Skip to content

Latest commit

 

History

History
128 lines (89 loc) · 2.48 KB

README.md

File metadata and controls

128 lines (89 loc) · 2.48 KB

HKPy: a Python Framework for Hyperknowledge

Getting Started

Install

To use HKPy in your project, you can install using:

pip install hkpy

Connecting to a Hyperknowledge Base

from hkpy.hkbase import HKBase

hkbase = HKBase(url='foo.bar', auth='some_token')
from hkpy.hkbase import HKBase, HKRepository

hkbase = HKBase(url='foo.bar', auth='some_token')
hkrepository = hkbase.create_repository(name='new_repository')

Creating a Context

from hkpy.hklib import Context

new_context = Context(id_='new_context')

Creating a Node

from hkpy.hklib import Node

new_node = Node(id_='new_node')

Creating a Connector

from hkpy.hklib import Connector

new_connector = Connector(id_='new_connector', class_name='some_class')

Creating a Link

from hkpy.hklib import Link, Connector

new_connector = Connector(id_='new_connector', class_name='some_class')

new_link = Link(connector=new_connector)

# or new_link = Link(connector=new_connector.id_)

new_link.add_bind(entity='some_entity_1', role='some_role_1')

Querying data

HyQL

WIP

SPARQL

Connect to a HKBase repository

from hkpy.hkbase import HKBase, HKRepository

hkbase = HKBase(url='foo.bar', auth='some_token')
hkrepository = hkbase.create_repository(name='new_repository')
sparql_query = ('select ?s ?p ?o ?g {\n'
                '   ?s ?p ?o\n'
                '}')
result_set = hkrepository.sparql(sparql_query)

You can consume the result_set in different ways:

# iterate over rows
for row in result_set: 
    # access via position in select
    print(f's: {row[0].value}')
    
    # access via variable name in select
    print(f'p: {row["p"].value}')
    
    # an empty variable returns none
    print(f'g: {row["g"].value}')
# splitting results_set's rows into variables
for s, p, o in result_set:
    print(f's: {s.value} p: {p.value} o:{o.value}')
# Aside from its value, a row component also has some relevant metadata
for s, p, o in result_set: 
    print((f's value: {s.value}\n'
           f's type: {s.type_}\n'
           f's datatype: {s.datatype}'))

Optional parameters

  • reasoning: bool
  • by_pass: bool

Documentation under construction.

For futher information please refer to the tests/ for basic usage or examples/ for concrete use cases.

Requirements

  • Python 3.6+
  • Dependencies on requirements.txt