-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathIGFTT.py
137 lines (114 loc) · 5.09 KB
/
IGFTT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import cv2
import numpy as np
import math
from functools import reduce
from operator import iconcat
'''
pip install opencv-python opencv-contrib-python
'''
f = lambda x,y: 2*x*y
g = lambda x,y: x**2 - y**2
class IGFTT:
def __init__(self, _nfeatures=200, _scaleFactor=1.2, _nlevels=8,
_firstLevel=0, _qualityLevel=0.01, _blockSize=31,_minDistance=10):
self.detector = cv2.GFTTDetector_create( _nfeatures,
_qualityLevel, _minDistance,
_blockSize)
self.descriptor = cv2.xfeatures2d.FREAK_create()
self.scaleFactor = _scaleFactor
self.nlevels = _nlevels
self.firstLevel = _firstLevel
self.blockSize = _blockSize
def computePyramid(self, image):
self.imagePyramid = [image]
if len(image.shape)==2:
rows, cols = image.shape
else:
rows, cols,_ = image.shape
self.scales = [1]
for level in range(1, self.nlevels):
scale = 1/(self.scaleFactor**(level-self.firstLevel))
self.scales.append(scale)
self.imagePyramid.append(cv2.resize(self.imagePyramid[level-1], (round(cols*scale), round(rows*scale))))
def computeOrientation(self, image, keypoints, smooth=False):
# make a reflect border frame to simplify kernel operation on borders
borderedImg = cv2.copyMakeBorder( image,
self.blockSize,
self.blockSize,
self.blockSize,
self.blockSize,
cv2.BORDER_DEFAULT)
# apply a gradient in both axis
sobelx = cv2.Sobel(borderedImg, cv2.CV_64F, 1, 0, ksize=3)
sobely = cv2.Sobel(borderedImg, cv2.CV_64F, 0, 1, ksize=3)
angles = []
h,w = image.shape
for point in keypoints:
nominator = 0.
denominator = 0.
i,j = point.pt
for k in range(self.blockSize):
for l in range(self.blockSize):
posX = round(self.blockSize-1 + (i*self.blockSize) + k)
posY = round(self.blockSize-1 + (j*self.blockSize) + l)
if posX < 0:
posX = 0
elif posX > w:
posX = w
if posY < 0:
posY = 0
elif posY > h:
posY = h
valX = sobelx.item(posY, posX)
valY = sobely.item(posY, posX)
nominator += f(valX, valY)
denominator += g(valX, valY)
# if the strength (norm) of the vector
# is not greater than a threshold
if math.sqrt(nominator**2 + denominator**2) < 1000000:
angle = 0.
else:
if denominator >= 0:
angle = cv2.fastAtan2(nominator, denominator)
elif denominator < 0 and nominator >= 0:
angle = cv2.fastAtan2(nominator, denominator) + math.pi
else:
angle = cv2.fastAtan2(nominator, denominator) - math.pi
angle /= float(2)
angles.append(angle)
if smooth:
angles = np.array(angles)
angles = cv2.GaussianBlur(angles, (3,3), 0, 0)
angles = angles.reshape(-1,)
return angles
def compute(self, _, k):
self.descriptor_list = []
for level in range(self.nlevels):
img = self.imagePyramid[level]
if self.keypoints_list[level] != []:
k,d = self.descriptor.compute(img, self.keypoints_list[level])
if d is not None:
self.descriptor_list.append(d)
self.keypoints_list[level] = k
else:
self.keypoints_list[level] = []
return reduce(iconcat, self.keypoints_list, []), np.array(reduce(iconcat, self.descriptor_list, []))
def detect(self, image, mask):
self.keypoints_list = []
self.computePyramid(image)
for level in range(self.nlevels):
img = self.imagePyramid[level]
keypoints = self.detector.detect(img, mask)
angles = self.computeOrientation(self.imagePyramid[level], keypoints)
if (level != self.firstLevel):
for k in range(len(keypoints)):
keypoints[k].octave = level
keypoints[k].size = self.blockSize * self.scales[level]
keypoints[k].pt = (keypoints[k].pt[0]*self.scales[level],keypoints[k].pt[1]*self.scales[level])
keypoints[k].angle = angles[k]
self.keypoints_list.append(keypoints)
return reduce(iconcat, self.keypoints_list, [])
def detectAndCompute(self, image, mask):
keypoints = self.detect(image, mask)
keypoints, descriptor = self.compute(image, keypoints)
return keypoints, descriptor