forked from Denys88/rl_games
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrnn_env.py
149 lines (134 loc) · 5.09 KB
/
rnn_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import gym
import numpy as np
class TestRNNEnv(gym.Env):
def __init__(self, **kwargs):
gym.Env.__init__(self)
self.obs_dict = {}
self.max_steps = kwargs.pop('max_steps', 21)
self.show_time = kwargs.pop('show_time', 1)
self.min_dist = kwargs.pop('min_dist', 2)
self.max_dist = kwargs.pop('max_dist', 8)
self.hide_object = kwargs.pop('hide_object', False)
self.use_central_value = kwargs.pop('use_central_value', False)
self.apply_dist_reward = kwargs.pop('apply_dist_reward', False)
self.apply_exploration_reward = kwargs.pop('apply_exploration_reward', False)
self.multi_head_value = kwargs.pop('multi_head_value', False)
if self.multi_head_value:
self.value_size = 2
else:
self.value_size = 1
self.multi_discrete_space = kwargs.pop('multi_discrete_space', False)
if self.multi_discrete_space:
self.action_space = gym.spaces.Tuple([gym.spaces.Discrete(2),gym.spaces.Discrete(3)])
else:
self.action_space = gym.spaces.Discrete(4)
self.multi_obs_space = kwargs.pop('multi_obs_space', False)
if self.multi_obs_space:
spaces = {
'pos': gym.spaces.Box(low=0, high=1, shape=(2, ), dtype=np.float32),
'info': gym.spaces.Box(low=0, high=1, shape=(4, ), dtype=np.float32),
}
self.observation_space = gym.spaces.Dict(spaces)
else:
self.observation_space = gym.spaces.Box(low=0, high=1, shape=(6, ), dtype=np.float32)
self.state_space = self.observation_space
if self.apply_exploration_reward:
pass
self.reset()
def get_number_of_agents(self):
return 1
def reset(self):
self._curr_steps = 0
self._current_pos = [0,0]
bound = self.max_dist - self.min_dist
rand_dir = - 2 * np.random.randint(0, 2, (2,)) + 1
self._goal_pos = rand_dir * np.random.randint(self.min_dist, self.max_dist+1, (2,))
obs = np.concatenate([self._current_pos, self._goal_pos, [1, 0]], axis=None)
obs = obs.astype(np.float32)
if self.multi_obs_space:
obs = {
'pos': obs[:2],
'info': obs[2:]
}
if self.use_central_value:
obses = {}
obses["obs"] = obs
obses["state"] = obs
else:
obses = obs
return obses
def step_categorical(self, action):
if self._curr_steps > 1:
if action == 0:
self._current_pos[0] += 1
if action == 1:
self._current_pos[0] -= 1
if action == 2:
self._current_pos[1] += 1
if action == 3:
self._current_pos[1] -= 1
def step_multi_categorical(self, action):
if self._curr_steps > 1:
if action[0] == 0:
self._current_pos[0] += 1
if action[0] == 1:
self._current_pos[0] -= 1
if action[1] == 0:
self._current_pos[1] += 1
if action[1] == 1:
self._current_pos[1] -= 1
if action[1] == 2:
pass
def step(self, action):
info = {}
self._curr_steps += 1
if self.multi_discrete_space:
self.step_multi_categorical(action)
else:
self.step_categorical(action)
reward = [0.0, 0.0]
done = False
dist = self._current_pos - self._goal_pos
if (dist**2).sum() < 0.0001:
reward[0] = 1.0
info = {'scores' : 1}
done = True
elif self._curr_steps == self.max_steps:
info = {'scores' : 0}
done = True
dist_coef = -0.1
if self.apply_dist_reward:
reward[1] = dist_coef * np.abs(dist).sum() / self.max_dist
show_object = 0
if self.hide_object:
obs = np.concatenate([self._current_pos, [0,0], [show_object, self._curr_steps]], axis=None)
else:
show_object = 1
obs = np.concatenate([self._current_pos, self._goal_pos, [show_object, self._curr_steps]], axis=None)
obs = obs.astype(np.float32)
#state = state.astype(np.float32)
if self.multi_obs_space:
obs = {
'pos': obs[:2],
'info': obs[2:]
}
if self.use_central_value:
state = np.concatenate([self._current_pos, self._goal_pos, [show_object, self._curr_steps]], axis=None)
obses = {}
obses["obs"] = obs
if self.multi_obs_space:
obses["state"] = {
'pos': state[:2],
'info': state[2:]
}
else:
obses["state"] = state.astype(np.float32)
else:
obses = obs
if self.multi_head_value:
pass
else:
reward = reward[0] + reward[1]
return obses, np.array(reward).astype(np.float32), done, info
def has_action_mask(self):
return False