§

    type Output = <usize as Div>::Output

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: &usize) -> <usize as Div>::Output

    Performs the / operation. Read more
    ","Div<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Div<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: BigInt) -> BigInt

    Performs the / operation. Read more
    ","Div","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Div<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: BigUint) -> BigUint

    Performs the / operation. Read more
    ","Div","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.51.0 · Source§

    impl Div<NonZero<usize>> for usize

    Source§

    fn div(self, other: NonZero<usize>) -> usize

    Same as self / other.get(), but because other is a NonZero<_>,\nthere’s never a runtime check for division-by-zero.

    \n

    This operation rounds towards zero, truncating any fractional\npart of the exact result, and cannot panic.

    \n
    Source§

    type Output = usize

    The resulting type after applying the / operator.
    ","Div>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Div for usize

    This operation rounds towards zero, truncating any\nfractional part of the exact result.

    \n

    §Panics

    \n

    This operation will panic if other == 0.

    \n
    Source§

    type Output = usize

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: usize) -> usize

    Performs the / operation. Read more
    ","Div","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl DivAssign<&usize> for usize

    Source§

    fn div_assign(&mut self, other: &usize)

    Performs the /= operation. Read more
    ","DivAssign<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.79.0 · Source§

    impl DivAssign<NonZero<usize>> for usize

    Source§

    fn div_assign(&mut self, other: NonZero<usize>)

    Same as self /= other.get(), but because other is a NonZero<_>,\nthere’s never a runtime check for division-by-zero.

    \n

    This operation rounds towards zero, truncating any fractional\npart of the exact result, and cannot panic.

    \n
    ","DivAssign>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl DivAssign for usize

    Source§

    fn div_assign(&mut self, other: usize)

    Performs the /= operation. Read more
    ","DivAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl ErrnoSentinel for usize

    ","ErrnoSentinel","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Euclid for usize

    Source§

    fn div_euclid(&self, v: &usize) -> usize

    Calculates Euclidean division, the matching method for rem_euclid. Read more
    Source§

    fn rem_euclid(&self, v: &usize) -> usize

    Calculates the least nonnegative remainder of self (mod v). Read more
    Source§

    fn div_rem_euclid(&self, v: &Self) -> (Self, Self)

    Returns both the quotient and remainder from Euclidean division. Read more
    ","Euclid","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Fixed for usize

    §

    fn floor_log2(&self, n: usize) -> usize

    §

    fn ceil_log2(&self, n: usize) -> usize

    §

    fn align_power_of_two(&self, n: usize) -> usize

    §

    fn align_power_of_two_and_shift(&self, n: usize) -> usize

    ","Fixed","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Floor for usize

    §

    fn floor(self) -> usize

    Rounds to the biggest integer equal or lower than the original value. Read more
    ","Floor","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl FmtConst for usize

    Source§

    fn fmt_const(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Print a const expression representing this value.
    ","FmtConst","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl From<Alignment> for usize

    Source§

    fn from(align: Alignment) -> usize

    Converts to this type from the input type.
    ","From","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl From<State> for usize

    §

    fn from(src: State) -> usize

    Converts to this type from the input type.
    ","From","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl From<State> for usize

    §

    fn from(val: State) -> usize

    Converts to this type from the input type.
    ","From","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl From<State> for usize

    §

    fn from(val: State) -> usize

    Converts to this type from the input type.
    ","From","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl<O> From<U16<O>> for usize
    where\n O: ByteOrder,

    §

    fn from(x: U16<O>) -> usize

    Converts to this type from the input type.
    ","From>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl From<Uint24> for usize

    §

    fn from(src: Uint24) -> usize

    Converts to this type from the input type.
    ","From","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl From<VertexId> for usize

    §

    fn from(v: VertexId) -> usize

    Converts to this type from the input type.
    ","From","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.28.0 · Source§

    impl From<bool> for usize

    Source§

    fn from(small: bool) -> usize

    Converts a bool to usize losslessly.\nThe resulting value is 0 for false and 1 for true values.

    \n
    §Examples
    \n
    assert_eq!(usize::from(true), 1);\nassert_eq!(usize::from(false), 0);
    \n
    ","From","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.26.0 · Source§

    impl From<u16> for usize

    Source§

    fn from(small: u16) -> usize

    Converts u16 to usize losslessly.

    \n
    ","From","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.5.0 · Source§

    impl From<u8> for usize

    Source§

    fn from(small: u8) -> usize

    Converts u8 to usize losslessly.

    \n
    ","From","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl FromBytes for usize

    Source§

    type Bytes = [u8; 8]

    Source§

    fn from_be_bytes(bytes: &<usize as FromBytes>::Bytes) -> usize

    Create a number from its representation as a byte array in big endian. Read more
    Source§

    fn from_le_bytes(bytes: &<usize as FromBytes>::Bytes) -> usize

    Create a number from its representation as a byte array in little endian. Read more
    Source§

    fn from_ne_bytes(bytes: &<usize as FromBytes>::Bytes) -> usize

    Create a number from its memory representation as a byte array in native endianness. Read more
    ","FromBytes","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl FromBytes for usize

    §

    fn ref_from(bytes: &[u8]) -> Option<&Self>
    where\n Self: Sized,

    Interprets the given bytes as a &Self without copying. Read more
    §

    fn ref_from_prefix(bytes: &[u8]) -> Option<&Self>
    where\n Self: Sized,

    Interprets the prefix of the given bytes as a &Self without copying. Read more
    §

    fn ref_from_suffix(bytes: &[u8]) -> Option<&Self>
    where\n Self: Sized,

    Interprets the suffix of the given bytes as a &Self without copying. Read more
    §

    fn mut_from(bytes: &mut [u8]) -> Option<&mut Self>
    where\n Self: Sized + AsBytes,

    Interprets the given bytes as a &mut Self without copying. Read more
    §

    fn mut_from_prefix(bytes: &mut [u8]) -> Option<&mut Self>
    where\n Self: Sized + AsBytes,

    Interprets the prefix of the given bytes as a &mut Self without\ncopying. Read more
    §

    fn mut_from_suffix(bytes: &mut [u8]) -> Option<&mut Self>
    where\n Self: Sized + AsBytes,

    Interprets the suffix of the given bytes as a &mut Self without copying. Read more
    §

    fn slice_from(bytes: &[u8]) -> Option<&[Self]>
    where\n Self: Sized,

    Interprets the given bytes as a &[Self] without copying. Read more
    §

    fn slice_from_prefix(bytes: &[u8], count: usize) -> Option<(&[Self], &[u8])>
    where\n Self: Sized,

    Interprets the prefix of the given bytes as a &[Self] with length\nequal to count without copying. Read more
    §

    fn slice_from_suffix(bytes: &[u8], count: usize) -> Option<(&[u8], &[Self])>
    where\n Self: Sized,

    Interprets the suffix of the given bytes as a &[Self] with length\nequal to count without copying. Read more
    §

    fn mut_slice_from(bytes: &mut [u8]) -> Option<&mut [Self]>
    where\n Self: Sized + AsBytes,

    Interprets the given bytes as a &mut [Self] without copying. Read more
    §

    fn mut_slice_from_prefix(\n bytes: &mut [u8],\n count: usize,\n) -> Option<(&mut [Self], &mut [u8])>
    where\n Self: Sized + AsBytes,

    Interprets the prefix of the given bytes as a &mut [Self] with length\nequal to count without copying. Read more
    §

    fn mut_slice_from_suffix(\n bytes: &mut [u8],\n count: usize,\n) -> Option<(&mut [u8], &mut [Self])>
    where\n Self: Sized + AsBytes,

    Interprets the suffix of the given bytes as a &mut [Self] with length\nequal to count without copying. Read more
    §

    fn read_from(bytes: &[u8]) -> Option<Self>
    where\n Self: Sized,

    Reads a copy of Self from bytes. Read more
    §

    fn read_from_prefix(bytes: &[u8]) -> Option<Self>
    where\n Self: Sized,

    Reads a copy of Self from the prefix of bytes. Read more
    §

    fn read_from_suffix(bytes: &[u8]) -> Option<Self>
    where\n Self: Sized,

    Reads a copy of Self from the suffix of bytes. Read more
    ","FromBytes","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl FromPrimitive for usize

    Source§

    fn from_isize(n: isize) -> Option<usize>

    Converts an isize to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i8(n: i8) -> Option<usize>

    Converts an i8 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i16(n: i16) -> Option<usize>

    Converts an i16 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i32(n: i32) -> Option<usize>

    Converts an i32 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i64(n: i64) -> Option<usize>

    Converts an i64 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i128(n: i128) -> Option<usize>

    Converts an i128 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned. Read more
    Source§

    fn from_usize(n: usize) -> Option<usize>

    Converts a usize to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u8(n: u8) -> Option<usize>

    Converts an u8 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u16(n: u16) -> Option<usize>

    Converts an u16 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u32(n: u32) -> Option<usize>

    Converts an u32 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u64(n: u64) -> Option<usize>

    Converts an u64 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u128(n: u128) -> Option<usize>

    Converts an u128 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned. Read more
    Source§

    fn from_f32(n: f32) -> Option<usize>

    Converts a f32 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_f64(n: f64) -> Option<usize>

    Converts a f64 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned. Read more
    ","FromPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl FromStr for usize

    Source§

    fn from_str(src: &str) -> Result<usize, ParseIntError>

    Parses an integer from a string slice with decimal digits.

    \n

    The characters are expected to be an optional\n+\nsign followed by only digits. Leading and trailing non-digit characters (including\nwhitespace) represent an error. Underscores (which are accepted in Rust literals)\nalso represent an error.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    use std::str::FromStr;\n\nassert_eq!(usize::from_str(\"+10\"), Ok(10));
    \n

    Trailing space returns error:

    \n\n
    assert!(usize::from_str(\"1 \").is_err());
    \n
    Source§

    type Err = ParseIntError

    The associated error which can be returned from parsing.
    ","FromStr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl FromZeroes for usize

    §

    fn zero(&mut self)

    Overwrites self with zeroes. Read more
    §

    fn new_zeroed() -> Self
    where\n Self: Sized,

    Creates an instance of Self from zeroed bytes. Read more
    ","FromZeroes","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl GetManyMutIndex for usize

    Source§

    fn is_in_bounds(&self, len: usize) -> bool

    🔬This is a nightly-only experimental API. (get_many_mut_helpers)
    Returns true if self is in bounds for len slice elements.
    Source§

    fn is_overlapping(&self, other: &usize) -> bool

    🔬This is a nightly-only experimental API. (get_many_mut_helpers)
    Returns true if self overlaps with other. Read more
    ","GetManyMutIndex","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Hash for usize

    Source§

    fn hash<H>(&self, state: &mut H)
    where\n H: Hasher,

    Feeds this value into the given Hasher. Read more
    Source§

    fn hash_slice<H>(data: &[usize], state: &mut H)
    where\n H: Hasher,

    Feeds a slice of this type into the given Hasher. Read more
    ","Hash","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl IdentFragment for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Format this value as an identifier fragment.
    Source§

    fn span(&self) -> Option<Span>

    Span associated with this IdentFragment. Read more
    ","IdentFragment","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Integer for usize

    Source§

    fn div_floor(&self, other: &usize) -> usize

    Unsigned integer division. Returns the same result as div (/).

    \n
    Source§

    fn mod_floor(&self, other: &usize) -> usize

    Unsigned integer modulo operation. Returns the same result as rem (%).

    \n
    Source§

    fn gcd(&self, other: &usize) -> usize

    Calculates the Greatest Common Divisor (GCD) of the number and other

    \n
    Source§

    fn lcm(&self, other: &usize) -> usize

    Calculates the Lowest Common Multiple (LCM) of the number and other.

    \n
    Source§

    fn gcd_lcm(&self, other: &usize) -> (usize, usize)

    Calculates the Greatest Common Divisor (GCD) and\nLowest Common Multiple (LCM) of the number and other.

    \n
    Source§

    fn is_multiple_of(&self, other: &usize) -> bool

    Returns true if the number is a multiple of other.

    \n
    Source§

    fn is_even(&self) -> bool

    Returns true if the number is divisible by 2.

    \n
    Source§

    fn is_odd(&self) -> bool

    Returns true if the number is not divisible by 2.

    \n
    Source§

    fn div_rem(&self, other: &usize) -> (usize, usize)

    Simultaneous truncated integer division and modulus.

    \n
    Source§

    fn div_ceil(&self, other: &usize) -> usize

    Ceiled integer division. Read more
    Source§

    fn extended_gcd_lcm(&self, other: &usize) -> (ExtendedGcd<usize>, usize)

    Greatest common divisor, least common multiple, and Bézout coefficients.
    Source§

    fn extended_gcd(&self, other: &Self) -> ExtendedGcd<Self>
    where\n Self: Clone,

    Greatest common divisor and Bézout coefficients. Read more
    Source§

    fn divides(&self, other: &Self) -> bool

    👎Deprecated: Please use is_multiple_of instead
    Deprecated, use is_multiple_of instead.
    Source§

    fn div_mod_floor(&self, other: &Self) -> (Self, Self)

    Simultaneous floored integer division and modulus.\nReturns (quotient, remainder). Read more
    Source§

    fn next_multiple_of(&self, other: &Self) -> Self
    where\n Self: Clone,

    Rounds up to nearest multiple of argument. Read more
    Source§

    fn prev_multiple_of(&self, other: &Self) -> Self
    where\n Self: Clone,

    Rounds down to nearest multiple of argument. Read more
    Source§

    fn dec(&mut self)
    where\n Self: Clone,

    Decrements self by one. Read more
    Source§

    fn inc(&mut self)
    where\n Self: Clone,

    Increments self by one. Read more
    ","Integer","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'de, E> IntoDeserializer<'de, E> for usize
    where\n E: Error,

    Source§

    type Deserializer = UsizeDeserializer<E>

    The type of the deserializer being converted into.
    Source§

    fn into_deserializer(self) -> UsizeDeserializer<E>

    Convert this value into a deserializer.
    ","IntoDeserializer<'de, E>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> IntoFragment<'a> for usize

    Source§

    fn into_fragment(self) -> Cow<'a, str>

    Converts the value to some text Fragment.
    ","IntoFragment<'a>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl IntoNotification for usize

    §

    type Tag = ()

    The tag data associated with a notification. Read more
    §

    type Notify = Notify

    The notification type. Read more
    §

    fn into_notification(self) -> <usize as IntoNotification>::Notify

    Convert this value into a notification. Read more
    §

    fn additional(self) -> Additional<Self::Notify>
    where\n Self: Sized,

    Convert this value into an additional notification. Read more
    §

    fn relaxed(self) -> Relaxed<Self::Notify>
    where\n Self: Sized,

    Don’t emit a fence for this notification. Read more
    §

    fn tag<T>(self, tag: T) -> Tag<Self::Notify, T>
    where\n T: Clone,\n Self: Sized + IntoNotification<Tag = ()>,

    Available on crate feature std only.
    Use a tag with this notification. Read more
    §

    fn tag_with<T, F>(self, tag: F) -> TagWith<Self::Notify, F>
    where\n Self: Sized + IntoNotification<Tag = ()>,\n F: FnMut() -> T,

    Available on crate feature std only.
    Use a function to generate a tag with this notification. Read more
    ","IntoNotification","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl IntoNotification for usize

    §

    type Tag = ()

    The tag data associated with a notification. Read more
    §

    type Notify = Notify

    The notification type. Read more
    §

    fn into_notification(self) -> <usize as IntoNotification>::Notify

    Convert this value into a notification. Read more
    §

    fn additional(self) -> Additional<Self::Notify>
    where\n Self: Sized,

    Convert this value into an additional notification. Read more
    §

    fn relaxed(self) -> Relaxed<Self::Notify>
    where\n Self: Sized,

    Don’t emit a fence for this notification. Read more
    §

    fn tag<T>(self, tag: T) -> Tag<Self::Notify, T>
    where\n T: Clone,\n Self: Sized + IntoNotification<Tag = ()>,

    Available on crate feature std only.
    Use a tag with this notification. Read more
    §

    fn tag_with<T, F>(self, tag: F) -> TagWith<Self::Notify, F>
    where\n Self: Sized + IntoNotification<Tag = ()>,\n F: FnMut() -> T,

    Available on crate feature std only.
    Use a function to generate a tag with this notification. Read more
    ","IntoNotification","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.42.0 · Source§

    impl LowerExp for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","LowerExp","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl LowerHex for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","LowerHex","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl MaxIndex for usize

    §

    const MAX: usize = 4_294_967_295usize

    ","MaxIndex","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Mul<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: &BigInt) -> BigInt

    Performs the * operation. Read more
    ","Mul<&BigInt>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Mul<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: &BigUint) -> BigUint

    Performs the * operation. Read more
    ","Mul<&BigUint>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Mul<&usize> for usize

    Source§

    type Output = <usize as Mul>::Output

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: &usize) -> <usize as Mul>::Output

    Performs the * operation. Read more
    ","Mul<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Mul<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: BigInt) -> BigInt

    Performs the * operation. Read more
    ","Mul","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Mul<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: BigUint) -> BigUint

    Performs the * operation. Read more
    ","Mul","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Mul for usize

    Source§

    type Output = usize

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: usize) -> usize

    Performs the * operation. Read more
    ","Mul","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl MulAdd for usize

    Source§

    type Output = usize

    The resulting type after applying the fused multiply-add.
    Source§

    fn mul_add(self, a: usize, b: usize) -> <usize as MulAdd>::Output

    Performs the fused multiply-add operation (self * a) + b
    ","MulAdd","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl MulAddAssign for usize

    Source§

    fn mul_add_assign(&mut self, a: usize, b: usize)

    Performs the fused multiply-add assignment operation *self = (*self * a) + b
    ","MulAddAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl MulAssign<&usize> for usize

    Source§

    fn mul_assign(&mut self, other: &usize)

    Performs the *= operation. Read more
    ","MulAssign<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl MulAssign for usize

    Source§

    fn mul_assign(&mut self, other: usize)

    Performs the *= operation. Read more
    ","MulAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Not for usize

    Source§

    type Output = usize

    The resulting type after applying the ! operator.
    Source§

    fn not(self) -> usize

    Performs the unary ! operation. Read more
    ","Not","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Num for usize

    Source§

    type FromStrRadixErr = ParseIntError

    Source§

    fn from_str_radix(s: &str, radix: u32) -> Result<usize, ParseIntError>

    Convert from a string and radix (typically 2..=36). Read more
    ","Num","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl NumCast for usize

    Source§

    fn from<N>(n: N) -> Option<usize>
    where\n N: ToPrimitive,

    Creates a number from another value that can be converted into\na primitive via the ToPrimitive trait. If the source value cannot be\nrepresented by the target type, then None is returned. Read more
    ","NumCast","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Octal for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Octal","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl One for usize

    Source§

    fn one() -> usize

    Returns the multiplicative identity element of Self, 1. Read more
    Source§

    fn is_one(&self) -> bool

    Returns true if self is equal to the multiplicative identity. Read more
    Source§

    fn set_one(&mut self)

    Sets self to the multiplicative identity element of Self, 1.
    ","One","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Ord for usize

    Source§

    fn cmp(&self, other: &usize) -> Ordering

    This method returns an Ordering between self and other. Read more
    1.21.0 · Source§

    fn max(self, other: Self) -> Self
    where\n Self: Sized,

    Compares and returns the maximum of two values. Read more
    1.21.0 · Source§

    fn min(self, other: Self) -> Self
    where\n Self: Sized,

    Compares and returns the minimum of two values. Read more
    1.50.0 · Source§

    fn clamp(self, min: Self, max: Self) -> Self
    where\n Self: Sized,

    Restrict a value to a certain interval. Read more
    ","Ord","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl OverflowingAdd for usize

    Source§

    fn overflowing_add(&self, v: &usize) -> (usize, bool)

    Returns a tuple of the sum along with a boolean indicating whether an arithmetic overflow would occur.\nIf an overflow would have occurred then the wrapped value is returned.
    ","OverflowingAdd","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl OverflowingMul for usize

    Source§

    fn overflowing_mul(&self, v: &usize) -> (usize, bool)

    Returns a tuple of the product along with a boolean indicating whether an arithmetic overflow would occur.\nIf an overflow would have occurred then the wrapped value is returned.
    ","OverflowingMul","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl OverflowingSub for usize

    Source§

    fn overflowing_sub(&self, v: &usize) -> (usize, bool)

    Returns a tuple of the difference along with a boolean indicating whether an arithmetic overflow would occur.\nIf an overflow would have occurred then the wrapped value is returned.
    ","OverflowingSub","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl ParseHex for usize

    §

    fn parse_hex(input: &str) -> Result<usize, ParseError>

    Parse the value from hex.
    ","ParseHex","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl PartialEq for usize

    Source§

    fn eq(&self, other: &usize) -> bool

    Tests for self and other values to be equal, and is used by ==.
    Source§

    fn ne(&self, other: &usize) -> bool

    Tests for !=. The default implementation is almost always sufficient,\nand should not be overridden without very good reason.
    ","PartialEq","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl PartialOrd for usize

    Source§

    fn partial_cmp(&self, other: &usize) -> Option<Ordering>

    This method returns an ordering between self and other values if one exists. Read more
    Source§

    fn lt(&self, other: &usize) -> bool

    Tests less than (for self and other) and is used by the < operator. Read more
    Source§

    fn le(&self, other: &usize) -> bool

    Tests less than or equal to (for self and other) and is used by the\n<= operator. Read more
    Source§

    fn ge(&self, other: &usize) -> bool

    Tests greater than or equal to (for self and other) and is used by\nthe >= operator. Read more
    Source§

    fn gt(&self, other: &usize) -> bool

    Tests greater than (for self and other) and is used by the >\noperator. Read more
    ","PartialOrd","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl PhfBorrow<usize> for usize

    Source§

    fn borrow(&self) -> &usize

    Convert a reference to self to a reference to the borrowed type.
    ","PhfBorrow","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl PhfHash for usize

    Source§

    fn phf_hash<H>(&self, state: &mut H)
    where\n H: Hasher,

    Feeds the value into the state given, updating the hasher as necessary.
    Source§

    fn phf_hash_slice<H>(data: &[Self], state: &mut H)
    where\n H: Hasher,\n Self: Sized,

    Feeds a slice of this type into the state provided.
    ","PhfHash","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> Pow<&'a u16> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: &'a u16) -> usize

    Returns self to the power rhs. Read more
    ","Pow<&'a u16>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> Pow<&'a u32> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: &'a u32) -> usize

    Returns self to the power rhs. Read more
    ","Pow<&'a u32>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> Pow<&'a u8> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: &'a u8) -> usize

    Returns self to the power rhs. Read more
    ","Pow<&'a u8>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> Pow<&'a usize> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: &'a usize) -> usize

    Returns self to the power rhs. Read more
    ","Pow<&'a usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Pow<u16> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: u16) -> usize

    Returns self to the power rhs. Read more
    ","Pow","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Pow<u32> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: u32) -> usize

    Returns self to the power rhs. Read more
    ","Pow","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Pow<u8> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: u8) -> usize

    Returns self to the power rhs. Read more
    ","Pow","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Pow<usize> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: usize) -> usize

    Returns self to the power rhs. Read more
    ","Pow","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl PrimInt for usize

    Source§

    fn count_ones(self) -> u32

    Returns the number of ones in the binary representation of self. Read more
    Source§

    fn count_zeros(self) -> u32

    Returns the number of zeros in the binary representation of self. Read more
    Source§

    fn leading_ones(self) -> u32

    Returns the number of leading ones in the binary representation\nof self. Read more
    Source§

    fn leading_zeros(self) -> u32

    Returns the number of leading zeros in the binary representation\nof self. Read more
    Source§

    fn trailing_ones(self) -> u32

    Returns the number of trailing ones in the binary representation\nof self. Read more
    Source§

    fn trailing_zeros(self) -> u32

    Returns the number of trailing zeros in the binary representation\nof self. Read more
    Source§

    fn rotate_left(self, n: u32) -> usize

    Shifts the bits to the left by a specified amount, n, wrapping\nthe truncated bits to the end of the resulting integer. Read more
    Source§

    fn rotate_right(self, n: u32) -> usize

    Shifts the bits to the right by a specified amount, n, wrapping\nthe truncated bits to the beginning of the resulting integer. Read more
    Source§

    fn signed_shl(self, n: u32) -> usize

    Shifts the bits to the left by a specified amount, n, filling\nzeros in the least significant bits. Read more
    Source§

    fn signed_shr(self, n: u32) -> usize

    Shifts the bits to the right by a specified amount, n, copying\nthe “sign bit” in the most significant bits even for unsigned types. Read more
    Source§

    fn unsigned_shl(self, n: u32) -> usize

    Shifts the bits to the left by a specified amount, n, filling\nzeros in the least significant bits. Read more
    Source§

    fn unsigned_shr(self, n: u32) -> usize

    Shifts the bits to the right by a specified amount, n, filling\nzeros in the most significant bits. Read more
    Source§

    fn swap_bytes(self) -> usize

    Reverses the byte order of the integer. Read more
    Source§

    fn reverse_bits(self) -> usize

    Reverses the order of bits in the integer. Read more
    Source§

    fn from_be(x: usize) -> usize

    Convert an integer from big endian to the target’s endianness. Read more
    Source§

    fn from_le(x: usize) -> usize

    Convert an integer from little endian to the target’s endianness. Read more
    Source§

    fn to_be(self) -> usize

    Convert self to big endian from the target’s endianness. Read more
    Source§

    fn to_le(self) -> usize

    Convert self to little endian from the target’s endianness. Read more
    Source§

    fn pow(self, exp: u32) -> usize

    Raises self to the power of exp, using exponentiation by squaring. Read more
    ","PrimInt","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Primitive for usize

    §

    const DEFAULT_MAX_VALUE: usize = 18_446_744_073_709_551_615usize

    The maximum value for this type of primitive within the context of color.\nFor floats, the maximum is 1.0, whereas the integer types inherit their usual maximum values.
    §

    const DEFAULT_MIN_VALUE: usize = 0usize

    The minimum value for this type of primitive within the context of color.\nFor floats, the minimum is 0.0, whereas the integer types inherit their usual minimum values.
    ","Primitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> Product<&'a usize> for usize

    §

    fn product<'b, S>(stream: S) -> Pin<Box<dyn Future<Output = usize> + 'b>>
    where\n S: Stream<Item = &'a usize> + 'b,

    Method which takes a stream and generates Self from the elements by\nmultiplying the items.
    ","Product<&'a usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.12.0 · Source§

    impl<'a> Product<&'a usize> for usize

    Source§

    fn product<I>(iter: I) -> usize
    where\n I: Iterator<Item = &'a usize>,

    Takes an iterator and generates Self from the elements by multiplying\nthe items.
    ","Product<&'a usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Product for usize

    §

    fn product<'a, S>(stream: S) -> Pin<Box<dyn Future<Output = usize> + 'a>>
    where\n S: Stream<Item = usize> + 'a,

    Method which takes a stream and generates Self from the elements by\nmultiplying the items.
    ","Product","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.12.0 · Source§

    impl Product for usize

    Source§

    fn product<I>(iter: I) -> usize
    where\n I: Iterator<Item = usize>,

    Takes an iterator and generates Self from the elements by multiplying\nthe items.
    ","Product","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Random for usize

    Source§

    fn random(source: &mut (impl RandomSource + ?Sized)) -> usize

    🔬This is a nightly-only experimental API. (random)

    Generates a random value.

    \n

    Warning: Be careful when manipulating the resulting value! This\nmethod samples according to a uniform distribution, so a value of 1 is\njust as likely as MAX. By using modulo operations, some\nvalues can become more likely than others. Use audited crates when in\ndoubt.

    \n
    ","Random","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Rem<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: &BigInt) -> BigInt

    Performs the % operation. Read more
    ","Rem<&BigInt>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Rem<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: &BigUint) -> BigUint

    Performs the % operation. Read more
    ","Rem<&BigUint>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Rem<&usize> for usize

    Source§

    type Output = <usize as Rem>::Output

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: &usize) -> <usize as Rem>::Output

    Performs the % operation. Read more
    ","Rem<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Rem<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: BigInt) -> BigInt

    Performs the % operation. Read more
    ","Rem","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Rem<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: BigUint) -> BigUint

    Performs the % operation. Read more
    ","Rem","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.51.0 · Source§

    impl Rem<NonZero<usize>> for usize

    Source§

    fn rem(self, other: NonZero<usize>) -> usize

    This operation satisfies n % d == n - (n / d) * d, and cannot panic.

    \n
    Source§

    type Output = usize

    The resulting type after applying the % operator.
    ","Rem>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Rem for usize

    This operation satisfies n % d == n - (n / d) * d. The\nresult has the same sign as the left operand.

    \n

    §Panics

    \n

    This operation will panic if other == 0.

    \n
    Source§

    type Output = usize

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: usize) -> usize

    Performs the % operation. Read more
    ","Rem","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl RemAssign<&BigUint> for usize

    Source§

    fn rem_assign(&mut self, other: &BigUint)

    Performs the %= operation. Read more
    ","RemAssign<&BigUint>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl RemAssign<&usize> for usize

    Source§

    fn rem_assign(&mut self, other: &usize)

    Performs the %= operation. Read more
    ","RemAssign<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl RemAssign<BigUint> for usize

    Source§

    fn rem_assign(&mut self, other: BigUint)

    Performs the %= operation. Read more
    ","RemAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.79.0 · Source§

    impl RemAssign<NonZero<usize>> for usize

    Source§

    fn rem_assign(&mut self, other: NonZero<usize>)

    This operation satisfies n % d == n - (n / d) * d, and cannot panic.

