-
Notifications
You must be signed in to change notification settings - Fork 0
/
bilateral3_fixed.m
235 lines (196 loc) · 7.18 KB
/
bilateral3_fixed.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
%BILATERAL3 Fast bilateral filtering of 3D images.
% This is an implementation of fast bilateral filtering for 3D images.
% This filter smoothes the image while preserving edges, but in its most
% straighforward implementation is very computationally demanding,
% especially with large 3D images. Fast bilateral filtering (S. Paris and
% F. Durand, MIT) is an approximation technique which drastically
% improves the speed of computation. This implementation follows the
% Matlab version of the 2D filter[1] with some modifications.
%
% sigmaSxy and sigmaSz - spatial smoothing parameters (standard
% deviation of the Gaussian kernel)
% sigmaR - the smoothing parameter in the "range" dimension
% samS - the amount of downsampling performed by the fast
% approximation in the spatial dimensions (x,y). In z direction, it is
% derived from spatial sigmas and samS.
% samR - the amount of downsampling in the "range" dimension.
% verbose - optional, for debugging
%
% [1] http://people.csail.mit.edu/jiawen/software/bilateralFilter.m
%
% Written by Igor Solovey, 2011
% Acknowledgements: 2D implementations of Jiawen Chen, Oleg Michailovich
% Version 1, March 21 2011
%
%Notes:
% - the internal function, BILATERAL3I, allows you to vary all parameters,
% if you want to.
% - spatial sigmas are assumed to be in the units of "pixel".
% - range sigma is assumed to be in the units of range values whose
% minimum is 0 and maximum is 255 (i.e. 8-bit).
function Ibf=bilateral3(I, sigmaSxy,sigmaSz,sigmaR,samS,samR,verbose)
if ~exist('verbose','var'), verbose=0; end
I=range1(double(I),255);
%simplification #1
%smoothing and subsampling in x and y spatial directions is equal
sigmaSx=sigmaSxy;
sigmaSy=sigmaSxy;
samSx=samS;
samSy=samS;
%simplification #2
% obtain samSz by assuming samSz/samS=sigmaSz/sigmaSxy
c=sigmaSz/sigmaSxy;
samSz=ceil(c*samS);
%optional simpilification #3:
% obtain samR by assuming samS/sigmaS = samR/sigmaR
if ~exist('samR','var')
samR = sigmaR*samS/sigmaSxy;
end
%re-scale sigmaR, samR to normalize them ( [0, 255] --> [0, 1] )
% samR has to be such that 1/samR is an integer
%e.g. if supplied samR is 12 (divide range [0,255] into bins of size 12):
%
%normalize: samR=12/256=0.0469;
%1/samR=21.3333 ~=22 bins (round up).
%the new samR = 1/22 = 0.0455;
%later on, when samR is used, 1/samR will yield the number of range bins, 22.
sigmaR = sigmaR/256;
samR = 1/ceil(256/samR);
%for debugging purposes:
if verbose
displ('sigmaSx',sigmaSx);
displ('sigmaSy',sigmaSy);
displ('sigmaSz',sigmaSz);
displ('sigmaR',sigmaR);
displ('samSx',samSx);
displ('samSy',samSy);
displ('samSz',samSz);
displ('samR',samR);
disp(['{' n2s(size(I,1)) ',' n2s(size(I,2)) ',' n2s(size(I,3)) ...
',256} --> {' n2s(ceil(size(I,1)/samSx)) ',' n2s(ceil(size(I,2)/samSy)) ...
',' n2s(ceil(size(I,3)/samSz)) ',' n2s(1/samR) '}']);
end
%run the filter
Ibf=bilateral3i(I,sigmaSx,sigmaSy,sigmaSz,sigmaR,samSx,samSy,samSz,samR);
function Ibf=bilateral3i(I,sigmaSx,sigmaSy,sigmaSz,sigmaR,samSx,samSy,samSz,samR)
I=double(I);
[N M P]=size(I);
%find the number of bins in each spatial dimension
Xbins=ceil(N/samSx);
Ybins=ceil(M/samSy);
Zbins=ceil(P/samSz);
Np=Xbins*samSx;
Mp=Ybins*samSy;
Pp=Zbins*samSz;
Xrem=ceil((Np-N)/2);
Yrem=ceil((Mp-M)/2);
Zrem = ceil((Pp-P)/2);
%zero-pad the image as symmetrically as possible to
%attain a size divisible by the subsample rate
Ip = padarray(I,[Xrem Yrem Zrem],0);
I = Ip(1:Np,1:Mp,1:Pp);
clear Ip
%%%%%
% 1. subsampling in spatial domain
%
% quantize intensity values
% a) map the image I onto a range [0,1].
% b) map the image I onto a range [0,1/sR].
