-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolutionLandscape1.py
64 lines (53 loc) · 1.77 KB
/
solutionLandscape1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from simulatorHigh import SpaceSim
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.animation as animation
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import animation
def calculateDistance(sim2):
rocketCord = (sim2.particles[3].x,sim2.particles[3].y,sim2.particles[3].z)
marsCord = (sim2.particles[2].x,sim2.particles[2].y,sim2.particles[2].z)
distance = (rocketCord[0]-marsCord[0])**2 +(rocketCord[1]-marsCord[1])**2 +(rocketCord[2]-marsCord[2])**2
return distance
deci = [[171.02740866424318, -0.00027481006013446203, -0.0024876012556708225, -5.940960457227606e-05]]
z=[]
x=[]
y=[]
time =171.02740866424318
z1=[]
x1=[]
y1=[]
Patch=0.0009
deltaX=np.linspace(-0.00027481006013446203-Patch,-0.00027481006013446203+Patch,50)
deltaY=np.linspace(-0.0024876012556708225-Patch,-0.0024876012556708225+Patch,50)
deltaT=np.append(np.linspace(171.02740866424318-50,171.02740866424318,100),np.linspace(171.02740866424318,171.02740866424318+50,100))
for idx,t in enumerate(deltaT):
z=[]
x=[]
y=[]
z1=[]
x1=[]
y1=[]
for i in deltaX:
for j in deltaY:
sim=SpaceSim()
f = sim.simulate([[t,i,j,-5.940960457227606e-05]])
distance=calculateDistance(f)
if distance<(0.001):
x.append(i)
y.append(j)
z.append(f.particles[3].m)
else:
x1.append(i)
y1.append(j)
z1.append(f.particles[3].m)
print t
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(x1, y1, z1,color='b')
ax.scatter(x, y, z,color='r')
# plt.show()
plt.savefig('land4/archi%03d' %idx, dpi = 72);
plt.close()