    \n
    ","RemAssign>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl RemAssign for usize

    Source§

    fn rem_assign(&mut self, other: usize)

    Performs the %= operation. Read more
    ","RemAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Roots for usize

    Source§

    fn nth_root(&self, n: u32) -> usize

    Returns the truncated principal nth root of an integer\n– if x >= 0 { ⌊ⁿ√x⌋ } else { ⌈ⁿ√x⌉ } Read more
    Source§

    fn sqrt(&self) -> usize

    Returns the truncated principal square root of an integer – ⌊√x⌋ Read more
    Source§

    fn cbrt(&self) -> usize

    Returns the truncated principal cube root of an integer –\nif x >= 0 { ⌊∛x⌋ } else { ⌈∛x⌉ } Read more
    ","Roots","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Round for usize

    §

    fn round(self) -> usize

    Rounds to the nearest integer value. Read more
    ","Round","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl SampleUniform for usize

    Source§

    type Sampler = UniformInt<usize>

    The UniformSampler implementation supporting type X.
    ","SampleUniform","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Saturating for usize

    Source§

    fn saturating_add(self, v: usize) -> usize

    Saturating addition operator.\nReturns a+b, saturating at the numeric bounds instead of overflowing.
    Source§

    fn saturating_sub(self, v: usize) -> usize

    Saturating subtraction operator.\nReturns a-b, saturating at the numeric bounds instead of overflowing.
    ","Saturating","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl SaturatingAdd for usize

    Source§

    fn saturating_add(&self, v: &usize) -> usize

    Saturating addition. Computes self + other, saturating at the relevant high or low boundary of\nthe type.
    ","SaturatingAdd","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl SaturatingMul for usize

    Source§

    fn saturating_mul(&self, v: &usize) -> usize

    Saturating multiplication. Computes self * other, saturating at the relevant high or low boundary of\nthe type.
    ","SaturatingMul","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl SaturatingSub for usize

    Source§

    fn saturating_sub(&self, v: &usize) -> usize

    Saturating subtraction. Computes self - other, saturating at the relevant high or low boundary of\nthe type.
    ","SaturatingSub","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Serialize for usize

    Source§

    fn serialize<S>(\n &self,\n serializer: S,\n) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>
    where\n S: Serializer,

    Serialize this value into the given Serde serializer. Read more
    ","Serialize","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i128> for usize

    Source§

    type Output = <usize as Shl<i128>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i128) -> <usize as Shl<i128>>::Output

    Performs the << operation. Read more
    ","Shl<&i128>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i16> for usize

    Source§

    type Output = <usize as Shl<i16>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i16) -> <usize as Shl<i16>>::Output

    Performs the << operation. Read more
    ","Shl<&i16>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i32> for usize

    Source§

    type Output = <usize as Shl<i32>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i32) -> <usize as Shl<i32>>::Output

    Performs the << operation. Read more
    ","Shl<&i32>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i64> for usize

    Source§

    type Output = <usize as Shl<i64>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i64) -> <usize as Shl<i64>>::Output

    Performs the << operation. Read more
    ","Shl<&i64>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i8> for usize

    Source§

    type Output = <usize as Shl<i8>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i8) -> <usize as Shl<i8>>::Output

    Performs the << operation. Read more
    ","Shl<&i8>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&isize> for usize

    Source§

    type Output = <usize as Shl<isize>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &isize) -> <usize as Shl<isize>>::Output

    Performs the << operation. Read more
    ","Shl<&isize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u128> for usize

    Source§

    type Output = <usize as Shl<u128>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u128) -> <usize as Shl<u128>>::Output

    Performs the << operation. Read more
    ","Shl<&u128>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u16> for usize

    Source§

    type Output = <usize as Shl<u16>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u16) -> <usize as Shl<u16>>::Output

    Performs the << operation. Read more
    ","Shl<&u16>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u32> for usize

    Source§

    type Output = <usize as Shl<u32>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u32) -> <usize as Shl<u32>>::Output

    Performs the << operation. Read more
    ","Shl<&u32>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u64> for usize

    Source§

    type Output = <usize as Shl<u64>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u64) -> <usize as Shl<u64>>::Output

    Performs the << operation. Read more
    ","Shl<&u64>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u8> for usize

    Source§

    type Output = <usize as Shl<u8>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u8) -> <usize as Shl<u8>>::Output

    Performs the << operation. Read more
    ","Shl<&u8>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&usize> for usize

    Source§

    type Output = <usize as Shl>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &usize) -> <usize as Shl>::Output

    Performs the << operation. Read more
    ","Shl<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i128> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i128) -> usize

    Performs the << operation. Read more
    ","Shl","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i16> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i16) -> usize

    Performs the << operation. Read more
    ","Shl","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i32> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i32) -> usize

    Performs the << operation. Read more
    ","Shl","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i64> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i64) -> usize

    Performs the << operation. Read more
    ","Shl","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i8> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i8) -> usize

    Performs the << operation. Read more
    ","Shl","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<isize> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: isize) -> usize

    Performs the << operation. Read more
    ","Shl","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u128> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u128) -> usize

    Performs the << operation. Read more
    ","Shl","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u16> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u16) -> usize

    Performs the << operation. Read more
    ","Shl","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u32> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u32) -> usize

    Performs the << operation. Read more
    ","Shl","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u64> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u64) -> usize

    Performs the << operation. Read more
    ","Shl","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u8> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u8) -> usize

    Performs the << operation. Read more
    ","Shl","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: usize) -> usize

    Performs the << operation. Read more
    ","Shl","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i128> for usize

    Source§

    fn shl_assign(&mut self, other: &i128)

    Performs the <<= operation. Read more
    ","ShlAssign<&i128>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i16> for usize

    Source§

    fn shl_assign(&mut self, other: &i16)

    Performs the <<= operation. Read more
    ","ShlAssign<&i16>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i32> for usize

    Source§

    fn shl_assign(&mut self, other: &i32)

    Performs the <<= operation. Read more
    ","ShlAssign<&i32>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i64> for usize

    Source§

    fn shl_assign(&mut self, other: &i64)

    Performs the <<= operation. Read more
    ","ShlAssign<&i64>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i8> for usize

    Source§

    fn shl_assign(&mut self, other: &i8)

    Performs the <<= operation. Read more
    ","ShlAssign<&i8>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&isize> for usize

    Source§

    fn shl_assign(&mut self, other: &isize)

    Performs the <<= operation. Read more
    ","ShlAssign<&isize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u128> for usize

    Source§

    fn shl_assign(&mut self, other: &u128)

    Performs the <<= operation. Read more
    ","ShlAssign<&u128>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u16> for usize

    Source§

    fn shl_assign(&mut self, other: &u16)

    Performs the <<= operation. Read more
    ","ShlAssign<&u16>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u32> for usize

    Source§

    fn shl_assign(&mut self, other: &u32)

    Performs the <<= operation. Read more
    ","ShlAssign<&u32>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u64> for usize

    Source§

    fn shl_assign(&mut self, other: &u64)

    Performs the <<= operation. Read more
    ","ShlAssign<&u64>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u8> for usize

    Source§

    fn shl_assign(&mut self, other: &u8)

    Performs the <<= operation. Read more
    ","ShlAssign<&u8>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&usize> for usize

    Source§

    fn shl_assign(&mut self, other: &usize)

    Performs the <<= operation. Read more
    ","ShlAssign<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i128> for usize

    Source§

    fn shl_assign(&mut self, other: i128)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i16> for usize

    Source§

    fn shl_assign(&mut self, other: i16)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i32> for usize

    Source§

    fn shl_assign(&mut self, other: i32)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i64> for usize

    Source§

    fn shl_assign(&mut self, other: i64)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i8> for usize

    Source§

    fn shl_assign(&mut self, other: i8)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<isize> for usize

    Source§

    fn shl_assign(&mut self, other: isize)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u128> for usize

    Source§

    fn shl_assign(&mut self, other: u128)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u16> for usize

    Source§

    fn shl_assign(&mut self, other: u16)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u32> for usize

    Source§

    fn shl_assign(&mut self, other: u32)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u64> for usize

    Source§

    fn shl_assign(&mut self, other: u64)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u8> for usize

    Source§

    fn shl_assign(&mut self, other: u8)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign for usize

    Source§

    fn shl_assign(&mut self, other: usize)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i128> for usize

    Source§

    type Output = <usize as Shr<i128>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i128) -> <usize as Shr<i128>>::Output

    Performs the >> operation. Read more
    ","Shr<&i128>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i16> for usize

    Source§

    type Output = <usize as Shr<i16>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i16) -> <usize as Shr<i16>>::Output

    Performs the >> operation. Read more
    ","Shr<&i16>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i32> for usize

    Source§

    type Output = <usize as Shr<i32>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i32) -> <usize as Shr<i32>>::Output

    Performs the >> operation. Read more
    ","Shr<&i32>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i64> for usize

    Source§

    type Output = <usize as Shr<i64>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i64) -> <usize as Shr<i64>>::Output

    Performs the >> operation. Read more
    ","Shr<&i64>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i8> for usize

    Source§

    type Output = <usize as Shr<i8>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i8) -> <usize as Shr<i8>>::Output

    Performs the >> operation. Read more
    ","Shr<&i8>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&isize> for usize

    Source§

    type Output = <usize as Shr<isize>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &isize) -> <usize as Shr<isize>>::Output

    Performs the >> operation. Read more
    ","Shr<&isize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u128> for usize

    Source§

    type Output = <usize as Shr<u128>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u128) -> <usize as Shr<u128>>::Output

    Performs the >> operation. Read more
    ","Shr<&u128>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u16> for usize

    Source§

    type Output = <usize as Shr<u16>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u16) -> <usize as Shr<u16>>::Output

    Performs the >> operation. Read more
    ","Shr<&u16>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u32> for usize

    Source§

    type Output = <usize as Shr<u32>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u32) -> <usize as Shr<u32>>::Output

    Performs the >> operation. Read more
    ","Shr<&u32>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u64> for usize

    Source§

    type Output = <usize as Shr<u64>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u64) -> <usize as Shr<u64>>::Output

    Performs the >> operation. Read more
    ","Shr<&u64>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u8> for usize

    Source§

    type Output = <usize as Shr<u8>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u8) -> <usize as Shr<u8>>::Output

    Performs the >> operation. Read more
    ","Shr<&u8>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&usize> for usize

    Source§

    type Output = <usize as Shr>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &usize) -> <usize as Shr>::Output

    Performs the >> operation. Read more
    ","Shr<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i128> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i128) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i16> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i16) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i32> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i32) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i64> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i64) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i8> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i8) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<isize> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: isize) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u128> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u128) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u16> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u16) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u32> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u32) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u64> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u64) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u8> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u8) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: usize) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i128> for usize

    Source§

    fn shr_assign(&mut self, other: &i128)

    Performs the >>= operation. Read more
    ","ShrAssign<&i128>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i16> for usize

    Source§

    fn shr_assign(&mut self, other: &i16)

    Performs the >>= operation. Read more
    ","ShrAssign<&i16>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i32> for usize

    Source§

    fn shr_assign(&mut self, other: &i32)

    Performs the >>= operation. Read more
    ","ShrAssign<&i32>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i64> for usize

    Source§

    fn shr_assign(&mut self, other: &i64)

    Performs the >>= operation. Read more
    ","ShrAssign<&i64>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i8> for usize

    Source§

    fn shr_assign(&mut self, other: &i8)

    Performs the >>= operation. Read more
    ","ShrAssign<&i8>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&isize> for usize

    Source§

    fn shr_assign(&mut self, other: &isize)

    Performs the >>= operation. Read more
    ","ShrAssign<&isize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u128> for usize

    Source§

    fn shr_assign(&mut self, other: &u128)

    Performs the >>= operation. Read more
    ","ShrAssign<&u128>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u16> for usize

    Source§

    fn shr_assign(&mut self, other: &u16)

    Performs the >>= operation. Read more
    ","ShrAssign<&u16>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u32> for usize

    Source§

    fn shr_assign(&mut self, other: &u32)

    Performs the >>= operation. Read more
    ","ShrAssign<&u32>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u64> for usize

    Source§

    fn shr_assign(&mut self, other: &u64)

    Performs the >>= operation. Read more
    ","ShrAssign<&u64>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u8> for usize

    Source§

    fn shr_assign(&mut self, other: &u8)

    Performs the >>= operation. Read more
    ","ShrAssign<&u8>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&usize> for usize

    Source§

    fn shr_assign(&mut self, other: &usize)

    Performs the >>= operation. Read more
    ","ShrAssign<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i128> for usize

    Source§

    fn shr_assign(&mut self, other: i128)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i16> for usize

    Source§

    fn shr_assign(&mut self, other: i16)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i32> for usize

    Source§

    fn shr_assign(&mut self, other: i32)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i64> for usize

    Source§

    fn shr_assign(&mut self, other: i64)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i8> for usize

    Source§

    fn shr_assign(&mut self, other: i8)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<isize> for usize

    Source§

    fn shr_assign(&mut self, other: isize)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u128> for usize

    Source§

    fn shr_assign(&mut self, other: u128)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u16> for usize

    Source§

    fn shr_assign(&mut self, other: u16)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u32> for usize

    Source§

    fn shr_assign(&mut self, other: u32)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u64> for usize

    Source§

    fn shr_assign(&mut self, other: u64)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u8> for usize

    Source§

    fn shr_assign(&mut self, other: u8)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign for usize

    Source§

    fn shr_assign(&mut self, other: usize)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl SimdElement for usize

    Source§

    type Mask = isize

    🔬This is a nightly-only experimental API. (portable_simd)
    The mask element type corresponding to this element type.
    ","SimdElement","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.15.0 · Source§

    impl<T> SliceIndex<[T]> for usize

    The methods index and index_mut panic if the index is out of bounds.

    \n
    Source§

    type Output = T

    The output type returned by methods.
    Source§

    fn get(self, slice: &[T]) -> Option<&T>

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a shared reference to the output at this location, if in\nbounds.
    Source§

    fn get_mut(self, slice: &mut [T]) -> Option<&mut T>

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a mutable reference to the output at this location, if in\nbounds.
    Source§

    unsafe fn get_unchecked(self, slice: *const [T]) -> *const T

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a pointer to the output at this location, without\nperforming any bounds checking. Read more
    Source§

    unsafe fn get_unchecked_mut(self, slice: *mut [T]) -> *mut T

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a mutable pointer to the output at this location, without\nperforming any bounds checking. Read more
    Source§

    fn index(self, slice: &[T]) -> &T

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a shared reference to the output at this location, panicking\nif out of bounds.
    Source§

    fn index_mut(self, slice: &mut [T]) -> &mut T

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a mutable reference to the output at this location, panicking\nif out of bounds.
    ","SliceIndex<[T]>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Step for usize

    Source§

    fn forward(start: usize, n: usize) -> usize

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the successor\nof self count times. Read more
    Source§

    fn backward(start: usize, n: usize) -> usize

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the predecessor\nof self count times. Read more
    Source§

    unsafe fn forward_unchecked(start: usize, n: usize) -> usize

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the successor\nof self count times. Read more
    Source§

    unsafe fn backward_unchecked(start: usize, n: usize) -> usize

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the predecessor\nof self count times. Read more
    Source§

    fn steps_between(start: &usize, end: &usize) -> (usize, Option<usize>)

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the bounds on the number of successor steps required to get from start to end\nlike Iterator::size_hint(). Read more
    Source§

    fn forward_checked(start: usize, n: usize) -> Option<usize>

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the successor\nof self count times. Read more
    Source§

    fn backward_checked(start: usize, n: usize) -> Option<usize>

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the predecessor\nof self count times. Read more
    ","Step","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl StepLite for usize

    §

    fn add_one(&self) -> usize

    Returns the successor of self. Read more
    §

    fn sub_one(&self) -> usize

    Returns the predecessor of self. Read more
    ","StepLite","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Sub<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: &BigInt) -> BigInt

    Performs the - operation. Read more
    ","Sub<&BigInt>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Sub<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: &BigUint) -> BigUint

    Performs the - operation. Read more
    ","Sub<&BigUint>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Sub<&usize> for usize

    Source§

    type Output = <usize as Sub>::Output

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: &usize) -> <usize as Sub>::Output

    Performs the - operation. Read more
    ","Sub<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Sub<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: BigInt) -> BigInt

    Performs the - operation. Read more
    ","Sub","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Sub<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: BigUint) -> BigUint

    Performs the - operation. Read more
    ","Sub","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Sub for usize

    Source§

    type Output = usize

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: usize) -> usize

    Performs the - operation. Read more
    ","Sub","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl SubAssign<&usize> for usize

    Source§

    fn sub_assign(&mut self, other: &usize)

    Performs the -= operation. Read more
    ","SubAssign<&usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl SubAssign for usize

    Source§

    fn sub_assign(&mut self, other: usize)

    Performs the -= operation. Read more
    ","SubAssign","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> Sum<&'a usize> for usize

    §

    fn sum<'b, S>(stream: S) -> Pin<Box<dyn Future<Output = usize> + 'b>>
    where\n S: Stream<Item = &'a usize> + 'b,

    Method which takes a stream and generates Self from the elements by\n“summing up” the items.
    ","Sum<&'a usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.12.0 · Source§

    impl<'a> Sum<&'a usize> for usize

    Source§

    fn sum<I>(iter: I) -> usize
    where\n I: Iterator<Item = &'a usize>,

    Takes an iterator and generates Self from the elements by “summing up”\nthe items.
    ","Sum<&'a usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Sum for usize

    §

    fn sum<'a, S>(stream: S) -> Pin<Box<dyn Future<Output = usize> + 'a>>
    where\n S: Stream<Item = usize> + 'a,

    Method which takes a stream and generates Self from the elements by\n“summing up” the items.
    ","Sum","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.12.0 · Source§

    impl Sum for usize

    Source§

    fn sum<I>(iter: I) -> usize
    where\n I: Iterator<Item = usize>,

    Takes an iterator and generates Self from the elements by “summing up”\nthe items.
    ","Sum","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToBigInt for usize

    Source§

    fn to_bigint(&self) -> Option<BigInt>

    Converts the value of self to a BigInt.
    ","ToBigInt","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToBigUint for usize

    Source§

    fn to_biguint(&self) -> Option<BigUint>

    Converts the value of self to a BigUint.
    ","ToBigUint","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToBytes for usize

    Source§

    type Bytes = [u8; 8]

    Source§

    fn to_be_bytes(&self) -> <usize as ToBytes>::Bytes

    Return the memory representation of this number as a byte array in big-endian byte order. Read more
    Source§

    fn to_le_bytes(&self) -> <usize as ToBytes>::Bytes

    Return the memory representation of this number as a byte array in little-endian byte order. Read more
    Source§

    fn to_ne_bytes(&self) -> <usize as ToBytes>::Bytes

    Return the memory representation of this number as a byte array in native byte order. Read more
    ","ToBytes","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToPrimitive for usize

    Source§

    fn to_isize(&self) -> Option<isize>

    Converts the value of self to an isize. If the value cannot be\nrepresented by an isize, then None is returned.
    Source§

    fn to_i8(&self) -> Option<i8>

    Converts the value of self to an i8. If the value cannot be\nrepresented by an i8, then None is returned.
    Source§

    fn to_i16(&self) -> Option<i16>

    Converts the value of self to an i16. If the value cannot be\nrepresented by an i16, then None is returned.
    Source§

    fn to_i32(&self) -> Option<i32>

    Converts the value of self to an i32. If the value cannot be\nrepresented by an i32, then None is returned.
    Source§

    fn to_i64(&self) -> Option<i64>

    Converts the value of self to an i64. If the value cannot be\nrepresented by an i64, then None is returned.
    Source§

    fn to_i128(&self) -> Option<i128>

    Converts the value of self to an i128. If the value cannot be\nrepresented by an i128 (i64 under the default implementation), then\nNone is returned. Read more
    Source§

    fn to_usize(&self) -> Option<usize>

    Converts the value of self to a usize. If the value cannot be\nrepresented by a usize, then None is returned.
    Source§

    fn to_u8(&self) -> Option<u8>

    Converts the value of self to a u8. If the value cannot be\nrepresented by a u8, then None is returned.
    Source§

    fn to_u16(&self) -> Option<u16>

    Converts the value of self to a u16. If the value cannot be\nrepresented by a u16, then None is returned.
    Source§

    fn to_u32(&self) -> Option<u32>

    Converts the value of self to a u32. If the value cannot be\nrepresented by a u32, then None is returned.
    Source§

    fn to_u64(&self) -> Option<u64>

    Converts the value of self to a u64. If the value cannot be\nrepresented by a u64, then None is returned.
    Source§

    fn to_u128(&self) -> Option<u128>

    Converts the value of self to a u128. If the value cannot be\nrepresented by a u128 (u64 under the default implementation), then\nNone is returned. Read more
    Source§

    fn to_f32(&self) -> Option<f32>

    Converts the value of self to an f32. Overflows may map to positive\nor negative inifinity, otherwise None is returned if the value cannot\nbe represented by an f32.
    Source§

    fn to_f64(&self) -> Option<f64>

    Converts the value of self to an f64. Overflows may map to positive\nor negative inifinity, otherwise None is returned if the value cannot\nbe represented by an f64. Read more
    ","ToPrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToTokens for usize

    Source§

    fn to_tokens(&self, tokens: &mut TokenStream)

    🔬This is a nightly-only experimental API. (proc_macro_totokens)
    Write self to the given TokenStream. Read more
    Source§

    fn to_token_stream(&self) -> TokenStream

    🔬This is a nightly-only experimental API. (proc_macro_totokens)
    Convert self directly into a TokenStream object. Read more
    Source§

    fn into_token_stream(self) -> TokenStream
    where\n Self: Sized,

    🔬This is a nightly-only experimental API. (proc_macro_totokens)
    Convert self directly into a TokenStream object. Read more
    ","ToTokens","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToTokens for usize

    Source§

    fn to_tokens(&self, tokens: &mut TokenStream)

    Write self to the given TokenStream. Read more
    Source§

    fn to_token_stream(&self) -> TokenStream

    Convert self directly into a TokenStream object. Read more
    Source§

    fn into_token_stream(self) -> TokenStream
    where\n Self: Sized,

    Convert self directly into a TokenStream object. Read more
    ","ToTokens","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl ToUsize for usize

    §

    fn to_usize(&self) -> usize

    converts self to usize
    ","ToUsize","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl ToUsize for usize

    §

    fn to_usize(&self) -> usize

    converts self to usize
    ","ToUsize","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToValue for usize

    Source§

    fn to_value(&self) -> Value<'_>

    Perform the conversion.
    ","ToValue","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl TryFrom<&BigInt> for usize

    Source§

    type Error = TryFromBigIntError<()>

    The type returned in the event of a conversion error.
    Source§

    fn try_from(value: &BigInt) -> Result<usize, TryFromBigIntError<()>>

    Performs the conversion.
    ","TryFrom<&BigInt>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl TryFrom<&BigUint> for usize

    Source§

    type Error = TryFromBigIntError<()>

    The type returned in the event of a conversion error.
    Source§

    fn try_from(value: &BigUint) -> Result<usize, TryFromBigIntError<()>>

    Performs the conversion.
    ","TryFrom<&BigUint>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl TryFrom<BigInt> for usize

    Source§

    type Error = TryFromBigIntError<BigInt>

    The type returned in the event of a conversion error.
    Source§

    fn try_from(value: BigInt) -> Result<usize, TryFromBigIntError<BigInt>>

    Performs the conversion.
    ","TryFrom","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl TryFrom<BigUint> for usize

    Source§

    type Error = TryFromBigIntError<BigUint>

    The type returned in the event of a conversion error.
    Source§

    fn try_from(value: BigUint) -> Result<usize, TryFromBigIntError<BigUint>>

    Performs the conversion.
    ","TryFrom","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'v> TryFrom<ValueBag<'v>> for usize

    Source§

    type Error = Error

    The type returned in the event of a conversion error.
    Source§

    fn try_from(v: ValueBag<'v>) -> Result<usize, Error>

    Performs the conversion.
    ","TryFrom>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i128> for usize

    Source§

    fn try_from(u: i128) -> Result<usize, <usize as TryFrom<i128>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i16> for usize

    Source§

    fn try_from(u: i16) -> Result<usize, <usize as TryFrom<i16>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i32> for usize

    Source§

    fn try_from(u: i32) -> Result<usize, <usize as TryFrom<i32>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i64> for usize

    Source§

    fn try_from(u: i64) -> Result<usize, <usize as TryFrom<i64>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i8> for usize

    Source§

    fn try_from(u: i8) -> Result<usize, <usize as TryFrom<i8>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<isize> for usize

    Source§

    fn try_from(u: isize) -> Result<usize, <usize as TryFrom<isize>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<u128> for usize

    Source§

    fn try_from(u: u128) -> Result<usize, <usize as TryFrom<u128>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<u32> for usize

    Source§

    fn try_from(value: u32) -> Result<usize, <usize as TryFrom<u32>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<u64> for usize

    Source§

    fn try_from(value: u64) -> Result<usize, <usize as TryFrom<u64>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Type for usize

    §

    const SIGNATURE: &'static Signature = u64::SIGNATURE

    The signature for the implementing type, in parsed format. Read more
    ","Type","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.42.0 · Source§

    impl UpperExp for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","UpperExp","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl UpperHex for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","UpperHex","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Value for usize

    §

    fn record(&self, key: &Field, visitor: &mut dyn Visit)

    Visits this value with the given Visitor.
    ","Value","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingAdd for usize

    Source§

    fn wrapping_add(&self, v: &usize) -> usize

    Wrapping (modular) addition. Computes self + other, wrapping around at the boundary of\nthe type.
    ","WrappingAdd","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingMul for usize

    Source§

    fn wrapping_mul(&self, v: &usize) -> usize

    Wrapping (modular) multiplication. Computes self * other, wrapping around at the boundary\nof the type.
    ","WrappingMul","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingNeg for usize

    Source§

    fn wrapping_neg(&self) -> usize

    Wrapping (modular) negation. Computes -self,\nwrapping around at the boundary of the type. Read more
    ","WrappingNeg","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingShl for usize

    Source§

    fn wrapping_shl(&self, rhs: u32) -> usize

    Panic-free bitwise shift-left; yields self << mask(rhs),\nwhere mask removes any high order bits of rhs that would\ncause the shift to exceed the bitwidth of the type. Read more
    ","WrappingShl","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingShr for usize

    Source§

    fn wrapping_shr(&self, rhs: u32) -> usize

    Panic-free bitwise shift-right; yields self >> mask(rhs),\nwhere mask removes any high order bits of rhs that would\ncause the shift to exceed the bitwidth of the type. Read more
    ","WrappingShr","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingSub for usize

    Source§

    fn wrapping_sub(&self, v: &usize) -> usize

    Wrapping (modular) subtraction. Computes self - other, wrapping around at the boundary\nof the type.
    ","WrappingSub","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl WriteHex for usize

    §

    fn write_hex<W>(&self, writer: W) -> Result<(), Error>
    where\n W: Write,

    Write the value as hex.
    ","WriteHex","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Writeable for usize

    §

    fn write_to<W>(&self, sink: &mut W) -> Result<(), Error>
    where\n W: Write + ?Sized,

    Writes a string to the given sink. Errors from the sink are bubbled up.\nThe default implementation delegates to write_to_parts, and discards any\nPart annotations.
    §

    fn writeable_length_hint(&self) -> LengthHint

    Returns a hint for the number of UTF-8 bytes that will be written to the sink. Read more
    §

    fn write_to_parts<S>(&self, sink: &mut S) -> Result<(), Error>
    where\n S: PartsWrite + ?Sized,

    Write bytes and Part annotations to the given sink. Errors from the\nsink are bubbled up. The default implementation delegates to write_to,\nand doesn’t produce any Part annotations.
    §

    fn write_to_string(&self) -> Cow<'_, str>

    Creates a new String with the data from this Writeable. Like ToString,\nbut smaller and faster. Read more
    §

    fn writeable_cmp_bytes(&self, other: &[u8]) -> Ordering

    Compares the contents of this Writeable to the given bytes\nwithout allocating a String to hold the Writeable contents. Read more
    ","Writeable","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> Yokeable<'a> for usize

    §

    type Output = usize

    This type MUST be Self with the 'static replaced with 'a, i.e. Self<'a>
    §

    fn transform(&self) -> &<usize as Yokeable<'a>>::Output

    This method must cast self between &'a Self<'static> and &'a Self<'a>. Read more
    §

    fn transform_owned(self) -> <usize as Yokeable<'a>>::Output

    This method must cast self between Self<'static> and Self<'a>. Read more
    §

    unsafe fn make(this: <usize as Yokeable<'a>>::Output) -> usize

    This method can be used to cast away Self<'a>’s lifetime. Read more
    §

    fn transform_mut<F>(&'a mut self, f: F)
    where\n F: 'static + for<'b> FnOnce(&'b mut <usize as Yokeable<'a>>::Output),

    This method must cast self between &'a mut Self<'static> and &'a mut Self<'a>,\nand pass it to f. Read more
    ","Yokeable<'a>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Zero for usize

    Source§

    fn zero() -> usize

    Returns the additive identity element of Self, 0. Read more
    Source§

    fn is_zero(&self) -> bool

    Returns true if self is equal to the additive identity.
    Source§

    fn set_zero(&mut self)

    Sets self to the additive identity element of Self, 0.
    ","Zero","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> ZeroFrom<'a, usize> for usize

    §

    fn zero_from(this: &'a usize) -> usize

    Clone the other C into a struct that may retain references into C.
    ","ZeroFrom<'a, usize>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> ZeroMapKV<'a> for usize

    §

    type Container = FlexZeroVec<'a>

    The container that can be used with this type: [ZeroVec] or [VarZeroVec].
    §

    type Slice = FlexZeroSlice

    §

    type GetType = [u8]

    The type produced by Container::get() Read more
    §

    type OwnedType = usize

    The type produced by Container::replace() and Container::remove(),\nalso used during deserialization. If Self is human readable serialized,\ndeserializing to Self::OwnedType should produce the same value once\npassed through Self::owned_as_self() Read more
    ","ZeroMapKV<'a>","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Zeroable for usize

    §

    fn zeroed() -> Self

    ","Zeroable","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl usize

    1.43.0 · Source

    pub const MIN: usize = 0usize

    Available on 64-bit only.

    The smallest value that can be represented by this integer type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(usize::MIN, 0);
    \n
    1.43.0 · Source

    pub const MAX: usize = 18_446_744_073_709_551_615usize

    Available on 64-bit only.

    The largest value that can be represented by this integer type\n(264 − 1 on 64-bit targets).

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(usize::MAX, 18446744073709551615);
    \n
    1.53.0 · Source

    pub const BITS: u32 = 64u32

    Available on 64-bit only.

    The size of this integer type in bits.

    \n
    §Examples
    \n
    assert_eq!(usize::BITS, 64);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn count_ones(self) -> u32

    Available on 64-bit only.

    Returns the number of ones in the binary representation of self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0b01001100usize;\nassert_eq!(n.count_ones(), 3);\n\nlet max = usize::MAX;\nassert_eq!(max.count_ones(), 64);\n\nlet zero = 0usize;\nassert_eq!(zero.count_ones(), 0);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn count_zeros(self) -> u32

    Available on 64-bit only.

    Returns the number of zeros in the binary representation of self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let zero = 0usize;\nassert_eq!(zero.count_zeros(), 64);\n\nlet max = usize::MAX;\nassert_eq!(max.count_zeros(), 0);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn leading_zeros(self) -> u32

    Available on 64-bit only.

    Returns the number of leading zeros in the binary representation of self.

    \n

    Depending on what you’re doing with the value, you might also be interested in the\nilog2 function which returns a consistent number, even if the type widens.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = usize::MAX >> 2;\nassert_eq!(n.leading_zeros(), 2);\n\nlet zero = 0usize;\nassert_eq!(zero.leading_zeros(), 64);\n\nlet max = usize::MAX;\nassert_eq!(max.leading_zeros(), 0);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn trailing_zeros(self) -> u32

    Available on 64-bit only.

    Returns the number of trailing zeros in the binary representation\nof self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0b0101000usize;\nassert_eq!(n.trailing_zeros(), 3);\n\nlet zero = 0usize;\nassert_eq!(zero.trailing_zeros(), 64);\n\nlet max = usize::MAX;\nassert_eq!(max.trailing_zeros(), 0);
    \n
    1.46.0 (const: 1.46.0) · Source

    pub const fn leading_ones(self) -> u32

    Available on 64-bit only.

    Returns the number of leading ones in the binary representation of self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = !(usize::MAX >> 2);\nassert_eq!(n.leading_ones(), 2);\n\nlet zero = 0usize;\nassert_eq!(zero.leading_ones(), 0);\n\nlet max = usize::MAX;\nassert_eq!(max.leading_ones(), 64);
    \n
    1.46.0 (const: 1.46.0) · Source

    pub const fn trailing_ones(self) -> u32

    Available on 64-bit only.

    Returns the number of trailing ones in the binary representation\nof self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0b1010111usize;\nassert_eq!(n.trailing_ones(), 3);\n\nlet zero = 0usize;\nassert_eq!(zero.trailing_ones(), 0);\n\nlet max = usize::MAX;\nassert_eq!(max.trailing_ones(), 64);
    \n
    Source

    pub const fn cast_signed(self) -> isize

    🔬This is a nightly-only experimental API. (integer_sign_cast)
    Available on 64-bit only.

    Returns the bit pattern of self reinterpreted as a signed integer of the same size.

    \n

    This produces the same result as an as cast, but ensures that the bit-width remains\nthe same.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(integer_sign_cast)]\n\nlet n = usize::MAX;\n\nassert_eq!(n.cast_signed(), -1isize);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn rotate_left(self, n: u32) -> usize

    Available on 64-bit only.

    Shifts the bits to the left by a specified amount, n,\nwrapping the truncated bits to the end of the resulting integer.

    \n

    Please note this isn’t the same operation as the << shifting operator!

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0xaa00000000006e1usize;\nlet m = 0x6e10aa;\n\nassert_eq!(n.rotate_left(12), m);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn rotate_right(self, n: u32) -> usize

    Available on 64-bit only.

    Shifts the bits to the right by a specified amount, n,\nwrapping the truncated bits to the beginning of the resulting\ninteger.

    \n

    Please note this isn’t the same operation as the >> shifting operator!