% c) round the values to obtain an image Iq in which each pixel value
% Iq(x0) represents the range bin to which x0 belongs.
Iq=round((I-min(I(:)))/range(I(:))/samR);
%what bin does each pixel belong to, based on its x,y,z coordinate?
[X Y Z]=ndgrid(1:Np,1:Mp,1:Pp);
binX=floor((X-1)/samSx)+1;
binY=floor((Y-1)/samSy)+1;
binZ=floor((Z-1)/samSz)+1;
clear X Y Z
%find which range bin each location in the x-y-z-range space belongs to
binW=repmat(reshape(1:samSx*samSy*samSz,[samSx samSy samSz]),[Xbins,Ybins Zbins]);
D=zeros(Xbins,Ybins,Zbins,samSx*samSy*samSz);
W=D;
D(sub2ind(size(D),binX(:),binY(:),binZ(:),binW(:)))=I(:);
W(sub2ind(size(D),binX(:),binY(:),binZ(:),binW(:)))=Iq(:);
clear Iq binX binY binZ binW
%- W represents which 4D bin each data point belongs to
%- D represents what the actual value of each data point is*
%both contain values oriented according to coordinate system:
%(subsampled-x,subsampled-y,subsampled-z,location-in-bin)
%- the ordering of values along the 4th dimension no longer matters after
%this point.
%* (D is simply the input image I suitably rearranged. numel(D)=numel(I).)
%if I was a 2D image of size 12 by 12, and bin size in X and Y was 3 pixels
%each,constructing D would amount to breaking the image into 3-by-3 chunks,
%then taking the 9 pixels in each chunk and arranging them in a vector,
%placing these vectors next to each other to create a 4-by-4-by-9
%rearrangement of I.
GData =zeros(Xbins,Ybins,Zbins,1/samR);
GWeights =zeros(Xbins,Ybins,Zbins,1/samR);
%for each range bin:
for k=1:(1/samR)
%find the indices of pixels belonging to this range bin
tmp = (W==k);
%make a copy of D but zero out all values except those belonging to
%k-th bin
tmp2 = zeros(size(D));
tmp2(tmp)=D(tmp);
%GWeights will contain the number of pixels in k-th range bin for each
%x-y-z bin
GWeights(:,:,:,k) = sum(tmp,4);
%And GData will contain the sum of their values
GData(:,:,:,k) = sum(tmp2,4);
end
%2. Smoothing with gaussians
hSx=gkernel(sigmaSx/samSx);
hSy=gkernel(sigmaSy/samSy);
hSz=gkernel(sigmaSz/samSz);
hR=gkernel(sigmaR/samR);
GWeights=convnsep({hSx,hSy,hSz,hR},GWeights,'same');
GData=convnsep({hSx,hSy,hSz,hR},GData,'same');
%calculate coordinates in the non-subsampled X-Y-Z-Range plain
%to which filtered bin values belong
[n m p k]=size(GData);
Xloc=repmat(linspace(1,n,Np)',[1 Mp Pp]);
Yloc=repmat(linspace(1,m,Mp), [Np 1 Pp]);
Zloc=repmat(shiftdim(linspace(1,p,Pp),-1), [Np Mp 1]);
Rloc=(I-min(I(:)))/range(I(:))*(1/samR-1)+1;
%compute the pixel values that will go to locations computed above
Indx=GWeights~=0;
Data=zeros(size(GData));
Data(Indx)=GData(Indx)./GWeights(Indx);
clear GData GWeights Indx
%At this point, values at evenly spaced locations Xloc,Yloc,Zloc are
%known (stored in Data), but for the rest of the image they are unknown.
%Interpolation will find them.
Ibf=interpn(Data,Xloc,Yloc,Zloc,Rloc);
clear Data Xloc Yloc Zloc Rloc
%remove zero-padding
Ibf=Ibf(Xrem+1:N+Xrem,Yrem+1:M+Yrem,Zrem+1:P+Zrem);
%Auxiliary functions:
%displaying variable value
function displ(name,val)
disp([name '=' n2s(val) ';']);
%shorthand for num2str
function S = n2s(N,f)
if N~=fix(N)
if ~exist('f','var'),S=num2str(N,'%4.2f');
elseif f==0
S=num2str(N);
else
S=num2str(N,f);
end
else
S=num2str(N);
end
%make a gaussian kernel
function [h,L] = gkernel(sd)
L=ceil(3.5*sd);
h=exp(-0.5*((-L:L)'/sd).^2);
h(h==0)=eps(1);
h=h/sum(h);
function Y = range1(x,rg)
if ~exist('rg','var'),rg=1;end
Y=1/range(x(:))*(x-min(x(:)))*rg;
function y = range(x)
y=max(x)-min(x);