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x6e10aausize;\nlet m = 0xaa00000000006e1;\n\nassert_eq!(n.rotate_right(12), m);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn swap_bytes(self) -> usize

    Available on 64-bit only.

    Reverses the byte order of the integer.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1234567890123456usize;\nlet m = n.swap_bytes();\n\nassert_eq!(m, 0x5634129078563412);
    \n
    1.37.0 (const: 1.37.0) · Source

    pub const fn reverse_bits(self) -> usize

    Available on 64-bit only.

    Reverses the order of bits in the integer. The least significant bit becomes the most significant bit,\nsecond least-significant bit becomes second most-significant bit, etc.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1234567890123456usize;\nlet m = n.reverse_bits();\n\nassert_eq!(m, 0x6a2c48091e6a2c48);\nassert_eq!(0, 0usize.reverse_bits());
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn from_be(x: usize) -> usize

    Available on 64-bit only.

    Converts an integer from big endian to the target’s endianness.

    \n

    On big endian this is a no-op. On little endian the bytes are\nswapped.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1Ausize;\n\nif cfg!(target_endian = \"big\") {\n    assert_eq!(usize::from_be(n), n)\n} else {\n    assert_eq!(usize::from_be(n), n.swap_bytes())\n}
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn from_le(x: usize) -> usize

    Available on 64-bit only.

    Converts an integer from little endian to the target’s endianness.

    \n

    On little endian this is a no-op. On big endian the bytes are\nswapped.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1Ausize;\n\nif cfg!(target_endian = \"little\") {\n    assert_eq!(usize::from_le(n), n)\n} else {\n    assert_eq!(usize::from_le(n), n.swap_bytes())\n}
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn to_be(self) -> usize

    Available on 64-bit only.

    Converts self to big endian from the target’s endianness.

    \n

    On big endian this is a no-op. On little endian the bytes are\nswapped.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1Ausize;\n\nif cfg!(target_endian = \"big\") {\n    assert_eq!(n.to_be(), n)\n} else {\n    assert_eq!(n.to_be(), n.swap_bytes())\n}
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn to_le(self) -> usize

    Available on 64-bit only.

    Converts self to little endian from the target’s endianness.

    \n

    On little endian this is a no-op. On big endian the bytes are\nswapped.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1Ausize;\n\nif cfg!(target_endian = \"little\") {\n    assert_eq!(n.to_le(), n)\n} else {\n    assert_eq!(n.to_le(), n.swap_bytes())\n}
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn checked_add(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer addition. Computes self + rhs, returning None\nif overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!((usize::MAX - 2).checked_add(1), Some(usize::MAX - 1));\nassert_eq!((usize::MAX - 2).checked_add(3), None);
    \n
    Source

    pub const fn strict_add(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer addition. Computes self + rhs, panicking\nif overflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!((usize::MAX - 2).strict_add(1), usize::MAX - 1);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = (usize::MAX - 2).strict_add(3);
    \n
    1.79.0 (const: 1.79.0) · Source

    pub const unsafe fn unchecked_add(self, rhs: usize) -> usize

    Available on 64-bit only.

    Unchecked integer addition. Computes self + rhs, assuming overflow\ncannot occur.

    \n

    Calling x.unchecked_add(y) is semantically equivalent to calling\nx.checked_add(y).unwrap_unchecked().

    \n

    If you’re just trying to avoid the panic in debug mode, then do not\nuse this. Instead, you’re looking for wrapping_add.

    \n
    §Safety
    \n

    This results in undefined behavior when\nself + rhs > usize::MAX or self + rhs < usize::MIN,\ni.e. when checked_add would return None.

    \n
    1.66.0 (const: 1.66.0) · Source

    pub const fn checked_add_signed(self, rhs: isize) -> Option<usize>

    Available on 64-bit only.

    Checked addition with a signed integer. Computes self + rhs,\nreturning None if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.checked_add_signed(2), Some(3));\nassert_eq!(1usize.checked_add_signed(-2), None);\nassert_eq!((usize::MAX - 2).checked_add_signed(3), None);
    \n
    Source

    pub const fn strict_add_signed(self, rhs: isize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict addition with a signed integer. Computes self + rhs,\npanicking if overflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(1usize.strict_add_signed(2), 3);
    \n

    The following panic because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 1usize.strict_add_signed(-2);
    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = (usize::MAX - 2).strict_add_signed(3);
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn checked_sub(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer subtraction. Computes self - rhs, returning\nNone if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.checked_sub(1), Some(0));\nassert_eq!(0usize.checked_sub(1), None);
    \n
    Source

    pub const fn strict_sub(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer subtraction. Computes self - rhs, panicking if\noverflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(1usize.strict_sub(1), 0);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 0usize.strict_sub(1);
    \n
    1.79.0 (const: 1.79.0) · Source

    pub const unsafe fn unchecked_sub(self, rhs: usize) -> usize

    Available on 64-bit only.

    Unchecked integer subtraction. Computes self - rhs, assuming overflow\ncannot occur.

    \n

    Calling x.unchecked_sub(y) is semantically equivalent to calling\nx.checked_sub(y).unwrap_unchecked().

    \n

    If you’re just trying to avoid the panic in debug mode, then do not\nuse this. Instead, you’re looking for wrapping_sub.

    \n

    If you find yourself writing code like this:

    \n\n
    if foo >= bar {\n    // SAFETY: just checked it will not overflow\n    let diff = unsafe { foo.unchecked_sub(bar) };\n    // ... use diff ...\n}
    \n

    Consider changing it to

    \n\n
    if let Some(diff) = foo.checked_sub(bar) {\n    // ... use diff ...\n}
    \n

    As that does exactly the same thing – including telling the optimizer\nthat the subtraction cannot overflow – but avoids needing unsafe.

    \n
    §Safety
    \n

    This results in undefined behavior when\nself - rhs > usize::MAX or self - rhs < usize::MIN,\ni.e. when checked_sub would return None.

    \n
    Source

    pub const fn checked_sub_signed(self, rhs: isize) -> Option<usize>

    🔬This is a nightly-only experimental API. (mixed_integer_ops_unsigned_sub)
    Available on 64-bit only.

    Checked subtraction with a signed integer. Computes self - rhs,\nreturning None if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(mixed_integer_ops_unsigned_sub)]\nassert_eq!(1usize.checked_sub_signed(2), None);\nassert_eq!(1usize.checked_sub_signed(-2), Some(3));\nassert_eq!((usize::MAX - 2).checked_sub_signed(-4), None);
    \n
    Source

    pub const fn checked_signed_diff(self, rhs: usize) -> Option<isize>

    🔬This is a nightly-only experimental API. (unsigned_signed_diff)
    Available on 64-bit only.

    Checked integer subtraction. Computes self - rhs and checks if the result fits into an isize, returning None if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(unsigned_signed_diff)]\nassert_eq!(10usize.checked_signed_diff(2), Some(8));\nassert_eq!(2usize.checked_signed_diff(10), Some(-8));\nassert_eq!(usize::MAX.checked_signed_diff(isize::MAX as usize), None);\nassert_eq!((isize::MAX as usize).checked_signed_diff(usize::MAX), Some(isize::MIN));\nassert_eq!((isize::MAX as usize + 1).checked_signed_diff(0), None);\nassert_eq!(usize::MAX.checked_signed_diff(usize::MAX), Some(0));
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn checked_mul(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer multiplication. Computes self * rhs, returning\nNone if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.checked_mul(1), Some(5));\nassert_eq!(usize::MAX.checked_mul(2), None);
    \n
    Source

    pub const fn strict_mul(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer multiplication. Computes self * rhs, panicking if\noverflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(5usize.strict_mul(1), 5);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = usize::MAX.strict_mul(2);
    \n
    1.79.0 (const: 1.79.0) · Source

    pub const unsafe fn unchecked_mul(self, rhs: usize) -> usize

    Available on 64-bit only.

    Unchecked integer multiplication. Computes self * rhs, assuming overflow\ncannot occur.

    \n

    Calling x.unchecked_mul(y) is semantically equivalent to calling\nx.checked_mul(y).unwrap_unchecked().

    \n

    If you’re just trying to avoid the panic in debug mode, then do not\nuse this. Instead, you’re looking for wrapping_mul.

    \n
    §Safety
    \n

    This results in undefined behavior when\nself * rhs > usize::MAX or self * rhs < usize::MIN,\ni.e. when checked_mul would return None.

    \n
    1.0.0 (const: 1.52.0) · Source

    pub const fn checked_div(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer division. Computes self / rhs, returning None\nif rhs == 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(128usize.checked_div(2), Some(64));\nassert_eq!(1usize.checked_div(0), None);
    \n
    Source

    pub const fn strict_div(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer division. Computes self / rhs.

    \n

    Strict division on unsigned types is just normal division. There’s no\nway overflow could ever happen. This function exists so that all\noperations are accounted for in the strict operations.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(100usize.strict_div(10), 10);
    \n

    The following panics because of division by zero:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = (1usize).strict_div(0);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn checked_div_euclid(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked Euclidean division. Computes self.div_euclid(rhs), returning None\nif rhs == 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(128usize.checked_div_euclid(2), Some(64));\nassert_eq!(1usize.checked_div_euclid(0), None);
    \n
    Source

    pub const fn strict_div_euclid(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict Euclidean division. Computes self.div_euclid(rhs).

    \n

    Strict division on unsigned types is just normal division. There’s no\nway overflow could ever happen. This function exists so that all\noperations are accounted for in the strict operations. Since, for the\npositive integers, all common definitions of division are equal, this\nis exactly equal to self.strict_div(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(100usize.strict_div_euclid(10), 10);
    \n

    The following panics because of division by zero:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = (1usize).strict_div_euclid(0);
    \n
    1.7.0 (const: 1.52.0) · Source

    pub const fn checked_rem(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer remainder. Computes self % rhs, returning None\nif rhs == 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.checked_rem(2), Some(1));\nassert_eq!(5usize.checked_rem(0), None);
    \n
    Source

    pub const fn strict_rem(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer remainder. Computes self % rhs.

    \n

    Strict remainder calculation on unsigned types is just the regular\nremainder calculation. There’s no way overflow could ever happen.\nThis function exists so that all operations are accounted for in the\nstrict operations.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(100usize.strict_rem(10), 0);
    \n

    The following panics because of division by zero:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 5usize.strict_rem(0);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn checked_rem_euclid(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked Euclidean modulo. Computes self.rem_euclid(rhs), returning None\nif rhs == 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.checked_rem_euclid(2), Some(1));\nassert_eq!(5usize.checked_rem_euclid(0), None);
    \n
    Source

    pub const fn strict_rem_euclid(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict Euclidean modulo. Computes self.rem_euclid(rhs).

    \n

    Strict modulo calculation on unsigned types is just the regular\nremainder calculation. There’s no way overflow could ever happen.\nThis function exists so that all operations are accounted for in the\nstrict operations. Since, for the positive integers, all common\ndefinitions of division are equal, this is exactly equal to\nself.strict_rem(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(100usize.strict_rem_euclid(10), 0);
    \n

    The following panics because of division by zero:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 5usize.strict_rem_euclid(0);
    \n
    Source

    pub const unsafe fn unchecked_disjoint_bitor(self, other: usize) -> usize

    🔬This is a nightly-only experimental API. (disjoint_bitor)
    Available on 64-bit only.

    Same value as self | other, but UB if any bit position is set in both inputs.

    \n

    This is a situational micro-optimization for places where you’d rather\nuse addition on some platforms and bitwise or on other platforms, based\non exactly which instructions combine better with whatever else you’re\ndoing. Note that there’s no reason to bother using this for places\nwhere it’s clear from the operations involved that they can’t overlap.\nFor example, if you’re combining u16s into a u32 with\n((a as u32) << 16) | (b as u32), that’s fine, as the backend will\nknow those sides of the | are disjoint without needing help.

    \n
    §Examples
    \n
    #![feature(disjoint_bitor)]\n\n// SAFETY: `1` and `4` have no bits in common.\nunsafe {\n    assert_eq!(1_usize.unchecked_disjoint_bitor(4), 5);\n}
    \n
    §Safety
    \n

    Requires that (self & other) == 0, otherwise it’s immediate UB.

    \n

    Equivalently, requires that (self | other) == (self + other).

    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn ilog(self, base: usize) -> u32

    Available on 64-bit only.

    Returns the logarithm of the number with respect to an arbitrary base,\nrounded down.

    \n

    This method might not be optimized owing to implementation details;\nilog2 can produce results more efficiently for base 2, and ilog10\ncan produce results more efficiently for base 10.

    \n
    §Panics
    \n

    This function will panic if self is zero, or if base is less than 2.

    \n
    §Examples
    \n
    assert_eq!(5usize.ilog(5), 1);
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn ilog2(self) -> u32

    Available on 64-bit only.

    Returns the base 2 logarithm of the number, rounded down.

    \n
    §Panics
    \n

    This function will panic if self is zero.

    \n
    §Examples
    \n
    assert_eq!(2usize.ilog2(), 1);
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn ilog10(self) -> u32

    Available on 64-bit only.

    Returns the base 10 logarithm of the number, rounded down.

    \n
    §Panics
    \n

    This function will panic if self is zero.

    \n
    §Example
    \n
    assert_eq!(10usize.ilog10(), 1);
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn checked_ilog(self, base: usize) -> Option<u32>

    Available on 64-bit only.

    Returns the logarithm of the number with respect to an arbitrary base,\nrounded down.

    \n

    Returns None if the number is zero, or if the base is not at least 2.

    \n

    This method might not be optimized owing to implementation details;\nchecked_ilog2 can produce results more efficiently for base 2, and\nchecked_ilog10 can produce results more efficiently for base 10.

    \n
    §Examples
    \n
    assert_eq!(5usize.checked_ilog(5), Some(1));
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn checked_ilog2(self) -> Option<u32>

    Available on 64-bit only.

    Returns the base 2 logarithm of the number, rounded down.

    \n

    Returns None if the number is zero.

    \n
    §Examples
    \n
    assert_eq!(2usize.checked_ilog2(), Some(1));
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn checked_ilog10(self) -> Option<u32>

    Available on 64-bit only.

    Returns the base 10 logarithm of the number, rounded down.

    \n

    Returns None if the number is zero.

    \n
    §Examples
    \n
    assert_eq!(10usize.checked_ilog10(), Some(1));
    \n
    1.7.0 (const: 1.47.0) · Source

    pub const fn checked_neg(self) -> Option<usize>

    Available on 64-bit only.

    Checked negation. Computes -self, returning None unless self == 0.

    \n

    Note that negating any positive integer will overflow.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0usize.checked_neg(), Some(0));\nassert_eq!(1usize.checked_neg(), None);
    \n
    Source

    pub const fn strict_neg(self) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict negation. Computes -self, panicking unless self == 0.

    \n

    Note that negating any positive integer will overflow.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(0usize.strict_neg(), 0);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 1usize.strict_neg();
    \n
    1.7.0 (const: 1.47.0) · Source

    pub const fn checked_shl(self, rhs: u32) -> Option<usize>

    Available on 64-bit only.

    Checked shift left. Computes self << rhs, returning None\nif rhs is larger than or equal to the number of bits in self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0x1usize.checked_shl(4), Some(0x10));\nassert_eq!(0x10usize.checked_shl(129), None);\nassert_eq!(0x10usize.checked_shl(63), Some(0));
    \n
    Source

    pub const fn strict_shl(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict shift left. Computes self << rhs, panicking if rhs is larger\nthan or equal to the number of bits in self.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(0x1usize.strict_shl(4), 0x10);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 0x10usize.strict_shl(129);
    \n
    Source

    pub const unsafe fn unchecked_shl(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (unchecked_shifts)
    Available on 64-bit only.

    Unchecked shift left. Computes self << rhs, assuming that\nrhs is less than the number of bits in self.

    \n
    §Safety
    \n

    This results in undefined behavior if rhs is larger than\nor equal to the number of bits in self,\ni.e. when checked_shl would return None.

    \n
    Source

    pub const fn unbounded_shl(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (unbounded_shifts)
    Available on 64-bit only.

    Unbounded shift left. Computes self << rhs, without bounding the value of rhs.

    \n

    If rhs is larger or equal to the number of bits in self,\nthe entire value is shifted out, and 0 is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(unbounded_shifts)]\nassert_eq!(0x1usize.unbounded_shl(4), 0x10);\nassert_eq!(0x1usize.unbounded_shl(129), 0);
    \n
    1.7.0 (const: 1.47.0) · Source

    pub const fn checked_shr(self, rhs: u32) -> Option<usize>

    Available on 64-bit only.

    Checked shift right. Computes self >> rhs, returning None\nif rhs is larger than or equal to the number of bits in self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0x10usize.checked_shr(4), Some(0x1));\nassert_eq!(0x10usize.checked_shr(129), None);
    \n
    Source

    pub const fn strict_shr(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict shift right. Computes self >> rhs, panicking rhs is\nlarger than or equal to the number of bits in self.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(0x10usize.strict_shr(4), 0x1);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 0x10usize.strict_shr(129);
    \n
    Source

    pub const unsafe fn unchecked_shr(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (unchecked_shifts)
    Available on 64-bit only.

    Unchecked shift right. Computes self >> rhs, assuming that\nrhs is less than the number of bits in self.

    \n
    §Safety
    \n

    This results in undefined behavior if rhs is larger than\nor equal to the number of bits in self,\ni.e. when checked_shr would return None.

    \n
    Source

    pub const fn unbounded_shr(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (unbounded_shifts)
    Available on 64-bit only.

    Unbounded shift right. Computes self >> rhs, without bounding the value of rhs.

    \n

    If rhs is larger or equal to the number of bits in self,\nthe entire value is shifted out, and 0 is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(unbounded_shifts)]\nassert_eq!(0x10usize.unbounded_shr(4), 0x1);\nassert_eq!(0x10usize.unbounded_shr(129), 0);
    \n
    1.34.0 (const: 1.50.0) · Source

    pub const fn checked_pow(self, exp: u32) -> Option<usize>

    Available on 64-bit only.

    Checked exponentiation. Computes self.pow(exp), returning None if\noverflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.checked_pow(5), Some(32));\nassert_eq!(usize::MAX.checked_pow(2), None);
    \n
    Source

    pub const fn strict_pow(self, exp: u32) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict exponentiation. Computes self.pow(exp), panicking if\noverflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(2usize.strict_pow(5), 32);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = usize::MAX.strict_pow(2);
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn saturating_add(self, rhs: usize) -> usize

    Available on 64-bit only.

    Saturating integer addition. Computes self + rhs, saturating at\nthe numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.saturating_add(1), 101);\nassert_eq!(usize::MAX.saturating_add(127), usize::MAX);
    \n
    1.66.0 (const: 1.66.0) · Source

    pub const fn saturating_add_signed(self, rhs: isize) -> usize

    Available on 64-bit only.

    Saturating addition with a signed integer. Computes self + rhs,\nsaturating at the numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.saturating_add_signed(2), 3);\nassert_eq!(1usize.saturating_add_signed(-2), 0);\nassert_eq!((usize::MAX - 2).saturating_add_signed(4), usize::MAX);
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn saturating_sub(self, rhs: usize) -> usize

    Available on 64-bit only.

    Saturating integer subtraction. Computes self - rhs, saturating\nat the numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.saturating_sub(27), 73);\nassert_eq!(13usize.saturating_sub(127), 0);
    \n
    Source

    pub const fn saturating_sub_signed(self, rhs: isize) -> usize

    🔬This is a nightly-only experimental API. (mixed_integer_ops_unsigned_sub)
    Available on 64-bit only.

    Saturating integer subtraction. Computes self - rhs, saturating at\nthe numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(mixed_integer_ops_unsigned_sub)]\nassert_eq!(1usize.saturating_sub_signed(2), 0);\nassert_eq!(1usize.saturating_sub_signed(-2), 3);\nassert_eq!((usize::MAX - 2).saturating_sub_signed(-4), usize::MAX);
    \n
    1.7.0 (const: 1.47.0) · Source

    pub const fn saturating_mul(self, rhs: usize) -> usize

    Available on 64-bit only.

    Saturating integer multiplication. Computes self * rhs,\nsaturating at the numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.saturating_mul(10), 20);\nassert_eq!((usize::MAX).saturating_mul(10), usize::MAX);
    \n
    1.58.0 (const: 1.58.0) · Source

    pub const fn saturating_div(self, rhs: usize) -> usize

    Available on 64-bit only.

    Saturating integer division. Computes self / rhs, saturating at the\nnumeric bounds instead of overflowing.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.saturating_div(2), 2);\n
    \n
    1.34.0 (const: 1.50.0) · Source

    pub const fn saturating_pow(self, exp: u32) -> usize

    Available on 64-bit only.

    Saturating integer exponentiation. Computes self.pow(exp),\nsaturating at the numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(4usize.saturating_pow(3), 64);\nassert_eq!(usize::MAX.saturating_pow(2), usize::MAX);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn wrapping_add(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) addition. Computes self + rhs,\nwrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(200usize.wrapping_add(55), 255);\nassert_eq!(200usize.wrapping_add(usize::MAX), 199);
    \n
    1.66.0 (const: 1.66.0) · Source

    pub const fn wrapping_add_signed(self, rhs: isize) -> usize

    Available on 64-bit only.

    Wrapping (modular) addition with a signed integer. Computes\nself + rhs, wrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.wrapping_add_signed(2), 3);\nassert_eq!(1usize.wrapping_add_signed(-2), usize::MAX);\nassert_eq!((usize::MAX - 2).wrapping_add_signed(4), 1);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn wrapping_sub(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) subtraction. Computes self - rhs,\nwrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_sub(100), 0);\nassert_eq!(100usize.wrapping_sub(usize::MAX), 101);
    \n
    Source

    pub const fn wrapping_sub_signed(self, rhs: isize) -> usize

    🔬This is a nightly-only experimental API. (mixed_integer_ops_unsigned_sub)
    Available on 64-bit only.

    Wrapping (modular) subtraction with a signed integer. Computes\nself - rhs, wrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(mixed_integer_ops_unsigned_sub)]\nassert_eq!(1usize.wrapping_sub_signed(2), usize::MAX);\nassert_eq!(1usize.wrapping_sub_signed(-2), 3);\nassert_eq!((usize::MAX - 2).wrapping_sub_signed(-4), 1);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn wrapping_mul(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) multiplication. Computes self * rhs, wrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types.\nWhich explains why u8 is used here.

    \n\n
    assert_eq!(10u8.wrapping_mul(12), 120);\nassert_eq!(25u8.wrapping_mul(12), 44);
    \n
    1.2.0 (const: 1.52.0) · Source

    pub const fn wrapping_div(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) division. Computes self / rhs.

    \n

    Wrapped division on unsigned types is just normal division. There’s\nno way wrapping could ever happen. This function exists so that all\noperations are accounted for in the wrapping operations.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_div(10), 10);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn wrapping_div_euclid(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping Euclidean division. Computes self.div_euclid(rhs).

    \n

    Wrapped division on unsigned types is just normal division. There’s\nno way wrapping could ever happen. This function exists so that all\noperations are accounted for in the wrapping operations. Since, for\nthe positive integers, all common definitions of division are equal,\nthis is exactly equal to self.wrapping_div(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_div_euclid(10), 10);
    \n
    1.2.0 (const: 1.52.0) · Source

    pub const fn wrapping_rem(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) remainder. Computes self % rhs.

    \n

    Wrapped remainder calculation on unsigned types is just the regular\nremainder calculation. There’s no way wrapping could ever happen.\nThis function exists so that all operations are accounted for in the\nwrapping operations.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_rem(10), 0);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn wrapping_rem_euclid(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping Euclidean modulo. Computes self.rem_euclid(rhs).

    \n

    Wrapped modulo calculation on unsigned types is just the regular\nremainder calculation. There’s no way wrapping could ever happen.\nThis function exists so that all operations are accounted for in the\nwrapping operations. Since, for the positive integers, all common\ndefinitions of division are equal, this is exactly equal to\nself.wrapping_rem(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_rem_euclid(10), 0);
    \n
    1.2.0 (const: 1.32.0) · Source

    pub const fn wrapping_neg(self) -> usize

    Available on 64-bit only.

    Wrapping (modular) negation. Computes -self,\nwrapping around at the boundary of the type.

    \n

    Since unsigned types do not have negative equivalents\nall applications of this function will wrap (except for -0).\nFor values smaller than the corresponding signed type’s maximum\nthe result is the same as casting the corresponding signed value.\nAny larger values are equivalent to MAX + 1 - (val - MAX - 1) where\nMAX is the corresponding signed type’s maximum.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0_usize.wrapping_neg(), 0);\nassert_eq!(usize::MAX.wrapping_neg(), 1);\nassert_eq!(13_usize.wrapping_neg(), (!13) + 1);\nassert_eq!(42_usize.wrapping_neg(), !(42 - 1));
    \n
    1.2.0 (const: 1.32.0) · Source

    pub const fn wrapping_shl(self, rhs: u32) -> usize

    Available on 64-bit only.

    Panic-free bitwise shift-left; yields self << mask(rhs),\nwhere mask removes any high-order bits of rhs that\nwould cause the shift to exceed the bitwidth of the type.

    \n

    Note that this is not the same as a rotate-left; the\nRHS of a wrapping shift-left is restricted to the range\nof the type, rather than the bits shifted out of the LHS\nbeing returned to the other end. The primitive integer\ntypes all implement a rotate_left function,\nwhich may be what you want instead.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.wrapping_shl(7), 128);\nassert_eq!(1usize.wrapping_shl(128), 1);
    \n
    1.2.0 (const: 1.32.0) · Source

    pub const fn wrapping_shr(self, rhs: u32) -> usize

    Available on 64-bit only.

    Panic-free bitwise shift-right; yields self >> mask(rhs),\nwhere mask removes any high-order bits of rhs that\nwould cause the shift to exceed the bitwidth of the type.

    \n

    Note that this is not the same as a rotate-right; the\nRHS of a wrapping shift-right is restricted to the range\nof the type, rather than the bits shifted out of the LHS\nbeing returned to the other end. The primitive integer\ntypes all implement a rotate_right function,\nwhich may be what you want instead.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(128usize.wrapping_shr(7), 1);\nassert_eq!(128usize.wrapping_shr(128), 128);
    \n
    1.34.0 (const: 1.50.0) · Source

    pub const fn wrapping_pow(self, exp: u32) -> usize

    Available on 64-bit only.

    Wrapping (modular) exponentiation. Computes self.pow(exp),\nwrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(3usize.wrapping_pow(5), 243);\nassert_eq!(3u8.wrapping_pow(6), 217);
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_add(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates self + rhs.

    \n

    Returns a tuple of the addition along with a boolean indicating\nwhether an arithmetic overflow would occur. If an overflow would\nhave occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_add(2), (7, false));\nassert_eq!(usize::MAX.overflowing_add(1), (0, true));
    \n
    Source

    pub const fn carrying_add(self, rhs: usize, carry: bool) -> (usize, bool)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates self + rhs + carry and returns a tuple containing\nthe sum and the output carry.

    \n

    Performs “ternary addition” of two integer operands and a carry-in\nbit, and returns an output integer and a carry-out bit. This allows\nchaining together multiple additions to create a wider addition, and\ncan be useful for bignum addition.

    \n

    This can be thought of as a 64-bit “full adder”, in the electronics sense.

    \n

    If the input carry is false, this method is equivalent to\noverflowing_add, and the output carry is\nequal to the overflow flag. Note that although carry and overflow\nflags are similar for unsigned integers, they are different for\nsigned integers.

    \n
    §Examples
    \n
    #![feature(bigint_helper_methods)]\n\n//    3  MAX    (a = 3 × 2^64 + 2^64 - 1)\n// +  5    7    (b = 5 × 2^64 + 7)\n// ---------\n//    9    6    (sum = 9 × 2^64 + 6)\n\nlet (a1, a0): (usize, usize) = (3, usize::MAX);\nlet (b1, b0): (usize, usize) = (5, 7);\nlet carry0 = false;\n\nlet (sum0, carry1) = a0.carrying_add(b0, carry0);\nassert_eq!(carry1, true);\nlet (sum1, carry2) = a1.carrying_add(b1, carry1);\nassert_eq!(carry2, false);\n\nassert_eq!((sum1, sum0), (9, 6));
    \n
    1.66.0 (const: 1.66.0) · Source

    pub const fn overflowing_add_signed(self, rhs: isize) -> (usize, bool)

    Available on 64-bit only.

    Calculates self + rhs with a signed rhs.

    \n

    Returns a tuple of the addition along with a boolean indicating\nwhether an arithmetic overflow would occur. If an overflow would\nhave occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.overflowing_add_signed(2), (3, false));\nassert_eq!(1usize.overflowing_add_signed(-2), (usize::MAX, true));\nassert_eq!((usize::MAX - 2).overflowing_add_signed(4), (1, true));
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_sub(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates self - rhs.

    \n

    Returns a tuple of the subtraction along with a boolean indicating\nwhether an arithmetic overflow would occur. If an overflow would\nhave occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_sub(2), (3, false));\nassert_eq!(0usize.overflowing_sub(1), (usize::MAX, true));
    \n
    Source

    pub const fn borrowing_sub(self, rhs: usize, borrow: bool) -> (usize, bool)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates selfrhsborrow and returns a tuple\ncontaining the difference and the output borrow.

    \n

    Performs “ternary subtraction” by subtracting both an integer\noperand and a borrow-in bit from self, and returns an output\ninteger and a borrow-out bit. This allows chaining together multiple\nsubtractions to create a wider subtraction, and can be useful for\nbignum subtraction.

    \n
    §Examples
    \n
    #![feature(bigint_helper_methods)]\n\n//    9    6    (a = 9 × 2^64 + 6)\n// -  5    7    (b = 5 × 2^64 + 7)\n// ---------\n//    3  MAX    (diff = 3 × 2^64 + 2^64 - 1)\n\nlet (a1, a0): (usize, usize) = (9, 6);\nlet (b1, b0): (usize, usize) = (5, 7);\nlet borrow0 = false;\n\nlet (diff0, borrow1) = a0.borrowing_sub(b0, borrow0);\nassert_eq!(borrow1, true);\nlet (diff1, borrow2) = a1.borrowing_sub(b1, borrow1);\nassert_eq!(borrow2, false);\n\nassert_eq!((diff1, diff0), (3, usize::MAX));
    \n
    Source

    pub const fn overflowing_sub_signed(self, rhs: isize) -> (usize, bool)

    🔬This is a nightly-only experimental API. (mixed_integer_ops_unsigned_sub)
    Available on 64-bit only.

    Calculates self - rhs with a signed rhs

    \n

    Returns a tuple of the subtraction along with a boolean indicating\nwhether an arithmetic overflow would occur. If an overflow would\nhave occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(mixed_integer_ops_unsigned_sub)]\nassert_eq!(1usize.overflowing_sub_signed(2), (usize::MAX, true));\nassert_eq!(1usize.overflowing_sub_signed(-2), (3, false));\nassert_eq!((usize::MAX - 2).overflowing_sub_signed(-4), (1, true));
    \n
    1.60.0 (const: 1.60.0) · Source

    pub const fn abs_diff(self, other: usize) -> usize

    Available on 64-bit only.

    Computes the absolute difference between self and other.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.abs_diff(80), 20usize);\nassert_eq!(100usize.abs_diff(110), 10usize);
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_mul(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the multiplication of self and rhs.

    \n

    Returns a tuple of the multiplication along with a boolean\nindicating whether an arithmetic overflow would occur. If an\noverflow would have occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types.\nWhich explains why u32 is used here.

    \n\n
    assert_eq!(5u32.overflowing_mul(2), (10, false));\nassert_eq!(1_000_000_000u32.overflowing_mul(10), (1410065408, true));
    \n
    Source

    pub const fn widening_mul(self, rhs: usize) -> (usize, usize)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates the complete product self * rhs without the possibility to overflow.

    \n

    This returns the low-order (wrapping) bits and the high-order (overflow) bits\nof the result as two separate values, in that order.

    \n

    If you also need to add a carry to the wide result, then you want\nSelf::carrying_mul instead.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types.\nWhich explains why u32 is used here.

    \n\n
    #![feature(bigint_helper_methods)]\nassert_eq!(5u32.widening_mul(2), (10, 0));\nassert_eq!(1_000_000_000u32.widening_mul(10), (1410065408, 2));
    \n
    Source

    pub const fn carrying_mul(self, rhs: usize, carry: usize) -> (usize, usize)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates the “full multiplication” self * rhs + carry\nwithout the possibility to overflow.

    \n

    This returns the low-order (wrapping) bits and the high-order (overflow) bits\nof the result as two separate values, in that order.

    \n

    Performs “long multiplication” which takes in an extra amount to add, and may return an\nadditional amount of overflow. This allows for chaining together multiple\nmultiplications to create “big integers” which represent larger values.

    \n

    If you don’t need the carry, then you can use Self::widening_mul instead.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types.\nWhich explains why u32 is used here.

    \n\n
    #![feature(bigint_helper_methods)]\nassert_eq!(5u32.carrying_mul(2, 0), (10, 0));\nassert_eq!(5u32.carrying_mul(2, 10), (20, 0));\nassert_eq!(1_000_000_000u32.carrying_mul(10, 0), (1410065408, 2));\nassert_eq!(1_000_000_000u32.carrying_mul(10, 10), (1410065418, 2));\nassert_eq!(usize::MAX.carrying_mul(usize::MAX, usize::MAX), (0, usize::MAX));
    \n

    This is the core operation needed for scalar multiplication when\nimplementing it for wider-than-native types.

    \n\n
    #![feature(bigint_helper_methods)]\nfn scalar_mul_eq(little_endian_digits: &mut Vec<u16>, multiplicand: u16) {\n    let mut carry = 0;\n    for d in little_endian_digits.iter_mut() {\n        (*d, carry) = d.carrying_mul(multiplicand, carry);\n    }\n    if carry != 0 {\n        little_endian_digits.push(carry);\n    }\n}\n\nlet mut v = vec![10, 20];\nscalar_mul_eq(&mut v, 3);\nassert_eq!(v, [30, 60]);\n\nassert_eq!(0x87654321_u64 * 0xFEED, 0x86D3D159E38D);\nlet mut v = vec![0x4321, 0x8765];\nscalar_mul_eq(&mut v, 0xFEED);\nassert_eq!(v, [0xE38D, 0xD159, 0x86D3]);
    \n

    If carry is zero, this is similar to overflowing_mul,\nexcept that it gives the value of the overflow instead of just whether one happened:

    \n\n
    #![feature(bigint_helper_methods)]\nlet r = u8::carrying_mul(7, 13, 0);\nassert_eq!((r.0, r.1 != 0), u8::overflowing_mul(7, 13));\nlet r = u8::carrying_mul(13, 42, 0);\nassert_eq!((r.0, r.1 != 0), u8::overflowing_mul(13, 42));
    \n

    The value of the first field in the returned tuple matches what you’d get\nby combining the wrapping_mul and\nwrapping_add methods:

    \n\n
    #![feature(bigint_helper_methods)]\nassert_eq!(\n    789_u16.carrying_mul(456, 123).0,\n    789_u16.wrapping_mul(456).wrapping_add(123),\n);
    \n
    Source

    pub const fn carrying_mul_add(\n self,\n rhs: usize,\n carry: usize,\n add: usize,\n) -> (usize, usize)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates the “full multiplication” self * rhs + carry1 + carry2\nwithout the possibility to overflow.

    \n

    This returns the low-order (wrapping) bits and the high-order (overflow) bits\nof the result as two separate values, in that order.

    \n

    Performs “long multiplication” which takes in an extra amount to add, and may return an\nadditional amount of overflow. This allows for chaining together multiple\nmultiplications to create “big integers” which represent larger values.

    \n

    If you don’t need either carry, then you can use Self::widening_mul instead,\nand if you only need one carry, then you can use Self::carrying_mul instead.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types,\nwhich explains why u32 is used here.

    \n\n
    #![feature(bigint_helper_methods)]\nassert_eq!(5u32.carrying_mul_add(2, 0, 0), (10, 0));\nassert_eq!(5u32.carrying_mul_add(2, 10, 10), (30, 0));\nassert_eq!(1_000_000_000u32.carrying_mul_add(10, 0, 0), (1410065408, 2));\nassert_eq!(1_000_000_000u32.carrying_mul_add(10, 10, 10), (1410065428, 2));\nassert_eq!(usize::MAX.carrying_mul_add(usize::MAX, usize::MAX, usize::MAX), (usize::MAX, usize::MAX));
    \n

    This is the core per-digit operation for “grade school” O(n²) multiplication.

    \n

    Please note that this example is shared between integer types,\nusing u8 for simplicity of the demonstration.

    \n\n
    #![feature(bigint_helper_methods)]\n\nfn quadratic_mul<const N: usize>(a: [u8; N], b: [u8; N]) -> [u8; N] {\n    let mut out = [0; N];\n    for j in 0..N {\n        let mut carry = 0;\n        for i in 0..(N - j) {\n            (out[j + i], carry) = u8::carrying_mul_add(a[i], b[j], out[j + i], carry);\n        }\n    }\n    out\n}\n\n// -1 * -1 == 1\nassert_eq!(quadratic_mul([0xFF; 3], [0xFF; 3]), [1, 0, 0]);\n\nassert_eq!(u32::wrapping_mul(0x9e3779b9, 0x7f4a7c15), 0xCFFC982D);\nassert_eq!(\n    quadratic_mul(u32::to_le_bytes(0x9e3779b9), u32::to_le_bytes(0x7f4a7c15)),\n    u32::to_le_bytes(0xCFFC982D)\n);
    \n
    1.7.0 (const: 1.52.0) · Source

    pub const fn overflowing_div(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the divisor when self is divided by rhs.

    \n

    Returns a tuple of the divisor along with a boolean indicating\nwhether an arithmetic overflow would occur. Note that for unsigned\nintegers overflow never occurs, so the second value is always\nfalse.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_div(2), (2, false));
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn overflowing_div_euclid(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the quotient of Euclidean division self.div_euclid(rhs).

    \n

    Returns a tuple of the divisor along with a boolean indicating\nwhether an arithmetic overflow would occur. Note that for unsigned\nintegers overflow never occurs, so the second value is always\nfalse.\nSince, for the positive integers, all common\ndefinitions of division are equal, this\nis exactly equal to self.overflowing_div(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_div_euclid(2), (2, false));
    \n
    1.7.0 (const: 1.52.0) · Source

    pub const fn overflowing_rem(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the remainder when self is divided by rhs.

    \n

    Returns a tuple of the remainder after dividing along with a boolean\nindicating whether an arithmetic overflow would occur. Note that for\nunsigned integers overflow never occurs, so the second value is\nalways false.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_rem(2), (1, false));
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn overflowing_rem_euclid(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the remainder self.rem_euclid(rhs) as if by Euclidean division.

    \n

    Returns a tuple of the modulo after dividing along with a boolean\nindicating whether an arithmetic overflow would occur. Note that for\nunsigned integers overflow never occurs, so the second value is\nalways false.\nSince, for the positive integers, all common\ndefinitions of division are equal, this operation\nis exactly equal to self.overflowing_rem(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_rem_euclid(2), (1, false));
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_neg(self) -> (usize, bool)

    Available on 64-bit only.

    Negates self in an overflowing fashion.

    \n

    Returns !self + 1 using wrapping operations to return the value\nthat represents the negation of this unsigned value. Note that for\npositive unsigned values overflow always occurs, but negating 0 does\nnot overflow.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0usize.overflowing_neg(), (0, false));\nassert_eq!(2usize.overflowing_neg(), (-2i32 as usize, true));
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_shl(self, rhs: u32) -> (usize, bool)

    Available on 64-bit only.

    Shifts self left by rhs bits.

    \n

    Returns a tuple of the shifted version of self along with a boolean\nindicating whether the shift value was larger than or equal to the\nnumber of bits. If the shift value is too large, then value is\nmasked (N-1) where N is the number of bits, and this value is then\nused to perform the shift.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0x1usize.overflowing_shl(4), (0x10, false));\nassert_eq!(0x1usize.overflowing_shl(132), (0x10, true));\nassert_eq!(0x10usize.overflowing_shl(63), (0, false));
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_shr(self, rhs: u32) -> (usize, bool)

    Available on 64-bit only.

    Shifts self right by rhs bits.

    \n

    Returns a tuple of the shifted version of self along with a boolean\nindicating whether the shift value was larger than or equal to the\nnumber of bits. If the shift value is too large, then value is\nmasked (N-1) where N is the number of bits, and this value is then\nused to perform the shift.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0x10usize.overflowing_shr(4), (0x1, false));\nassert_eq!(0x10usize.overflowing_shr(132), (0x1, true));
    \n
    1.34.0 (const: 1.50.0) · Source

    pub const fn overflowing_pow(self, exp: u32) -> (usize, bool)

    Available on 64-bit only.

    Raises self to the power of exp, using exponentiation by squaring.

    \n

    Returns a tuple of the exponentiation along with a bool indicating\nwhether an overflow happened.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(3usize.overflowing_pow(5), (243, false));\nassert_eq!(3u8.overflowing_pow(6), (217, true));
    \n
    1.0.0 (const: 1.50.0) · Source

    pub const fn pow(self, exp: u32) -> usize

    Available on 64-bit only.

    Raises self to the power of exp, using exponentiation by squaring.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.pow(5), 32);
    \n
    1.84.0 (const: 1.84.0) · Source

    pub const fn isqrt(self) -> usize

    Available on 64-bit only.

    Returns the square root of the number, rounded down.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(10usize.isqrt(), 3);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn div_euclid(self, rhs: usize) -> usize

    Available on 64-bit only.

    Performs Euclidean division.

    \n

    Since, for the positive integers, all common\ndefinitions of division are equal, this\nis exactly equal to self / rhs.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(7usize.div_euclid(4), 1); // or any other integer type
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn rem_euclid(self, rhs: usize) -> usize

    Available on 64-bit only.

    Calculates the least remainder of self (mod rhs).

    \n

    Since, for the positive integers, all common\ndefinitions of division are equal, this\nis exactly equal to self % rhs.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(7usize.rem_euclid(4), 3); // or any other integer type
    \n
    Source

    pub const fn div_floor(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (int_roundings)
    Available on 64-bit only.

    Calculates the quotient of self and rhs, rounding the result towards negative infinity.

    \n

    This is the same as performing self / rhs for all unsigned integers.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(int_roundings)]\nassert_eq!(7_usize.div_floor(4), 1);
    \n
    1.73.0 (const: 1.73.0) · Source

    pub const fn div_ceil(self, rhs: usize) -> usize

    Available on 64-bit only.

    Calculates the quotient of self and rhs, rounding the result towards positive infinity.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(7_usize.div_ceil(4), 2);
    \n
    1.73.0 (const: 1.73.0) · Source

    pub const fn next_multiple_of(self, rhs: usize) -> usize

    Available on 64-bit only.

    Calculates the smallest value greater than or equal to self that\nis a multiple of rhs.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Overflow behavior
    \n

    On overflow, this function will panic if overflow checks are enabled (default in debug\nmode) and wrap if overflow checks are disabled (default in release mode).

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(16_usize.next_multiple_of(8), 16);\nassert_eq!(23_usize.next_multiple_of(8), 24);
    \n
    1.73.0 (const: 1.73.0) · Source

    pub const fn checked_next_multiple_of(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Calculates the smallest value greater than or equal to self that\nis a multiple of rhs. Returns None if rhs is zero or the\noperation would result in overflow.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(16_usize.checked_next_multiple_of(8), Some(16));\nassert_eq!(23_usize.checked_next_multiple_of(8), Some(24));\nassert_eq!(1_usize.checked_next_multiple_of(0), None);\nassert_eq!(usize::MAX.checked_next_multiple_of(2), None);
    \n
    Source

    pub const fn is_multiple_of(self, rhs: usize) -> bool

    🔬This is a nightly-only experimental API. (unsigned_is_multiple_of)
    Available on 64-bit only.

    Returns true if self is an integer multiple of rhs, and false otherwise.

    \n

    This function is equivalent to self % rhs == 0, except that it will not panic\nfor rhs == 0. Instead, 0.is_multiple_of(0) == true, and for any non-zero n,\nn.is_multiple_of(0) == false.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(unsigned_is_multiple_of)]\nassert!(6_usize.is_multiple_of(2));\nassert!(!5_usize.is_multiple_of(2));\n\nassert!(0_usize.is_multiple_of(0));\nassert!(!6_usize.is_multiple_of(0));
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn is_power_of_two(self) -> bool

    Available on 64-bit only.

    Returns true if and only if self == 2^k for some k.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert!(16usize.is_power_of_two());\nassert!(!10usize.is_power_of_two());
    \n
    1.0.0 (const: 1.50.0) · Source

    pub const fn next_power_of_two(self) -> usize

    Available on 64-bit only.

    Returns the smallest power of two greater than or equal to self.

    \n

    When return value overflows (i.e., self > (1 << (N-1)) for type\nuN), it panics in debug mode and the return value is wrapped to 0 in\nrelease mode (the only situation in which this method can return 0).

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.next_power_of_two(), 2);\nassert_eq!(3usize.next_power_of_two(), 4);\nassert_eq!(0usize.next_power_of_two(), 1);
    \n
    1.0.0 (const: 1.50.0) · Source

    pub const fn checked_next_power_of_two(self) -> Option<usize>

    Available on 64-bit only.

    Returns the smallest power of two greater than or equal to self. If\nthe next power of two is greater than the type’s maximum value,\nNone is returned, otherwise the power of two is wrapped in Some.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.checked_next_power_of_two(), Some(2));\nassert_eq!(3usize.checked_next_power_of_two(), Some(4));\nassert_eq!(usize::MAX.checked_next_power_of_two(), None);
    \n
    Source

    pub const fn wrapping_next_power_of_two(self) -> usize

    🔬This is a nightly-only experimental API. (wrapping_next_power_of_two)
    Available on 64-bit only.

    Returns the smallest power of two greater than or equal to n. If\nthe next power of two is greater than the type’s maximum value,\nthe return value is wrapped to 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(wrapping_next_power_of_two)]\n\nassert_eq!(2usize.wrapping_next_power_of_two(), 2);\nassert_eq!(3usize.wrapping_next_power_of_two(), 4);\nassert_eq!(usize::MAX.wrapping_next_power_of_two(), 0);
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn to_be_bytes(self) -> [u8; 8]

    Available on 64-bit only.

    Returns the memory representation of this integer as a byte array in\nbig-endian (network) byte order.

    \n

    Note: This function returns an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let bytes = 0x1234567890123456usize.to_be_bytes();\nassert_eq!(bytes, [0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]);
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn to_le_bytes(self) -> [u8; 8]

    Available on 64-bit only.

    Returns the memory representation of this integer as a byte array in\nlittle-endian byte order.

    \n

    Note: This function returns an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let bytes = 0x1234567890123456usize.to_le_bytes();\nassert_eq!(bytes, [0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]);
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn to_ne_bytes(self) -> [u8; 8]

    Available on 64-bit only.

    Returns the memory representation of this integer as a byte array in\nnative byte order.

    \n

    As the target platform’s native endianness is used, portable code\nshould use to_be_bytes or to_le_bytes, as appropriate,\ninstead.

    \n

    Note: This function returns an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let bytes = 0x1234567890123456usize.to_ne_bytes();\nassert_eq!(\n    bytes,\n    if cfg!(target_endian = \"big\") {\n        [0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]\n    } else {\n        [0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]\n    }\n);
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn from_be_bytes(bytes: [u8; 8]) -> usize

    Available on 64-bit only.

    Creates a native endian integer value from its representation\nas a byte array in big endian.

    \n

    Note: This function takes an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let value = usize::from_be_bytes([0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]);\nassert_eq!(value, 0x1234567890123456);
    \n

    When starting from a slice rather than an array, fallible conversion APIs can be used:

    \n\n
    fn read_be_usize(input: &mut &[u8]) -> usize {\n    let (int_bytes, rest) = input.split_at(std::mem::size_of::<usize>());\n    *input = rest;\n    usize::from_be_bytes(int_bytes.try_into().unwrap())\n}
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn from_le_bytes(bytes: [u8; 8]) -> usize

    Available on 64-bit only.

    Creates a native endian integer value from its representation\nas a byte array in little endian.

    \n

    Note: This function takes an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let value = usize::from_le_bytes([0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]);\nassert_eq!(value, 0x1234567890123456);
    \n

    When starting from a slice rather than an array, fallible conversion APIs can be used:

    \n\n
    fn read_le_usize(input: &mut &[u8]) -> usize {\n    let (int_bytes, rest) = input.split_at(std::mem::size_of::<usize>());\n    *input = rest;\n    usize::from_le_bytes(int_bytes.try_into().unwrap())\n}
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn from_ne_bytes(bytes: [u8; 8]) -> usize

    Available on 64-bit only.

    Creates a native endian integer value from its memory representation\nas a byte array in native endianness.

    \n

    As the target platform’s native endianness is used, portable code\nlikely wants to use from_be_bytes or from_le_bytes, as\nappropriate instead.

    \n

    Note: This function takes an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let value = usize::from_ne_bytes(if cfg!(target_endian = \"big\") {\n    [0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]\n} else {\n    [0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]\n});\nassert_eq!(value, 0x1234567890123456);
    \n

    When starting from a slice rather than an array, fallible conversion APIs can be used:

    \n\n
    fn read_ne_usize(input: &mut &[u8]) -> usize {\n    let (int_bytes, rest) = input.split_at(std::mem::size_of::<usize>());\n    *input = rest;\n    usize::from_ne_bytes(int_bytes.try_into().unwrap())\n}
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn min_value() -> usize

    👎Deprecating in a future version: replaced by the MIN associated constant on this type
    Available on 64-bit only.

    New code should prefer to use\nusize::MIN instead.

    \n

    Returns the smallest value that can be represented by this integer type.

    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn max_value() -> usize

    👎Deprecating in a future version: replaced by the MAX associated constant on this type
    Available on 64-bit only.

    New code should prefer to use\nusize::MAX instead.

    \n

    Returns the largest value that can be represented by this integer type.

    \n
    1.85.0 (const: 1.85.0) · Source

    pub const fn midpoint(self, rhs: usize) -> usize

    Available on 64-bit only.

    Calculates the middle point of self and rhs.

    \n

    midpoint(a, b) is (a + b) / 2 as if it were performed in a\nsufficiently-large unsigned integral type. This implies that the result is\nalways rounded towards zero and that no overflow will ever occur.

    \n
    §Examples
    \n
    assert_eq!(0usize.midpoint(4), 2);\nassert_eq!(1usize.midpoint(4), 2);
    \n
    ",0,"iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl usize

    1.0.0 (const: 1.82.0) · Source

    pub const fn from_str_radix(\n src: &str,\n radix: u32,\n) -> Result<usize, ParseIntError>

    Parses an integer from a string slice with digits in a given base.

    \n

    The string is expected to be an optional\n+\nsign followed by only digits. Leading and trailing non-digit characters (including\nwhitespace) represent an error. Underscores (which are accepted in Rust literals)\nalso represent an error.

    \n

    Digits are a subset of these characters, depending on radix:

    \n
      \n
    • 0-9
    • \n
    • a-z
    • \n
    • A-Z
    • \n
    \n
    §Panics
    \n

    This function panics if radix is not in the range from 2 to 36.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(usize::from_str_radix(\"A\", 16), Ok(10));
    \n

    Trailing space returns error:

    \n\n
    assert!(usize::from_str_radix(\"1 \", 10).is_err());
    \n
    Source

    pub const fn from_ascii(src: &[u8]) -> Result<usize, ParseIntError>

    🔬This is a nightly-only experimental API. (int_from_ascii)

    Parses an integer from an ASCII-byte slice with decimal digits.

    \n

    The characters are expected to be an optional\n+\nsign followed by only digits. Leading and trailing non-digit characters (including\nwhitespace) represent an error. Underscores (which are accepted in Rust literals)\nalso represent an error.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(int_from_ascii)]\n\nassert_eq!(usize::from_ascii(b\"+10\"), Ok(10));
    \n

    Trailing space returns error:

    \n\n
    assert!(usize::from_ascii(b\"1 \").is_err());
    \n
    Source

    pub const fn from_ascii_radix(\n src: &[u8],\n radix: u32,\n) -> Result<usize, ParseIntError>

    🔬This is a nightly-only experimental API. (int_from_ascii)

    Parses an integer from an ASCII-byte slice with digits in a given base.

    \n

    The characters are expected to be an optional\n+\nsign followed by only digits. Leading and trailing non-digit characters (including\nwhitespace) represent an error. Underscores (which are accepted in Rust literals)\nalso represent an error.

    \n

    Digits are a subset of these characters, depending on radix:

    \n
      \n
    • 0-9
    • \n
    • a-z
    • \n
    • A-Z
    • \n
    \n
    §Panics
    \n

    This function panics if radix is not in the range from 2 to 36.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(int_from_ascii)]\n\nassert_eq!(usize::from_ascii_radix(b\"A\", 16), Ok(10));
    \n

    Trailing space returns error:

    \n\n
    assert!(usize::from_ascii_radix(b\"1 \", 10).is_err());
    \n
    ",0,"iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl ConstParamTy_ for usize

    ","ConstParamTy_","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Copy for usize

    ","Copy","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Eq for usize

    ","Eq","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Pod for usize

    ","Pod","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl PointerLike for usize

    ","PointerLike","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl SimdCast for usize

    ","SimdCast","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl StructuralPartialEq for usize

    ","StructuralPartialEq","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl TrustedStep for usize

    ","TrustedStep","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    §

    impl Uint for usize

    ","Uint","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Unsigned for usize

    ","Unsigned","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl UnsizedConstParamTy for usize

    ","UnsizedConstParamTy","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl Weight for usize

    ","Weight","iced_renderer::geometry::path::lyon_path::AttributeIndex"],["
    Source§

    impl ZeroablePrimitive for usize

    ","ZeroablePrimitive","iced_renderer::geometry::path::lyon_path::AttributeIndex"]]],["iced_widget",[["
    §

    impl AbsDiffEq for usize

    §

    type Epsilon = usize

    Used for specifying relative comparisons.
    §

    fn default_epsilon() -> usize

    The default tolerance to use when testing values that are close together. Read more
    §

    fn abs_diff_eq(&self, other: &usize, epsilon: usize) -> bool

    A test for equality that uses the absolute difference to compute the approximate\nequality of two numbers.
    §

    fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool

    The inverse of [AbsDiffEq::abs_diff_eq].
    ","AbsDiffEq","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<T> Accumulate<T> for usize

    §

    fn initial(_capacity: Option<usize>) -> usize

    Create a new Extend of the correct type
    §

    fn accumulate(&mut self, _acc: T)

    Accumulate the input into an accumulator
    ","Accumulate","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Add<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: &BigInt) -> BigInt

    Performs the + operation. Read more
    ","Add<&BigInt>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Add<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: &BigUint) -> BigUint

    Performs the + operation. Read more
    ","Add<&BigUint>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Add<&usize> for usize

    Source§

    type Output = <usize as Add>::Output

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: &usize) -> <usize as Add>::Output

    Performs the + operation. Read more
    ","Add<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Add<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: BigInt) -> BigInt

    Performs the + operation. Read more
    ","Add","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Add<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the + operator.
    Source§

    fn add(self, other: BigUint) -> BigUint

    Performs the + operation. Read more
    ","Add","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Add for usize

    Source§

    type Output = usize

    The resulting type after applying the + operator.
    Source§

    const fn add(self, other: usize) -> usize

    Performs the + operation. Read more
    ","Add","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl AddAssign<&usize> for usize

    Source§

    fn add_assign(&mut self, other: &usize)

    Performs the += operation. Read more
    ","AddAssign<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl AddAssign for usize

    Source§

    fn add_assign(&mut self, other: usize)

    Performs the += operation. Read more
    ","AddAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl AsBytes for usize

    §

    fn as_bytes(&self) -> &[u8]

    Gets the bytes of this value. Read more
    §

    fn as_bytes_mut(&mut self) -> &mut [u8]
    where\n Self: FromBytes,

    Gets the bytes of this value mutably. Read more
    §

    fn write_to(&self, bytes: &mut [u8]) -> Option<()>

    Writes a copy of self to bytes. Read more
    §

    fn write_to_prefix(&self, bytes: &mut [u8]) -> Option<()>

    Writes a copy of self to the prefix of bytes. Read more
    §

    fn write_to_suffix(&self, bytes: &mut [u8]) -> Option<()>

    Writes a copy of self to the suffix of bytes. Read more
    ","AsBytes","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<f32> for usize

    Source§

    fn as_(self) -> f32

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<f64> for usize

    Source§

    fn as_(self) -> f64

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i128> for usize

    Source§

    fn as_(self) -> i128

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i16> for usize

    Source§

    fn as_(self) -> i16

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i32> for usize

    Source§

    fn as_(self) -> i32

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i64> for usize

    Source§

    fn as_(self) -> i64

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<i8> for usize

    Source§

    fn as_(self) -> i8

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<isize> for usize

    Source§

    fn as_(self) -> isize

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u128> for usize

    Source§

    fn as_(self) -> u128

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u16> for usize

    Source§

    fn as_(self) -> u16

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u32> for usize

    Source§

    fn as_(self) -> u32

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u64> for usize

    Source§

    fn as_(self) -> u64

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<u8> for usize

    Source§

    fn as_(self) -> u8

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl AsPrimitive<usize> for usize

    Source§

    fn as_(self) -> usize

    Convert a value to another, using the as operator.
    ","AsPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Binary for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Binary","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitAnd<&usize> for usize

    Source§

    type Output = <usize as BitAnd>::Output

    The resulting type after applying the & operator.
    Source§

    fn bitand(self, other: &usize) -> <usize as BitAnd>::Output

    Performs the & operation. Read more
    ","BitAnd<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitAnd for usize

    Source§

    type Output = usize

    The resulting type after applying the & operator.
    Source§

    fn bitand(self, rhs: usize) -> usize

    Performs the & operation. Read more
    ","BitAnd","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl BitAndAssign<&usize> for usize

    Source§

    fn bitand_assign(&mut self, other: &usize)

    Performs the &= operation. Read more
    ","BitAndAssign<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl BitAndAssign for usize

    Source§

    fn bitand_assign(&mut self, other: usize)

    Performs the &= operation. Read more
    ","BitAndAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl BitBlock for usize

    Source§

    fn bits() -> usize

    How many bits it has
    Source§

    fn from_byte(byte: u8) -> usize

    Convert a byte into this type (lowest-order bits set)
    Source§

    fn count_ones(self) -> usize

    Count the number of 1’s in the bitwise repr
    Source§

    fn count_zeros(self) -> usize

    Count the number of 0’s in the bitwise repr
    Source§

    fn one() -> usize

    Get 1
    Source§

    fn zero() -> usize

    Get 0
    Source§

    fn bytes() -> usize

    How many bytes it has
    ","BitBlock","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl BitField for usize

    §

    const BIT_LENGTH: usize = 64usize

    The number of bits in this bit field. Read more
    §

    fn get_bit(&self, bit: usize) -> bool

    Obtains the bit at the index bit; note that index 0 is the least significant bit, while\nindex length() - 1 is the most significant bit. Read more
    §

    fn get_bits<T>(&self, range: T) -> usize
    where\n T: RangeBounds<usize>,

    Obtains the range of bits specified by range; note that index 0 is the least significant\nbit, while index length() - 1 is the most significant bit. Read more
    §

    fn set_bit(&mut self, bit: usize, value: bool) -> &mut usize

    Sets the bit at the index bit to the value value (where true means a value of ‘1’ and\nfalse means a value of ‘0’); note that index 0 is the least significant bit, while index\nlength() - 1 is the most significant bit. Read more
    §

    fn set_bits<T>(&mut self, range: T, value: usize) -> &mut usize
    where\n T: RangeBounds<usize>,

    Sets the range of bits defined by the range range to the lower bits of value; to be\nspecific, if the range is N bits long, the N lower bits of value will be used; if any of\nthe other bits in value are set to 1, this function will panic. Read more
    ","BitField","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitOr<&usize> for usize

    Source§

    type Output = <usize as BitOr>::Output

    The resulting type after applying the | operator.
    Source§

    fn bitor(self, other: &usize) -> <usize as BitOr>::Output

    Performs the | operation. Read more
    ","BitOr<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitOr for usize

    Source§

    type Output = usize

    The resulting type after applying the | operator.
    Source§

    fn bitor(self, rhs: usize) -> usize

    Performs the | operation. Read more
    ","BitOr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl BitOrAssign<&usize> for usize

    Source§

    fn bitor_assign(&mut self, other: &usize)

    Performs the |= operation. Read more
    ","BitOrAssign<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl BitOrAssign for usize

    Source§

    fn bitor_assign(&mut self, other: usize)

    Performs the |= operation. Read more
    ","BitOrAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitXor<&usize> for usize

    Source§

    type Output = <usize as BitXor>::Output

    The resulting type after applying the ^ operator.
    Source§

    fn bitxor(self, other: &usize) -> <usize as BitXor>::Output

    Performs the ^ operation. Read more
    ","BitXor<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl BitXor for usize

    Source§

    type Output = usize

    The resulting type after applying the ^ operator.
    Source§

    fn bitxor(self, other: usize) -> usize

    Performs the ^ operation. Read more
    ","BitXor","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl BitXorAssign<&usize> for usize

    Source§

    fn bitxor_assign(&mut self, other: &usize)

    Performs the ^= operation. Read more
    ","BitXorAssign<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl BitXorAssign for usize

    Source§

    fn bitxor_assign(&mut self, other: usize)

    Performs the ^= operation. Read more
    ","BitXorAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Bits for usize

    §

    const EMPTY: usize = 0usize

    A value with all bits unset.
    §

    const ALL: usize = 18_446_744_073_709_551_615usize

    A value with all bits set.
    ","Bits","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Bounded for usize

    Source§

    fn min_value() -> usize

    Returns the smallest finite number this type can represent
    Source§

    fn max_value() -> usize

    Returns the largest finite number this type can represent
    ","Bounded","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CarryingMulAdd for usize

    Source§

    type Unsigned = usize

    🔬This is a nightly-only experimental API. (core_intrinsics_fallbacks)
    Source§

    const fn carrying_mul_add(self, a: usize, b: usize, c: usize) -> (usize, usize)

    🔬This is a nightly-only experimental API. (core_intrinsics_fallbacks)
    ","CarryingMulAdd","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl CastSigned for usize

    §

    type Signed = isize

    The signed integer type with the same size as Self.
    §

    fn cast_signed(self) -> <usize as CastSigned>::Signed

    Cast an integer to the signed integer of the same size.
    ","CastSigned","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl CastUnsigned for usize

    §

    type Unsigned = usize

    The unsigned integer type with the same size as Self.
    §

    fn cast_unsigned(self) -> <usize as CastUnsigned>::Unsigned

    Cast an integer to the unsigned integer of the same size.
    ","CastUnsigned","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Ceil for usize

    §

    fn ceil(self) -> usize

    Rounds to the smallest integer equal or greater than the original value. Read more
    ","Ceil","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedAdd for usize

    Source§

    fn checked_add(&self, v: &usize) -> Option<usize>

    Adds two numbers, checking for overflow. If overflow happens, None is\nreturned.
    ","CheckedAdd","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedDiv for usize

    Source§

    fn checked_div(&self, v: &usize) -> Option<usize>

    Divides two numbers, checking for underflow, overflow and division by\nzero. If any of that happens, None is returned.
    ","CheckedDiv","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedEuclid for usize

    Source§

    fn checked_div_euclid(&self, v: &usize) -> Option<usize>

    Performs euclid division that returns None instead of panicking on division by zero\nand instead of wrapping around on underflow and overflow.
    Source§

    fn checked_rem_euclid(&self, v: &usize) -> Option<usize>

    Finds the euclid remainder of dividing two numbers, checking for underflow, overflow and\ndivision by zero. If any of that happens, None is returned.
    Source§

    fn checked_div_rem_euclid(&self, v: &Self) -> Option<(Self, Self)>

    Returns both the quotient and remainder from checked Euclidean division. Read more
    ","CheckedEuclid","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedMul for usize

    Source§

    fn checked_mul(&self, v: &usize) -> Option<usize>

    Multiplies two numbers, checking for underflow or overflow. If underflow\nor overflow happens, None is returned.
    ","CheckedMul","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedNeg for usize

    Source§

    fn checked_neg(&self) -> Option<usize>

    Negates a number, returning None for results that can’t be represented, like signed MIN\nvalues that can’t be positive, or non-zero unsigned values that can’t be negative. Read more
    ","CheckedNeg","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedRem for usize

    Source§

    fn checked_rem(&self, v: &usize) -> Option<usize>

    Finds the remainder of dividing two numbers, checking for underflow, overflow and division\nby zero. If any of that happens, None is returned. Read more
    ","CheckedRem","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedShl for usize

    Source§

    fn checked_shl(&self, rhs: u32) -> Option<usize>

    Checked shift left. Computes self << rhs, returning None\nif rhs is larger than or equal to the number of bits in self. Read more
    ","CheckedShl","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedShr for usize

    Source§

    fn checked_shr(&self, rhs: u32) -> Option<usize>

    Checked shift right. Computes self >> rhs, returning None\nif rhs is larger than or equal to the number of bits in self. Read more
    ","CheckedShr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl CheckedSub for usize

    Source§

    fn checked_sub(&self, v: &usize) -> Option<usize>

    Subtracts two numbers, checking for underflow. If underflow happens,\nNone is returned.
    ","CheckedSub","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Clone for usize

    Source§

    fn clone(&self) -> usize

    Returns a copy of the value. Read more
    1.0.0 · Source§

    fn clone_from(&mut self, source: &Self)

    Performs copy-assignment from source. Read more
    ","Clone","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ConstOne for usize

    Source§

    const ONE: usize = 1usize

    The multiplicative identity element of Self, 1.
    ","ConstOne","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ConstZero for usize

    Source§

    const ZERO: usize = 0usize

    The additive identity element of Self, 0.
    ","ConstZero","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Contiguous for usize

    §

    const MAX_VALUE: usize = 18_446_744_073_709_551_615usize

    The upper inclusive bound for valid instances of this type.
    §

    const MIN_VALUE: usize = 0usize

    The lower inclusive bound for valid instances of this type.
    §

    type Int = usize

    The primitive integer type with an identical representation to this\ntype. Read more
    §

    fn from_integer(value: Self::Int) -> Option<Self>

    If value is within the range for valid instances of this type,\nreturns Some(converted_value), otherwise, returns None. Read more
    §

    fn into_integer(self) -> Self::Int

    Perform the conversion from C into the underlying integral type. This\nmostly exists otherwise generic code would need unsafe for the value as integer Read more
    ","Contiguous","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Debug for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Debug","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Default for usize

    Source§

    fn default() -> usize

    Returns the default value of 0

    \n
    ","Default","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'de> Deserialize<'de> for usize

    Source§

    fn deserialize<D>(\n deserializer: D,\n) -> Result<usize, <D as Deserializer<'de>>::Error>
    where\n D: Deserializer<'de>,

    Deserialize this value from the given Serde deserializer. Read more
    ","Deserialize<'de>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl DisjointBitOr for usize

    Source§

    const unsafe fn disjoint_bitor(self, other: usize) -> usize

    🔬This is a nightly-only experimental API. (core_intrinsics_fallbacks)
    See super::disjoint_bitor; we just need the trait indirection to handle\ndifferent types since calling intrinsics with generics doesn’t work.
    ","DisjointBitOr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Display for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Display","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Div<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: &BigInt) -> BigInt

    Performs the / operation. Read more
    ","Div<&BigInt>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Div<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: &BigUint) -> BigUint

    Performs the / operation. Read more
    ","Div<&BigUint>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Div<&usize> for usize

    Source§

    type Output = <usize as Div>::Output

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: &usize) -> <usize as Div>::Output

    Performs the / operation. Read more
    ","Div<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Div<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: BigInt) -> BigInt

    Performs the / operation. Read more
    ","Div","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Div<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: BigUint) -> BigUint

    Performs the / operation. Read more
    ","Div","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.51.0 · Source§

    impl Div<NonZero<usize>> for usize

    Source§

    fn div(self, other: NonZero<usize>) -> usize

    Same as self / other.get(), but because other is a NonZero<_>,\nthere’s never a runtime check for division-by-zero.

    \n

    This operation rounds towards zero, truncating any fractional\npart of the exact result, and cannot panic.

    \n
    Source§

    type Output = usize

    The resulting type after applying the / operator.
    ","Div>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Div for usize

    This operation rounds towards zero, truncating any\nfractional part of the exact result.

    \n

    §Panics

    \n

    This operation will panic if other == 0.

    \n
    Source§

    type Output = usize

    The resulting type after applying the / operator.
    Source§

    fn div(self, other: usize) -> usize

    Performs the / operation. Read more
    ","Div","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl DivAssign<&usize> for usize

    Source§

    fn div_assign(&mut self, other: &usize)

    Performs the /= operation. Read more
    ","DivAssign<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.79.0 · Source§

    impl DivAssign<NonZero<usize>> for usize

    Source§

    fn div_assign(&mut self, other: NonZero<usize>)

    Same as self /= other.get(), but because other is a NonZero<_>,\nthere’s never a runtime check for division-by-zero.

    \n

    This operation rounds towards zero, truncating any fractional\npart of the exact result, and cannot panic.

    \n
    ","DivAssign>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl DivAssign for usize

    Source§

    fn div_assign(&mut self, other: usize)

    Performs the /= operation. Read more
    ","DivAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl ErrnoSentinel for usize

    ","ErrnoSentinel","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Euclid for usize

    Source§

    fn div_euclid(&self, v: &usize) -> usize

    Calculates Euclidean division, the matching method for rem_euclid. Read more
    Source§

    fn rem_euclid(&self, v: &usize) -> usize

    Calculates the least nonnegative remainder of self (mod v). Read more
    Source§

    fn div_rem_euclid(&self, v: &Self) -> (Self, Self)

    Returns both the quotient and remainder from Euclidean division. Read more
    ","Euclid","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Fixed for usize

    §

    fn floor_log2(&self, n: usize) -> usize

    §

    fn ceil_log2(&self, n: usize) -> usize

    §

    fn align_power_of_two(&self, n: usize) -> usize

    §

    fn align_power_of_two_and_shift(&self, n: usize) -> usize

    ","Fixed","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Floor for usize

    §

    fn floor(self) -> usize

    Rounds to the biggest integer equal or lower than the original value. Read more
    ","Floor","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl FmtConst for usize

    Source§

    fn fmt_const(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Print a const expression representing this value.
    ","FmtConst","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl From<Alignment> for usize

    Source§

    fn from(align: Alignment) -> usize

    Converts to this type from the input type.
    ","From","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<const MIN: usize, const MAX: usize> From<RangedUsize<MIN, MAX>> for usize

    §

    fn from(value: RangedUsize<MIN, MAX>) -> usize

    Converts to this type from the input type.
    ","From>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl From<State> for usize

    §

    fn from(src: State) -> usize

    Converts to this type from the input type.
    ","From","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl From<State> for usize

    §

    fn from(val: State) -> usize

    Converts to this type from the input type.
    ","From","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl From<State> for usize

    §

    fn from(val: State) -> usize

    Converts to this type from the input type.
    ","From","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<O> From<U16<O>> for usize
    where\n O: ByteOrder,

    §

    fn from(x: U16<O>) -> usize

    Converts to this type from the input type.
    ","From>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl From<Uint24> for usize

    §

    fn from(src: Uint24) -> usize

    Converts to this type from the input type.
    ","From","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl From<VertexId> for usize

    §

    fn from(v: VertexId) -> usize

    Converts to this type from the input type.
    ","From","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.28.0 · Source§

    impl From<bool> for usize

    Source§

    fn from(small: bool) -> usize

    Converts a bool to usize losslessly.\nThe resulting value is 0 for false and 1 for true values.

    \n
    §Examples
    \n
    assert_eq!(usize::from(true), 1);\nassert_eq!(usize::from(false), 0);
    \n
    ","From","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.26.0 · Source§

    impl From<u16> for usize

    Source§

    fn from(small: u16) -> usize

    Converts u16 to usize losslessly.

    \n
    ","From","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.5.0 · Source§

    impl From<u8> for usize

    Source§

    fn from(small: u8) -> usize

    Converts u8 to usize losslessly.

    \n
    ","From","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl FromBytes for usize

    Source§

    type Bytes = [u8; 8]

    Source§

    fn from_be_bytes(bytes: &<usize as FromBytes>::Bytes) -> usize

    Create a number from its representation as a byte array in big endian. Read more
    Source§

    fn from_le_bytes(bytes: &<usize as FromBytes>::Bytes) -> usize

    Create a number from its representation as a byte array in little endian. Read more
    Source§

    fn from_ne_bytes(bytes: &<usize as FromBytes>::Bytes) -> usize

    Create a number from its memory representation as a byte array in native endianness. Read more
    ","FromBytes","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl FromBytes for usize

    §

    fn ref_from(bytes: &[u8]) -> Option<&Self>
    where\n Self: Sized,

    Interprets the given bytes as a &Self without copying. Read more
    §

    fn ref_from_prefix(bytes: &[u8]) -> Option<&Self>
    where\n Self: Sized,

    Interprets the prefix of the given bytes as a &Self without copying. Read more
    §

    fn ref_from_suffix(bytes: &[u8]) -> Option<&Self>
    where\n Self: Sized,

    Interprets the suffix of the given bytes as a &Self without copying. Read more
    §

    fn mut_from(bytes: &mut [u8]) -> Option<&mut Self>
    where\n Self: Sized + AsBytes,

    Interprets the given bytes as a &mut Self without copying. Read more
    §

    fn mut_from_prefix(bytes: &mut [u8]) -> Option<&mut Self>
    where\n Self: Sized + AsBytes,

    Interprets the prefix of the given bytes as a &mut Self without\ncopying. Read more
    §

    fn mut_from_suffix(bytes: &mut [u8]) -> Option<&mut Self>
    where\n Self: Sized + AsBytes,

    Interprets the suffix of the given bytes as a &mut Self without copying. Read more
    §

    fn slice_from(bytes: &[u8]) -> Option<&[Self]>
    where\n Self: Sized,

    Interprets the given bytes as a &[Self] without copying. Read more
    §

    fn slice_from_prefix(bytes: &[u8], count: usize) -> Option<(&[Self], &[u8])>
    where\n Self: Sized,

    Interprets the prefix of the given bytes as a &[Self] with length\nequal to count without copying. Read more
    §

    fn slice_from_suffix(bytes: &[u8], count: usize) -> Option<(&[u8], &[Self])>
    where\n Self: Sized,

    Interprets the suffix of the given bytes as a &[Self] with length\nequal to count without copying. Read more
    §

    fn mut_slice_from(bytes: &mut [u8]) -> Option<&mut [Self]>
    where\n Self: Sized + AsBytes,

    Interprets the given bytes as a &mut [Self] without copying. Read more
    §

    fn mut_slice_from_prefix(\n bytes: &mut [u8],\n count: usize,\n) -> Option<(&mut [Self], &mut [u8])>
    where\n Self: Sized + AsBytes,

    Interprets the prefix of the given bytes as a &mut [Self] with length\nequal to count without copying. Read more
    §

    fn mut_slice_from_suffix(\n bytes: &mut [u8],\n count: usize,\n) -> Option<(&mut [u8], &mut [Self])>
    where\n Self: Sized + AsBytes,

    Interprets the suffix of the given bytes as a &mut [Self] with length\nequal to count without copying. Read more
    §

    fn read_from(bytes: &[u8]) -> Option<Self>
    where\n Self: Sized,

    Reads a copy of Self from bytes. Read more
    §

    fn read_from_prefix(bytes: &[u8]) -> Option<Self>
    where\n Self: Sized,

    Reads a copy of Self from the prefix of bytes. Read more
    §

    fn read_from_suffix(bytes: &[u8]) -> Option<Self>
    where\n Self: Sized,

    Reads a copy of Self from the suffix of bytes. Read more
    ","FromBytes","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl FromPrimitive for usize

    Source§

    fn from_isize(n: isize) -> Option<usize>

    Converts an isize to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i8(n: i8) -> Option<usize>

    Converts an i8 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i16(n: i16) -> Option<usize>

    Converts an i16 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i32(n: i32) -> Option<usize>

    Converts an i32 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i64(n: i64) -> Option<usize>

    Converts an i64 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_i128(n: i128) -> Option<usize>

    Converts an i128 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned. Read more
    Source§

    fn from_usize(n: usize) -> Option<usize>

    Converts a usize to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u8(n: u8) -> Option<usize>

    Converts an u8 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u16(n: u16) -> Option<usize>

    Converts an u16 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u32(n: u32) -> Option<usize>

    Converts an u32 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u64(n: u64) -> Option<usize>

    Converts an u64 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_u128(n: u128) -> Option<usize>

    Converts an u128 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned. Read more
    Source§

    fn from_f32(n: f32) -> Option<usize>

    Converts a f32 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned.
    Source§

    fn from_f64(n: f64) -> Option<usize>

    Converts a f64 to return an optional value of this type. If the\nvalue cannot be represented by this type, then None is returned. Read more
    ","FromPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl FromStr for usize

    Source§

    fn from_str(src: &str) -> Result<usize, ParseIntError>

    Parses an integer from a string slice with decimal digits.

    \n

    The characters are expected to be an optional\n+\nsign followed by only digits. Leading and trailing non-digit characters (including\nwhitespace) represent an error. Underscores (which are accepted in Rust literals)\nalso represent an error.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    use std::str::FromStr;\n\nassert_eq!(usize::from_str(\"+10\"), Ok(10));
    \n

    Trailing space returns error:

    \n\n
    assert!(usize::from_str(\"1 \").is_err());
    \n
    Source§

    type Err = ParseIntError

    The associated error which can be returned from parsing.
    ","FromStr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl FromZeroes for usize

    §

    fn zero(&mut self)

    Overwrites self with zeroes. Read more
    §

    fn new_zeroed() -> Self
    where\n Self: Sized,

    Creates an instance of Self from zeroed bytes. Read more
    ","FromZeroes","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl GetManyMutIndex for usize

    Source§

    fn is_in_bounds(&self, len: usize) -> bool

    🔬This is a nightly-only experimental API. (get_many_mut_helpers)
    Returns true if self is in bounds for len slice elements.
    Source§

    fn is_overlapping(&self, other: &usize) -> bool

    🔬This is a nightly-only experimental API. (get_many_mut_helpers)
    Returns true if self overlaps with other. Read more
    ","GetManyMutIndex","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Hash for usize

    Source§

    fn hash<H>(&self, state: &mut H)
    where\n H: Hasher,

    Feeds this value into the given Hasher. Read more
    Source§

    fn hash_slice<H>(data: &[usize], state: &mut H)
    where\n H: Hasher,

    Feeds a slice of this type into the given Hasher. Read more
    ","Hash","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl IdentFragment for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Format this value as an identifier fragment.
    Source§

    fn span(&self) -> Option<Span>

    Span associated with this IdentFragment. Read more
    ","IdentFragment","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Integer for usize

    Available on 64-bit only.
    Source§

    const MAX_STR_LEN: usize = 20usize

    The maximum length of string that formatting an integer of this type can\nproduce on the current target platform.
    ","Integer","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Integer for usize

    Source§

    fn div_floor(&self, other: &usize) -> usize

    Unsigned integer division. Returns the same result as div (/).

    \n
    Source§

    fn mod_floor(&self, other: &usize) -> usize

    Unsigned integer modulo operation. Returns the same result as rem (%).

    \n
    Source§

    fn gcd(&self, other: &usize) -> usize

    Calculates the Greatest Common Divisor (GCD) of the number and other

    \n
    Source§

    fn lcm(&self, other: &usize) -> usize

    Calculates the Lowest Common Multiple (LCM) of the number and other.

    \n
    Source§

    fn gcd_lcm(&self, other: &usize) -> (usize, usize)

    Calculates the Greatest Common Divisor (GCD) and\nLowest Common Multiple (LCM) of the number and other.

    \n
    Source§

    fn is_multiple_of(&self, other: &usize) -> bool

    Returns true if the number is a multiple of other.

    \n
    Source§

    fn is_even(&self) -> bool

    Returns true if the number is divisible by 2.

    \n
    Source§

    fn is_odd(&self) -> bool

    Returns true if the number is not divisible by 2.

    \n
    Source§

    fn div_rem(&self, other: &usize) -> (usize, usize)

    Simultaneous truncated integer division and modulus.

    \n
    Source§

    fn div_ceil(&self, other: &usize) -> usize

    Ceiled integer division. Read more
    Source§

    fn extended_gcd_lcm(&self, other: &usize) -> (ExtendedGcd<usize>, usize)

    Greatest common divisor, least common multiple, and Bézout coefficients.
    Source§

    fn extended_gcd(&self, other: &Self) -> ExtendedGcd<Self>
    where\n Self: Clone,

    Greatest common divisor and Bézout coefficients. Read more
    Source§

    fn divides(&self, other: &Self) -> bool

    👎Deprecated: Please use is_multiple_of instead
    Deprecated, use is_multiple_of instead.
    Source§

    fn div_mod_floor(&self, other: &Self) -> (Self, Self)

    Simultaneous floored integer division and modulus.\nReturns (quotient, remainder). Read more
    Source§

    fn next_multiple_of(&self, other: &Self) -> Self
    where\n Self: Clone,

    Rounds up to nearest multiple of argument. Read more
    Source§

    fn prev_multiple_of(&self, other: &Self) -> Self
    where\n Self: Clone,

    Rounds down to nearest multiple of argument. Read more
    Source§

    fn dec(&mut self)
    where\n Self: Clone,

    Decrements self by one. Read more
    Source§

    fn inc(&mut self)
    where\n Self: Clone,

    Increments self by one. Read more
    ","Integer","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'de, E> IntoDeserializer<'de, E> for usize
    where\n E: Error,

    Source§

    type Deserializer = UsizeDeserializer<E>

    The type of the deserializer being converted into.
    Source§

    fn into_deserializer(self) -> UsizeDeserializer<E>

    Convert this value into a deserializer.
    ","IntoDeserializer<'de, E>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> IntoFragment<'a> for usize

    Source§

    fn into_fragment(self) -> Cow<'a, str>

    Converts the value to some text Fragment.
    ","IntoFragment<'a>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl IntoNotification for usize

    §

    type Tag = ()

    The tag data associated with a notification. Read more
    §

    type Notify = Notify

    The notification type. Read more
    §

    fn into_notification(self) -> <usize as IntoNotification>::Notify

    Convert this value into a notification. Read more
    §

    fn additional(self) -> Additional<Self::Notify>
    where\n Self: Sized,

    Convert this value into an additional notification. Read more
    §

    fn relaxed(self) -> Relaxed<Self::Notify>
    where\n Self: Sized,

    Don’t emit a fence for this notification. Read more
    §

    fn tag<T>(self, tag: T) -> Tag<Self::Notify, T>
    where\n T: Clone,\n Self: Sized + IntoNotification<Tag = ()>,

    Available on crate feature std only.
    Use a tag with this notification. Read more
    §

    fn tag_with<T, F>(self, tag: F) -> TagWith<Self::Notify, F>
    where\n Self: Sized + IntoNotification<Tag = ()>,\n F: FnMut() -> T,

    Available on crate feature std only.
    Use a function to generate a tag with this notification. Read more
    ","IntoNotification","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl IntoNotification for usize

    §

    type Tag = ()

    The tag data associated with a notification. Read more
    §

    type Notify = Notify

    The notification type. Read more
    §

    fn into_notification(self) -> <usize as IntoNotification>::Notify

    Convert this value into a notification. Read more
    §

    fn additional(self) -> Additional<Self::Notify>
    where\n Self: Sized,

    Convert this value into an additional notification. Read more
    §

    fn relaxed(self) -> Relaxed<Self::Notify>
    where\n Self: Sized,

    Don’t emit a fence for this notification. Read more
    §

    fn tag<T>(self, tag: T) -> Tag<Self::Notify, T>
    where\n T: Clone,\n Self: Sized + IntoNotification<Tag = ()>,

    Available on crate feature std only.
    Use a tag with this notification. Read more
    §

    fn tag_with<T, F>(self, tag: F) -> TagWith<Self::Notify, F>
    where\n Self: Sized + IntoNotification<Tag = ()>,\n F: FnMut() -> T,

    Available on crate feature std only.
    Use a function to generate a tag with this notification. Read more
    ","IntoNotification","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.42.0 · Source§

    impl LowerExp for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","LowerExp","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl LowerHex for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","LowerHex","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl MaxIndex for usize

    §

    const MAX: usize = 4_294_967_295usize

    ","MaxIndex","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Mul<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: &BigInt) -> BigInt

    Performs the * operation. Read more
    ","Mul<&BigInt>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Mul<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: &BigUint) -> BigUint

    Performs the * operation. Read more
    ","Mul<&BigUint>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Mul<&usize> for usize

    Source§

    type Output = <usize as Mul>::Output

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: &usize) -> <usize as Mul>::Output

    Performs the * operation. Read more
    ","Mul<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Mul<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: BigInt) -> BigInt

    Performs the * operation. Read more
    ","Mul","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Mul<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: BigUint) -> BigUint

    Performs the * operation. Read more
    ","Mul","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Mul for usize

    Source§

    type Output = usize

    The resulting type after applying the * operator.
    Source§

    fn mul(self, other: usize) -> usize

    Performs the * operation. Read more
    ","Mul","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl MulAdd for usize

    Source§

    type Output = usize

    The resulting type after applying the fused multiply-add.
    Source§

    fn mul_add(self, a: usize, b: usize) -> <usize as MulAdd>::Output

    Performs the fused multiply-add operation (self * a) + b
    ","MulAdd","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl MulAddAssign for usize

    Source§

    fn mul_add_assign(&mut self, a: usize, b: usize)

    Performs the fused multiply-add assignment operation *self = (*self * a) + b
    ","MulAddAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl MulAssign<&usize> for usize

    Source§

    fn mul_assign(&mut self, other: &usize)

    Performs the *= operation. Read more
    ","MulAssign<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl MulAssign for usize

    Source§

    fn mul_assign(&mut self, other: usize)

    Performs the *= operation. Read more
    ","MulAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Not for usize

    Source§

    type Output = usize

    The resulting type after applying the ! operator.
    Source§

    fn not(self) -> usize

    Performs the unary ! operation. Read more
    ","Not","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Num for usize

    Source§

    type FromStrRadixErr = ParseIntError

    Source§

    fn from_str_radix(s: &str, radix: u32) -> Result<usize, ParseIntError>

    Convert from a string and radix (typically 2..=36). Read more
    ","Num","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl NumCast for usize

    Source§

    fn from<N>(n: N) -> Option<usize>
    where\n N: ToPrimitive,

    Creates a number from another value that can be converted into\na primitive via the ToPrimitive trait. If the source value cannot be\nrepresented by the target type, then None is returned. Read more
    ","NumCast","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Octal for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","Octal","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl One for usize

    Source§

    fn one() -> usize

    Returns the multiplicative identity element of Self, 1. Read more
    Source§

    fn is_one(&self) -> bool

    Returns true if self is equal to the multiplicative identity. Read more
    Source§

    fn set_one(&mut self)

    Sets self to the multiplicative identity element of Self, 1.
    ","One","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Ord for usize

    Source§

    fn cmp(&self, other: &usize) -> Ordering

    This method returns an Ordering between self and other. Read more
    1.21.0 · Source§

    fn max(self, other: Self) -> Self
    where\n Self: Sized,

    Compares and returns the maximum of two values. Read more
    1.21.0 · Source§

    fn min(self, other: Self) -> Self
    where\n Self: Sized,

    Compares and returns the minimum of two values. Read more
    1.50.0 · Source§

    fn clamp(self, min: Self, max: Self) -> Self
    where\n Self: Sized,

    Restrict a value to a certain interval. Read more
    ","Ord","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl OverflowingAdd for usize

    Source§

    fn overflowing_add(&self, v: &usize) -> (usize, bool)

    Returns a tuple of the sum along with a boolean indicating whether an arithmetic overflow would occur.\nIf an overflow would have occurred then the wrapped value is returned.
    ","OverflowingAdd","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl OverflowingMul for usize

    Source§

    fn overflowing_mul(&self, v: &usize) -> (usize, bool)

    Returns a tuple of the product along with a boolean indicating whether an arithmetic overflow would occur.\nIf an overflow would have occurred then the wrapped value is returned.
    ","OverflowingMul","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl OverflowingSub for usize

    Source§

    fn overflowing_sub(&self, v: &usize) -> (usize, bool)

    Returns a tuple of the difference along with a boolean indicating whether an arithmetic overflow would occur.\nIf an overflow would have occurred then the wrapped value is returned.
    ","OverflowingSub","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl ParseHex for usize

    §

    fn parse_hex(input: &str) -> Result<usize, ParseError>

    Parse the value from hex.
    ","ParseHex","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl PartialEq<Value> for usize

    Source§

    fn eq(&self, other: &Value) -> bool

    Tests for self and other values to be equal, and is used by ==.
    1.0.0 · Source§

    fn ne(&self, other: &Rhs) -> bool

    Tests for !=. The default implementation is almost always sufficient,\nand should not be overridden without very good reason.
    ","PartialEq","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl PartialEq for usize

    Source§

    fn eq(&self, other: &usize) -> bool

    Tests for self and other values to be equal, and is used by ==.
    Source§

    fn ne(&self, other: &usize) -> bool

    Tests for !=. The default implementation is almost always sufficient,\nand should not be overridden without very good reason.
    ","PartialEq","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl PartialOrd for usize

    Source§

    fn partial_cmp(&self, other: &usize) -> Option<Ordering>

    This method returns an ordering between self and other values if one exists. Read more
    Source§

    fn lt(&self, other: &usize) -> bool

    Tests less than (for self and other) and is used by the < operator. Read more
    Source§

    fn le(&self, other: &usize) -> bool

    Tests less than or equal to (for self and other) and is used by the\n<= operator. Read more
    Source§

    fn ge(&self, other: &usize) -> bool

    Tests greater than or equal to (for self and other) and is used by\nthe >= operator. Read more
    Source§

    fn gt(&self, other: &usize) -> bool

    Tests greater than (for self and other) and is used by the >\noperator. Read more
    ","PartialOrd","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl PhfBorrow<usize> for usize

    Source§

    fn borrow(&self) -> &usize

    Convert a reference to self to a reference to the borrowed type.
    ","PhfBorrow","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl PhfHash for usize

    Source§

    fn phf_hash<H>(&self, state: &mut H)
    where\n H: Hasher,

    Feeds the value into the state given, updating the hasher as necessary.
    Source§

    fn phf_hash_slice<H>(data: &[Self], state: &mut H)
    where\n H: Hasher,\n Self: Sized,

    Feeds a slice of this type into the state provided.
    ","PhfHash","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> Pow<&'a u16> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: &'a u16) -> usize

    Returns self to the power rhs. Read more
    ","Pow<&'a u16>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> Pow<&'a u32> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: &'a u32) -> usize

    Returns self to the power rhs. Read more
    ","Pow<&'a u32>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> Pow<&'a u8> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: &'a u8) -> usize

    Returns self to the power rhs. Read more
    ","Pow<&'a u8>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'a> Pow<&'a usize> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: &'a usize) -> usize

    Returns self to the power rhs. Read more
    ","Pow<&'a usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Pow<u16> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: u16) -> usize

    Returns self to the power rhs. Read more
    ","Pow","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Pow<u32> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: u32) -> usize

    Returns self to the power rhs. Read more
    ","Pow","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Pow<u8> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: u8) -> usize

    Returns self to the power rhs. Read more
    ","Pow","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Pow<usize> for usize

    Source§

    type Output = usize

    The result after applying the operator.
    Source§

    fn pow(self, rhs: usize) -> usize

    Returns self to the power rhs. Read more
    ","Pow","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl PrimInt for usize

    Source§

    fn count_ones(self) -> u32

    Returns the number of ones in the binary representation of self. Read more
    Source§

    fn count_zeros(self) -> u32

    Returns the number of zeros in the binary representation of self. Read more
    Source§

    fn leading_ones(self) -> u32

    Returns the number of leading ones in the binary representation\nof self. Read more
    Source§

    fn leading_zeros(self) -> u32

    Returns the number of leading zeros in the binary representation\nof self. Read more
    Source§

    fn trailing_ones(self) -> u32

    Returns the number of trailing ones in the binary representation\nof self. Read more
    Source§

    fn trailing_zeros(self) -> u32

    Returns the number of trailing zeros in the binary representation\nof self. Read more
    Source§

    fn rotate_left(self, n: u32) -> usize

    Shifts the bits to the left by a specified amount, n, wrapping\nthe truncated bits to the end of the resulting integer. Read more
    Source§

    fn rotate_right(self, n: u32) -> usize

    Shifts the bits to the right by a specified amount, n, wrapping\nthe truncated bits to the beginning of the resulting integer. Read more
    Source§

    fn signed_shl(self, n: u32) -> usize

    Shifts the bits to the left by a specified amount, n, filling\nzeros in the least significant bits. Read more
    Source§

    fn signed_shr(self, n: u32) -> usize

    Shifts the bits to the right by a specified amount, n, copying\nthe “sign bit” in the most significant bits even for unsigned types. Read more
    Source§

    fn unsigned_shl(self, n: u32) -> usize

    Shifts the bits to the left by a specified amount, n, filling\nzeros in the least significant bits. Read more
    Source§

    fn unsigned_shr(self, n: u32) -> usize

    Shifts the bits to the right by a specified amount, n, filling\nzeros in the most significant bits. Read more
    Source§

    fn swap_bytes(self) -> usize

    Reverses the byte order of the integer. Read more
    Source§

    fn reverse_bits(self) -> usize

    Reverses the order of bits in the integer. Read more
    Source§

    fn from_be(x: usize) -> usize

    Convert an integer from big endian to the target’s endianness. Read more
    Source§

    fn from_le(x: usize) -> usize

    Convert an integer from little endian to the target’s endianness. Read more
    Source§

    fn to_be(self) -> usize

    Convert self to big endian from the target’s endianness. Read more
    Source§

    fn to_le(self) -> usize

    Convert self to little endian from the target’s endianness. Read more
    Source§

    fn pow(self, exp: u32) -> usize

    Raises self to the power of exp, using exponentiation by squaring. Read more
    ","PrimInt","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Primitive for usize

    §

    const DEFAULT_MAX_VALUE: usize = 18_446_744_073_709_551_615usize

    The maximum value for this type of primitive within the context of color.\nFor floats, the maximum is 1.0, whereas the integer types inherit their usual maximum values.
    §

    const DEFAULT_MIN_VALUE: usize = 0usize

    The minimum value for this type of primitive within the context of color.\nFor floats, the minimum is 0.0, whereas the integer types inherit their usual minimum values.
    ","Primitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> Product<&'a usize> for usize

    §

    fn product<'b, S>(stream: S) -> Pin<Box<dyn Future<Output = usize> + 'b>>
    where\n S: Stream<Item = &'a usize> + 'b,

    Method which takes a stream and generates Self from the elements by\nmultiplying the items.
    ","Product<&'a usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.12.0 · Source§

    impl<'a> Product<&'a usize> for usize

    Source§

    fn product<I>(iter: I) -> usize
    where\n I: Iterator<Item = &'a usize>,

    Takes an iterator and generates Self from the elements by multiplying\nthe items.
    ","Product<&'a usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Product for usize

    §

    fn product<'a, S>(stream: S) -> Pin<Box<dyn Future<Output = usize> + 'a>>
    where\n S: Stream<Item = usize> + 'a,

    Method which takes a stream and generates Self from the elements by\nmultiplying the items.
    ","Product","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.12.0 · Source§

    impl Product for usize

    Source§

    fn product<I>(iter: I) -> usize
    where\n I: Iterator<Item = usize>,

    Takes an iterator and generates Self from the elements by multiplying\nthe items.
    ","Product","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Random for usize

    Source§

    fn random(source: &mut (impl RandomSource + ?Sized)) -> usize

    🔬This is a nightly-only experimental API. (random)

    Generates a random value.

    \n

    Warning: Be careful when manipulating the resulting value! This\nmethod samples according to a uniform distribution, so a value of 1 is\njust as likely as MAX. By using modulo operations, some\nvalues can become more likely than others. Use audited crates when in\ndoubt.

    \n
    ","Random","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Rem<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: &BigInt) -> BigInt

    Performs the % operation. Read more
    ","Rem<&BigInt>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Rem<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: &BigUint) -> BigUint

    Performs the % operation. Read more
    ","Rem<&BigUint>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Rem<&usize> for usize

    Source§

    type Output = <usize as Rem>::Output

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: &usize) -> <usize as Rem>::Output

    Performs the % operation. Read more
    ","Rem<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Rem<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: BigInt) -> BigInt

    Performs the % operation. Read more
    ","Rem","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Rem<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: BigUint) -> BigUint

    Performs the % operation. Read more
    ","Rem","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.51.0 · Source§

    impl Rem<NonZero<usize>> for usize

    Source§

    fn rem(self, other: NonZero<usize>) -> usize

    This operation satisfies n % d == n - (n / d) * d, and cannot panic.

    \n
    Source§

    type Output = usize

    The resulting type after applying the % operator.
    ","Rem>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Rem for usize

    This operation satisfies n % d == n - (n / d) * d. The\nresult has the same sign as the left operand.

    \n

    §Panics

    \n

    This operation will panic if other == 0.

    \n
    Source§

    type Output = usize

    The resulting type after applying the % operator.
    Source§

    fn rem(self, other: usize) -> usize

    Performs the % operation. Read more
    ","Rem","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl RemAssign<&BigUint> for usize

    Source§

    fn rem_assign(&mut self, other: &BigUint)

    Performs the %= operation. Read more
    ","RemAssign<&BigUint>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl RemAssign<&usize> for usize

    Source§

    fn rem_assign(&mut self, other: &usize)

    Performs the %= operation. Read more
    ","RemAssign<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl RemAssign<BigUint> for usize

    Source§

    fn rem_assign(&mut self, other: BigUint)

    Performs the %= operation. Read more
    ","RemAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.79.0 · Source§

    impl RemAssign<NonZero<usize>> for usize

    Source§

    fn rem_assign(&mut self, other: NonZero<usize>)

    This operation satisfies n % d == n - (n / d) * d, and cannot panic.

    \n
    ","RemAssign>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl RemAssign for usize

    Source§

    fn rem_assign(&mut self, other: usize)

    Performs the %= operation. Read more
    ","RemAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Roots for usize

    Source§

    fn nth_root(&self, n: u32) -> usize

    Returns the truncated principal nth root of an integer\n– if x >= 0 { ⌊ⁿ√x⌋ } else { ⌈ⁿ√x⌉ } Read more
    Source§

    fn sqrt(&self) -> usize

    Returns the truncated principal square root of an integer – ⌊√x⌋ Read more
    Source§

    fn cbrt(&self) -> usize

    Returns the truncated principal cube root of an integer –\nif x >= 0 { ⌊∛x⌋ } else { ⌈∛x⌉ } Read more
    ","Roots","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Round for usize

    §

    fn round(self) -> usize

    Rounds to the nearest integer value. Read more
    ","Round","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl SampleUniform for usize

    Source§

    type Sampler = UniformInt<usize>

    The UniformSampler implementation supporting type X.
    ","SampleUniform","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Saturating for usize

    Source§

    fn saturating_add(self, v: usize) -> usize

    Saturating addition operator.\nReturns a+b, saturating at the numeric bounds instead of overflowing.
    Source§

    fn saturating_sub(self, v: usize) -> usize

    Saturating subtraction operator.\nReturns a-b, saturating at the numeric bounds instead of overflowing.
    ","Saturating","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl SaturatingAdd for usize

    Source§

    fn saturating_add(&self, v: &usize) -> usize

    Saturating addition. Computes self + other, saturating at the relevant high or low boundary of\nthe type.
    ","SaturatingAdd","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl SaturatingMul for usize

    Source§

    fn saturating_mul(&self, v: &usize) -> usize

    Saturating multiplication. Computes self * other, saturating at the relevant high or low boundary of\nthe type.
    ","SaturatingMul","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl SaturatingSub for usize

    Source§

    fn saturating_sub(&self, v: &usize) -> usize

    Saturating subtraction. Computes self - other, saturating at the relevant high or low boundary of\nthe type.
    ","SaturatingSub","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Serialize for usize

    Source§

    fn serialize<S>(\n &self,\n serializer: S,\n) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>
    where\n S: Serializer,

    Serialize this value into the given Serde serializer. Read more
    ","Serialize","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i128> for usize

    Source§

    type Output = <usize as Shl<i128>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i128) -> <usize as Shl<i128>>::Output

    Performs the << operation. Read more
    ","Shl<&i128>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i16> for usize

    Source§

    type Output = <usize as Shl<i16>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i16) -> <usize as Shl<i16>>::Output

    Performs the << operation. Read more
    ","Shl<&i16>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i32> for usize

    Source§

    type Output = <usize as Shl<i32>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i32) -> <usize as Shl<i32>>::Output

    Performs the << operation. Read more
    ","Shl<&i32>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i64> for usize

    Source§

    type Output = <usize as Shl<i64>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i64) -> <usize as Shl<i64>>::Output

    Performs the << operation. Read more
    ","Shl<&i64>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&i8> for usize

    Source§

    type Output = <usize as Shl<i8>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &i8) -> <usize as Shl<i8>>::Output

    Performs the << operation. Read more
    ","Shl<&i8>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&isize> for usize

    Source§

    type Output = <usize as Shl<isize>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &isize) -> <usize as Shl<isize>>::Output

    Performs the << operation. Read more
    ","Shl<&isize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u128> for usize

    Source§

    type Output = <usize as Shl<u128>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u128) -> <usize as Shl<u128>>::Output

    Performs the << operation. Read more
    ","Shl<&u128>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u16> for usize

    Source§

    type Output = <usize as Shl<u16>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u16) -> <usize as Shl<u16>>::Output

    Performs the << operation. Read more
    ","Shl<&u16>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u32> for usize

    Source§

    type Output = <usize as Shl<u32>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u32) -> <usize as Shl<u32>>::Output

    Performs the << operation. Read more
    ","Shl<&u32>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u64> for usize

    Source§

    type Output = <usize as Shl<u64>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u64) -> <usize as Shl<u64>>::Output

    Performs the << operation. Read more
    ","Shl<&u64>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&u8> for usize

    Source§

    type Output = <usize as Shl<u8>>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &u8) -> <usize as Shl<u8>>::Output

    Performs the << operation. Read more
    ","Shl<&u8>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<&usize> for usize

    Source§

    type Output = <usize as Shl>::Output

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: &usize) -> <usize as Shl>::Output

    Performs the << operation. Read more
    ","Shl<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i128> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i128) -> usize

    Performs the << operation. Read more
    ","Shl","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i16> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i16) -> usize

    Performs the << operation. Read more
    ","Shl","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i32> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i32) -> usize

    Performs the << operation. Read more
    ","Shl","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i64> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i64) -> usize

    Performs the << operation. Read more
    ","Shl","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<i8> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: i8) -> usize

    Performs the << operation. Read more
    ","Shl","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<isize> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: isize) -> usize

    Performs the << operation. Read more
    ","Shl","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u128> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u128) -> usize

    Performs the << operation. Read more
    ","Shl","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u16> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u16) -> usize

    Performs the << operation. Read more
    ","Shl","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u32> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u32) -> usize

    Performs the << operation. Read more
    ","Shl","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u64> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u64) -> usize

    Performs the << operation. Read more
    ","Shl","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl<u8> for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: u8) -> usize

    Performs the << operation. Read more
    ","Shl","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shl for usize

    Source§

    type Output = usize

    The resulting type after applying the << operator.
    Source§

    fn shl(self, other: usize) -> usize

    Performs the << operation. Read more
    ","Shl","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i128> for usize

    Source§

    fn shl_assign(&mut self, other: &i128)

    Performs the <<= operation. Read more
    ","ShlAssign<&i128>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i16> for usize

    Source§

    fn shl_assign(&mut self, other: &i16)

    Performs the <<= operation. Read more
    ","ShlAssign<&i16>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i32> for usize

    Source§

    fn shl_assign(&mut self, other: &i32)

    Performs the <<= operation. Read more
    ","ShlAssign<&i32>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i64> for usize

    Source§

    fn shl_assign(&mut self, other: &i64)

    Performs the <<= operation. Read more
    ","ShlAssign<&i64>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&i8> for usize

    Source§

    fn shl_assign(&mut self, other: &i8)

    Performs the <<= operation. Read more
    ","ShlAssign<&i8>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&isize> for usize

    Source§

    fn shl_assign(&mut self, other: &isize)

    Performs the <<= operation. Read more
    ","ShlAssign<&isize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u128> for usize

    Source§

    fn shl_assign(&mut self, other: &u128)

    Performs the <<= operation. Read more
    ","ShlAssign<&u128>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u16> for usize

    Source§

    fn shl_assign(&mut self, other: &u16)

    Performs the <<= operation. Read more
    ","ShlAssign<&u16>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u32> for usize

    Source§

    fn shl_assign(&mut self, other: &u32)

    Performs the <<= operation. Read more
    ","ShlAssign<&u32>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u64> for usize

    Source§

    fn shl_assign(&mut self, other: &u64)

    Performs the <<= operation. Read more
    ","ShlAssign<&u64>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&u8> for usize

    Source§

    fn shl_assign(&mut self, other: &u8)

    Performs the <<= operation. Read more
    ","ShlAssign<&u8>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShlAssign<&usize> for usize

    Source§

    fn shl_assign(&mut self, other: &usize)

    Performs the <<= operation. Read more
    ","ShlAssign<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i128> for usize

    Source§

    fn shl_assign(&mut self, other: i128)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i16> for usize

    Source§

    fn shl_assign(&mut self, other: i16)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i32> for usize

    Source§

    fn shl_assign(&mut self, other: i32)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i64> for usize

    Source§

    fn shl_assign(&mut self, other: i64)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<i8> for usize

    Source§

    fn shl_assign(&mut self, other: i8)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<isize> for usize

    Source§

    fn shl_assign(&mut self, other: isize)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u128> for usize

    Source§

    fn shl_assign(&mut self, other: u128)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u16> for usize

    Source§

    fn shl_assign(&mut self, other: u16)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u32> for usize

    Source§

    fn shl_assign(&mut self, other: u32)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u64> for usize

    Source§

    fn shl_assign(&mut self, other: u64)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign<u8> for usize

    Source§

    fn shl_assign(&mut self, other: u8)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShlAssign for usize

    Source§

    fn shl_assign(&mut self, other: usize)

    Performs the <<= operation. Read more
    ","ShlAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i128> for usize

    Source§

    type Output = <usize as Shr<i128>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i128) -> <usize as Shr<i128>>::Output

    Performs the >> operation. Read more
    ","Shr<&i128>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i16> for usize

    Source§

    type Output = <usize as Shr<i16>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i16) -> <usize as Shr<i16>>::Output

    Performs the >> operation. Read more
    ","Shr<&i16>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i32> for usize

    Source§

    type Output = <usize as Shr<i32>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i32) -> <usize as Shr<i32>>::Output

    Performs the >> operation. Read more
    ","Shr<&i32>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i64> for usize

    Source§

    type Output = <usize as Shr<i64>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i64) -> <usize as Shr<i64>>::Output

    Performs the >> operation. Read more
    ","Shr<&i64>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&i8> for usize

    Source§

    type Output = <usize as Shr<i8>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &i8) -> <usize as Shr<i8>>::Output

    Performs the >> operation. Read more
    ","Shr<&i8>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&isize> for usize

    Source§

    type Output = <usize as Shr<isize>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &isize) -> <usize as Shr<isize>>::Output

    Performs the >> operation. Read more
    ","Shr<&isize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u128> for usize

    Source§

    type Output = <usize as Shr<u128>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u128) -> <usize as Shr<u128>>::Output

    Performs the >> operation. Read more
    ","Shr<&u128>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u16> for usize

    Source§

    type Output = <usize as Shr<u16>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u16) -> <usize as Shr<u16>>::Output

    Performs the >> operation. Read more
    ","Shr<&u16>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u32> for usize

    Source§

    type Output = <usize as Shr<u32>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u32) -> <usize as Shr<u32>>::Output

    Performs the >> operation. Read more
    ","Shr<&u32>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u64> for usize

    Source§

    type Output = <usize as Shr<u64>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u64) -> <usize as Shr<u64>>::Output

    Performs the >> operation. Read more
    ","Shr<&u64>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&u8> for usize

    Source§

    type Output = <usize as Shr<u8>>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &u8) -> <usize as Shr<u8>>::Output

    Performs the >> operation. Read more
    ","Shr<&u8>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<&usize> for usize

    Source§

    type Output = <usize as Shr>::Output

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: &usize) -> <usize as Shr>::Output

    Performs the >> operation. Read more
    ","Shr<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i128> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i128) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i16> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i16) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i32> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i32) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i64> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i64) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<i8> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: i8) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<isize> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: isize) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u128> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u128) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u16> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u16) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u32> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u32) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u64> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u64) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr<u8> for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: u8) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Shr for usize

    Source§

    type Output = usize

    The resulting type after applying the >> operator.
    Source§

    fn shr(self, other: usize) -> usize

    Performs the >> operation. Read more
    ","Shr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i128> for usize

    Source§

    fn shr_assign(&mut self, other: &i128)

    Performs the >>= operation. Read more
    ","ShrAssign<&i128>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i16> for usize

    Source§

    fn shr_assign(&mut self, other: &i16)

    Performs the >>= operation. Read more
    ","ShrAssign<&i16>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i32> for usize

    Source§

    fn shr_assign(&mut self, other: &i32)

    Performs the >>= operation. Read more
    ","ShrAssign<&i32>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i64> for usize

    Source§

    fn shr_assign(&mut self, other: &i64)

    Performs the >>= operation. Read more
    ","ShrAssign<&i64>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&i8> for usize

    Source§

    fn shr_assign(&mut self, other: &i8)

    Performs the >>= operation. Read more
    ","ShrAssign<&i8>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&isize> for usize

    Source§

    fn shr_assign(&mut self, other: &isize)

    Performs the >>= operation. Read more
    ","ShrAssign<&isize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u128> for usize

    Source§

    fn shr_assign(&mut self, other: &u128)

    Performs the >>= operation. Read more
    ","ShrAssign<&u128>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u16> for usize

    Source§

    fn shr_assign(&mut self, other: &u16)

    Performs the >>= operation. Read more
    ","ShrAssign<&u16>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u32> for usize

    Source§

    fn shr_assign(&mut self, other: &u32)

    Performs the >>= operation. Read more
    ","ShrAssign<&u32>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u64> for usize

    Source§

    fn shr_assign(&mut self, other: &u64)

    Performs the >>= operation. Read more
    ","ShrAssign<&u64>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&u8> for usize

    Source§

    fn shr_assign(&mut self, other: &u8)

    Performs the >>= operation. Read more
    ","ShrAssign<&u8>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl ShrAssign<&usize> for usize

    Source§

    fn shr_assign(&mut self, other: &usize)

    Performs the >>= operation. Read more
    ","ShrAssign<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i128> for usize

    Source§

    fn shr_assign(&mut self, other: i128)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i16> for usize

    Source§

    fn shr_assign(&mut self, other: i16)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i32> for usize

    Source§

    fn shr_assign(&mut self, other: i32)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i64> for usize

    Source§

    fn shr_assign(&mut self, other: i64)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<i8> for usize

    Source§

    fn shr_assign(&mut self, other: i8)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<isize> for usize

    Source§

    fn shr_assign(&mut self, other: isize)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u128> for usize

    Source§

    fn shr_assign(&mut self, other: u128)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u16> for usize

    Source§

    fn shr_assign(&mut self, other: u16)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u32> for usize

    Source§

    fn shr_assign(&mut self, other: u32)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u64> for usize

    Source§

    fn shr_assign(&mut self, other: u64)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign<u8> for usize

    Source§

    fn shr_assign(&mut self, other: u8)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl ShrAssign for usize

    Source§

    fn shr_assign(&mut self, other: usize)

    Performs the >>= operation. Read more
    ","ShrAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl SimdElement for usize

    Source§

    type Mask = isize

    🔬This is a nightly-only experimental API. (portable_simd)
    The mask element type corresponding to this element type.
    ","SimdElement","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.15.0 · Source§

    impl<T> SliceIndex<[T]> for usize

    The methods index and index_mut panic if the index is out of bounds.

    \n
    Source§

    type Output = T

    The output type returned by methods.
    Source§

    fn get(self, slice: &[T]) -> Option<&T>

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a shared reference to the output at this location, if in\nbounds.
    Source§

    fn get_mut(self, slice: &mut [T]) -> Option<&mut T>

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a mutable reference to the output at this location, if in\nbounds.
    Source§

    unsafe fn get_unchecked(self, slice: *const [T]) -> *const T

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a pointer to the output at this location, without\nperforming any bounds checking. Read more
    Source§

    unsafe fn get_unchecked_mut(self, slice: *mut [T]) -> *mut T

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a mutable pointer to the output at this location, without\nperforming any bounds checking. Read more
    Source§

    fn index(self, slice: &[T]) -> &T

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a shared reference to the output at this location, panicking\nif out of bounds.
    Source§

    fn index_mut(self, slice: &mut [T]) -> &mut T

    🔬This is a nightly-only experimental API. (slice_index_methods)
    Returns a mutable reference to the output at this location, panicking\nif out of bounds.
    ","SliceIndex<[T]>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl SmartDisplay for usize

    §

    type Metadata = ()

    User-provided metadata type.
    §

    fn metadata(&self, f: FormatterOptions) -> Metadata<'_, usize>

    Compute any information needed to format the value. This must, at a minimum, determine the\nwidth of the value before any padding is added by the formatter. Read more
    §

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Format the value using the given formatter. This is the same as Display::fmt. Read more
    §

    fn fmt_with_metadata(\n &self,\n f: &mut Formatter<'_>,\n _metadata: Metadata<'_, Self>,\n) -> Result<(), Error>

    Format the value using the given formatter and metadata. The formatted output should have\nthe width indicated by the metadata. This is before any padding is added by the\nformatter. Read more
    ","SmartDisplay","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Step for usize

    Source§

    fn forward(start: usize, n: usize) -> usize

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the successor\nof self count times. Read more
    Source§

    fn backward(start: usize, n: usize) -> usize

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the predecessor\nof self count times. Read more
    Source§

    unsafe fn forward_unchecked(start: usize, n: usize) -> usize

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the successor\nof self count times. Read more
    Source§

    unsafe fn backward_unchecked(start: usize, n: usize) -> usize

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the predecessor\nof self count times. Read more
    Source§

    fn steps_between(start: &usize, end: &usize) -> (usize, Option<usize>)

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the bounds on the number of successor steps required to get from start to end\nlike Iterator::size_hint(). Read more
    Source§

    fn forward_checked(start: usize, n: usize) -> Option<usize>

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the successor\nof self count times. Read more
    Source§

    fn backward_checked(start: usize, n: usize) -> Option<usize>

    🔬This is a nightly-only experimental API. (step_trait)
    Returns the value that would be obtained by taking the predecessor\nof self count times. Read more
    ","Step","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl StepLite for usize

    §

    fn add_one(&self) -> usize

    Returns the successor of self. Read more
    §

    fn sub_one(&self) -> usize

    Returns the predecessor of self. Read more
    ","StepLite","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Sub<&BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: &BigInt) -> BigInt

    Performs the - operation. Read more
    ","Sub<&BigInt>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Sub<&BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: &BigUint) -> BigUint

    Performs the - operation. Read more
    ","Sub<&BigUint>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Sub<&usize> for usize

    Source§

    type Output = <usize as Sub>::Output

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: &usize) -> <usize as Sub>::Output

    Performs the - operation. Read more
    ","Sub<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Sub<BigInt> for usize

    Source§

    type Output = BigInt

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: BigInt) -> BigInt

    Performs the - operation. Read more
    ","Sub","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Sub<BigUint> for usize

    Source§

    type Output = BigUint

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: BigUint) -> BigUint

    Performs the - operation. Read more
    ","Sub","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Sub for usize

    Source§

    type Output = usize

    The resulting type after applying the - operator.
    Source§

    fn sub(self, other: usize) -> usize

    Performs the - operation. Read more
    ","Sub","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.22.0 · Source§

    impl SubAssign<&usize> for usize

    Source§

    fn sub_assign(&mut self, other: &usize)

    Performs the -= operation. Read more
    ","SubAssign<&usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.8.0 · Source§

    impl SubAssign for usize

    Source§

    fn sub_assign(&mut self, other: usize)

    Performs the -= operation. Read more
    ","SubAssign","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> Sum<&'a usize> for usize

    §

    fn sum<'b, S>(stream: S) -> Pin<Box<dyn Future<Output = usize> + 'b>>
    where\n S: Stream<Item = &'a usize> + 'b,

    Method which takes a stream and generates Self from the elements by\n“summing up” the items.
    ","Sum<&'a usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.12.0 · Source§

    impl<'a> Sum<&'a usize> for usize

    Source§

    fn sum<I>(iter: I) -> usize
    where\n I: Iterator<Item = &'a usize>,

    Takes an iterator and generates Self from the elements by “summing up”\nthe items.
    ","Sum<&'a usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Sum for usize

    §

    fn sum<'a, S>(stream: S) -> Pin<Box<dyn Future<Output = usize> + 'a>>
    where\n S: Stream<Item = usize> + 'a,

    Method which takes a stream and generates Self from the elements by\n“summing up” the items.
    ","Sum","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.12.0 · Source§

    impl Sum for usize

    Source§

    fn sum<I>(iter: I) -> usize
    where\n I: Iterator<Item = usize>,

    Takes an iterator and generates Self from the elements by “summing up”\nthe items.
    ","Sum","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToBigInt for usize

    Source§

    fn to_bigint(&self) -> Option<BigInt>

    Converts the value of self to a BigInt.
    ","ToBigInt","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToBigUint for usize

    Source§

    fn to_biguint(&self) -> Option<BigUint>

    Converts the value of self to a BigUint.
    ","ToBigUint","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToBytes for usize

    Source§

    type Bytes = [u8; 8]

    Source§

    fn to_be_bytes(&self) -> <usize as ToBytes>::Bytes

    Return the memory representation of this number as a byte array in big-endian byte order. Read more
    Source§

    fn to_le_bytes(&self) -> <usize as ToBytes>::Bytes

    Return the memory representation of this number as a byte array in little-endian byte order. Read more
    Source§

    fn to_ne_bytes(&self) -> <usize as ToBytes>::Bytes

    Return the memory representation of this number as a byte array in native byte order. Read more
    ","ToBytes","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToPrimitive for usize

    Source§

    fn to_isize(&self) -> Option<isize>

    Converts the value of self to an isize. If the value cannot be\nrepresented by an isize, then None is returned.
    Source§

    fn to_i8(&self) -> Option<i8>

    Converts the value of self to an i8. If the value cannot be\nrepresented by an i8, then None is returned.
    Source§

    fn to_i16(&self) -> Option<i16>

    Converts the value of self to an i16. If the value cannot be\nrepresented by an i16, then None is returned.
    Source§

    fn to_i32(&self) -> Option<i32>

    Converts the value of self to an i32. If the value cannot be\nrepresented by an i32, then None is returned.
    Source§

    fn to_i64(&self) -> Option<i64>

    Converts the value of self to an i64. If the value cannot be\nrepresented by an i64, then None is returned.
    Source§

    fn to_i128(&self) -> Option<i128>

    Converts the value of self to an i128. If the value cannot be\nrepresented by an i128 (i64 under the default implementation), then\nNone is returned. Read more
    Source§

    fn to_usize(&self) -> Option<usize>

    Converts the value of self to a usize. If the value cannot be\nrepresented by a usize, then None is returned.
    Source§

    fn to_u8(&self) -> Option<u8>

    Converts the value of self to a u8. If the value cannot be\nrepresented by a u8, then None is returned.
    Source§

    fn to_u16(&self) -> Option<u16>

    Converts the value of self to a u16. If the value cannot be\nrepresented by a u16, then None is returned.
    Source§

    fn to_u32(&self) -> Option<u32>

    Converts the value of self to a u32. If the value cannot be\nrepresented by a u32, then None is returned.
    Source§

    fn to_u64(&self) -> Option<u64>

    Converts the value of self to a u64. If the value cannot be\nrepresented by a u64, then None is returned.
    Source§

    fn to_u128(&self) -> Option<u128>

    Converts the value of self to a u128. If the value cannot be\nrepresented by a u128 (u64 under the default implementation), then\nNone is returned. Read more
    Source§

    fn to_f32(&self) -> Option<f32>

    Converts the value of self to an f32. Overflows may map to positive\nor negative inifinity, otherwise None is returned if the value cannot\nbe represented by an f32.
    Source§

    fn to_f64(&self) -> Option<f64>

    Converts the value of self to an f64. Overflows may map to positive\nor negative inifinity, otherwise None is returned if the value cannot\nbe represented by an f64. Read more
    ","ToPrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToTokens for usize

    Source§

    fn to_tokens(&self, tokens: &mut TokenStream)

    🔬This is a nightly-only experimental API. (proc_macro_totokens)
    Write self to the given TokenStream. Read more
    Source§

    fn to_token_stream(&self) -> TokenStream

    🔬This is a nightly-only experimental API. (proc_macro_totokens)
    Convert self directly into a TokenStream object. Read more
    Source§

    fn into_token_stream(self) -> TokenStream
    where\n Self: Sized,

    🔬This is a nightly-only experimental API. (proc_macro_totokens)
    Convert self directly into a TokenStream object. Read more
    ","ToTokens","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToTokens for usize

    Source§

    fn to_tokens(&self, tokens: &mut TokenStream)

    Write self to the given TokenStream. Read more
    Source§

    fn to_token_stream(&self) -> TokenStream

    Convert self directly into a TokenStream object. Read more
    Source§

    fn into_token_stream(self) -> TokenStream
    where\n Self: Sized,

    Convert self directly into a TokenStream object. Read more
    ","ToTokens","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl ToUsize for usize

    §

    fn to_usize(&self) -> usize

    converts self to usize
    ","ToUsize","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl ToUsize for usize

    §

    fn to_usize(&self) -> usize

    converts self to usize
    ","ToUsize","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ToValue for usize

    Source§

    fn to_value(&self) -> Value<'_>

    Perform the conversion.
    ","ToValue","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl TryFrom<&BigInt> for usize

    Source§

    type Error = TryFromBigIntError<()>

    The type returned in the event of a conversion error.
    Source§

    fn try_from(value: &BigInt) -> Result<usize, TryFromBigIntError<()>>

    Performs the conversion.
    ","TryFrom<&BigInt>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl TryFrom<&BigUint> for usize

    Source§

    type Error = TryFromBigIntError<()>

    The type returned in the event of a conversion error.
    Source§

    fn try_from(value: &BigUint) -> Result<usize, TryFromBigIntError<()>>

    Performs the conversion.
    ","TryFrom<&BigUint>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl TryFrom<BigInt> for usize

    Source§

    type Error = TryFromBigIntError<BigInt>

    The type returned in the event of a conversion error.
    Source§

    fn try_from(value: BigInt) -> Result<usize, TryFromBigIntError<BigInt>>

    Performs the conversion.
    ","TryFrom","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl TryFrom<BigUint> for usize

    Source§

    type Error = TryFromBigIntError<BigUint>

    The type returned in the event of a conversion error.
    Source§

    fn try_from(value: BigUint) -> Result<usize, TryFromBigIntError<BigUint>>

    Performs the conversion.
    ","TryFrom","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl<'v> TryFrom<ValueBag<'v>> for usize

    Source§

    type Error = Error

    The type returned in the event of a conversion error.
    Source§

    fn try_from(v: ValueBag<'v>) -> Result<usize, Error>

    Performs the conversion.
    ","TryFrom>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i128> for usize

    Source§

    fn try_from(u: i128) -> Result<usize, <usize as TryFrom<i128>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i16> for usize

    Source§

    fn try_from(u: i16) -> Result<usize, <usize as TryFrom<i16>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i32> for usize

    Source§

    fn try_from(u: i32) -> Result<usize, <usize as TryFrom<i32>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i64> for usize

    Source§

    fn try_from(u: i64) -> Result<usize, <usize as TryFrom<i64>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<i8> for usize

    Source§

    fn try_from(u: i8) -> Result<usize, <usize as TryFrom<i8>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<isize> for usize

    Source§

    fn try_from(u: isize) -> Result<usize, <usize as TryFrom<isize>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<u128> for usize

    Source§

    fn try_from(u: u128) -> Result<usize, <usize as TryFrom<u128>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<u32> for usize

    Source§

    fn try_from(value: u32) -> Result<usize, <usize as TryFrom<u32>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.34.0 · Source§

    impl TryFrom<u64> for usize

    Source§

    fn try_from(value: u64) -> Result<usize, <usize as TryFrom<u64>>::Error>

    Tries to create the target number type from a source\nnumber type. This returns an error if the source value\nis outside of the range of the target type.

    \n
    Source§

    type Error = TryFromIntError

    The type returned in the event of a conversion error.
    ","TryFrom","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Type for usize

    §

    const SIGNATURE: &'static Signature = u64::SIGNATURE

    The signature for the implementing type, in parsed format. Read more
    ","Type","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.42.0 · Source§

    impl UpperExp for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","UpperExp","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl UpperHex for usize

    Source§

    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

    Formats the value using the given formatter. Read more
    ","UpperHex","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Value for usize

    §

    fn record(&self, key: &Field, visitor: &mut dyn Visit)

    Visits this value with the given Visitor.
    ","Value","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingAdd for usize

    Source§

    fn wrapping_add(&self, v: &usize) -> usize

    Wrapping (modular) addition. Computes self + other, wrapping around at the boundary of\nthe type.
    ","WrappingAdd","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingMul for usize

    Source§

    fn wrapping_mul(&self, v: &usize) -> usize

    Wrapping (modular) multiplication. Computes self * other, wrapping around at the boundary\nof the type.
    ","WrappingMul","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingNeg for usize

    Source§

    fn wrapping_neg(&self) -> usize

    Wrapping (modular) negation. Computes -self,\nwrapping around at the boundary of the type. Read more
    ","WrappingNeg","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingShl for usize

    Source§

    fn wrapping_shl(&self, rhs: u32) -> usize

    Panic-free bitwise shift-left; yields self << mask(rhs),\nwhere mask removes any high order bits of rhs that would\ncause the shift to exceed the bitwidth of the type. Read more
    ","WrappingShl","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingShr for usize

    Source§

    fn wrapping_shr(&self, rhs: u32) -> usize

    Panic-free bitwise shift-right; yields self >> mask(rhs),\nwhere mask removes any high order bits of rhs that would\ncause the shift to exceed the bitwidth of the type. Read more
    ","WrappingShr","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl WrappingSub for usize

    Source§

    fn wrapping_sub(&self, v: &usize) -> usize

    Wrapping (modular) subtraction. Computes self - other, wrapping around at the boundary\nof the type.
    ","WrappingSub","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl WriteHex for usize

    §

    fn write_hex<W>(&self, writer: W) -> Result<(), Error>
    where\n W: Write,

    Write the value as hex.
    ","WriteHex","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Writeable for usize

    §

    fn write_to<W>(&self, sink: &mut W) -> Result<(), Error>
    where\n W: Write + ?Sized,

    Writes a string to the given sink. Errors from the sink are bubbled up.\nThe default implementation delegates to write_to_parts, and discards any\nPart annotations.
    §

    fn writeable_length_hint(&self) -> LengthHint

    Returns a hint for the number of UTF-8 bytes that will be written to the sink. Read more
    §

    fn write_to_parts<S>(&self, sink: &mut S) -> Result<(), Error>
    where\n S: PartsWrite + ?Sized,

    Write bytes and Part annotations to the given sink. Errors from the\nsink are bubbled up. The default implementation delegates to write_to,\nand doesn’t produce any Part annotations.
    §

    fn write_to_string(&self) -> Cow<'_, str>

    Creates a new String with the data from this Writeable. Like ToString,\nbut smaller and faster. Read more
    §

    fn writeable_cmp_bytes(&self, other: &[u8]) -> Ordering

    Compares the contents of this Writeable to the given bytes\nwithout allocating a String to hold the Writeable contents. Read more
    ","Writeable","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> Yokeable<'a> for usize

    §

    type Output = usize

    This type MUST be Self with the 'static replaced with 'a, i.e. Self<'a>
    §

    fn transform(&self) -> &<usize as Yokeable<'a>>::Output

    This method must cast self between &'a Self<'static> and &'a Self<'a>. Read more
    §

    fn transform_owned(self) -> <usize as Yokeable<'a>>::Output

    This method must cast self between Self<'static> and Self<'a>. Read more
    §

    unsafe fn make(this: <usize as Yokeable<'a>>::Output) -> usize

    This method can be used to cast away Self<'a>’s lifetime. Read more
    §

    fn transform_mut<F>(&'a mut self, f: F)
    where\n F: 'static + for<'b> FnOnce(&'b mut <usize as Yokeable<'a>>::Output),

    This method must cast self between &'a mut Self<'static> and &'a mut Self<'a>,\nand pass it to f. Read more
    ","Yokeable<'a>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Zero for usize

    Source§

    fn zero() -> usize

    Returns the additive identity element of Self, 0. Read more
    Source§

    fn is_zero(&self) -> bool

    Returns true if self is equal to the additive identity.
    Source§

    fn set_zero(&mut self)

    Sets self to the additive identity element of Self, 0.
    ","Zero","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> ZeroFrom<'a, usize> for usize

    §

    fn zero_from(this: &'a usize) -> usize

    Clone the other C into a struct that may retain references into C.
    ","ZeroFrom<'a, usize>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl<'a> ZeroMapKV<'a> for usize

    §

    type Container = FlexZeroVec<'a>

    The container that can be used with this type: [ZeroVec] or [VarZeroVec].
    §

    type Slice = FlexZeroSlice

    §

    type GetType = [u8]

    The type produced by Container::get() Read more
    §

    type OwnedType = usize

    The type produced by Container::replace() and Container::remove(),\nalso used during deserialization. If Self is human readable serialized,\ndeserializing to Self::OwnedType should produce the same value once\npassed through Self::owned_as_self() Read more
    ","ZeroMapKV<'a>","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Zeroable for usize

    §

    fn zeroed() -> Self

    ","Zeroable","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl usize

    1.43.0 · Source

    pub const MIN: usize = 0usize

    Available on 64-bit only.

    The smallest value that can be represented by this integer type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(usize::MIN, 0);
    \n
    1.43.0 · Source

    pub const MAX: usize = 18_446_744_073_709_551_615usize

    Available on 64-bit only.

    The largest value that can be represented by this integer type\n(264 − 1 on 64-bit targets).

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(usize::MAX, 18446744073709551615);
    \n
    1.53.0 · Source

    pub const BITS: u32 = 64u32

    Available on 64-bit only.

    The size of this integer type in bits.

    \n
    §Examples
    \n
    assert_eq!(usize::BITS, 64);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn count_ones(self) -> u32

    Available on 64-bit only.

    Returns the number of ones in the binary representation of self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0b01001100usize;\nassert_eq!(n.count_ones(), 3);\n\nlet max = usize::MAX;\nassert_eq!(max.count_ones(), 64);\n\nlet zero = 0usize;\nassert_eq!(zero.count_ones(), 0);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn count_zeros(self) -> u32

    Available on 64-bit only.

    Returns the number of zeros in the binary representation of self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let zero = 0usize;\nassert_eq!(zero.count_zeros(), 64);\n\nlet max = usize::MAX;\nassert_eq!(max.count_zeros(), 0);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn leading_zeros(self) -> u32

    Available on 64-bit only.

    Returns the number of leading zeros in the binary representation of self.

    \n

    Depending on what you’re doing with the value, you might also be interested in the\nilog2 function which returns a consistent number, even if the type widens.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = usize::MAX >> 2;\nassert_eq!(n.leading_zeros(), 2);\n\nlet zero = 0usize;\nassert_eq!(zero.leading_zeros(), 64);\n\nlet max = usize::MAX;\nassert_eq!(max.leading_zeros(), 0);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn trailing_zeros(self) -> u32

    Available on 64-bit only.

    Returns the number of trailing zeros in the binary representation\nof self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0b0101000usize;\nassert_eq!(n.trailing_zeros(), 3);\n\nlet zero = 0usize;\nassert_eq!(zero.trailing_zeros(), 64);\n\nlet max = usize::MAX;\nassert_eq!(max.trailing_zeros(), 0);
    \n
    1.46.0 (const: 1.46.0) · Source

    pub const fn leading_ones(self) -> u32

    Available on 64-bit only.

    Returns the number of leading ones in the binary representation of self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = !(usize::MAX >> 2);\nassert_eq!(n.leading_ones(), 2);\n\nlet zero = 0usize;\nassert_eq!(zero.leading_ones(), 0);\n\nlet max = usize::MAX;\nassert_eq!(max.leading_ones(), 64);
    \n
    1.46.0 (const: 1.46.0) · Source

    pub const fn trailing_ones(self) -> u32

    Available on 64-bit only.

    Returns the number of trailing ones in the binary representation\nof self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0b1010111usize;\nassert_eq!(n.trailing_ones(), 3);\n\nlet zero = 0usize;\nassert_eq!(zero.trailing_ones(), 0);\n\nlet max = usize::MAX;\nassert_eq!(max.trailing_ones(), 64);
    \n
    Source

    pub const fn cast_signed(self) -> isize

    🔬This is a nightly-only experimental API. (integer_sign_cast)
    Available on 64-bit only.

    Returns the bit pattern of self reinterpreted as a signed integer of the same size.

    \n

    This produces the same result as an as cast, but ensures that the bit-width remains\nthe same.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(integer_sign_cast)]\n\nlet n = usize::MAX;\n\nassert_eq!(n.cast_signed(), -1isize);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn rotate_left(self, n: u32) -> usize

    Available on 64-bit only.

    Shifts the bits to the left by a specified amount, n,\nwrapping the truncated bits to the end of the resulting integer.

    \n

    Please note this isn’t the same operation as the << shifting operator!

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0xaa00000000006e1usize;\nlet m = 0x6e10aa;\n\nassert_eq!(n.rotate_left(12), m);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn rotate_right(self, n: u32) -> usize

    Available on 64-bit only.

    Shifts the bits to the right by a specified amount, n,\nwrapping the truncated bits to the beginning of the resulting\ninteger.

    \n

    Please note this isn’t the same operation as the >> shifting operator!

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x6e10aausize;\nlet m = 0xaa00000000006e1;\n\nassert_eq!(n.rotate_right(12), m);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn swap_bytes(self) -> usize

    Available on 64-bit only.

    Reverses the byte order of the integer.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1234567890123456usize;\nlet m = n.swap_bytes();\n\nassert_eq!(m, 0x5634129078563412);
    \n
    1.37.0 (const: 1.37.0) · Source

    pub const fn reverse_bits(self) -> usize

    Available on 64-bit only.

    Reverses the order of bits in the integer. The least significant bit becomes the most significant bit,\nsecond least-significant bit becomes second most-significant bit, etc.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1234567890123456usize;\nlet m = n.reverse_bits();\n\nassert_eq!(m, 0x6a2c48091e6a2c48);\nassert_eq!(0, 0usize.reverse_bits());
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn from_be(x: usize) -> usize

    Available on 64-bit only.

    Converts an integer from big endian to the target’s endianness.

    \n

    On big endian this is a no-op. On little endian the bytes are\nswapped.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1Ausize;\n\nif cfg!(target_endian = \"big\") {\n    assert_eq!(usize::from_be(n), n)\n} else {\n    assert_eq!(usize::from_be(n), n.swap_bytes())\n}
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn from_le(x: usize) -> usize

    Available on 64-bit only.

    Converts an integer from little endian to the target’s endianness.

    \n

    On little endian this is a no-op. On big endian the bytes are\nswapped.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1Ausize;\n\nif cfg!(target_endian = \"little\") {\n    assert_eq!(usize::from_le(n), n)\n} else {\n    assert_eq!(usize::from_le(n), n.swap_bytes())\n}
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn to_be(self) -> usize

    Available on 64-bit only.

    Converts self to big endian from the target’s endianness.

    \n

    On big endian this is a no-op. On little endian the bytes are\nswapped.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1Ausize;\n\nif cfg!(target_endian = \"big\") {\n    assert_eq!(n.to_be(), n)\n} else {\n    assert_eq!(n.to_be(), n.swap_bytes())\n}
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn to_le(self) -> usize

    Available on 64-bit only.

    Converts self to little endian from the target’s endianness.

    \n

    On little endian this is a no-op. On big endian the bytes are\nswapped.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    let n = 0x1Ausize;\n\nif cfg!(target_endian = \"little\") {\n    assert_eq!(n.to_le(), n)\n} else {\n    assert_eq!(n.to_le(), n.swap_bytes())\n}
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn checked_add(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer addition. Computes self + rhs, returning None\nif overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!((usize::MAX - 2).checked_add(1), Some(usize::MAX - 1));\nassert_eq!((usize::MAX - 2).checked_add(3), None);
    \n
    Source

    pub const fn strict_add(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer addition. Computes self + rhs, panicking\nif overflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!((usize::MAX - 2).strict_add(1), usize::MAX - 1);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = (usize::MAX - 2).strict_add(3);
    \n
    1.79.0 (const: 1.79.0) · Source

    pub const unsafe fn unchecked_add(self, rhs: usize) -> usize

    Available on 64-bit only.

    Unchecked integer addition. Computes self + rhs, assuming overflow\ncannot occur.

    \n

    Calling x.unchecked_add(y) is semantically equivalent to calling\nx.checked_add(y).unwrap_unchecked().

    \n

    If you’re just trying to avoid the panic in debug mode, then do not\nuse this. Instead, you’re looking for wrapping_add.

    \n
    §Safety
    \n

    This results in undefined behavior when\nself + rhs > usize::MAX or self + rhs < usize::MIN,\ni.e. when checked_add would return None.

    \n
    1.66.0 (const: 1.66.0) · Source

    pub const fn checked_add_signed(self, rhs: isize) -> Option<usize>

    Available on 64-bit only.

    Checked addition with a signed integer. Computes self + rhs,\nreturning None if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.checked_add_signed(2), Some(3));\nassert_eq!(1usize.checked_add_signed(-2), None);\nassert_eq!((usize::MAX - 2).checked_add_signed(3), None);
    \n
    Source

    pub const fn strict_add_signed(self, rhs: isize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict addition with a signed integer. Computes self + rhs,\npanicking if overflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(1usize.strict_add_signed(2), 3);
    \n

    The following panic because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 1usize.strict_add_signed(-2);
    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = (usize::MAX - 2).strict_add_signed(3);
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn checked_sub(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer subtraction. Computes self - rhs, returning\nNone if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.checked_sub(1), Some(0));\nassert_eq!(0usize.checked_sub(1), None);
    \n
    Source

    pub const fn strict_sub(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer subtraction. Computes self - rhs, panicking if\noverflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(1usize.strict_sub(1), 0);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 0usize.strict_sub(1);
    \n
    1.79.0 (const: 1.79.0) · Source

    pub const unsafe fn unchecked_sub(self, rhs: usize) -> usize

    Available on 64-bit only.

    Unchecked integer subtraction. Computes self - rhs, assuming overflow\ncannot occur.

    \n

    Calling x.unchecked_sub(y) is semantically equivalent to calling\nx.checked_sub(y).unwrap_unchecked().

    \n

    If you’re just trying to avoid the panic in debug mode, then do not\nuse this. Instead, you’re looking for wrapping_sub.

    \n

    If you find yourself writing code like this:

    \n\n
    if foo >= bar {\n    // SAFETY: just checked it will not overflow\n    let diff = unsafe { foo.unchecked_sub(bar) };\n    // ... use diff ...\n}
    \n

    Consider changing it to

    \n\n
    if let Some(diff) = foo.checked_sub(bar) {\n    // ... use diff ...\n}
    \n

    As that does exactly the same thing – including telling the optimizer\nthat the subtraction cannot overflow – but avoids needing unsafe.

    \n
    §Safety
    \n

    This results in undefined behavior when\nself - rhs > usize::MAX or self - rhs < usize::MIN,\ni.e. when checked_sub would return None.

    \n
    Source

    pub const fn checked_sub_signed(self, rhs: isize) -> Option<usize>

    🔬This is a nightly-only experimental API. (mixed_integer_ops_unsigned_sub)
    Available on 64-bit only.

    Checked subtraction with a signed integer. Computes self - rhs,\nreturning None if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(mixed_integer_ops_unsigned_sub)]\nassert_eq!(1usize.checked_sub_signed(2), None);\nassert_eq!(1usize.checked_sub_signed(-2), Some(3));\nassert_eq!((usize::MAX - 2).checked_sub_signed(-4), None);
    \n
    Source

    pub const fn checked_signed_diff(self, rhs: usize) -> Option<isize>

    🔬This is a nightly-only experimental API. (unsigned_signed_diff)
    Available on 64-bit only.

    Checked integer subtraction. Computes self - rhs and checks if the result fits into an isize, returning None if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(unsigned_signed_diff)]\nassert_eq!(10usize.checked_signed_diff(2), Some(8));\nassert_eq!(2usize.checked_signed_diff(10), Some(-8));\nassert_eq!(usize::MAX.checked_signed_diff(isize::MAX as usize), None);\nassert_eq!((isize::MAX as usize).checked_signed_diff(usize::MAX), Some(isize::MIN));\nassert_eq!((isize::MAX as usize + 1).checked_signed_diff(0), None);\nassert_eq!(usize::MAX.checked_signed_diff(usize::MAX), Some(0));
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn checked_mul(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer multiplication. Computes self * rhs, returning\nNone if overflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.checked_mul(1), Some(5));\nassert_eq!(usize::MAX.checked_mul(2), None);
    \n
    Source

    pub const fn strict_mul(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer multiplication. Computes self * rhs, panicking if\noverflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(5usize.strict_mul(1), 5);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = usize::MAX.strict_mul(2);
    \n
    1.79.0 (const: 1.79.0) · Source

    pub const unsafe fn unchecked_mul(self, rhs: usize) -> usize

    Available on 64-bit only.

    Unchecked integer multiplication. Computes self * rhs, assuming overflow\ncannot occur.

    \n

    Calling x.unchecked_mul(y) is semantically equivalent to calling\nx.checked_mul(y).unwrap_unchecked().

    \n

    If you’re just trying to avoid the panic in debug mode, then do not\nuse this. Instead, you’re looking for wrapping_mul.

    \n
    §Safety
    \n

    This results in undefined behavior when\nself * rhs > usize::MAX or self * rhs < usize::MIN,\ni.e. when checked_mul would return None.

    \n
    1.0.0 (const: 1.52.0) · Source

    pub const fn checked_div(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer division. Computes self / rhs, returning None\nif rhs == 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(128usize.checked_div(2), Some(64));\nassert_eq!(1usize.checked_div(0), None);
    \n
    Source

    pub const fn strict_div(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer division. Computes self / rhs.

    \n

    Strict division on unsigned types is just normal division. There’s no\nway overflow could ever happen. This function exists so that all\noperations are accounted for in the strict operations.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(100usize.strict_div(10), 10);
    \n

    The following panics because of division by zero:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = (1usize).strict_div(0);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn checked_div_euclid(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked Euclidean division. Computes self.div_euclid(rhs), returning None\nif rhs == 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(128usize.checked_div_euclid(2), Some(64));\nassert_eq!(1usize.checked_div_euclid(0), None);
    \n
    Source

    pub const fn strict_div_euclid(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict Euclidean division. Computes self.div_euclid(rhs).

    \n

    Strict division on unsigned types is just normal division. There’s no\nway overflow could ever happen. This function exists so that all\noperations are accounted for in the strict operations. Since, for the\npositive integers, all common definitions of division are equal, this\nis exactly equal to self.strict_div(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(100usize.strict_div_euclid(10), 10);
    \n

    The following panics because of division by zero:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = (1usize).strict_div_euclid(0);
    \n
    1.7.0 (const: 1.52.0) · Source

    pub const fn checked_rem(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked integer remainder. Computes self % rhs, returning None\nif rhs == 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.checked_rem(2), Some(1));\nassert_eq!(5usize.checked_rem(0), None);
    \n
    Source

    pub const fn strict_rem(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict integer remainder. Computes self % rhs.

    \n

    Strict remainder calculation on unsigned types is just the regular\nremainder calculation. There’s no way overflow could ever happen.\nThis function exists so that all operations are accounted for in the\nstrict operations.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(100usize.strict_rem(10), 0);
    \n

    The following panics because of division by zero:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 5usize.strict_rem(0);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn checked_rem_euclid(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Checked Euclidean modulo. Computes self.rem_euclid(rhs), returning None\nif rhs == 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.checked_rem_euclid(2), Some(1));\nassert_eq!(5usize.checked_rem_euclid(0), None);
    \n
    Source

    pub const fn strict_rem_euclid(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict Euclidean modulo. Computes self.rem_euclid(rhs).

    \n

    Strict modulo calculation on unsigned types is just the regular\nremainder calculation. There’s no way overflow could ever happen.\nThis function exists so that all operations are accounted for in the\nstrict operations. Since, for the positive integers, all common\ndefinitions of division are equal, this is exactly equal to\nself.strict_rem(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(100usize.strict_rem_euclid(10), 0);
    \n

    The following panics because of division by zero:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 5usize.strict_rem_euclid(0);
    \n
    Source

    pub const unsafe fn unchecked_disjoint_bitor(self, other: usize) -> usize

    🔬This is a nightly-only experimental API. (disjoint_bitor)
    Available on 64-bit only.

    Same value as self | other, but UB if any bit position is set in both inputs.

    \n

    This is a situational micro-optimization for places where you’d rather\nuse addition on some platforms and bitwise or on other platforms, based\non exactly which instructions combine better with whatever else you’re\ndoing. Note that there’s no reason to bother using this for places\nwhere it’s clear from the operations involved that they can’t overlap.\nFor example, if you’re combining u16s into a u32 with\n((a as u32) << 16) | (b as u32), that’s fine, as the backend will\nknow those sides of the | are disjoint without needing help.

    \n
    §Examples
    \n
    #![feature(disjoint_bitor)]\n\n// SAFETY: `1` and `4` have no bits in common.\nunsafe {\n    assert_eq!(1_usize.unchecked_disjoint_bitor(4), 5);\n}
    \n
    §Safety
    \n

    Requires that (self & other) == 0, otherwise it’s immediate UB.

    \n

    Equivalently, requires that (self | other) == (self + other).

    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn ilog(self, base: usize) -> u32

    Available on 64-bit only.

    Returns the logarithm of the number with respect to an arbitrary base,\nrounded down.

    \n

    This method might not be optimized owing to implementation details;\nilog2 can produce results more efficiently for base 2, and ilog10\ncan produce results more efficiently for base 10.

    \n
    §Panics
    \n

    This function will panic if self is zero, or if base is less than 2.

    \n
    §Examples
    \n
    assert_eq!(5usize.ilog(5), 1);
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn ilog2(self) -> u32

    Available on 64-bit only.

    Returns the base 2 logarithm of the number, rounded down.

    \n
    §Panics
    \n

    This function will panic if self is zero.

    \n
    §Examples
    \n
    assert_eq!(2usize.ilog2(), 1);
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn ilog10(self) -> u32

    Available on 64-bit only.

    Returns the base 10 logarithm of the number, rounded down.

    \n
    §Panics
    \n

    This function will panic if self is zero.

    \n
    §Example
    \n
    assert_eq!(10usize.ilog10(), 1);
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn checked_ilog(self, base: usize) -> Option<u32>

    Available on 64-bit only.

    Returns the logarithm of the number with respect to an arbitrary base,\nrounded down.

    \n

    Returns None if the number is zero, or if the base is not at least 2.

    \n

    This method might not be optimized owing to implementation details;\nchecked_ilog2 can produce results more efficiently for base 2, and\nchecked_ilog10 can produce results more efficiently for base 10.

    \n
    §Examples
    \n
    assert_eq!(5usize.checked_ilog(5), Some(1));
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn checked_ilog2(self) -> Option<u32>

    Available on 64-bit only.

    Returns the base 2 logarithm of the number, rounded down.

    \n

    Returns None if the number is zero.

    \n
    §Examples
    \n
    assert_eq!(2usize.checked_ilog2(), Some(1));
    \n
    1.67.0 (const: 1.67.0) · Source

    pub const fn checked_ilog10(self) -> Option<u32>

    Available on 64-bit only.

    Returns the base 10 logarithm of the number, rounded down.

    \n

    Returns None if the number is zero.

    \n
    §Examples
    \n
    assert_eq!(10usize.checked_ilog10(), Some(1));
    \n
    1.7.0 (const: 1.47.0) · Source

    pub const fn checked_neg(self) -> Option<usize>

    Available on 64-bit only.

    Checked negation. Computes -self, returning None unless self == 0.

    \n

    Note that negating any positive integer will overflow.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0usize.checked_neg(), Some(0));\nassert_eq!(1usize.checked_neg(), None);
    \n
    Source

    pub const fn strict_neg(self) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict negation. Computes -self, panicking unless self == 0.

    \n

    Note that negating any positive integer will overflow.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(0usize.strict_neg(), 0);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 1usize.strict_neg();
    \n
    1.7.0 (const: 1.47.0) · Source

    pub const fn checked_shl(self, rhs: u32) -> Option<usize>

    Available on 64-bit only.

    Checked shift left. Computes self << rhs, returning None\nif rhs is larger than or equal to the number of bits in self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0x1usize.checked_shl(4), Some(0x10));\nassert_eq!(0x10usize.checked_shl(129), None);\nassert_eq!(0x10usize.checked_shl(63), Some(0));
    \n
    Source

    pub const fn strict_shl(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict shift left. Computes self << rhs, panicking if rhs is larger\nthan or equal to the number of bits in self.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(0x1usize.strict_shl(4), 0x10);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 0x10usize.strict_shl(129);
    \n
    Source

    pub const unsafe fn unchecked_shl(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (unchecked_shifts)
    Available on 64-bit only.

    Unchecked shift left. Computes self << rhs, assuming that\nrhs is less than the number of bits in self.

    \n
    §Safety
    \n

    This results in undefined behavior if rhs is larger than\nor equal to the number of bits in self,\ni.e. when checked_shl would return None.

    \n
    Source

    pub const fn unbounded_shl(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (unbounded_shifts)
    Available on 64-bit only.

    Unbounded shift left. Computes self << rhs, without bounding the value of rhs.

    \n

    If rhs is larger or equal to the number of bits in self,\nthe entire value is shifted out, and 0 is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(unbounded_shifts)]\nassert_eq!(0x1usize.unbounded_shl(4), 0x10);\nassert_eq!(0x1usize.unbounded_shl(129), 0);
    \n
    1.7.0 (const: 1.47.0) · Source

    pub const fn checked_shr(self, rhs: u32) -> Option<usize>

    Available on 64-bit only.

    Checked shift right. Computes self >> rhs, returning None\nif rhs is larger than or equal to the number of bits in self.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0x10usize.checked_shr(4), Some(0x1));\nassert_eq!(0x10usize.checked_shr(129), None);
    \n
    Source

    pub const fn strict_shr(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict shift right. Computes self >> rhs, panicking rhs is\nlarger than or equal to the number of bits in self.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(0x10usize.strict_shr(4), 0x1);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = 0x10usize.strict_shr(129);
    \n
    Source

    pub const unsafe fn unchecked_shr(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (unchecked_shifts)
    Available on 64-bit only.

    Unchecked shift right. Computes self >> rhs, assuming that\nrhs is less than the number of bits in self.

    \n
    §Safety
    \n

    This results in undefined behavior if rhs is larger than\nor equal to the number of bits in self,\ni.e. when checked_shr would return None.

    \n
    Source

    pub const fn unbounded_shr(self, rhs: u32) -> usize

    🔬This is a nightly-only experimental API. (unbounded_shifts)
    Available on 64-bit only.

    Unbounded shift right. Computes self >> rhs, without bounding the value of rhs.

    \n

    If rhs is larger or equal to the number of bits in self,\nthe entire value is shifted out, and 0 is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(unbounded_shifts)]\nassert_eq!(0x10usize.unbounded_shr(4), 0x1);\nassert_eq!(0x10usize.unbounded_shr(129), 0);
    \n
    1.34.0 (const: 1.50.0) · Source

    pub const fn checked_pow(self, exp: u32) -> Option<usize>

    Available on 64-bit only.

    Checked exponentiation. Computes self.pow(exp), returning None if\noverflow occurred.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.checked_pow(5), Some(32));\nassert_eq!(usize::MAX.checked_pow(2), None);
    \n
    Source

    pub const fn strict_pow(self, exp: u32) -> usize

    🔬This is a nightly-only experimental API. (strict_overflow_ops)
    Available on 64-bit only.

    Strict exponentiation. Computes self.pow(exp), panicking if\noverflow occurred.

    \n
    §Panics
    §Overflow behavior
    \n

    This function will always panic on overflow, regardless of whether overflow checks are enabled.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(strict_overflow_ops)]\nassert_eq!(2usize.strict_pow(5), 32);
    \n

    The following panics because of overflow:

    \n\n
    #![feature(strict_overflow_ops)]\nlet _ = usize::MAX.strict_pow(2);
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn saturating_add(self, rhs: usize) -> usize

    Available on 64-bit only.

    Saturating integer addition. Computes self + rhs, saturating at\nthe numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.saturating_add(1), 101);\nassert_eq!(usize::MAX.saturating_add(127), usize::MAX);
    \n
    1.66.0 (const: 1.66.0) · Source

    pub const fn saturating_add_signed(self, rhs: isize) -> usize

    Available on 64-bit only.

    Saturating addition with a signed integer. Computes self + rhs,\nsaturating at the numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.saturating_add_signed(2), 3);\nassert_eq!(1usize.saturating_add_signed(-2), 0);\nassert_eq!((usize::MAX - 2).saturating_add_signed(4), usize::MAX);
    \n
    1.0.0 (const: 1.47.0) · Source

    pub const fn saturating_sub(self, rhs: usize) -> usize

    Available on 64-bit only.

    Saturating integer subtraction. Computes self - rhs, saturating\nat the numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.saturating_sub(27), 73);\nassert_eq!(13usize.saturating_sub(127), 0);
    \n
    Source

    pub const fn saturating_sub_signed(self, rhs: isize) -> usize

    🔬This is a nightly-only experimental API. (mixed_integer_ops_unsigned_sub)
    Available on 64-bit only.

    Saturating integer subtraction. Computes self - rhs, saturating at\nthe numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(mixed_integer_ops_unsigned_sub)]\nassert_eq!(1usize.saturating_sub_signed(2), 0);\nassert_eq!(1usize.saturating_sub_signed(-2), 3);\nassert_eq!((usize::MAX - 2).saturating_sub_signed(-4), usize::MAX);
    \n
    1.7.0 (const: 1.47.0) · Source

    pub const fn saturating_mul(self, rhs: usize) -> usize

    Available on 64-bit only.

    Saturating integer multiplication. Computes self * rhs,\nsaturating at the numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.saturating_mul(10), 20);\nassert_eq!((usize::MAX).saturating_mul(10), usize::MAX);
    \n
    1.58.0 (const: 1.58.0) · Source

    pub const fn saturating_div(self, rhs: usize) -> usize

    Available on 64-bit only.

    Saturating integer division. Computes self / rhs, saturating at the\nnumeric bounds instead of overflowing.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.saturating_div(2), 2);\n
    \n
    1.34.0 (const: 1.50.0) · Source

    pub const fn saturating_pow(self, exp: u32) -> usize

    Available on 64-bit only.

    Saturating integer exponentiation. Computes self.pow(exp),\nsaturating at the numeric bounds instead of overflowing.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(4usize.saturating_pow(3), 64);\nassert_eq!(usize::MAX.saturating_pow(2), usize::MAX);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn wrapping_add(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) addition. Computes self + rhs,\nwrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(200usize.wrapping_add(55), 255);\nassert_eq!(200usize.wrapping_add(usize::MAX), 199);
    \n
    1.66.0 (const: 1.66.0) · Source

    pub const fn wrapping_add_signed(self, rhs: isize) -> usize

    Available on 64-bit only.

    Wrapping (modular) addition with a signed integer. Computes\nself + rhs, wrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.wrapping_add_signed(2), 3);\nassert_eq!(1usize.wrapping_add_signed(-2), usize::MAX);\nassert_eq!((usize::MAX - 2).wrapping_add_signed(4), 1);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn wrapping_sub(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) subtraction. Computes self - rhs,\nwrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_sub(100), 0);\nassert_eq!(100usize.wrapping_sub(usize::MAX), 101);
    \n
    Source

    pub const fn wrapping_sub_signed(self, rhs: isize) -> usize

    🔬This is a nightly-only experimental API. (mixed_integer_ops_unsigned_sub)
    Available on 64-bit only.

    Wrapping (modular) subtraction with a signed integer. Computes\nself - rhs, wrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(mixed_integer_ops_unsigned_sub)]\nassert_eq!(1usize.wrapping_sub_signed(2), usize::MAX);\nassert_eq!(1usize.wrapping_sub_signed(-2), 3);\nassert_eq!((usize::MAX - 2).wrapping_sub_signed(-4), 1);
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn wrapping_mul(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) multiplication. Computes self * rhs, wrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types.\nWhich explains why u8 is used here.

    \n\n
    assert_eq!(10u8.wrapping_mul(12), 120);\nassert_eq!(25u8.wrapping_mul(12), 44);
    \n
    1.2.0 (const: 1.52.0) · Source

    pub const fn wrapping_div(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) division. Computes self / rhs.

    \n

    Wrapped division on unsigned types is just normal division. There’s\nno way wrapping could ever happen. This function exists so that all\noperations are accounted for in the wrapping operations.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_div(10), 10);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn wrapping_div_euclid(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping Euclidean division. Computes self.div_euclid(rhs).

    \n

    Wrapped division on unsigned types is just normal division. There’s\nno way wrapping could ever happen. This function exists so that all\noperations are accounted for in the wrapping operations. Since, for\nthe positive integers, all common definitions of division are equal,\nthis is exactly equal to self.wrapping_div(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_div_euclid(10), 10);
    \n
    1.2.0 (const: 1.52.0) · Source

    pub const fn wrapping_rem(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping (modular) remainder. Computes self % rhs.

    \n

    Wrapped remainder calculation on unsigned types is just the regular\nremainder calculation. There’s no way wrapping could ever happen.\nThis function exists so that all operations are accounted for in the\nwrapping operations.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_rem(10), 0);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn wrapping_rem_euclid(self, rhs: usize) -> usize

    Available on 64-bit only.

    Wrapping Euclidean modulo. Computes self.rem_euclid(rhs).

    \n

    Wrapped modulo calculation on unsigned types is just the regular\nremainder calculation. There’s no way wrapping could ever happen.\nThis function exists so that all operations are accounted for in the\nwrapping operations. Since, for the positive integers, all common\ndefinitions of division are equal, this is exactly equal to\nself.wrapping_rem(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.wrapping_rem_euclid(10), 0);
    \n
    1.2.0 (const: 1.32.0) · Source

    pub const fn wrapping_neg(self) -> usize

    Available on 64-bit only.

    Wrapping (modular) negation. Computes -self,\nwrapping around at the boundary of the type.

    \n

    Since unsigned types do not have negative equivalents\nall applications of this function will wrap (except for -0).\nFor values smaller than the corresponding signed type’s maximum\nthe result is the same as casting the corresponding signed value.\nAny larger values are equivalent to MAX + 1 - (val - MAX - 1) where\nMAX is the corresponding signed type’s maximum.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0_usize.wrapping_neg(), 0);\nassert_eq!(usize::MAX.wrapping_neg(), 1);\nassert_eq!(13_usize.wrapping_neg(), (!13) + 1);\nassert_eq!(42_usize.wrapping_neg(), !(42 - 1));
    \n
    1.2.0 (const: 1.32.0) · Source

    pub const fn wrapping_shl(self, rhs: u32) -> usize

    Available on 64-bit only.

    Panic-free bitwise shift-left; yields self << mask(rhs),\nwhere mask removes any high-order bits of rhs that\nwould cause the shift to exceed the bitwidth of the type.

    \n

    Note that this is not the same as a rotate-left; the\nRHS of a wrapping shift-left is restricted to the range\nof the type, rather than the bits shifted out of the LHS\nbeing returned to the other end. The primitive integer\ntypes all implement a rotate_left function,\nwhich may be what you want instead.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.wrapping_shl(7), 128);\nassert_eq!(1usize.wrapping_shl(128), 1);
    \n
    1.2.0 (const: 1.32.0) · Source

    pub const fn wrapping_shr(self, rhs: u32) -> usize

    Available on 64-bit only.

    Panic-free bitwise shift-right; yields self >> mask(rhs),\nwhere mask removes any high-order bits of rhs that\nwould cause the shift to exceed the bitwidth of the type.

    \n

    Note that this is not the same as a rotate-right; the\nRHS of a wrapping shift-right is restricted to the range\nof the type, rather than the bits shifted out of the LHS\nbeing returned to the other end. The primitive integer\ntypes all implement a rotate_right function,\nwhich may be what you want instead.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(128usize.wrapping_shr(7), 1);\nassert_eq!(128usize.wrapping_shr(128), 128);
    \n
    1.34.0 (const: 1.50.0) · Source

    pub const fn wrapping_pow(self, exp: u32) -> usize

    Available on 64-bit only.

    Wrapping (modular) exponentiation. Computes self.pow(exp),\nwrapping around at the boundary of the type.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(3usize.wrapping_pow(5), 243);\nassert_eq!(3u8.wrapping_pow(6), 217);
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_add(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates self + rhs.

    \n

    Returns a tuple of the addition along with a boolean indicating\nwhether an arithmetic overflow would occur. If an overflow would\nhave occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_add(2), (7, false));\nassert_eq!(usize::MAX.overflowing_add(1), (0, true));
    \n
    Source

    pub const fn carrying_add(self, rhs: usize, carry: bool) -> (usize, bool)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates self + rhs + carry and returns a tuple containing\nthe sum and the output carry.

    \n

    Performs “ternary addition” of two integer operands and a carry-in\nbit, and returns an output integer and a carry-out bit. This allows\nchaining together multiple additions to create a wider addition, and\ncan be useful for bignum addition.

    \n

    This can be thought of as a 64-bit “full adder”, in the electronics sense.

    \n

    If the input carry is false, this method is equivalent to\noverflowing_add, and the output carry is\nequal to the overflow flag. Note that although carry and overflow\nflags are similar for unsigned integers, they are different for\nsigned integers.

    \n
    §Examples
    \n
    #![feature(bigint_helper_methods)]\n\n//    3  MAX    (a = 3 × 2^64 + 2^64 - 1)\n// +  5    7    (b = 5 × 2^64 + 7)\n// ---------\n//    9    6    (sum = 9 × 2^64 + 6)\n\nlet (a1, a0): (usize, usize) = (3, usize::MAX);\nlet (b1, b0): (usize, usize) = (5, 7);\nlet carry0 = false;\n\nlet (sum0, carry1) = a0.carrying_add(b0, carry0);\nassert_eq!(carry1, true);\nlet (sum1, carry2) = a1.carrying_add(b1, carry1);\nassert_eq!(carry2, false);\n\nassert_eq!((sum1, sum0), (9, 6));
    \n
    1.66.0 (const: 1.66.0) · Source

    pub const fn overflowing_add_signed(self, rhs: isize) -> (usize, bool)

    Available on 64-bit only.

    Calculates self + rhs with a signed rhs.

    \n

    Returns a tuple of the addition along with a boolean indicating\nwhether an arithmetic overflow would occur. If an overflow would\nhave occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(1usize.overflowing_add_signed(2), (3, false));\nassert_eq!(1usize.overflowing_add_signed(-2), (usize::MAX, true));\nassert_eq!((usize::MAX - 2).overflowing_add_signed(4), (1, true));
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_sub(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates self - rhs.

    \n

    Returns a tuple of the subtraction along with a boolean indicating\nwhether an arithmetic overflow would occur. If an overflow would\nhave occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_sub(2), (3, false));\nassert_eq!(0usize.overflowing_sub(1), (usize::MAX, true));
    \n
    Source

    pub const fn borrowing_sub(self, rhs: usize, borrow: bool) -> (usize, bool)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates selfrhsborrow and returns a tuple\ncontaining the difference and the output borrow.

    \n

    Performs “ternary subtraction” by subtracting both an integer\noperand and a borrow-in bit from self, and returns an output\ninteger and a borrow-out bit. This allows chaining together multiple\nsubtractions to create a wider subtraction, and can be useful for\nbignum subtraction.

    \n
    §Examples
    \n
    #![feature(bigint_helper_methods)]\n\n//    9    6    (a = 9 × 2^64 + 6)\n// -  5    7    (b = 5 × 2^64 + 7)\n// ---------\n//    3  MAX    (diff = 3 × 2^64 + 2^64 - 1)\n\nlet (a1, a0): (usize, usize) = (9, 6);\nlet (b1, b0): (usize, usize) = (5, 7);\nlet borrow0 = false;\n\nlet (diff0, borrow1) = a0.borrowing_sub(b0, borrow0);\nassert_eq!(borrow1, true);\nlet (diff1, borrow2) = a1.borrowing_sub(b1, borrow1);\nassert_eq!(borrow2, false);\n\nassert_eq!((diff1, diff0), (3, usize::MAX));
    \n
    Source

    pub const fn overflowing_sub_signed(self, rhs: isize) -> (usize, bool)

    🔬This is a nightly-only experimental API. (mixed_integer_ops_unsigned_sub)
    Available on 64-bit only.

    Calculates self - rhs with a signed rhs

    \n

    Returns a tuple of the subtraction along with a boolean indicating\nwhether an arithmetic overflow would occur. If an overflow would\nhave occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(mixed_integer_ops_unsigned_sub)]\nassert_eq!(1usize.overflowing_sub_signed(2), (usize::MAX, true));\nassert_eq!(1usize.overflowing_sub_signed(-2), (3, false));\nassert_eq!((usize::MAX - 2).overflowing_sub_signed(-4), (1, true));
    \n
    1.60.0 (const: 1.60.0) · Source

    pub const fn abs_diff(self, other: usize) -> usize

    Available on 64-bit only.

    Computes the absolute difference between self and other.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(100usize.abs_diff(80), 20usize);\nassert_eq!(100usize.abs_diff(110), 10usize);
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_mul(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the multiplication of self and rhs.

    \n

    Returns a tuple of the multiplication along with a boolean\nindicating whether an arithmetic overflow would occur. If an\noverflow would have occurred then the wrapped value is returned.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types.\nWhich explains why u32 is used here.

    \n\n
    assert_eq!(5u32.overflowing_mul(2), (10, false));\nassert_eq!(1_000_000_000u32.overflowing_mul(10), (1410065408, true));
    \n
    Source

    pub const fn widening_mul(self, rhs: usize) -> (usize, usize)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates the complete product self * rhs without the possibility to overflow.

    \n

    This returns the low-order (wrapping) bits and the high-order (overflow) bits\nof the result as two separate values, in that order.

    \n

    If you also need to add a carry to the wide result, then you want\nSelf::carrying_mul instead.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types.\nWhich explains why u32 is used here.

    \n\n
    #![feature(bigint_helper_methods)]\nassert_eq!(5u32.widening_mul(2), (10, 0));\nassert_eq!(1_000_000_000u32.widening_mul(10), (1410065408, 2));
    \n
    Source

    pub const fn carrying_mul(self, rhs: usize, carry: usize) -> (usize, usize)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates the “full multiplication” self * rhs + carry\nwithout the possibility to overflow.

    \n

    This returns the low-order (wrapping) bits and the high-order (overflow) bits\nof the result as two separate values, in that order.

    \n

    Performs “long multiplication” which takes in an extra amount to add, and may return an\nadditional amount of overflow. This allows for chaining together multiple\nmultiplications to create “big integers” which represent larger values.

    \n

    If you don’t need the carry, then you can use Self::widening_mul instead.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types.\nWhich explains why u32 is used here.

    \n\n
    #![feature(bigint_helper_methods)]\nassert_eq!(5u32.carrying_mul(2, 0), (10, 0));\nassert_eq!(5u32.carrying_mul(2, 10), (20, 0));\nassert_eq!(1_000_000_000u32.carrying_mul(10, 0), (1410065408, 2));\nassert_eq!(1_000_000_000u32.carrying_mul(10, 10), (1410065418, 2));\nassert_eq!(usize::MAX.carrying_mul(usize::MAX, usize::MAX), (0, usize::MAX));
    \n

    This is the core operation needed for scalar multiplication when\nimplementing it for wider-than-native types.

    \n\n
    #![feature(bigint_helper_methods)]\nfn scalar_mul_eq(little_endian_digits: &mut Vec<u16>, multiplicand: u16) {\n    let mut carry = 0;\n    for d in little_endian_digits.iter_mut() {\n        (*d, carry) = d.carrying_mul(multiplicand, carry);\n    }\n    if carry != 0 {\n        little_endian_digits.push(carry);\n    }\n}\n\nlet mut v = vec![10, 20];\nscalar_mul_eq(&mut v, 3);\nassert_eq!(v, [30, 60]);\n\nassert_eq!(0x87654321_u64 * 0xFEED, 0x86D3D159E38D);\nlet mut v = vec![0x4321, 0x8765];\nscalar_mul_eq(&mut v, 0xFEED);\nassert_eq!(v, [0xE38D, 0xD159, 0x86D3]);
    \n

    If carry is zero, this is similar to overflowing_mul,\nexcept that it gives the value of the overflow instead of just whether one happened:

    \n\n
    #![feature(bigint_helper_methods)]\nlet r = u8::carrying_mul(7, 13, 0);\nassert_eq!((r.0, r.1 != 0), u8::overflowing_mul(7, 13));\nlet r = u8::carrying_mul(13, 42, 0);\nassert_eq!((r.0, r.1 != 0), u8::overflowing_mul(13, 42));
    \n

    The value of the first field in the returned tuple matches what you’d get\nby combining the wrapping_mul and\nwrapping_add methods:

    \n\n
    #![feature(bigint_helper_methods)]\nassert_eq!(\n    789_u16.carrying_mul(456, 123).0,\n    789_u16.wrapping_mul(456).wrapping_add(123),\n);
    \n
    Source

    pub const fn carrying_mul_add(\n self,\n rhs: usize,\n carry: usize,\n add: usize,\n) -> (usize, usize)

    🔬This is a nightly-only experimental API. (bigint_helper_methods)
    Available on 64-bit only.

    Calculates the “full multiplication” self * rhs + carry1 + carry2\nwithout the possibility to overflow.

    \n

    This returns the low-order (wrapping) bits and the high-order (overflow) bits\nof the result as two separate values, in that order.

    \n

    Performs “long multiplication” which takes in an extra amount to add, and may return an\nadditional amount of overflow. This allows for chaining together multiple\nmultiplications to create “big integers” which represent larger values.

    \n

    If you don’t need either carry, then you can use Self::widening_mul instead,\nand if you only need one carry, then you can use Self::carrying_mul instead.

    \n
    §Examples
    \n

    Basic usage:

    \n

    Please note that this example is shared between integer types,\nwhich explains why u32 is used here.

    \n\n
    #![feature(bigint_helper_methods)]\nassert_eq!(5u32.carrying_mul_add(2, 0, 0), (10, 0));\nassert_eq!(5u32.carrying_mul_add(2, 10, 10), (30, 0));\nassert_eq!(1_000_000_000u32.carrying_mul_add(10, 0, 0), (1410065408, 2));\nassert_eq!(1_000_000_000u32.carrying_mul_add(10, 10, 10), (1410065428, 2));\nassert_eq!(usize::MAX.carrying_mul_add(usize::MAX, usize::MAX, usize::MAX), (usize::MAX, usize::MAX));
    \n

    This is the core per-digit operation for “grade school” O(n²) multiplication.

    \n

    Please note that this example is shared between integer types,\nusing u8 for simplicity of the demonstration.

    \n\n
    #![feature(bigint_helper_methods)]\n\nfn quadratic_mul<const N: usize>(a: [u8; N], b: [u8; N]) -> [u8; N] {\n    let mut out = [0; N];\n    for j in 0..N {\n        let mut carry = 0;\n        for i in 0..(N - j) {\n            (out[j + i], carry) = u8::carrying_mul_add(a[i], b[j], out[j + i], carry);\n        }\n    }\n    out\n}\n\n// -1 * -1 == 1\nassert_eq!(quadratic_mul([0xFF; 3], [0xFF; 3]), [1, 0, 0]);\n\nassert_eq!(u32::wrapping_mul(0x9e3779b9, 0x7f4a7c15), 0xCFFC982D);\nassert_eq!(\n    quadratic_mul(u32::to_le_bytes(0x9e3779b9), u32::to_le_bytes(0x7f4a7c15)),\n    u32::to_le_bytes(0xCFFC982D)\n);
    \n
    1.7.0 (const: 1.52.0) · Source

    pub const fn overflowing_div(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the divisor when self is divided by rhs.

    \n

    Returns a tuple of the divisor along with a boolean indicating\nwhether an arithmetic overflow would occur. Note that for unsigned\nintegers overflow never occurs, so the second value is always\nfalse.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_div(2), (2, false));
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn overflowing_div_euclid(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the quotient of Euclidean division self.div_euclid(rhs).

    \n

    Returns a tuple of the divisor along with a boolean indicating\nwhether an arithmetic overflow would occur. Note that for unsigned\nintegers overflow never occurs, so the second value is always\nfalse.\nSince, for the positive integers, all common\ndefinitions of division are equal, this\nis exactly equal to self.overflowing_div(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_div_euclid(2), (2, false));
    \n
    1.7.0 (const: 1.52.0) · Source

    pub const fn overflowing_rem(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the remainder when self is divided by rhs.

    \n

    Returns a tuple of the remainder after dividing along with a boolean\nindicating whether an arithmetic overflow would occur. Note that for\nunsigned integers overflow never occurs, so the second value is\nalways false.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_rem(2), (1, false));
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn overflowing_rem_euclid(self, rhs: usize) -> (usize, bool)

    Available on 64-bit only.

    Calculates the remainder self.rem_euclid(rhs) as if by Euclidean division.

    \n

    Returns a tuple of the modulo after dividing along with a boolean\nindicating whether an arithmetic overflow would occur. Note that for\nunsigned integers overflow never occurs, so the second value is\nalways false.\nSince, for the positive integers, all common\ndefinitions of division are equal, this operation\nis exactly equal to self.overflowing_rem(rhs).

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(5usize.overflowing_rem_euclid(2), (1, false));
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_neg(self) -> (usize, bool)

    Available on 64-bit only.

    Negates self in an overflowing fashion.

    \n

    Returns !self + 1 using wrapping operations to return the value\nthat represents the negation of this unsigned value. Note that for\npositive unsigned values overflow always occurs, but negating 0 does\nnot overflow.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0usize.overflowing_neg(), (0, false));\nassert_eq!(2usize.overflowing_neg(), (-2i32 as usize, true));
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_shl(self, rhs: u32) -> (usize, bool)

    Available on 64-bit only.

    Shifts self left by rhs bits.

    \n

    Returns a tuple of the shifted version of self along with a boolean\nindicating whether the shift value was larger than or equal to the\nnumber of bits. If the shift value is too large, then value is\nmasked (N-1) where N is the number of bits, and this value is then\nused to perform the shift.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0x1usize.overflowing_shl(4), (0x10, false));\nassert_eq!(0x1usize.overflowing_shl(132), (0x10, true));\nassert_eq!(0x10usize.overflowing_shl(63), (0, false));
    \n
    1.7.0 (const: 1.32.0) · Source

    pub const fn overflowing_shr(self, rhs: u32) -> (usize, bool)

    Available on 64-bit only.

    Shifts self right by rhs bits.

    \n

    Returns a tuple of the shifted version of self along with a boolean\nindicating whether the shift value was larger than or equal to the\nnumber of bits. If the shift value is too large, then value is\nmasked (N-1) where N is the number of bits, and this value is then\nused to perform the shift.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(0x10usize.overflowing_shr(4), (0x1, false));\nassert_eq!(0x10usize.overflowing_shr(132), (0x1, true));
    \n
    1.34.0 (const: 1.50.0) · Source

    pub const fn overflowing_pow(self, exp: u32) -> (usize, bool)

    Available on 64-bit only.

    Raises self to the power of exp, using exponentiation by squaring.

    \n

    Returns a tuple of the exponentiation along with a bool indicating\nwhether an overflow happened.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(3usize.overflowing_pow(5), (243, false));\nassert_eq!(3u8.overflowing_pow(6), (217, true));
    \n
    1.0.0 (const: 1.50.0) · Source

    pub const fn pow(self, exp: u32) -> usize

    Available on 64-bit only.

    Raises self to the power of exp, using exponentiation by squaring.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.pow(5), 32);
    \n
    1.84.0 (const: 1.84.0) · Source

    pub const fn isqrt(self) -> usize

    Available on 64-bit only.

    Returns the square root of the number, rounded down.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(10usize.isqrt(), 3);
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn div_euclid(self, rhs: usize) -> usize

    Available on 64-bit only.

    Performs Euclidean division.

    \n

    Since, for the positive integers, all common\ndefinitions of division are equal, this\nis exactly equal to self / rhs.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(7usize.div_euclid(4), 1); // or any other integer type
    \n
    1.38.0 (const: 1.52.0) · Source

    pub const fn rem_euclid(self, rhs: usize) -> usize

    Available on 64-bit only.

    Calculates the least remainder of self (mod rhs).

    \n

    Since, for the positive integers, all common\ndefinitions of division are equal, this\nis exactly equal to self % rhs.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(7usize.rem_euclid(4), 3); // or any other integer type
    \n
    Source

    pub const fn div_floor(self, rhs: usize) -> usize

    🔬This is a nightly-only experimental API. (int_roundings)
    Available on 64-bit only.

    Calculates the quotient of self and rhs, rounding the result towards negative infinity.

    \n

    This is the same as performing self / rhs for all unsigned integers.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(int_roundings)]\nassert_eq!(7_usize.div_floor(4), 1);
    \n
    1.73.0 (const: 1.73.0) · Source

    pub const fn div_ceil(self, rhs: usize) -> usize

    Available on 64-bit only.

    Calculates the quotient of self and rhs, rounding the result towards positive infinity.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(7_usize.div_ceil(4), 2);
    \n
    1.73.0 (const: 1.73.0) · Source

    pub const fn next_multiple_of(self, rhs: usize) -> usize

    Available on 64-bit only.

    Calculates the smallest value greater than or equal to self that\nis a multiple of rhs.

    \n
    §Panics
    \n

    This function will panic if rhs is zero.

    \n
    §Overflow behavior
    \n

    On overflow, this function will panic if overflow checks are enabled (default in debug\nmode) and wrap if overflow checks are disabled (default in release mode).

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(16_usize.next_multiple_of(8), 16);\nassert_eq!(23_usize.next_multiple_of(8), 24);
    \n
    1.73.0 (const: 1.73.0) · Source

    pub const fn checked_next_multiple_of(self, rhs: usize) -> Option<usize>

    Available on 64-bit only.

    Calculates the smallest value greater than or equal to self that\nis a multiple of rhs. Returns None if rhs is zero or the\noperation would result in overflow.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(16_usize.checked_next_multiple_of(8), Some(16));\nassert_eq!(23_usize.checked_next_multiple_of(8), Some(24));\nassert_eq!(1_usize.checked_next_multiple_of(0), None);\nassert_eq!(usize::MAX.checked_next_multiple_of(2), None);
    \n
    Source

    pub const fn is_multiple_of(self, rhs: usize) -> bool

    🔬This is a nightly-only experimental API. (unsigned_is_multiple_of)
    Available on 64-bit only.

    Returns true if self is an integer multiple of rhs, and false otherwise.

    \n

    This function is equivalent to self % rhs == 0, except that it will not panic\nfor rhs == 0. Instead, 0.is_multiple_of(0) == true, and for any non-zero n,\nn.is_multiple_of(0) == false.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(unsigned_is_multiple_of)]\nassert!(6_usize.is_multiple_of(2));\nassert!(!5_usize.is_multiple_of(2));\n\nassert!(0_usize.is_multiple_of(0));\nassert!(!6_usize.is_multiple_of(0));
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn is_power_of_two(self) -> bool

    Available on 64-bit only.

    Returns true if and only if self == 2^k for some k.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert!(16usize.is_power_of_two());\nassert!(!10usize.is_power_of_two());
    \n
    1.0.0 (const: 1.50.0) · Source

    pub const fn next_power_of_two(self) -> usize

    Available on 64-bit only.

    Returns the smallest power of two greater than or equal to self.

    \n

    When return value overflows (i.e., self > (1 << (N-1)) for type\nuN), it panics in debug mode and the return value is wrapped to 0 in\nrelease mode (the only situation in which this method can return 0).

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.next_power_of_two(), 2);\nassert_eq!(3usize.next_power_of_two(), 4);\nassert_eq!(0usize.next_power_of_two(), 1);
    \n
    1.0.0 (const: 1.50.0) · Source

    pub const fn checked_next_power_of_two(self) -> Option<usize>

    Available on 64-bit only.

    Returns the smallest power of two greater than or equal to self. If\nthe next power of two is greater than the type’s maximum value,\nNone is returned, otherwise the power of two is wrapped in Some.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(2usize.checked_next_power_of_two(), Some(2));\nassert_eq!(3usize.checked_next_power_of_two(), Some(4));\nassert_eq!(usize::MAX.checked_next_power_of_two(), None);
    \n
    Source

    pub const fn wrapping_next_power_of_two(self) -> usize

    🔬This is a nightly-only experimental API. (wrapping_next_power_of_two)
    Available on 64-bit only.

    Returns the smallest power of two greater than or equal to n. If\nthe next power of two is greater than the type’s maximum value,\nthe return value is wrapped to 0.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(wrapping_next_power_of_two)]\n\nassert_eq!(2usize.wrapping_next_power_of_two(), 2);\nassert_eq!(3usize.wrapping_next_power_of_two(), 4);\nassert_eq!(usize::MAX.wrapping_next_power_of_two(), 0);
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn to_be_bytes(self) -> [u8; 8]

    Available on 64-bit only.

    Returns the memory representation of this integer as a byte array in\nbig-endian (network) byte order.

    \n

    Note: This function returns an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let bytes = 0x1234567890123456usize.to_be_bytes();\nassert_eq!(bytes, [0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]);
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn to_le_bytes(self) -> [u8; 8]

    Available on 64-bit only.

    Returns the memory representation of this integer as a byte array in\nlittle-endian byte order.

    \n

    Note: This function returns an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let bytes = 0x1234567890123456usize.to_le_bytes();\nassert_eq!(bytes, [0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]);
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn to_ne_bytes(self) -> [u8; 8]

    Available on 64-bit only.

    Returns the memory representation of this integer as a byte array in\nnative byte order.

    \n

    As the target platform’s native endianness is used, portable code\nshould use to_be_bytes or to_le_bytes, as appropriate,\ninstead.

    \n

    Note: This function returns an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let bytes = 0x1234567890123456usize.to_ne_bytes();\nassert_eq!(\n    bytes,\n    if cfg!(target_endian = \"big\") {\n        [0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]\n    } else {\n        [0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]\n    }\n);
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn from_be_bytes(bytes: [u8; 8]) -> usize

    Available on 64-bit only.

    Creates a native endian integer value from its representation\nas a byte array in big endian.

    \n

    Note: This function takes an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let value = usize::from_be_bytes([0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]);\nassert_eq!(value, 0x1234567890123456);
    \n

    When starting from a slice rather than an array, fallible conversion APIs can be used:

    \n\n
    fn read_be_usize(input: &mut &[u8]) -> usize {\n    let (int_bytes, rest) = input.split_at(std::mem::size_of::<usize>());\n    *input = rest;\n    usize::from_be_bytes(int_bytes.try_into().unwrap())\n}
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn from_le_bytes(bytes: [u8; 8]) -> usize

    Available on 64-bit only.

    Creates a native endian integer value from its representation\nas a byte array in little endian.

    \n

    Note: This function takes an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let value = usize::from_le_bytes([0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]);\nassert_eq!(value, 0x1234567890123456);
    \n

    When starting from a slice rather than an array, fallible conversion APIs can be used:

    \n\n
    fn read_le_usize(input: &mut &[u8]) -> usize {\n    let (int_bytes, rest) = input.split_at(std::mem::size_of::<usize>());\n    *input = rest;\n    usize::from_le_bytes(int_bytes.try_into().unwrap())\n}
    \n
    1.32.0 (const: 1.44.0) · Source

    pub const fn from_ne_bytes(bytes: [u8; 8]) -> usize

    Available on 64-bit only.

    Creates a native endian integer value from its memory representation\nas a byte array in native endianness.

    \n

    As the target platform’s native endianness is used, portable code\nlikely wants to use from_be_bytes or from_le_bytes, as\nappropriate instead.

    \n

    Note: This function takes an array of length 2, 4 or 8 bytes\ndepending on the target pointer size.

    \n
    §Examples
    \n
    let value = usize::from_ne_bytes(if cfg!(target_endian = \"big\") {\n    [0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]\n} else {\n    [0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]\n});\nassert_eq!(value, 0x1234567890123456);
    \n

    When starting from a slice rather than an array, fallible conversion APIs can be used:

    \n\n
    fn read_ne_usize(input: &mut &[u8]) -> usize {\n    let (int_bytes, rest) = input.split_at(std::mem::size_of::<usize>());\n    *input = rest;\n    usize::from_ne_bytes(int_bytes.try_into().unwrap())\n}
    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn min_value() -> usize

    👎Deprecating in a future version: replaced by the MIN associated constant on this type
    Available on 64-bit only.

    New code should prefer to use\nusize::MIN instead.

    \n

    Returns the smallest value that can be represented by this integer type.

    \n
    1.0.0 (const: 1.32.0) · Source

    pub const fn max_value() -> usize

    👎Deprecating in a future version: replaced by the MAX associated constant on this type
    Available on 64-bit only.

    New code should prefer to use\nusize::MAX instead.

    \n

    Returns the largest value that can be represented by this integer type.

    \n
    1.85.0 (const: 1.85.0) · Source

    pub const fn midpoint(self, rhs: usize) -> usize

    Available on 64-bit only.

    Calculates the middle point of self and rhs.

    \n

    midpoint(a, b) is (a + b) / 2 as if it were performed in a\nsufficiently-large unsigned integral type. This implies that the result is\nalways rounded towards zero and that no overflow will ever occur.

    \n
    §Examples
    \n
    assert_eq!(0usize.midpoint(4), 2);\nassert_eq!(1usize.midpoint(4), 2);
    \n
    ",0,"iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl usize

    1.0.0 (const: 1.82.0) · Source

    pub const fn from_str_radix(\n src: &str,\n radix: u32,\n) -> Result<usize, ParseIntError>

    Parses an integer from a string slice with digits in a given base.

    \n

    The string is expected to be an optional\n+\nsign followed by only digits. Leading and trailing non-digit characters (including\nwhitespace) represent an error. Underscores (which are accepted in Rust literals)\nalso represent an error.

    \n

    Digits are a subset of these characters, depending on radix:

    \n
      \n
    • 0-9
    • \n
    • a-z
    • \n
    • A-Z
    • \n
    \n
    §Panics
    \n

    This function panics if radix is not in the range from 2 to 36.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    assert_eq!(usize::from_str_radix(\"A\", 16), Ok(10));
    \n

    Trailing space returns error:

    \n\n
    assert!(usize::from_str_radix(\"1 \", 10).is_err());
    \n
    Source

    pub const fn from_ascii(src: &[u8]) -> Result<usize, ParseIntError>

    🔬This is a nightly-only experimental API. (int_from_ascii)

    Parses an integer from an ASCII-byte slice with decimal digits.

    \n

    The characters are expected to be an optional\n+\nsign followed by only digits. Leading and trailing non-digit characters (including\nwhitespace) represent an error. Underscores (which are accepted in Rust literals)\nalso represent an error.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(int_from_ascii)]\n\nassert_eq!(usize::from_ascii(b\"+10\"), Ok(10));
    \n

    Trailing space returns error:

    \n\n
    assert!(usize::from_ascii(b\"1 \").is_err());
    \n
    Source

    pub const fn from_ascii_radix(\n src: &[u8],\n radix: u32,\n) -> Result<usize, ParseIntError>

    🔬This is a nightly-only experimental API. (int_from_ascii)

    Parses an integer from an ASCII-byte slice with digits in a given base.

    \n

    The characters are expected to be an optional\n+\nsign followed by only digits. Leading and trailing non-digit characters (including\nwhitespace) represent an error. Underscores (which are accepted in Rust literals)\nalso represent an error.

    \n

    Digits are a subset of these characters, depending on radix:

    \n
      \n
    • 0-9
    • \n
    • a-z
    • \n
    • A-Z
    • \n
    \n
    §Panics
    \n

    This function panics if radix is not in the range from 2 to 36.

    \n
    §Examples
    \n

    Basic usage:

    \n\n
    #![feature(int_from_ascii)]\n\nassert_eq!(usize::from_ascii_radix(b\"A\", 16), Ok(10));
    \n

    Trailing space returns error:

    \n\n
    assert!(usize::from_ascii_radix(b\"1 \", 10).is_err());
    \n
    ",0,"iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ConstParamTy_ for usize

    ","ConstParamTy_","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Copy for usize

    ","Copy","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    1.0.0 · Source§

    impl Eq for usize

    ","Eq","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl ExtendTarget<usize> for usize

    ","ExtendTarget","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Index for usize

    ","Index","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Pod for usize

    ","Pod","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl PointerLike for usize

    ","PointerLike","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl SimdCast for usize

    ","SimdCast","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl StructuralPartialEq for usize

    ","StructuralPartialEq","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl TruncateTarget<u16> for usize

    ","TruncateTarget","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl TruncateTarget<u8> for usize

    ","TruncateTarget","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl TruncateTarget<usize> for usize

    ","TruncateTarget","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl TrustedStep for usize

    ","TrustedStep","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    §

    impl Uint for usize

    ","Uint","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Unsigned for usize

    ","Unsigned","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl UnsizedConstParamTy for usize

    ","UnsizedConstParamTy","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl Weight for usize

    ","Weight","iced_widget::canvas::path::lyon_path::AttributeIndex"],["
    Source§

    impl ZeroablePrimitive for usize

    ","ZeroablePrimitive","iced_widget::canvas::path::lyon_path::AttributeIndex"]]]]); if (window.register_type_impls) { window.register_type_impls(type_impls); } else { window.pending_type_impls = type_impls; } })() -//{"start":55,"fragment_lengths":[1053930,1036868,1051296]} \ No newline at end of file +//{"start":55,"fragment_lengths":[1053930,1037759,1051296]} \ No newline at end of file